16 树方法

调入需要的扩展包:

library(leaps) # 全子集回归
library(ISLR) # 参考书对应的包
library(glmnet) # 岭回归和lasso
## Loading required package: Matrix
## Loaded glmnet 4.1-8
library(tree) # 树回归
library(randomForest) # 随机森林和装袋法
## randomForest 4.7-1.2
## Type rfNews() to see new features/changes/bug fixes.
library(MASS)
library(gbm) # boosting
## Loaded gbm 2.2.2
## This version of gbm is no longer under development. Consider transitioning to gbm3, https://github.com/gbm-developers/gbm3

16.1 决策树

决策树方法按不同自变量的不同值, 分层地把训练集分组。 每层使用一个变量, 所以这样的分组构成一个二叉树表示。 为了预测一个观测的类归属, 找到它所属的组, 用组的类归属或大多数观测的类归属进行预测。 这样的方法称为决策树(decision tree)。 决策树方法既可以用于判别问题, 也可以用于回归问题。

决策树的好处是容易解释, 在自变量为分类变量时没有额外困难。 但预测准确率可能比其它有监督学习方法差。

改进方法包括装袋法(bagging)、随机森林(random forests)、 提升法(boosting)。 这些改进方法都是把许多棵树合并在一起, 通常能改善准确率但是可解释性变差。

16.1.1 回归树

以Hitters数据为例。 以Salary为因变量, 其它自变量为自变量,预测工资值。 为简单起见,仅考虑Years(入行年限)和Hitts(前一年的安打数)两个自变量。 数据需要去掉有缺失值的观测; 以Salary的自然对数值为因变量。 可以得到如下的树(见图16.1):

Hitters数据的简单树图形

图16.1: Hitters数据的简单树图形

这个树把(Years, Hits)的取值\(\mathbb R^2\)空间分成了三个区域: \[\begin{aligned} R_1 =& \{ (\text{Years}, \text{Hits}):\; \text{Years} < 4.5 \}; \\ R_2 =& \{ (\text{Years}, \text{Hits}):\; \text{Years} \geq 4.5 \text{且} \text{Hits} < 117.5 \}; \\ R_3 =& \{ (\text{Years}, \text{Hits}):\; \text{Years} \geq 4.5 \text{且} \text{Hits} \geq 117.5 \} . \end{aligned}\] 每个区域内用因变量平均值预测因变量值。 见图16.2

Hitters数据的简单树划分的空间

图16.2: Hitters数据的简单树划分的空间

此树对应的文字规则如下:

node), split, n, deviance, yval
      * denotes terminal node

1) root 263 207.20 5.927  
  2) Years < 4.5 90  42.35 5.107 *
  3) Years > 4.5 173  72.71 6.354  
    6) Hits < 117.5 90  28.09 5.998 *
    7) Hits > 117.5 83  20.88 6.740 *

根据某变量的值分为两个分支的节点称为内部节点; 不再分割的节点称为叶结点

\(\text{Year}<4.5\)节点和\(\text{Year} \geq 4.5\) 下面的\(\text{Hits}<117.5\)节点是两个内部节点。 \(R_1, R_2, R_3\)是三个叶结点。叶节点处用训练数据的因变量平均值作预测。

从上述结果看出, 为了预测Salary,Years是比Hits更重要的变量。 入行年限多的运动员工资高。 在入行年限超过4.5年的运动员中, Hits低的运动员工资比入行年限低于4.5年的运动员工资提高有限, 而Hits高的运动员工资则提高很多。

树模型可能会过于简单, 但是容易解释和绘图。

树回归步骤用变量值作为分界, 把自变量取值空间\(\mathbb R^p\)分割为不相交的\(J\)个区域 \(R_1, R_2, \dots, R_J\)。 对每个待预测观测,如果自变量值落入\(R_j\)中, 则因变量值用\(R_j\)中训练集的因变量平均值来预测。

16.1.1.1 树回归的分叉方法

树回归分割的区域都是高维矩形或盒子。 求盒子\(R_1, \dots, R_J\)使得其并集为自变量取值空间, 且使得如下的残差平方和最小: \[\begin{align} \text{RSS} = \sum_{j=1}^J \sum_{i \in R_j} (y_i - \hat y_{R_j})^2, \tag{16.1} \end{align}\] 其中\(\hat y_{R_j}\)\(R_j\)中的训练样本的因变量平均值。

为此,使用由顶向下、贪婪的递归二分叉方法。

由顶向下: 从所有训练样本都在一类中开始,逐步分割, 每次按照一个自变量的值把一个类分成两个类。

贪婪是指每次分割时仅考虑当前使得残差平方和减少最多的分割, 不考虑会对整棵树的影响。

在所有观测都未分割时,要找到一个变量\(X_j\)和变量值\(s_j\), 使得 \[\begin{aligned} R_1(j, s_j) =\{ \boldsymbol x | x_j < s_j \}, \quad R_2(j, s_j) =\{ \boldsymbol x | x_j \geq s_j \} \end{aligned}\] 对应的RSS总和最小, 对每个变量都测试一遍, 找到分割后分割的两个区域内的RSS总和最小的变量和分割点。

对变量\(X_j\),为了求\(s_j\),只要对\(X_j\)的所有不同样本值穷举即可。

在已经分成两类\(R_1\), \(R_2\)以后, 对每一类分别去找到能进行最优分割的变量和截断值\(s\), 然后仅取使得RSS总和更小的那个。 这样得到三个类。 对每个类都找最优分割, 然后仅取使得RSS总和最小的一个, 得到四个类。 如此重复,直到满足某种停止法则, 比如每个类中因变量值都相等, 每个类的观测个数至多5个等等。 分割结束后,对测试样本可以用自变量所属区域的因变量平均值预测因变量值。

16.1.1.2 剪枝

分类树可能会过于复杂, 也会产生过度拟合。 剪去一些枝叶, 使得模型复杂度降低, 可以提高可解释性, 降低方差, 当然偏差会增大一些, 总的来说适当剪枝可以降低测试集上的均方误差。

虽然可以用提前结束分割的方法降低复杂度, 但是这样可能会漏掉底层的好分割。 所以还是先构造一棵大树再剪枝更好。

剪枝的目标是使得测试均方误差最小。 可以用交叉验证或者测试集来估计不同的子树的均方误差。 但是对所有可能的子树都估计均方误差带来过多的计算量。 应仅考虑部分子树。

剪枝的一种方法是代价复杂度剪枝(cost complexity pruning), 也称为最弱联系剪枝(weakest link pruning)。 仅考虑用一个调节参数\(\alpha\)标记的子树的序列。 对每个\(\alpha>0\), 存在子树\(T\), 使得如下函数最小化: \[\begin{aligned} \sum_{m=1}^{|T|} \sum_{i:\; x_i \in R_m} (y_i - \hat y_{R_m})^2 + \alpha |T| \end{aligned}\] 其中\(|T|\)是子树\(T\)的叶子节点个数, \(R_m\)是第\(m\)个叶子节点对应的分割区域, \(\hat y_{R_m}\)是用\(R_m\)中样品计算的因变量预测值。

\(\alpha=0\)时对应于不剪枝的树。 \(\alpha\)增大时规则对较大的树有惩罚, 所以能选择较小的子树, 而且每次子树变化都是从前面较小的\(\alpha\)对应的子树中剪去一个分枝点, 是嵌套进行的。

很容易得到所有的\(\alpha\)对应的子树序列。 可以用交叉验证或测试集选择合适的\(\alpha\)从而选择合适的子树。 得到最优的\(\alpha\)后, 可以再利用全部观测以及获得的\(\alpha\)值产生剪枝的树。

16.1.2 Hitters回归树的简单演示

对Hitters数据,用Years和Hits作因变量预测log(Salaray)。

仅取Hitters数据集的Salary, Years, Hits三个变量, 并仅保留完全观测:

d <- na.omit(Hitters[,c('Salary', 'Years', 'Hits')])
print(str(d))
## 'data.frame':    263 obs. of  3 variables:
##  $ Salary: num  475 480 500 91.5 750 ...
##  $ Years : int  14 3 11 2 11 2 3 2 13 10 ...
##  $ Hits  : int  81 130 141 87 169 37 73 81 92 159 ...
##  - attr(*, "na.action")= 'omit' Named int [1:59] 1 16 19 23 31 33 37 39 40 42 ...
##   ..- attr(*, "names")= chr [1:59] "-Andy Allanson" "-Billy Beane" "-Bruce Bochte" "-Bob Boone" ...
## NULL

建立完整的树:

tr1 <- tree(log(Salary) ~ Years + Hits, data=d)

剪枝为只有3个叶结点:

tr1b <- prune.tree(tr1, best=3)

显示树:

print(tr1b)
## node), split, n, deviance, yval
##       * denotes terminal node
## 
## 1) root 263 207.20 5.927  
##   2) Years < 4.5 90  42.35 5.107 *
##   3) Years > 4.5 173  72.71 6.354  
##     6) Hits < 117.5 90  28.09 5.998 *
##     7) Hits > 117.5 83  20.88 6.740 *

显示概括:

print(summary(tr1b))
## 
## Regression tree:
## snip.tree(tree = tr1, nodes = c(6L, 2L))
## Number of terminal nodes:  3 
## Residual mean deviance:  0.3513 = 91.33 / 260 
## Distribution of residuals:
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
## -2.24000 -0.39580 -0.03162  0.00000  0.33380  2.55600

做树图:

plot(tr1b); text(tr1b, pretty=0)

16.1.3 Hitters数据回归树的完整演示

把数据随机地分成一半训练集,一半测试集:

d <- na.omit(Hitters[,c('Salary', 'Years', 'Hits')])
set.seed(1)
train_id <- sample(nrow(d), size=round(0.5*nrow(d)))
train <- rep(FALSE, nrow(d))
train[train_id] <- TRUE
test <- (!train)

对训练集,建立未剪枝的树:

tr1 <- tree(log(Salary) ~ ., data=d, subset=train)
plot(tr1); text(tr1, pretty=0)

对训练集上的未剪枝树用交叉验证方法寻找最优大小:

cv1 <- cv.tree(tr1)
print(cv1)
## $size
## [1] 7 6 5 4 3 2 1
## 
## $dev
## [1]  49.88386  49.78504  50.36061  50.00678  54.07967  66.20924 104.06611
## 
## $k
## [1]      -Inf  1.558635  1.642895  2.319001  6.275232 11.126931 43.728005
## 
## $method
## [1] "deviance"
## 
## attr(,"class")
## [1] "prune"         "tree.sequence"
plot(cv1$size, cv1$dev, type='b')
best.size <- cv1$size[which.min(cv1$dev)[1]]
abline(v=best.size, col='gray')

最优大小为6。 获得训练集上构造的树剪枝后的结果:

tr1b <- prune.tree(tr1, best=best.size)

在测试集上计算预测均方误差:

pred.test <- predict(tr1b, newdata=d[test,])
test.mse <- mean( (d[test, 'Salary'] - exp(pred.test))^2 )
test.mse
## [1] 135635.4

如果用训练集的因变量平均值估计测试集的因变量值, 均方误差为:

worst.mse <- mean( (d[test, 'Salary'] - mean(d[train, 'Salary']))^2 )
worst.mse
## [1] 224692.1

用所有数据来构造未剪枝树:

tr2 <- tree(log(Salary) ~ ., data=d)

用训练集上得到的子树大小剪枝:

tr2b <- prune.tree(tr2, best=best.size)
plot(tr2b); text(tr2b, pretty=0)

16.1.4 分类树

这里分类树指因变量是分类变量的树模型。 回归树对每一分割区域用该区域观测的因变量平均值做预测, 而分类树对每一分割区域用该区域因变量的最常见值做预测。 训练出来的回归函数不仅包括区域分割信息、每个区域的最常见类别信息, 还包括每个分割区域的类别分布信息。

在构造分叉时, 不再以拟合均方误差RSS最小为目标, 而是以错判率(classification error rate)最小为目标。 每个区域的错判率是该区域中最常见类之外的类比例。

\(\hat p_{mk}\)表示第\(m\)个分割区域的训练样本中, 因变量的第\(k\)个类的比例,则 \[\begin{aligned} E = 1 - \max_{k} \hat p_{mk} \end{aligned}\] 是第\(m\)个分割区域的错判率。 但是,错判率不容易区分不同树的判别性能。 一般改用基尼系数和互熵。

基尼系数(Gini index)定义为 \[\begin{aligned} G = \sum_{k=1}^K \hat p_{mk} (1 - \hat p_{mk}), \end{aligned}\] 易见当比例\(\hat p_{mk}\)中一个接近于1,其余都接近于0时\(G\)很小, 这时区域\(m\)基本上都属于因变量的同一类别。 所以\(G\)可以看成是某个分割区域的类混杂程度, \(G\)很小时此区域的类是纯一的, \(G\)很大时,此区域的类别比较混杂,应进一步分割。

另一个衡量某分割区域类别分布情况的指标是如下的互熵(cross entropy): \[\begin{aligned} D = - \sum_{k=1}^K \hat p_{mk} \log \hat p_{mk} . \end{aligned}\] 易见\(D \geq 0\), 当比例\(\hat p_{mk}\)中一个接近于1, 其余都接近于0时\(D\)很小, 这时区域\(m\)基本上都属于因变量的同一类别。 所以\(D\)也可以看成是某个分割区域的类混杂程度, \(D\)很小时此区域的类是纯一的, \(D\)很大时,此区域的类别比较混杂,应进一步分割。 事实上,\(G\)\(D\)的值很接近。

在分叉时, 用基尼系数或者互熵可以得到更好的分叉结果。

在剪枝时, 仍可以使用基尼系数或互熵, 但是如果关心的是剪枝后的树的预测准确率, 用错判率剪枝更合适。

16.1.5 Heart数据判别树演示

数据集Heart中有303个病人的数据,其中变量AHD是二值变量, 取Yes表示用血管造影检查确诊心脏病的,No表示没有心脏病的。 有13个自变量,包括Age, Sex, Chol(胆固醇化验指标)等。

读入Heart数据集,并去掉有缺失值的观测:

Heart <- read.csv("Heart.csv", header=TRUE,
  row.names=1, 
  stringsAsFactors=TRUE)
Heart <- na.omit(Heart)
str(Heart)
## 'data.frame':    297 obs. of  14 variables:
##  $ Age      : int  63 67 67 37 41 56 62 57 63 53 ...
##  $ Sex      : int  1 1 1 1 0 1 0 0 1 1 ...
##  $ ChestPain: Factor w/ 4 levels "asymptomatic",..: 4 1 1 2 3 3 1 1 1 1 ...
##  $ RestBP   : int  145 160 120 130 130 120 140 120 130 140 ...
##  $ Chol     : int  233 286 229 250 204 236 268 354 254 203 ...
##  $ Fbs      : int  1 0 0 0 0 0 0 0 0 1 ...
##  $ RestECG  : int  2 2 2 0 2 0 2 0 2 2 ...
##  $ MaxHR    : int  150 108 129 187 172 178 160 163 147 155 ...
##  $ ExAng    : int  0 1 1 0 0 0 0 1 0 1 ...
##  $ Oldpeak  : num  2.3 1.5 2.6 3.5 1.4 0.8 3.6 0.6 1.4 3.1 ...
##  $ Slope    : int  3 2 2 3 1 1 3 1 2 3 ...
##  $ Ca       : int  0 3 2 0 0 0 2 0 1 0 ...
##  $ Thal     : Factor w/ 3 levels "fixed","normal",..: 1 2 3 2 2 2 2 2 3 3 ...
##  $ AHD      : Factor w/ 2 levels "No","Yes": 1 2 2 1 1 1 2 1 2 2 ...
##  - attr(*, "na.action")= 'omit' Named int [1:6] 88 167 193 267 288 303
##   ..- attr(*, "names")= chr [1:6] "88" "167" "193" "267" ...
knitr::kable(t(summary(Heart)))
Age Min. :29.00 1st Qu.:48.00 Median :56.00 Mean :54.54 3rd Qu.:61.00 Max. :77.00
Sex Min. :0.0000 1st Qu.:0.0000 Median :1.0000 Mean :0.6768 3rd Qu.:1.0000 Max. :1.0000
ChestPain asymptomatic:142 nonanginal : 83 nontypical : 49 typical : 23 NA NA
RestBP Min. : 94.0 1st Qu.:120.0 Median :130.0 Mean :131.7 3rd Qu.:140.0 Max. :200.0
Chol Min. :126.0 1st Qu.:211.0 Median :243.0 Mean :247.4 3rd Qu.:276.0 Max. :564.0
Fbs Min. :0.0000 1st Qu.:0.0000 Median :0.0000 Mean :0.1448 3rd Qu.:0.0000 Max. :1.0000
RestECG Min. :0.0000 1st Qu.:0.0000 Median :1.0000 Mean :0.9966 3rd Qu.:2.0000 Max. :2.0000
MaxHR Min. : 71.0 1st Qu.:133.0 Median :153.0 Mean :149.6 3rd Qu.:166.0 Max. :202.0
ExAng Min. :0.0000 1st Qu.:0.0000 Median :0.0000 Mean :0.3266 3rd Qu.:1.0000 Max. :1.0000
Oldpeak Min. :0.000 1st Qu.:0.000 Median :0.800 Mean :1.056 3rd Qu.:1.600 Max. :6.200
Slope Min. :1.000 1st Qu.:1.000 Median :2.000 Mean :1.603 3rd Qu.:2.000 Max. :3.000
Ca Min. :0.0000 1st Qu.:0.0000 Median :0.0000 Mean :0.6768 3rd Qu.:1.0000 Max. :3.0000
Thal fixed : 18 normal :164 reversable:115 NA NA NA
AHD No :160 Yes:137 NA NA NA NA

16.1.5.1 划分训练集与测试集

简单地把观测分为一半训练集、一半测试集:

set.seed(1)
train_id <- sample(nrow(Heart), size=round(0.5*nrow(Heart)))
train <- rep(FALSE, nrow(Heart))
train[train_id] <- TRUE
test <- (!train)
test.y <- Heart[["AHD"]][test]

在训练集上建立未剪枝的判别树:

tr1 <- tree(AHD ~ ., data=Heart, subset=train)
plot(tr1); text(tr1, pretty=0)

注意: tree()函数要求输入的分类变量为因子类型, 不能直接输入字符型数据作为自变量。

16.1.5.2 适当剪枝

用交叉验证方法确定剪枝保留的叶子个数,剪枝时按照错判率执行:

cv1 <- cv.tree(tr1, FUN=prune.misclass)
cv1
## $size
## [1] 12  9  6  4  2  1
## 
## $dev
## [1] 44 44 40 40 54 66
## 
## $k
## [1]      -Inf  0.000000  1.666667  3.000000  7.000000 26.000000
## 
## $method
## [1] "misclass"
## 
## attr(,"class")
## [1] "prune"         "tree.sequence"
plot(cv1$size, cv1$dev, type='b', xlab='size', ylab='dev')

best.size <- cv1$size[which.min(cv1$dev)]

最优的大小是6。

对训练集生成剪枝结果:

tr1b <- prune.misclass(tr1, best=best.size)
plot(tr1b); text(tr1b, pretty=0)

注意剪枝后树的显示中, 内部节点的自变量存在分类变量, 这时按照这个自变量分叉时, 取指定的某几个分类值时对应分支Yes, 取其它的分类值时对应分支No。

16.1.5.3 对测试集计算误判率

pred1 <- predict(tr1b, Heart[test,], type='class')
tab1 <- table(pred1, test.y); tab1
##      test.y
## pred1 No Yes
##   No  61  24
##   Yes 16  48
test.err <- (tab1[1,2]+tab1[2,1])/sum(tab1[]); test.err
## [1] 0.2684564

对测试集的错判率约27%。

利用未剪枝的树对测试集进行预测, 一般比剪枝后的结果差:

pred1a <- predict(tr1, Heart[test,], type='class')
tab1a <- table(pred1a, test.y); tab1a
##       test.y
## pred1a No Yes
##    No  58  21
##    Yes 19  51
test.err1a <- (tab1a[1,2]+tab1a[2,1])/sum(tab1a[]); test.err1a
## [1] 0.2684564

16.1.5.4 利用全集数据建立剪枝判别树

tr2 <- tree(AHD ~ ., data=Heart)
tr2b <- prune.misclass(tr2, best=best.size)
plot(tr2b); text(tr2b, pretty=0)

16.2 装袋法和随机森林

16.2.1 装袋法

判别树在不同的训练集、测试集划分上可以产生很大变化, 说明其预测值方差较大。 利用bootstrap的思想, 可以随机选取许多个训练集, 把许多个训练集的模型结果平均, 就可以降低预测值的方差。

办法是从一个训练集中用有放回抽样的方法抽取\(B\)个训练集, 设第\(b\)个抽取的训练集得到的回归函数为\(\hat f^{*b}(\cdot)\), 则最后的回归函数是这些回归函数的平均值: \[\begin{aligned} \hat f_{\text{bagging}}(x) = \frac{1}{B} \sum_{b=1}^b \hat f^{*b}(x) \end{aligned}\] 这称为装袋法(bagging)。 装袋法对改善判别与回归树的精度十分有效。

装袋法的步骤如下:

  • 从训练集中取\(B\)个有放回随机抽样的bootstrap训练集,\(B\)取为几百到几千之间。
  • 对每个bootstrap训练集,估计未剪枝的树。
  • 如果因变量是连续变量,对测试样品,用所有的树的预测值的平均值作预测。
  • 如果因变量是分类变量,对测试样品,可以用所有树预测类的多数投票决定预测值。

装袋法也可以用来改进其他的回归和判别方法。

装袋后不能再用图形表示,模型可解释性较差。 但是,可以度量自变量在预测中的重要程度。 在回归问题中, 可以计算每个自变量在所有\(B\)个树种平均减少的残差平方和的量, 以此度量其重要度。 在判别问题中, 可以计算每个自变量在所有\(B\)个树种平均减少的基尼系数的量, 以此度量其重要度。

除了可以用测试集、交叉验证方法以外, 还可以使用袋外观测预测误差。 用bootstrap再抽样获得多个训练集时每个bootstrap训练集总会遗漏一些观测, 平均每个bootstrap训练集会遗漏三分之一的观测。 对每个观测,大约有\(B/3\)棵树没有用到此观测, 可以用这些树的预测值平均来预测此观测,得到一个误差估计, 这样得到的均方误差估计或错判率称为袋外观测估计(OOB估计)。 好处是不用很多额外的工作。

