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Abstract
A standard finite element method and a finite element trunca-

tion method are applied to solve the boundary value problems of
nonlinear elasticity with certain nonconvex stored energy func-
tions such as those of St. Venant-Kirchhoff materials. Finite
element solutions are proved to exist and to be in the form of
minimizers in appropriate sets of admissible finite element func-
tions for both methods. Convergence of the finite element solu-
tions to a solution in the form of a minimizer or microstructure
for the boundary value problem is established. it is also shown
that in the presence of Lavrentiev phenomenon in the problem
the finite element truncation method can overcome the difficulty
and converges to the absolute minimum while the standard fi-
nite element method converges to a poseudominimum which is a
minimum in a slightly small set of admissible functions.
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Key words : numerical method, minimizer, microstructure, weak

convergence, strong convergence, nonlinear elasticity

1 Introduction

In this paper, we consider numerical methods for the boundary value
problems of nonlinear elasticity, or in mathematical terms the problem
of minimizing the functional

I(u) =
∫

Ω
W (x, F ) dx−

∫

Ω
f · u dx−

∫

∂Ω1

g · u ds (1.1)
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in the set of admissible functions

A = {u ∈ W 1,p(Ω; R3) : adj F ∈ Lq(Ω; M3), det F ∈ Lr(Ω),

det F > 0, a.e. in Ω, and u = u0 on ∂Ω0}, (1.2)

where Ω ⊂ R3 is a connected open set with Lipschitz continuous bound-
ary ∂Ω, ∂Ω0 ⊂ ∂Ω, ∂Ω1 ⊂ ∂Ω with ∂Ω0 ∩ ∂Ω1 = ∅ and area(∂Ω0) 6= 0,
F = I + Du with Du being the displacement gradient and I being the
3× 3 identity matrix, adj F is the transpose of the matrix of the cofac-
tors of F and det F is the determinant of F , f is the body force and g
is the traction.

There is no general existence theorem for the problem. However, if
the stored energy function W (x, F ) satisfies polyconvex conditions and
certain growth and coerceiveness conditions, the minimum of I(·) in A
can be proved to be obtained (see [1] [2]) for any f and g satisfying the
hypothesis

(c) Φ(u) =
∫
Ω f · u dx +

∫
∂Ω1

g · u ds is continuous in W 1,p(Ω; R3).

The numerical methods for the corresponding problems have also been
studied [3] [4] [5] [6].

In the case when W (x, F ) is not polyconvex, such as the case for St.
Venant-Kirchhoff materials [7] where

W (x, F ) ≡ W ∗(E) =
λ

2
(tr E)2 + µtr E2 (1.3)

with E = 1
2
(F T F − I) being the strain tensor and λ > 0, µ > 0 being

the Lamé parameters, the problem is more complicated. In the present
paper, the following hypotheses recently introduced by Li [8] for stored
energy functions W (x, F ) are considered.

(H1) There is a continuous function G : Ω̄ × M3 × M3 × M3 × R →
R ∪ {+∞} such that G(x, ·, ·, ·) is strictly convex and

W (x, F ) = G(x,E, F, adj F, det F ), for all x ∈ Ω̄ and F ∈ M3
+,

where M3 = {all 3 × 3 matrices}, M3
+ = {F ∈ M3 : det F > 0},

E = 1
2
(F T F − I).

(H2) There are constants C0 ∈ R, C1 > 0, s > 1, p ≥ 2 s, q ≥ p
p−1

,
r > 1 such that

G(x,E, F, H, δ) ≥ C0 + C1(|E|s + |F |p + |H|q + |δ|r),
for all (x,E, F, H, δ) ∈ Ω̄×M3 ×M3 ×M3 ×R+.
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(H3) G(x,E, F,H, δ) = +∞ if δ ≤ 0 and is finite elesewhere,

G(x,En, Fn, Hn, δn) −→ +∞,

if |En|+ |Fn|+ |Hn|+ |δn| → +∞ or δn → 0+.

Li proved the following result.

Theorem 1.1 [8]. Let W (x, F ) satisfy the hypotheses (H1)-(H3). Let

f, g satisfy the hypothesis (c). Let {uj} be a minimizing sequence of I(·)
in A. Suppose that infv∈A I(v) < +∞.

Then, (i): There exist a subsequence {uν} of {uj}, function u ∈ A

and function Ê ∈ Ls(Ω; R3) such that

uν ⇀ u in W 1,p(Ω; R3), (1.4)

adj Fν ⇀ adj F in Lq(Ω; M3), (1.5)

det Fν ⇀ det F in Lr(Ω), (1.6)

Eν ⇀ Ê in Ls(Ω; M3), (1.7)

where Fν = I + Duν, Eν = 1
2
(FνFν − I), and

I(Ê, u) ≤ limν→∞I(uν), (1.8)

where

I(Ê, u) =
∫

Ω
G(x, Ê, F, adj F, det F ) dx−

∫

Ω
f ·u dx−

∫

∂Ω1

g ·u ds. (1.9)

(ii): Either the weak convergence in (1.4) - (1.7) are in fact all strong

convergence, in this case u is a minimizer of I(·) in A and Ê = 1
2
((I +

Du)T (I + Du)− I), or {uν} gives microtructure (see lemma 2.4 for the

definition).

