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Abstract Fine-grained weather forecasting data, i.e., the grid data with high-resolution,
have attracted increasing attention in recent years, especially for some specific applications
such as the Winter Olympic Games. Although European Centre for Medium-Range
Weather Forecasts (ECMWF) provides grid prediction up to 240 hours, the coarse data
are unable to meet high requirements of these major events. In this paper, we propose
a method, called model residual machine learning (MRML), to generate grid prediction
with high-resolution based on high-precision stations forecasting. MRML applies model
output machine learning (MOML) for stations forecasting. Subsequently, MRML utilizes
these forecasts to improve the quality of the grid data by fitting a machine learning (ML)
model to the residuals. We demonstrate that MRML achieves high capability at diverse
meteorological elements, specifically, temperature, relative humidity, and wind speed. In
addition, MRML could be easily extended to other post-processing methods by invoking
different techniques. In our experiments, MRML outperforms the traditional downscaling
methods such as piecewise linear interpolation (PLI) on the testing data.
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1 Introduction

Weather forecasting closely relates to our daily life. As an interdisciplinary study, weather
forecasting is a considerably complex problem due to the difficulty of observing large-scale
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atmosphere systems. In the past years, the primary methods for measurement including satel-
lites, radars, and automatic meteorological stations (AMSs) have been proposed[1–4]. These
traditional methods provide measurements of diverse meteorological elements such as rainfall,
temperature, and infrared band. In addition, there is another form of data, called model data,
provided by the numerical weather prediction (NWP) system. Model data are numerical predic-
tions of multiple meteorological elements by solving the physical equations for the atmosphere
with techniques such as data assimilation. The model data are given on the grid points. Every
grid point represents a junction of longitude and latitude.

There are many kinds of model data provided by different organizations in the world. For
instance, EC data given by European Centre for Medium-Range Weather Forecasts (ECMWF)
are one of the commonly used global model data for reference by many countries. However,
there are two limitations of the EC data. One is that the data are irrational under particular
physico-geographic conditions and unexpected climatic changes. The other one is that the EC
data with 0.125◦ resolution could not satisfy some specific requirements. For the former prob-
lem, the existing results on weather forecasting demonstrate that the post-processing methods
are effective, but how to choose a suitable post-processing method is not straightforward. In
this paper, we introduce some post-processing methods and apply one of them in our algorithm.
For the latter problem, downscaling is one way of increasing the spatial resolution. Downscaling
is a major problem in weather forecasting, especially in some specific applications[5–7]. There
is a growing body of literature that applies downscaling methods such as piecewise linear in-
terpolation (PLI) to generate high-resolution grid data. In addition, inverse distance weighted
(IDW) interpolation is a commonly used method in downscaling[8]. We will introduce this
interpolation method later. Recently, deep learning has been applied for downscaling. For
example, the artificial neural network (ANN)[9–10] could learn fine representation from coarse
data for downstream tasks. Although many downscaling methods have been proposed, more
investigations are required to meet the high standard of specific applications, which is a main
motivation of the current work.

Nowadays, machine learning (ML) reveals powerful capabilities and achieves notable suc-
cesses in various fields[11–14]. Several attempts have been made to combine ML or deep learning
with weather forecasting. Shi et al.[15] proposed encoding-forecasting structure embedded con-
volutional long short-term memory (ConvLSTM) for precipitation nowcasting, which means
very short range prediction up to 8 hours. Rozas et al.[16] applied visual geometry group-16
layers (VGG-16) to derive total precipitation underlying NWP. This encoder-decoder network
mainly learns the relationship among physical variables, especially geopotential height and to-
tal precipitation. Weyn et al.[17] used convolutional neural networks (CNNs) with up-sampling
and down-sampling to predict 500 hPa geopotential height. They applied a common network to
improve the prediction. However, the network only focused on a single meteorological element
and was unable to improve the resolution of the input data. Casper et al.[18] designed the
spatial-temporal (ST) MetNet, which could receive radar and satellite images instead of reanal-
ysis data for precipitation prediction. MetNet could produce high-resolution grid prediction up
to 8 hours into the future at the resolution of 1 km2. Our goal is to provide a medium range
forecast up to 240 hours into the future.