16.2.1.1 Hitters数据装袋法演示

对训练集用装袋法:

set.seed(1)
d <- na.omit(Hitters)
train_id <- sample(nrow(d), size=round(0.5*nrow(d)))
train <- rep(FALSE, nrow(d))
train[train_id] <- TRUE
test <- (!train)

bag1 <- randomForest(log(Salary) ~ ., data=d, 
  subset=train, mtry=ncol(d)-1, importance=TRUE)
bag1
## 
## Call:
##  randomForest(formula = log(Salary) ~ ., data = d, mtry = ncol(d) -      1, importance = TRUE, subset = train) 
##                Type of random forest: regression
##                      Number of trees: 500
## No. of variables tried at each split: 19
## 
##           Mean of squared residuals: 0.2488363
##                     % Var explained: 68.1

注意randomForest()函数实际是随机森林法, 但是当mtry的值取为所有自变量个数时就是装袋法。

对测试集进行预报:

pred2 <- predict(bag1, newdata=d[test,])
test.mse2 <- mean( (d[test, 'Salary'] - exp(pred2))^2 )
test.mse2
## [1] 90171.44

结果与剪枝过的单课树相近。

在全集上使用装袋法:

bag2 <- randomForest(log(Salary) ~ ., data=d, mtry=ncol(d)-1, importance=TRUE)
bag2
## 
## Call:
##  randomForest(formula = log(Salary) ~ ., data = d, mtry = ncol(d) -      1, importance = TRUE) 
##                Type of random forest: regression
##                      Number of trees: 500
## No. of variables tried at each split: 19
## 
##           Mean of squared residuals: 0.1873377
##                     % Var explained: 76.22

变量的重要度数值和图形: 各变量的重要度数值及其图形:

importance(bag2)
##               %IncMSE IncNodePurity
## AtBat     12.24054066     8.5996425
## Hits       9.47716109     8.0146504
## HmRun      4.19762724     2.1570060
## Runs       7.68565733     3.9542718
## RBI        7.51172719     5.7689615
## Walks      8.34560927     6.8880129
## Years      9.25986753     2.2505365
## CAtBat    26.74337522    79.8379721
## CHits     13.34178783    27.0067167
## CHmRun     6.93413792     3.9886086
## CRuns     14.33934038    32.9637351
## CRBI      15.42782700    10.2720711
## CWalks     7.02126823     4.6201072
## League    -1.00937275     0.1668663
## Division   0.03884951     0.2590991
## PutOuts    2.96962100     3.7135650
## Assists    1.06380884     1.7233765
## Errors     1.62377900     1.6439786
## NewLeague  1.42880310     0.3362676
varImpPlot(bag2)

最重要的自变量是CAtBats, 其次有CRuns, CHits, CRBI等。

16.2.1.2 Heart数据用装袋法演示

对训练集用装袋法:

set.seed(1)
train_id <- sample(nrow(Heart), size=round(0.5*nrow(Heart)))
train <- rep(FALSE, nrow(Heart))
train[train_id] <- TRUE
test <- (!train)
test.y <- Heart[["AHD"]][test]

bag1 <- randomForest(AHD ~ ., data=Heart, 
  subset=train, mtry=13, importance=TRUE)
bag1
## 
## Call:
##  randomForest(formula = AHD ~ ., data = Heart, mtry = 13, importance = TRUE,      subset = train) 
##                Type of random forest: classification
##                      Number of trees: 500
## No. of variables tried at each split: 13
## 
##         OOB estimate of  error rate: 22.97%
## Confusion matrix:
##     No Yes class.error
## No  70  13   0.1566265
## Yes 21  44   0.3230769

注意randomForest()函数实际是随机森林法, 但是当mtry的值取为所有自变量个数时就是装袋法。 袋外观测得到的错判率比较差。

对测试集进行预报:

pred2 <- predict(bag1, newdata=Heart[test,])
tab2 <- table(pred2, test.y); tab2
##      test.y
## pred2 No Yes
##   No  66  16
##   Yes 11  56
test.err2 <- (tab2[1,2]+tab2[2,1])/sum(tab2[]); test.err2
## [1] 0.1812081

测试集的错判率约为18%。

对全集用装袋法:

bag1b <- randomForest(AHD ~ ., data=Heart, mtry=13, importance=TRUE)
bag1b
## 
## Call:
##  randomForest(formula = AHD ~ ., data = Heart, mtry = 13, importance = TRUE) 
##                Type of random forest: classification
##                      Number of trees: 500
## No. of variables tried at each split: 13
## 
##         OOB estimate of  error rate: 19.53%
## Confusion matrix:
##      No Yes class.error
## No  134  26   0.1625000
## Yes  32 105   0.2335766

各变量的重要度数值及其图形:

importance(bag1b)
##                   No        Yes MeanDecreaseAccuracy MeanDecreaseGini
## Age        7.5914270  5.9300895            9.5901487        12.423534
## Sex       11.1035002  4.4224309           12.5552921         3.606976
## ChestPain 11.8110968 17.8134383           20.3909869        23.737158
## RestBP     4.2851096  2.6043117            4.9076443         9.865693
## Chol      -1.9750832 -3.4792229           -3.6808119        10.838036
## Fbs        0.7931423 -2.7452667           -1.2269553         0.874251
## RestECG   -1.7922866  0.8798907           -0.7548197         1.895233
## MaxHR      8.5471129  1.4362163            7.8503704        13.396300
## ExAng      1.8258307  5.7732467            5.2672188         3.941524
## Oldpeak   15.2223889 13.0068694           19.4903808        14.709831
## Slope      2.9181877  5.2329194            5.8296096         4.200541
## Ca        24.3509148 18.4287501           29.6110614        20.004071
## Thal      21.0348018 18.0554814           26.3633854        27.572038
varImpPlot(bag1b)

最重要的变量是Thal, ChestPain, Ca。

16.2.2 随机森林

随机森林的思想与装袋法类似, 但是试图使得参加平均的各个树之间变得比较独立。 仍采用有放回抽样得到的多个bootstrap训练集, 但是对每个bootstrap训练集构造判别树时, 每次分叉时不考虑所有自变量, 而是仅考虑随机选取的一个自变量子集。

对判别树,每次分叉时选取的自变量个数通常取\(m \approx \sqrt{p}\)个。 比如,对Heart数据的13个自变量, 每次分叉时仅随机选取4个纳入考察范围。

随机森林的想法是基于正相关的样本在平均时并不能很好地降低方差, 独立样本能比较好地降低方差。 如果存在一个最重要的变量, 如果不加限制这个最重要的变量总会是第一个分叉, 使得\(B\)棵树相似程度很高。 随机森林解决这个问题的办法是限制分叉时可选的变量子集。

随机森林也可以用来改进其他的回归和判别方法。

装袋法和随机森林都可以用R扩展包randomForest的 randomForest()函数实现。 当此函数的mtry参数取为自变量个数时,执行的就是装袋法; mtry取缺省值时,执行随机森林算法。 执行随机森林算法时, randomForest()函数在回归问题时分叉时考虑的自变量个数取\(m \approx p/3\), 在判别问题时取\(m \approx \sqrt{p}\)

16.2.2.1 Hitters数据随机森林演示

对训练集用随机森林法:

set.seed(1)
d <- na.omit(Hitters)
train_id <- sample(nrow(d), size=round(0.5*nrow(d)))
train <- rep(FALSE, nrow(d))
train[train_id] <- TRUE
test <- (!train)

rf1 <- randomForest(log(Salary) ~ ., data=d, 
  subset=train, importance=TRUE)
rf1
## 
## Call:
##  randomForest(formula = log(Salary) ~ ., data = d, importance = TRUE,      subset = train) 
##                Type of random forest: regression
##                      Number of trees: 500
## No. of variables tried at each split: 6
## 
##           Mean of squared residuals: 0.2437535
##                     % Var explained: 68.75

mtry的值取为缺省值时执行随机森林算法。

对测试集进行预报:

pred3 <- predict(rf1, newdata=d[test,])
test.mse3 <- mean( (d[test, 'Salary'] - exp(pred3))^2 )
test.mse3
## [1] 96229.2

结果与剪枝过的单课树、装袋法相近。

在全集上使用随机森林:

rf2 <- randomForest(log(Salary) ~ ., data=d, importance=TRUE)
rf2
## 
## Call:
##  randomForest(formula = log(Salary) ~ ., data = d, importance = TRUE) 
##                Type of random forest: regression
##                      Number of trees: 500
## No. of variables tried at each split: 6
## 
##           Mean of squared residuals: 0.1782609
##                     % Var explained: 77.37

各变量的重要度数值及其图形:

importance(rf2)
##               %IncMSE IncNodePurity
## AtBat     11.81948475     8.2308776
## Hits       8.09787840     7.5075741
## HmRun      5.91570003     2.4320892
## Runs       8.48169025     4.8333805
## RBI        6.29673815     6.3026314
## Walks      9.36982692     6.2217510
## Years     10.61587730     6.5702146
## CAtBat    17.58354435    40.7827117
## CHits     15.64594781    34.4452277
## CHmRun     7.04523612     6.4528435
## CRuns     15.85901741    35.5844665
## CRBI      13.56732483    18.8060878
## CWalks    10.25381701    17.6924487
## League    -0.44093551     0.3050351
## Division   0.32697628     0.2715000
## PutOuts    3.74477178     3.0747050
## Assists   -0.43394356     1.6667284
## Errors     1.58044791     1.7246783
## NewLeague -0.01057482     0.3535943
varImpPlot(rf2)

最重要的自变量是CAtBats, CRuns, CHits, CWalks, CRBI等。

16.2.2.2 Heart数据随机森林演示

对训练集用随机森林法:

set.seed(1)
train_id <- sample(nrow(Heart), size=round(0.5*nrow(Heart)))
train <- rep(FALSE, nrow(Heart))
train[train_id] <- TRUE
test <- (!train)
test.y <- Heart[["AHD"]][test]

rf1 <- randomForest(AHD ~ ., data=Heart, subset=train, importance=TRUE)
rf1
## 
## Call:
##  randomForest(formula = AHD ~ ., data = Heart, importance = TRUE,      subset = train) 
##                Type of random forest: classification
##                      Number of trees: 500
## No. of variables tried at each split: 3
## 
##         OOB estimate of  error rate: 22.97%
## Confusion matrix:
##     No Yes class.error
## No  71  12   0.1445783
## Yes 22  43   0.3384615

这里mtry取缺省值,对应于随机森林法。

对测试集进行预报:

pred3 <- predict(rf1, newdata=Heart[test,])
tab3 <- table(pred3, test.y); tab3
##      test.y
## pred3 No Yes
##   No  70  17
##   Yes  7  55
test.err3 <- (tab3[1,2]+tab3[2,1])/sum(tab3[]); test.err3
## [1] 0.1610738

测试集的错判率约为16%。

对全集用随机森林:

rf1b <- randomForest(AHD ~ ., data=Heart,  importance=TRUE)
rf1b
## 
## Call:
##  randomForest(formula = AHD ~ ., data = Heart, importance = TRUE) 
##                Type of random forest: classification
##                      Number of trees: 500
## No. of variables tried at each split: 3
## 
##         OOB estimate of  error rate: 17.17%
## Confusion matrix:
##      No Yes class.error
## No  137  23   0.1437500
## Yes  28 109   0.2043796

各变量的重要度数值及其图形:

importance(rf1b)
##                   No        Yes MeanDecreaseAccuracy MeanDecreaseGini
## Age        5.0451528  4.1243916            6.2544913        12.589891
## Sex       11.8830005  5.7666976           13.0527236         4.348853
## ChestPain 12.9853182 15.9344889           20.0063334        18.140518
## RestBP     2.3860139  0.8161766            2.2560609        10.402834
## Chol       0.4441293 -1.7627423           -1.0295881        11.550493
## Fbs        1.3711348 -2.5626917           -0.8151845         1.329501
## RestECG    0.1510264  0.5408153            0.4091251         2.734730
## MaxHR      9.6540260  4.8456013           10.0807989        17.028765
## ExAng      3.8100638  7.2834823            8.0332494         7.365512
## Oldpeak    9.9336236 12.8188739           16.1137642        15.876015
## Slope      1.9767505  8.3713104            7.6713543         6.421739
## Ca        21.6441820 18.4225083           26.1245597        18.106245
## Thal      19.6662985 16.5929688           24.6866916        19.282387
varImpPlot(rf1b)

最重要的变量是ChestPain, Thal, Ca。

16.3 汽车销量数据的演示

Carseats是ISLR包的一个数据集,基本情况如下:

str(Carseats)
## 'data.frame':    400 obs. of  11 variables:
##  $ Sales      : num  9.5 11.22 10.06 7.4 4.15 ...
##  $ CompPrice  : num  138 111 113 117 141 124 115 136 132 132 ...
##  $ Income     : num  73 48 35 100 64 113 105 81 110 113 ...
##  $ Advertising: num  11 16 10 4 3 13 0 15 0 0 ...
##  $ Population : num  276 260 269 466 340 501 45 425 108 131 ...
##  $ Price      : num  120 83 80 97 128 72 108 120 124 124 ...
##  $ ShelveLoc  : Factor w/ 3 levels "Bad","Good","Medium": 1 2 3 3 1 1 3 2 3 3 ...
##  $ Age        : num  42 65 59 55 38 78 71 67 76 76 ...
##  $ Education  : num  17 10 12 14 13 16 15 10 10 17 ...
##  $ Urban      : Factor w/ 2 levels "No","Yes": 2 2 2 2 2 1 2 2 1 1 ...
##  $ US         : Factor w/ 2 levels "No","Yes": 2 2 2 2 1 2 1 2 1 2 ...
summary(Carseats)
##      Sales          CompPrice       Income        Advertising       Population        Price        ShelveLoc        Age          Education    Urban       US     
##  Min.   : 0.000   Min.   : 77   Min.   : 21.00   Min.   : 0.000   Min.   : 10.0   Min.   : 24.0   Bad   : 96   Min.   :25.00   Min.   :10.0   No :118   No :142  
##  1st Qu.: 5.390   1st Qu.:115   1st Qu.: 42.75   1st Qu.: 0.000   1st Qu.:139.0   1st Qu.:100.0   Good  : 85   1st Qu.:39.75   1st Qu.:12.0   Yes:282   Yes:258  
##  Median : 7.490   Median :125   Median : 69.00   Median : 5.000   Median :272.0   Median :117.0   Medium:219   Median :54.50   Median :14.0                      
##  Mean   : 7.496   Mean   :125   Mean   : 68.66   Mean   : 6.635   Mean   :264.8   Mean   :115.8                Mean   :53.32   Mean   :13.9                      
##  3rd Qu.: 9.320   3rd Qu.:135   3rd Qu.: 91.00   3rd Qu.:12.000   3rd Qu.:398.5   3rd Qu.:131.0                3rd Qu.:66.00   3rd Qu.:16.0                      
##  Max.   :16.270   Max.   :175   Max.   :120.00   Max.   :29.000   Max.   :509.0   Max.   :191.0                Max.   :80.00   Max.   :18.0

把Salses变量按照大于8与否分成两组, 结果存入变量High,以High为因变量作判别分析。

d <- na.omit(Carseats)
d$High <- factor(ifelse(d$Sales > 8, 'Yes', 'No'))
dim(d)
## [1] 400  12

16.3.1 判别树

16.3.1.1 全体数据的判别树

对全体数据建立未剪枝的判别树:

tr1 <- tree(High ~ . - Sales, data=d)
summary(tr1)
## 
## Classification tree:
## tree(formula = High ~ . - Sales, data = d)
## Variables actually used in tree construction:
## [1] "ShelveLoc"   "Price"       "Income"      "CompPrice"   "Population"  "Advertising" "Age"         "US"         
## Number of terminal nodes:  27 
## Residual mean deviance:  0.4575 = 170.7 / 373 
## Misclassification error rate: 0.09 = 36 / 400
plot(tr1)
text(tr1, pretty=0)

16.3.1.2 划分训练集和测试集

把输入数据集随机地分一半当作训练集,另一半当作测试集:

d <- na.omit(Carseats)
d$High <- factor(ifelse(d$Sales > 8, 'Yes', 'No'))
set.seed(2)
train_id <- sample(nrow(d), size=round(0.5*nrow(d)))
train <- rep(FALSE, nrow(d))
train[train_id] <- TRUE
test <- (!train)
test.high <- d[["High"]][test]

用训练数据建立未剪枝的判别树:

tr2 <- tree(High ~ . - Sales, data=d, subset=train)
summary(tr2)
## 
## Classification tree:
## tree(formula = High ~ . - Sales, data = d, subset = train)
## Variables actually used in tree construction:
## [1] "Price"       "Population"  "ShelveLoc"   "Age"         "Education"   "CompPrice"   "Advertising" "Income"      "US"         
## Number of terminal nodes:  21 
## Residual mean deviance:  0.5543 = 99.22 / 179 
## Misclassification error rate: 0.115 = 23 / 200
plot(tr2)
text(tr2, pretty=0)

用未剪枝的树对测试集进行预测,并计算误判率:

pred2 <- predict(tr2, d[test,], type='class')
tab <- table(pred2, test.high); tab
##      test.high
## pred2  No Yes
##   No  104  33
##   Yes  13  50
test.err2 <- (tab[1,2] + tab[2,1]) / sum(tab[]); test.err2
## [1] 0.23

16.3.1.3 用交叉验证确定训练集的剪枝

set.seed(3)
cv1 <- cv.tree(tr2, FUN=prune.misclass)
cv1
## $size
## [1] 21 19 14  9  8  5  3  2  1
## 
## $dev
## [1] 74 74 78 77 77 79 75 80 82
## 
## $k
## [1] -Inf  0.0  1.0  1.4  2.0  3.0  4.0  9.0 18.0
## 
## $method
## [1] "misclass"
## 
## attr(,"class")
## [1] "prune"         "tree.sequence"
plot(cv1$size, cv1$dev, type='b')

best.size <- cv1$size[which.min(cv1$dev)]

用交叉验证方法自动选择的最佳树大小为21。

剪枝:

tr3 <- prune.misclass(tr2, best=best.size)
summary(tr3)
## 
## Classification tree:
## tree(formula = High ~ . - Sales, data = d, subset = train)
## Variables actually used in tree construction:
## [1] "Price"       "Population"  "ShelveLoc"   "Age"         "Education"   "CompPrice"   "Advertising" "Income"      "US"         
## Number of terminal nodes:  21 
## Residual mean deviance:  0.5543 = 99.22 / 179 
## Misclassification error rate: 0.115 = 23 / 200
plot(tr3)
text(tr3, pretty=0)

用剪枝后的树对测试集进行预测,计算误判率:

pred3 <- predict(tr3, d[test,], type='class')
tab <- table(pred3, test.high); tab
##      test.high
## pred3  No Yes
##   No  104  32
##   Yes  13  51
test.err3 <- (tab[1,2] + tab[2,1]) / sum(tab[]); test.err3
## [1] 0.225

16.3.2 随机森林

对训练集用随机森林法:

rf4 <- randomForest(High ~ . - Sales, data=d, 
  subset=train, importance=TRUE)
rf4
## 
## Call:
##  randomForest(formula = High ~ . - Sales, data = d, importance = TRUE,      subset = train) 
##                Type of random forest: classification
##                      Number of trees: 500
## No. of variables tried at each split: 3
## 
##         OOB estimate of  error rate: 27%
## Confusion matrix:
##      No Yes class.error
## No  100  19   0.1596639
## Yes  35  46   0.4320988

这里mtry取缺省值,对应于随机森林法。

对测试集进行预报:

pred4 <- predict(rf4, newdata=d[test,])
tab <- table(pred4, test.high); tab
##      test.high
## pred4  No Yes
##   No  108  23
##   Yes   9  60
test.err4 <- (tab[1,2]+tab[2,1])/sum(tab[]); test.err4
## [1] 0.16

注意错判率结果依赖于训练集和测试集的划分, 另行选择训练集与测试集可能会得到很不一样的错判率结果。

对全集用随机森林:

rf5 <- randomForest(High ~ . - Sales, data=d,  importance=TRUE)
rf5
## 
## Call:
##  randomForest(formula = High ~ . - Sales, data = d, importance = TRUE) 
##                Type of random forest: classification
##                      Number of trees: 500
## No. of variables tried at each split: 3
## 
##         OOB estimate of  error rate: 19%
## Confusion matrix:
##      No Yes class.error
## No  209  27   0.1144068
## Yes  49 115   0.2987805

各变量的重要度数值及其图形:

importance(rf5)
##                       No        Yes MeanDecreaseAccuracy MeanDecreaseGini
## CompPrice   11.033758100  7.7402932          13.33895983        21.229763
## Income       3.866551200  3.5223698           5.31053942        19.861721
## Advertising 10.907742775 16.4431361          18.85477287        24.265021
## Population  -1.036771688 -2.6857178          -2.48427062        15.324194
## Price       33.443509343 27.9971005          40.05127916        43.779513
## ShelveLoc   34.255084236 34.3178518          43.13153318        30.636062
## Age          9.704435069 11.0226748          14.66681661        22.262051
## Education   -0.009866974 -0.1131696          -0.18869317        10.058102
## Urban        0.687787338 -0.9368078          -0.06090853         2.094715
## US           2.929166411  5.1334006           6.60885378         3.436709
varImpPlot(rf5)

重要的自变量为Price, ShelfLoc, 其次有Age, Advertising, CompPrice, Income等。

16.4 提升法(Boosting)

提升法(Boosting)也是可以用在多种回归和判别问题中的方法。 提升法的想法是,用比较简单的模型拟合因变量, 计算残差, 然后以残差为新的因变量建模, 仍使用简单的模型, 把两次的回归函数作加权和, 得到新的残差后,再以新残差作为因变量建模, 如此重复地更新回归函数, 得到由多个回归函数加权和组成的最终的回归函数。

加权一般取为比较小的值, 其目的是降低逼近速度。 统计学习问题中降低逼近速度可以减轻过度拟合问题。

提升法算法:

  • (1) 对训练集,设置\(r_i = y_i\),并令初始回归函数为\(\hat f(\cdot)=0\)

  • (2)\(b=1,2,\dots,B\)重复执行:

    • (a) 以训练集的自变量为自变量,以\(r\)为因变量,拟合一个仅有\(d\)个分叉的简单树回归函数, 设为\(\hat f_b\)
    • (b) 更新回归函数,添加一个压缩过的树回归函数: \[\begin{aligned} \hat f(x) \leftarrow \hat f(x) + \lambda \hat f_b(x); \end{aligned}\]
    • (c) 更新残差: \[\begin{aligned} r_i \leftarrow r_i - \lambda \hat f_b(x_i). \end{aligned}\]
  • (3) 提升法的回归函数为 \[\begin{aligned} \hat f(x) = \sum_{b=1}^B \lambda \hat f_b(x) . \end{aligned}\]

用多少个回归函数做加权和,即\(B\)的选取问题。 取得\(B\)太大也会有过度拟合, 但是只要\(B\)不太大这个问题不严重。 可以用交叉验证选择\(B\)的值。

收缩系数\(\lambda\)是一个小的正数, 控制学习速度, 经常用0.01, 0.001这样的值, 与要解决的问题有关。 取\(\lambda\)很小,就需要取\(B\)很大。