(iii): If the equality holds in (1.8) then

Ê =
1

2
((I + Du)T (I + Du)− I)

and u is a minimizer of I(·) in A. Otherwise, {uν} gives microtructure.

Remark 1.1. Theorem 1.1 is an extension of Ball’s result. In fact, if
G(x, ·, ·, ·, ·) does not explicitly depend on E, then the theorem simply
reduces to the existence theorem for polyconvex materials [8] [9].
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Remark 1.2. The result covers a large amount of nonlinear elastic
materials including many homogeneous, isotropic materials whose stored
energy functions are of the form

W (x, F ) =
λ

2
(tr E)2 + µtr E2 + o(|E|2),

where o(|E|2) is such that (H1)–(H3) are satisfied by W (x, F ) [8]. The
theory can also be easily adjusted, roughly speaking by removing the
restriction det F > 0 on the admissible functions and the hypothesis
(H3) for W (x, F ), to cover St.Venant-Kirchhoff materials.

Our purpose is to show taht the minimizers and microstructures can
be approximated by the minimizers of some finite problems obtained by
applying certain finite element methods. First, a standard finite element
method is applied to solve the problem. We will prove the existence of
minimizers for the induced finite problem and discuss the convergence
of the method in §2. Then, in §3, a finite element truncation method
[11] is applied and the corresponding existence and convergence results
are obtained. The results show that while the finite element truncation
method can always produce a solution to the problem of minimizing
I(·) in A, the standard finite element method may fail to do so, in fact
it produces a solution to the problem of minimizing I(·) in Â, where
Â is in general a genuine subset of A (see §2). As a consequence, the
standard finite element method typically fail both to find the absolute
minimum and to produce a solution to the original problem in which
Lavrentiev phenonmenon [12] [13] occurs. To actually find numerically
the minimizers of the corresponding finite problem is by no means trivial
and is out of the scope of this paper.

2 Existence and convergence of

a standard finite element method

As in a standard application of the finite element method, we introduce
regular triangulations Th on Ω [10], where h is the mesh size. For sim-
plicity, we assume that Ω̄ = ∪K∈Th

K, ∂Ω0 consists of the faces of Th and
u(x) = 0 on ∂Ω0. Define

Âh = { u ∈ C(Ω̄) : u is affine on each K ∈ Th;

u(x) = 0,∀x ∈ ∂Ω0, det(I + Du) > 0, a.e. in Ω}. (2.1)

We consider the finite problems of minimizing the functional I(·)
defined by (1.1) with W (x, F ) satisfying the hypotheses (H1) - (H3) and
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f, g satisfying the hypothesis (c) (see §1) in the sets of admissible finite
element functions Âh.

Theorem 2.1 . For each fixed h > 0, there exists a function uh ∈ Âh

such that

I(uh) = inf
v∈Âh

I(v). (2.2)

Proof. It is easily seen that Âh 6= ∅ and infv∈Âh
I(v) < +∞. let

{uj} ⊂ Âh be a minimizing sequence of I(·) in Âh. By (H2), (c) and
the equivalence of the convergence in weak topology of W 1,p(Ω; R3) and
that in strong topology of W 1,∞(Ω; R3) in a finite dimensional function
spaces [10], we conclude that there exist a subsequence of {uj}, denoted
again by {uj}, and uh ∈ {v ∈ C(Ω̄) : v|K is affine , v|∂Ω0 = 0} such that

uj → uh in W 1,∞(Ω; R3), (2.3)

Fj → Fh in L∞(Ω; M3), (2.4)

adj Fj → adj Fh in L∞(Ω; M3), (2.5)

det Fj → det Fh in L∞(Ω), (2.6)

Ej → Eh in L∞(Ω; M3), (2.7)

where Fj = I + Duj, Fh = I + Duh, Ej = 1
2
(F T

j Fj − I) and Eh =
1
2
(F T

h Fh − I). By (H1) and (c), I(E, u) defined by (1.9) is sequentially
weakly lower semicontinuous [14]. Since I(Ej, uj) = I(uj) for all j, we
have

I(Eh, uh) ≤ limj→∞I(uj) = inf
v∈Âh

I(v) < +∞.