In this paper, we aim to develop a new model, called model residual machine learning
(MRML), to generate high-resolution medium range forecasts underlying high-precision stations
prediction data. On account of lacking means to measure meteorological elements, observation
from automatic weather stations always serves as the most reliable data. Our main idea is post-
processing NWP to the maximum with the aid of the given accurate stations forecasting. Unlike
the existing deep learning methods, we combine the station data to alleviate the limitations
of NWP owing to particular physico-geographic conditions and unexpected climatic changes.
Moreover, we use distance decay interpolation to generate high-resolution predictions in order
to meet the requirements of the sponsor. Compared with the existing results, three main
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contributions are given in this paper. (i) MRML fits the residual between the model data and
the observed data to generate high-resolution and high-precision grid prediction. (ii) MRML
can be easily extended to other versions. For example, random forests and IDW in MRML could
be replaced by other ML methods and interpolation methods, respectively. We only provide
a way of combining the grid data and the observed data. (iii) Our experiments illustrate that
MRML outperforms the traditional downscaling method at multiple meteorological elements,
i.e., temperature, relative humidity, and wind speed.

The rest of the paper is organized as follows. In Section 2, mathematical notations of the
data are given. We also introduce some relevant studies about ensemble learning and IDW. In
Section 3, we describe the details of MRML for combining the model data and the observed data
to generate high-resolution and high-precision grid prediction. In Section 4, we implement and
test the algorithm on the EC data and the observed data at 226 automatic weather stations.
The conclusions are then presented in Section 5.

2 Preliminaries

We describe the data used in our experiments and provide basic notations in Subsection 2.1.
In Subsection 2.2, we briefly introduce ensemble learning that is an elementary topic in ML.
IDW and model output machine learning (MOML) are discussed in Subsections 2.3 and 2.4,
respectively. These methods are relevant to our scheme.
2.1 Data description

In this section, we describe our basic notations and briefly discuss two data sets that are
used in our experiments. One is the EC data provided by the ECMWF, denoted by G. G is
defined as a four-dimensional tensor with the dimensions of the number of time steps, latitude,
longitude, and the number of meteorological elements. We use T to denote the number of
time steps, m to denote the latitude, n to denote the longitude, and E to denote the number
of meteorological elements, and hence, G ∈ RT×m×n×E . G is a medium-range forecast up
to 240 h into the future. The time dimension of G comprises T = 53 slices sampled over a
240 h interval. We are mainly interested in the weather in Beijing. The geographical area
of Beijing corresponds to an 81 × 81 (m = n = 81) grid with a spatial resolution of 0.125◦.
There are E = 60 meteorological elements (e.g., convective available potential energy, 10 meter
U wind component, 2 meter temperature, and so forth) in our experiments (see Table A1 in
Appendix A). Therefore, G represents an element of R53×81×81×60. We pick the period from
15th January, 2015 to 30th April, 2017 of the EC data as the training set and the period from
12th January, 2018 to 31st December, 2018 of the EC data as the test set. Thus, 837 days and
354 days are used in the training set and the test set, respectively. We use a total of 1 191 days,
i.e., 1 191 tensors, in our experiments. Each individual tensor is an element of R53×81×81×60.
Although we use the EC data in our experiments, MRML could be applied on any grid data.
Throughout this paper, we use the EC data and the grid data interchangeably.

The other data set is the observed data of 3 meteorological elements including temperature,
relative humidity, and wind speed, covering 226 automatic weather stations in Beijing. We let
p = 226 denote the number of stations. Automatic weather stations are built to monitor the
diurnal variation of meteorology. Each station hourly measures certain kinds of meteorological
elements, called the observed data. An important part of MRML is forecasting at these stations,
as discussed in Subsection 3.1. We focus on forecasting 3 meteorological elements, i.e., temper-
ature, relative humidity, and wind speed. We use St,i ∈ R3 to denote the forecasts at the ith
station, where t is the time step, 1 6 t 6 T , and 1 6 i 6 p. R3 represents the feature space of
temperature, relative humidity, and wind speed. For combining the observed data and the EC
data, we pick the same time period of the training set and the test set. Our goal is to generate
high-resolution grid data. We use tensor Y ∈ R53×(81+m′)×(81+n′)×3 to denote them, where m′