用来控制每个回归函数复杂度的参数, 对树回归而言就是树的大小。 一个分叉的树往往就很好。 取单个分叉时结果模型是可加模型, 没有交互项, 这是因为每个加权相加得回归函数都只依赖于单一自变量。 \(d>1\)时就加入了交互项。

16.4.1 xgboost

xgboost(eXtreme Gradient Boosting)算法是对boosting算法的一个改进。 R的xgboost可以支持不同的基础模型如线性回归、树方法、逻辑斯谛回归, 可以自定义目标函数,支持并行运算,支持多种数据输入方法。

16.4.2 lightgbm

lightGBM是对boosting算法的改进, 此算法计算效率高,内存占用少, 支持并行计算、GPU, 是一个比较先进的算法。 R的lightgbm包提供了R调用lightGBM库的接口。

16.5 统计学习算法调用统一界面

不同的统计学习算法及其实现函数使用了不同的程序语法。 但是, 这些方法一般也有流程上的共同之处。 一般都将数据分为训练集与测试集, 在训练集上一般使用交叉验证方法求得调节参数的最优值, 然后在测试集上进行预测, 得到客观的模型效果评价。

R扩展包caret和mlr可以整合现有的统计学习函数, 用一个统一的调用界面访问统一的常用功能, 并可以实现交叉验证等功能。

16.6 波士顿郊区房价数据分析演示

MASS包的Boston数据包含了波士顿地区郊区房价的若干数据。以众位房价medv为因变量建立回归模型。 首先把缺失值去掉后存入数据集d:

d <- na.omit(Boston)

数据集概况:

str(d)
## 'data.frame':    506 obs. of  14 variables:
##  $ crim   : num  0.00632 0.02731 0.02729 0.03237 0.06905 ...
##  $ zn     : num  18 0 0 0 0 0 12.5 12.5 12.5 12.5 ...
##  $ indus  : num  2.31 7.07 7.07 2.18 2.18 2.18 7.87 7.87 7.87 7.87 ...
##  $ chas   : int  0 0 0 0 0 0 0 0 0 0 ...
##  $ nox    : num  0.538 0.469 0.469 0.458 0.458 0.458 0.524 0.524 0.524 0.524 ...
##  $ rm     : num  6.58 6.42 7.18 7 7.15 ...
##  $ age    : num  65.2 78.9 61.1 45.8 54.2 58.7 66.6 96.1 100 85.9 ...
##  $ dis    : num  4.09 4.97 4.97 6.06 6.06 ...
##  $ rad    : int  1 2 2 3 3 3 5 5 5 5 ...
##  $ tax    : num  296 242 242 222 222 222 311 311 311 311 ...
##  $ ptratio: num  15.3 17.8 17.8 18.7 18.7 18.7 15.2 15.2 15.2 15.2 ...
##  $ black  : num  397 397 393 395 397 ...
##  $ lstat  : num  4.98 9.14 4.03 2.94 5.33 ...
##  $ medv   : num  24 21.6 34.7 33.4 36.2 28.7 22.9 27.1 16.5 18.9 ...
summary(d)
##       crim                zn             indus            chas              nox               rm             age              dis              rad              tax           ptratio          black            lstat            medv      
##  Min.   : 0.00632   Min.   :  0.00   Min.   : 0.46   Min.   :0.00000   Min.   :0.3850   Min.   :3.561   Min.   :  2.90   Min.   : 1.130   Min.   : 1.000   Min.   :187.0   Min.   :12.60   Min.   :  0.32   Min.   : 1.73   Min.   : 5.00  
##  1st Qu.: 0.08205   1st Qu.:  0.00   1st Qu.: 5.19   1st Qu.:0.00000   1st Qu.:0.4490   1st Qu.:5.886   1st Qu.: 45.02   1st Qu.: 2.100   1st Qu.: 4.000   1st Qu.:279.0   1st Qu.:17.40   1st Qu.:375.38   1st Qu.: 6.95   1st Qu.:17.02  
##  Median : 0.25651   Median :  0.00   Median : 9.69   Median :0.00000   Median :0.5380   Median :6.208   Median : 77.50   Median : 3.207   Median : 5.000   Median :330.0   Median :19.05   Median :391.44   Median :11.36   Median :21.20  
##  Mean   : 3.61352   Mean   : 11.36   Mean   :11.14   Mean   :0.06917   Mean   :0.5547   Mean   :6.285   Mean   : 68.57   Mean   : 3.795   Mean   : 9.549   Mean   :408.2   Mean   :18.46   Mean   :356.67   Mean   :12.65   Mean   :22.53  
##  3rd Qu.: 3.67708   3rd Qu.: 12.50   3rd Qu.:18.10   3rd Qu.:0.00000   3rd Qu.:0.6240   3rd Qu.:6.623   3rd Qu.: 94.08   3rd Qu.: 5.188   3rd Qu.:24.000   3rd Qu.:666.0   3rd Qu.:20.20   3rd Qu.:396.23   3rd Qu.:16.95   3rd Qu.:25.00  
##  Max.   :88.97620   Max.   :100.00   Max.   :27.74   Max.   :1.00000   Max.   :0.8710   Max.   :8.780   Max.   :100.00   Max.   :12.127   Max.   :24.000   Max.   :711.0   Max.   :22.00   Max.   :396.90   Max.   :37.97   Max.   :50.00

16.6.1 回归树

16.6.1.1 划分训练集和测试集

set.seed(1)
d <- na.omit(Boston)
train_id <- sample(nrow(d), size=round(0.5*nrow(d)))
train <- rep(FALSE, nrow(d))
train[train_id] <- TRUE
test <- (!train)

对训练集建立未剪枝的树:

tr1 <- tree(medv ~ ., d, subset=train)
summary(tr1)
## 
## Regression tree:
## tree(formula = medv ~ ., data = d, subset = train)
## Variables actually used in tree construction:
## [1] "rm"    "lstat" "crim"  "age"  
## Number of terminal nodes:  7 
## Residual mean deviance:  10.38 = 2555 / 246 
## Distribution of residuals:
##     Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
## -10.1800  -1.7770  -0.1775   0.0000   1.9230  16.5800
plot(tr1)
text(tr1, pretty=0)

用未剪枝的树对测试集进行预测,计算均方误差:

yhat <-predict(tr1, newdata=d[test,])
mse1 <- mean((yhat - d[test, 'medv'])^2)
mse1
## [1] 35.28688

16.6.1.2 用交叉验证方法确定剪枝复杂度

cv1 <- cv.tree(tr1)
plot(cv1$size, cv1$dev, type='b')

best.size <- cv1$size[which.min(cv1$dev)]; best.size
## [1] 7

剪枝并对测试集进行预测:

tr2 <- prune.tree(tr1, best=best.size)
plot(tr2)
text(tr2, pretty=0)

yhat <-predict(tr2, newdata=d[test,])
mse2 <- mean((yhat - d[test, 'medv'])^2)
mse2
## [1] 35.28688

没有剪枝,效果没有改善。

16.6.2 装袋法

用randomForest包计算。 当参数mtry取为自变量个数时按照装袋法计算。 对训练集计算。

set.seed(1)
bag1 <- randomForest(medv ~ ., data=d, 
  subset=train, mtry=ncol(d)-1, importance=TRUE)
bag1
## 
## Call:
##  randomForest(formula = medv ~ ., data = d, mtry = ncol(d) - 1,      importance = TRUE, subset = train) 
##                Type of random forest: regression
##                      Number of trees: 500
## No. of variables tried at each split: 13
## 
##           Mean of squared residuals: 11.24028
##                     % Var explained: 85.38

在测试集上计算装袋法的均方误差:

yhat <- predict(bag1, newdata=d[test,])
mean( (yhat - d[test, 'medv'])^2 )
## [1] 23.2778

比单棵树的结果有明显改善。

16.6.3 随机森林

用randomForest包计算。 当参数mtry取为缺省值时按照随机森林方法计算。 对训练集计算。

set.seed(1)
rf1 <- randomForest(medv ~ ., data=d, 
  subset=train, importance=TRUE)
rf1
## 
## Call:
##  randomForest(formula = medv ~ ., data = d, importance = TRUE,      subset = train) 
##                Type of random forest: regression
##                      Number of trees: 500
## No. of variables tried at each split: 4
## 
##           Mean of squared residuals: 10.65524
##                     % Var explained: 86.14

在测试集上计算随机森林法的均方误差:

yhat <- predict(rf1, newdata=d[test,])
mean( (yhat - d[test, 'medv'])^2 )
## [1] 18.73938

比单棵树的结果有明显改善, 比装袋法结果好。 但是,如果重新划分训练集合测试集, 结果可能就很不一样。

各变量的重要度数值及其图形:

importance(rf1)
##           %IncMSE IncNodePurity
## crim    13.395947    1187.68244
## zn       3.764558     205.19223
## indus    6.634904     941.08254
## chas     2.556251      73.20277
## nox     13.848778    1092.57116
## rm      28.310083    6188.44612
## age     12.175066     659.38628
## dis     10.688898     958.36302
## rad      3.702112     151.38660
## tax     10.732676     516.77833
## ptratio 11.114057    1296.12067
## black    8.047270     336.29628
## lstat   25.983897    5396.58419
varImpPlot(rf1)

16.6.4 提升法

16.6.4.1 使用gbm包

这里使用gbm包。

在训练集上拟合:

set.seed(1)
bst1 <- gbm(
  medv ~ ., 
  data=d[train,],  
  distribution='gaussian',  
  n.trees=5000,  
  interaction.depth=4)
summary(bst1)

##             var     rel.inf
## rm           rm 44.15951160
## lstat     lstat 32.29267660
## dis         dis  4.61448193
## crim       crim  4.26335913
## nox         nox  3.04501491
## black     black  3.00055105
## age         age  2.78125346
## ptratio ptratio  2.49234381
## tax         tax  1.53209088
## indus     indus  0.83074496
## rad         rad  0.74565664
## zn           zn  0.21988113
## chas       chas  0.02243389

lstat和rm是最重要的变量。

在测试集上预报,并计算均方误差:

yhat <- predict(
  bst1, 
  newdata=d[test,], 
  n.trees=5000)
mean( (yhat - d[test, 'medv'])^2 )
## [1] 18.5659

与随机森林方法结果相近。

如果提高学习速度:

bst2 <- gbm(
  medv ~ ., 
  data=d[train,],  
  distribution='gaussian',  
  n.trees=5000,  
  interaction.depth=4, 
  shrinkage=0.2)
yhat <- predict(
  bst2, 
  newdata=d[test,], 
  n.trees=5000)
mean( (yhat - d[test, 'medv'])^2 )
## [1] 20.45657

效果差不多。 但是,如果重新划分训练集和测试集, 结果可能很不一样。

16.6.4.2 使用xgboost包

使用xgboost计算。训练:

library(xgboost)
dx.train <- list(
  data=as.matrix(d[train, -ncol(d)]),
  label=d[["medv"]][train])
dx.test <- list(
  data=as.matrix(d[test, -ncol(d)]),
  label=d[["medv"]][test])
xg1 <- xgboost(
  data = dx.train$data,
  label = dx.train$label,
  booster = "gbtree", # 基础模型
  objective ="reg:squarederror", # 目标函数
  max_depth = 2,
  nrounds = 20) # 迭代次数
## [1]  train-rmse:16.550534 
## [2]  train-rmse:12.001012 
## [3]  train-rmse:8.828046 
## [4]  train-rmse:6.666827 
## [5]  train-rmse:5.179067 
## [6]  train-rmse:4.194855 
## [7]  train-rmse:3.574384 
## [8]  train-rmse:3.186898 
## [9]  train-rmse:2.915877 
## [10] train-rmse:2.750005 
## [11] train-rmse:2.631165 
## [12] train-rmse:2.553116 
## [13] train-rmse:2.484000 
## [14] train-rmse:2.441754 
## [15] train-rmse:2.374598 
## [16] train-rmse:2.297728 
## [17] train-rmse:2.239265 
## [18] train-rmse:2.187598 
## [19] train-rmse:2.161275 
## [20] train-rmse:2.134788

预测:

xg1p <- predict(xg1, 
  newdata = dx.test$data)
mean((dx.test$label - xg1p)^2)
## [1] 20.28769

比gbm结果差一些。

注意,xgboost的自变量需要是矩阵类型, 不支持数据框。 Boston数据集的自变量都是数值型的。 如果有数据中有因子型, 应该用Matrix::sparse.model.matrix()函数将数据框转换为数值型矩阵, 结果中的因子型变量被转换成哑变量形式。

16.6.4.3 使用lightgbm包

使用lightgbm计算。训练:

library(lightgbm)
## Loading required package: R6
## 
## Attaching package: 'lightgbm'
## The following objects are masked from 'package:xgboost':
## 
##     getinfo, setinfo, slice
dl.train <- list(
  data=as.matrix(d[train, -ncol(d)]),
  label=d[["medv"]][train])
dl.test <- list(
  data=as.matrix(d[test, -ncol(d)]),
  label=d[["medv"]][test])
lgbm1 <- lightgbm(
  data = dl.train$data,
  label = dl.train$label,
  obj ="regression", # 目标函数
  max_depth = 2,  # 树的深度
  nrounds = 50) # 迭代次数
## Warning in (function (params = list(), data, nrounds = 100L, valids = list(), : lgb.train: Found the following passed through '...': max_depth. These will be used, but in future releases of lightgbm, this warning will become an error. Add these to 'params' instead. See ?lgb.train for documentation on how to call this function.
## [LightGBM] [Warning] Auto-choosing col-wise multi-threading, the overhead of testing was 0.000872 seconds.
## You can set `force_col_wise=true` to remove the overhead.
## [LightGBM] [Info] Total Bins 658
## [LightGBM] [Info] Number of data points in the train set: 253, number of used features: 12
## [LightGBM] [Info] Start training from score 21.786561
## [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
## [1] "[1]:  train's l2:66.2431"
## [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
## [1] "[2]:  train's l2:57.636"
## [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
## [1] "[3]:  train's l2:50.5392"
## [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
## [1] "[4]:  train's l2:44.7832"
## [1] "[5]:  train's l2:39.0265"
## [1] "[6]:  train's l2:34.3006"
## [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
## [1] "[7]:  train's l2:30.6794"
## [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
## [1] "[8]:  train's l2:27.8866"
## [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
## [1] "[9]:  train's l2:25.2917"
## [1] "[10]:  train's l2:22.7395"
## [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
## [1] "[11]:  train's l2:20.8562"
## [1] "[12]:  train's l2:18.9931"
## [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
## [1] "[13]:  train's l2:17.6703"
## [1] "[14]:  train's l2:16.2959"
## [1] "[15]:  train's l2:15.1774"
## [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
## [1] "[16]:  train's l2:14.3231"
## [1] "[17]:  train's l2:13.453"
## [1] "[18]:  train's l2:12.7437"
## [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
## [1] "[19]:  train's l2:12.1731"
## [1] "[20]:  train's l2:11.6418"
## [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
## [1] "[21]:  train's l2:11.2383"
## [1] "[22]:  train's l2:10.7768"
## [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
## [1] "[23]:  train's l2:10.4449"
## [1] "[24]:  train's l2:10.0823"
## [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
## [1] "[25]:  train's l2:9.84566"
## [1] "[26]:  train's l2:9.56599"
## [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
## [1] "[27]:  train's l2:9.38185"
## [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
## [1] "[28]:  train's l2:9.21302"
## [1] "[29]:  train's l2:8.96784"
## [1] "[30]:  train's l2:8.76156"
## [1] "[31]:  train's l2:8.56684"
## [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
## [1] "[32]:  train's l2:8.45506"
## [1] "[33]:  train's l2:8.30198"
## [1] "[34]:  train's l2:8.15626"
## [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
## [1] "[35]:  train's l2:8.0615"
## [1] "[36]:  train's l2:7.91956"
## [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
## [1] "[37]:  train's l2:7.8353"
## [1] "[38]:  train's l2:7.71917"
## [1] "[39]:  train's l2:7.58138"
## [1] "[40]:  train's l2:7.48035"
## [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
## [1] "[41]:  train's l2:7.40417"
## [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
## [1] "[42]:  train's l2:7.35067"
## [1] "[43]:  train's l2:7.25805"
## [1] "[44]:  train's l2:7.14817"
## [1] "[45]:  train's l2:7.07001"
## [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
## [1] "[46]:  train's l2:7.0208"
## [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
## [1] "[47]:  train's l2:6.97039"
## [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
## [1] "[48]:  train's l2:6.90809"
## [1] "[49]:  train's l2:6.84257"
## [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
## [1] "[50]:  train's l2:6.80303"

预测:

lgbm1p <- predict(lgbm1, 
  dl.test$data)
mean((dl.test$label - lgbm1p)^2)
## [1] 24.12621

效果不好,误差比较大。 有可能需要调整参数。

注意,xgboost的自变量需要是矩阵类型, 不支持数据框。 Boston数据集的自变量都是数值型的。 如果有数据中有因子型, 应该用Matrix::sparse.model.matrix()函数将数据框转换为数值型矩阵, 结果中的因子型变量被转换成哑变量形式。

