
SYSTEMATIC SOFTWARE DEVELOPMENT

USING VDM

SECOND EDITION

SYSTEMATIC SOFTWARE

DEVELOPMENT

USING VDM

SECOND EDITION

CLIFF B JONES

The University, Manchester, England

c
 Prentice Hall International

Contents

Foreword to the First Edition vii

Preface ix

1 Logic of Propositions 1

1.1 Propositional operators 1
1.2 Concept of proof 9
1.3 Proofs in propositional calculus 15

2 Reasoning about Predicates 29

2.1 Truth-valued functions 29
2.2 Quanti�ers 34
2.3 Proofs in the predicate calculus 40

3 Functions and Operations 45

3.1 Implicit speci�cation of functions 46
3.2 Correctness proofs 51
3.3 Reasoning about partial functions 69
3.4 Implicit speci�cation of operations 77

4 Set Notation 87

4.1 Set notation 88
4.2 Reasoning about sets 95
4.3 Theories of data types 102
4.4 Speci�cations 106

5 Composite Objects and Invariants 113

5.1 Notation 113
5.2 Structural induction and invariants 123
5.3 States and proof obligations 129

v

vi Contents

6 Map Notation 137

6.1 Notation 138
6.2 Reasoning about maps 147
6.3 Speci�cations 153

7 Sequence Notation 163

7.1 Notation 164
7.2 Reasoning about sequences 171
7.3 Speci�cations 175

8 Data Rei�cation 183

8.1 Retrieve functions and adequacy 185
8.2 Operation modelling proofs 192
8.3 Exercises in rei�cation 200

9 More on Data Types 209

9.1 Modules as data types 210
9.2 Exceptions 221
9.3 Implementation bias in models 223
9.4 Property-oriented speci�cations of data types 230

10 Operation Decomposition 237

10.1 Decomposition rules 238
10.2 Assertions as annotations 248
10.3 Decomposition in design 252
10.4 An alternative loop rule 261

11 A Small Case Study 269
11.1 Partitions of a �xed set 270
11.2 Speci�cation 272
11.3 A theory of forests 276
11.4 The Fischer/Galler algorithm 282
11.5 Operation decomposition 285

12 Postscript 291

Contents vii

APPENDICES 293

A Glossary of Symbols 293

B Glossary of Terms 297

C Rules of Logic 309

D Properties of Data 313

D.1 Natural numbers 313
D.2 Finite sets 313
D.3 Finite maps 315
D.4 Finite sequences 317

E Proof Obligations 319

E.1 Satis�ability 319
E.2 Satisfaction of speci�cation 319
E.3 Data rei�cation 319
E.4 Operation decomposition 320

F Syntax of VDM Speci�cations 321

F.1 Documents 322
F.2 Modules 322
F.3 Interfaces 322
F.4 De�nitions 323
F.5 Expressions 327
F.6 Names 332
F.7 Literals 332
F.8 Patterns 333
F.9 Comments 333

Bibliography 335

Index of Functions and Operations 337

Index of Types 343

General Index 349

viii

Foreword to the First Edition

It is well known that ninety-nine percent of the world's problems are not sus-
ceptible to solution by scienti�c research. It is widely believed that ninety-nine
percent of scienti�c research is not relevant to the problems of the real world.
Yet the whole achievement and promise of modern technological society rests on
the minute fraction of those scienti�c discoveries which are both useful and true.

The problems involved in the development and use of computer programs are
well described and well appreciated, particularly by those who have su�ered from
them. E�orts of many researchers have been devoted to elucidate the theoretical
basis of computer programming. This book shows how the results of the research
are immediately and directly relevant in practical solution of the real problems
of programming. By the clarity of its exposition, it makes the solution accessible
to every student of computing science and to every professional programmer. A
rigorous approach to software development will enable our society to reap the full
bene�t promised by the invention of the electronic digital computer.

Read it, study it, learn from it, enjoy it; but above all, put its lessons into
practice.

C.A.R. Hoare
Oxford

ix

x

Preface

: : : the main achievement of the Alvey Software
Engineering Programme is the success with which
`Formal Methods' from the academic world have
been pulled through to industrial use. The
implications of this achievement are di�cult to
overestimate, for these Formal Methods are the
route to much better software writing, and the
economic consequences will be considerable { on a
par with those of the revolution in civil engineering
in the last century.
Brian Oakley

The aim of this book is to contribute to the wider use of formal methods in the
speci�cation and design of computer systems. VDM was developed in an indus-
trial environment and is one of the most widely used formal methods. VDM is
used in this book because it has achieved a level of maturity and acceptance: it
has been taught for many years and has been used in a wide variety of applica-
tions. Furthermore, the British Standards Institution (BSI) work on developing
a standard for VDM has been one of the stimuli for this revised edition.

This book teaches a particular systematic approach to software development
concentrating on the stages from speci�cation through design to implementation.
The term formal methods embraces formal speci�cation and veri�ed design. Many
aspects of a computer system must be speci�ed including performance and cost.
In this book attention is focused on functional speci�cation (i.e. what the system
does); the term speci�cation is, however, used below without quali�cation for

xi

xii Preface

brevity. Formal speci�cations employ mathematical notation in order to achieve
both precision and conciseness. A speci�cation should be much shorter than a
corresponding implementation. The key to brevity is abstraction. The speci�-
cation of a system should abstract away issues which relate to implementation
rather than to the intended behaviour of a computer system. The meaning of
the operations are speci�ed abstractly by recording properties which they should
possess. Listing a collection of properties is one way in which a speci�cation can
be much shorter than an implementation. Another key technique for making
speci�cations more concise than their implementations is to use abstract data
objects which match the system being speci�ed. This can be contrasted to the
use of data objects which belong to the machine or language on which the system
is to be implemented. The latter are the subject of implementations and should
be avoided in speci�cations.

The other major aspect of formal methods is veri�ed design. The idea that
programs are mathematical texts opens up the possibility of reasoning about their
formal relationship to speci�cations. Arguments can be constructed which, unlike
the use of test cases, establish properties of programs in all cases. Veri�ed design
uses the concept of proof as a way of checking design steps. Steps in a systematic
development can be based on, and veri�ed against, a formal speci�cation. This
makes it possible to use proofs during the development process and to detect
errors before work is based on a mistaken design step. The elimination of errors
as early as possible is a key to improving the productivity of the development
process and is a major argument for employing formal methods on industrial-sized
applications. There is, of course, a di�culty in presenting the case for more formal
methods in a textbook: the examples here are small and can be handled by ad hoc
methods whereas the case for formality becomes strong on examples which are too
large to be handled by traditional methods. The experience of other engineering
disciplines supports the need to use soundly based methods on major tasks and
the same experience is beginning to be gathered in the computer industry. One
of the major rewards of employing formal methods in the development process
is that the documentation created ensures that the systems are much easier to
maintain.

The development of any large system has to be preceded by a speci�cation
of what is required. Without such a speci�cation, the system's developers will
have no �rm statement of the needs of the would-be users of the system; these
users will be the ones who, in more ways than one, are likely to pay for the
inevitable misunderstandings. The need for precise speci�cations is accepted in
most engineering disciplines. Computer systems are in no less need of precision
than other engineering tasks. Unfortunately, the current practice in the software
industry is to rely on speci�cations which use a mixture of informal text and

Preface xiii

pictures. Clear use of natural language obviously has a place in describing sys-
tems { but English cannot be relied upon as the sole speci�cation language. In
order to achieve precision, a speci�cation must be written in a language which
has a formal basis. Before the publication of the ALGOL report, the syntax
of programming languages was given in ad hoc ways. Since the BNF (Backus-
Naur Form) notation has been fully understood, no sensible language designer
has described syntax in English sentences { however carefully written. The use of
formal syntax meta-languages such as BNF has also made it possible to construct
tools like parser generators. This history is encouraging but system description
requires the speci�cation of semantics as well as syntax. This book is intended to
contribute to a parallel development for full semantic descriptions. Some notation
and conventions beyond standard mathematics are useful in writing formal spec-
i�cations. The VDM notation has itself been carefully de�ned. This has made it
possible, for example, to establish the soundness of the proof rules for program
design steps. VDM is not a closed body of material. An understanding of the
underlying concepts makes it possible to introduce new notation (e.g. relations)
if required for some class of applications. The more
uid areas of formal methods
research tackle subjects like parallelism and are not addressed in this book.

This book is intended to be the basis of courses on formal methods. The
material originally evolved from courses in industry. The �rst edition of the book
has been used at university undergraduate level and in industrial courses. The
only prerequisites are a knowledge of programming and some familiarity with
discrete mathematics. The notation of both logic and set theory are reviewed
but a reader who is totally unfamiliar with this material should �rst study a
textbook such as Set Theory and Related Topics by S. Lipschutz published by
McGraw-Hill.

The objective of this book is to bring students to the point where they can
write and reason about small speci�cations written in { for example { VDM
and read large speci�cations. Exposure to larger speci�cations and developments
can be obtained from Case Studies in Systematic Software Development { also
published by Prentice Hall International { studying such case studies will better
equip people to tackle larger speci�cations themselves.

This edition contains eleven technical chapters. The �rst seven chapters are
concerned with the speci�cation notation but also include material on proofs
about speci�cations themselves. Chapters 8{11 describe the material on veri�ed
design. The chapters are divided into numbered sections and the main ideas
of a section can normally be presented in a one-hour lecture. The approach
taken is formal with an emphasis on proof. It is possible to understand the
material on speci�cations without following all of the proofs and one way of
providing a short course is to omit Sections 1.3, 2.3, 3.2, 3.3, 4.2, 5.2, 6.2, 7.2, and

xiv Preface

Chapters 8 to 11. However the study of proofs is rewarding, and experience shows
that the speci�cation notation is better understood if practice is gained with its
manipulation via proofs. The study of a proof also deepens the appreciation
of, and reinforces one's memory of, a theorem. Therefore, one should not omit
the material in, for example, Sections 1.3 and 2.3 lightly because of the need to
reinforce the properties of the logical operators. Chapter 12 contains a personal
postscript. It has been said of the �rst edition that there are people for whom
this is the only part of the book they have read. On balance, I should prefer that
this happened more often than that a student should read the technical material
but ignore the postscript.

The exercises are an integral part of the material and should be attempted by
any reader who hopes to be able to use the methods described. Those exercises
marked with an asterisk are more di�cult and open-ended: they are best tackled
in a group e�ort with some guidance available. Some mathematical comments
which can be ignored { at least at �rst reading { are printed as footnotes. A Glos-
sary of Symbols is provided in Appendix A. Technical terms are italicized at the
point of introduction and are described in the Glossary of Terms (Appendix B).
Appendices C{E contain summaries of technical material which is developed in
the course of the book. Appendix F contains the relevant parts of the evolving
BSI standard for VDM { it de�nes the concrete syntax of the notation used in
this book (and [JS90]). As well as a bibliography, separate indices are given for
functions/operations, types and general terms.

A set of Teacher's Notes is being printed which contains supporting material
including answers to the unstarred exercises: these notes can be obtained from
the publisher.

This is a major revision of the �rst edition of the book which both expands
and simpli�es the earlier treatment. A number of technical changes (which are
discussed in the Teacher's Notes) have made it possible to simplify the proofs
used. The material on logic notation and proofs has been streamlined. Chapter 10
{ which addresses operation decomposition { has been completely rewritten and
expanded; and the new Chapter 11 contains a small case study which indicates
the way in which the steps of the VDM method relate to each other.

Acknowledgements

My sincere thanks go to the many people who have helped with the creation of this
revision. The Balzac-like revisions have been patiently converted into presentable
pages by Julie Hibbs. None of her labour have seen the light of day had not
Mario Wolczko created and maintained his wonderful (LATEX) bsivdm.sty. I am
also grateful to Brian Monahan for suggesting the layout of inference rules used

Preface xv

here. Comments on the �rst edition of the book have been made by many people
including D. Andrews, John Fitzgerald, Ian Hayes, Andrew Malton, B. Monahan,
M. Naftalin, R. Shaw, D. Simpson and many colleagues at Manchester University.
Particular thanks go to Bo Stig Hansen for passing on the `Reading Notes' from
his course at the Technical University of Denmark and to the reviewers appointed
by the publisher. Tony Hoare has provided inspiration and encouragement to
produce this revision. Further inspiration has come from the meetings of IFIP
Working Group 2.3. Financial support from the UK Science and Engineering
Research Council (both through research grants and a Senior Fellowship award)
and from the Wolfson Foundation is gratefully acknowledged. My thanks also
go to Helen Martin of Prentice Hall International and to Ron Decent for his
painstaking `copy edit' of the text.

xvi Preface

1

Logic of Propositions

It is reasonable to hope that the relationship
between computation and mathematical logic will
be as fruitful in the next century as that between
analysis and physics in the last. The development
of this relationship demands a concern both for
applications and for elegance.
John McCarthy

When writing formal speci�cations for computer systems, it is useful to adopt
notation from established branches of mathematics. One of the most valuable
bodies of notation is that of mathematical logic. A reason for the importance
of logic notation is the central role it plays in the notion of proof. The use of
speci�cations in the justi�cation of design is described in Chapters 8 and 10.
But, even when considering speci�cations on their own, there are a number of
proofs to be performed. In this chapter, the basic ideas of propositional calculus
are reviewed. After introducing the language, the concept of formal proof is
introduced in Section 1.2 and expanded in Sections 1.3 (and, later, in Section 2.3).

1.1 Propositional operators

Propositions

A proposition is an expression which can have the value true or false. Thus,
under the usual interpretation of arithmetic symbols, 2 + 3 = 5 is true, but

1

2 1 Logic of Propositions

2 + 2 = 5 is false. One way of forming propositions is, as in these examples,
by writing relational operators (e.g. =,<,�) between arithmetic terms built up
from, amongst other things, constants and operators. Another way of forming
propositions is by using the truth-valued functions which are discussed in more
detail in Section 2.1; for now, an intuitive reading of such function applications
should su�ce { thus is-prime(7) is true providing that the truth-valued function
is-prime has the value true for exactly those natural numbers which are normally
considered to be primes; whereas is-prime(8) is false.

The language which can be built by such propositions is rather limited if
truths can only be stated about constants. One way to extend the language is
to permit variables to occur in terms. The truth of expressions like 2 + i = 5
depends on the value of i . Such expressions are called predicates in this book.
The identi�er i , in the example above, is said to be a free variable, and the
interpretation for such free variables must come from their context. The truth of
a predicate depends on the interpretation of its free variables; the example above
is true only in contexts where i is bound to the value 3. A number of di�erent
ways of providing contexts, or bindings, for free variables are given in subsequent
sections.

Operators

Propositions and predicates can be thought of as truth-valued expressions. Pred-
icates simplify to propositions when their free variables are replaced by values.
This section discusses the operators which are used to form composite truth-
valued expressions; the operators are known as propositional operators. For ex-
ample:

(2 + 3 = 5) _ (2 + 2 = 5)

is a true proposition built by combining two simpler (constituent) propositions
with a symbol which can be read as `or'. Such propositional operators can be
compared with familiar arithmetic operators (+,� etc). Just like their arithmetic
counterparts, propositional operators can be used in combinations to form long
(or deeply nested) expressions; furthermore, they share the property that there
are general laws about equivalence of expressions. Thus:

x + y = y + x

is the commutative law for addition and:

E1 _ E2 , E2 _ E1

could express the fact that `or' is commutative.

1.1 Propositional operators 3

Such laws apply even when predicates, or more complex logical expressions,
are written in place of E1 and E2. In general, the Ei can be thought of as meta-
variables which can be replaced by arbitrary logical expressions (in this section,
truth-valued expressions built up from propositions; later, the constituents can
be predicates).

Whereas arithmetic expressions are concerned with an in�nite set of numeric
values, propositions { when successfully evaluated { yield one of the two truth
values. In recognition of the key role that George Boole played in the development
of logic, these are often called Boolean values. This set is:

B = ftrue; falseg

(The term logical value is also used below.) The typography of the Boolean value
true distinguishes it from the word `true' used in a normal sentence. Strictly one
should write `Ei evaluates to true'; but, unless a special point has to be made,
the briefer `Ei is true' is used.

The fact that the set of Boolean values is �nite provides a very simple way of
expressing the meaning of logical operators: truth tables can be used to display
the value of a compound proposition for all combinations of the possible values of
constituent propositions. The reader is assumed to be familiar with the normal
(two-valued) truth tables; the topic of truth tables is resumed in Section 3.3.

Some terminology is useful. An expression whose principal operator is `or'
is called a disjunction. Logical expressions whose principal operator is `and' are
called conjunctions. A negation is a logical expression whose principal operator
is the symbol (:) for `not'. An implication is a logical expression whose principal
operator is `implies'.1 Its left-hand side is known as the antecedent and its right-
hand side as the consequent .

It is possible to investigate properties of propositional operators via truth
tables or `models'. One useful law is that E1) E2 has, for any propositions Ei ,
the same value as :E2) :E1. This equivalence can be veri�ed on a two-valued
model as follows:

E1 E2 E1) E2 :E1 :E2 :E2) :E1

true true true false false true
true false false false true false

false true true true false true

false false true true true true

1Implications cause more confusion than the other constructs. Perhaps the easiest way to
overcome the di�culty is to remember that E1) E2 is equivalent to :E1 _ E2.

4 1 Logic of Propositions

operator read as priority

: not highest
^ and
_ or
) implies
, is equivalent to lowest

Figure 1.1 Propositional operators and their precedence

Two logical expressions which have the same logical values are said to be equiv-
alent . The basic truth tables are used in a step-by-step evaluation of larger
expressions in the same way that complex arithmetic expressions are evaluated
one step at a time. For example, in forming the column for :E2) :E1, the
operands of the implication are both negations.

