Zhihao Zhang, Jiangfu Wang, and Huazhong Tang,
High-order accurate structure-preserving finite volume scheme for ten-moment Gaussian closure equations with source terms:
Positivity and well-balancedness,
accepted by Computational Methods in Applied Mathematics,
Sino-German workshop special issue, May 8, 2025.
Shangting Li and H.Z. Tang,
High-order accurate entropy stable schemes for
compressible Euler equations with van der Waals equation of state on
adaptive moving meshes,
accepted by Commun. Comput. Phys., Oct. 8, 2024.
arXiv: 2407.05568 , July 8, 2024.
Zhihao Zhang, H.Z. Tang, and Kailiang Wu*,
High-order accurate structure-preserving finite volume schemes
on adaptive moving meshes for shallow water equations:
Well-balancedness and positivity,
J. Comput. Phys., 527 (2025), 113801.
arXiv:2409.09600, 15 Sep 2024.
-
Jiangfu Wang, H.Z. Tang, and Kailiang Wu*,
High-order accurate positivity-preserving and well-balanced
discontinuous Galerkin schemes for ten-moment Gaussian closure
equations with source terms,
J. Comput. Phys., 519(15 December 2024), 113451.
arXiv: 2402.15446.
-
D. Ling and H.Z. Tang,
Genuinely multidimensional physical-constraints-preserving
finite volume schemes for the special relativistic hydrodynamics,
Commun. Comput. Phys.,
34(4), pp.955-992, 2023.
arXiv: 2303.02686.
-
Zhihao Zhang, Junming Duan and H.Z. Tang,
High-order accurate well-balanced energy stable adaptive moving mesh finite difference schemes
for the shallow water equations with non-flat bottom topography,
J. Comput. Phys., 492(2023), 112451.
arXiv: 2303.06924.
Y.H. Yuan and H.Z. Tang, On the explicit two-stage
fourth-order accurate time discretizations,
J. Comput. Math.,
41(2023), 305-324.
arXiv: 2007.02488.
-
-
-
-
Junming Duan and Huazhong Tang,
High-order accurate entropy stable adaptive moving mesh finite difference
schemes for special relativistic (magneto)hydrodynamics,
J. Comput. Phys., 456(1 May 2022), 111038.
accepted by JCP on January 31, 2022 (除夕).
arXiv:2107.12027.
-
-
-
汤华中, 双曲型守恒律方程的熵稳定格式的一些讨论
(Some discussions on entropy stable schemes for scalar hyperbolic conservation laws),
计算数学, 43(4), 413-425, 2021.
-
-
-
-
-
Y.H. Yuan and H.Z. Tang, Two-stage fourth-order accurate time discretizations for 1D and 2D special relativistic hydrodynamics,
J. Comput. Math., Vol.38, No.5, 2020, 746-774.
doi: jcm.1905-m2018-0020,
arXiv:1712.05546.
J.M. Duan and H.Z. Tang, High-order accurate entropy stable finite difference schemes for one- and two-dimensional special
relativistic hydrodynamics, Adv. Appl. Math. Mech.,
12(1), 2020, 1-29.
arXiv: 1905.06092.
J.M. Duan and H.Z. Tang, An efficient ADER discontinuous Galerkin scheme for directly solving
Hamilton-Jacobi equation, J. Comput. Math., 38(1), 2020, 58-83.
arXiv:1901.10228
-
段俊明 & 汤华中 (J.M. Duan and H.Z. Tang),
二维群集Vicsek模型的动理学方程的一个二阶精度格式,
湘潭大学自然科学学报(Nat. Sci. J. Xiangtan Univ.), 2019,(1):1-14.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
[Citation Index]
-
[Citation Index]
-
[Citation Index]
-
[Citation Index]
-
[Citation Index]
-
[Citation Index]
-
[Citation Index]
-
-
-
-
-
-
-
[Citation Index]
-
[Citation Index]
Shihong Shao and H.Z. Tang,
Higher-order accurate Runge-Kutta discontinuous Galerkin
methods for a nonlinear Dirac model,
Discrete Cont. Dyn. Sys. B
(DCDS-B), 6(3), 2006, 623-640.
SCI.
Research Report 2005-14, LMAM, PKU
[Citation Index]
S.H. Shao and H.Z. Tang,
Interaction for the solitary waves of
a nonlinear Dirac model, Physics Letters A,
345(1-3), 2005, 119-128.