and n′ are integers. That is to say, the spatial resolution of our results is higher than that of the
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EC data. Notice that the fourth dimension of tensor Y is 3. Since the high-resolution grid data
Y are based on stations forecasts, we only provide Y of 3 meteorological elements including
temperature, relative humidity, and wind speed. In Subsection 4.1, we discuss methods for
evaluating results by using the observed data. Since we need to use a part of observed data for
evaluation, we only use 172 stations for prediction in MRML, and take the others to evaluate
our results. Figure 1 illustrates the structure of the grid data and the observed data.

53

...

Fig. 1 Structure of the EC data and the observed data, where the left panel shows that the EC
data provide 53 time steps. Each grid point in any timestamp represents a 60-dimensional
vector, i.e., values of 60 meteorological elements. The right panel illustrates that the location
of AMSs (green points and orange points) usually deviates from the grid. 172 green points in
the MRML algorithm and the rest 54 orange points are used for evaluation (color online)

2.2 Ensemble learning
In this section, we briefly discuss ensemble learning[19–21], especially tree-based methods.

There are a great variety of tree-based methods, whereas we only talk about random forests[20–21]

and XGBoost[22]. Since the tedious technical details are beyond the scope of this paper, we
only give a summary in this section. Ensemble learning plays an important role in ML. It com-
bines a collection of simpler base models to construct more powerful prediction models. Most
ensemble learning falls into one of the two categories: bagging or boosting. The difference be-
tween bagging and boosting seems like the difference between parallel operation and sequential
operation. The random forests algorithm[20–21] is a substantial modification of bagging that
builds a collection of trees. The idea in random forests is to improve the variance reduction of
bagging by reducing the correlation between the trees. This is achieved in the tree-growing pro-
cess through random selection of the input variables. The random forests algorithm has been
demonstrated to give impressive improvements by combining together hundreds or even thou-
sands of trees into a single procedure. We use the random forests algorithm to fit the observed
data, as discussed in Subsection 3.2. Boosting works in a way of sequentially combining many
base models produce a powerful committee. The main idea of gradient boosting is to use the
gradient of the error to correct the mistake of the previous base model. XGBoost is a specific
implementation of the gradient boosting method which gives impressive improvements by using
the second-order derivative of the loss function, regularization, and parallel computing. MRML
applies MOML[23] for stations forecasting with XGBoost as the main algorithm, as discussed
in Subsections 2.4 and 3.1.
2.3 IDW interpolation

In this section, we then look at IDW interpolation, with the goal to downscale the MRML
outputs to higher spatial resolution. MRML is a downscaling method that merges high-precision
stations forecasts with grid data. As we described earlier in the introduction, plenty of down-
scaling methods have been proposed. We use IDW[8] to downscale the MRML outputs in our
experiments. IDW[8] is appropriate for capturing the distance-decay relationship among data
points. IDW estimates the value of an unknown point by using a weighted sum of the given
values. The weights depend on the Euclidean distances of the given points from the unknown
point. Suppose that the points v1, v2, · · · , vn are given, where vi represents an entity (e.g., a grid
point). For each entity vi, there is an associated value xi (e.g., the temperature), i = 1, 2, · · · , n.
We aim for estimating the value x of another point v based on the given vi. We use di to denote
the Euclidean distance to vi from v, and use wi to denote the weight which represents levels of
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concern about the value xi. To compute wi with di, IDW uses the following formula:

wi =
1

dq
i + r

, (1)

where r is a positive regularization parameter to avoid singularities at the locations of the data
points and to control the smoothness of the interpolation, and q is a power parameter. Then,
we can write x as follows:

x =
n∑

i=1

wi
n∑

j=1

wj

xi. (2)

2.4 MOML
ML has achieved ever-increasing performance in the meteorological service field[9,23], espe-

cially weather forecasting. An important class of problems is forecasting at automatic weather
stations, called stations forecasting. MOML[23] is a powerful post-processing method that
applies XGBoost to stations forecasting. MOML uses grid data as features and provides an ap-
proach for performing feature selection. MRML relies on high-precision stations forecasting for
improving the grid data quality. For this purpose, we use MOML to obtain St,1, St,2, · · · , St,p

in our method, as discussed in Subsection 3.1.