This and (H3) imply that det Fh(x) > 0 for almost all x ∈ Ω and hence
uh ∈ Âh ⊂ A. Thus I(uh) = I(Eh, uh) and (2.2) follows. 2

To discuss the convergence of the finite element solutions, we intro-
duce a different set of admissible functions Â. Let

A(j) = {u ∈ W 1,∞(Ω; R3) ∩ A : |Du(x)| ≤ j, a.e. in Ω

and det(I + Du(x)) ≥ 1
j
, a.e. in Ω}. (2.8)

Define d : A× A → R by

d(u, v) = |u− v|1,p + |I(u)− I(v)|. (2.9)

Define

Â = {u ∈ A : d(u, vj) → 0, for a sequence vj ∈ A(j), j = 1, 2, · · ·}.
(2.10)

It is known that Â is in general a genuine subset of A.
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Theorem 2.2 . Let hj > 0, j = 1, 2, · · ·, and limj→∞ hj = 0. For each

j, let uj be a minimizer of I(·) in Ahj
. Then, {uj} is a minimizing

sequence of I(·) in Â.

Proof. By the definition of Â, it is sufficient to show that for any
M > 1 and u ∈ A(M),

lim
j→∞

|I(u)− I(uhj
)| = 0,

where uhj
are the interpolations of u in Ahj

, j = 1, 2, · · ·. But this follows
directly from the fact [10] that

‖u− uhj
‖1,∞ → 0

and hence also

‖ det(I + Du)− det(I + Duhj
)‖∞ → 0,

and the fact that the stored energy function W (x, F ) is continuous on
Ω̄×M3

+ (see (H1)). 2

Lemma 2.1 . Let {uj} be a minimizing sequence of I(·) in Â. Then,

there exist a subsequence of {uj}, denoted again by {uj}, function u ∈ A

and function Ê ∈ Ls(Ω; M3) such that

uj ⇀ u in W 1,p(Ω; R3), (2.11)

Fj ⇀ F in Lp(Ω; M3), (2.12)

adj Fj ⇀ adj F in Lq(Ω; M3), (2.13)

det Fj ⇀ det F in Lr(Ω), (2.14)

Ej ⇀ Ê in Ls(Ω; M3), (2.15)

and

I(Ê, u) ≤ lim
j→∞

I(uj) = inf
v∈Ê

I(v), (2.16)

where I(Ê, u) is defined by (1.9).

Proof. It follows from (H2), (c) and the sequentially weak conti-
nuity of Jacobians [1] [2] that (2.11) - (2.15) hold for a function u ∈
W 1,p(Ω; R3) with u = 0 on ∂Ω0 and function Ê ∈ Ls(Ω; M3). (2.16) fol-
lows from the sequentially weakly lower semicontinuity of I(Ê, u) which
is a consequnce of (H1) and (c) and a standard lower semicontinuity
theorem [14]. Now, (H3) and (2.16) imply that det F > 0 for almost all
x ∈ Ω and hence u ∈ A. 2
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Definition 2.1 . A sequence of {uj} ⊂ Â is said to be a generalized

solution to the problem of minimizing I(·) in Â, if it is a minimizing

sequence of I(·) in Â, and (2.11) – (2.16) hold for some functions u ∈ A

and Ê ∈ Ls(Ω; R3).

Thus, as a collorary of theorem 2.1, theorem 2.2 and lemma 2.1, we
have

Theorem 2.3 . By solving the finite problem of minimizing I(·) in

Âh, h > 0, we can obtain at least one generalized solution to the problem

of minimizing I(·) in Â.

Next, we are to see what can be expected from a generalized solution.

Lemma 2.2 . Let {uj} be a generalized solution to the problem of min-

imizing I(·) in Â, and let (uj, Ej) ⇀ (u, Ê) in W 1,p(Ω; R3)×Ls(Ω; M3).

Suppose that

I(u) = I(Ê, u) = lim
j→∞

I(uj) = inf
v∈Â

I(v). (2.17)

Then

Ê =
1

2
((I + Du)T (I + Du)− I), (2.18)

uj → u in W 1,p(Ω; R3), (2.19)

Ej → Ê = E in Ls(Ω; M3), (2.20)

and u is a minimizer of I(·) in Â.

Proof. The result follows from the same arguments as in [8] (see (b)
and (c) in the proof of theorem 2.1 in [8] for the arguments). 2

Lemma 2.3 . Let {uj} be a generalized solution to the problem of min-

imizing I(·) in Â, and let (uj, Ej) ⇀ (u, Ê) in W 1,p(Ω; R3)×Ls(Ω; M3).

Suppose that

Ê =
1

2
((I + Du)T (I + Du)− I), (2.21)

and

I(u) = I(Ê, u) < lim
j→∞

I(uj) = inf
v∈Â

I(v). (2.22)

Then, Lavrentiev phenomenon [12] occurs in the problem, i.e.

inf
v∈A

I(v) < inf
v∈Â

I(v). (2.23)
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Proof. The result is straight forward. 2

Lemma 2.4 . Let {uj} be a generalized solution to the problem of min-

imizing I(·) in Â, and let (uj, Ej) ⇀ (u, Ê) in W 1,p(Ω; R3)×Ls(Ω; M3).

