Table of the homotopy groups pin+k(Sn)

From Toda's book: Composition Methods in Homotopy Groups of Spheres

In the following table, an integer n indicates a cyclic group Z/nZ of order n, "infty" indicates the infinite cyclic group Z, the symbol "+" indicates the direct sum of the (abelian) groups, nk indicates the direct sum of k-copies of Z/nZ.

 

 

pin+k(Sn)

 

k\n n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10 n=11 n=12 n=13 n=14 n=15 n=16 n=17 n=18 n=19 n=20 n>k+1
k=1 infty 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
k=2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
k=3 2 4+3 infty+4+3 8+3 8+3 8+3 8+3 8+3 8+3 8+3 8+3 8+3 8+3 8+3 8+3 8+3 8+3 8+3 8+3 8+3
k=4 4+3 2 22 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
k=5 2 2 22 2 infty 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
k=6 2 3 8+3+3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
k=7 3 3+5 3+5 2+3+5 4+3+5 8+3+5 infty+8+3+5 16+3+5 16+3+5 16+3+5 16+3+5 16+3+5 16+3+5 16+3+5 16+3+5 16+3+5 16+3+5 16+3+5 16+3+5 16+3+5
k=8 3+5 2 2 2 8+2+3 23 24 22 22 22 22 22 22 22 22 22 22 22 22 22
k=9 2 22 23 23 23 24 25 24 infty+23 23 23 23 23 23 23 23 23 23 23 23
k=10 22 4+2+3 8+4+2+32+5 8+2+9 8+2+9 8+3+2 82+2+32 8+2+3 4+2+3 22+3 2+3 2+3 2+3 2+3 2+3 2+3 2+3 2+3 2+3 2+3
k=11 4+2+3 4+22+3+7 4+25+3+7 8+22+9+7 8+4+9+7 8+2+9+7 8+2+9+7 8+2+9+7 8+9+7 8+9+7 infty+8+9+7 8+9+7 8+9+7 8+9+7 8+9+7 8+9+7 8+9+7 8+9+7 8+9+7 8+9+7
k=12 4+22+3+7 22 26 23 16+3+5 0 0 0 4+3 2 22 2 0 0 0 0 0 0 0 0
k=13 22 2+3 8+22+32 22+3 2+3 2+3 22+3 2+3 2+3 22+3 22+3 2+3 infty+3 3 3 3 3 3 3 3
k=14 2+3 2+3+5 8+22+9+3+5+7 22+3 4+2+3 8+4+3 16+8+4+32+5 16+4 16+2 16+2 16+4+2+3 16+2 8+2 4+2 22 22 22 22 22 22
k=15 2+3+5 2+3+5 2+3+5 22+3+5 4+2+32+5 8+23+3+5 8+25+3+5 16+23+3+5 16+22+3+5 16+2+3+5 16+2+3+5 32+2+3+5 32+2+3+5 32+2+3+5 infty+32+2+3+5 32+2+3+5 32+2+3+5 32+2+3+5 32+2+3+5 32+2+3+5
k=16 2+3+5 22+3 23+32 22 8+22+9+7 24 27 24 16+2+3+5 2 2 2 8+2+3 23 24 23 22 22 22 22
k=17 22+3 4+22+3 8+42+22+32 4+22 24 24 25+3 24 23 23 24 24 24 25 26 25 infty+24 24 24 24
k=18 4+22+3 4+22+3 8+4+25+32+5 8+22+3 8+22+32 8+22+3 82+2+9+3+7 8+2+3 8+22+3 8+4+2 32+42+2+3+5 82+2 82+2 82+2 83+2+3 82+2 8+4+2 8+22 8+2 8+2
k=19 4+22+3 4+2+3+11 4+25+3+11 8+2+3+11 32+8+3+11 8+2+3+11 8+2+3+11 8+2+3+11 8+2+32+11 8+23+3+11 8+25+3+11 8+23+3+11 8+4+2+3+11 8+22+3+11 8+22+3+11 8+22+3+11 8+2+3+11 8+2+3+11 infty+8+2+3+11 8+2+3+11

Table of the homotopy groups of the suspensions of the (real) projective plane.

Cohen-Moore-Neisendorfer Theorem Let p be an odd prime and let x be any element in the p-primary torsion component of pik(S2n+1). Then pn x=0.

Wu Theorem For any n>2, the homotopy group pin(S3) is isomorphic to the center of the group G(n) defined as follows:

Let x1,...,xn be letters and let w(x1,...,xn) denote a word in the free group F(x1,...,xn). Let 1 denote the identity of a group. The group G(n) is defined combinatorially by
generators: x1,...,xn;
relations:
 

(1) the product element x1x2...xn;

(2) the words w(x1,...,xn) that satisfy: w(x1,...,xi-1,1,xi+1,...,xn)=1 for each i=1,2,...,n.


Note.
The second relation above consists of all those words that will collapses to the identity if one of the generators is replaced by the identity.
There is a braid group action on G(n) induced by the canonical braid group action on free groups. The center of G(n), that is the n-th homotopy group of S3, is the fixed set of the pure braid group action on G(n).

This is get from Wu Jie's Home page. Click go to Wu Jie Home page.