The logical expression corresponding to the assertion of equality between
arithmetic expressions is the equivalence. Remember that, although the operator
does yield the value true exactly when the operands have the same value, a
special symbol (,) is used to show that the equality is between Boolean values.

A list of the propositional operators is given in Figure 1.1. Just as in the
construction of arithmetic expressions, the need for parentheses can be reduced
by ranking the precedence of the operators. This order is also shown. In fact,
the high precedence of the `not' operator is used in examples above. More useful
examples, such as writing:

:E1 _ E2) E3 ^ E4 _ E5

for:

((:E1) _ E2)) ((E3 ^ E4) _ E5)

are encountered below.

Tautologies

Having established the language of propositional logic, it is possible to discuss
general properties of expressions. Some logical expressions evaluate to true for
all possible values of their constituent propositions. Such expressions are called
tautologies. A simple example is:

E1) (false) E2)

1.1 Propositional operators 5

The statement that an expression is a tautology is a judgement about the expres-
sion; such claims are not per se constructs of propositional logic. An obvious way
of checking whether an expression is a tautology is by the construction of a truth
table. One can, however, reason informally about such expressions. For example:

the inner implication, which is the consequent of the principal impli-
cation, would be true for any value of E2, thus the overall expression
must be true for any value of E1.

With practice, such arguments can be conducted safely on quite complex expres-
sions. However, the �nal security for such arguments is that a completely formal
check is possible: Section 1.3 provides a method which relies on the construction
of formal proofs.

Some expressions which are not tautologies are false for all values of their
constituent expressions: these are called contradictions. For example:

E _ true) E ^ false

is a trivial contradiction. Expressions which may be false or true, depending on
their constituent propositions, are said to be contingent . For contingent expres-
sions, the sets of values { of their constituent propositions { for which they are
true can be found. For example:

E1) E2 ^ E1

is true in any `world' where E1 is false or E2 is true (or both). Each row of a
truth table corresponds to a world. A tautology is an expression in which the
result is true in every row; a contradiction has the result false in every row; and
a contingent expression has some results true and others false.

Exercise 1.1.1 Replace the question marks with a Boolean value to make the
following pairs of expressions equivalent:

E ^ ? E

E ^ ? false

?) E true

E) ? true

?) E E

E) ? :E

Write analogous rules to the �rst two for `or'.

Exercise 1.1.2 Replace the question marks below by propositional operators so
as to make the pairs of expressions equivalent (if in doubt, check using truth
tables):

6 1 Logic of Propositions

E1 ^ E2 E2 ? E1

E1 ^ (E2 ^ E3) (E1 ? E2) ? E3

E1 ^ (E2 _ E3) E1 ? E2 ? E1 ? E3

: (E1 _ E2) ? E1 ? ? E2

::E ? E
E1) E2 ? E2) ? E1

E1 , E2 (E1 ? E2) ^ (E2 ? E1)

Commutative and associative laws for conjunctions are given in the �rst and
second cases. Write the equivalent laws for disjunctions.

Why are no parentheses required in the right-hand expression in the third line?
This case shows the law for distributing `and' over `or'. Write the distributive
law for `or' over `and'.

Exercise 1.1.3 (*) Inferences about conditional logical expressions follow from:

E if E then E1 else E2

true E1

false E2

Conditional expressions can be used to de�ne each of the propositional operators.
Write the �ve de�nitions.

Sequents

A tautology is, in fact, a special case of a sequent :

� ` E

(where � is a list of logical expressions). Such a sequent records a judgement
about the constituent logical expressions: it asserts that E can be deduced from
�. Such formal proofs are introduced in the next section. The ` symbol is
often called a turnstile. The validity of sequents can be checked using truth
tables. Once the hypotheses (elements of the list on the left of the turnstile)
of the sequent have been evaluated, the conclusion (right-hand side) need only
be evaluated in those rows where the hypotheses are all true. The truth table
for E1 ^ (E2 _ E3) ` E1 ^ E2 _ E1 ^ E3, is given in Figure 1.2. Notice that
this example needs a truth table with eight rows (because there are three sub-
expressions), but that the conclusion of the sequent need not be evaluated for
the last �ve rows. It is, however, also possible to reason informally. Considering
the above sequent one can argue:

For a sequent to be false there must be some world where its hypoth-
esis is true and its conclusion false; if E1 ^ (E2 _ E3) is true, both

1.1 Propositional operators 7

E1 E2 E3 E1 ^ (E2 _ E3) E1 ^ E2 _ E1 ^ E3

true true true true true

true true false true true

true false true true true

true false false false �
false true true false �
false true false false �
false false true false �
false false false false �

Figure 1.2 Example of sequent evaluation

E1 and at least one of E2 or E3 must be true; thus, either E1 ^ E2 or
E1 ^ E3 (or both) must be true; therefore no world can be found in
which the conclusion is false while the hypothesis is true.

Further examples of sequents are:

E1 , E2 ` E1) E2

E1 ^ E2 ` E1 , E2

: (E1 _ E2) ` E1 , E2

A tautology is simply a sequent with no hypotheses { for example:

` E1) (false) E2)

Sequents can be formed with several hypotheses { in such cases they are separated
by commas { thus:

E1; E2 _ E3 ` E1 ^ E2 _ E1 ^ E3

E1; E2 ` E1) E2

:E1; :E2 ` E1 , E2

There is a connection between the judgement that something is deducible
(written with `) and the implication (an expression of propositional calculus
written with)). In fact, in classical logic the symbols turn out to be almost
interchangeable. However, this is a result (the deduction theorem) which logic
textbooks come to only after a thorough review of the di�erent levels of language
involved. In the full logic used in VDM, implications and sequents are anyway
not interchangeable2 so it is even more important to understand the distinction.

2The technical details of this point are explored in Section 3.3.

8 1 Logic of Propositions

The implies symbol is a logical operator whose meaning is given by its truth
table; implications can be nested giving rise to several occurrences of) in one
expression. A sequent is a statement or judgement about logical expressions: it
records that the conclusion can be deduced from the hypotheses. With respect
to the language of propositional (later, predicate) logic, the turnstile is a meta-
symbol and sub-expressions containing turnstiles can not be used in forming
larger logical expressions.

An example can be given to illustrate a rigorous argument. Two ways of
stating that r is the absolute value of i are:

i < 0 ^ r = �i _ i � 0 ^ r = i

(i < 0) r = �i) ^ (i � 0) r = i)

To express that the second is a consequence of the �rst, write:

E1 ^ E2 _ :E1 ^ E3 ` (E1) E2) ^ (:E1) E3)

or, treating implication as an abbreviation:

E1 ^ E2 _ :E1 ^ E3 ` (:E1 _ E2) ^ (E1 _ E3)

In the case that E1^E2 is true, the �rst conjunct of the conclusion is true (because
E2 is the second disjunct) and so is the second conjunct (because E1 is the �rst
disjunct); therefore the conjunction is true; the case for :E1 ^ E3 is similar.

The language which is built up from proposition variables (Ei) and the propo-
sitional operators is known as the propositional logic. This notation, together with
rules for determining the truth of its expressions, forms the propositional calculus.
A logical calculus in which the truth or falsity of any expression can be calculated
is said to be decidable. The propositional calculus is decidable since there is a
procedure to determine whether a sequent is true or not: it is only necessary
to construct the truth table and evaluate the expressions using the truth tables
given above. The truth tables provide a way in which propositional expressions
can be evaluated. An alternative way of generating true statements is by select-
ing a small set of such statements from which all others can be generated; this is
the proof-theoretic approach which occupies the rest of this chapter.

Exercise 1.1.4 Check which of the following represent true judgements (use truth
tables or a rigorous argument recording any other results on which the argument
relies):

1.2 Concept of proof 9

E1 _ E2 ` E1

E1; E2 ` E1

E1 ^ E2 ` E1 _ E2

E1 _ E2 ` E1 ^ E2

E2 ` E1) E2

:E1 ` E1) E2

E1) E2; E1 ` E2

:E1 ` : (E1 ^ E2)
:E1 ` : (E1 _ E2)
E1 ^ (E2 , E3) ` E1 ^ E2 , E1 ^ E3

E1 ^ E2 , E1 ^ E3 ` E1 ^ (E2 , E3)

Exercise 1.1.5 (*) Write a truth table for an `exclusive or' operator (i.e. sim-
ilar to `or' except that the result is false if both of the operands are true).
Record some properties (as sequents) of this operator including its relation to
equivalence.

1.2 Concept of proof

Section 1.1 mentions one way of formally verifying propositional expressions:
truth tables provide a model theory for propositional calculus. Section 1.3 pro-
vides a proof theory for propositional calculus; in Section 2.3, this is extended to
cover the predicate calculus. The combined proof theory is used throughout this
book as proofs form a central part of the program development method described.
One property of a formal speci�cation is that proofs can be written which clar-
ify its consequences; Chapters 8 to 11 use formal speci�cations as the basis of
design: design steps give rise to `proof obligations'. Once the formal methods
are understood, most proof obligations can be discharged by rigorous arguments.
Such arguments are, however, only safe if they are undertaken with a knowledge
of how a formal proof could be constructed. It is, therefore, necessary to gain
practice in the construction of such formal proofs. Furthermore, a study of the
inference rules deepens one's understanding of the logical operators.

What is a proof?

It should be clear that the claim that something has been proved must elimi-
nate doubt. Unfortunately, informal arguments cannot create such certainty. To
provide a point of reference, consider the truth tables for propositional calculus
discussed in Section 1.1. It is easy to construct a program to mechanize these in
a way which determines the validity of sequents. Providing this program is cor-

10 1 Logic of Propositions

rect, doubt about the validity of a sequent can always be eliminated by running
the program. Foremost amongst the requirements for proofs, then, is that they
should ensure certainty. In order to achieve this level of certainty with a proof,
it is necessary to reduce proof construction to a `game with symbols': each proof
step must depend only on known (or proven) facts and be justi�ed by one of a
�xed set of inference rules. The inference rules themselves must require only the
mechanical rearrangement of symbols. Such proofs are called formal .

But in order for them to be useful it must also be natural to both read and
write proofs. It is di�cult to be precise about what constitutes a natural proof.
When an argument is presented informally, large steps are made without detailed
justi�cation. This is not, in itself, wrong. The aim of informal proof is to indicate
how a proof could be constructed: the major steps are given in the knowledge
that further details could be provided if these major steps are in doubt. Clearly,
it is desirable that some overview of a formal proof can be achieved.

Another aspect of what constitutes a natural proof concerns the crucial dis-
tinction between the discovery and presentation of a proof. A proof is often found
by working back from the goal; sub-goals are created and discharged until the
sub-goals correspond to known facts. In order to show how the steps relate, it
is normal to present an argument working forwards from the known facts to-
wards the goal. This forward presentation is easier to read. But when readers
become writers, it is unfortunate if they must learn to discover proofs one way
and document their steps in a di�erent order.

The style of proof presented in this chapter is known in logic textbooks as
`natural deduction'. The proofs are formal in the sense above. The inference
rules essentially show how to generate true sequents from others. One claim
to the adjective `natural' is that there are introduction and elimination rules
for each operator; more importantly the presentations enable a reader to under-
stand the main steps in a proof; inner from/infer constructs present the detailed
arguments for the major justi�cation. The question of discovery (backward, goal-
directed) versus presentation (forward) of proofs is not as easy to illustrate in a
book as it is on the blackboard. The experience of teaching natural deduction
proofs is, however, very encouraging and a style of proof discovery is investigated
in some of the examples below.

Inference rules

Consider, for example, an inference rule for the introduction of a disjunction:

_-Il
E2

E1 _ E2

1.2 Concept of proof 11

This states that, under the assumption that some logical expression (E2) has
been proved, then { as a conclusion { a disjunction of that logical expression
with any other is also true (proved). As above, the Ei stand for arbitrary logical
expressions: the rule is, in fact, a schema for many inferences. Thus, if at some
point in a proof post(x ; f (x)) has been established, then : pre(x) _ post(x ; f (x))
and thus (treating implication as an abbreviation) pre(x)) post(x ; f (x)) is
also true. There is a similar inference rule:

_-Ir
E1

E1 _ E2

These two inference rules can be expressed together as:

_-I
Ei

E1 _ E2
1 � i � 2

The name (_-I) is a reminder that this rule justi�es the introduction of dis-
junctions. Notice that the side condition shows that the known expression can
be either the �rst or the second disjunct because the assumption is shown as Ei .
The validity of such a rule follows from the truth tables: the resulting disjunction
must be true in all worlds where one of its disjuncts is true. But the inference
rule both corresponds to and strengthens one's intuition about the operator. This
inference rule, and the ones which follow, are mechanical in the sense that they
can be readily checked: if it is claimed that a step of a proof follows by `or in-
troduction' from an earlier step, then one or other of the disjuncts must exactly
match the earlier expression.

In general, an inference rule has a list of hypotheses and a conclusion separated
by a horizontal line. The rules contain expressions whose operands are the meta-
variables (Ei) discussed above and this brings with it the notion of facts matching
the expressions in the sense that there is a substitution (from meta-variables to
expressions) which makes the expressions in the rules match the facts. If existing
facts can be found which match (under a consistent substitution) each of the
hypotheses, then a new fact can be generated which matches the conclusion. The
use of the matching concept should be obvious but note that, when steps involve
complex expressions, matching must observe the structure of an expression as
determined by the priority of its operators. Thus p ^ q _ r matches E1 _ E2

but not E1 ^ E2 because `and' binds p ^ q to an operand of the weaker `or'. In
complex cases the reader might �nd it useful to insert extra parentheses.

How can conjunctions be generated in a proof? The `and introduction' rule
is:

^-I
E1; E2

E1 ^ E2

12 1 Logic of Propositions

from : : :
...

5 p

6 r ^ s
...

8 p _ q _-I (5)
9 r ^-E(6)
10 r ^ (p _ q) ^-I (9,8)
infer : : :

Skeleton proof

Here, there are two hypotheses separated by a semicolon. If there are several
hypotheses for an inference rule, they can be matched in any order with existing
lines in a proof. The skeleton proof shown on page 12 shows how the matching for
both of these rules works. (The line numbering is for illustration only.) Assuming
that lines 5 and 6 have been established, the _-I rule can be used to establish
line 8 { the justi�cation on the right of the line shows both the name of the
inference rule and the lines to which it is being applied; the ^-I rule is applied
to lines 9 and 8 to justify line 10.) There are connections between inference rules
and sequents which are discussed below. The reason that semicolons are used
to separate hypotheses of inference rules (rather than commas as in sequents) is
that some inference rules require sequents as hypotheses. The `and introduction'
inference rule states that, in order to conclude E1 ^E2, the conjuncts must both
be proved separately. As one would expect, there is more work to be done to
justify a conjunction than a disjunction. On the other hand, precisely because
a conjunction is stronger, the rule which permits elimination of a conjunction
(^-E) shows that either conjunct is true:

^-E
E1 ^ E2

Ei
1 � i � 2

Line 9 in the skeleton proof on page 12 is formed by ^-E .

1.2 Concept of proof 13

from (p ^ q) ^ r
1 p ^ q ^-E(h)
2 p ^-E(1)
3 q ^-E(1)
4 r ^-E(h)
5 q ^ r ^-I (3,4)
infer p ^ (q ^ r) ^-I (2,5)

Associativity of conjunction

Boxed proofs

Sequents can be used to show how the proof rules, which are given above, give
rise to deductions. Thus, for example, if:

� ` p

has been proven, then _-I can be used to generate:3

� ` p _ q

A list of sequents can be used to record a whole proof but when more than one
hypothesis is involved, the presentation becomes clumsy. The natural deduction
style, which is explained in detail in the next section, shows the dependencies on
hypotheses at the head of a box beginning with the keyword from; the overall
goal closes the box with the keyword infer; all of the numbered lines within the
box are true under the assumptions of the embracing from/infer constructs.
As an example of such a proof, `and' is shown to be associative. An associative

operator is one for which:

(x op y) op z = x op (y op z)

For `and' it is necessary to show that:

(p ^ q) ^ r ` p ^ (q ^ r)

3The objective is to �nd enough inference rules so that all true statements of the model theory
can be proven. That this is even achievable is not obvious. In fact, the notions of validity and
provability are equivalent in a sense which is discussed in Section 3.3.

14 1 Logic of Propositions

Thus the proof of this part of the associativity result for `and' is presented in
the natural deduction style on page 13. Such `boxed proofs' recur throughout
the remainder of the book. The sequent to be proved is shown as the outermost
from/infer construct and the lines between show how the conclusion follows
from the hypotheses. Each line is justi�ed by writing, on the right, the inference
rule which is used; in parentheses are listed either the line numbers or `h' (for
the hypothesis) of the expressions to which the rule is applied.

The earlier discussion about forward versus backward proof presentation can
be seen in the associativity of conjunction example { although it is clearer on
the less obvious results of the next section. The preceding discussion has been
in terms of working forward from the known facts. But it would be possible to
look at the form of the overall goal and generate (what became) lines 2 and 5
as sub-goals; lines 3 and 4 are then sub-goals to achieve line 5, and the `and
elimination' steps then become the obvious way of achieving the set of collected
sub-goals. Such proofs could, of course, be presented in the reverse order (e.g. as
infer/from). This is not done because one is writing proofs in order that they
can be read. As pointed out above, it is easier to understand an argument which
proceeds from known facts towards a goal.

The use of the rules as `tactics' for decomposing a goal should not be viewed
as an algorithm to generate proofs. As collections of derived rules are built up,
many rules are applicable; some of them would lead to blind alleys.