Suppose that

Ê 6= 1

2
((I + Du)T (I + Du)− I), (2.24)

Then, {uj} gives microstructure, i.e. there exists a measurable subset

Ω̂ ⊂ Ω with meas (Ω̂) > 0 such that

limj→∞
∫

Ω′
|Duj −Du| dx > 0, (2.25)

lim
j→∞

∫

Ω′
(Duj −Du) dx = 0, (2.26)

for any measurable subset Ω′ ⊂ Ω̂ with meas (Ω′) > 0.

Proof. Let

Ω̂ = {x ∈ Ω : Ê 6= 1

2
((I + Du)T (I + Du)− I)}.

By (2.24), meas (Ω̂) > 0.
(2.26) is obvious, since uj ⇀ u, in W 1,p(Ω; R3).
Suppose that the lemma is not true. Then, there would exist a

measurable subset Ω′ ⊂ Ω̂ with meas (Ω′) > 0, and a subsequence of
{uj}, denoted again by {uj}, such that

lim
j→∞

∫

Ω′
|Duj −Du| dx = 0.

By extracting a further subsequence, we would then be able to find a
subsequence {uν} of {uj} satisfying

Duν → Du a.e. in Ω′,

and thus

Eν → 1

2
((I + Du)T (I + Du)− I) a.e. in Ω′.

This would imply

Ê =
1

2
((I + Du)T (I + Du)− I) a.e. in Ω′,

since Eν ⇀ Ê in Ls(Ω; M3) and hence also in Ls(Ω′; M3). But this
contradicts the assumption that Ω′ ⊂ Ω̂. 2
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Theorem 2.4 . Let {uj} be a generalized solution to the problem of

minimizing I(·) in Â, and let (uj, Ej) ⇀ (u, Ê) in W 1,p(Ω; R3)×Ls(Ω; M3).

Then, there are three possibilities

(i):

I(Ê, u) = lim
j→∞

I(uj) = inf
v∈Â

I(v).

In this case,

Ê = 1
2
((I + Du)T (I + Du)− I),

uj → u in W 1,p(Ω; R3),

Ej → Ê = E in Ls(Ω; M3),

and u is a minimizer of I(·) in Â.

(ii):

I(Ê, u) < lim
j→∞

I(uj) = inf
v∈Â

I(v),

and

Ê =
1

2
((I + Du)T (I + Du)− I).

In this case, Lavrentiev phenomenon occurs, i.e.

inf
v∈A

I(v) < inf
v∈Â

I(v).

(iii):

Ê 6= 1

2
((I + Du)T (I + Du)− I)

In this case, {uj} gives microstructure.

Proof. It is easily seen that (i) – (iii) include all the possibilities.
The conclusions in (i), (ii) and (iii) follows from directly from lemma
2.2, lemma 2.3 and lemma 2.4 respectively. 2

The results in this section show that a standard application of finite
element methods can be successful in producing regular solutions, but
it may fail in general to produce a satisfactory result when a solution is
singular.

3 Existence and convergence of a finite el-

ement truncation method

In this section, we apply a finite element truncation method, which was
designed to compute singular minimizers [11], to solve the problem of
minimizing I(·) in A.
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Let Th be regular triangulations of Ω [10]. As in §2, for simplicity,
assume that Ω̄ = ∪K∈Th

K, ∂Ω0 consists of faces of Th and u(x) = 0 on
∂Ω0. Let

Ah = {u ∈ C(Ω̄) : u is affine on each K ∈ Th,

u(x) = 0, ∀x ∈ ∂Ω0}. (3.1)

Let {αM} be an increasing sequence of positive numbers satisfying

lim
M→∞

αM = +∞. (3.2)

Define

WM(x, F ) = min{W (x, F ), αM(1 + |F |p)}, ∀F ∈ M3. (3.3)

We consider the finite problem of minimizing the functional

IM(u) =
∫

Ω
WM(x, F ) dx−

∫

Ω
f · u dx−

∫

∂Ω1

g · u ds, (3.4)

with W (x, F ) satisfying hypotheses (H1) – (H3) and f, g satisfying hy-
pothesis (c) (see §1), in the set of admissible finite element functions
Ah. We should notice that Ah here is free from the restriction that
det(I + Du(x)) > 0 for almost all x ∈ Ω. This makes the problem much
easier to tackle.