3 MRML

In Section 3, we formalize our problem and introduce MRML. MRML is a post-processing
method for generating high-resolution grid data on the basis of high-precision stations forecast-
ing. There are three kinds of interpolations in MRML for different purposes. Figure 2 presents
the architecture of MRML.

MOML

ML

ML

ST-interpolation

Residual

Fig. 2 Complete architecture of MRML, where green nodes represent station forecasts, MOML and
ML are applied for stations forecasting, shadow grey grids bring out out-of-order distribution of
AMSs, and ST-interpolation, i.e., IDW in our experiments, is used to generate high-resolution
prediction (color online)

3.1 Stations forecasting
MOML is used to predict temperature, relative humidity, and wind speed at p stations.

Forecast at each station is predicted separately. We describe the method at one station in
detail, and the others are the same. Suppose that we want to predict St,i, the forecast on the
ith station. MOML uses the grid data G as features and provides an approach for performing
feature selection. Specifically, MOML first identifies the grid point in G that is the closest to
the ith station, represented by Gi

t,j,k. Then, MOML identifies eight grid points that are the
closest to Gi

t,j,k, i.e., Gi
t,j±δ,k±δ, where δ = 0, 1. These nine grid points surrounding the ith

station are included in spatial features. In addition, the grid data Gi
t−1,j±δ,k±δ, G

i
t−2,j±δ,k±δ,
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and Gi
t−3,j±δ,k±δ (δ = 0, 1), prior to the time step t, are included in temporal features. MOML

uses the observed data at the ith station as labels, and applies XGBoost to learn. We use xi

to denote the ST features, yi to denote labels, and θ1 to denote parameters. We can formalize
the problem by

min
θ1

Loss(f(xi; θ1),y1), (3)

where f represents XGBoost. The specific formulation of the loss function could be seen in
Ref. [22].
3.2 Station data fitting by using geographical features

MRML improves the low-resolution grid data quality by using the residual between two kinds
of stations forecasting. One is produced by MOML, as discussed in Subsection 3.1. MOML
provides the forecasts at stations by using local ST features. The random forests algorithm
uses global geographical features. This process is similar to interpolation, while we add in
geographical features. We assume that there is a relationship between meteorological elements
and geographical features, i.e., latitude and longitude. We use F1, i.e., random forests, to
denote the function of latitude and longitude. We use θ2 to denote the parameters, h to denote
the latitudes of all grid points, and l to denote the longitudes. We can formalize the problem
by

min
θ2

Loss(F1(l, h; θ2), G). (4)

The specific formulation of the loss function could be seen in Ref. [21].
3.3 Residual extrapolation

Residual learning[24] is a superior technique in deep learning. This technique could make
networks deeper and alleviate the problem of vanishing gradient. Unlike these purposes, we
apply residual here to improve the low-resolution grid data quality. It is difficult to produce
high-precision grid forecasting directly. Our main idea is fitting the residual between the original
grid data and “true” grid data. In a real life situation in which the “true” grid data are unknown,
we produce high-precision grid forecasting with the help of high-precision stations forecasting.
As described in Subsections 3.1 and 3.2, the residual between two kinds of stations forecasting
can be computed by using

∆i = F1(li, hi; θ2)− f(xi; θ1), 1 6 i 6 p, (5)

where ∆i is the residual at the ith station, and li and hi are the longitude and latitude of the
ith station, respectively. Then, we use random forests to model the relationship between the
residual and geographic features. Let F2 represent the function of longitude and latitude, and
let θ3 represent the parameters. We formalize this problem by

min
θ3

Loss(F2(li, hi; θ3),∆i), 1 6 i 6 p. (6)

Notice that Eq. (6) is similar to Eq. (4), but with different purposes. Equation (4) models
the relationship between the geographical features and meteorological elements to estimate the
values on stations. These values are used to compute the residual located in the stations.
Equation (6) aims to generate the residual located in the grid points so that we could estimate
the “true” grid data by