The rules of the natural deduction game are that new lines can only be gen-
erated from earlier lines in the same, or some enclosing from/infer. As when
generating truth tables, any logical expression can be substituted for the Ei .
When proof rules are used in reasoning about programs, speci�c propositions
are substituted for the Ei . In the proof of the associativity of `and', no speci�c
propositions are used and thus the proof that:

p ^ (q ^ r) ` (p ^ q) ^ r

justi�es a new (derived) inference rule which can be used in subsequent proofs:

^-ass1
E1 ^ (E2 ^ E3)

(E1 ^ E2) ^ E3

For such elementary results, the level of detail needed here appears to be
excessive. It is, however, worth remembering that a simple arithmetic result like
(i+j)+k = (k+j)+i would take several steps of commutativity and associativity
to justify formally.

Another example where the reader should be familiar with the necessary for-
mality is the use of concrete syntax descriptions of languages. Appendix F gives
syntax rules for VDM and it can be seen that p ^ (q ^ r) is a `binary expression'.

1.3 Proofs in propositional calculus 15

To emphasize the link between this idea and the inference rules of logic, notice
that the syntax rules could be written:

syntax1
^: binaryoperator

syntax2
E1: expression; op: binaryoperator ; E2: expression

E1opE2: in�xexpression

and so on.

1.3 Proofs in propositional calculus

The entire proof theory of propositional calculus can be based on very few rules.
In order to minimize this number, this section treats as basic only `or' and `not'
and de�nes the other operators in terms of these basic ones. An increasingly
useful proof theory is constructed by justifying derived rules. Among other things,
these rules facilitate manipulation of the de�ned operators `and', `implies' and
`equivalence' (all of the rules { basic and derived { needed in subsequent chapters
are given in Appendix C).

Axiom 1.1 (_-I) The basic rules include one for introducing disjunctions:

_-I
Ei

E1 _ E2
1 � i � 2

Axiom 1.2 (: _-I) Negated disjunctions are introduced4 by a rule which has
two hypotheses. Intuitively, to know that neither E1 nor E2 are true, they must
both be shown to be impossible:

: _-I
:E1; :E2

: (E1 _ E2)

Axiom 1.3 (_-E) The task of eliminating a disjunction involves reasoning by
cases. If some result E can be deduced from E1 and, independently, from E2, then
{ if it can be shown that E1 _ E2 holds { E must be true (without assumptions).
Reading this axiom in a goal-directed way: one way to conclude E is to split the
task into two cases and to show that their disjunction always holds and that E
follows from either disjunct:

4The need for rules which combine `not' and `or' is discussed in Section 3.3.

16 1 Logic of Propositions

_-E
E1 _ E2; E1 ` E ; E2 ` E

E

Notice that the necessary subsidiary proofs are shown in the hypothesis as se-
quents. This rule gives rise to nested from=infer constructs in proofs (see the
proof of the commutativity of `or' on page 17 for an example).

Axiom 1.4 (: _-E) Eliminating a negated disjunction is easy; neither of the
disjuncts can be true if their disjunction has been proved to be impossible:

: _-E
: (E1 _ E2)

:Ei
1 � i � 2

Double negations cancel each other in this logic so that two simple inference rules
are:

:: -I
E

::E

:: -E
::E

E

Axiom 1.5 (:: -I =E) These two rules can be combined using a notation (a
double horizontal line) for bi-directional rules which shows that it is valid to
make the inference in either direction:

:: -I =E
E

::E

Other rules (notably contr) are discussed when needed below.

Proving commutativity

The �rst formal proof to be undertaken in this section shows that `or' is commu-
tative (E1 _ E2 ` E2 _ E1). In contrast to the proof in the preceding section, this
result and its proof use Ei for the propositions. The reader should check care-
fully the matches of these identi�ers with the (similar) identi�ers in the inference
rules. The proof is given on page 17. Notice that this proof nests from/infer
constructs; as with the overall proof, the inner constructs correspond to sequents
and any steps within them to their justi�cation. Here, the inner from/infer
constructs represent subsidiary proofs of:

E1 ` E2 _ E1

E2 ` E2 _ E1

1.3 Proofs in propositional calculus 17

from E1 _ E2

1 from E1

infer E2 _ E1 _-I (h1)
2 from E2

infer E2 _ E1 _-I (h2)
infer E2 _ E1 _-E (h,1,2)

Commutativity of disjunction: _-comm

from (E1 _ E2) _ E3

1 from E1 _ E2

1.1 from E1

infer E1 _ (E2 _ E3) _-I (h1.1)
1.2 from E2

1.2.1 E2 _ E3 _-I (h1.2)
infer E1 _ (E2 _ E3) _-I (1.2.1)

infer E1 _ (E2 _ E3) _-E(h1,1.1,1.2)
2 from E3

2.1 E2 _ E3 _-I (h2)
infer E1 _ (E2 _ E3) _-I (2.1)

infer E1 _ (E2 _ E3) _-E (h,1,2)

Associativity of disjunction (�rst part): _-ass

These are then used in the �nal `or elimination'. Notice that a reference to the
number of an inner from/infer construct (e.g. 1) refers to the implied sequent;
the hypotheses of a from/infer construct can be referred to (cf. justi�cation of
the infer in 1) as h1.

Since the commutativity proof is general in Ei , a derived inference rule is
made available for future proofs:

_-comm
E1 _ E2

E2 _ E1

18 1 Logic of Propositions

Derived rules can make proofs much clearer. Such derived rules are not,
however, theoretically necessary since it would always be possible to generate
appropriate additional steps in place of the use of the derived rule. In practice,
they are needed to create a more natural level of reasoning.

Finding proofs

Another proof which relies heavily on _-E is that for the associativity of `or':

(E1 _ E2) _ E3 ` E1 _ (E2 _ E3)

This proof is shown on page 17 and presents the opportunity to say more about
the structure of natural deduction proofs. Clearly, the outermost box corresponds
to the required sequent. Within the from=infer is a list of (numbered) lines which
comprise a proof. The line numbering re
ects the nesting of proofs. An inner
from/infer construct is given one line number. In addition to its hypotheses
written in the from line, those of any embracing from=infer construct can be
used. Thus the subsidiary proof labelled `line 1' represents:

(E1 _ E2) _ E3; E1 _ E2 ` E1 _ (E2 _ E3)

and the �ve lines contained in its from=infer construct, represent its proof: each
line in the proof corresponds to a true sequent.

The associativity proof on page 17 also provides an example in terms of which
it is possible to give some indication of how natural deduction proofs are discov-
ered. The overall goal is:

from (E1 _ E2) _ E3
...

infer E1 _ (E2 _ E3) ?

Outer sequent

The question mark in the justi�cation position of a line shows that it is yet to
be proved. When a result has to be proved based on an assumption which is
a disjunction, it is worth trying to prove the desired result from each disjunct
(thus setting up a �nal _-E). Here, this case distinction heuristic gives rise to
the nesting:

1.3 Proofs in propositional calculus 19

from (E1 _ E2) _ E3

3 from E1 _ E2
...

infer E1 _ (E2 _ E3) ?
7 from E3

...
infer E1 _ (E2 _ E3) ?

infer E1 _ (E2 _ E3) _-E (h,3,7)

Split by cases

There is a problem with numbering the lines when constructing a proof since
other steps might have to be introduced. Here 3 and 7 are used to leave space
since there might be other lines to be inserted prior to 3 or between the nested
constructs 3 and 7. There is no necessity when searching for a proof to tackle the
sub-goals in a �xed order; here, it is quite permissible to tackle sub-goal 7 �rst.
One advantage of writing { in the justi�cation { the applications of proof rules
as though they were functions is that the applications can be nested; thus, the
justi�cation for the conclusion of 7 can be �lled in as follows:

from (E1 _ E2) _ E3

3 from E1 _ E2
...

infer E1 _ (E2 _ E3) ?
7 from E3

infer E1 _ (E2 _ E3) _-I (_-I (h7))
infer E1 _ (E2 _ E3) _-E (h,3,7)

Completion of one case

This should be compared with the construct labelled 2 in the complete proof on
page 17. The only open step is now that labelled 3; since h3 is a disjunction, it
is again subjected to (case) decomposition by `or elimination':

20 1 Logic of Propositions

from (E1 _ E2) _ E3

3 from E1 _ E2

3.2 from E1
...

infer E1 _ (E2 _ E3) ?
3.4 from E2

...
infer E1 _ (E2 _ E3) ?

infer E1 _ (E2 _ E3) _-E(h3,3.2,3.4)
7 from E3

...
infer E1 _ (E2 _ E3) _-I (_-I (h7))

infer E1 _ (E2 _ E3) _-E (h,3,7)

Nested case split

The relationship of this stage of the discovery process to the associativity proof
given on page 17 should be clear.

One of the advantages of the natural deduction style is that the proofs can
be read, from the outer level, inwards. With practice, this also becomes a way of
constructing proofs. But the hints given are no more than heuristics: insight is
needed in order to discover good proofs.

Exercise 1.3.1 The proof on page 17 only justi�es one direction of the bi-
directional associativity rule: prove the other half (i.e. E1 _ (E2 _ E3) ` (E1 _
E2) _ E3). This can be done either by aping the earlier proof or by using com-
mutativity (_-comm) and the existing result.

Derived rules

Combining the result of Exercise 1.3.1 with the proof on page 17, the two parts
of the associativity proof justify the following (bi-directional) derived rule.

Lemma 1.6 (_-ass) Disjunction is associative:

_-ass
(E1 _ E2) _ E3

E1 _ (E2 _ E3)

Having established associativity, it is now possible to omit parentheses in
expressions involving `or' (at the same level). Thus, rather than write either:

1.3 Proofs in propositional calculus 21

(E1 _ E2) _ E3

or:

E1 _ (E2 _ E3)

it is permissible to write:

E1 _ E2 _ E3

Furthermore, the `or' introduction and elimination rules can be generalized as
follows:

_-I
Ei

E1 _ � � � _ En
1 � i � n

: _-I
:E1; � � � ; :En

: (E1 _ � � � _ En)

_-E
E1 _ � � � _ En ; E1 ` E ; � � � ; En ` E

E

: _-E
: (E1 _ � � � _ En)

:Ei
1 � i � n

Many of the results established in this section are familiar from Section 1.1.
It must, however, be realized that the proofs here are in no way argued from the
truth tables: the formal proofs are conducted purely by playing the game with
symbols. The certainty of correctness comes, here, from the fact that the game
can be mechanized { a program can be written to check such proofs.

De�ning conjunctions

Rule 1.7 (^-defn) The `and' operator can be introduced to the logic by the
de�nition:

^-defn
: (:E1 _ :E2)

E1 ^ E2

Notice that this is a bi-directional rule. Having de�ned `and', rules for its ma-
nipulation can be derived.

Lemma 1.8 (^-I) Thus a proof is given on page 22 of:

^-I
E1; E2

E1 ^ E2

22 1 Logic of Propositions

from E1; E2

1 ::E1 :: -I (h)
2 ::E2 :: -I (h)
3 : (:E1 _ :E2) : _-I (1,2)
infer E1 ^ E2 ^-defn(3)

Introduction of conjunction: ^-I

from : (E1 ^ E2); :E1 ` E ; :E2 ` E

1 :: (:E1 _ :E2) ^-defn(h)
2 :E1 _ :E2 :: -E(1)
infer E _-E (2,h,h)

Eliminating negated conjunctions: : ^-E

Here, the proof discovery process uses the only rule available to tackle the con-
clusion; this gives rise to the sub-goal at line 3. Line 3, in turn, matches the
: _-I rule which gives rise to sub-goals 1 and 2; these are obvious candidates for
the :: -I rule.

Exercise 1.3.2 Prove E1 ^ E2 ` Ei for 1 � i � 2. (Hint: expand the conjunction
and then use : _-E and :: -E).

Exercise 1.3.3 Prove :Ei ` : (E1 ^ E2) for 1 � i � 2. (Hint: begin by using
_-I and :: -I).

More proofs about conjunctions

Exercises 1.3.2 and 1.3.3 justify the derived rules known as ^-E and : ^-I .

Lemma 1.9 (: ^-E) The next rule to be justi�ed (see page 22) is:

: ^-E
: (E1 ^ E2); :E1 ` E ; :E2 ` E

E

Notice how the _-E uses the two sequents given in the overall hypothesis.

1.3 Proofs in propositional calculus 23

It is important to observe that the inference rules must not, in general, be
applied to inner expressions; the hypotheses of deduction rules are intended to
match whole lines in the proof (not arbitrary sub-expressions thereof). Ignoring
this rule can result in invalid arguments. An exception to this restriction is that
the de�nition rules (e.g. ^-defn) can be applied to arbitrary sub-expressions.
(There are also special substitution rules { e.g. _-subs { derived below.)

The next two lemmas can both can be justi�ed by repeated use of ^-E and
^-I .

Lemma 1.10 (^-comm) The commutativity of `and':

^-comm
E1 ^ E2

E2 ^ E1

Lemma 1.11 (^-ass) The associativity of `and':

^-ass
E1 ^ (E2 ^ E3)

(E1 ^ E2) ^ E3

As with disjunctions, this justi�es the use of the more general rules:

^-I
E1; � � � ; En

E1 ^ � � � ^ En

: ^-I
:Ei

: (E1 ^ � � � ^ En)
1 � i � n

^-E
E1 ^ � � � ^ En

Ei
1 � i � n

: ^-E
: (E1 ^ � � � ^ En); :E1 ` E ; � � � ; :En ` E

E

There are many di�erent ways of proving more advanced results. Although
brevity is not itself the main touchstone of style, short proofs are often clearer
than long ones.

Lemma 1.12 (^-subs) A very helpful inference rule which provides a valid way
of applying rules on inner sub-expressions is:

^-subs
E1 ^ � � � ^ Ei ^ � � � ^ En ; Ei ` E

E1 ^ � � � ^ E ^ � � � ^ En

24 1 Logic of Propositions

from E1 _ E2 ^ E3

1 from E1

1.1 E1 _ E2 _-I (h1)
1.2 E1 _ E3 _-I (h1)

infer (E1 _ E2) ^ (E1 _ E3)^-I (1.1,1.2)
2 from E2 ^ E3

2.1 (E1 _ E2) ^ E3 ^-subs(_-I)(h2)
infer (E1 _ E2) ^ (E1 _ E3)^-subs(_-I)(2.1)

infer (E1 _ E2) ^ (E1 _ E3) _-E (h,1,2)

Distributivity of `or' over `and': _^-dist

Its justi�cation applies ^-E n times, the sequent from the hypotheses of the
rule, and then n applications of ^-I . This rule can be used as, for example,
^-subs(_-I) to deduce:

E1 ^ E2 ^ E3 ` E1 ^ (E2 _ E) ^ E3

Lemma 1.13 (_-subs) Similarly, there is a derived rule:

_-subs
E1 _ � � � _ Ei _ � � � _ En ; Ei ` E

E1 _ � � � _ E _ � � � _ En

Its justi�cation uses _-I in n � 1 subsidiary proofs; with the sequent in one;
followed by a �nal _-E step.

Lemma 1.14 The left distributive laws of propositional calculus are:

_^-dist
E1 _ E2 ^ E3

(E1 _ E2) ^ (E1 _ E3)

^_-dist
E1 ^ (E2 _ E3)

E1 ^ E2 _ E1 ^ E3

The general pattern of these proofs is similar; an example is shown on page 24.
Distribution from the right is easy to prove { it relies on left distribution and
commutativity.

1.3 Proofs in propositional calculus 25

Exercise 1.3.4 Prove (E1 _ E2) ^ (E1 _ E3) ` E1 _ (E2^E3). (Hint: remember
to set up the �nal _-E).

Exercise 1.3.5 Prove E1 ^ (E2 _ E3) ` E1 ^ E2 _ E1 ^ E3. (Hint: use ^-E to
�nd a disjunction on which to base an _-E).

Exercise 1.3.6 Prove E1 ^ E2 _ E1 ^ E3 ` E1 ^ (E2 _ E3)

de Morgan's laws

Some of these elementary proofs are surprisingly lengthy but, having built up
useful derived rules, proofs of more interesting results do not get signi�cantly
longer. In particular, the proofs of de Morgan's laws are very short.

Exercise 1.3.7 Prove the results necessary to justify de Morgan's laws.

_-deM
: (E1 _ E2)

:E1 ^ :E2

^-deM
: (E1 ^ E2)

:E1 _ :E2

Remember that both directions must be proved for bi-directional rules.

De�ning implication

Rule 1.15 () -defn) Implication can be de�ned:

) -defn
:E1 _ E2

E1) E2

A key result about implication is known as modus ponens; its proof (see below)
relies on a contradiction rule.

Axiom 1.16 (contr) The basic inference rule used is:

contr
E1; :E1

E2

The contradiction (contr) rule only makes sense in an environment with other
assumptions: if, under some assumptions, both E1 and its negation can be de-
duced, then there must be some contradiction in the assumptions and anything
can be deduced.

26 1 Logic of Propositions

from E1) E2; E1

1 :E1 _ E2) -defn(h)
2 E1 h
3 from :E1

infer E2 contr (2,h3)
4 from E2

infer E2 h4
infer E2 _-E (1,3,4)

Modus ponens:) -E

Lemma 1.17 () -E) The law known as modus ponens can be viewed as a way
of eliminating implications:

) -E
E1) E2; E1

E2

The proof of modus ponens is on page 26. Notice how the �nal step of the
construct 3 uses the contradiction rule.