Theorem 3.1 . For each fixed M ≥ 1 and h > 0, there exists a uh ∈ Ah

such that

IM(uh) = inf
v∈Ah

IM(v). (3.5)

Proof. It is easily seen from (H1) and (3.3) that WM(x, F ) is con-
tinuous on Ah for each M ≥ 1 and all h > 0. Let {uj} be a minimizing
sequence of IM(·) in Ah. By the boundedness of ‖uj‖1,p, which follows
from (3.3) and (H2), the finite dimensionality of Ah and continuity of
IM(·), which follows from the continuity of WM(x, F ) and (c), we con-
clude that there exist a subsequence of {uj}, denoted again by {uj}, and
function uh ∈ Ah such that

uj → uh, in W 1,p(Ω; R3), (3.6)

IM(uh) = lim
j→∞

IM(uj) = inf
v∈Ah

IM(v). (3.7)

2
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Theorem 3.2 . There exists a function h(·, ·) : R+ ×R+ → R+ ,which

is nondecreasing with respect to the first variable and nonincreasing with

respect to the second variable, such that for any ε > 0 and M ≥ 1

inf
v∈Ah

IM(v) < inf
v∈A

I(v) + ε,

provided that 0 < h < h(ε,M).

Proof. Let u ∈ A be such that

I(u) < inf
v∈A

I(v) +
ε

2
. (3.8)

Let uh ∈ Ah,h > 0 be such that

lim
h→0

‖uh − u‖1,p = 0. (3.9)

Consider

IM(uh)− I(u)

=
∫

Ω
(WM(x, Fh)−WM(x, F )) dx +

∫

Ω
(WM(x, F )−W (x, F )) dx

+
∫

Ω
f · (u− uh) dx +

∫

∂Ω1

g · (u− uh) ds

= I1 + I2 + I3 + I4. (3.10)

By (c) and (3.9), there exists h1(ε) > 0 such that

|I3 + I4| < ε

4
, ∀h ∈ (0, h1(ε)). (3.11)

It follows from (3.3) that
I2 < 0. (3.12)

We claim that for any ε > 0 and M ≥ 1 there exists h2(ε,M) > 0 such
that

|I1| < ε

4
, ∀h ∈ (0, h2(ε,M)). (3.13)

Suppose otherwise. Then, there would be ε0 > 0, M0 > 0 and a decreas-
ing sequence {hj} with limj→∞ hj = 0 such that

|
∫

Ω
(WM0(x, Fj)−WM0(x, F )) dx| ≥ ε0

4
, ∀j.

By (3.9), we may assume without loss of generality that

uj → u, a.e. in Ω,

Duj → Du, a.e. in Ω.
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Thus, by the continuity of WM0(·, ·),
WM0(x, Fj) → WM0(x, F ), a.e. in Ω. (3.14)

On the other hand, by (3.3),

|WM0(x, Fj)−WM0(x, F )| ≤ αM0(2 + |Fj|p + |F |p). (3.15)

By (3.9), the right handside of (3.15) is uniformly integral continuous.
Hence by (3.14) and (3.15)

lim
j→∞

∫

Ω
|WM0(x, Fj)−WM0(x, F )| dx = 0.

This is a contradiction.
Now, the theorem follows from (3.8) and (3.10) – (3.13) by taking

h(ε,M) = min{h1(ε), h2(ε,M)}. 2

To obtain the convergence result, we first introduce the following
lemmas.

Lemma 3.1 . Let uM,h ∈ Ah be such that

IM(uM,h) ≤ inf
v∈Ah

IM(v) + 1. (3.16)

Let Ω̂M,h = Ω̂M(uM,h) where

Ω̂M(v) = {x ∈ Ω : WM(x, F (x)) 6= W (x, F (x))}, (3.17)

where F (x) = I + Dv(x).

Then, there exist constants M1 ≥ 1 and C > 0 such that

‖uM,h‖p
1,p + ‖EM,h‖s

s ≤ C, ∀M ≥ M1 and h > 0, (3.18)

and

‖uM,h‖p
1,p,ΩM,h

+ ‖adj FM,h‖q
q,ΩM,h

+‖ det FM,h‖r
r,ΩM,h

+ ‖EM,h‖s
s,ΩM,h

≤ C, ∀M ≥ M1 and h > 0,

(3.19)

where EM,h = 1
2
(F T

M,hFM,h − I) and ΩM,h = Ω \ Ω̂M,h. Furthermore, let

ÂM,h = {u ∈ Ah : IM(u) ≤ inf
v∈Ah

IM(v) + 1}

and let

δM,h = sup
v∈ÂM,h

meas Ω̂M(v).

Then

δM,h → 0, uniformly for h > 0 as M →∞. (3.20)
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Proof. By (H1) and (3.2), there exists M1 ≥ 1 such that

max
x∈Ω̄

W (x, I) ≤ αM , ∀M ≥ M1.