lightgbm对输入数据格式也有特殊要求, 详见文档。

16.7 附录:数据

16.7.1 Heart数据

knitr::kable(Heart)
Age Sex ChestPain RestBP Chol Fbs RestECG MaxHR ExAng Oldpeak Slope Ca Thal AHD
1 63 1 typical 145 233 1 2 150 0 2.3 3 0 fixed No
2 67 1 asymptomatic 160 286 0 2 108 1 1.5 2 3 normal Yes
3 67 1 asymptomatic 120 229 0 2 129 1 2.6 2 2 reversable Yes
4 37 1 nonanginal 130 250 0 0 187 0 3.5 3 0 normal No
5 41 0 nontypical 130 204 0 2 172 0 1.4 1 0 normal No
6 56 1 nontypical 120 236 0 0 178 0 0.8 1 0 normal No
7 62 0 asymptomatic 140 268 0 2 160 0 3.6 3 2 normal Yes
8 57 0 asymptomatic 120 354 0 0 163 1 0.6 1 0 normal No
9 63 1 asymptomatic 130 254 0 2 147 0 1.4 2 1 reversable Yes
10 53 1 asymptomatic 140 203 1 2 155 1 3.1 3 0 reversable Yes
11 57 1 asymptomatic 140 192 0 0 148 0 0.4 2 0 fixed No
12 56 0 nontypical 140 294 0 2 153 0 1.3 2 0 normal No
13 56 1 nonanginal 130 256 1 2 142 1 0.6 2 1 fixed Yes
14 44 1 nontypical 120 263 0 0 173 0 0.0 1 0 reversable No
15 52 1 nonanginal 172 199 1 0 162 0 0.5 1 0 reversable No
16 57 1 nonanginal 150 168 0 0 174 0 1.6 1 0 normal No
17 48 1 nontypical 110 229 0 0 168 0 1.0 3 0 reversable Yes
18 54 1 asymptomatic 140 239 0 0 160 0 1.2 1 0 normal No
19 48 0 nonanginal 130 275 0 0 139 0 0.2 1 0 normal No
20 49 1 nontypical 130 266 0 0 171 0 0.6 1 0 normal No
21 64 1 typical 110 211 0 2 144 1 1.8 2 0 normal No
22 58 0 typical 150 283 1 2 162 0 1.0 1 0 normal No
23 58 1 nontypical 120 284 0 2 160 0 1.8 2 0 normal Yes
24 58 1 nonanginal 132 224 0 2 173 0 3.2 1 2 reversable Yes
25 60 1 asymptomatic 130 206 0 2 132 1 2.4 2 2 reversable Yes
26 50 0 nonanginal 120 219 0 0 158 0 1.6 2 0 normal No
27 58 0 nonanginal 120 340 0 0 172 0 0.0 1 0 normal No
28 66 0 typical 150 226 0 0 114 0 2.6 3 0 normal No
29 43 1 asymptomatic 150 247 0 0 171 0 1.5 1 0 normal No
30 40 1 asymptomatic 110 167 0 2 114 1 2.0 2 0 reversable Yes
31 69 0 typical 140 239 0 0 151 0 1.8 1 2 normal No
32 60 1 asymptomatic 117 230 1 0 160 1 1.4 1 2 reversable Yes
33 64 1 nonanginal 140 335 0 0 158 0 0.0 1 0 normal Yes
34 59 1 asymptomatic 135 234 0 0 161 0 0.5 2 0 reversable No
35 44 1 nonanginal 130 233 0 0 179 1 0.4 1 0 normal No
36 42 1 asymptomatic 140 226 0 0 178 0 0.0 1 0 normal No
37 43 1 asymptomatic 120 177 0 2 120 1 2.5 2 0 reversable Yes
38 57 1 asymptomatic 150 276 0 2 112 1 0.6 2 1 fixed Yes
39 55 1 asymptomatic 132 353 0 0 132 1 1.2 2 1 reversable Yes
40 61 1 nonanginal 150 243 1 0 137 1 1.0 2 0 normal No
41 65 0 asymptomatic 150 225 0 2 114 0 1.0 2 3 reversable Yes
42 40 1 typical 140 199 0 0 178 1 1.4 1 0 reversable No
43 71 0 nontypical 160 302 0 0 162 0 0.4 1 2 normal No
44 59 1 nonanginal 150 212 1 0 157 0 1.6 1 0 normal No
45 61 0 asymptomatic 130 330 0 2 169 0 0.0 1 0 normal Yes
46 58 1 nonanginal 112 230 0 2 165 0 2.5 2 1 reversable Yes
47 51 1 nonanginal 110 175 0 0 123 0 0.6 1 0 normal No
48 50 1 asymptomatic 150 243 0 2 128 0 2.6 2 0 reversable Yes
49 65 0 nonanginal 140 417 1 2 157 0 0.8 1 1 normal No
50 53 1 nonanginal 130 197 1 2 152 0 1.2 3 0 normal No
51 41 0 nontypical 105 198 0 0 168 0 0.0 1 1 normal No
52 65 1 asymptomatic 120 177 0 0 140 0 0.4 1 0 reversable No
53 44 1 asymptomatic 112 290 0 2 153 0 0.0 1 1 normal Yes
54 44 1 nontypical 130 219 0 2 188 0 0.0 1 0 normal No
55 60 1 asymptomatic 130 253 0 0 144 1 1.4 1 1 reversable Yes
56 54 1 asymptomatic 124 266 0 2 109 1 2.2 2 1 reversable Yes
57 50 1 nonanginal 140 233 0 0 163 0 0.6 2 1 reversable Yes
58 41 1 asymptomatic 110 172 0 2 158 0 0.0 1 0 reversable Yes
59 54 1 nonanginal 125 273 0 2 152 0 0.5 3 1 normal No
60 51 1 typical 125 213 0 2 125 1 1.4 1 1 normal No
61 51 0 asymptomatic 130 305 0 0 142 1 1.2 2 0 reversable Yes
62 46 0 nonanginal 142 177 0 2 160 1 1.4 3 0 normal No
63 58 1 asymptomatic 128 216 0 2 131 1 2.2 2 3 reversable Yes
64 54 0 nonanginal 135 304 1 0 170 0 0.0 1 0 normal No
65 54 1 asymptomatic 120 188 0 0 113 0 1.4 2 1 reversable Yes
66 60 1 asymptomatic 145 282 0 2 142 1 2.8 2 2 reversable Yes
67 60 1 nonanginal 140 185 0 2 155 0 3.0 2 0 normal Yes
68 54 1 nonanginal 150 232 0 2 165 0 1.6 1 0 reversable No
69 59 1 asymptomatic 170 326 0 2 140 1 3.4 3 0 reversable Yes
70 46 1 nonanginal 150 231 0 0 147 0 3.6 2 0 normal Yes
71 65 0 nonanginal 155 269 0 0 148 0 0.8 1 0 normal No
72 67 1 asymptomatic 125 254 1 0 163 0 0.2 2 2 reversable Yes
73 62 1 asymptomatic 120 267 0 0 99 1 1.8 2 2 reversable Yes
74 65 1 asymptomatic 110 248 0 2 158 0 0.6 1 2 fixed Yes
75 44 1 asymptomatic 110 197 0 2 177 0 0.0 1 1 normal Yes
76 65 0 nonanginal 160 360 0 2 151 0 0.8 1 0 normal No
77 60 1 asymptomatic 125 258 0 2 141 1 2.8 2 1 reversable Yes
78 51 0 nonanginal 140 308 0 2 142 0 1.5 1 1 normal No
79 48 1 nontypical 130 245 0 2 180 0 0.2 2 0 normal No
80 58 1 asymptomatic 150 270 0 2 111 1 0.8 1 0 reversable Yes
81 45 1 asymptomatic 104 208 0 2 148 1 3.0 2 0 normal No
82 53 0 asymptomatic 130 264 0 2 143 0 0.4 2 0 normal No
83 39 1 nonanginal 140 321 0 2 182 0 0.0 1 0 normal No
84 68 1 nonanginal 180 274 1 2 150 1 1.6 2 0 reversable Yes
85 52 1 nontypical 120 325 0 0 172 0 0.2 1 0 normal No
86 44 1 nonanginal 140 235 0 2 180 0 0.0 1 0 normal No
87 47 1 nonanginal 138 257 0 2 156 0 0.0 1 0 normal No
89 53 0 asymptomatic 138 234 0 2 160 0 0.0 1 0 normal No
90 51 0 nonanginal 130 256 0 2 149 0 0.5 1 0 normal No
91 66 1 asymptomatic 120 302 0 2 151 0 0.4 2 0 normal No
92 62 0 asymptomatic 160 164 0 2 145 0 6.2 3 3 reversable Yes
93 62 1 nonanginal 130 231 0 0 146 0 1.8 2 3 reversable No
94 44 0 nonanginal 108 141 0 0 175 0 0.6 2 0 normal No
95 63 0 nonanginal 135 252 0 2 172 0 0.0 1 0 normal No
96 52 1 asymptomatic 128 255 0 0 161 1 0.0 1 1 reversable Yes
97 59 1 asymptomatic 110 239 0 2 142 1 1.2 2 1 reversable Yes
98 60 0 asymptomatic 150 258 0 2 157 0 2.6 2 2 reversable Yes
99 52 1 nontypical 134 201 0 0 158 0 0.8 1 1 normal No
100 48 1 asymptomatic 122 222 0 2 186 0 0.0 1 0 normal No
101 45 1 asymptomatic 115 260 0 2 185 0 0.0 1 0 normal No
102 34 1 typical 118 182 0 2 174 0 0.0 1 0 normal No
103 57 0 asymptomatic 128 303 0 2 159 0 0.0 1 1 normal No
104 71 0 nonanginal 110 265 1 2 130 0 0.0 1 1 normal No
105 49 1 nonanginal 120 188 0 0 139 0 2.0 2 3 reversable Yes
106 54 1 nontypical 108 309 0 0 156 0 0.0 1 0 reversable No
107 59 1 asymptomatic 140 177 0 0 162 1 0.0 1 1 reversable Yes
108 57 1 nonanginal 128 229 0 2 150 0 0.4 2 1 reversable Yes
109 61 1 asymptomatic 120 260 0 0 140 1 3.6 2 1 reversable Yes
110 39 1 asymptomatic 118 219 0 0 140 0 1.2 2 0 reversable Yes
111 61 0 asymptomatic 145 307 0 2 146 1 1.0 2 0 reversable Yes
112 56 1 asymptomatic 125 249 1 2 144 1 1.2 2 1 normal Yes
113 52 1 typical 118 186 0 2 190 0 0.0 2 0 fixed No
114 43 0 asymptomatic 132 341 1 2 136 1 3.0 2 0 reversable Yes
115 62 0 nonanginal 130 263 0 0 97 0 1.2 2 1 reversable Yes
116 41 1 nontypical 135 203 0 0 132 0 0.0 2 0 fixed No
117 58 1 nonanginal 140 211 1 2 165 0 0.0 1 0 normal No
118 35 0 asymptomatic 138 183 0 0 182 0 1.4 1 0 normal No
119 63 1 asymptomatic 130 330 1 2 132 1 1.8 1 3 reversable Yes
120 65 1 asymptomatic 135 254 0 2 127 0 2.8 2 1 reversable Yes
121 48 1 asymptomatic 130 256 1 2 150 1 0.0 1 2 reversable Yes
122 63 0 asymptomatic 150 407 0 2 154 0 4.0 2 3 reversable Yes
123 51 1 nonanginal 100 222 0 0 143 1 1.2 2 0 normal No
124 55 1 asymptomatic 140 217 0 0 111 1 5.6 3 0 reversable Yes
125 65 1 typical 138 282 1 2 174 0 1.4 2 1 normal Yes
126 45 0 nontypical 130 234 0 2 175 0 0.6 2 0 normal No
127 56 0 asymptomatic 200 288 1 2 133 1 4.0 3 2 reversable Yes
128 54 1 asymptomatic 110 239 0 0 126 1 2.8 2 1 reversable Yes
129 44 1 nontypical 120 220 0 0 170 0 0.0 1 0 normal No
130 62 0 asymptomatic 124 209 0 0 163 0 0.0 1 0 normal No
131 54 1 nonanginal 120 258 0 2 147 0 0.4 2 0 reversable No
132 51 1 nonanginal 94 227 0 0 154 1 0.0 1 1 reversable No
133 29 1 nontypical 130 204 0 2 202 0 0.0 1 0 normal No
134 51 1 asymptomatic 140 261 0 2 186 1 0.0 1 0 normal No
135 43 0 nonanginal 122 213 0 0 165 0 0.2 2 0 normal No
136 55 0 nontypical 135 250 0 2 161 0 1.4 2 0 normal No
137 70 1 asymptomatic 145 174 0 0 125 1 2.6 3 0 reversable Yes
138 62 1 nontypical 120 281 0 2 103 0 1.4 2 1 reversable Yes
139 35 1 asymptomatic 120 198 0 0 130 1 1.6 2 0 reversable Yes
140 51 1 nonanginal 125 245 1 2 166 0 2.4 2 0 normal No
141 59 1 nontypical 140 221 0 0 164 1 0.0 1 0 normal No
142 59 1 typical 170 288 0 2 159 0 0.2 2 0 reversable Yes
143 52 1 nontypical 128 205 1 0 184 0 0.0 1 0 normal No
144 64 1 nonanginal 125 309 0 0 131 1 1.8 2 0 reversable Yes
145 58 1 nonanginal 105 240 0 2 154 1 0.6 2 0 reversable No
146 47 1 nonanginal 108 243 0 0 152 0 0.0 1 0 normal Yes
147 57 1 asymptomatic 165 289 1 2 124 0 1.0 2 3 reversable Yes
148 41 1 nonanginal 112 250 0 0 179 0 0.0 1 0 normal No
149 45 1 nontypical 128 308 0 2 170 0 0.0 1 0 normal No
150 60 0 nonanginal 102 318 0 0 160 0 0.0 1 1 normal No
151 52 1 typical 152 298 1 0 178 0 1.2 2 0 reversable No
152 42 0 asymptomatic 102 265 0 2 122 0 0.6 2 0 normal No
153 67 0 nonanginal 115 564 0 2 160 0 1.6 2 0 reversable No
154 55 1 asymptomatic 160 289 0 2 145 1 0.8 2 1 reversable Yes
155 64 1 asymptomatic 120 246 0 2 96 1 2.2 3 1 normal Yes
156 70 1 asymptomatic 130 322 0 2 109 0 2.4 2 3 normal Yes
157 51 1 asymptomatic 140 299 0 0 173 1 1.6 1 0 reversable Yes
158 58 1 asymptomatic 125 300 0 2 171 0 0.0 1 2 reversable Yes
159 60 1 asymptomatic 140 293 0 2 170 0 1.2 2 2 reversable Yes
160 68 1 nonanginal 118 277 0 0 151 0 1.0 1 1 reversable No
161 46 1 nontypical 101 197 1 0 156 0 0.0 1 0 reversable No
162 77 1 asymptomatic 125 304 0 2 162 1 0.0 1 3 normal Yes
163 54 0 nonanginal 110 214 0 0 158 0 1.6 2 0 normal No
164 58 0 asymptomatic 100 248 0 2 122 0 1.0 2 0 normal No
165 48 1 nonanginal 124 255 1 0 175 0 0.0 1 2 normal No
166 57 1 asymptomatic 132 207 0 0 168 1 0.0 1 0 reversable No
168 54 0 nontypical 132 288 1 2 159 1 0.0 1 1 normal No
169 35 1 asymptomatic 126 282 0 2 156 1 0.0 1 0 reversable Yes
170 45 0 nontypical 112 160 0 0 138 0 0.0 2 0 normal No
171 70 1 nonanginal 160 269 0 0 112 1 2.9 2 1 reversable Yes
172 53 1 asymptomatic 142 226 0 2 111 1 0.0 1 0 reversable No
173 59 0 asymptomatic 174 249 0 0 143 1 0.0 2 0 normal Yes
174 62 0 asymptomatic 140 394 0 2 157 0 1.2 2 0 normal No
175 64 1 asymptomatic 145 212 0 2 132 0 2.0 2 2 fixed Yes
176 57 1 asymptomatic 152 274 0 0 88 1 1.2 2 1 reversable Yes
177 52 1 asymptomatic 108 233 1 0 147 0 0.1 1 3 reversable No
178 56 1 asymptomatic 132 184 0 2 105 1 2.1 2 1 fixed Yes
179 43 1 nonanginal 130 315 0 0 162 0 1.9 1 1 normal No
180 53 1 nonanginal 130 246 1 2 173 0 0.0 1 3 normal No
181 48 1 asymptomatic 124 274 0 2 166 0 0.5 2 0 reversable Yes
182 56 0 asymptomatic 134 409 0 2 150 1 1.9 2 2 reversable Yes
183 42 1 typical 148 244 0 2 178 0 0.8 1 2 normal No
184 59 1 typical 178 270 0 2 145 0 4.2 3 0 reversable No
185 60 0 asymptomatic 158 305 0 2 161 0 0.0 1 0 normal Yes
186 63 0 nontypical 140 195 0 0 179 0 0.0 1 2 normal No
187 42 1 nonanginal 120 240 1 0 194 0 0.8 3 0 reversable No
188 66 1 nontypical 160 246 0 0 120 1 0.0 2 3 fixed Yes
189 54 1 nontypical 192 283 0 2 195 0 0.0 1 1 reversable Yes
190 69 1 nonanginal 140 254 0 2 146 0 2.0 2 3 reversable Yes
191 50 1 nonanginal 129 196 0 0 163 0 0.0 1 0 normal No
192 51 1 asymptomatic 140 298 0 0 122 1 4.2 2 3 reversable Yes
194 62 0 asymptomatic 138 294 1 0 106 0 1.9 2 3 normal Yes
195 68 0 nonanginal 120 211 0 2 115 0 1.5 2 0 normal No
196 67 1 asymptomatic 100 299 0 2 125 1 0.9 2 2 normal Yes
197 69 1 typical 160 234 1 2 131 0 0.1 2 1 normal No
198 45 0 asymptomatic 138 236 0 2 152 1 0.2 2 0 normal No
199 50 0 nontypical 120 244 0 0 162 0 1.1 1 0 normal No
200 59 1 typical 160 273 0 2 125 0 0.0 1 0 normal Yes
201 50 0 asymptomatic 110 254 0 2 159 0 0.0 1 0 normal No
202 64 0 asymptomatic 180 325 0 0 154 1 0.0 1 0 normal No
203 57 1 nonanginal 150 126 1 0 173 0 0.2 1 1 reversable No
204 64 0 nonanginal 140 313 0 0 133 0 0.2 1 0 reversable No
205 43 1 asymptomatic 110 211 0 0 161 0 0.0 1 0 reversable No
206 45 1 asymptomatic 142 309 0 2 147 1 0.0 2 3 reversable Yes
207 58 1 asymptomatic 128 259 0 2 130 1 3.0 2 2 reversable Yes
208 50 1 asymptomatic 144 200 0 2 126 1 0.9 2 0 reversable Yes
209 55 1 nontypical 130 262 0 0 155 0 0.0 1 0 normal No
210 62 0 asymptomatic 150 244 0 0 154 1 1.4 2 0 normal Yes
211 37 0 nonanginal 120 215 0 0 170 0 0.0 1 0 normal No
212 38 1 typical 120 231 0 0 182 1 3.8 2 0 reversable Yes
213 41 1 nonanginal 130 214 0 2 168 0 2.0 2 0 normal No
214 66 0 asymptomatic 178 228 1 0 165 1 1.0 2 2 reversable Yes
215 52 1 asymptomatic 112 230 0 0 160 0 0.0 1 1 normal Yes
216 56 1 typical 120 193 0 2 162 0 1.9 2 0 reversable No
217 46 0 nontypical 105 204 0 0 172 0 0.0 1 0 normal No
218 46 0 asymptomatic 138 243 0 2 152 1 0.0 2 0 normal No
219 64 0 asymptomatic 130 303 0 0 122 0 2.0 2 2 normal No
220 59 1 asymptomatic 138 271 0 2 182 0 0.0 1 0 normal No
221 41 0 nonanginal 112 268 0 2 172 1 0.0 1 0 normal No
222 54 0 nonanginal 108 267 0 2 167 0 0.0 1 0 normal No
223 39 0 nonanginal 94 199 0 0 179 0 0.0 1 0 normal No
224 53 1 asymptomatic 123 282 0 0 95 1 2.0 2 2 reversable Yes
225 63 0 asymptomatic 108 269 0 0 169 1 1.8 2 2 normal Yes
226 34 0 nontypical 118 210 0 0 192 0 0.7 1 0 normal No
227 47 1 asymptomatic 112 204 0 0 143 0 0.1 1 0 normal No
228 67 0 nonanginal 152 277 0 0 172 0 0.0 1 1 normal No
229 54 1 asymptomatic 110 206 0 2 108 1 0.0 2 1 normal Yes
230 66 1 asymptomatic 112 212 0 2 132 1 0.1 1 1 normal Yes
231 52 0 nonanginal 136 196 0 2 169 0 0.1 2 0 normal No
232 55 0 asymptomatic 180 327 0 1 117 1 3.4 2 0 normal Yes
233 49 1 nonanginal 118 149 0 2 126 0 0.8 1 3 normal Yes
234 74 0 nontypical 120 269 0 2 121 1 0.2 1 1 normal No
235 54 0 nonanginal 160 201 0 0 163 0 0.0 1 1 normal No
236 54 1 asymptomatic 122 286 0 2 116 1 3.2 2 2 normal Yes
237 56 1 asymptomatic 130 283 1 2 103 1 1.6 3 0 reversable Yes
238 46 1 asymptomatic 120 249 0 2 144 0 0.8 1 0 reversable Yes
239 49 0 nontypical 134 271 0 0 162 0 0.0 2 0 normal No
240 42 1 nontypical 120 295 0 0 162 0 0.0 1 0 normal No
241 41 1 nontypical 110 235 0 0 153 0 0.0 1 0 normal No
242 41 0 nontypical 126 306 0 0 163 0 0.0 1 0 normal No
243 49 0 asymptomatic 130 269 0 0 163 0 0.0 1 0 normal No
244 61 1 typical 134 234 0 0 145 0 2.6 2 2 normal Yes
245 60 0 nonanginal 120 178 1 0 96 0 0.0 1 0 normal No
246 67 1 asymptomatic 120 237 0 0 71 0 1.0 2 0 normal Yes
247 58 1 asymptomatic 100 234 0 0 156 0 0.1 1 1 reversable Yes
248 47 1 asymptomatic 110 275 0 2 118 1 1.0 2 1 normal Yes
249 52 1 asymptomatic 125 212 0 0 168 0 1.0 1 2 reversable Yes
250 62 1 nontypical 128 208 1 2 140 0 0.0 1 0 normal No
251 57 1 asymptomatic 110 201 0 0 126 1 1.5 2 0 fixed No
252 58 1 asymptomatic 146 218 0 0 105 0 2.0 2 1 reversable Yes
253 64 1 asymptomatic 128 263 0 0 105 1 0.2 2 1 reversable No
254 51 0 nonanginal 120 295 0 2 157 0 0.6 1 0 normal No
255 43 1 asymptomatic 115 303 0 0 181 0 1.2 2 0 normal No
256 42 0 nonanginal 120 209 0 0 173 0 0.0 2 0 normal No
257 67 0 asymptomatic 106 223 0 0 142 0 0.3 1 2 normal No
258 76 0 nonanginal 140 197 0 1 116 0 1.1 2 0 normal No
259 70 1 nontypical 156 245 0 2 143 0 0.0 1 0 normal No
260 57 1 nontypical 124 261 0 0 141 0 0.3 1 0 reversable Yes
261 44 0 nonanginal 118 242 0 0 149 0 0.3 2 1 normal No
262 58 0 nontypical 136 319 1 2 152 0 0.0 1 2 normal Yes
263 60 0 typical 150 240 0 0 171 0 0.9 1 0 normal No
264 44 1 nonanginal 120 226 0 0 169 0 0.0 1 0 normal No
265 61 1 asymptomatic 138 166 0 2 125 1 3.6 2 1 normal Yes
266 42 1 asymptomatic 136 315 0 0 125 1 1.8 2 0 fixed Yes
268 59 1 nonanginal 126 218 1 0 134 0 2.2 2 1 fixed Yes
269 40 1 asymptomatic 152 223 0 0 181 0 0.0 1 0 reversable Yes
270 42 1 nonanginal 130 180 0 0 150 0 0.0 1 0 normal No
271 61 1 asymptomatic 140 207 0 2 138 1 1.9 1 1 reversable Yes
272 66 1 asymptomatic 160 228 0 2 138 0 2.3 1 0 fixed No
273 46 1 asymptomatic 140 311 0 0 120 1 1.8 2 2 reversable Yes
274 71 0 asymptomatic 112 149 0 0 125 0 1.6 2 0 normal No
275 59 1 typical 134 204 0 0 162 0 0.8 1 2 normal Yes
276 64 1 typical 170 227 0 2 155 0 0.6 2 0 reversable No
277 66 0 nonanginal 146 278 0 2 152 0 0.0 2 1 normal No
278 39 0 nonanginal 138 220 0 0 152 0 0.0 2 0 normal No
279 57 1 nontypical 154 232 0 2 164 0 0.0 1 1 normal Yes
280 58 0 asymptomatic 130 197 0 0 131 0 0.6 2 0 normal No
281 57 1 asymptomatic 110 335 0 0 143 1 3.0 2 1 reversable Yes
282 47 1 nonanginal 130 253 0 0 179 0 0.0 1 0 normal No
283 55 0 asymptomatic 128 205 0 1 130 1 2.0 2 1 reversable Yes
284 35 1 nontypical 122 192 0 0 174 0 0.0 1 0 normal No
285 61 1 asymptomatic 148 203 0 0 161 0 0.0 1 1 reversable Yes
286 58 1 asymptomatic 114 318 0 1 140 0 4.4 3 3 fixed Yes
287 58 0 asymptomatic 170 225 1 2 146 1 2.8 2 2 fixed Yes
289 56 1 nontypical 130 221 0 2 163 0 0.0 1 0 reversable No
290 56 1 nontypical 120 240 0 0 169 0 0.0 3 0 normal No
291 67 1 nonanginal 152 212 0 2 150 0 0.8 2 0 reversable Yes
292 55 0 nontypical 132 342 0 0 166 0 1.2 1 0 normal No
293 44 1 asymptomatic 120 169 0 0 144 1 2.8 3 0 fixed Yes
294 63 1 asymptomatic 140 187 0 2 144 1 4.0 1 2 reversable Yes
295 63 0 asymptomatic 124 197 0 0 136 1 0.0 2 0 normal Yes
296 41 1 nontypical 120 157 0 0 182 0 0.0 1 0 normal No
297 59 1 asymptomatic 164 176 1 2 90 0 1.0 2 2 fixed Yes
298 57 0 asymptomatic 140 241 0 0 123 1 0.2 2 0 reversable Yes
299 45 1 typical 110 264 0 0 132 0 1.2 2 0 reversable Yes
300 68 1 asymptomatic 144 193 1 0 141 0 3.4 2 2 reversable Yes
301 57 1 asymptomatic 130 131 0 0 115 1 1.2 2 1 reversable Yes
302 57 0 nontypical 130 236 0 2 174 0 0.0 2 1 normal Yes