[Citation Index]
A relatively unpublished paper is Research Report 2004-101, LMAM, PKU
Website of nonlinear Dirac model
Preprint 1310, Department of Mathematics, Utrecht University,
2004.
[Citation Index]
-
[Citation Index]
H.Z. Tang, On the sonic point glitch,
J. Comput. Phys., 202(2), 2005, 507-532.
SCI.
Research Report of LMAM No.165, 2003.
[Citation Index]
This is an extended version of the paper entitled
"An explanation for the sonic point glitch".
H.Z. Tang and G. Warnecke, A Runge-Kutta discontinuous Galerkin
method for the Euler equations, Comput. & Fluids, 34(3), 2005, 375-398.
SCI&EI.
Research Report of LMAM No.182, 2003.
Preprint 04-05, Fakult\"at f\"ur Mathematik,
Otto-von-Guericke-Universit?t Magdeburg,
Universit\"atsplatz 2, 39106 Magdeburg, Germany
[Citation Index]
[1D FORTRAN code]
H.Z. Tang, Kinetic flux vector splitting for Euler equations with general pressure laws,
J. Comput. Math., 22(4), 2004, 622-632.
SCI&EI.
[Citation Index]
H.Z. Tang and G. Warnecke, A note on (2k+1)-point conservative monotone schemes,
ESAIM-Math. Model. Numer. Anal. (M2AN),
38(2), 2004, 345-357.
SCI
Research Report of LMAM No.181, 2003.
[Citation Index]
All specialists of conservation laws know that "monotone implies TVD+entropy",
TVD implies convergence, entropy tells it converges to the correct
solution. This paper does not contradict this but tells that the story
is not finished by opposition to what everybody thinks. TVD does not
mean 'oscillation free'.
-
[Citation Index]
H.Z. Tang, Solution of the shallow-water equations using an adaptive moving
mesh method, Inter. J. Numer. Methods in Fluids, 44(7), 2004, 789-810.
SCI&EI.
Research Report of LMAM No.166, 2003.
[Citation Index]
-
[Citation Index]
-
[Citation Index]
H.Z. Tang and H.M. Wu, Gas-kinetic flux-vector splitting methods for
multifluid flow calculation, CFD J., 10(4), 2002, 542-547.
[Citation Index]
H.Z. Tang and H.M. Wu,
On the convergence of implicit schemes for conservation laws,
J. Comput. Math., 20(2), 2002, 121-128.
SCI&EI.
[Citation Index]
Tang, HZ, On the central relaxing scheme II: Systems of hyperbolic conservation laws,
J. Comput. Math., 19(6), 2001, 571-582. SCI&EI
[Citation Index]
H.Z. Tang and K. Xu, Pseudoparticle representation and positivity analysis of explicit and implicit Steger-Warming FVS schemes,
Z. Angew. Math. Phys.,
52(5), 2001, 847-858.
SCI
[Citation Index]
-
Tang, HZ; Wu, HM, On the cell entropy inequality for the fully discrete relaxing schemes,
J. Comput. Math., 19(5), 2001, 511-518.
SCI&EI
[Citation Index]
-
H.Z. Tang, Nonlinear stability of the relaxing schemes
for scalar conservation laws,
Appl. Numer. Math., 38(3), 2001, 347-359.
SCI&EI
[Citation Index]
-
H.Z. Tang, P. Cheng, and K. Xu, Numerical simulations of resonant
oscillations in a tube,
Numer. Heat Transfer Part A-Appl., 40(1), 2001, 37-54.
SCI
[Citation Index]
H.Z. Tang and H.M. Wu, The relaxing schemes for
Hamilton-Jacobi equations, J. Comput. Math., 19(3), 2001, 231-240.
SCI&EI
[Citation Index]
-
[Citation Index]
H.Z. Tang, Gas-kinetic scheme for the compressible Euler equations of real gases,
Comput. & Math. with Appl., 41(5-6), 2001, 723-734.
SCI.
[Citation Index]
汤华中, 一个刚性守恒律方程组的全隐式差分格式, 计算数学, 23(2), 2001, 129-138.
H.Z. Tang and H. M. Wu, Implicit difference scheme for a stiff system
of conservation laws in viscoelasticity, Mathematica Numerica Sinica, 23(2), 2001,
129-138.