Thus, by (3.3)

WM(x, I) = W (x, I), ∀x ∈ Ω̄ and M ≥ M1. (3.21)

Since uM,h satisfies (3.16), (3.21) implies that

IM(uM,h) ≤ IM(0) + 1 = I(0) + 1, ∀M ≥ M1 and h > 0. (3.22)

By (H2) and (3.3), we have

WM(x, F ) ≥ Ĉ0 + Ĉ1|F |p, ∀x ∈ Ω̄ and F ∈ M3, (3.23)

for some constants Ĉ0 ∈ R and Ĉ1 > 0.
(3.22), (3.23) together with (c) and Poincaré inequality [15] give

‖uM,h‖p
1,p ≤ Ĉ, ∀M ≥ M1 and h > 0, (3.24)

where Ĉ is a constant. Since 2s ≤ p, (3.24) implies (3.18).
It follows from (H2), (3.3), (3.22) and the positiveness of

WM(x, FM,h) on Ω̂M,h that
∫

ΩM,h

[C0 + C1(|FM,h|p + |adj FM,h|q + | det FM,h|r + |EM,h|s)] dx

≤
∫

ΩM,h

W (x, FM,h) dx =
∫

ΩM,h

WM(x, FM,h) dx

≤ IM(uM,h) +
∫

Ω
f · uM,h dx +

∫

∂Ω1

g · uM,h ds

≤ I(0) + 1 +
∫

Ω
f · uM,h dx +

∫

∂Ω1

g · uM,h ds,

∀M ≥ M1 and h > 0.

Thus, by (c) and (3.24), we have (3.19).
For any uM,h ∈ Ah satisfying (3.16), it follows from (3.3), (3.17) and

(3.22) that

αMmeas Ω̂M,h ≤
∫

Ω̂M,h

WM(x, FM,h) dx

= IM(uM,h)−
∫

ΩM,h

WM(x, FM,h) dx +

+
∫

Ω
f · uM,h dx +

∫

∂Ω1

g · uM,h ds

13



≤ I(0) + 1−
∫

ΩM,h

W (x, FM,h) dx +

+
∫

Ω
f · uM,h dx +

∫

∂Ω1

g · uM,h ds,

∀M ≥ M1 and h > 0.

Thus, (3.20) follows from (H2), (c), (3.18), (3.19) and (3.2). 2

Lemma 3.2 . Let {Mj} be such that

lim
j→∞

Mj = +∞, (3.25)

∞∑

j=1

δMj
< +∞, (3.26)

where δM = suph>0 supv∈ÂM,h
meas Ω̂M(v) with

ÂM,h = {u ∈ Ah : IM(u) ≤ inf
v∈Ah

IM(v) + 1}

and Ω̂M(v) being defined by (3.17). Let hj ∈ R+ and uj ∈ Ahj
be such

that

IMj
(uj) ≤ inf

v∈Ahj

IMj
(v) + 1. (3.27)

Then, there exist a subsequence {uν} of {uj}, decreasing measurable

subsets Ωl ⊂ Ω, functions u ∈ W 1,p(Ω; R3) with u = 0 on ∂Ω0 and

Ê ∈ Ls(Ω; M3) such that

lim
l→∞

meas Ωl = 0, (3.28)

uν ⇀ u in W 1,p(Ω; R3), (3.29)

adj Fν ⇀ adj F in Lq(Ω \ Ωl; M
3), for each fixed l, (3.30)

det Fν ⇀ det F in Lr(Ω \ Ωl), for each fixed l, (3.31)

Eν ⇀ Ê in Ls(Ω; M3), (3.32)

Proof. Let
Ωl = ∪∞j=lΩ̂j,

where Ω̂j = Ω̂Mj
(uj) is defined by (3.17). It is obvious by the definition

and (3.26) that Ωl are decreasing and satisfy (3.28).
By lemma 3.1, (Fj, adj Fj, det Fj, Ej) are bounded in Lp(Ω; M3) ×

Lq(Ω \ Ω̂j; M
3)×Lr(Ω \ Ω̂j)×Ls(Ω; M3) for each j and the bounds can

14



be chosen to be independent of j, and hence they are uniformly bounded
in Lp(Ω; M3)× Lq(Ω \ Ω̂l; M

3)× Lr(Ω \ Ω̂l)× Ls(Ω; M3) for all j ≥ l.
Extracting a subsequence {uν} form {uj} by applying the diagonal

process and making use of the weak continuity of Jacobians [1] [2], we
obtain (3.29) – (3.32). 2

Lemma 3.3 . Let Ψ : Ω×Rm ×Rn → R ∪ {+∞} satisfy

(i) Ψ is an extended continuous function,

(ii) Ψ(x, u, ·) is convex,

(iii) Ψ(x, u, P ) ≥ C, for some constant C ∈ R.

Let ΨM : Ω×Rm ×Rn → R ∪ {+∞} satisfy

(1) ΨM is an extended continuous function,

(2) ΨM → Ψ locally uniformly in Ω × Rm × Rn, i.e. there exists a

sequence of measurable subsets Ωi ⊂ Ω with limi→∞ meas (Ω\Ωi) =

0 such that for each fixed i and any compact subset G ⊂ Rm ×Rn

ΨM(x, u, P ) → Ψ(x, u, P ), uniformly on Ωi ×G as M → +∞,

(3) ΨM(x, u, P ) ≥ C, for some constant C ∈ R.