16.7.2 CarSeats数据

knitr::kable(Carseats)
Sales CompPrice Income Advertising Population Price ShelveLoc Age Education Urban US
9.50 138 73 11 276 120 Bad 42 17 Yes Yes
11.22 111 48 16 260 83 Good 65 10 Yes Yes
10.06 113 35 10 269 80 Medium 59 12 Yes Yes
7.40 117 100 4 466 97 Medium 55 14 Yes Yes
4.15 141 64 3 340 128 Bad 38 13 Yes No
10.81 124 113 13 501 72 Bad 78 16 No Yes
6.63 115 105 0 45 108 Medium 71 15 Yes No
11.85 136 81 15 425 120 Good 67 10 Yes Yes
6.54 132 110 0 108 124 Medium 76 10 No No
4.69 132 113 0 131 124 Medium 76 17 No Yes
9.01 121 78 9 150 100 Bad 26 10 No Yes
11.96 117 94 4 503 94 Good 50 13 Yes Yes
3.98 122 35 2 393 136 Medium 62 18 Yes No
10.96 115 28 11 29 86 Good 53 18 Yes Yes
11.17 107 117 11 148 118 Good 52 18 Yes Yes
8.71 149 95 5 400 144 Medium 76 18 No No
7.58 118 32 0 284 110 Good 63 13 Yes No
12.29 147 74 13 251 131 Good 52 10 Yes Yes
13.91 110 110 0 408 68 Good 46 17 No Yes
8.73 129 76 16 58 121 Medium 69 12 Yes Yes
6.41 125 90 2 367 131 Medium 35 18 Yes Yes
12.13 134 29 12 239 109 Good 62 18 No Yes
5.08 128 46 6 497 138 Medium 42 13 Yes No
5.87 121 31 0 292 109 Medium 79 10 Yes No
10.14 145 119 16 294 113 Bad 42 12 Yes Yes
14.90 139 32 0 176 82 Good 54 11 No No
8.33 107 115 11 496 131 Good 50 11 No Yes
5.27 98 118 0 19 107 Medium 64 17 Yes No
2.99 103 74 0 359 97 Bad 55 11 Yes Yes
7.81 104 99 15 226 102 Bad 58 17 Yes Yes
13.55 125 94 0 447 89 Good 30 12 Yes No
8.25 136 58 16 241 131 Medium 44 18 Yes Yes
6.20 107 32 12 236 137 Good 64 10 No Yes
8.77 114 38 13 317 128 Good 50 16 Yes Yes
2.67 115 54 0 406 128 Medium 42 17 Yes Yes
11.07 131 84 11 29 96 Medium 44 17 No Yes
8.89 122 76 0 270 100 Good 60 18 No No
4.95 121 41 5 412 110 Medium 54 10 Yes Yes
6.59 109 73 0 454 102 Medium 65 15 Yes No
3.24 130 60 0 144 138 Bad 38 10 No No
2.07 119 98 0 18 126 Bad 73 17 No No
7.96 157 53 0 403 124 Bad 58 16 Yes No
10.43 77 69 0 25 24 Medium 50 18 Yes No
4.12 123 42 11 16 134 Medium 59 13 Yes Yes
4.16 85 79 6 325 95 Medium 69 13 Yes Yes
4.56 141 63 0 168 135 Bad 44 12 Yes Yes
12.44 127 90 14 16 70 Medium 48 15 No Yes
4.38 126 98 0 173 108 Bad 55 16 Yes No
3.91 116 52 0 349 98 Bad 69 18 Yes No
10.61 157 93 0 51 149 Good 32 17 Yes No
1.42 99 32 18 341 108 Bad 80 16 Yes Yes
4.42 121 90 0 150 108 Bad 75 16 Yes No
7.91 153 40 3 112 129 Bad 39 18 Yes Yes
6.92 109 64 13 39 119 Medium 61 17 Yes Yes
4.90 134 103 13 25 144 Medium 76 17 No Yes
6.85 143 81 5 60 154 Medium 61 18 Yes Yes
11.91 133 82 0 54 84 Medium 50 17 Yes No
0.91 93 91 0 22 117 Bad 75 11 Yes No
5.42 103 93 15 188 103 Bad 74 16 Yes Yes
5.21 118 71 4 148 114 Medium 80 13 Yes No
8.32 122 102 19 469 123 Bad 29 13 Yes Yes
7.32 105 32 0 358 107 Medium 26 13 No No
1.82 139 45 0 146 133 Bad 77 17 Yes Yes
8.47 119 88 10 170 101 Medium 61 13 Yes Yes
7.80 100 67 12 184 104 Medium 32 16 No Yes
4.90 122 26 0 197 128 Medium 55 13 No No
8.85 127 92 0 508 91 Medium 56 18 Yes No
9.01 126 61 14 152 115 Medium 47 16 Yes Yes
13.39 149 69 20 366 134 Good 60 13 Yes Yes
7.99 127 59 0 339 99 Medium 65 12 Yes No
9.46 89 81 15 237 99 Good 74 12 Yes Yes
6.50 148 51 16 148 150 Medium 58 17 No Yes
5.52 115 45 0 432 116 Medium 25 15 Yes No
12.61 118 90 10 54 104 Good 31 11 No Yes
6.20 150 68 5 125 136 Medium 64 13 No Yes
8.55 88 111 23 480 92 Bad 36 16 No Yes
10.64 102 87 10 346 70 Medium 64 15 Yes Yes
7.70 118 71 12 44 89 Medium 67 18 No Yes
4.43 134 48 1 139 145 Medium 65 12 Yes Yes
9.14 134 67 0 286 90 Bad 41 13 Yes No
8.01 113 100 16 353 79 Bad 68 11 Yes Yes
7.52 116 72 0 237 128 Good 70 13 Yes No
11.62 151 83 4 325 139 Good 28 17 Yes Yes
4.42 109 36 7 468 94 Bad 56 11 Yes Yes
2.23 111 25 0 52 121 Bad 43 18 No No
8.47 125 103 0 304 112 Medium 49 13 No No
8.70 150 84 9 432 134 Medium 64 15 Yes No
11.70 131 67 7 272 126 Good 54 16 No Yes
6.56 117 42 7 144 111 Medium 62 10 Yes Yes
7.95 128 66 3 493 119 Medium 45 16 No No
5.33 115 22 0 491 103 Medium 64 11 No No
4.81 97 46 11 267 107 Medium 80 15 Yes Yes
4.53 114 113 0 97 125 Medium 29 12 Yes No
8.86 145 30 0 67 104 Medium 55 17 Yes No
8.39 115 97 5 134 84 Bad 55 11 Yes Yes
5.58 134 25 10 237 148 Medium 59 13 Yes Yes
9.48 147 42 10 407 132 Good 73 16 No Yes
7.45 161 82 5 287 129 Bad 33 16 Yes Yes
12.49 122 77 24 382 127 Good 36 16 No Yes
4.88 121 47 3 220 107 Bad 56 16 No Yes
4.11 113 69 11 94 106 Medium 76 12 No Yes
6.20 128 93 0 89 118 Medium 34 18 Yes No
5.30 113 22 0 57 97 Medium 65 16 No No
5.07 123 91 0 334 96 Bad 78 17 Yes Yes
4.62 121 96 0 472 138 Medium 51 12 Yes No
5.55 104 100 8 398 97 Medium 61 11 Yes Yes
0.16 102 33 0 217 139 Medium 70 18 No No
8.55 134 107 0 104 108 Medium 60 12 Yes No
3.47 107 79 2 488 103 Bad 65 16 Yes No
8.98 115 65 0 217 90 Medium 60 17 No No
9.00 128 62 7 125 116 Medium 43 14 Yes Yes
6.62 132 118 12 272 151 Medium 43 14 Yes Yes
6.67 116 99 5 298 125 Good 62 12 Yes Yes
6.01 131 29 11 335 127 Bad 33 12 Yes Yes
9.31 122 87 9 17 106 Medium 65 13 Yes Yes
8.54 139 35 0 95 129 Medium 42 13 Yes No
5.08 135 75 0 202 128 Medium 80 10 No No
8.80 145 53 0 507 119 Medium 41 12 Yes No
7.57 112 88 2 243 99 Medium 62 11 Yes Yes
7.37 130 94 8 137 128 Medium 64 12 Yes Yes
6.87 128 105 11 249 131 Medium 63 13 Yes Yes
11.67 125 89 10 380 87 Bad 28 10 Yes Yes
6.88 119 100 5 45 108 Medium 75 10 Yes Yes
8.19 127 103 0 125 155 Good 29 15 No Yes
8.87 131 113 0 181 120 Good 63 14 Yes No
9.34 89 78 0 181 49 Medium 43 15 No No
11.27 153 68 2 60 133 Good 59 16 Yes Yes
6.52 125 48 3 192 116 Medium 51 14 Yes Yes
4.96 133 100 3 350 126 Bad 55 13 Yes Yes
4.47 143 120 7 279 147 Bad 40 10 No Yes
8.41 94 84 13 497 77 Medium 51 12 Yes Yes
6.50 108 69 3 208 94 Medium 77 16 Yes No
9.54 125 87 9 232 136 Good 72 10 Yes Yes
7.62 132 98 2 265 97 Bad 62 12 Yes Yes
3.67 132 31 0 327 131 Medium 76 16 Yes No
6.44 96 94 14 384 120 Medium 36 18 No Yes
5.17 131 75 0 10 120 Bad 31 18 No No
6.52 128 42 0 436 118 Medium 80 11 Yes No
10.27 125 103 12 371 109 Medium 44 10 Yes Yes
12.30 146 62 10 310 94 Medium 30 13 No Yes
6.03 133 60 10 277 129 Medium 45 18 Yes Yes
6.53 140 42 0 331 131 Bad 28 15 Yes No
7.44 124 84 0 300 104 Medium 77 15 Yes No
0.53 122 88 7 36 159 Bad 28 17 Yes Yes
9.09 132 68 0 264 123 Good 34 11 No No
8.77 144 63 11 27 117 Medium 47 17 Yes Yes
3.90 114 83 0 412 131 Bad 39 14 Yes No
10.51 140 54 9 402 119 Good 41 16 No Yes
7.56 110 119 0 384 97 Medium 72 14 No Yes
11.48 121 120 13 140 87 Medium 56 11 Yes Yes
10.49 122 84 8 176 114 Good 57 10 No Yes
10.77 111 58 17 407 103 Good 75 17 No Yes
7.64 128 78 0 341 128 Good 45 13 No No
5.93 150 36 7 488 150 Medium 25 17 No Yes
6.89 129 69 10 289 110 Medium 50 16 No Yes
7.71 98 72 0 59 69 Medium 65 16 Yes No
7.49 146 34 0 220 157 Good 51 16 Yes No
10.21 121 58 8 249 90 Medium 48 13 No Yes
12.53 142 90 1 189 112 Good 39 10 No Yes
9.32 119 60 0 372 70 Bad 30 18 No No
4.67 111 28 0 486 111 Medium 29 12 No No
2.93 143 21 5 81 160 Medium 67 12 No Yes
3.63 122 74 0 424 149 Medium 51 13 Yes No
5.68 130 64 0 40 106 Bad 39 17 No No
8.22 148 64 0 58 141 Medium 27 13 No Yes
0.37 147 58 7 100 191 Bad 27 15 Yes Yes
6.71 119 67 17 151 137 Medium 55 11 Yes Yes
6.71 106 73 0 216 93 Medium 60 13 Yes No
7.30 129 89 0 425 117 Medium 45 10 Yes No
11.48 104 41 15 492 77 Good 73 18 Yes Yes
8.01 128 39 12 356 118 Medium 71 10 Yes Yes
12.49 93 106 12 416 55 Medium 75 15 Yes Yes
9.03 104 102 13 123 110 Good 35 16 Yes Yes
6.38 135 91 5 207 128 Medium 66 18 Yes Yes
0.00 139 24 0 358 185 Medium 79 15 No No
7.54 115 89 0 38 122 Medium 25 12 Yes No
5.61 138 107 9 480 154 Medium 47 11 No Yes
10.48 138 72 0 148 94 Medium 27 17 Yes Yes
10.66 104 71 14 89 81 Medium 25 14 No Yes
7.78 144 25 3 70 116 Medium 77 18 Yes Yes
4.94 137 112 15 434 149 Bad 66 13 Yes Yes
7.43 121 83 0 79 91 Medium 68 11 Yes No
4.74 137 60 4 230 140 Bad 25 13 Yes No
5.32 118 74 6 426 102 Medium 80 18 Yes Yes
9.95 132 33 7 35 97 Medium 60 11 No Yes
10.07 130 100 11 449 107 Medium 64 10 Yes Yes
8.68 120 51 0 93 86 Medium 46 17 No No
6.03 117 32 0 142 96 Bad 62 17 Yes No
8.07 116 37 0 426 90 Medium 76 15 Yes No
12.11 118 117 18 509 104 Medium 26 15 No Yes
8.79 130 37 13 297 101 Medium 37 13 No Yes
6.67 156 42 13 170 173 Good 74 14 Yes Yes
7.56 108 26 0 408 93 Medium 56 14 No No
13.28 139 70 7 71 96 Good 61 10 Yes Yes
7.23 112 98 18 481 128 Medium 45 11 Yes Yes
4.19 117 93 4 420 112 Bad 66 11 Yes Yes
4.10 130 28 6 410 133 Bad 72 16 Yes Yes
2.52 124 61 0 333 138 Medium 76 16 Yes No
3.62 112 80 5 500 128 Medium 69 10 Yes Yes
6.42 122 88 5 335 126 Medium 64 14 Yes Yes
5.56 144 92 0 349 146 Medium 62 12 No No
5.94 138 83 0 139 134 Medium 54 18 Yes No
4.10 121 78 4 413 130 Bad 46 10 No Yes
2.05 131 82 0 132 157 Bad 25 14 Yes No
8.74 155 80 0 237 124 Medium 37 14 Yes No
5.68 113 22 1 317 132 Medium 28 12 Yes No
4.97 162 67 0 27 160 Medium 77 17 Yes Yes
8.19 111 105 0 466 97 Bad 61 10 No No
7.78 86 54 0 497 64 Bad 33 12 Yes No
3.02 98 21 11 326 90 Bad 76 11 No Yes
4.36 125 41 2 357 123 Bad 47 14 No Yes
9.39 117 118 14 445 120 Medium 32 15 Yes Yes
12.04 145 69 19 501 105 Medium 45 11 Yes Yes
8.23 149 84 5 220 139 Medium 33 10 Yes Yes
4.83 115 115 3 48 107 Medium 73 18 Yes Yes
2.34 116 83 15 170 144 Bad 71 11 Yes Yes
5.73 141 33 0 243 144 Medium 34 17 Yes No
4.34 106 44 0 481 111 Medium 70 14 No No
9.70 138 61 12 156 120 Medium 25 14 Yes Yes
10.62 116 79 19 359 116 Good 58 17 Yes Yes
10.59 131 120 15 262 124 Medium 30 10 Yes Yes
6.43 124 44 0 125 107 Medium 80 11 Yes No
7.49 136 119 6 178 145 Medium 35 13 Yes Yes
3.45 110 45 9 276 125 Medium 62 14 Yes Yes
4.10 134 82 0 464 141 Medium 48 13 No No
6.68 107 25 0 412 82 Bad 36 14 Yes No
7.80 119 33 0 245 122 Good 56 14 Yes No
8.69 113 64 10 68 101 Medium 57 16 Yes Yes
5.40 149 73 13 381 163 Bad 26 11 No Yes
11.19 98 104 0 404 72 Medium 27 18 No No
5.16 115 60 0 119 114 Bad 38 14 No No
8.09 132 69 0 123 122 Medium 27 11 No No
13.14 137 80 10 24 105 Good 61 15 Yes Yes
8.65 123 76 18 218 120 Medium 29 14 No Yes
9.43 115 62 11 289 129 Good 56 16 No Yes
5.53 126 32 8 95 132 Medium 50 17 Yes Yes
9.32 141 34 16 361 108 Medium 69 10 Yes Yes
9.62 151 28 8 499 135 Medium 48 10 Yes Yes
7.36 121 24 0 200 133 Good 73 13 Yes No
3.89 123 105 0 149 118 Bad 62 16 Yes Yes
10.31 159 80 0 362 121 Medium 26 18 Yes No
12.01 136 63 0 160 94 Medium 38 12 Yes No
4.68 124 46 0 199 135 Medium 52 14 No No
7.82 124 25 13 87 110 Medium 57 10 Yes Yes
8.78 130 30 0 391 100 Medium 26 18 Yes No
10.00 114 43 0 199 88 Good 57 10 No Yes
6.90 120 56 20 266 90 Bad 78 18 Yes Yes
5.04 123 114 0 298 151 Bad 34 16 Yes No
5.36 111 52 0 12 101 Medium 61 11 Yes Yes
5.05 125 67 0 86 117 Bad 65 11 Yes No
9.16 137 105 10 435 156 Good 72 14 Yes Yes
3.72 139 111 5 310 132 Bad 62 13 Yes Yes
8.31 133 97 0 70 117 Medium 32 16 Yes No
5.64 124 24 5 288 122 Medium 57 12 No Yes
9.58 108 104 23 353 129 Good 37 17 Yes Yes
7.71 123 81 8 198 81 Bad 80 15 Yes Yes
4.20 147 40 0 277 144 Medium 73 10 Yes No
8.67 125 62 14 477 112 Medium 80 13 Yes Yes
3.47 108 38 0 251 81 Bad 72 14 No No
5.12 123 36 10 467 100 Bad 74 11 No Yes
7.67 129 117 8 400 101 Bad 36 10 Yes Yes
5.71 121 42 4 188 118 Medium 54 15 Yes Yes
6.37 120 77 15 86 132 Medium 48 18 Yes Yes
7.77 116 26 6 434 115 Medium 25 17 Yes Yes
6.95 128 29 5 324 159 Good 31 15 Yes Yes
5.31 130 35 10 402 129 Bad 39 17 Yes Yes
9.10 128 93 12 343 112 Good 73 17 No Yes
5.83 134 82 7 473 112 Bad 51 12 No Yes
6.53 123 57 0 66 105 Medium 39 11 Yes No
5.01 159 69 0 438 166 Medium 46 17 Yes No
11.99 119 26 0 284 89 Good 26 10 Yes No
4.55 111 56 0 504 110 Medium 62 16 Yes No
12.98 113 33 0 14 63 Good 38 12 Yes No
10.04 116 106 8 244 86 Medium 58 12 Yes Yes
7.22 135 93 2 67 119 Medium 34 11 Yes Yes
6.67 107 119 11 210 132 Medium 53 11 Yes Yes
6.93 135 69 14 296 130 Medium 73 15 Yes Yes
7.80 136 48 12 326 125 Medium 36 16 Yes Yes
7.22 114 113 2 129 151 Good 40 15 No Yes
3.42 141 57 13 376 158 Medium 64 18 Yes Yes
2.86 121 86 10 496 145 Bad 51 10 Yes Yes
11.19 122 69 7 303 105 Good 45 16 No Yes
7.74 150 96 0 80 154 Good 61 11 Yes No
5.36 135 110 0 112 117 Medium 80 16 No No
6.97 106 46 11 414 96 Bad 79 17 No No
7.60 146 26 11 261 131 Medium 39 10 Yes Yes
7.53 117 118 11 429 113 Medium 67 18 No Yes
6.88 95 44 4 208 72 Bad 44 17 Yes Yes
6.98 116 40 0 74 97 Medium 76 15 No No
8.75 143 77 25 448 156 Medium 43 17 Yes Yes
9.49 107 111 14 400 103 Medium 41 11 No Yes
6.64 118 70 0 106 89 Bad 39 17 Yes No
11.82 113 66 16 322 74 Good 76 15 Yes Yes
11.28 123 84 0 74 89 Good 59 10 Yes No
12.66 148 76 3 126 99 Good 60 11 Yes Yes
4.21 118 35 14 502 137 Medium 79 10 No Yes
8.21 127 44 13 160 123 Good 63 18 Yes Yes
3.07 118 83 13 276 104 Bad 75 10 Yes Yes
10.98 148 63 0 312 130 Good 63 15 Yes No
9.40 135 40 17 497 96 Medium 54 17 No Yes
8.57 116 78 1 158 99 Medium 45 11 Yes Yes
7.41 99 93 0 198 87 Medium 57 16 Yes Yes
5.28 108 77 13 388 110 Bad 74 14 Yes Yes
10.01 133 52 16 290 99 Medium 43 11 Yes Yes
11.93 123 98 12 408 134 Good 29 10 Yes Yes
8.03 115 29 26 394 132 Medium 33 13 Yes Yes
4.78 131 32 1 85 133 Medium 48 12 Yes Yes
5.90 138 92 0 13 120 Bad 61 12 Yes No
9.24 126 80 19 436 126 Medium 52 10 Yes Yes
11.18 131 111 13 33 80 Bad 68 18 Yes Yes
9.53 175 65 29 419 166 Medium 53 12 Yes Yes
6.15 146 68 12 328 132 Bad 51 14 Yes Yes
6.80 137 117 5 337 135 Bad 38 10 Yes Yes
9.33 103 81 3 491 54 Medium 66 13 Yes No
7.72 133 33 10 333 129 Good 71 14 Yes Yes
6.39 131 21 8 220 171 Good 29 14 Yes Yes
15.63 122 36 5 369 72 Good 35 10 Yes Yes
6.41 142 30 0 472 136 Good 80 15 No No
10.08 116 72 10 456 130 Good 41 14 No Yes
6.97 127 45 19 459 129 Medium 57 11 No Yes
5.86 136 70 12 171 152 Medium 44 18 Yes Yes
7.52 123 39 5 499 98 Medium 34 15 Yes No
9.16 140 50 10 300 139 Good 60 15 Yes Yes
10.36 107 105 18 428 103 Medium 34 12 Yes Yes
2.66 136 65 4 133 150 Bad 53 13 Yes Yes
11.70 144 69 11 131 104 Medium 47 11 Yes Yes
4.69 133 30 0 152 122 Medium 53 17 Yes No
6.23 112 38 17 316 104 Medium 80 16 Yes Yes
3.15 117 66 1 65 111 Bad 55 11 Yes Yes
11.27 100 54 9 433 89 Good 45 12 Yes Yes
4.99 122 59 0 501 112 Bad 32 14 No No
10.10 135 63 15 213 134 Medium 32 10 Yes Yes
5.74 106 33 20 354 104 Medium 61 12 Yes Yes
5.87 136 60 7 303 147 Medium 41 10 Yes Yes
7.63 93 117 9 489 83 Bad 42 13 Yes Yes
6.18 120 70 15 464 110 Medium 72 15 Yes Yes
5.17 138 35 6 60 143 Bad 28 18 Yes No
8.61 130 38 0 283 102 Medium 80 15 Yes No
5.97 112 24 0 164 101 Medium 45 11 Yes No
11.54 134 44 4 219 126 Good 44 15 Yes Yes
7.50 140 29 0 105 91 Bad 43 16 Yes No
7.38 98 120 0 268 93 Medium 72 10 No No
7.81 137 102 13 422 118 Medium 71 10 No Yes
5.99 117 42 10 371 121 Bad 26 14 Yes Yes
8.43 138 80 0 108 126 Good 70 13 No Yes
4.81 121 68 0 279 149 Good 79 12 Yes No
8.97 132 107 0 144 125 Medium 33 13 No No
6.88 96 39 0 161 112 Good 27 14 No No
12.57 132 102 20 459 107 Good 49 11 Yes Yes
9.32 134 27 18 467 96 Medium 49 14 No Yes
8.64 111 101 17 266 91 Medium 63 17 No Yes
10.44 124 115 16 458 105 Medium 62 16 No Yes
13.44 133 103 14 288 122 Good 61 17 Yes Yes
9.45 107 67 12 430 92 Medium 35 12 No Yes
5.30 133 31 1 80 145 Medium 42 18 Yes Yes
7.02 130 100 0 306 146 Good 42 11 Yes No
3.58 142 109 0 111 164 Good 72 12 Yes No
13.36 103 73 3 276 72 Medium 34 15 Yes Yes
4.17 123 96 10 71 118 Bad 69 11 Yes Yes
3.13 130 62 11 396 130 Bad 66 14 Yes Yes
8.77 118 86 7 265 114 Good 52 15 No Yes
8.68 131 25 10 183 104 Medium 56 15 No Yes
5.25 131 55 0 26 110 Bad 79 12 Yes Yes
10.26 111 75 1 377 108 Good 25 12 Yes No
10.50 122 21 16 488 131 Good 30 14 Yes Yes
6.53 154 30 0 122 162 Medium 57 17 No No
5.98 124 56 11 447 134 Medium 53 12 No Yes
14.37 95 106 0 256 53 Good 52 17 Yes No
10.71 109 22 10 348 79 Good 74 14 No Yes
10.26 135 100 22 463 122 Medium 36 14 Yes Yes
7.68 126 41 22 403 119 Bad 42 12 Yes Yes
9.08 152 81 0 191 126 Medium 54 16 Yes No
7.80 121 50 0 508 98 Medium 65 11 No No
5.58 137 71 0 402 116 Medium 78 17 Yes No
9.44 131 47 7 90 118 Medium 47 12 Yes Yes
7.90 132 46 4 206 124 Medium 73 11 Yes No
16.27 141 60 19 319 92 Good 44 11 Yes Yes
6.81 132 61 0 263 125 Medium 41 12 No No
6.11 133 88 3 105 119 Medium 79 12 Yes Yes
5.81 125 111 0 404 107 Bad 54 15 Yes No
9.64 106 64 10 17 89 Medium 68 17 Yes Yes
3.90 124 65 21 496 151 Bad 77 13 Yes Yes
4.95 121 28 19 315 121 Medium 66 14 Yes Yes
9.35 98 117 0 76 68 Medium 63 10 Yes No
12.85 123 37 15 348 112 Good 28 12 Yes Yes
5.87 131 73 13 455 132 Medium 62 17 Yes Yes
5.32 152 116 0 170 160 Medium 39 16 Yes No
8.67 142 73 14 238 115 Medium 73 14 No Yes
8.14 135 89 11 245 78 Bad 79 16 Yes Yes
8.44 128 42 8 328 107 Medium 35 12 Yes Yes
5.47 108 75 9 61 111 Medium 67 12 Yes Yes
6.10 153 63 0 49 124 Bad 56 16 Yes No
4.53 129 42 13 315 130 Bad 34 13 Yes Yes
5.57 109 51 10 26 120 Medium 30 17 No Yes
5.35 130 58 19 366 139 Bad 33 16 Yes Yes
12.57 138 108 17 203 128 Good 33 14 Yes Yes
6.14 139 23 3 37 120 Medium 55 11 No Yes
7.41 162 26 12 368 159 Medium 40 18 Yes Yes
5.94 100 79 7 284 95 Bad 50 12 Yes Yes
9.71 134 37 0 27 120 Good 49 16 Yes Yes