In classical propositional calculus, it can be shown that if E2 can be proved
under the assumption E1 (i.e. E1 ` E2), then ` E1) E2 holds. This is called
the `deduction theorem'. Section 3.3 explains why { in order to handle partial
functions { the logic used in this book does not admit all truths of classical logic.
In the case of the deduction theorem, only a weaker form is valid which relies on
the assumption of the `excluded middle' for E1:

E1 _ :E1

This claim is written { with delta standing for `de�ned' { as: �(E1).

Lemma 1.18 () -I) The deduction theorem (here) is:

) -I
E1 ` E2; �(E1)

E1) E2

As the name of the inference rule suggests, it can be used to introduce implica-
tions; its justi�cation is shown on page 27. Line 2.1 is justi�ed by showing the
use of the inference rule which is given in the hypothesis.

There is (literally) no end of results which can be established.

1.3 Proofs in propositional calculus 27

from E1 ` E2; �(E1)
1 E1 _ :E1 h, �
2 from E1

2.1 E2 h, h2
infer :E1 _ E2 _-I (2.1)

3 from :E1

infer :E1 _ E2 _-I (h3)
4 :E1 _ E2 _-E (1,2,3)
infer E1) E2) -defn(4)

Deduction theorem:) -I

Lemma 1.19 An interesting result is:

L1.19
E1 _ E2) E3

(E1) E3) ^ (E2) E3)

Notice that, since no conveniently short name is available for this rule, it has only
been given a Lemma number (L1.19) to which subsequent proofs can refer.

Lemma 1.20 Another result used below is:

L1.20
E1) (E2) E3)

E1 ^ E2) E3

De�ning equivalence

Rule 1.21 (, -defn) The �nal operator in the logic is also introduced by a
de�nition:

, -defn
(E1) E2) ^ (E2) E1)

E1 , E2

An extensive set of derived rules5 in given in Appendix C; they are arranged
for easy use rather than in the order in which their proofs have been given. It is
legitimate to use any of these rules in proofs of results in subsequent sections.

Exercise 1.3.8 The proofs that certain vacuous implications hold are straight-
forward; prove the results necessary to establish:

5The full axiomatization is given in the Teacher's Notes.

28 1 Logic of Propositions

)vac-I
:E1

E1) E2

)vac-I
E2

E1) E2

Exercise 1.3.9 Prove the result necessary to establish that the contrapositive of
an implication holds:

) -contrp
E1) E2

:E2) :E1

Exercise 1.3.10 Prove Lemmas 1.19 and 1.20.

Exercise 1.3.11 Prove the results which justify:

, -I
E1 ^ E2

E1 , E2

, -I
:E1 ^ :E2

E1 , E2

, -E
E1 , E2

E1 ^ E2 _ :E1 ^ :E2

^, -dist
E1 ^ (E2 , E3)

(E1 ^ E2) , (E1 ^ E3)

Generate a counter-example (truth values) which shows that the following sequent
does not hold:

(E1 ^ E2) , (E1 ^ E3) ` E1 ^ (E2 , E3)

Prove the result to justify:

_, -dist
E1 _ E2 , E1 _ E3

E1 _ (E2 , E3)

Exercise 1.3.12 (*) Write inference rules for the `exclusive or' operator of Ex-
ercise 1.1.5 on page 9 and develop a theory which includes some distribution
properties.

2

Reasoning about Predicates

In science nothing capable of proof ought to be
accepted without proof.
Richard Dedekind

This chapter extends the logical notation of the preceding chapter to cover predi-
cate calculus. It begins by introducing ways of building interesting logical expres-
sions from truth-valued functions. Section 2.2 describes the essential extension
(quanti�ers) to the logical notation and the �nal section gives an overview of the
relevant proof methods.

2.1 Truth-valued functions

Signatures

A function is a mathematical abstraction of a familiar concept: a mapping be-
tween two sets of values. The domain of a function is a set of values to which it
can be applied; application of a function to a value in its domain yields a result
value. For example square(3) = 9 and gcd(18; 42) = 6. The value 3 is in the
domain of the function square and applying square to 3 yields the result 9; in
such an application, 3 is also referred to as the argument of the function square.
The function gcd (greatest common divisor or highest common factor) is applied
to pairs of numbers.

For any function, it is useful to record its domain (i.e. the speci�ed set of
values to which the function can be applied) and range (i.e. the speci�ed set of

29

30 2 Reasoning about Predicates

values which contains the results of function application). The signature of a
function is written with the domain and range sets separated by an arrow:

square: Z! N

The domain of a function of more than one argument1 is given as a list all of the
argument sets separated by crosses.

gcd : N1 � N1 ! N1

Where the special symbols name the following (in�nite) sets:

N1 = f1; 2; : : :g
N = f0; 1; 2; : : :g
Z= f: : : ;�1; 0; 1; : : :g

Notice that the signature uses the names of the sets of values (e.g. the integers,
Z, for the domain of square; the natural numbers, N, for its range); the values to
which a function is applied are elements of the set shown as the domain and the
results are elements of the set shown as the range.

Some functions are used so frequently that it is convenient to avoid parenthe-
ses when they are applied to their arguments. This is particularly appropriate
if algebraic properties become more apparent by writing functions as operators.
Thus 2 + 3 is preferred to add(2,3) or even +(2,3) and the use of in�x
operators makes the distributive law:

i � (j + k) = i � j + i � k

clearer. The signature of such functions might be written:

add : Z� Z! Z

But they will be used in in�x operators.
As well as the obvious arithmetic operators, the examples in this chapter use

the modulus operator which yields the remainder after integer division:

7 mod 2 = 1
27 mod 3 = 0

Its signature is:

mod : N � N1 ! N

The decision as to whether a particular operator should be presented in in�x
style (i mod j) as opposed to writing it as a function with parentheses around

1Such functions can be viewed as taking one argument from a Cartesian product.

2.1 Truth-valued functions 31

its arguments (mod(i ; j)) is purely one of convenience; similarly, there is no deep
signi�cance in the adoption of some special symbol as opposed to a keyword (in
the sans serif fount).

A truth-valued function is one whose range is the Boolean, or truth value, set.
The function which characterizes the prime numbers has the signature:

is-prime: N1 ! B

This truth-valued function is de�ned formally in Section 2.2.
An expression which contains the application of a truth-valued function to an

element of its domain forms a proposition. Thus:

is-prime(7)
is-prime(23)
: is-prime(8)
is-prime(7) _ is-prime(8) _ is-prime(9)

are true propositions.

De�ning functions

Functions can be de�ned in terms of already understood functions (or operators)
and constants; in addition, the expressions in such direct de�nitions use param-
eter names in an obvious way. For example the signature and direct de�nition of
square can be written:

square :Z! N

square(i) 4 i � i

In order to distinguish the direct de�nition of a function from propositions which
might involve equality (e.g. square(2) = 4), a Greek delta (�) is combined with
the equality sign to give the de�nition symbol (4).

In addition to known functions, certain other constructs are available to form
direct function de�nitions. For example, conditional expressions can be used in
an obvious way to write:

abs :Z! N

abs(i) 4 if i < 0 then �i else i

Another simple device is to use let to de�ne a value. Thus the absolute value of
the product of two integers could be found by:

32 2 Reasoning about Predicates

absprod :Z� Z! N

absprod (i ; j) 4

let k = i � j in
if k < 0 then �k else k

Extensions to the language for direct function de�nition (e.g. cases, recursion)
are introduced below as they are required.

Such direct de�nitions can be written for truth-valued functions. Thus, if
mod is understood, a truth-valued function (operator) which indicates whether
its �rst argument divides its second without remainder, can be de�ned:

divides : N1 � N ! B

divides(i ; j) 4 j mod i = 0

But, since this is useful as an in�x operator, divides(i ; j) is written i divides j .
Other examples include:

is-even :N ! B

is-even(i) 4 2 divides i

is-odd : N ! B

is-odd (i) 4 : is-even(i)

is-common-divisor : N � N � N1 ! B

is-common-divisor (i ; j ; d) 4 d divides i ^ d divides j

Notice how these de�nitions are built up on previously de�ned functions. The
separation and naming of separate concepts plays an important part in the con-
struction of large (understandable) speci�cations.

Values (in its domain) for which a truth-valued function yields true, are said
to satisfy the function. Thus 7 satis�es is-prime, 6 satis�es is-even, and the
triple of values (42,18,6) satis�es is-common-divisor .

One way in which a free identi�er in a proposition becomes bound to a value
is by the application of a function to some value. Thus:

less-than-three : N ! B

less-than-three (i) 4 i < 3

is a de�nition of a truth-valued function whose application to 2 completes the
proposition; it evaluates to true and thus 2 is said to satisfy less-than-three.

Exercise 2.1.1 De�ne a truth-valued function:

2.1 Truth-valued functions 33

is-hexable :Z! B

is-hexable(i) 4 � � �

which determines whether a number can be represented as a single hexadecimal
digit.

Exercise 2.1.2 De�ne a truth-valued function which checks if its (integer) argument2

corresponds to a leap year:

is-leapyr :N ! B

is-leapyr (i) 4 � � �

Exercise 2.1.3 De�ne a truth-valued function which determines whether its third
argument is a common multiple of its other two arguments. (Hint: remember to
use other functions in order to make it easier to understand.)

Exercise 2.1.4 It is often useful to employ an inverse operation to specify a
function. This topic is covered in Chapter 3, but the reader should be able to
see how a `post-condition' can be used to relate the inputs to the outputs of a
function. Thus:

post-sub(i ; j ; k) 4 i = j + k

is a truth-valued function which can be used to check that k = i � j . De�ne
(without using a square root operator) a truth-valued function:

post-sqrt : N � Z! B

post-sqrt (i ; r) 4 � � �

such that both post-sqrt(9; 3) and : post-sqrt(9; 4) are true (decide what to do
about expressions like post-sqrt(9;�3) and post-sqrt(8; ?)).

Exercise 2.1.5 De�ne a truth-valued function which determines whether a quo-
tient q and remainder r represent a valid result for division of i by j . Complete
(without using division):

post-idiv :N � N1 � N � N ! B

post-idiv (i ; j ; q ; r) 4 � � �

such that:

post-idiv(7; 2; 3; 1)
: post-idiv(7; 2; 2; 3)

2Strictly, the simple algorithm should be limited so as to avoid, for example, di�culties of
the revision of the calendar in September 1752: such issues are ignored here.

34 2 Reasoning about Predicates

Exercise 2.1.6 (*) Some indication of the variety of ways in which inference rules
can be used is given at the end of Section 1.2 by the alternative presentation of
a concrete syntax. It is also possible to present the type information as inference
rules rather than in function signatures. Create some inference rules for this
purpose and show how they can be used to infer the types of expressions.

2.2 Quanti�ers

The existential quanti�er

The language for building logical expressions can be extended by including quan-
ti�ers. Their presentation in this section di�ers from the way in which the propo-
sitional operators are introduced in Section 1.1: there, a rich set of equivalences
and a simple evaluation mechanism (i.e. truth tables) made it interesting to study
the propositional operators with arbitrary logical expressions; here, the quanti-
�ers are discussed with speci�c truth-valued functions and only a limited set of
derived rules is developed for use in subsequent chapters.

Quanti�ers extend the expressive power of the logical notation but can be mo-
tivated as abbreviations. The disjunction is-prime(7) _ is-prime(8) _ is-prime(9)
can be written:

9i 2 f7; 8; 9g � is-prime(i)

This quanti�ed expression can be read as:

there exists a value in the set f7; 8; 9g which satis�es the truth-valued
function is-prime

The expression consists of an existential quanti�er (9); a bound identi�er (i); a
constraint (2 f: : :g); and, after the raised dot, a body . Any free occurrences of the
bound identi�er within the body become bound in the quanti�ed expression. All
such occurrences refer to the bound identi�er. Quanti�ers thus provide another
way of de�ning a context for free identi�ers.

For �nite sets, an existentially quanti�ed expression can be expanded into
a disjunction with one disjunct for each member of the set. This is a useful
reminder to read 9 as `there exists one or more'. Thus:

9i 2 f11; 12; 13g � is-odd(i)

is true because it is equivalent to:

is-odd(11) _ is-odd(12) _ is-odd(13)

2.2 Quanti�ers 35

The reason that quanti�ers extend the expressive power of the logic is that
the sets in the constraint of a quanti�ed expression can be in�nite. Such an
expression abbreviates a disjunction which could never be completely written
out. For example:

9i 2 N1 � is-prime(i)

or:

9i 2 N1 � : is-prime(2
i � 1)

express facts about prime numbers.
One way of establishing the existence of a quantity with a certain property

is by exhibiting one. Thus the truth of the preceding existentially quanti�ed
expressions follows from:

is-prime(7)
: is-prime(28 � 1)

To be consistent with the position about the veri�cation of existentially quan-
ti�ed expressions, any expression which is existentially quanti�ed over the empty
set must be false. Thus, for any truth-valued function p:

:9x 2 f g � p(x)

Existentially quanti�ed expressions can be used in de�nitions of truth-valued
functions. Thus the familiar `less than' relation on integers (normally written
i < j) could be de�ned:

lessthan :Z� Z! B

lessthan(i ; j) 4 9k 2 N1 � i + k = j

The preceding section uses mod as a given function. Although further notation
is needed to provide a de�nition, a useful property can be stated:

i mod j = r) 9m 2 N �m � j + r = i

Many textbooks on logic do not use the constraint part of quanti�ed expres-
sions. This is acceptable where the whole text is concerned with one type of
value. Program speci�cations are, however, frequently concerned with many dif-
ferent types of values and it is then wise to make the constraint explicit in order
to avoid confusion (e.g. claiming that no value can be doubled to yield an odd
number and then being confronted with 1:5).

36 2 Reasoning about Predicates

Universal quanti�ers

Just as some disjunctions can be viewed as existentially quanti�ed expressions, a
conjunction such as:

is-even(2) ^ is-even(4) ^ is-even(6)

can be written as a universally quanti�ed expression:

8i 2 f2; 4; 6g � is-even(i)

Here again, the increase in expressive power comes from universal quanti�cation
over in�nite sets. For example:

8i 2 N � is-even(2 � i)
8i 2 N � is-even(i)) is-odd(i + 1)
8i 2 N � 8j 2 N1 � 0 � (i mod j) < j

The truth-valued function is-prime which is used above can be directly de�ned
by using quanti�ers. The general idea of a prime number is one whose only
divisors are 1 and the number itself. This is easy to express but care is necessary
with the end cases: both 1 and 2 have the stated property. Disallowing the
former, but not the latter, leads to:

is-prime :N ! B

is-prime(i) 4 i 6= 1 ^ 8d 2 N1 � d divides i) d = 1 _ d = i

The question of universal quanti�cation over the empty set must be consid-
ered. It is necessary to adopt the position that, for any p:

8x 2 f g � p(x)

is true. The intuition behind this is less obvious than with the existential quan-
ti�er { although one could argue that there could not be any counter-examples
that could make p(x) false in the empty set. One could also argue as follows {
suppose:

8x 2 X � p(x)

were true for some X and p, then removing one element from X should not change
the value of the quanti�ed expression even when the last element is removed.
More convincing than either of these general arguments is seeing how conveniently
this end-case works in practice. For example, is-prime could be de�ned:

is-prime(i) 4 i 6= 1 ^ 8d 2 f2; : : : ; i � 1g � : (d divides i)

2.2 Quanti�ers 37

Where:

f2; : : : ; i � 1g

is the set of integers which are greater than one and less than i ; in the case that
i is one or two, this set is empty and the truth of the quanti�ed expression over
the empty set gives the required result.

Multiple quanti�ers

Where they are all the same, multiple quanti�ers and bound sets can be combined.
Thus:

8i 2 N � 8j 2 N � p(i ; j)
8j 2 N � 8i 2 N � p(i ; j)
8i 2 N; j 2 N � p(i ; j)
8i ; j 2 N � p(i ; j)

all have the same meaning. In fact, where a logical expression contains variables
which are not bound, they are considered to be bound by a universal quanti�er
at the outermost level. Thus, where the types are obvious i < i + 1 can be
considered to be shorthand for 8i 2 N � i < i + 1.

It is possible to build up expressions using both existential and universal
quanti�ers. For example:

8i ; j 2 N � i � j) 9k 2 N � i + k = j

8i 2 N � 9j 2 N � i < j ^ is-prime(j)
9i ; j 2 N � 8d 2 N1 � is-common-divisor(i ; j ; d)) d = 1

all express true facts about natural numbers. It is important, however, to real-
ize that inversion of di�ering quanti�ers can change the truth of an expression.
Consider:

8j 2 N � 9i 2 N � i = j

This is clearly true, whereas:

9i 2 N � 8j 2 N � i = j

is false. In general:

(9i 2 N � 8j 2 N � p(i ; j))) (8j 2 N � 9i 2 N � p(i ; j))

is true but the right-to-left implication is not.
As with the priority of propositional operators, it is possible to reduce the

need for parentheses by adopting some conventions. The body of a quanti�ed

38 2 Reasoning about Predicates

expression is considered throughout this book to extend as far to the right as
possible { thus:

8m;n 2 N � (m = n _ (9p 2 Z � (p 6= 0 ^m + p = n)))

can be written:

8m;n 2 N �m = n _ 9p 2 Z � p 6= 0 ^m + p = n

The bound variables in a closed quanti�ed expression are like the variables
in a program in that they can be changed (systematically) without changing the
meaning of the expression. Thus, the preceding expression is equivalent to:

8i ; j 2 N � i = j _ 9k 2 Z � k 6= 0 ^ i + k = j

When changing bound variables, it is necessary to ensure that the meaning is not
changed by using an identi�er which already occurs free.