Let 1 ≤ p1 ≤ +∞, 1 ≤ p2 ≤ +∞, and let {uM}, u ∈ Lp1(Ω; Rm) and

{PM}, P ∈ Lp2(Ω; Rn) be such that

uM → u in Lp1(Ω; Rm),

PM ⇀ P in Lp2(Ω; Rn).

Then ∫

Ω
Ψ(x, u, P ) dx ≤ limM→∞

∫

Ω
ΨM(x, uM , PM) dx.

Lemma 3.3 is a special case of a general lower semicontinuity theorem
given by Li [16], where the theorem is proved under weaker hypotheses
for Ψ and ΨM .

Theorem 3.3 . Let εj > 0 satisfy limj→∞ εj = 0. Let Mj satisfy (3.25)

and (3.26). Let 0 < hj < h(εj, Mj), where h(·, ·) is determined by theo-

rem 3.2. Let uj ∈ Ahj
be such that

IMj
(uj) ≤ inf

v∈Ahj

IMj
(v) + εj. (3.33)
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Then, there exist a subsequence {uν} of {uj}, decreasing measurable sub-

sets Ωl ⊂ Ω, functions u ∈ A and Ê ∈ Ls(Ω; M3) such that (3.28) –

(3.32) hold and

I(Ê, u) ≤ lim
j→∞

IMj
(uj) = inf

v∈A
I(v), (3.34)

where I(Ê, u) is defined by (1.9).

Proof. It follows from lemma 3.2 that (3.28) – (3.32) hold for some
decreasing measurable subsets Ωl ⊂ Ω, functions u ∈ W 1,p(Ω; R3) with
u = 0 on ∂Ω0 and Ê ∈ Ls(Ω; M3).

It is easily seen that W (x, P ) and WM(x, P ) satisfy (i) – (iii) and (1)
– (3) in lemma 3.3 respectively. Thus by lemma 3.3, hypothesis (c) (see
§1), we have

∫

Ω\Ωl

W (x, Ê, F ) dx−
∫

Ω
f · u dx−

∫

∂Ω1

g · u ds

≤ limν→∞(
∫

Ω\Ωl

WMν (x, FMν ) dx−
∫

Ω
f · uMν dx−

∫

∂Ω1

g · uMν ds)

= limν→∞(IMν (uν)−
∫

Ωl

WMν (x, FMν ) dx), (3.35)

where W (x, Ê, F ) = G(x, Ê, F, adj F, det F ) (see (H1)).
By (H2) and (3.3), there is a constant Ĉ0 ≥ 0 such that

−WMν (x, Fν) ≤ Ĉ0.

Thus, by theorem 3.2, (3.33) and (3.35), we have

∫

Ω\Ωl

W (x, Ê, F ) dx−
∫

Ω
f · u dx−

∫

∂Ω1

g · u ds

≤ inf
v∈A

I(v) + Ĉ0 meas Ωl, ∀l. (3.36)

This and (H3) imply that

det F > 0 a.e. in Ω \ Ωl, ∀l,

and thus, by (3.28)
det F > 0 a.e. in Ω. (3.37)

Hence we have u ∈ A.
Let l → +∞ in (3.36), noticing that W (x, Ê, F ) is bounded from

below by a constant and by passing to limit, we obtain (3.34). 2
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Lemma 3.4 (see [9]). Let Ψj, Ψ, ξj, ξ, ηj, η ∈ L1(Ω) with ξj ≥ Ψj ≥ ηj

for all j. Suppose that Ψj → Ψ, ξj → ξ, ηj → η, a.e. in Ω, and∫
Ω ξj dx → ∫

Ω ξ dx,
∫
Ω ηj dx → ∫

Ω η dx, as j →∞.

Then ∫

Ω
Ψj dx →

∫

Ω
Ψ dx, as j →∞.

Proof. The result follows by applying Fatou’s lemma to the se-
quences ξj −Ψj and Ψj − ηj. 2

Lemma 3.5 Let Ω′ ⊂ Ω. Let {uν}, u be such that

uν ⇀ u in W 1,p(Ω′; R3),

adj Fν ⇀ adj F in Lq(Ω′; M3)

det Fν ⇀ det F in Lr(Ω′),

Eν ⇀ E in Ls(Ω′; M3),

and ∫

Ω′
W (x, F ) dx = lim

ν→+∞

∫

Ω′
W (x, Fν) dx < +∞.

Then

uν → u in W 1,p(Ω′; R3),

adj Fν → adj F in Lq(Ω′; M3)

det Fν → det F in Lr(Ω′),

Eν → E in Ls(Ω′; M3).