Ŷ = F2(l, h; θ3) + G, (7)

where Ŷ represents estimation of the “true” grid data, G is the grid data with the target mete-
orological elements, and l and h are the longitude and latitude of the grid data G, respectively.
The resolution of Ŷ is the same as that of G at present. In Subsection 3.4, we will proceed to
refine Ŷ to higher resolution.
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3.4 Fine-grained grid forecasting
We use Eq. (7) to produce the high-precision grid forecast Ŷ , which is an element of

RT×m×n×3. Then, given Ŷ and St,1, St,2, · · · , St,p, we directly apply IDW to produce the high-
resolution (T ×(m+m′)×(n+n′)×3) grid forecasting Y . Let V = {Ŷ }∪{St,i, i = 1, 2, · · · , p},
and use F3 to denote the IDW algorithm. Y could be computed by using

Y = F3(V ). (8)

Figure 2 illustrates the whole process of MRML. There are two pseudocodes, i.e., Algorithms
1 and 2 in the following. Algorithm 1 is the general version of MRML, and Algorithm 2 is the
specific version of MRML used in our experiments.

Algorithm 1 MRML —general version
Require

provided station predictions St,i, where t = 1, 2, · · · , T and i = 1, 2, · · · , p,
model data Gt,j,k, where j = 1, 2, · · · ,m and k = 1, 2, · · · , n,
interpolations F1,F2, and F3.

Ensure
for t = 1, 2, · · · , T do

S′t,i = F1(Gt,j,k)i, ∆i = S′t,i − St,i,
Ycoarse = F2(∆i) + Gt,j,k, Yrefined = F3(Ycoarse ∪ St,i),

end for
return fine-grained model data Yrefined.

Algorithm 2 MRML —applied in our experiment
Require

station data y,
model data Gt,j,k, where j = 1, 2, · · · ,m and k = 1, 2, · · · , n,
MOML f , random forest F1,F2, and IDW F3.

Ensure
for t = 1, 2, · · · , T

for i = 1, 2, · · · , p do
train f(G,y; θ), St,i = f(G)

end for
train F1(lj,k, hj,k, Gt,j,k; θ),
S′t,i = F1(li, hi; θ), ∆i = S′t,i − St,i,
train F2(li, hi,∆i; θ),
Ycoarse = F2(∆i) + Gt,j,k, Yrefined = F3(Ycoarse ∪ St,i),

end for
return fine-grained model data Yrefined.

4 Numerical experiments

Before we experiment on our data, we have to define the criteria to judge the quality of our
numerical results. In Subsection 4.1, we describe the methods for computing the accuracy and
the root mean square error (RMSE) among temperature, relative humidity, and wind speed,
which are commonly used in the field of meteorology. Then, we display our numerical results
in Subsection 4.2.
4.1 Evaluation criteria

We introduce the quantitative evaluation criteria for the performance of MRML on the
grid data in this section. It is difficult to measure the quality of the grid data. The main
difficulty is due to the lack of the ground truth data. One of the most commonly used methods
is utilizing the observed data as the ground truth data to evaluate the specific grid points.
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As described in Subsection 2.1, we use the observed data at 54 stations as the ground truth
data. Then, we find the grid points which are the closest to the 54 stations and evaluate the
performance of these points. We use two evaluation metrics, i.e., the RMSE and accuracy,
to measure the performance of our model. The approaches for quantifying the accuracy of
diverse meteorological elements are different. We begin to introduce the formulas of accuracy
for diverse meteorological elements in the following. These formulas are from the judgments of
expert meteorologists in the cooperative institution.

The 3 meteorological elements, i.e., temperature, relative humidity, and wind speed, are
quantitative variables which take on numerical values.

Case 1 Temperature
We split the prediction space into two regions, i.e., {X||X−X0| 6 2} and {X||X−X0| > 2},

where X0 represents the observed data of temperature, and X represents the prediction of
temperature. We think of the former case as a good prediction and the latter case as a bad
prediction. We can treat the temperature as a binary variable by splitting the prediction space
into these two regions. Let At denote the accuracy of the temperature. To compute At, we use
the following formula:

At =
A1 + A2

A1 + A2 + A3 + A4
× 100%, (9)

where A1, A2, A3, and A4 denote the number of true positive, true negative, false positive, and
false negative values, respectively.