Given that universal and existential quanti�cation are (respectively) gener-
alized conjunctions and disjunctions, the following forms of de Morgan's laws
should come as no surprise:

(8x 2 X � p(x)) , : (9x 2 X � : p(x))
: (8x 2 X � p(x)) , (9x 2 X � : p(x))

These laws permit some simple equivalence proofs to be conducted:

(8i 2 N1 � 9j 2 N1 � i < j ^ is-prime(j))
, : (9i 2 N1 � : (9j 2 N1 � i < j ^ is-prime(j)))
, : (9i 2 N1 � 8j 2 N1 � : (i < j ^ is-prime(j)))
, : (9i 2 N1 � 8j 2 N1 � j � i _ : is-prime(j))
, : (9i 2 N1 � 8j 2 N1 � is-prime(j)) j � i)

Having accepted that 9 corresponds to `there exists one or more', there are
occasions where it is useful to be able to express `there exists exactly one'. This
is written as 9!. For example:

8i ; j 2 N1 �
is-prime(i) ^ is-prime(j) ^ i 6= j

) 9! d 2 N1 � is-common-divisor(i ; j ; d)

This quanti�er:

9! x 2 X � p(x)

can be de�ned as an abbreviation for:

9x 2 X � p(x) ^ 8y 2 X � p(y)) x = y

2.2 Quanti�ers 39

All of the laws of the propositional calculus (cf. Section 1.3) remain true when
general logical expressions (i.e. including quanti�ed expressions) are substituted
for the Ei . The language which is now available (propositional operators, truth-
valued functions and quanti�ed expressions) is known as the predicate calculus.3

Exercise 2.2.1 Which of the following expressions are true?

9i 2 N � i = i

8i 2 N � i = i

9i 2 N � i 6= i

9i ; j 2 N1 � i mod j � j

8i 2 Z � 9j 2 Z � i + j = 0
9j 2 Z � 8i 2 Z � i + j = 0

8i ; j 2 N � i 6= j

8i 2 N � 9j 2 N � j = i � 1
8i 2 N � 9j 2 N � i < j < 2 � i ^ is-odd(j)
8i 2 N1 � : is-prime(4 � i)
8i 2 N � 9j 2 N � j � 3 ^ is-leapyr(i + j)

9! i 2 N � i = i

9! i 2 Z � i � i = i

Exercise 2.2.2 Express, using quanti�ers, the fact that there is not a largest
integer.

Exercise 2.2.3 De�ne { with quanti�ers (but without using ordering operators)
{ a truth-valued function corresponding to (i � j):

greatereq :Z� Z! B

greatereq(i ; j) 4 � � �

Exercise 2.2.4 The function, sign, yields a value in the set:

f�1; 0; 1g

3Strictly, in this book, only the �rst-order predicate calculus is used. This means that
variables are only quanti�ed over simple values like natural numbers { names of truth-valued
functions are not quanti�ed. It is observed above that the truth of sentences in the propositional
calculus is decidable (cf. checking by truth tables). Although it is less obvious, there are semi-
decision procedures for the pure predicate calculus; the truth of sentences in the predicate
calculus with interpreted functions and equality is, however, not decidable.

40 2 Reasoning about Predicates

depending on whether its argument is negative, zero, or strictly positive. Write
a de�nition and record some properties of sign.

Exercise 2.2.5 (*) An extended modulus operator can be applied to negative
(as well as positive) numbers. There are various forms of this operator. Mathe-
matically, it is convenient to ensure that:

m mod n + (m � n) � n = m

where � is an integer division operator. De�ne this operator.

2.3 Proofs in the predicate calculus

The development of the proof rules for the predicate calculus can be based on
one of the quanti�ers and the notion of equality. In this respect the way in
which the theory is presented is very similar to that of Section 1.3. There are,
however, some technical problems with free variables and their substitution which
make the development of the derived rules somewhat more di�cult than for the
propositional calculus. Relatively few rules about quanti�ers are needed in the
chapters which follow. This section develops those which are required; a wider-
ranging set of rules is given in Appendix C.

Substitution

A preliminary to the presentation of any rules is the establishment of some con-
ventions on the use of letters. Letters at the end of the alphabet (x , etc.) are used
for variables. The convention to use Ei for logical expressions is maintained, but
is extended to show speci�c free variables; thus E (x) has the variable x occurring
free. It is explained above that terms are expressions (such as 2 + 3); the letter
s { possibly subscripted { is used to denote terms.

An essential notion is that of syntactic substitution. The expression E (s=x)
is formed by substituting all free occurrences of the variable x by the term s.
Thus 7 can be substituted for x as follows:

(x = 3 + 4)(7=x) = (7 = 3 + 4)

But the restriction that this syntactic operation only a�ects free variables ensures
that:

(8x 2 X � x = x)(7=x) = (8x 2 X � x = x)

There is a more ticklish problem with substitution concerning the capture of a
variable. In making the substitution:

2.3 Proofs in the predicate calculus 41

(y = 10 _ 8x 2 N � x 6= 10) x 6= y)(x=y)

the change from y to x should not cause a confusion between the free and bound
variables. In such a case, it is su�cient to remember that bound variables can
be systematically changed so that:

8x 2 N � x 6= 10) x 6= y

and:

8i 2 N � i 6= 10) i 6= y

are equivalent. In a case where a free variable would be captured by a sub-
stitution, the danger is avoided by preceding the substitution with a suitable
systematic change to the bound variable in question. Thus, the substitution
above might yield:

x = 10 _ 8i 2 N � i 6= 10) i 6= x

Although these technicalities of substitution are important, the need to rely on
them can be minimized by a careful choice of variables.

Reasoning about quanti�ers

It would be possible to take either the existential or the universal quanti�er as
basic and de�ne the other in terms of the basic one. Having used the disjunction
as one of the basic forms for the presentation of the propositional calculus, it is
natural to take the existential quanti�er �rst. An obvious example of the rule for
the introduction of this quanti�er is:

7 2 N1 ; is-prime(7) ` 9i 2 N1 � is-prime(i)

This states that knowing the type of the term (7) and knowing that it possesses
a particular property (is-prime) establishes that there exist (one or more) values
of the type which satisfy the property.

Axiom 2.1 (9-I) In general:

9-I
s 2 X ; E (s=x)

9x 2 X � E (x)

If the reader compares this rule with that for _-I , it can be seen as a natural
generalization. The conclusion of the proof rule is essentially a disjunction over
all of the elements of X ; the second hypothesis establishes that the property does
hold for some element of X . (Notice that the �rst hypothesis establishes that the
set X is not empty.)

42 2 Reasoning about Predicates

The form of the _-E rule shows that a conclusion which follows from a number
of expressions also follows from their disjunction. The general idea of the 9-E
rule is the same. The need to show that E follows from each possible value in X
is avoided by a subtle use of free variables.

Axiom 2.2 (9-E) Thus:

9-E
9x 2 X � E (x); y 2 X ;E (y=x) ` E1

E1
y is arbitrary

The restriction that y is arbitrary requires that it is a variable which has not
occurred in earlier proof steps; it should also be the case that y does not occur
as a free variable in E1. These restrictions prevent invalid inferences.

A comparison with the development of the propositional calculus should again
suggest the need for rules concerning negated forms of existentially quanti�ed
expressions.

Axiom 2.3 For the existential quanti�er, these rules are:

:9-I
x 2 X ` :E (x)

: (9x 2 X � E (x))

:9-E
: (9x 2 X � E (x)); s 2 X

:E (s=x)

The relationship between these rules and those for disjunction should be obvious
when existential quanti�cation (over �nite sets) is viewed as an abbreviation for
disjunction.

De�ning universal quanti�cation

Rule 2.4 (8-defn) The de�nition of the universal quanti�er is given by the rule:

8-defn
: (9x 2 X � :E (x))

8x 2 X � E (x)

This gives rise to the two generalized forms of de Morgan's law.

Lemma 2.5 (9-deM) For existential quanti�ers:

9-deM
: (9x 2 X � E (x))

8x 2 X � :E (x)

Lemma 2.6 (8-deM) For universal quanti�ers:

2.3 Proofs in the predicate calculus 43

from x 2 X ` p(x)
1 from x 2 X
1.1 p(x) h,h1

infer :: p(x) :: -I (1.1)
2 :9x 2 X � : p(x) :9-I (1)
infer 8x 2 X � p(x) 8-defn(2)

Universal quanti�er introduction: 8-I

from 8x 2 X � p(x); s 2 X
1 :9x 2 X � : p(x) 8-defn(h)
2 :: p(s=x) :9-E (h,1)
infer p(s=x) :: -E(2)

Universal quanti�er elimination: 8-E

8-deM
: (8x 2 X � E (x))

9x 2 X � :E (x)

These can be proved as derived rules.
Given the basic de�nition, it is possible to derive the introduction and elimi-

nation rules for the universal quanti�er.

Lemma 2.7 (8-I)

8-I
x 2 X ` E (x)

8x 2 X � E (x)

is proved on page 43.

Lemma 2.8 (8-E)

8-E
8x 2 X � E (x); s 2 X

E (s=x)

is justi�ed on page 43.

44 2 Reasoning about Predicates

All of the rules for universal quanti�ers are natural generalizations of the
corresponding rules for conjunctions.

Lemma 2.9 presents some signi�cant derived rules concerning the distribution
of the two quanti�ers over conjunctions and disjunctions.

Lemma 2.9

9 _-dist
9x 2 X � E1(x) _ E2(x)

(9x 2 X � E1(x)) _ (9x 2 X � E2(x))

9 ^-dist
9x 2 X � E1(x) ^ E2(x)

(9x 2 X � E1(x)) ^ (9x 2 X � E2(x))

8_-dist
(8x 2 X � E1(x)) _ (8x 2 X � E2(x))

8x 2 X � E1(x) _ E2(x)

8^-dist
(8x 2 X � E1(x)) ^ (8x 2 X � E2(x))

8x 2 X � E1(x) ^ E2(x)

The reader should understand why the converses of 9 ^-dist and 8_-dist
do not hold. Other useful derived rules are presented in Appendix C; The full
axiomatization is given in the Teacher's Notes.

There are fewer exercises here than in Chapter 1 since subsequent sections
provide ample examples of the use of the rules, and the development of the
predicate calculus itself is not the immediate object.

Exercise 2.3.1
Prove the derived rules for :8-I and :8-E :

:8-I
s 2 X ; :E (s=x)

: (8x 2 X � E (x))

:8-E
: (8x 2 X � E1(x)); y 2 X ;:E1(y=x) ` E2

E2
y is arbitrary

Exercise 2.3.2 (*) Prove the derived rules for 9 _-dist , 9 ^-dist , 8_-dist and
8^-dist (remember to prove both forms of bi-directional rules).

3

Functions and Operations

The advantages of implicit de�nition over
construction are roughly those of theft over honest
toil.
B. Russell

Several functions are de�ned above in a direct way. In this chapter, an implicit
speci�cation style for functions and programs is introduced. Such implicit spec-
i�cations abstract away from the detail of how a result is to be computed: they
document only the required properties of the result. Being a standard part of
mathematics, it is functions which are treated in the �rst section. This mathe-
matically familiar area provides the opportunity to illustrate the fact that implicit
speci�cations can often be more concise than implementations (i.e. direct de�ni-
tions). The second section of this chapter is concerned with proofs that direct
de�nitions satisfy implicit speci�cations. In order to keep the reliance on new
concepts to a minimum, most of the examples are concerned with natural num-
bers and their operators. Later chapters of the book extend the range of data
types. Section 3.3 reviews the reasons why the logical system which is used in this
book is weaker than classical logic as presented in most textbooks: the system for
dealing with partial functions is explained in detail. (Some readers may choose
to read only the �rst part of this somewhat technical section.) The �nal section
of this chapter extends the implicit speci�cation notation to handle programs.

45

46 3 Functions and Operations

3.1 Implicit speci�cation of functions

Reasons for being implicit

An implicit speci�cation states what is to be computed whereas the direct de�ni-
tions in previous chapters show how a result can be computed. (In programming
terms, the direct de�nition is being treated as an implementation which has to be
shown to satisfy the implicit speci�cation.) There are several reasons for wanting
to record an implicit speci�cation. Perhaps the most obvious reason is that the
speci�cation is often signi�cantly shorter than a direct de�nition. For example, a
direct de�nition of, say, the Newton-Raphson approximation algorithm is much
longer and harder to understand than stating that the result of a square root
function should be such that when squared it di�ers from the argument by at
most some tolerance.

It must, however, be conceded that such convenient algebraic properties do
not always exist. Because of the way in which UK income tax is calculated, for
example, even the speci�cation of a function which determines tax deductions
is very algorithmic. However, implicit speci�cations are often signi�cantly more
concise than implementations, and thinking in terms of speci�cations leads one to
capitalize on this conciseness whenever possible. For signi�cant problems there is
a spectrum of speci�cations ranging from the very abstract to something which
essentially describes the implementation. The full range of this spectrum becomes
clear when data objects are discussed in subsequent chapters. One advantage of
�nding a speci�cation far from the algorithmic end of the spectrum is that it may
expose a range of alternative implementations.

An implicit speci�cation is a way of recording a functional requirement with-
out commitment to a particular method of calculation. Another attribute of such
a speci�cation is that it can state the properties of the required result in a way
which is understandable to the user. For example, the user of the square root
function can be expected to be interested in the property of the �nal answer
and to wish to leave the details of the chosen implementation to the developer.
There is, however, an attendant danger in implicit speci�cation. Taking the same
example again, the property as stated above would allow for either the negative
or the positive root to be generated. This may be what is required; if not, it
is easy to see how additional properties can be stated. An implicit speci�cation
must be such that all of the properties on which users wish to rely are conse-
quences of the speci�cation: the user should rely only on the speci�cation (and
its consequences).

There are two remaining arguments for recording implicit speci�cations. The
points are more subtle but, in practical applications, very important. Whereas

3.1 Implicit speci�cation of functions 47

any particular algorithm will yield a speci�c result, a speci�cation can state a
range of acceptable results. Square root (over real numbers with a tolerance)
provides a good example. Furthermore, implicit speci�cations provide an explicit
place for recording assumptions about arguments. Many computer programs are
designed under assumptions on their inputs and operating environment. The
square root example could again be pressed into service by saying that its argu-
ment must be a positive real number (if the result is also to be a real number); but
more interesting examples below illustrate how assumptions often concern the re-
lationships between values. A speci�cation can provide a way of making explicit
those assumptions (pre-conditions) which are otherwise hidden consequences of
an algorithm.

Format of implicit function speci�cation

A function which is to yield the maximum number from the set of numbers to
which it is applied gives:

maxs(f3; 7; 1g) = 7

Its speci�cation might be written:

maxs (s:N-set) r :N
pre s 6= f g
post r 2 s ^ 8i 2 s � i � r

The �rst line of this speci�cation de�nes the signature of the function. The
syntax here is slightly di�erent from that of Chapter 2: in implicit speci�cations
the style is intentionally closer to that of programming languages like Pascal.
Names are given to both arguments and results. The names are followed by their
types. Thusmaxs takes a �nite set of natural numbers as its argument (Chapter 4
presents set notation in detail) and yields a single natural number as result. The
names given are the link to the pre- and post-conditions: the identi�ers used
within these two truth-valued functions refer to the values of the objects which
are named in the �rst line.

The pre-condition of a function records assumptions about the arguments to
which it is to be applied. For this example, its type is:

pre-maxs:N -set ! B

Notice how the keyword pre is used in the speci�cation but that a name is formed
(in an obvious way) for the pre-condition if it is to be used out of context.

The pre-condition shows that maxs is a partial function which is required to
be de�ned only when it is applied to non-empty sets. The post-condition requires

48 3 Functions and Operations

that the result must be a member of the argument set and that no number in
that set exceeds the result. The type of the post-condition for this example is:

post-maxs:N -set � N ! B

Notice that:

pre-maxs(f3; 7; 1g) , true

post-maxs(f3; 7; 1g; 7) , true

Writing a direct de�nition of maxs would pose a number of problems which
are worth considering so as better to appreciate the implicit speci�cation. The
�rst problem would be one of naming. To write:

maxs(s) 4 � � �

means that no name is available for the result1 so that multiple properties cannot
be written. One indirect way to provide such a name is to write:

maxs(s) = r) r 2 s ^ 8i 2 s � i � r

This is, in fact, an indication of the origin of post-conditions. A direct de�nition
can be given by using recursion:

maxs(s) 4

let i 2 s in

if card s = 1
then i

else max (i ;maxs(s � fig))

But this introduces a number of problems: leaving aside the max function for the
moment, the arbitrary choice2 implied in the let is unusual; the algorithm shown
does not expose the essential properties of the result clearly; the fact that the
function is partial is now a hidden property. Clearly, this is an example where
the implicit speci�cation is a useful description of the intended function.

The function which yields the larger of two integers might be speci�ed:

max (i :Z; j :Z) r :Z
pre true

post (r = i _ r = j) ^ i � r ^ j � r

Here there are no assumptions on the arguments (other than their type) and the
pre-condition is true. As with maxs, the post-condition lists several conjoined

1One could use the iota (�) description binding.
2The subject of under-determined functions is discussed at the end of Section 3.2.

3.1 Implicit speci�cation of functions 49

f (p:Tp) r :Tr
pre � � � p � � �
post � � � p � � � r � � �

Figure 3.1 Format of function speci�cation

properties. In this simple example, the direct de�nition:

max (i ; j) 4 if i � j then j else i

is no longer (nor more opaque) than the speci�cation. In general, however, de-
composing a post-condition into separate (conjoined) expressions results in a very
clear speci�cation which presents the required properties of the results in a way a
user will appreciate. For example, it is convenient, in specifying a sort routine, to
separate the properties of the order of the result and the necessity for the result
to be a permutation of the starting sequence.