The result follows from a standard argument (see [9]) that, roughly
speaking, for a strictly convex integral functional J(v) satisfying certain
coerceivness hypothesis, such as (H2) in this case, vj ⇀ v and J(vj) →
J(v) imply vj → v. For details of the argument see [9] or (b) in the
proof of theorem 2.1 in [8].

Theorem 3.4 . Let εj,Mj, hj and uj ∈ Ahj
satisfy the same conditions

as in theorem 3.3. Let {uν} ⊂ {uj}, Ωl = ∪∞j=lΩ̂Mj
(uj) with Ω̂Mj

(uj)

being defined by (3.17), u ∈ A and Ê ∈ Ls(Ω; M3) be such that (3.28) –

(3.32) and (3.34) hold.

Then, either

(a):

Ê =
1

2
((I + Du)T (I + Du)− I). (3.38)
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In this case, u ∈ A is a minimizer of I(·) in A, and we have

uν → u in W 1,p(Ω; R3), (3.39)

adj Fν → adj F in Lq(Ω \ Ωl; M
3), for each l, (3.40)

det Fν → det F in Lr(Ω \ Ωl), for each l, (3.41)

Eν → E = Ê in Ls(Ω; M3). (3.42)

or

(b):

Ê 6= 1

2
((I + Du)T (I + Du)− I). (3.43)

In this case, {uν} gives microstructure.

Proof. In case (a), it follows from (3.34) that

I(u) = inf
v∈A

I(v), (3.44)

a.e. u ∈ A is a minimizer of I(·) in A.
Further, let Ω′ ⊂ Ω \ Ωl for some l be a measurable subset of Ω.

Then, it follows from lemma 3.3 and (3.38) that

∫

Ω′
W (x, F ) dx ≤ limν→∞

∫

Ω′
WMν (x, Fν) dx. (3.45)

This implies
∫

Ω\Ωl

W (x, F ) dx = limν→∞
∫

Ω\Ωl

WMν (x, Fν) dx, for each l. (3.46)

Since otherwise, there would be some l0 ≥ 1 such that
∫

Ω\Ωl0

W (x, F ) dx− limν→∞
∫

Ω\Ωl0

WMν (x, Fν) dx = δ < 0,

and thus we would have
∫
Ω\Ωl

W (x, F ) dx =
∫
Ωl0

\Ωl
W (x, F ) dx +

∫
Ω\Ωl0

W (x, F ) dx

≤ limν→∞
∫
Ω\Ωl

WMν (x, Fν) dx + δ.

Hence, by passing to limit, we would have

I(u) ≤ inf
v∈A

I(v) + δ < inf
v∈A

I(v).

This contradicts (3.44).
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By the definition of Ωl and (3.46), we have

∫

Ω\Ωl

W (x, F ) dx = limν→∞
∫

Ω\Ωl

W (x, Fν) dx. for each l (3.47)

Thus, (3.29) – (3.42), (3.38) and lemma3.5 imply (3.40), (3.41) and

uν → u, in W 1,p(Ω \ Ωl; R
3), for each l, (3.48)

Eν → E = Ê, in Ls(Ω \ Ωl; M
3), for each l. (3.49)

By (3.40), (3.41), (3.48) and (3.49), we can extract a further subse-
quence of {uµ}, again denoted by {uµ}, such that

(uµ, adj Fµ, det Fµ, Eµ) → (u, adj F, det F, E), a.e. in Ω. (3.50)

Thus, by (3.3), we also have

WMµ(x, Fµ(x)) → W (x, F (x)), a.e. in Ω. (3.51)

On the other hand, it follows from (H2) and (3.3) that there is a constant
C > 0 such that

0 ≤ |Fµ(x)− F (x)|p + |Eµ(x)− E(x)|s
≤ C (1 + WMµ(x, Fµ(x)) + W (x, F (x))), ∀µ. (3.52)

Now, it follows from (3.34), (3.44), (3.50) – (3.52) and lemma 3.4 that

‖Fµ − F‖p
p − ‖Eµ − E‖s

s → 0, as µ →∞.

This gives (3.39) and (3.42).
In case (b), {uν} gives microstructure on

Ω̂ = {x ∈ Ω : Ê 6= 1

2
((I + Du)T (I + Du)− I)}.

The argument is similar as that in lemma 2.4 (see also [8]). 2

The results in this section show that, by solving the finite problem
of minimizing IM(·) in Ah with M sufficiently large and h sufficiently
small, we can obtain good information on the solutions of the problem
of minimizing I(·) in A. For example, let uM,h ∈ Ah be a minimizer of
IM(·) in Ah with M sufficiently large and h sufficiently small, if uM,h

oscilates violently somewhere in Ω, then it suggests that microstructure
probably exists as a solution, on the other hand, if uM,h does not oscilate
anywhere in Ω, then it should give a good approximation to a minimizer
of I(·) in A.
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