16.7.3 Boston数据

knitr::kable(Boston)
crim zn indus chas nox rm age dis rad tax ptratio black lstat medv
0.00632 18.0 2.31 0 0.5380 6.575 65.2 4.0900 1 296 15.3 396.90 4.98 24.0
0.02731 0.0 7.07 0 0.4690 6.421 78.9 4.9671 2 242 17.8 396.90 9.14 21.6
0.02729 0.0 7.07 0 0.4690 7.185 61.1 4.9671 2 242 17.8 392.83 4.03 34.7
0.03237 0.0 2.18 0 0.4580 6.998 45.8 6.0622 3 222 18.7 394.63 2.94 33.4
0.06905 0.0 2.18 0 0.4580 7.147 54.2 6.0622 3 222 18.7 396.90 5.33 36.2
0.02985 0.0 2.18 0 0.4580 6.430 58.7 6.0622 3 222 18.7 394.12 5.21 28.7
0.08829 12.5 7.87 0 0.5240 6.012 66.6 5.5605 5 311 15.2 395.60 12.43 22.9
0.14455 12.5 7.87 0 0.5240 6.172 96.1 5.9505 5 311 15.2 396.90 19.15 27.1
0.21124 12.5 7.87 0 0.5240 5.631 100.0 6.0821 5 311 15.2 386.63 29.93 16.5
0.17004 12.5 7.87 0 0.5240 6.004 85.9 6.5921 5 311 15.2 386.71 17.10 18.9
0.22489 12.5 7.87 0 0.5240 6.377 94.3 6.3467 5 311 15.2 392.52 20.45 15.0
0.11747 12.5 7.87 0 0.5240 6.009 82.9 6.2267 5 311 15.2 396.90 13.27 18.9
0.09378 12.5 7.87 0 0.5240 5.889 39.0 5.4509 5 311 15.2 390.50 15.71 21.7
0.62976 0.0 8.14 0 0.5380 5.949 61.8 4.7075 4 307 21.0 396.90 8.26 20.4
0.63796 0.0 8.14 0 0.5380 6.096 84.5 4.4619 4 307 21.0 380.02 10.26 18.2
0.62739 0.0 8.14 0 0.5380 5.834 56.5 4.4986 4 307 21.0 395.62 8.47 19.9
1.05393 0.0 8.14 0 0.5380 5.935 29.3 4.4986 4 307 21.0 386.85 6.58 23.1
0.78420 0.0 8.14 0 0.5380 5.990 81.7 4.2579 4 307 21.0 386.75 14.67 17.5
0.80271 0.0 8.14 0 0.5380 5.456 36.6 3.7965 4 307 21.0 288.99 11.69 20.2
0.72580 0.0 8.14 0 0.5380 5.727 69.5 3.7965 4 307 21.0 390.95 11.28 18.2
1.25179 0.0 8.14 0 0.5380 5.570 98.1 3.7979 4 307 21.0 376.57 21.02 13.6
0.85204 0.0 8.14 0 0.5380 5.965 89.2 4.0123 4 307 21.0 392.53 13.83 19.6
1.23247 0.0 8.14 0 0.5380 6.142 91.7 3.9769 4 307 21.0 396.90 18.72 15.2
0.98843 0.0 8.14 0 0.5380 5.813 100.0 4.0952 4 307 21.0 394.54 19.88 14.5
0.75026 0.0 8.14 0 0.5380 5.924 94.1 4.3996 4 307 21.0 394.33 16.30 15.6
0.84054 0.0 8.14 0 0.5380 5.599 85.7 4.4546 4 307 21.0 303.42 16.51 13.9
0.67191 0.0 8.14 0 0.5380 5.813 90.3 4.6820 4 307 21.0 376.88 14.81 16.6
0.95577 0.0 8.14 0 0.5380 6.047 88.8 4.4534 4 307 21.0 306.38 17.28 14.8
0.77299 0.0 8.14 0 0.5380 6.495 94.4 4.4547 4 307 21.0 387.94 12.80 18.4
1.00245 0.0 8.14 0 0.5380 6.674 87.3 4.2390 4 307 21.0 380.23 11.98 21.0
1.13081 0.0 8.14 0 0.5380 5.713 94.1 4.2330 4 307 21.0 360.17 22.60 12.7
1.35472 0.0 8.14 0 0.5380 6.072 100.0 4.1750 4 307 21.0 376.73 13.04 14.5
1.38799 0.0 8.14 0 0.5380 5.950 82.0 3.9900 4 307 21.0 232.60 27.71 13.2
1.15172 0.0 8.14 0 0.5380 5.701 95.0 3.7872 4 307 21.0 358.77 18.35 13.1
1.61282 0.0 8.14 0 0.5380 6.096 96.9 3.7598 4 307 21.0 248.31 20.34 13.5
0.06417 0.0 5.96 0 0.4990 5.933 68.2 3.3603 5 279 19.2 396.90 9.68 18.9
0.09744 0.0 5.96 0 0.4990 5.841 61.4 3.3779 5 279 19.2 377.56 11.41 20.0
0.08014 0.0 5.96 0 0.4990 5.850 41.5 3.9342 5 279 19.2 396.90 8.77 21.0
0.17505 0.0 5.96 0 0.4990 5.966 30.2 3.8473 5 279 19.2 393.43 10.13 24.7
0.02763 75.0 2.95 0 0.4280 6.595 21.8 5.4011 3 252 18.3 395.63 4.32 30.8
0.03359 75.0 2.95 0 0.4280 7.024 15.8 5.4011 3 252 18.3 395.62 1.98 34.9
0.12744 0.0 6.91 0 0.4480 6.770 2.9 5.7209 3 233 17.9 385.41 4.84 26.6
0.14150 0.0 6.91 0 0.4480 6.169 6.6 5.7209 3 233 17.9 383.37 5.81 25.3
0.15936 0.0 6.91 0 0.4480 6.211 6.5 5.7209 3 233 17.9 394.46 7.44 24.7
0.12269 0.0 6.91 0 0.4480 6.069 40.0 5.7209 3 233 17.9 389.39 9.55 21.2
0.17142 0.0 6.91 0 0.4480 5.682 33.8 5.1004 3 233 17.9 396.90 10.21 19.3
0.18836 0.0 6.91 0 0.4480 5.786 33.3 5.1004 3 233 17.9 396.90 14.15 20.0
0.22927 0.0 6.91 0 0.4480 6.030 85.5 5.6894 3 233 17.9 392.74 18.80 16.6
0.25387 0.0 6.91 0 0.4480 5.399 95.3 5.8700 3 233 17.9 396.90 30.81 14.4
0.21977 0.0 6.91 0 0.4480 5.602 62.0 6.0877 3 233 17.9 396.90 16.20 19.4
0.08873 21.0 5.64 0 0.4390 5.963 45.7 6.8147 4 243 16.8 395.56 13.45 19.7
0.04337 21.0 5.64 0 0.4390 6.115 63.0 6.8147 4 243 16.8 393.97 9.43 20.5
0.05360 21.0 5.64 0 0.4390 6.511 21.1 6.8147 4 243 16.8 396.90 5.28 25.0
0.04981 21.0 5.64 0 0.4390 5.998 21.4 6.8147 4 243 16.8 396.90 8.43 23.4
0.01360 75.0 4.00 0 0.4100 5.888 47.6 7.3197 3 469 21.1 396.90 14.80 18.9
0.01311 90.0 1.22 0 0.4030 7.249 21.9 8.6966 5 226 17.9 395.93 4.81 35.4
0.02055 85.0 0.74 0 0.4100 6.383 35.7 9.1876 2 313 17.3 396.90 5.77 24.7
0.01432 100.0 1.32 0 0.4110 6.816 40.5 8.3248 5 256 15.1 392.90 3.95 31.6
0.15445 25.0 5.13 0 0.4530 6.145 29.2 7.8148 8 284 19.7 390.68 6.86 23.3
0.10328 25.0 5.13 0 0.4530 5.927 47.2 6.9320 8 284 19.7 396.90 9.22 19.6
0.14932 25.0 5.13 0 0.4530 5.741 66.2 7.2254 8 284 19.7 395.11 13.15 18.7
0.17171 25.0 5.13 0 0.4530 5.966 93.4 6.8185 8 284 19.7 378.08 14.44 16.0
0.11027 25.0 5.13 0 0.4530 6.456 67.8 7.2255 8 284 19.7 396.90 6.73 22.2
0.12650 25.0 5.13 0 0.4530 6.762 43.4 7.9809 8 284 19.7 395.58 9.50 25.0
0.01951 17.5 1.38 0 0.4161 7.104 59.5 9.2229 3 216 18.6 393.24 8.05 33.0
0.03584 80.0 3.37 0 0.3980 6.290 17.8 6.6115 4 337 16.1 396.90 4.67 23.5
0.04379 80.0 3.37 0 0.3980 5.787 31.1 6.6115 4 337 16.1 396.90 10.24 19.4
0.05789 12.5 6.07 0 0.4090 5.878 21.4 6.4980 4 345 18.9 396.21 8.10 22.0
0.13554 12.5 6.07 0 0.4090 5.594 36.8 6.4980 4 345 18.9 396.90 13.09 17.4
0.12816 12.5 6.07 0 0.4090 5.885 33.0 6.4980 4 345 18.9 396.90 8.79 20.9
0.08826 0.0 10.81 0 0.4130 6.417 6.6 5.2873 4 305 19.2 383.73 6.72 24.2
0.15876 0.0 10.81 0 0.4130 5.961 17.5 5.2873 4 305 19.2 376.94 9.88 21.7
0.09164 0.0 10.81 0 0.4130 6.065 7.8 5.2873 4 305 19.2 390.91 5.52 22.8
0.19539 0.0 10.81 0 0.4130 6.245 6.2 5.2873 4 305 19.2 377.17 7.54 23.4
0.07896 0.0 12.83 0 0.4370 6.273 6.0 4.2515 5 398 18.7 394.92 6.78 24.1
0.09512 0.0 12.83 0 0.4370 6.286 45.0 4.5026 5 398 18.7 383.23 8.94 21.4
0.10153 0.0 12.83 0 0.4370 6.279 74.5 4.0522 5 398 18.7 373.66 11.97 20.0
0.08707 0.0 12.83 0 0.4370 6.140 45.8 4.0905 5 398 18.7 386.96 10.27 20.8
0.05646 0.0 12.83 0 0.4370 6.232 53.7 5.0141 5 398 18.7 386.40 12.34 21.2
0.08387 0.0 12.83 0 0.4370 5.874 36.6 4.5026 5 398 18.7 396.06 9.10 20.3
0.04113 25.0 4.86 0 0.4260 6.727 33.5 5.4007 4 281 19.0 396.90 5.29 28.0
0.04462 25.0 4.86 0 0.4260 6.619 70.4 5.4007 4 281 19.0 395.63 7.22 23.9
0.03659 25.0 4.86 0 0.4260 6.302 32.2 5.4007 4 281 19.0 396.90 6.72 24.8
0.03551 25.0 4.86 0 0.4260 6.167 46.7 5.4007 4 281 19.0 390.64 7.51 22.9
0.05059 0.0 4.49 0 0.4490 6.389 48.0 4.7794 3 247 18.5 396.90 9.62 23.9
0.05735 0.0 4.49 0 0.4490 6.630 56.1 4.4377 3 247 18.5 392.30 6.53 26.6
0.05188 0.0 4.49 0 0.4490 6.015 45.1 4.4272 3 247 18.5 395.99 12.86 22.5
0.07151 0.0 4.49 0 0.4490 6.121 56.8 3.7476 3 247 18.5 395.15 8.44 22.2
0.05660 0.0 3.41 0 0.4890 7.007 86.3 3.4217 2 270 17.8 396.90 5.50 23.6
0.05302 0.0 3.41 0 0.4890 7.079 63.1 3.4145 2 270 17.8 396.06 5.70 28.7
0.04684 0.0 3.41 0 0.4890 6.417 66.1 3.0923 2 270 17.8 392.18 8.81 22.6
0.03932 0.0 3.41 0 0.4890 6.405 73.9 3.0921 2 270 17.8 393.55 8.20 22.0
0.04203 28.0 15.04 0 0.4640 6.442 53.6 3.6659 4 270 18.2 395.01 8.16 22.9
0.02875 28.0 15.04 0 0.4640 6.211 28.9 3.6659 4 270 18.2 396.33 6.21 25.0
0.04294 28.0 15.04 0 0.4640 6.249 77.3 3.6150 4 270 18.2 396.90 10.59 20.6
0.12204 0.0 2.89 0 0.4450 6.625 57.8 3.4952 2 276 18.0 357.98 6.65 28.4
0.11504 0.0 2.89 0 0.4450 6.163 69.6 3.4952 2 276 18.0 391.83 11.34 21.4
0.12083 0.0 2.89 0 0.4450 8.069 76.0 3.4952 2 276 18.0 396.90 4.21 38.7
0.08187 0.0 2.89 0 0.4450 7.820 36.9 3.4952 2 276 18.0 393.53 3.57 43.8
0.06860 0.0 2.89 0 0.4450 7.416 62.5 3.4952 2 276 18.0 396.90 6.19 33.2
0.14866 0.0 8.56 0 0.5200 6.727 79.9 2.7778 5 384 20.9 394.76 9.42 27.5
0.11432 0.0 8.56 0 0.5200 6.781 71.3 2.8561 5 384 20.9 395.58 7.67 26.5
0.22876 0.0 8.56 0 0.5200 6.405 85.4 2.7147 5 384 20.9 70.80 10.63 18.6
0.21161 0.0 8.56 0 0.5200 6.137 87.4 2.7147 5 384 20.9 394.47 13.44 19.3
0.13960 0.0 8.56 0 0.5200 6.167 90.0 2.4210 5 384 20.9 392.69 12.33 20.1
0.13262 0.0 8.56 0 0.5200 5.851 96.7 2.1069 5 384 20.9 394.05 16.47 19.5
0.17120 0.0 8.56 0 0.5200 5.836 91.9 2.2110 5 384 20.9 395.67 18.66 19.5
0.13117 0.0 8.56 0 0.5200 6.127 85.2 2.1224 5 384 20.9 387.69 14.09 20.4
0.12802 0.0 8.56 0 0.5200 6.474 97.1 2.4329 5 384 20.9 395.24 12.27 19.8
0.26363 0.0 8.56 0 0.5200 6.229 91.2 2.5451 5 384 20.9 391.23 15.55 19.4
0.10793 0.0 8.56 0 0.5200 6.195 54.4 2.7778 5 384 20.9 393.49 13.00 21.7
0.10084 0.0 10.01 0 0.5470 6.715 81.6 2.6775 6 432 17.8 395.59 10.16 22.8
0.12329 0.0 10.01 0 0.5470 5.913 92.9 2.3534 6 432 17.8 394.95 16.21 18.8
0.22212 0.0 10.01 0 0.5470 6.092 95.4 2.5480 6 432 17.8 396.90 17.09 18.7
0.14231 0.0 10.01 0 0.5470 6.254 84.2 2.2565 6 432 17.8 388.74 10.45 18.5
0.17134 0.0 10.01 0 0.5470 5.928 88.2 2.4631 6 432 17.8 344.91 15.76 18.3
0.13158 0.0 10.01 0 0.5470 6.176 72.5 2.7301 6 432 17.8 393.30 12.04 21.2
0.15098 0.0 10.01 0 0.5470 6.021 82.6 2.7474 6 432 17.8 394.51 10.30 19.2
0.13058 0.0 10.01 0 0.5470 5.872 73.1 2.4775 6 432 17.8 338.63 15.37 20.4
0.14476 0.0 10.01 0 0.5470 5.731 65.2 2.7592 6 432 17.8 391.50 13.61 19.3
0.06899 0.0 25.65 0 0.5810 5.870 69.7 2.2577 2 188 19.1 389.15 14.37 22.0
0.07165 0.0 25.65 0 0.5810 6.004 84.1 2.1974 2 188 19.1 377.67 14.27 20.3
0.09299 0.0 25.65 0 0.5810 5.961 92.9 2.0869 2 188 19.1 378.09 17.93 20.5
0.15038 0.0 25.65 0 0.5810 5.856 97.0 1.9444 2 188 19.1 370.31 25.41 17.3
0.09849 0.0 25.65 0 0.5810 5.879 95.8 2.0063 2 188 19.1 379.38 17.58 18.8
0.16902 0.0 25.65 0 0.5810 5.986 88.4 1.9929 2 188 19.1 385.02 14.81 21.4
0.38735 0.0 25.65 0 0.5810 5.613 95.6 1.7572 2 188 19.1 359.29 27.26 15.7
0.25915 0.0 21.89 0 0.6240 5.693 96.0 1.7883 4 437 21.2 392.11 17.19 16.2
0.32543 0.0 21.89 0 0.6240 6.431 98.8 1.8125 4 437 21.2 396.90 15.39 18.0
0.88125 0.0 21.89 0 0.6240 5.637 94.7 1.9799 4 437 21.2 396.90 18.34 14.3
0.34006 0.0 21.89 0 0.6240 6.458 98.9 2.1185 4 437 21.2 395.04 12.60 19.2
1.19294 0.0 21.89 0 0.6240 6.326 97.7 2.2710 4 437 21.2 396.90 12.26 19.6
0.59005 0.0 21.89 0 0.6240 6.372 97.9 2.3274 4 437 21.2 385.76 11.12 23.0
0.32982 0.0 21.89 0 0.6240 5.822 95.4 2.4699 4 437 21.2 388.69 15.03 18.4
0.97617 0.0 21.89 0 0.6240 5.757 98.4 2.3460 4 437 21.2 262.76 17.31 15.6
0.55778 0.0 21.89 0 0.6240 6.335 98.2 2.1107 4 437 21.2 394.67 16.96 18.1
0.32264 0.0 21.89 0 0.6240 5.942 93.5 1.9669 4 437 21.2 378.25 16.90 17.4
0.35233 0.0 21.89 0 0.6240 6.454 98.4 1.8498 4 437 21.2 394.08 14.59 17.1
0.24980 0.0 21.89 0 0.6240 5.857 98.2 1.6686 4 437 21.2 392.04 21.32 13.3
0.54452 0.0 21.89 0 0.6240 6.151 97.9 1.6687 4 437 21.2 396.90 18.46 17.8
0.29090 0.0 21.89 0 0.6240 6.174 93.6 1.6119 4 437 21.2 388.08 24.16 14.0
1.62864 0.0 21.89 0 0.6240 5.019 100.0 1.4394 4 437 21.2 396.90 34.41 14.4
3.32105 0.0 19.58 1 0.8710 5.403 100.0 1.3216 5 403 14.7 396.90 26.82 13.4
4.09740 0.0 19.58 0 0.8710 5.468 100.0 1.4118 5 403 14.7 396.90 26.42 15.6
2.77974 0.0 19.58 0 0.8710 4.903 97.8 1.3459 5 403 14.7 396.90 29.29 11.8
2.37934 0.0 19.58 0 0.8710 6.130 100.0 1.4191 5 403 14.7 172.91 27.80 13.8
2.15505 0.0 19.58 0 0.8710 5.628 100.0 1.5166 5 403 14.7 169.27 16.65 15.6
2.36862 0.0 19.58 0 0.8710 4.926 95.7 1.4608 5 403 14.7 391.71 29.53 14.6
2.33099 0.0 19.58 0 0.8710 5.186 93.8 1.5296 5 403 14.7 356.99 28.32 17.8
2.73397 0.0 19.58 0 0.8710 5.597 94.9 1.5257 5 403 14.7 351.85 21.45 15.4
1.65660 0.0 19.58 0 0.8710 6.122 97.3 1.6180 5 403 14.7 372.80 14.10 21.5
1.49632 0.0 19.58 0 0.8710 5.404 100.0 1.5916 5 403 14.7 341.60 13.28 19.6
1.12658 0.0 19.58 1 0.8710 5.012 88.0 1.6102 5 403 14.7 343.28 12.12 15.3
2.14918 0.0 19.58 0 0.8710 5.709 98.5 1.6232 5 403 14.7 261.95 15.79 19.4
1.41385 0.0 19.58 1 0.8710 6.129 96.0 1.7494 5 403 14.7 321.02 15.12 17.0
3.53501 0.0 19.58 1 0.8710 6.152 82.6 1.7455 5 403 14.7 88.01 15.02 15.6
2.44668 0.0 19.58 0 0.8710 5.272 94.0 1.7364 5 403 14.7 88.63 16.14 13.1
1.22358 0.0 19.58 0 0.6050 6.943 97.4 1.8773 5 403 14.7 363.43 4.59 41.3
1.34284 0.0 19.58 0 0.6050 6.066 100.0 1.7573 5 403 14.7 353.89 6.43 24.3
1.42502 0.0 19.58 0 0.8710 6.510 100.0 1.7659 5 403 14.7 364.31 7.39 23.3
1.27346 0.0 19.58 1 0.6050 6.250 92.6 1.7984 5 403 14.7 338.92 5.50 27.0
1.46336 0.0 19.58 0 0.6050 7.489 90.8 1.9709 5 403 14.7 374.43 1.73 50.0
1.83377 0.0 19.58 1 0.6050 7.802 98.2 2.0407 5 403 14.7 389.61 1.92 50.0
1.51902 0.0 19.58 1 0.6050 8.375 93.9 2.1620 5 403 14.7 388.45 3.32 50.0
2.24236 0.0 19.58 0 0.6050 5.854 91.8 2.4220 5 403 14.7 395.11 11.64 22.7
2.92400 0.0 19.58 0 0.6050 6.101 93.0 2.2834 5 403 14.7 240.16 9.81 25.0
2.01019 0.0 19.58 0 0.6050 7.929 96.2 2.0459 5 403 14.7 369.30 3.70 50.0
1.80028 0.0 19.58 0 0.6050 5.877 79.2 2.4259 5 403 14.7 227.61 12.14 23.8
2.30040 0.0 19.58 0 0.6050 6.319 96.1 2.1000 5 403 14.7 297.09 11.10 23.8
