Pingwen Zhang is a professor of Mathematical Science at the Peking University.
Download my Resume:
PhD in School of Mathematical Sciences, 1992
Peking University
BS in School of Mathematical Sciences, 1988
Peking University
The nonlinear space-fractional problems often allow multiple stationary solutions, which can be much more complicated than the corresponding integer-order problems. In this paper, we systematically compute the solution landscapes of nonlinear constant/variable-order space-fractional problems on one- and two-dimensional rectangular domains. A fast approximation algorithm is developed to deal with the variable-order spectral fractional Laplacian by approximating the variable-indexing Fourier modes, and then combined with saddle dynamics to construct the solution landscape of variable-order space-fractional phase field model. Numerical experiments are performed to substantiate the accuracy and efficiency of fast approximation algorithm and elucidate essential features of the stationary solutions of space-fractional phase field model. Furthermore, we demonstrate that the solution landscapes of spectral fractional Laplacian problems can be reconfigured by varying the diffusion coefficients in the corresponding integer-order problems.
Liquid crystal is a typical kind of soft matter that is intermediate between crystalline solids and isotropic fluids. The study of liquid crystals has made tremendous progress over the last four decades, which is of great importance on both fundamental scientific researches and widespread applications in industry. In this paper, we review the mathematical models and their connections of liquid crystals, and survey the developments of numerical methods for finding the rich configurations of liquid crystals.
Due to structural incommensurability, the emergence of a quasicrystal from a crystalline phase represents a challenge to computational physics. Here, the nucleation of quasicrystals is investigated by using an efficient computational method applied to a Landau free-energy functional. Specifically, transition pathways connecting different local minima of the Lifshitz–Petrich model are obtained by using the high-index saddle dynamics. Saddle points on these paths are identified as the critical nuclei of the 6-fold crystals and 12-fold quasicrystals. The results reveal that phase transitions between the crystalline and quasicrystalline phases could follow two possible pathways, corresponding to a one-stage phase transition and a two-stage phase transition involving a metastable lamellar quasicrystalline state, respectively.
In this paper, the RSEL (Random Subfeature Ensemble Learning) algorithm is proposed to improve the forecast results of weather forecasting. Based on the classical machine learning algorithms, RSEL algorithm integrates random subfeature selection and ensemble learning combination strategy to enhance the diversity of the features and avoid the influence of a small number of unstable outliers generated randomly. Furthermore, the feature engineering schemes are designed for the weather forecast data to make full use of spatial or temporal context. RSEL algorithm is tested by forecasting the wind speed and direction, and it improves the forecast accuracy of traditional methods and has good robustness.
Ms. Ying Li