Case 2 Relative humidity
We split the prediction space into two regions, i.e., {X| |X−X0|

X0
6 10%} and {X| |X−X0|

X0
>

10%}, where X0 represents the observed data of relative humidity, and X represents the predic-
tion of relative humidity. Likewise, we can obtain the four measures and compute the accuracy
by Eq. (9).

Case 3 Wind speed
We assign the observation of wind speed[24] to different classifications by criteria (see Table 1).

Table 1 Wind speed levels

Wind speed/(m · s−1) Level Wind speed/(m · s−1) Level

0.0–0.2 1 13.9–17.1 8

0.3–1.5 2 17.2–20.7 9

1.6–3.3 3 20.8–24.4 10

3.4–5.4 4 24.5–28.4 11

5.5–7.9 5 28.5–32.6 12

8.0–10.7 6 32.7–36.9 13

10.8–13.8 7 > 37.0 14

We use Cw to denote the score of a prediction and keep the score by

Cw =





1, |Lp − Lt| = 0,

0.6, |Lp − Lt| = 1,

0.4, |Lp − Lt| = 2,

0, others,

(10)

where Lp and Lt are the prediction and ture values of the wind speed level, respectively. Let
Aw denote the accuracy of wind speed, which is the average of score and

Aw =
∑

Cw

Nf
× 100%, (11)
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where
∑

Cw represents the accumulation of score, and Nf is the total number of the samples.
4.2 Numerical results

Figures 3(a)–3(c) and 3(d)–3(f) show the accuracy and RMSE as a function of time steps (53
time steps), respectively. Blue solid curves represent the performance of MRML, while orange
solid curves represent the performance of the original EC data. We evaluate the coarse-grained
EC data to show that the post-processing methods outperform the original data. Green and
red solid curves represent the performance of PLI[13] and IDW, respectively. PLI has been
accepted in many meteorological centers for post-processing. Hence, we use PLI as a baseline.
In addition, we display the performance of IDW to compare with MRML. We separate 54
stations from 226 stations for evaluation. We improve the spatial resolution of approximately
1 km (514× 563 grid points).

For all cases, the accuracy decreases, while the RMSE increases as the time steps increase.
For convenience, we only analyze the accuracy because the illustration of the RMSE comes
to the same conclusion. In Fig. 3(a), the accuracy of temperature is higher than that of the
baseline PLI at all time steps. PLI and IDW slightly improve the quality of the original EC
data. In Figs. 3(b) and 3(e), the red solid curve nearly overlaps the orange and green solid
curves, while the blue solid curve outperforms them. In Figs. 3(c) and 3(f), PLI still slightly
improves the quality of the original EC data, and IDW slightly outperforms PLI. The accuracy
of wind speed is over 80% at most time steps. Figure 3 illustrates that MRML outperforms
the baseline in all three meteorological elements. It also demonstrates that stations forecasting
could improve the quality of the grid data by comparing MRML with IDW.
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Fig. 3 Comparison of MRML prediction, PLI, IDW, and EC based on 54 stations. This figure
displays the accuracy and RMSE versus time steps. Here, we get rid of the initial time step
because it is meaningless in reality (color online)

The average RMSE of the first three days is given in Table 2, and the accuracy is given in
Table 3. Tables 2 and 3 display that MRML substantially improves the quality of forecasts,
while PLI and IDW provide marginal improvements. For example, the original EC data have
an accuracy of wind speed of 75.88%. MRML has an accuracy of wind speed of 82.36%.
PLI has an accuracy of wind speed of 76.49%, and IDW has an accuracy of wind speed of
76.74%. These four methods have the RMSE of temperature as 2.787 3, 2.437 9, 2.702 2, and
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2.697 0, respectively. These corroborate our previous conclusion. We visualize one prediction
of temperature, which is shown in Fig. 4. Figures 4(a) and 4(b) represent the high-resolution
results generated by MRML and the coarse-grained EC data, respectively.

