Table of the homotopy groups pin+k(Sn)
From Toda's book: Composition Methods in Homotopy Groups of Spheres
In the following table, an integer n indicates a cyclic group Z/nZ of
order n, "infty" indicates the infinite cyclic group Z, the symbol
"+" indicates the direct sum of the (abelian) groups, nk indicates
the direct sum of k-copies of Z/nZ.
pin+k(Sn)
k\n |
n=2 |
n=3 |
n=4 |
n=5 |
n=6 |
n=7 |
n=8 |
n=9 |
n=10 |
n=11 |
n=12 |
n=13 |
n=14 |
n=15 |
n=16 |
n=17 |
n=18 |
n=19 |
n=20 |
n>k+1 |
k=1 |
infty |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
k=2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
k=3 |
2 |
4+3 |
infty+4+3 |
8+3 |
8+3 |
8+3 |
8+3 |
8+3 |
8+3 |
8+3 |
8+3 |
8+3 |
8+3 |
8+3 |
8+3 |
8+3 |
8+3 |
8+3 |
8+3 |
8+3 |
k=4 |
4+3 |
2 |
22 |
2 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
k=5 |
2 |
2 |
22 |
2 |
infty |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
k=6 |
2 |
3 |
8+3+3 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
2 |
k=7 |
3 |
3+5 |
3+5 |
2+3+5 |
4+3+5 |
8+3+5 |
infty+8+3+5 |
16+3+5 |
16+3+5 |
16+3+5 |
16+3+5 |
16+3+5 |
16+3+5 |
16+3+5 |
16+3+5 |
16+3+5 |
16+3+5 |
16+3+5 |
16+3+5 |
16+3+5 |
k=8 |
3+5 |
2 |
2 |
2 |
8+2+3 |
23 |
24 |
22 |
22 |
22 |
22 |
22 |
22 |
22 |
22 |
22 |
22 |
22 |
22 |
22 |
k=9 |
2 |
22 |
23 |
23 |
23 |
24 |
25 |
24 |
infty+23 |
23 |
23 |
23 |
23 |
23 |
23 |
23 |
23 |
23 |
23 |
23 |
k=10 |
22 |
4+2+3 |
8+4+2+32+5 |
8+2+9 |
8+2+9 |
8+3+2 |
82+2+32 |
8+2+3 |
4+2+3 |
22+3 |
2+3 |
2+3 |
2+3 |
2+3 |
2+3 |
2+3 |
2+3 |
2+3 |
2+3 |
2+3 |
k=11 |
4+2+3 |
4+22+3+7 |
4+25+3+7 |
8+22+9+7 |
8+4+9+7 |
8+2+9+7 |
8+2+9+7 |
8+2+9+7 |
8+9+7 |
8+9+7 |
infty+8+9+7 |
8+9+7 |
8+9+7 |
8+9+7 |
8+9+7 |
8+9+7 |
8+9+7 |
8+9+7 |
8+9+7 |
8+9+7 |
k=12 |
4+22+3+7 |
22 |
26 |
23 |
16+3+5 |
0 |
0 |
0 |
4+3 |
2 |
22 |
2 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
k=13 |
22 |
2+3 |
8+22+32 |
22+3 |
2+3 |
2+3 |
22+3 |
2+3 |
2+3 |
22+3 |
22+3 |
2+3 |
infty+3 |
3 |
3 |
3 |
3 |
3 |
3 |
3 |
k=14 |
2+3 |
2+3+5 |
8+22+9+3+5+7 |
22+3 |
4+2+3 |
8+4+3 |
16+8+4+32+5 |
16+4 |
16+2 |
16+2 |
16+4+2+3 |
16+2 |
8+2 |
4+2 |
22 |
22 |
22 |
22 |
22 |
22 |
k=15 |
2+3+5 |
2+3+5 |
2+3+5 |
22+3+5 |
4+2+32+5 |
8+23+3+5 |
8+25+3+5 |
16+23+3+5 |
16+22+3+5 |
16+2+3+5 |
16+2+3+5 |
32+2+3+5 |
32+2+3+5 |
32+2+3+5 |
infty+32+2+3+5 |
32+2+3+5 |
32+2+3+5 |
32+2+3+5 |
32+2+3+5 |
32+2+3+5 |
k=16 |
2+3+5 |
22+3 |
23+32 |
22 |
8+22+9+7 |
24 |
27 |
24 |
16+2+3+5 |
2 |
2 |
2 |
8+2+3 |
23 |
24 |
23 |
22 |
22 |
22 |
22 |
k=17 |
22+3 |
4+22+3 |
8+42+22+32 |
4+22 |
24 |
24 |
25+3 |
24 |
23 |
23 |
24 |
24 |
24 |
25 |
26 |
25 |
infty+24 |
24 |
24 |
24 |
k=18 |
4+22+3 |
4+22+3 |
8+4+25+32+5 |
8+22+3 |
8+22+32 |
8+22+3 |
82+2+9+3+7 |
8+2+3 |
8+22+3 |
8+4+2 |
32+42+2+3+5 |
82+2 |
82+2 |
82+2 |
83+2+3 |
82+2 |
8+4+2 |
8+22 |
8+2 |
8+2 |
k=19 |
4+22+3 |
4+2+3+11 |
4+25+3+11 |
8+2+3+11 |
32+8+3+11 |
8+2+3+11 |
8+2+3+11 |
8+2+3+11 |
8+2+32+11 |
8+23+3+11 |
8+25+3+11 |
8+23+3+11 |
8+4+2+3+11 |
8+22+3+11 |
8+22+3+11 |
8+22+3+11 |
8+2+3+11 |
8+2+3+11 |
infty+8+2+3+11 |
8+2+3+11 |

 | Table of the homotopy
groups of the suspensions of the (real) projective plane. 
Cohen-Moore-Neisendorfer Theorem Let p be an odd
prime and let x be any element in the p-primary torsion component of pik(S2n+1).
Then pn x=0.

Wu Theorem For any n>2, the homotopy group pin(S3)
is isomorphic to the center of the group G(n) defined as follows:
- Let x1,...,xn be letters and let w(x1,...,xn)
denote a word in the free group F(x1,...,xn). Let 1 denote the
identity of a group. The group G(n) is defined combinatorially by
|
 | generators: x1,...,xn; |
 | relations: |
 |
(1) the product element x1x2...xn;
(2) the words w(x1,...,xn) that satisfy: w(x1,...,xi-1,1,xi+1,...,xn)=1
for each i=1,2,...,n.
 |
Note. |
 | The second relation above consists of all those words that will collapses to the
identity if one of the generators is replaced by the identity. |
 | There is a braid group action on G(n) induced by the canonical braid group action on
free groups. The center of G(n), that is the n-th homotopy group of S3, is the
fixed set of the pure braid group action on G(n). |

|
 | This is get from Wu Jie's Home page. Click go to Wu Jie Home page. |
|