Citations at scholar.google.cn
  1. A. Andersona, X.M. Zheng, V. Cristini, Adaptive unstructured volume remeshing–I: The method, J. Comput. Phys, 208(2005), 616-625. Ref.[43]   SCI

  2. Arvanitis C, Delis AI, Behavior of finite volume schemes for hyperbolic conservation laws on adaptive redistributed spatial grids SIAM JOURNAL ON SCIENTIFIC COMPUTING 28 (5): 1927-1956 2006   SCI

  3. Bessieres D, Paillol J, Bourdon A, Segur P, Marode E., A new one-dimensional moving mesh method applied to the simulation of streamer discharges, JOURNAL OF PHYSICS D-APPLIED PHYSICS, 40 (21): 6559-6570 NOV 7 2007.   SCI

  4. B. Cockburn, and B. Yenikaya, An adaptive method with rigorous error control for the Hamilton-Jacobi equations. Part II: The two-dimensional steady-state case, Journal of Computational Physics, 209(2), 2005, 391-405.   SCI

  5. Hieber SE, Koumoutsakos P A Lagrangian particle level set method JOURNAL OF COMPUTATIONAL PHYSICS 210 (1): 342-367 NOV 20 2005   SCI

  6. C.Q. Jin, K. Xu, An adaptive grid method for two-dimensional viscous flows, JCP, 218(2006), 68-81.   SCI

    Ref.[21]

  7. *** Kunisch K, Xie L, POD-based feedback control of the Burgers equation by solving the evolutionary HJB equation, COMPUTERS & MATHEMATICS WITH APPLICATIONS 49 (7-8): 1113-1126 MAY-JUN 2005   SCI

  8. Losasso, F., Fedkiw, R. and Osher, " Spatially Adaptive Techniques for Level Set Methods and Incompressible Flow", Computers and Fluids, 35, 995-1010 (2006).   SCI

  9. Mackenzie JA, Nicola A, A discontinuous Galerkin moving mesh method for Hamilton-Jacobi equations SIAM JOURNAL ON SCIENTIFIC COMPUTING 29 (6): 2258-2282 2007   SCI

  10. MB Nielsen, O Nilsson, A S?derstrom, K Museth, Out-of-core and compressed level set methods, ACM Transactions on Graphics, 26(2007), No.4. Art. No. 16: 1-26.   SCI

  11. Ogata Y, Im HN, Yabe T, Numerical method for Boltzmann equation with Soroban-grid CIP method, COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2 (4): 760-782 AUG 2007   SCI

  12. Qian JL, Approximations for viscosity solutions of Hamilton-Jacobi equations with locally varying time and space grids, SIAM JOURNAL ON NUMERICAL ANALYSIS 43 (6): 2371-2401 2006   SCI

  13. Soheili, Ali Reza; Stockie, John M., A moving mesh method with variable relaxation time, Applied Numerical Mathematics, Volume 58 , Issue 3 (March 2008), 249-263.   SCI http://www.citebase.org/cgi-bin/citations?id=oai:arXiv.org:math/0602376

    Ref.[20]

  14. Tan Z, Lim KM, Khoo BC, An adaptive mesh redistribution method for the incompressible mixture flows using phase-field model, JOURNAL OF COMPUTATIONAL PHYSICS 225 (1): 1137-1158 JUL 1 2007   SCI

  15. Tan Z, Lim KM, Khoo BC, An adaptive moving mesh method for two-dimensional incompressible viscous flows, Commun. Comput. Phys., 3 (3): 679-703, 2008   SCI

  16. J.F. Wu, V.K. Dhir, J.L. Qian, Numerical simulation of subcooled nucleate boiling by coupling level-set method with moving mesh method, Numerical Heat Transfer, Part B, 51(2007), 535-563.   SCI

    Ref.[14]

  17. Zhang ZR, Moving mesh method with conservative interpolation based on L-2-projection, COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 1 (5): 930-944 OCT 2006   SCI



  18. R. Munos et al., Contributions a l'apprentissage par renforcement et au controle optimal avec approximation, 2004, http://www.cmap.polytechnique.fr/~munos/papers/hdr.ps.gz.
    另一版本 Contributions à l'apprentissage par renforcement et au contr?le optimal avec approximation.
    Université Pierre et Marie Curie, Mathématiques appliquées. Décembre 2004.
    Jury: Guy Barles, Jean Pierre Nadal, John Tsitsiklis, Hélène Frankowska, Stéphane Mallat, Gilles Pagès, Marc Schoenauer.
    Ref.[TTZ03]
  19. J. Pustelnik, A METHOD FOR CONSTRUCTING $\epsilon$-VALUE FUNCTIONS FOR THE BOLZA PROBLEM of optimal control, Int. J. Appl. Math. Comput. Sci., 2005, Vol.15, No.2, 177-186.
  20. X. Zheng, A. Anderson, J.S. Lowengrub and V. Cristini, Adaptive unstructured volume remeshing: Application to level-set simulations of multiphase flow, 2004, http://www.math.uci.edu/~lowengrb/adaplevel.pdf
  21. 朱思美  宋松和, 非结构网格上解二维Hamilton-Jacobi方程的自适应算法 (An Adaptive Method for Two-dimensions Hamilton-Jacobi Equations on Unstructured Meshes), 国防科技大学学报(JOURNAL OF NATIONAL UNIVERSITY OF DEFENSE TECHNOLOGY), 2005 Vol.27 No.1 P.102-105. Ref.[5]
  22. 贾鹏彦; 统一坐标系下多介质流体力学计算方法研究, 中国工程物理研究院, 博士学位论文, 2005. Ref.[52]