2.44953 0.0 19.58 0 0.6050 6.402 95.2 2.2625 5 403 14.7 330.04 11.32 22.3
1.20742 0.0 19.58 0 0.6050 5.875 94.6 2.4259 5 403 14.7 292.29 14.43 17.4
2.31390 0.0 19.58 0 0.6050 5.880 97.3 2.3887 5 403 14.7 348.13 12.03 19.1
0.13914 0.0 4.05 0 0.5100 5.572 88.5 2.5961 5 296 16.6 396.90 14.69 23.1
0.09178 0.0 4.05 0 0.5100 6.416 84.1 2.6463 5 296 16.6 395.50 9.04 23.6
0.08447 0.0 4.05 0 0.5100 5.859 68.7 2.7019 5 296 16.6 393.23 9.64 22.6
0.06664 0.0 4.05 0 0.5100 6.546 33.1 3.1323 5 296 16.6 390.96 5.33 29.4
0.07022 0.0 4.05 0 0.5100 6.020 47.2 3.5549 5 296 16.6 393.23 10.11 23.2
0.05425 0.0 4.05 0 0.5100 6.315 73.4 3.3175 5 296 16.6 395.60 6.29 24.6
0.06642 0.0 4.05 0 0.5100 6.860 74.4 2.9153 5 296 16.6 391.27 6.92 29.9
0.05780 0.0 2.46 0 0.4880 6.980 58.4 2.8290 3 193 17.8 396.90 5.04 37.2
0.06588 0.0 2.46 0 0.4880 7.765 83.3 2.7410 3 193 17.8 395.56 7.56 39.8
0.06888 0.0 2.46 0 0.4880 6.144 62.2 2.5979 3 193 17.8 396.90 9.45 36.2
0.09103 0.0 2.46 0 0.4880 7.155 92.2 2.7006 3 193 17.8 394.12 4.82 37.9
0.10008 0.0 2.46 0 0.4880 6.563 95.6 2.8470 3 193 17.8 396.90 5.68 32.5
0.08308 0.0 2.46 0 0.4880 5.604 89.8 2.9879 3 193 17.8 391.00 13.98 26.4
0.06047 0.0 2.46 0 0.4880 6.153 68.8 3.2797 3 193 17.8 387.11 13.15 29.6
0.05602 0.0 2.46 0 0.4880 7.831 53.6 3.1992 3 193 17.8 392.63 4.45 50.0
0.07875 45.0 3.44 0 0.4370 6.782 41.1 3.7886 5 398 15.2 393.87 6.68 32.0
0.12579 45.0 3.44 0 0.4370 6.556 29.1 4.5667 5 398 15.2 382.84 4.56 29.8
0.08370 45.0 3.44 0 0.4370 7.185 38.9 4.5667 5 398 15.2 396.90 5.39 34.9
0.09068 45.0 3.44 0 0.4370 6.951 21.5 6.4798 5 398 15.2 377.68 5.10 37.0
0.06911 45.0 3.44 0 0.4370 6.739 30.8 6.4798 5 398 15.2 389.71 4.69 30.5
0.08664 45.0 3.44 0 0.4370 7.178 26.3 6.4798 5 398 15.2 390.49 2.87 36.4
0.02187 60.0 2.93 0 0.4010 6.800 9.9 6.2196 1 265 15.6 393.37 5.03 31.1
0.01439 60.0 2.93 0 0.4010 6.604 18.8 6.2196 1 265 15.6 376.70 4.38 29.1
0.01381 80.0 0.46 0 0.4220 7.875 32.0 5.6484 4 255 14.4 394.23 2.97 50.0
0.04011 80.0 1.52 0 0.4040 7.287 34.1 7.3090 2 329 12.6 396.90 4.08 33.3
0.04666 80.0 1.52 0 0.4040 7.107 36.6 7.3090 2 329 12.6 354.31 8.61 30.3
0.03768 80.0 1.52 0 0.4040 7.274 38.3 7.3090 2 329 12.6 392.20 6.62 34.6
0.03150 95.0 1.47 0 0.4030 6.975 15.3 7.6534 3 402 17.0 396.90 4.56 34.9
0.01778 95.0 1.47 0 0.4030 7.135 13.9 7.6534 3 402 17.0 384.30 4.45 32.9
0.03445 82.5 2.03 0 0.4150 6.162 38.4 6.2700 2 348 14.7 393.77 7.43 24.1
0.02177 82.5 2.03 0 0.4150 7.610 15.7 6.2700 2 348 14.7 395.38 3.11 42.3
0.03510 95.0 2.68 0 0.4161 7.853 33.2 5.1180 4 224 14.7 392.78 3.81 48.5
0.02009 95.0 2.68 0 0.4161 8.034 31.9 5.1180 4 224 14.7 390.55 2.88 50.0
0.13642 0.0 10.59 0 0.4890 5.891 22.3 3.9454 4 277 18.6 396.90 10.87 22.6
0.22969 0.0 10.59 0 0.4890 6.326 52.5 4.3549 4 277 18.6 394.87 10.97 24.4
0.25199 0.0 10.59 0 0.4890 5.783 72.7 4.3549 4 277 18.6 389.43 18.06 22.5
0.13587 0.0 10.59 1 0.4890 6.064 59.1 4.2392 4 277 18.6 381.32 14.66 24.4
0.43571 0.0 10.59 1 0.4890 5.344 100.0 3.8750 4 277 18.6 396.90 23.09 20.0
0.17446 0.0 10.59 1 0.4890 5.960 92.1 3.8771 4 277 18.6 393.25 17.27 21.7
0.37578 0.0 10.59 1 0.4890 5.404 88.6 3.6650 4 277 18.6 395.24 23.98 19.3
0.21719 0.0 10.59 1 0.4890 5.807 53.8 3.6526 4 277 18.6 390.94 16.03 22.4
0.14052 0.0 10.59 0 0.4890 6.375 32.3 3.9454 4 277 18.6 385.81 9.38 28.1
0.28955 0.0 10.59 0 0.4890 5.412 9.8 3.5875 4 277 18.6 348.93 29.55 23.7
0.19802 0.0 10.59 0 0.4890 6.182 42.4 3.9454 4 277 18.6 393.63 9.47 25.0
0.04560 0.0 13.89 1 0.5500 5.888 56.0 3.1121 5 276 16.4 392.80 13.51 23.3
0.07013 0.0 13.89 0 0.5500 6.642 85.1 3.4211 5 276 16.4 392.78 9.69 28.7
0.11069 0.0 13.89 1 0.5500 5.951 93.8 2.8893 5 276 16.4 396.90 17.92 21.5
0.11425 0.0 13.89 1 0.5500 6.373 92.4 3.3633 5 276 16.4 393.74 10.50 23.0
0.35809 0.0 6.20 1 0.5070 6.951 88.5 2.8617 8 307 17.4 391.70 9.71 26.7
0.40771 0.0 6.20 1 0.5070 6.164 91.3 3.0480 8 307 17.4 395.24 21.46 21.7
0.62356 0.0 6.20 1 0.5070 6.879 77.7 3.2721 8 307 17.4 390.39 9.93 27.5
0.61470 0.0 6.20 0 0.5070 6.618 80.8 3.2721 8 307 17.4 396.90 7.60 30.1
0.31533 0.0 6.20 0 0.5040 8.266 78.3 2.8944 8 307 17.4 385.05 4.14 44.8
0.52693 0.0 6.20 0 0.5040 8.725 83.0 2.8944 8 307 17.4 382.00 4.63 50.0
0.38214 0.0 6.20 0 0.5040 8.040 86.5 3.2157 8 307 17.4 387.38 3.13 37.6
0.41238 0.0 6.20 0 0.5040 7.163 79.9 3.2157 8 307 17.4 372.08 6.36 31.6
0.29819 0.0 6.20 0 0.5040 7.686 17.0 3.3751 8 307 17.4 377.51 3.92 46.7
0.44178 0.0 6.20 0 0.5040 6.552 21.4 3.3751 8 307 17.4 380.34 3.76 31.5
0.53700 0.0 6.20 0 0.5040 5.981 68.1 3.6715 8 307 17.4 378.35 11.65 24.3
0.46296 0.0 6.20 0 0.5040 7.412 76.9 3.6715 8 307 17.4 376.14 5.25 31.7
0.57529 0.0 6.20 0 0.5070 8.337 73.3 3.8384 8 307 17.4 385.91 2.47 41.7
0.33147 0.0 6.20 0 0.5070 8.247 70.4 3.6519 8 307 17.4 378.95 3.95 48.3
0.44791 0.0 6.20 1 0.5070 6.726 66.5 3.6519 8 307 17.4 360.20 8.05 29.0
0.33045 0.0 6.20 0 0.5070 6.086 61.5 3.6519 8 307 17.4 376.75 10.88 24.0
0.52058 0.0 6.20 1 0.5070 6.631 76.5 4.1480 8 307 17.4 388.45 9.54 25.1
0.51183 0.0 6.20 0 0.5070 7.358 71.6 4.1480 8 307 17.4 390.07 4.73 31.5
0.08244 30.0 4.93 0 0.4280 6.481 18.5 6.1899 6 300 16.6 379.41 6.36 23.7
0.09252 30.0 4.93 0 0.4280 6.606 42.2 6.1899 6 300 16.6 383.78 7.37 23.3
0.11329 30.0 4.93 0 0.4280 6.897 54.3 6.3361 6 300 16.6 391.25 11.38 22.0
0.10612 30.0 4.93 0 0.4280 6.095 65.1 6.3361 6 300 16.6 394.62 12.40 20.1
0.10290 30.0 4.93 0 0.4280 6.358 52.9 7.0355 6 300 16.6 372.75 11.22 22.2
0.12757 30.0 4.93 0 0.4280 6.393 7.8 7.0355 6 300 16.6 374.71 5.19 23.7
0.20608 22.0 5.86 0 0.4310 5.593 76.5 7.9549 7 330 19.1 372.49 12.50 17.6
0.19133 22.0 5.86 0 0.4310 5.605 70.2 7.9549 7 330 19.1 389.13 18.46 18.5
0.33983 22.0 5.86 0 0.4310 6.108 34.9 8.0555 7 330 19.1 390.18 9.16 24.3
0.19657 22.0 5.86 0 0.4310 6.226 79.2 8.0555 7 330 19.1 376.14 10.15 20.5
0.16439 22.0 5.86 0 0.4310 6.433 49.1 7.8265 7 330 19.1 374.71 9.52 24.5
0.19073 22.0 5.86 0 0.4310 6.718 17.5 7.8265 7 330 19.1 393.74 6.56 26.2
0.14030 22.0 5.86 0 0.4310 6.487 13.0 7.3967 7 330 19.1 396.28 5.90 24.4
0.21409 22.0 5.86 0 0.4310 6.438 8.9 7.3967 7 330 19.1 377.07 3.59 24.8
0.08221 22.0 5.86 0 0.4310 6.957 6.8 8.9067 7 330 19.1 386.09 3.53 29.6
0.36894 22.0 5.86 0 0.4310 8.259 8.4 8.9067 7 330 19.1 396.90 3.54 42.8
0.04819 80.0 3.64 0 0.3920 6.108 32.0 9.2203 1 315 16.4 392.89 6.57 21.9
0.03548 80.0 3.64 0 0.3920 5.876 19.1 9.2203 1 315 16.4 395.18 9.25 20.9
0.01538 90.0 3.75 0 0.3940 7.454 34.2 6.3361 3 244 15.9 386.34 3.11 44.0
0.61154 20.0 3.97 0 0.6470 8.704 86.9 1.8010 5 264 13.0 389.70 5.12 50.0
0.66351 20.0 3.97 0 0.6470 7.333 100.0 1.8946 5 264 13.0 383.29 7.79 36.0
0.65665 20.0 3.97 0 0.6470 6.842 100.0 2.0107 5 264 13.0 391.93 6.90 30.1
0.54011 20.0 3.97 0 0.6470 7.203 81.8 2.1121 5 264 13.0 392.80 9.59 33.8
0.53412 20.0 3.97 0 0.6470 7.520 89.4 2.1398 5 264 13.0 388.37 7.26 43.1
0.52014 20.0 3.97 0 0.6470 8.398 91.5 2.2885 5 264 13.0 386.86 5.91 48.8
0.82526 20.0 3.97 0 0.6470 7.327 94.5 2.0788 5 264 13.0 393.42 11.25 31.0
0.55007 20.0 3.97 0 0.6470 7.206 91.6 1.9301 5 264 13.0 387.89 8.10 36.5
0.76162 20.0 3.97 0 0.6470 5.560 62.8 1.9865 5 264 13.0 392.40 10.45 22.8
0.78570 20.0 3.97 0 0.6470 7.014 84.6 2.1329 5 264 13.0 384.07 14.79 30.7
0.57834 20.0 3.97 0 0.5750 8.297 67.0 2.4216 5 264 13.0 384.54 7.44 50.0
0.54050 20.0 3.97 0 0.5750 7.470 52.6 2.8720 5 264 13.0 390.30 3.16 43.5
0.09065 20.0 6.96 1 0.4640 5.920 61.5 3.9175 3 223 18.6 391.34 13.65 20.7
0.29916 20.0 6.96 0 0.4640 5.856 42.1 4.4290 3 223 18.6 388.65 13.00 21.1
0.16211 20.0 6.96 0 0.4640 6.240 16.3 4.4290 3 223 18.6 396.90 6.59 25.2
0.11460 20.0 6.96 0 0.4640 6.538 58.7 3.9175 3 223 18.6 394.96 7.73 24.4
0.22188 20.0 6.96 1 0.4640 7.691 51.8 4.3665 3 223 18.6 390.77 6.58 35.2
0.05644 40.0 6.41 1 0.4470 6.758 32.9 4.0776 4 254 17.6 396.90 3.53 32.4
0.09604 40.0 6.41 0 0.4470 6.854 42.8 4.2673 4 254 17.6 396.90 2.98 32.0
0.10469 40.0 6.41 1 0.4470 7.267 49.0 4.7872 4 254 17.6 389.25 6.05 33.2
0.06127 40.0 6.41 1 0.4470 6.826 27.6 4.8628 4 254 17.6 393.45 4.16 33.1
0.07978 40.0 6.41 0 0.4470 6.482 32.1 4.1403 4 254 17.6 396.90 7.19 29.1
0.21038 20.0 3.33 0 0.4429 6.812 32.2 4.1007 5 216 14.9 396.90 4.85 35.1
0.03578 20.0 3.33 0 0.4429 7.820 64.5 4.6947 5 216 14.9 387.31 3.76 45.4
0.03705 20.0 3.33 0 0.4429 6.968 37.2 5.2447 5 216 14.9 392.23 4.59 35.4
0.06129 20.0 3.33 1 0.4429 7.645 49.7 5.2119 5 216 14.9 377.07 3.01 46.0
0.01501 90.0 1.21 1 0.4010 7.923 24.8 5.8850 1 198 13.6 395.52 3.16 50.0
0.00906 90.0 2.97 0 0.4000 7.088 20.8 7.3073 1 285 15.3 394.72 7.85 32.2
0.01096 55.0 2.25 0 0.3890 6.453 31.9 7.3073 1 300 15.3 394.72 8.23 22.0
0.01965 80.0 1.76 0 0.3850 6.230 31.5 9.0892 1 241 18.2 341.60 12.93 20.1
0.03871 52.5 5.32 0 0.4050 6.209 31.3 7.3172 6 293 16.6 396.90 7.14 23.2
0.04590 52.5 5.32 0 0.4050 6.315 45.6 7.3172 6 293 16.6 396.90 7.60 22.3
0.04297 52.5 5.32 0 0.4050 6.565 22.9 7.3172 6 293 16.6 371.72 9.51 24.8
0.03502 80.0 4.95 0 0.4110 6.861 27.9 5.1167 4 245 19.2 396.90 3.33 28.5
0.07886 80.0 4.95 0 0.4110 7.148 27.7 5.1167 4 245 19.2 396.90 3.56 37.3
0.03615 80.0 4.95 0 0.4110 6.630 23.4 5.1167 4 245 19.2 396.90 4.70 27.9
0.08265 0.0 13.92 0 0.4370 6.127 18.4 5.5027 4 289 16.0 396.90 8.58 23.9
0.08199 0.0 13.92 0 0.4370 6.009 42.3 5.5027 4 289 16.0 396.90 10.40 21.7
0.12932 0.0 13.92 0 0.4370 6.678 31.1 5.9604 4 289 16.0 396.90 6.27 28.6
0.05372 0.0 13.92 0 0.4370 6.549 51.0 5.9604 4 289 16.0 392.85 7.39 27.1
0.14103 0.0 13.92 0 0.4370 5.790 58.0 6.3200 4 289 16.0 396.90 15.84 20.3
0.06466 70.0 2.24 0 0.4000 6.345 20.1 7.8278 5 358 14.8 368.24 4.97 22.5
0.05561 70.0 2.24 0 0.4000 7.041 10.0 7.8278 5 358 14.8 371.58 4.74 29.0
0.04417 70.0 2.24 0 0.4000 6.871 47.4 7.8278 5 358 14.8 390.86 6.07 24.8
0.03537 34.0 6.09 0 0.4330 6.590 40.4 5.4917 7 329 16.1 395.75 9.50 22.0
0.09266 34.0 6.09 0 0.4330 6.495 18.4 5.4917 7 329 16.1 383.61 8.67 26.4
0.10000 34.0 6.09 0 0.4330 6.982 17.7 5.4917 7 329 16.1 390.43 4.86 33.1
0.05515 33.0 2.18 0 0.4720 7.236 41.1 4.0220 7 222 18.4 393.68 6.93 36.1
0.05479 33.0 2.18 0 0.4720 6.616 58.1 3.3700 7 222 18.4 393.36 8.93 28.4
0.07503 33.0 2.18 0 0.4720 7.420 71.9 3.0992 7 222 18.4 396.90 6.47 33.4
0.04932 33.0 2.18 0 0.4720 6.849 70.3 3.1827 7 222 18.4 396.90 7.53 28.2
0.49298 0.0 9.90 0 0.5440 6.635 82.5 3.3175 4 304 18.4 396.90 4.54 22.8
0.34940 0.0 9.90 0 0.5440 5.972 76.7 3.1025 4 304 18.4 396.24 9.97 20.3
2.63548 0.0 9.90 0 0.5440 4.973 37.8 2.5194 4 304 18.4 350.45 12.64 16.1
0.79041 0.0 9.90 0 0.5440 6.122 52.8 2.6403 4 304 18.4 396.90 5.98 22.1
0.26169 0.0 9.90 0 0.5440 6.023 90.4 2.8340 4 304 18.4 396.30 11.72 19.4
0.26938 0.0 9.90 0 0.5440 6.266 82.8 3.2628 4 304 18.4 393.39 7.90 21.6
0.36920 0.0 9.90 0 0.5440 6.567 87.3 3.6023 4 304 18.4 395.69 9.28 23.8
0.25356 0.0 9.90 0 0.5440 5.705 77.7 3.9450 4 304 18.4 396.42 11.50 16.2
0.31827 0.0 9.90 0 0.5440 5.914 83.2 3.9986 4 304 18.4 390.70 18.33 17.8
0.24522 0.0 9.90 0 0.5440 5.782 71.7 4.0317 4 304 18.4 396.90 15.94 19.8
0.40202 0.0 9.90 0 0.5440 6.382 67.2 3.5325 4 304 18.4 395.21 10.36 23.1
0.47547 0.0 9.90 0 0.5440 6.113 58.8 4.0019 4 304 18.4 396.23 12.73 21.0
0.16760 0.0 7.38 0 0.4930 6.426 52.3 4.5404 5 287 19.6 396.90 7.20 23.8
0.18159 0.0 7.38 0 0.4930 6.376 54.3 4.5404 5 287 19.6 396.90 6.87 23.1
0.35114 0.0 7.38 0 0.4930 6.041 49.9 4.7211 5 287 19.6 396.90 7.70 20.4
0.28392 0.0 7.38 0 0.4930 5.708 74.3 4.7211 5 287 19.6 391.13 11.74 18.5
0.34109 0.0 7.38 0 0.4930 6.415 40.1 4.7211 5 287 19.6 396.90 6.12 25.0
0.19186 0.0 7.38 0 0.4930 6.431 14.7 5.4159 5 287 19.6 393.68 5.08 24.6
0.30347 0.0 7.38 0 0.4930 6.312 28.9 5.4159 5 287 19.6 396.90 6.15 23.0
0.24103 0.0 7.38 0 0.4930 6.083 43.7 5.4159 5 287 19.6 396.90 12.79 22.2
0.06617 0.0 3.24 0 0.4600 5.868 25.8 5.2146 4 430 16.9 382.44 9.97 19.3
0.06724 0.0 3.24 0 0.4600 6.333 17.2 5.2146 4 430 16.9 375.21 7.34 22.6
0.04544 0.0 3.24 0 0.4600 6.144 32.2 5.8736 4 430 16.9 368.57 9.09 19.8
0.05023 35.0 6.06 0 0.4379 5.706 28.4 6.6407 1 304 16.9 394.02 12.43 17.1
0.03466 35.0 6.06 0 0.4379 6.031 23.3 6.6407 1 304 16.9 362.25 7.83 19.4
0.05083 0.0 5.19 0 0.5150 6.316 38.1 6.4584 5 224 20.2 389.71 5.68 22.2
0.03738 0.0 5.19 0 0.5150 6.310 38.5 6.4584 5 224 20.2 389.40 6.75 20.7
0.03961 0.0 5.19 0 0.5150 6.037 34.5 5.9853 5 224 20.2 396.90 8.01 21.1
0.03427 0.0 5.19 0 0.5150 5.869 46.3 5.2311 5 224 20.2 396.90 9.80 19.5
0.03041 0.0 5.19 0 0.5150 5.895 59.6 5.6150 5 224 20.2 394.81 10.56 18.5
0.03306 0.0 5.19 0 0.5150 6.059 37.3 4.8122 5 224 20.2 396.14 8.51 20.6