(in Chinese)
[Citation Index]
汤华中和徐昆, 一类通矢量分裂格式的保正性. I. 显式格式,
计算数学,
23(4), 2001, 469-476.
H.Z. Tang and K. Xu, On positivity of a class of flux-vector splitting
methods I. Explicit difference schemes, Mathematica Numerica Sinica, 23(4), 2001,
469-476.
(in Chinese)
[Citation Index]
汤华中和邬华谟, 一致高精度KFVS方法用于多分量流计算, 数值计算与计算机应用, 22(1), 2001,
43-52.
H.Z. Tang and H.M. Wu, Uniform high accurate KFVS methods
for multicomponent flow calculations,
Journal on Numerical Methods and Computer Applications, 22(1), 2001, 43-52.
(in Chinese)
[Citation Index]
-
[Citation Index]
Tang, HZ; Wu, HM, On the explicit compact schemes II:
Extension of the STCE/CE method on nonstaggered grids,
J. Comput. Math., 18(5), 2000, 467-480.
SCI
[Citation Index]
-
H.Z. Tang and H.M. Wu, Kinetic flux vector splitting for
radiation hydrodynamical equations, Computer & Fluids,
29(8), 2000, 917-933.
SCI&EI
[Citation Index]
Tang, HZ, On the central relaxing schemes I: Single conservation laws,
J. Comput. Math., 18(3), 2000, 313-324.
SCI&EI.
[Citation Index]
-
H.Z. Tang and H.M. Wu, On a cell entropy inequality of the relaxing schemes
for scalar conservation laws, J. Comput. Math., 18(1), 2000, 69-74.
SCI&EI
[Citation Index]
H.Z. Tang and K. Xu, Positivity-preserving analysis of explicit and
implicit Lax-Friedrichs schemes for compressible Euler equations,
J. Scientific Computing, 15(1), 2000, 19-28.
EI
[Citation Index]
汤华中和邬华谟, 离散速度动力学方程组的数值方法研究 I. 半隐式差分格式,
计算数学, 22(2), 2000, 183-190.
H.Z. Tang and H. M. Wu, On The numerical methods for the
discrete-velocity kinetic equation I. Semi-implicit difference schemes,
Mathematica Numerica Sinica, 22(2), 2000, 183-190.
(in Chinese)
[Citation Index]
H.Z. Tang and H.M. Wu, High resolution KFVS finite volume methods
for multicomponent flow calculations, Chinese
J. Comput. Phys.(计算物理), 17(1-2), 2000, 179-186.
[Citation Index]
H.Z. Tang and N. Zhao, An estimate of the rate of entropy dissipation of high resolution MUSCL type
Godunov schemes, J. Comput. Math., 17(4), 1999, 369-378.
SCI&EI
[Citation Index]
汤华中和邬华谟,
高分辨KFVS有限体积方法及其CFD应用, 计算数学, 21(3), 1999, 375-384;
Chinese J. Num. Math. & Appl., 21(4), 93-103, 1999
H.Z. Tang and H.M. Wu, High resolution KFVS finite volume methods
and Its applications in CFDs, Mathematica Numerica Sinica
, 21(3), 1999, 375-384.
(in Chinese);
Chinese J. Num. Math. & Appl., 21(4), 1999, 93-103.
(in English)
[Citation Index]
-
H.Z. Tang, High-order gas-kinetic methods for ideal
magnetohydrodynamics, Commun. Nonlinear Science &
Numerical Simulation, 4(2), 1999, 141-146.
EI
[Citation Index]
H.Z. Tang, Numerical entropy conditions for implicit relaxing difference
approximations to scalar conservation laws,
Mini-Micro Systems, 19(1998), Suppl., 78-85.
[Citation Index]
H.Z. Tang and J.Z. Dai, Kinetic flux vector splitting
schemes for Euler equations, Journal of Nanjing University
of Aeronautics and Astronautics, 28(4), 1996, 476-480.
(in Chinese), EI
[Citation Index]
N. Zhao and H.Z. Tang, High resolution schemes and discrete entropy
conditions for 2-D linear conservation laws, J.
Comput. Math., 13(3), 1995, 281-289.
SCI
[Citation Index]
H.Z. Tang and J.Z. Dai, A class of group explicit finite difference schemes for Burgers' equations, J. Nanjing Univ. Sci.
and Tech., 19(1), 1995, 53-57.
(in Chinese),
EI.
[Citation Index]