Figure 3.1 gives the general format of an implicit function speci�cation as used
in this book. The truth-valued pre-condition can refer only to the values of the
parameters; the post-condition normally refers to the values of both parameters
and result. The names are bound by the variable names in the signature of the
speci�cation. (Because of the need to refer to arguments, as well as results, the
name `post-condition' is not ideal, but convention has established the term and
it is used throughout this book.)

Meaning of implicit speci�cation

Informally, such a speci�cation requires that, to be correct with respect to the
speci�cation, a function must { when applied to arguments (of the right type)
which satisfy the pre-condition { yield a result (of the right type) which satis�es
the post-condition. This statement, and the requisite proof style, are presented
formally in the next section. Notice that, for values which do not satisfy the
pre-condition, nothing can be assumed about the result.

It is possible to write contradictory speci�cations which cannot be satis�ed.
Informally, it is clear that a speci�cation must avoid this error; the notion of
satis�ability is used below to formalize this.

In order to specify a function which can yield any element of a set, it is
necessary only to remove one of the conjuncts of the post-condition of maxs {
thus:

50 3 Functions and Operations

arbs (s:N-set) r :N
pre s 6= f g
post r 2 s

Just as with the earlier discussion of square root, any algorithm would determine
a particular result; the implicit speci�cation indicates the permitted range of
results.

Implicit speci�cations can { as has been seen above { also use quanti�ers: this
often avoids the use of recursion required in a direct de�nition. For example:

gcd (i :N1 ; j :N1) r :N1

pre true

post is-common-divisor(i ; j ; r) ^
:9s 2 N1 � is-common-divisor(i ; j ; s) ^ s > r

Thus the advantages of implicit speci�cation over direct de�nition include:

� direct description of (multiple) properties which are of interest to the user;

� characterizing a set of possible results by a post-condition;

� explicit record (by Boolean expression) of the pre-condition;

� less commitment to a speci�c algorithm;

� provision of a name for the result.

Where none of these points apply, a direct de�nition can be written. Indeed,
since pre- and post-conditions are themselves (truth-valued) functions, it is clear
that one must resort somewhere to direct de�nition or face an in�nite regress.

Exercise 3.1.1 Write an implicit speci�cation of a function which yields the
minimum value from a set of integers.

Exercise 3.1.2 Write an implicit speci�cation of a function which performs in-
teger subtraction. Just as one teaches children, base the post-condition on the
idea of `the number which would have to be added to j to get i '.

Exercise 3.1.3 What change would be made to the preceding speci�cation to
ensure that neither zero nor negative numbers occur as arguments or results.

Exercise 3.1.4 Write an implicit speci�cation of a function which yields the
absolute value of an integer. Do not use a conditional expression in the post-
condition.

3.2 Correctness proofs 51

Exercise 3.1.5 Specify a function which yields the smallest common multiple of
two natural numbers. Build up useful subsidiary functions to make the speci�-
cation readable.

Exercise 3.1.6 Specify the mod function (over positive integers).

Exercise 3.1.7 Proofs that direct de�nitions satisfy implicit speci�cations are
considered below. For now check the following implementations against your
speci�cation and give a counter-example (test case value) if they are wrong.
For integer subtraction:

sub(i ; j) 4 2 � i=j

For natural number subtraction (cf. Exercise 3.1.3):

subp(i ; j) 4 if i = j then 0 else 1 + subp(i ; j + 1)

Would this be correct for the earlier case (Exercise 3.1.2)?
For absolute value (cf. Exercise 3.1.4):

abs(i) 4 max (i ;�i)

For smallest common multiple (cf. Exercise 3.1.5):

scm(i ; j) 4 i � j

3.2 Correctness proofs

Satisfaction notion

A direct de�nition of a function is said to satisfy an implicit speci�cation if, for
all arguments of the required type which satisfy the pre-condition, the evaluation
of the direct de�nition yields results which are of the required type and satisfy the
post-condition. This can be stated formally as a proof obligation which must be
discharged in order to justify the claim of satisfaction. For the implicit speci�ca-
tion given in Figure 3.1 on page 49, the pre- and post-conditions are truth-valued
functions with the following names and signatures:

pre-f :Tp ! B

post-f :Tp � Tr ! B

The keyword form in implicit function speci�cations provides a shorthand way of
presenting these truth-valued functions. When used in logical expressions, they
are handled just as if they had been given direct de�nitions:

52 3 Functions and Operations

pre-f (p) 4 � � � p � � �
post-f (p; r) 4 � � � p � � � r � � �

Proof obligation 3.1 A direct de�nition:

f :Tp ! Tr

f (� � �) 4 � � �

satis�es the speci�cation if (and only if):

8p 2 Tp � pre-f (p)) f (p) 2 Tr ^ post-f (p; f (p))

Thus the recursive function for maxs in the preceding section satis�es its speci�-
cation; the same function also satis�es the speci�cation of arbs. The concern in
this section is with the construction of formal proofs of such statements.

Notice that the oft-used phrase `: : : is correct' should really be interpreted
as `: : : satis�es the : : : speci�cation'. Without reference to a speci�cation, the
notion of correctness has no meaning.

The proof obligation for satisfaction, which is given above, makes the role
of the pre-condition explicit: for argument values which do not satisfy the pre-
condition, no constraint is placed on the implementation by the speci�cation.
Thus the overall speci�cation is satis�ed by an implementation regardless of
the results which it produces for those arguments which fail to satisfy the pre-
condition; the requirement is that the results are acceptable for those arguments
which do satisfy the pre-condition. Similarly, a direct de�nition, which produces
{ for each argument { any answer which lies in the range of answers de�ned by
the post-condition, satis�es the speci�cation. Perhaps the most surprising conse-
quence of the proof obligation is that the direct de�nition is allowed to produce no
result (i.e. to be unde�ned) on arguments which do not satisfy the pre-condition.

The �rst examples of formal proofs are very simple in order to exhibit the
general form of proof. Using R for the set of real numbers, a constant function
pi can be speci�ed:

pi (y :R) r :R
pre true

post abs(� � r) � 10�2

The argument y happens to play no part in the post-condition and could have
been omitted since the function yields the same result for any argument; it is
included only to make the form of the proof obligation easier to relate to the
general case. A (rather crude) direct de�nition might be:

pi(y) 4 3:141

3.2 Correctness proofs 53

from x 2 R
1 pi(x) = 3:141 R3.2(h)
2 3:141 2 R R

3 pi(x) 2 R =-subs(2,1)
4 abs(� � 3:141) � 10�2 R

5 abs(� � pi(x)) � 10�2 =-subs(4,1)
6 post-pi(x ; pi(x)) post -pi(h,3,5)
7 pi(x) 2 R ^ post-pi(x ; pi(x)) ^-I (3,6)
infer pre-pi(x)) pi(x) 2 R ^ post-pi(x ; pi(x)))vac-I (7)

Theorem 3.3: pi (sequent form)

In order to reason about such direct de�nitions it is necessary to use them in
proofs. The smoothest transition from function de�nitions to proofs is to provide
inference rule presentations for any direct de�nitions.

Rule 3.2 The rule for pi is:

R3.2
y 2 R

pi(y) = 3:141

Theorem 3.3 The appropriate instance of proof obligation 3.1 is:

8x 2 R � pre-pi(x)) pi(x) 2 R ^ post-pi(x ; pi(x))

The consequent of Theorem 3.3 has a universal quanti�er; an obvious strategy
is to prove the validity of the following sequent:

x 2 R ` pre-pi(x)) pi(x) 2 R ^ post-pi(x ; pi(x))

then the actual result follows from the 8-I rule:

from x 2 R ` pre-pi(x)) pi(x) 2 R ^ post-pi(x ; pi(x))
infer 8x 2 R � pre-pi(x)) pi(x) 2 R ^ post-pi(x ; pi(x)) 8-I (h)

Theorem 3.3: pi

54 3 Functions and Operations

Here, the sequent form of the result is proved separately. Clearly, the universal
quanti�er could be introduced in the same proof but this would result in a deeper
nesting than is necessary. In the proofs below, only the sequent form is proved
because the quanti�ed form would always follow in the same way.

The use of di�erent identi�ers in the speci�cation and the proof obligation is
deliberate: in the �rst two examples it is done to clarify the substitutions being
performed. The proof of the sequent form is shown on page 53. In this proof of the
sequent form of Theorem 3.3, appeals to the de�nitions of the post clause of the
implicit speci�cation are shown as post -pi , etc.: they are essentially unfoldings of
those de�nitions with speci�c arguments. Thus, line 5 is an exact expansion of
line 6; but notice that the justi�cation of line 6 also refers to the hypothesis and
to line 3 in order to establish that the arguments are of appropriate type. The
other new form of justi�cation which is used here is the =-subs used to justify
lines 3 and 5. This substitution of a term { by one known to be equal to it { is
intuitively simple. Notice, however, that if there is more than one occurrence it
is not necessary to make all possible substitutions.

Axiom 3.4 (=-subs) So:

=-subs
s = s 0; E1

E2

where the expression E2 is obtained from E1 by substituting one or more occur-
rences of s by s 0.

Analyzing a proof

The general form of all of the proofs in this section is to make heavy use of the
de�nitions and facts about the data types being manipulated with relatively little
use of complex logical properties. Before seeking to understand how this proof
could be discovered, the validity of the individual steps should be understood.
Line 1 introduces to the proof on page 53 the knowledge about the function pi

in the planned way by using R3.2 (the appeal to the hypothesis re
ects the fact
that the rule only applies to arguments of the correct type); lines 2 and 4 simply
introduce facts about the underlying data type (real numbers); line 3 follows by
substituting the left-hand side of the equality in line 1 for its right-hand side
where the latter occurs in line 2; lines 4 and 5 are constructed in a similar way
to lines 2{3; line 6 uses the de�nition of post-pi implied by the post-condition of
the speci�cation of pi (remember that the appeals to the hypothesis and line 3
are to establish types); line 7 and the �nal conclusion use derived inference rules
of propositional calculus.

But how was this proof found? It is possible to construct the natural deduc-

3.2 Correctness proofs 55

tion proof fairly mechanically. Begin by writing the chosen sequent as:

from x 2 R
...

infer pre-pi(x)) pi(x) 2 R ^ post-pi(x ; pi(x)) ?

Theorem 3.3 (�rst step)

Considering the goal, there are a collection of inference rules which could create
an implication. The obvious rule would be) -I , but, noticing the special case
that pre-pi(x) is true, prompts the selection of)vac-I to create:

from x 2 R
...

k pi(x) 2 R ^ post-pi(x ; pi(x)) ?
infer pre-pi(x)) pi(x) 2 R ^ post-pi(x ; pi(x)))vac-I (k)

Theorem 3.3 (second step)

Line k (there is clearly a numbering problem when working backwards!) is a
conjunction and the obvious rule for its creation is ^-I , thus:

from x 2 R
...

i pi(x) 2 R ?
j post-pi(x ; pi(x)) ?
k pi(x) 2 R ^ post-pi(x ; pi(x)) ^-I (i,j)
infer pre-pi(x)) pi(x) 2 R ^ post-pi(x ; pi(x)))vac-I (k)

Theorem 3.3 (third step)

The reader should now be able to see how such a proof would be completed. The
advantage of proceeding in this way is that the open justi�cations clearly mark
the remaining work. The problem with this style when tackled with pen and ink
is knowing how much space to leave: this results in excessive use of a waste-paper

56 3 Functions and Operations

basket! A text editor can be used to some advantage, but special-purpose proof
editors (see [BM79, Lin88, JL88, RT89]) can o�er much more support.

More examples

Subsequent proofs are, for obvious reasons, presented only in their �nal form
(furthermore, only the sequent form is given) and comments on their discovery
are made only when some new feature is present. The reader should, however,
use the technique of working back from a goal when undertaking the exercises.

In order to illustrate the role of non-trivial pre-conditions the following simple
speci�cation is used:

foo (i :N; j :N) r :N
pre i = 2
post r = 2 � j

together with the direct de�nition:

foo(i ; j) 4 i � j

Rule 3.5 The rule form of which is:

R3.5
i ; j 2 N

foo(i ; j) = i � j

Theorem 3.6 The sequent form of proof obligation 3.1 becomes:

m;n 2 N `
pre-foo(m;n)) foo(m;n) 2 N ^ post-foo(m;n; foo(m;n))

This proof obligation is discharged on page 57. Its proof is similar to that for pi ,
but its discovery does result in an) -I because the goal is an implication which
has a non-trivial antecedent.

It is not necessary to produce all proofs at such a �ne level of detail. In
particular, the substitution steps can be handled less formally (once again, given
the proviso that the formal steps can be created should doubt arise). The proof
on page 57 might be written as:

3.2 Correctness proofs 57

from m;n 2 N
1 from m = 2
1.1 foo(m;n) = m � n R3.5(h)
1.2 m � n 2 N N,h
1.3 foo(m;n) 2 N =-subs(1.2,1.1)
1.4 foo(m;n) = 2 � n =-subs(h1,1.1)
1.5 post-foo(m;n; foo(m;n)) post-foo(h,1.3,1.4)

infer foo(m;n) 2 N ^ post-foo(m;n; foo(m;n)) ^-I (1.3,1.5)
2 �(m = 2) h
3 m = 2) foo(m;n) 2 N ^ post-foo(m;n; foo(m;n))) -I (1,2)
infer pre-foo(m;n)) foo(m;n) 2 N ^ post-foo(m;n; foo(m;n))pre-foo(h,3)

Theorem 3.6: foo

from m;n 2 N
1 m = 2) m � n 2 N ^m � n = 2 � n N,h
2 m = 2) foo(m;n) 2 N ^ foo(m;n) = 2 � n 1, R3.5
infer pre-foo(m;n)) foo(m;n) 2 N ^ post-foo(m;n; foo(m;n))

Theorem 3.6: outline proof

Exercise 3.2.1 Prove that the speci�cation:

double (x :Z) r :Z
post r = 2 � x

is satis�ed by:

double(x) 4 x + x

Remember to present the rule form of the direct de�nition.

Exercise 3.2.2 Prove that the speci�cation:

conv (f :R) c:R
post c � 9=5 + 32 = f

is satis�ed by:

58 3 Functions and Operations

conv(f) 4 (f + 40) � 5=9 � 40

Exercise 3.2.3 Prove that the speci�cation:

choose (i :N) j :N
pre i = 3 _ i = 8
post (i = 3) j = 8) ^ (i = 8) j = 3)

is satis�ed by:

choose(i) 4 11 � i

Notice that this proof does not require case analysis.

Case analysis

Direct de�nitions of functions can also use conditional expressions. An example
is the direct de�nition of the max function:

max (i ; j) 4 if i � j then j else i

For this, two inference rules are needed but they are given the same number.

Rule 3.7 The rules are:

R3.7
i ; j 2 Z; i � j

max (i ; j) = j

R3.7
i ; j 2 Z; j < i

max (i ; j) = i

The implicit speci�cation is:

max (i :Z; j :Z) r :Z
pre true

post (r = i _ r = j) ^ i � r ^ j � r

Theorem 3.8 The proof obligation is:

i ; j 2 Z `
pre-max (i ; j)) max (i ; j) 2 Z^ post -max (i ; j ;max (i ; j))

The proof of this sequent is given on page 59. As before, the reader should �rst
check the forward steps in this proof. The generation of this proof introduces
one new tactic. Line 4 is generated (as in pi) by noticing that the pre-condition
is true. In the proof of pi the analysis could proceed because the de�nition of

3.2 Correctness proofs 59

from m;n 2 Z
1 m � n _ m > n Z,h
2 from m � n

2.1 max (m;n) = n R3.7(h,h2)
2.2 max (m;n) 2 Z =-subs(2.1,h)
2.3 (n = m _ n = n) ^m � n ^ n � n Z,h,h2,^,_
2.4 post-max (m;n;n) post-max (h,2.3)
2.5 post-max (m;n;max (m;n)) =-subs(2.4,2.1)

infer max (m;n) 2 Z^ post-max (m;n;max (m;n)) ^-I (2.2,2.5)
3 from m > n

3.1 max (m;n) = m R3.7(h,h3)
3.2 max (m;n) 2 Z =-subs(3.1,h)
3.3 (m = m _ m = n) ^m � m ^ n � m Z,h,h3,^,_
3.4 post-max (m;n;m) post-max (h,3.3)
3.5 post-max (m;n;max (m;n)) =-subs(3.4,3.1)

infer max (m;n) 2 Z^ post-max (m;n;max (m;n)) ^-I (3.2,3.5)
4 max (m;n) 2 Z^ post-max (m;n;max (m;n)) _-E (1,2,3)
infer pre-max (m;n)))vac-I (4)

max (m;n) 2 Z^ post-max (m;n;max (m;n))

Theorem 3.8: max

the function is straightforward; here, the expansion of max is a long expression
which requires simpli�cation. The best way to simplify a conditional is by case
analysis. Here, the case distinction is obvious and the sub-goals generated are
lines 2 and 3 (and the subsidiary line 1). Once these are identi�ed, the proof is
straightforward.

The proofs so far are presented with a great deal of detail. The level of
detail can be chosen to suit the problem in hand and, in later proofs, several
inference steps are performed in a single line. Furthermore, as the reader becomes
con�dent in the construction of such proofs, only the outer levels of a proof need
be recorded; the inner steps can be completed if doubt arises. The key point
about such (rigorous) proof outlines is that it is clear what needs to be done to
extend them to formal proofs { for this reason, errors are less likely.