0.05497 0.0 5.19 0 0.5150 5.985 45.4 4.8122 5 224 20.2 396.90 9.74 19.0
0.06151 0.0 5.19 0 0.5150 5.968 58.5 4.8122 5 224 20.2 396.90 9.29 18.7
0.01301 35.0 1.52 0 0.4420 7.241 49.3 7.0379 1 284 15.5 394.74 5.49 32.7
0.02498 0.0 1.89 0 0.5180 6.540 59.7 6.2669 1 422 15.9 389.96 8.65 16.5
0.02543 55.0 3.78 0 0.4840 6.696 56.4 5.7321 5 370 17.6 396.90 7.18 23.9
0.03049 55.0 3.78 0 0.4840 6.874 28.1 6.4654 5 370 17.6 387.97 4.61 31.2
0.03113 0.0 4.39 0 0.4420 6.014 48.5 8.0136 3 352 18.8 385.64 10.53 17.5
0.06162 0.0 4.39 0 0.4420 5.898 52.3 8.0136 3 352 18.8 364.61 12.67 17.2
0.01870 85.0 4.15 0 0.4290 6.516 27.7 8.5353 4 351 17.9 392.43 6.36 23.1
0.01501 80.0 2.01 0 0.4350 6.635 29.7 8.3440 4 280 17.0 390.94 5.99 24.5
0.02899 40.0 1.25 0 0.4290 6.939 34.5 8.7921 1 335 19.7 389.85 5.89 26.6
0.06211 40.0 1.25 0 0.4290 6.490 44.4 8.7921 1 335 19.7 396.90 5.98 22.9
0.07950 60.0 1.69 0 0.4110 6.579 35.9 10.7103 4 411 18.3 370.78 5.49 24.1
0.07244 60.0 1.69 0 0.4110 5.884 18.5 10.7103 4 411 18.3 392.33 7.79 18.6
0.01709 90.0 2.02 0 0.4100 6.728 36.1 12.1265 5 187 17.0 384.46 4.50 30.1
0.04301 80.0 1.91 0 0.4130 5.663 21.9 10.5857 4 334 22.0 382.80 8.05 18.2
0.10659 80.0 1.91 0 0.4130 5.936 19.5 10.5857 4 334 22.0 376.04 5.57 20.6
8.98296 0.0 18.10 1 0.7700 6.212 97.4 2.1222 24 666 20.2 377.73 17.60 17.8
3.84970 0.0 18.10 1 0.7700 6.395 91.0 2.5052 24 666 20.2 391.34 13.27 21.7
5.20177 0.0 18.10 1 0.7700 6.127 83.4 2.7227 24 666 20.2 395.43 11.48 22.7
4.26131 0.0 18.10 0 0.7700 6.112 81.3 2.5091 24 666 20.2 390.74 12.67 22.6
4.54192 0.0 18.10 0 0.7700 6.398 88.0 2.5182 24 666 20.2 374.56 7.79 25.0
3.83684 0.0 18.10 0 0.7700 6.251 91.1 2.2955 24 666 20.2 350.65 14.19 19.9
3.67822 0.0 18.10 0 0.7700 5.362 96.2 2.1036 24 666 20.2 380.79 10.19 20.8
4.22239 0.0 18.10 1 0.7700 5.803 89.0 1.9047 24 666 20.2 353.04 14.64 16.8
3.47428 0.0 18.10 1 0.7180 8.780 82.9 1.9047 24 666 20.2 354.55 5.29 21.9
4.55587 0.0 18.10 0 0.7180 3.561 87.9 1.6132 24 666 20.2 354.70 7.12 27.5
3.69695 0.0 18.10 0 0.7180 4.963 91.4 1.7523 24 666 20.2 316.03 14.00 21.9
13.52220 0.0 18.10 0 0.6310 3.863 100.0 1.5106 24 666 20.2 131.42 13.33 23.1
4.89822 0.0 18.10 0 0.6310 4.970 100.0 1.3325 24 666 20.2 375.52 3.26 50.0
5.66998 0.0 18.10 1 0.6310 6.683 96.8 1.3567 24 666 20.2 375.33 3.73 50.0
6.53876 0.0 18.10 1 0.6310 7.016 97.5 1.2024 24 666 20.2 392.05 2.96 50.0
9.23230 0.0 18.10 0 0.6310 6.216 100.0 1.1691 24 666 20.2 366.15 9.53 50.0
8.26725 0.0 18.10 1 0.6680 5.875 89.6 1.1296 24 666 20.2 347.88 8.88 50.0
11.10810 0.0 18.10 0 0.6680 4.906 100.0 1.1742 24 666 20.2 396.90 34.77 13.8
18.49820 0.0 18.10 0 0.6680 4.138 100.0 1.1370 24 666 20.2 396.90 37.97 13.8
19.60910 0.0 18.10 0 0.6710 7.313 97.9 1.3163 24 666 20.2 396.90 13.44 15.0
15.28800 0.0 18.10 0 0.6710 6.649 93.3 1.3449 24 666 20.2 363.02 23.24 13.9
9.82349 0.0 18.10 0 0.6710 6.794 98.8 1.3580 24 666 20.2 396.90 21.24 13.3
23.64820 0.0 18.10 0 0.6710 6.380 96.2 1.3861 24 666 20.2 396.90 23.69 13.1
17.86670 0.0 18.10 0 0.6710 6.223 100.0 1.3861 24 666 20.2 393.74 21.78 10.2
88.97620 0.0 18.10 0 0.6710 6.968 91.9 1.4165 24 666 20.2 396.90 17.21 10.4
15.87440 0.0 18.10 0 0.6710 6.545 99.1 1.5192 24 666 20.2 396.90 21.08 10.9
9.18702 0.0 18.10 0 0.7000 5.536 100.0 1.5804 24 666 20.2 396.90 23.60 11.3
7.99248 0.0 18.10 0 0.7000 5.520 100.0 1.5331 24 666 20.2 396.90 24.56 12.3
20.08490 0.0 18.10 0 0.7000 4.368 91.2 1.4395 24 666 20.2 285.83 30.63 8.8
16.81180 0.0 18.10 0 0.7000 5.277 98.1 1.4261 24 666 20.2 396.90 30.81 7.2
24.39380 0.0 18.10 0 0.7000 4.652 100.0 1.4672 24 666 20.2 396.90 28.28 10.5
22.59710 0.0 18.10 0 0.7000 5.000 89.5 1.5184 24 666 20.2 396.90 31.99 7.4
14.33370 0.0 18.10 0 0.7000 4.880 100.0 1.5895 24 666 20.2 372.92 30.62 10.2
8.15174 0.0 18.10 0 0.7000 5.390 98.9 1.7281 24 666 20.2 396.90 20.85 11.5
6.96215 0.0 18.10 0 0.7000 5.713 97.0 1.9265 24 666 20.2 394.43 17.11 15.1
5.29305 0.0 18.10 0 0.7000 6.051 82.5 2.1678 24 666 20.2 378.38 18.76 23.2
11.57790 0.0 18.10 0 0.7000 5.036 97.0 1.7700 24 666 20.2 396.90 25.68 9.7
8.64476 0.0 18.10 0 0.6930 6.193 92.6 1.7912 24 666 20.2 396.90 15.17 13.8
13.35980 0.0 18.10 0 0.6930 5.887 94.7 1.7821 24 666 20.2 396.90 16.35 12.7
8.71675 0.0 18.10 0 0.6930 6.471 98.8 1.7257 24 666 20.2 391.98 17.12 13.1
5.87205 0.0 18.10 0 0.6930 6.405 96.0 1.6768 24 666 20.2 396.90 19.37 12.5
7.67202 0.0 18.10 0 0.6930 5.747 98.9 1.6334 24 666 20.2 393.10 19.92 8.5
38.35180 0.0 18.10 0 0.6930 5.453 100.0 1.4896 24 666 20.2 396.90 30.59 5.0
9.91655 0.0 18.10 0 0.6930 5.852 77.8 1.5004 24 666 20.2 338.16 29.97 6.3
25.04610 0.0 18.10 0 0.6930 5.987 100.0 1.5888 24 666 20.2 396.90 26.77 5.6
14.23620 0.0 18.10 0 0.6930 6.343 100.0 1.5741 24 666 20.2 396.90 20.32 7.2
9.59571 0.0 18.10 0 0.6930 6.404 100.0 1.6390 24 666 20.2 376.11 20.31 12.1
24.80170 0.0 18.10 0 0.6930 5.349 96.0 1.7028 24 666 20.2 396.90 19.77 8.3
41.52920 0.0 18.10 0 0.6930 5.531 85.4 1.6074 24 666 20.2 329.46 27.38 8.5
67.92080 0.0 18.10 0 0.6930 5.683 100.0 1.4254 24 666 20.2 384.97 22.98 5.0
20.71620 0.0 18.10 0 0.6590 4.138 100.0 1.1781 24 666 20.2 370.22 23.34 11.9
11.95110 0.0 18.10 0 0.6590 5.608 100.0 1.2852 24 666 20.2 332.09 12.13 27.9
7.40389 0.0 18.10 0 0.5970 5.617 97.9 1.4547 24 666 20.2 314.64 26.40 17.2
14.43830 0.0 18.10 0 0.5970 6.852 100.0 1.4655 24 666 20.2 179.36 19.78 27.5
51.13580 0.0 18.10 0 0.5970 5.757 100.0 1.4130 24 666 20.2 2.60 10.11 15.0
14.05070 0.0 18.10 0 0.5970 6.657 100.0 1.5275 24 666 20.2 35.05 21.22 17.2
18.81100 0.0 18.10 0 0.5970 4.628 100.0 1.5539 24 666 20.2 28.79 34.37 17.9
28.65580 0.0 18.10 0 0.5970 5.155 100.0 1.5894 24 666 20.2 210.97 20.08 16.3
45.74610 0.0 18.10 0 0.6930 4.519 100.0 1.6582 24 666 20.2 88.27 36.98 7.0
18.08460 0.0 18.10 0 0.6790 6.434 100.0 1.8347 24 666 20.2 27.25 29.05 7.2
10.83420 0.0 18.10 0 0.6790 6.782 90.8 1.8195 24 666 20.2 21.57 25.79 7.5
25.94060 0.0 18.10 0 0.6790 5.304 89.1 1.6475 24 666 20.2 127.36 26.64 10.4
73.53410 0.0 18.10 0 0.6790 5.957 100.0 1.8026 24 666 20.2 16.45 20.62 8.8
11.81230 0.0 18.10 0 0.7180 6.824 76.5 1.7940 24 666 20.2 48.45 22.74 8.4
11.08740 0.0 18.10 0 0.7180 6.411 100.0 1.8589 24 666 20.2 318.75 15.02 16.7
7.02259 0.0 18.10 0 0.7180 6.006 95.3 1.8746 24 666 20.2 319.98 15.70 14.2
12.04820 0.0 18.10 0 0.6140 5.648 87.6 1.9512 24 666 20.2 291.55 14.10 20.8
7.05042 0.0 18.10 0 0.6140 6.103 85.1 2.0218 24 666 20.2 2.52 23.29 13.4
8.79212 0.0 18.10 0 0.5840 5.565 70.6 2.0635 24 666 20.2 3.65 17.16 11.7
15.86030 0.0 18.10 0 0.6790 5.896 95.4 1.9096 24 666 20.2 7.68 24.39 8.3
12.24720 0.0 18.10 0 0.5840 5.837 59.7 1.9976 24 666 20.2 24.65 15.69 10.2
37.66190 0.0 18.10 0 0.6790 6.202 78.7 1.8629 24 666 20.2 18.82 14.52 10.9
7.36711 0.0 18.10 0 0.6790 6.193 78.1 1.9356 24 666 20.2 96.73 21.52 11.0
9.33889 0.0 18.10 0 0.6790 6.380 95.6 1.9682 24 666 20.2 60.72 24.08 9.5
8.49213 0.0 18.10 0 0.5840 6.348 86.1 2.0527 24 666 20.2 83.45 17.64 14.5
10.06230 0.0 18.10 0 0.5840 6.833 94.3 2.0882 24 666 20.2 81.33 19.69 14.1
6.44405 0.0 18.10 0 0.5840 6.425 74.8 2.2004 24 666 20.2 97.95 12.03 16.1
5.58107 0.0 18.10 0 0.7130 6.436 87.9 2.3158 24 666 20.2 100.19 16.22 14.3
13.91340 0.0 18.10 0 0.7130 6.208 95.0 2.2222 24 666 20.2 100.63 15.17 11.7
11.16040 0.0 18.10 0 0.7400 6.629 94.6 2.1247 24 666 20.2 109.85 23.27 13.4
14.42080 0.0 18.10 0 0.7400 6.461 93.3 2.0026 24 666 20.2 27.49 18.05 9.6
15.17720 0.0 18.10 0 0.7400 6.152 100.0 1.9142 24 666 20.2 9.32 26.45 8.7
13.67810 0.0 18.10 0 0.7400 5.935 87.9 1.8206 24 666 20.2 68.95 34.02 8.4
9.39063 0.0 18.10 0 0.7400 5.627 93.9 1.8172 24 666 20.2 396.90 22.88 12.8
22.05110 0.0 18.10 0 0.7400 5.818 92.4 1.8662 24 666 20.2 391.45 22.11 10.5
9.72418 0.0 18.10 0 0.7400 6.406 97.2 2.0651 24 666 20.2 385.96 19.52 17.1
5.66637 0.0 18.10 0 0.7400 6.219 100.0 2.0048 24 666 20.2 395.69 16.59 18.4
9.96654 0.0 18.10 0 0.7400 6.485 100.0 1.9784 24 666 20.2 386.73 18.85 15.4
12.80230 0.0 18.10 0 0.7400 5.854 96.6 1.8956 24 666 20.2 240.52 23.79 10.8
10.67180 0.0 18.10 0 0.7400 6.459 94.8 1.9879 24 666 20.2 43.06 23.98 11.8
6.28807 0.0 18.10 0 0.7400 6.341 96.4 2.0720 24 666 20.2 318.01 17.79 14.9
9.92485 0.0 18.10 0 0.7400 6.251 96.6 2.1980 24 666 20.2 388.52 16.44 12.6
9.32909 0.0 18.10 0 0.7130 6.185 98.7 2.2616 24 666 20.2 396.90 18.13 14.1
7.52601 0.0 18.10 0 0.7130 6.417 98.3 2.1850 24 666 20.2 304.21 19.31 13.0
6.71772 0.0 18.10 0 0.7130 6.749 92.6 2.3236 24 666 20.2 0.32 17.44 13.4
5.44114 0.0 18.10 0 0.7130 6.655 98.2 2.3552 24 666 20.2 355.29 17.73 15.2
5.09017 0.0 18.10 0 0.7130 6.297 91.8 2.3682 24 666 20.2 385.09 17.27 16.1
8.24809 0.0 18.10 0 0.7130 7.393 99.3 2.4527 24 666 20.2 375.87 16.74 17.8
9.51363 0.0 18.10 0 0.7130 6.728 94.1 2.4961 24 666 20.2 6.68 18.71 14.9
4.75237 0.0 18.10 0 0.7130 6.525 86.5 2.4358 24 666 20.2 50.92 18.13 14.1
4.66883 0.0 18.10 0 0.7130 5.976 87.9 2.5806 24 666 20.2 10.48 19.01 12.7
8.20058 0.0 18.10 0 0.7130 5.936 80.3 2.7792 24 666 20.2 3.50 16.94 13.5
7.75223 0.0 18.10 0 0.7130 6.301 83.7 2.7831 24 666 20.2 272.21 16.23 14.9
6.80117 0.0 18.10 0 0.7130 6.081 84.4 2.7175 24 666 20.2 396.90 14.70 20.0
4.81213 0.0 18.10 0 0.7130 6.701 90.0 2.5975 24 666 20.2 255.23 16.42 16.4
3.69311 0.0 18.10 0 0.7130 6.376 88.4 2.5671 24 666 20.2 391.43 14.65 17.7
6.65492 0.0 18.10 0 0.7130 6.317 83.0 2.7344 24 666 20.2 396.90 13.99 19.5
5.82115 0.0 18.10 0 0.7130 6.513 89.9 2.8016 24 666 20.2 393.82 10.29 20.2
7.83932 0.0 18.10 0 0.6550 6.209 65.4 2.9634 24 666 20.2 396.90 13.22 21.4
3.16360 0.0 18.10 0 0.6550 5.759 48.2 3.0665 24 666 20.2 334.40 14.13 19.9
3.77498 0.0 18.10 0 0.6550 5.952 84.7 2.8715 24 666 20.2 22.01 17.15 19.0
4.42228 0.0 18.10 0 0.5840 6.003 94.5 2.5403 24 666 20.2 331.29 21.32 19.1
15.57570 0.0 18.10 0 0.5800 5.926 71.0 2.9084 24 666 20.2 368.74 18.13 19.1
13.07510 0.0 18.10 0 0.5800 5.713 56.7 2.8237 24 666 20.2 396.90 14.76 20.1
4.34879 0.0 18.10 0 0.5800 6.167 84.0 3.0334 24 666 20.2 396.90 16.29 19.9
4.03841 0.0 18.10 0 0.5320 6.229 90.7 3.0993 24 666 20.2 395.33 12.87 19.6
3.56868 0.0 18.10 0 0.5800 6.437 75.0 2.8965 24 666 20.2 393.37 14.36 23.2
4.64689 0.0 18.10 0 0.6140 6.980 67.6 2.5329 24 666 20.2 374.68 11.66 29.8
8.05579 0.0 18.10 0 0.5840 5.427 95.4 2.4298 24 666 20.2 352.58 18.14 13.8
6.39312 0.0 18.10 0 0.5840 6.162 97.4 2.2060 24 666 20.2 302.76 24.10 13.3
4.87141 0.0 18.10 0 0.6140 6.484 93.6 2.3053 24 666 20.2 396.21 18.68 16.7
15.02340 0.0 18.10 0 0.6140 5.304 97.3 2.1007 24 666 20.2 349.48 24.91 12.0
10.23300 0.0 18.10 0 0.6140 6.185 96.7 2.1705 24 666 20.2 379.70 18.03 14.6
14.33370 0.0 18.10 0 0.6140 6.229 88.0 1.9512 24 666 20.2 383.32 13.11 21.4
5.82401 0.0 18.10 0 0.5320 6.242 64.7 3.4242 24 666 20.2 396.90 10.74 23.0
5.70818 0.0 18.10 0 0.5320 6.750 74.9 3.3317 24 666 20.2 393.07 7.74 23.7
5.73116 0.0 18.10 0 0.5320 7.061 77.0 3.4106 24 666 20.2 395.28 7.01 25.0
2.81838 0.0 18.10 0 0.5320 5.762 40.3 4.0983 24 666 20.2 392.92 10.42 21.8
2.37857 0.0 18.10 0 0.5830 5.871 41.9 3.7240 24 666 20.2 370.73 13.34 20.6
3.67367 0.0 18.10 0 0.5830 6.312 51.9 3.9917 24 666 20.2 388.62 10.58 21.2
5.69175 0.0 18.10 0 0.5830 6.114 79.8 3.5459 24 666 20.2 392.68 14.98 19.1
4.83567 0.0 18.10 0 0.5830 5.905 53.2 3.1523 24 666 20.2 388.22 11.45 20.6
0.15086 0.0 27.74 0 0.6090 5.454 92.7 1.8209 4 711 20.1 395.09 18.06 15.2
0.18337 0.0 27.74 0 0.6090 5.414 98.3 1.7554 4 711 20.1 344.05 23.97 7.0
0.20746 0.0 27.74 0 0.6090 5.093 98.0 1.8226 4 711 20.1 318.43 29.68 8.1
0.10574 0.0 27.74 0 0.6090 5.983 98.8 1.8681 4 711 20.1 390.11 18.07 13.6
0.11132 0.0 27.74 0 0.6090 5.983 83.5 2.1099 4 711 20.1 396.90 13.35 20.1
0.17331 0.0 9.69 0 0.5850 5.707 54.0 2.3817 6 391 19.2 396.90 12.01 21.8
0.27957 0.0 9.69 0 0.5850 5.926 42.6 2.3817 6 391 19.2 396.90 13.59 24.5
0.17899 0.0 9.69 0 0.5850 5.670 28.8 2.7986 6 391 19.2 393.29 17.60 23.1
0.28960 0.0 9.69 0 0.5850 5.390 72.9 2.7986 6 391 19.2 396.90 21.14 19.7
0.26838 0.0 9.69 0 0.5850 5.794 70.6 2.8927 6 391 19.2 396.90 14.10 18.3
0.23912 0.0 9.69 0 0.5850 6.019 65.3 2.4091 6 391 19.2 396.90 12.92 21.2
0.17783 0.0 9.69 0 0.5850 5.569 73.5 2.3999 6 391 19.2 395.77 15.10 17.5
0.22438 0.0 9.69 0 0.5850 6.027 79.7 2.4982 6 391 19.2 396.90 14.33 16.8
0.06263 0.0 11.93 0 0.5730 6.593 69.1 2.4786 1 273 21.0 391.99 9.67 22.4
0.04527 0.0 11.93 0 0.5730 6.120 76.7 2.2875 1 273 21.0 396.90 9.08 20.6
0.06076 0.0 11.93 0 0.5730 6.976 91.0 2.1675 1 273 21.0 396.90 5.64 23.9
0.10959 0.0 11.93 0 0.5730 6.794 89.3 2.3889 1 273 21.0 393.45 6.48 22.0
0.04741 0.0 11.93 0 0.5730 6.030 80.8 2.5050 1 273 21.0 396.90 7.88 11.9