Table 2 Average of RMSE in the first 3 days

Method Relative humidity Temperature Wind speed

EC 16.138 4 2.787 3 1.428 0
PLI 15.936 6 2.702 2 1.384 8
IDW 15.841 8 2.697 0 1.360 6

MRML 12.211 8 2.437 9 1.190 0

Table 3 Average of accuracy in the first 3 days

Method Relative humidity Temperature Wind speed

EC 57.71% 55.23% 75.88%
PLI 57.90% 56.16% 76.49%
IDW 58.18% 55.86% 76.74%

MRML 64.05% 61.75% 82.36%
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Fig. 4 Contour lines of fine-grained prediction (a) and EC data (b) in temperature, where MRML
retains the overall arrangement of temperature provided by the EC data, and (a) depicts fine
contour lines in boundary in different color intervals while (b) is short of the information in
boundary (color online)

5 Conclusions

Since the existing grid data are unable to meet the high requirements of some specific applica-
tions such as the Winter Olympic Games, we focus on increasing the resolution of the grid data.
Meanwhile, we intend to maintain the high quality of the grid data at some specific locations.
In this paper, we propose a new method, called MRML, of high-resolution weather forecasting.
Unlike most downscaling methods, coarse spatial resolution grid data merge with high-precision
stations forecasting by applying ML with residual correction. Subsequently, MRML uses IDW
to downscale the previous outputs. In summary, MRML generates high-resolution and high-
precision grid predictions based on stations forecasting. The MRML algorithm could be easily
modified to apply to other ML methods. However, the numerical results for these other types of
MRML remain to be investigated. In future work, we will not only explore effective ML models,
but also add reasonable information, e.g., time, to the geographical features for matching the
characteristic of the weather.

The following results can be obtained. Numerical experiments demonstrate that the ob-
served data could improve the quality of the grid data by applying the proposed algorithm.
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MRML performs better ability than traditional downscaling methods such as PLI by merging
with the observed data. In addition, MRML is a general method for diverse meteorological ele-
ments, which could be used in the same way. The numerical results show that MRML achieves
good performance on temperature, relative humidity, and wind speed.
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Appendix A

Table A1 Illustration of meteorological elements in our data

Predictor name Unit Predictor name Unit

100 meter U wind m/s Total column water vapour kg/m2

100 meter V wind m/s Total precipitation m
10 meter wind gust in 3 hours m/s Visibility m
10 meter wind gust in 6 hours m/s Divergence at 850Pa 1/s
10 meter U wind component m/s Divergence at 900Pa 1/s
10 meter V wind component m/s Divergence at 1 000 Pa 1/s

2 meter dewpoint temperature K Geopotential height at 850 Pa K
2 meter temperature K Geopotential height at 900 Pa K

Convective available potential energy J/kg Geopotential height at 1000Pa K
Convective available potential energy shear m2/s2 Potential vorticity at 850Pa K · m2/(kg · s)

Convective precipitation m Potential vorticity at 900Pa K · m2/(kg · s)
0 ◦C isothermal level (atm) m Potential vorticity at 1 000Pa K · m2/(kg · s)

Forecast albedo – Specific humidity at 850Pa kg
Accumulated freezing rain m Specific humidity at 900Pa kg

Low cloud cover – Specific humidity at 1 000Pa kg
Large-scale precipitation m Relative humidity at 850 Pa –

Minimum temperature in 3 hours K Relative humidity at 900 Pa –
Minimum temperature in 6 hours K Relative humidity at 1 000Pa –

Mean sea level pressure Pa Temperature at 850Pa K
Maximum temperature in 3 hours K Temperature at 900Pa K
Maximum temperature in 6 hours K Temperature at 1 000Pa K

Precipitation type – East-West U wind at 850Pa m/s
Snow density kg/m3 East-West U wind at 900Pa m/s
Snow depth m East-West U wind at 1 000Pa m/s

Snowfall m North-South V wind at 850Pa m/s
Skin temperature K North-South V wind at 900Pa m/s
Surface pressure Pa North-South V wind at 1 000Pa m/s

Sea surface temperature K Vertical velocity at 850Pa Pa/s
Total cloud cover – Vertical velocity at 900Pa Pa/s

Total column water kg/m2 Vertical velocity at 1 000Pa Pa/s