In the following speci�cation:

60 3 Functions and Operations

abs (i :Z) r :Z
post 0 � r ^ (r = i _ r = �i)

the pre-condition which is true is omitted; thinking of the pre-condition as per-
mission to ignore certain argument combinations, its omission indicates that the
implementation must cater for any arguments (of the required types). Similarly,
the proof obligation can be simpli�ed to re
ect the fact that E and true) E

are equivalent expressions.

Exercise 3.2.4 Prove that the speci�cation:

abs (i :Z) r :Z
post 0 � r ^ (r = i _ r = �i)

is satis�ed by:

abs(i) 4 if i < 0 then �i else i

Exercise 3.2.5 The sign function can be speci�ed:

sign (i :Z) r :Z
post i = 0 ^ r = 0 _ i < 0 ^ r = �1 _ i > 0 ^ r = 1

Write a direct de�nition and prove that it satis�es the speci�cation.

Using the speci�cation of a subsidiary function

The speci�cation of abs is given in Exercise 3.2.4.

Theorem 3.9 Thus any proposed implementation must be such that:

i 2 Z ` abs(i) 2 Z^ post-abs(i ; abs(i))

A direct de�nition which uses conditional expressions and arithmetic operators
is considered in Exercise 3.2.4. Suppose, however, that the following implemen-
tation were to be considered:

abs(i) 4 max (i ;�i)

It would, of course, be possible to expand out the right-hand side of this de�nition
by using the direct de�nition ofmax . But in the development of programs, a high-
level design step introduces components (via speci�cations) whose development
follows the justi�cation of the design step. The �rst hint of how this works can
be given by making the proof rely only on the implicit speci�cation, rather than
the direct de�nition, of max .

3.2 Correctness proofs 61

from i 2 Z
1 �i 2 Z Z,h
2 max (i ;�i) 2 Z max ,h,1
3 abs(i) = max (i ;�i) R3.10(h)
4 abs(i) 2 Z =-subs(3,2)
5 (max (i ;�i) = i _ max (i ;�i) = �i)^ post -max (h,1)

i � max (i ;�i) ^ �i � max (i ;�i)
6 0 � max (i ;�i) Z,5
7 post-abs(i ;max (i ;�i)) post-abs(h,2,6,5)
8 post-abs(i ; abs(i)) =-subs(3,7)
infer abs(i) 2 Z^ post-abs(i ; abs(i)) ^-I (4,8)

Theorem 3.9: abs

Rule 3.10 As normal, the rule is:

R3.10
i 2 Z

abs(i) = max (i ;�i)

The proof of Theorem 3.9 is shown on page 61.
The relationship between the range type of a function and the post-condition

can be understood by studying this example. If the signature were changed to:

abs(i :Z)r :N

the �rst conjunct of post-abs could be omitted. The overall proof task would
not, however, change because it is still necessary to show that the result is of
the appropriate type: it would simply be necessary to rearrange the steps. Thus
the choice of whether to show constraints by type information or by clauses in a
post-condition can be made on pragmatic grounds.

Exercise 3.2.6 Given the speci�cation:

mult (i :Z; j :Z) r :Z
post r = i � j

prove that:

mult(i ; j) 4 if i � 0 then multp(i ; j) else multp(�i ;�j)

62 3 Functions and Operations

satis�es the speci�cation. In making this proof the following properties of multp
should be assumed:

multp (i :Z; j :Z) r :Z
pre i � 0
post r = i � j

Induction

The most powerful way of building up (direct de�nitions of) functions is by using
recursion. A recursive de�nition of a function is one in which the right-hand side
of the de�nition uses the function which is being de�ned. Speaking operationally,
such de�nitions have to terminate and this is normally achieved by placing the
recursive reference in a conditional expression. In addition to the conditional
expression and the function being de�ned, the right-hand side can, of course, use
any previously known functions.

Recursive de�nitions facilitate the construction of powerful functions from the
most humble beginnings. Each of the data types in the succeeding chapters starts
with a simple set of basic constructing functions or generators and then builds
other operators and/or functions over these generators. For natural numbers, the
generators are very simple: zero is a natural number and the successor function
(succ) generates natural numbers from natural numbers. Thus:

0: N
succ: N ! N

Clearly, one can think of these as the value zero and the function `plus one'. The
number for which the normal (Arabic) symbol is 2 is the result of succ(succ(0)).
Such a unary notation would be rather clumsy for larger constants, but 0 and
succ provide a minimal basis for arithmetic. They enable any of the in�nite set
of (�nite) numbers to be generated.

The inverse of succ is a (partial) predecessor function. This can be character-
ized by an axiom.

Axiom 3.11 Because pred(0) is not de�ned, the only property is:

A3.11
i 2 N

pred(succ(i)) = i

General addition (over N) can be de�ned by a recursive function:

add : N � N ! N

add (i ; j) 4 if i = 0 then j else succ(add(pred(i); j))

3.2 Correctness proofs 63

or, in less pedantic style:

add (i ; j) 4 if i = 0 then j else add(i � 1; j) + 1

This can be rendered into inference rules as follows.

Rule 3.12 The non-recursive part of the conditional o�ers no surprise:

R3.12
j 2 N

add(0; j) = j

Rule 3.13 From the earlier treatment of conditional expressions, the reader
should expect a rule of the form:

R3.13a
i ; j 2 N; i 6= 0

add(i ; j) = add(i � 1; j) + 1

For a total function like add there is no problem but it is shown in the next
section that appropriate rules for partial functions use the recursive call in the
hypothesis. This form is used here for uniformity:

R3.13
i ; j 2 N; i 6= 0; add(i � 1; j) = k

add(i ; j) = k + 1

Given general addition, multiplication of natural numbers can be de�ned:

multp : N � N ! N

multp(i ; j) 4 if i = 0 then 0 else multp(i � 1; j) + j

Further functions, such as exponentiation, can be built up in the same way.
But what of proofs about such recursive de�nitions? An attempt to proceed

with only the tools available so far would show that, for proofs about arbitrary
values i , the rule R3.13 o�ers no way of eliminating the name of the function
(add). The proof technique which is used to reason about elements from in�nite
sets is induction. The form of induction rule for natural numbers which suits
most of the purposes here3 is expressed in terms of proving some property p for
any natural number.

Axiom 3.14 As above, the emphasis is put on proving a sequent (n 2 N ` p(n))
rather than a quanti�ed expression (8n 2 N � p(n)) since the latter can always be
obtained by a step using 8-I . To prove some property p: N ! B holds for all
natural numbers, the induction axiom is:

3The use of a sequent as consequent is unconventional but suits the boxed proofs best;
similarly, employing a sequent { rather than an implication { in the inductive step �ts with the
logic described in the next section.

64 3 Functions and Operations

N-ind

p(0);
n 2 N; p(n) ` p(n + 1)

n 2 N ` p(n)

This rule gets used in proofs of the following shape (the induction step has been
written using m { rather than n { as a local variable to emphasize its indepen-
dence):

from n 2 N
...

i p(0)
j from m 2 N; p(m)

...
infer p(m + 1)

infer p(n) N-ind (i,j)

Skeleton induction proof

Such a proof is called an inductive proof; the steps to establish p(0) are the
base case and the from/infer to prove p(n) ` p(n + 1) is the induction step.
It is important to understand the roles of the various p assertions which arise.
The p(n) which is the hypothesis of the inductive step is an assumption; the
consequent of that same inner from/infer (p(n + 1)) has only been proved
under the assumption. The �nal p(n) of the outer from/infer has been proven
(by induction) for an arbitrary natural number.

Many people have a feeling of unease when they �rst encounter inductive
reasoning. One way to gain con�dence in inductive proofs is to view them as
recipes for creating proofs for arbitrary natural numbers. Suppose someone were
to challenge a property which had been proved by induction. If they doubt that
the property is true for a speci�c number, say 7, a proof could be generated by:

� copying out the proof of p(0);

� generating 7 versions of the inductive step substituting successive natural
numbers in each case.

The resulting proof would be long and tedious but would show that p(7) held
without appeal to N-ind : the inductive proof can be used as a recipe for gen-
erating a proof for any natural number. This claim relies on the fact that any
natural number is �nite (even though there is an in�nite set of such numbers).

3.2 Correctness proofs 65

from n 2 N
1 sumn(0) = 0 R3.15
2 sumn(0) 2 N 1, N
3 0 = 0 � (0 + 1)=2 N

4 sumn(0) = 0 � (0 + 1)=2 =-subs(3,1)
5 post-sumn(0; sumn(0)) post-sumn,4
6 sumn(0) 2 N ^ post-sumn(0; sumn(0)) ^-I (2,5)
7 from n 2 N; sumn(n) 2 N; post-sumn(n; sumn(n))
7.1 n + 1 6= 0 h7,N
7.2 n + 1 2 N h7,N
7.3 sumn(n) = n � (n + 1)=2 post-sumn,ih7
7.4 sumn(n + 1) = n + 1 + n � (n + 1)=2R3.16(7.2,7.1,7.3)
7.5 sumn(n + 1) 2 N 7.4,N
7.6 sumn(n + 1) = (n + 1) � (n + 2)=2 7.4,N
7.7 post-sumn(n + 1; sumn(n + 1)) post -sumn,7.6

infer sumn(n + 1) 2 N ^ post -sumn(n + 1; sumn(n + 1))^-I (7.5,7.7)
infer sumn(n) 2 N ^ post-sumn(n; sumn(n)) N-ind (6,7)

Theorem 3.17: sumn

The earlier examples of add and multp are used in proofs which are the
subject of exercises below. The �rst example used here is a function sumn which
is intended to compute the sum of the �rst n natural numbers. Its de�nition is
written (recursively) as:

sumn :N ! N

sumn(n) 4 if n = 0 then 0 else n + sumn(n � 1)

This can be expressed as two inference rules.

Rule 3.15 The base case is:

R3.15
sumn(0) = 0

Rule 3.16 The recursive case is:

R3.16
n 2 N; n 6= 0; sumn(n � 1) = k

sumn(n) = n + k

66 3 Functions and Operations

To show that this possesses the known arithmetic property, it is `speci�ed' by:

sumn (n:N) r :N
post r = n � (n + 1)=2

This gives rise to its proof obligation.

Theorem 3.17 The sequent form is:

n 2 N ` sumn(n) 2 N ^ post-sumn(n; sumn(n))

The required proof is given on page 65. Notice that the p of N-ind (p: N ! B)
is sumn(n) 2 N ^ post-sumn(n; sumn(n)). Once again, the proof is presented in
the easiest order for reading. Its discovery results from using N-ind to generate
both line 6 and the subsidiary proof numbered 7; the detailed steps are routine
with the algebra from 7.4 to 7.6 being the core of the induction argument. (Notice
that the appeal in line 7.3 to the hypothesis of base 7 emphasizes that it is an
inductive hypothesis by writing `ih7'.)

An inductive proof can be used to show that a recursively de�ned function,
for squaring a number, satis�es the implicit speci�cation:

sq (i :N) r :N
post r = i2

Given the de�nition:

sq : N ! N

sq(i) 4 if i = 0 then 0 else 2 � i � 1 + sq(i � 1)

The inference rules are:

Rule 3.18 For the base case:

R3.18
sq(0) = 0

Rule 3.19 For the recursive case:

R3.19
i 2 N; i 6= 0; sq(i � 1) = k

sq(i) = 2 � i � 1 + k

Theorem 3.20 The proof obligation is:

n 2 N ` sq(n) 2 N ^ post-sq(n; sq(n))

The proof is shown on page 68. Lines 1 to 6 constitute the basis of the proof
and the inductive step is labelled 7. The sub-goals are generated by applying the

3.2 Correctness proofs 67

induction rule.

Exercise 3.2.7 Prove the general addition function add satis�es the speci�cation:

add (i :N; j :N) r :N
post r = i + j

Base the inductive proof on the rules 3.12 and 3.13.

Exercise 3.2.8 The rules of the preceding exercise were written for the `less
pedantic' form of the recursive de�nition of add . Write a pair of rules (which
should use neither + nor �) for the de�nition of add . This shows more clearly
how recursion builds up the language of functions over natural numbers from just
its generators .

Exercise 3.2.9 Show that the recursive de�nition of multp given in this section
satis�es the speci�cation:

multp (i :N; j :N) r :N
post r = i � j

More about induction

There are a few extra points which are worth noting about induction over the
natural numbers because induction is to be a crucial tool in handling the data
types presented in later chapters. It is explained above that induction is needed
because the set of natural numbers (N) is in�nite. But each member of that set is
a �nite number; it is the unbounded size of the numbers which requires inductive
proofs.

There are also forms of induction rule other than N-ind . For example, an
almost mechanical rewriting yields:

Axiom 3.21 An induction rule which relies on the presence of predecessor:

N-indp

p(0);
n 2 N1 ; p(n � 1) ` p(n)

n 2 N ` p(n)

Both N-ind and N-indp rely on only one step of successor; a more powerful rule
is one which permits the assumption that the required property, p, is true of
all predecessors of the number for which p(n) is the goal of the inductive step.
Paradoxically, this rule appears simpler than its cousins because the base case
becomes a special case of the inductive step.

Axiom 3.22 The so-called, complete induction rule is:

68 3 Functions and Operations

from n 2 N
1 sq(0) = 0 R3.18
2 sq(0) 2 N 1,N
3 0 = 02 N

4 sq(0) = 02 =-subs(3,1)
5 post-sq(0; sq(0)) post-sq(4)
6 sq(0) 2 N ^ post-sq(0; sq(0)) ^-I (2,5)
7 from n 2 N; sq(n) 2 N; post-sq(n; sq(n))
7.1 sq(n) = n2 post-sq(ih7)
7.2 n + 1 2 N1 N,h7
7.3 (n + 1)2 2 N N,7.2
7.4 (n + 1)2 = n2 + 2 � n + 1 N,h7
7.5 = sq(n) + 2 � n + 1 =-subs(7.4,7.1)
7.6 = sq(n + 1) R3.19(7.2,7.5)
7.7 sq(n + 1) 2 N =-subs(7.6,7.3)
7.8 post-sq(n + 1; sq(n + 1)) post-sq(7.2,7.7,7.6)

infer sq(n + 1) 2 N ^ post-sq(n + 1; sq(n + 1)) ^-I (7.7,7.8)
infer sq(n) 2 N ^ post-sq(n; sq(n)) N-ind (6,7)

Theorem 3.20: sq

N-cind
n 2 N; (8m 2 N �m < n) p(m)) ` p(n)

n 2 N ` p(n)

There are also two subtleties of implicit speci�cations which are worth em-
phasizing. Where an implicit speci�cation, or rather its post-condition, under-
determines the result of a function; it is required that the implementation is a
function. Therefore it can always be assumed that x = y) f (x) = f (y) for
any f . (Section 3.4 shows that a truly non-deterministic approach is taken to the
speci�cations of operations.)

The converse situation is where the post-condition admits no valid answer.
Such self-contradictory post-conditions are a risk which hide behind the `advan-
tages' of implicit de�nitions (cf. Russell's quote at the beginning of this chapter).
Strictly, each implicit function speci�cation should be shown to be satis�able:

8d 2 D � pre-f (d)) 9r 2 R � post-f (d ; r)

This has not been done here because of the straightforward form of most of the

3.3 Reasoning about partial functions 69

speci�cations. The topic of satis�ability is taken up in Section 5.2, in the context
of operations, when there is a greater danger of error.

Exercise 3.2.10 (*) Use the rule N-cind to prove that:

multp : N � N ! N

multp(i ; j) 4

if i = 0 then 0 else if is-even(i) then 2 �multp(i=2; j) else j +multp(i � 1; j)

satis�es the speci�cation given earlier in this section. Develop other algorithms
which require proofs by complete induction because they split a task into parts
which give rise to recursive calls on other than predecessors of the parameter of
the function.

3.3 Reasoning about partial functions

Partial functions

A total function yields a result for any argument in the domain { as given in
the signature { of the function. Functions which do not meet this requirement
(i.e. do not always yield a result) are called partial . Many of the standard �elds
of mathematics assume that all functions are total whereas partial functions arise
naturally in software applications. The importance of partial functions has been
recognized above by recording their pre-conditions. This section reviews the
impact of partial functions on the logic used to reason about them.

Partial functions are distinguished here by recording a non-trivial pre-condition.
If the domain is a single set, it is straightforward to de�ne a restricted set which
includes only those elements which satisfy the pre-condition; the function then
becomes total over the restricted set. The more interesting pre-conditions are
those which relate di�erent parameters: in such cases, it is less natural4 to make
functions total.

Consider the following example:

subp (i :Z; j :Z) r :Z
pre i � j

post r = i � j

Informally, it is clear that this speci�cation is satis�ed by the recursive function:

subp(i ; j) 4 if i = j then 0 else subp(i ; j + 1) + 1

4Such pre-conditions require de�ning Cartesian products and restrictions thereon.

70 3 Functions and Operations

As discussed earlier, terms can be formed by applying a function to arguments
of the appropriate type. Thus subp(5; 3) is a term (whose value is 2). There is,
however, a problem with terms built from functions where the arguments do not
satisfy the pre-condition of the function: what, for example, is to be made of
the term subp(3; 5)? In programming terms, it could be said that subp fails to
terminate; here, it �ts the context better to say that the term does not denote
a value. This leads to problems with subp(i ; j) since the question of whether or
not this term denotes a value depends on the values (as provided by the context)
of i and j .

