Citations at scholar.google.cn
  1. E.M. Constantinescu, and A. Sandu, Multirate timestepping methods for hyperbolic conservation laws. J. Sci. Comput., 33(2007), 239-278. Ref[52] http://www.springerlink.com/content/4k323285u236pp72/   SCI

  2. M. O. Domingues, S. M. Gomes, O. Roussel, K. Schneider. An adaptive multiresolution scheme with local time-stepping for evolutionary PDEs. Journal of Computational Physics, Vol. 227, pp. 3758-3780, 2008.   SCI

  3. S Muller, Y Stirib, Fully Adaptive Multiscale Schemes for Conservation Laws Employing Locally Varying Time Stepping, Journal of Scientific Computing, Vol. 30, No. 3, March 2007, 493-531.   SCI



  4. A. R. Appadu, M. Z. Dauhoo and S. D. D. V. Rughooputh, Efficient Shock-Capturing Numerical Schemes Using the Approach of Minimised Integrated Square Difference Error for Hyperbolic Conservation Laws, in Computational Science and Its Applications ¨C ICCSA 2007, Lecture Notes in Computer Science, vol 4707, Springer Berlin / Heidelberg, 774-789, 2007. Ref.[11] http://www.springerlink.com/content/9540017145545650/

  5. Constantinescu, Emil M and Sandu, A, Update on Multirate Timestepping Methods for Hyperbolic Conservation Laws, Technical Report TR-07-12, Computer Science, Virginia Tech.

  6. Constantinescu, Emil M and Sandu, A, On extrapolated multirate methods,, Technical Report TR-08-12, Computer Science, Virginia Tech.

  7. M. O. Domingues, O. Roussel, K. Schneider, Global time step control in adaptive multiresolution methods for PDEs, submitted to International Journal of Numerical Methods in Engineering, 2007. http://www.ict.uni-karlsruhe.de/themen/multiresolution/

  8. Margarete O. Domingues, Olivier Roussel and Kai Schneider, On space-time adaptive schemes for the numerical solution of PDEs, ESAIM: Proc., 2007, Vol. 16, pp. 181-194. Ref[29] http://www.ict.uni-karlsruhe.de/themen/multiresolution/DRS07b.pdf

  9. M Schlegel, O Knoth, M Arnold, R Wolke, Multirate Runge¨CKutta schemes for advection equations, Journal of Computational and Applied Mathematics, 2008 doi:10.1016/j.cam.2008.08.009 Ref.[12]