The quanti�er form of proof obligation 3.1 for subp is:

8i ; j 2 Z �
pre-subp(i ; j)) subp(i ; j) 2 N ^ post-subp(i ; j ; subp(i ; j))

which expands into:

8i ; j 2 Z � i � j) subp(i ; j) 2 N ^ subp(i ; j) = i � j

When the antecedent of the implication is false, the term involving subp does not
denote a natural number. It is tempting to say that this problem can be ignored
because the implication could be considered to be true whenever its antecedent
is false (regardless of the consequent). This is, in fact, one property of the logic
studied here. However, the whole topic has to be put on a �rm footing { for
example, something must be done about the fact that the standard (two-valued)
truth tables mentioned in Section 1.1 make no mention of propositions which fail
to denote a Boolean value. Note that using the de�nition of implication does not
resolve the problem since:

8i ; j 2 Z � i < j _ subp(i ; j) 2 N ^ subp(i ; j) = i � j

has an unde�ned term in its second disjunct when its �rst is true.
Many more examples arise in this book where terms fail to denote values

and the challenge is to provide a logical system which handles this problem. Far
from being a contrived di�culty, this is a common feature of programs (and the
fragments from which they are built). Loop constructs may fail to terminate for
some input values and the logic to be used in their proofs must have a way of
discussing the set over which the loop can be safely used.

Truth tables

If terms fail to denote values (and hence propositions fail to denote truth values)
what meaning is to be given to the logical operators? The approach adopted here
is to extend the meaning of the operators in a speci�c way. In order to explain

3.3 Reasoning about partial functions 71

the extension, truth tables are used to indicate a model theory. In these tables,
the absence of a value is marked by �; but there is no sense in which this is a new
value { it is just a reminder that no value is available. Because nine cases must
now be considered, the truth tables are presented in a compact square style in
preference to the series of columns used in Section 1.1. The extended truth table
for disjunction is:

_ true � false

true true true true

� true � �
false true � false

In a sense which is made formal below, this is the `most generous' extension of
the two-valued truth table in that a result is given whenever possible. Notice
that the truth table is symmetrical, as also is that for conjunction:

^ true � false

true true � false

� � � false

false false false false

Properties such as commutativity are natural consequences of the symmetry of
these tables. The table for negation is:

:

true false

� �
false true

The truth tables for implication and equivalence are derived by viewing them as
the normal abbreviations:

) true � false

true true � false

� true � �
false true true true

, true � false

true true � false

� � � �
false false � true

The reader should observe that the truth table for implication resolves the
problem encountered above. When the antecedent of the proof obligation for

72 3 Functions and Operations

@
@
@
@

�
�

�
�
�

true false

��

Figure 3.2 Ordering for truth values

subp is false, the whole implication is true even though a term in the consequent
has no value.

It is useful to think of these operators being evaluated by a program which has
access to the parallel evaluation of its operands. As soon as a result is available
for one operand, it is considered; if the single result determines the overall result
(e.g. one true for a disjunction), evaluation ceases and the (determined) result is
returned.

A more mathematical characterization of the chosen tables can be given.
The description in terms of a parallel program has the property that any result,
delivered on the basis of incomplete information, will not be wrong however the
information is completed (e.g. having one true operand for a disjunction, it does
not matter whether the other operand evaluates to true or false). The concept
of `v1 could become v2 if evaluated further' de�nes an ordering relation. For the
Boolean values this can be written:

� � true
� � false

This is pictured in Figure 3.2. A function is said to be monotone in an ordering
if it respects the ordering in the sense that larger arguments give rise to larger
results. That is, f is monotone if { and only if:

a � b) f (a) � f (b)

For example, given the obvious ordering on the integers(<), addition is monotone
in both of its operands while subtraction is monotone only in its �rst operand.
The truth tables which are given above are monotonic extensions of the classical
(two-valued) tables. In fact, they are the strongest such tables which do not
contradict the (two-valued) tables of classical logic.

3.3 Reasoning about partial functions 73

Proof theory

What, however, is to be the proof theory for this logic of partial functions (LPF)?
The proof theory introduced in Chapters 1 and 2 is designed for this logic! That
proof theory is consistent with the normal (two-valued) logic but cannot prove
all results { it is incomplete; for LPF, whose model theory is sketched above, the
axiomatization is complete (i.e. all true statements can be proved).5

All results proved using the logic introduced above are, then, true in classical
logic. Given the full axiomatization in the Teacher's Notes, all results which are
true of the LPF model can be proved. The essential di�erence between LPF and
classical logic is that some results which are true in the latter can not be proved
in LPF. The most obvious di�erence between LPF and classical logic is that the
so-called `law of the excluded middle' does not hold in the former. Looking at
the truth table for `not' makes it clear that:

E _ :E

need not be true since it relies on E denoting a value. A simple example of why
this weakness is considered a virtue is that with partial functions (e.g. division)
there is no reason to expect:

5=0 = 1 _ 5=0 6= 1

to be true. On the other hand, a property like:

8x 2 R � x = 0 _ x=x = 1

is true in LPF and can be proved without di�culty { see page 74.
The lack of the law of the excluded middle is an intended weakness in LPF.

It does, however, make certain proofs more di�cult than in classical logic. For
example, a slightly shorter proof of:

(E1 _ E2) ^ (E1 _ E3) ` E1 _ E2 ^ E3

than that needed in LPF is possible in classical logic. The same point explains
the need for a longer axiomatization for LPF than is needed for classical logic:
without the : _-E/: _-I rules the system would not be complete; in classical
logic these properties follow from the law of the excluded middle.

Since the law of the excluded middle does not hold, nor does E) E : it
does not have a value if E does not. This has the deeper consequence that the

5It is an important property of a notation that it can express su�cient things. For the
standard logic, `or' and `not' are expressively complete in that, with just these two operators,
any truth table can be generated. The wholly true (respectively, false) tables can be represented
by logical expressions. Because (in LPF) these constants cannot be generated in this way, two
constants must be explicitly brought into the axiomatization of LPF.

74 3 Functions and Operations

from x 2 R
1 x = 0 _ x 6= 0 h,R
2 from x = 0

infer x = 0 _ x=x = 1 _-I (h2)
3 from x 6= 0
3.1 x=x = 1 R,h,h3

infer x = 0 _ x=x = 1 _-I (3.1)
infer x = 0 _ x=x = 1 _-E(1,2,3)

Illustrative LPF proof

so-called `deduction theorem' of classical logic does not hold; knowing:

E1 ` E2

does not justify:

` E1) E2

unless it is also known that E1 is de�ned (i.e. �(E1)).
Many of the tautologies of classical logic are not true in LPF. This is a direct

consequence of the need, in LPF, for expressions to be de�ned. It is a pleasing
property of LPF that true judgements can be formed from the tautologies of
classical logic by writing �(Ei) to the left of the turnstile for each proposition.
Thus one can in LPF make the reliance on de�nedness explicit by presenting
judgements (sequents) with exactly the required �(Ei) assumptions.

Notions of equality

Proofs in preceding sections have imported information about function de�nitions
into proofs by using inference rules. It is now possible to clarify why this approach
�ts well with LPF. Consider again the de�nition:

subp(i ; j) 4 if i = j then 0 else subp(i ; j + 1) + 1

The equality written within such direct de�nitions (e.g. as in i = j) is `weak' in the
sense that it is unde�ned if either of its operands is unde�ned. This is, in fact, the
only reasonable interpretation for something which must clearly be computable.

3.3 Reasoning about partial functions 75

But this weak equality is not, in general, adequate for the interpretation of the
de�nitions themselves. Given the de�nition above, the term subp(3; 5) is identical
in value to subp(3; 6) + 1 even though both terms are unde�ned. The de�nition
has been written with a special symbol(4) as a reminder that only one de�nition
should occur for any function; in general, there is a relational operator for this
stronger equality (==). The tables which follow contrast these two notions. Here,
the unde�ned values are indexed by their type (e.g. �N).

= 0 1 2 : : : �N

0 true false false �B
1 false true false �B
2 false false true �B
...
�N �B �B �B �B

The truth-table for the non-strict operator can be written as:

== 0 1 2 : : : �N

0 true false false false
1 false true false false

2 false false true false
...
�N false false false true

It should be clear that strong equality (==) is not monotonic: it is never used
within function de�nitions.6 The bound variables of quanti�ers range only over
the proper elements (not �) of sets.

Reverting again to the subp example, it is possible to explain in more detail
the form of the inference rules which have to be created for partial functions. If
the direct de�nition of subp itself is used in a proof, it would introduce a strong
equality (==) and complicate the proof since the required result (cf. proof obli-
gation 3.1) contains a weak equality (=) and the proof would be complicated by
virtue of having to reason about two notions of equality. Formulating the infer-
ence rule for the non-recursive case of the conditional expression in the de�nition
of subp presents no di�culty because all of the terms are de�ned.

Rule 3.23 Thus:

6The current formulation of LPF has gone to pains to avoid { in normal proofs { reasoning
about two notions of equality. Also, other non-monotonic operators (e.g. �) are only used in
meta-proofs such as those which justify the inference rule creation from function de�nitions.

76 3 Functions and Operations

from i ; j 2 Z
1 i � 0 = i h, Z
2 subp(i ; i) = 0 h, R3.23
3 subp(i ; i � 0) = 0 =-subs(1,2)
4 from n 2 N; subp(i ; i � n) = n

4.1 i � (n + 1) 2 Z h, h4, Z
4.2 i 6= i � (n + 1) h, h4, Z

infer subp(i ; i � (n + 1)) = n + 1 h, 4.1, 4.2, ih4, R3.24
5 8n 2 N � subp(i ; i � n) = n 8-I (N-ind (3, 4))
6 from i � j

6.1 (i � j) 2 N N, h6
infer subp(i ; j) = i � j 8-E(5, 6.1), Z

7 �(i � j) h, Z
infer i � j) subp(i ; j) = i � j) -I (6,7)

Proof about subp function

R3.23
i 2 Z

subp(i ; i) = 0

As mentioned on page 63, care is required with the recursive case. If the rule
is presented with a weak equality in the hypothesis, it behaves exactly as the
operational understanding of the function leads one to expect: conclusions about
continued applications can only be drawn if the next lower case is actually de�ned.

Rule 3.24 Thus:

R3.24
i1; i2 2 Z; i1 6= i2; subp(i1; i2 + 1) = i3

subp(i1; i2) = i3 + 1

These rules can be used to create the proof on page 76 which can then be subjected
to 8-I to justify the expression which was considered problematic at the beginning
of this section.

Exercise 3.3.1 Check that the truth tables for the propositional operators are
monotonic.

Exercise 3.3.2 Propositional operators can be de�ned by conditional expressions
as discussed in Exercise 1.1.3 on page 6. Draw up the truth tables for these

3.4 Implicit speci�cation of operations 77

operators. Contrast these truth tables with the symmetrical ones de�ned above;
why cannot the conditional expressions form the symmetrical tables?

Exercise 3.3.3 Section 1.1 included an informal argument for the following se-
quent:

E1 ^ E2 _ :E1 ^ E3 ` (E1) E2) ^ (:E1) E3)

Produce a formal proof of this.
Consider the reverse sequent:

(E1) E2) ^ (:E1) E3) ` E1 ^ E2 _ :E1 ^ E3

why can this not be proved? What single additional assumption makes the proof
possible?

Exercise 3.3.4 A true sequent of classical logic is:

E1) (E2) E3) ` (E1) E2)) (E1) E3)

Show that this is not true in LPF and discuss what change makes it true.

Exercise 3.3.5 Consider the following sequents and indicate additional assump-
tions which permit their proofs (which should then be written):

E1 _ (E2 , E3) ` E1 _ E2 , E1 _ E3

E1 _ : (E2 , E3) ` : (E1 _ E2 , E1 _ E3)

3.4 Implicit speci�cation of operations

Operations

The form of implicit speci�cation introduced in Section 3.1 covers mathemati-
cal functions which manipulate numbers. In two respects, these speci�cations
need to be extended in order to cope with the tasks faced by most programmers.
The major extension is to cope with the fact that the majority of interesting
programs manipulate complex data structures. It would be a mistake to write
speci�cations in terms of the data types of some speci�c programming language;
mathematical abstractions can be used to describe the function of a program
without forcing the speci�cation to handle the e�ciency considerations which
cause the programs themselves to become complicated. Chapter 4 introduces the
�rst of these abstractions: set notation is shown to be a useful tool for writing
some speci�cations. Further collections of notation are covered in Chapters 5
to 7. In contrast, the transition from mathematical functions to programs re-
quires only a minor extension, which is described in this section, to the implicit

78 3 Functions and Operations

speci�cation notation of Section 3.1. Programs, as distinct from functions, can be
characterized by observing that their execution is a�ected by, and in turn a�ects,
a state. Enthusiasts for functional programming would argue that states and
side e�ects bring much avoidable complexity. On the other hand, the restriction
to functions necessitates making copies of those data structures which require
modi�cation. The e�ciency implications of this copying are not acceptable to
today's mainstream computing practitioners and this situation appears unlikely
to change until new, special-purpose, machine architectures are developed. It is
not the intention here to take a dogmatic position on functional versus procedural
programming styles. This section shows that the notational extension from the
former to cope with the latter is minor. More importantly, the more extensive
material on data structures transcends the distinction.

Speci�cations can be written for whole programs, parts thereof, or even { as
exercises in the notation { single statements. The most common practical use
(i.e. not just for exercises) of such speci�cations is for something of about the size
of a procedure in a programming language. A generic name is needed for these
di�erent objects { here the word operation is used to cover any piece of program-
like text. The concern in this section is, then, with the implicit speci�cation of
operations.

Functions provide a �xed mapping from input to output. For example:

double(i) 4 2 � i

yields 4 when applied to 2 whether it has previously been applied to 99 or not.
Operations have a (hidden) state which can be used to record values which a�ect
subsequent results. For example, an accumulator operation which outputs the
sum of all inputs, might respond to the �rst input of 2 with 2; to 99 with 101;
and to a second 2 with 103.

The state of an operation is the collection of external variables which it can
access and change. Thus, for a Pascal procedure, it would be those non-local vari-
ables of the procedure which a�ect, or are a�ected by, execution of the procedure;
for a whole program, the state might be a database.

Specifying a calculator

As an introductory example, consider a collection of operations for a simple
calculator. The state here consists of a single external variable which is a register
(reg) containing a natural number. This external variable is the link between the
operations. An operation which stores its argument into this register is:

LOAD (i :N)
ext wr reg : N

3.4 Implicit speci�cation of operations 79

post reg = i

By convention, the names of operations are written in upper-case letters. The
�rst line of an operation speci�cation is similar to that for a function. The
second part records those entities to which an operation has external (ext) access:
variable names are preceded by an indication of whether access is read only (rd)
or read and write (wr); the name of each variable is followed by its type. The
post-condition is a truth-valued function of the parameters and the values of the
external variables { in this case the value of reg after execution of the operation.
Thus the post-condition requires that the LOAD operation stores the value of its
parameter into the register.

An operation which requires read only access to the register is:

SHOW () r :N
ext rd reg : N

post r =(�reg

Here, the post-condition refers to the value of reg prior to the execution of the
operation. Such values are marked with a backward-pointing hook. In this case,
since the operation only has read access, it would have made no di�erence had
the hook been omitted. The convention below is, in fact, to omit the hook on
read-only variables, thus:

SHOW () r :N
ext rd reg : N
post r = reg

In order to clarify the di�erence between the access modes (rd, wr) to external
variables, the reader should understand that an equivalent speci�cation would
be:

SHOW () r :N
ext wr reg : N

post reg =(�reg ^ r = reg

The �rst conjunct in the post-condition is necessary since the operation is marked
here as having write access and the �nal value would otherwise be unconstrained.

A simple incrementing operation can be speci�ed:

ADD (i :N)
ext wr reg : N

post reg =(�reg + i

80 3 Functions and Operations

OP (p:Tp) r :Tr
ext rd v1 : T1;

wr v2 : T2

pre � � � p � � � v1 � � � v2 � � �

post � � � p � � � v1 � � �
(�v2 � � � r � � � v2 � � �

Figure 3.3 Format of operation speci�cation

None of the operations LOAD , SHOW or ADD have pre-conditions. The conven-
tion that omitted pre-conditions are assumed to be true is adopted from function
speci�cations. A pre-condition is required for the operation which performs in-
teger division by its parameter { yielding the result as answer and leaving the
remainder in the register:

DIVIDE (d :N) r :N
ext wr reg : N
pre d 6= 0

post d � r + reg =(�reg ^ reg < d

The identi�ers in the pre-condition are undecorated although they refer to the
values prior to execution of the operation. If the pre-condition is thought of
as being placed before the operation and the post-condition after the operation
(cf. Figure 3.3), the undecorated values apply { in both cases { to the values of
the variables at the position of the logical expression.7

The states referred to in a post-condition are those prior to and after exe-
cution of an operation: any internal states which arise are of no concern to the
speci�cation.

One danger with simple examples { in particular with deterministic operations
{ is that the post-conditions appear to be rather like assignment statements.
It is important that post-ADD is read as a logical expression which asserts a
relationship between values. Fortunately, more interesting examples make this
point clear. In post-DIVIDE the technique of characterizing a result by conjoined
conditions is adopted from function speci�cations.

The choice between making entities part of the state or of having additional
parameters or results is up to the user. Essentially the state of a collection
of operations is a hidden data type whose behaviour can be observed via the

7The other reasons for this convention become clear in Chapter 10 where proof obligations
for operation decomposition are considered.

3.4 Implicit speci�cation of operations 81

visible types used as input and output to the operations. So the use of the
external clause is governed by the application: it facilitates a distinction in the
speci�cation between parameters and variables which are accessed by side e�ect.
In the calculator example, it would be possible to replace the entities involved
in the parameters/result by external variables. The decision as to where entities
should appear is a pragmatic one. All parameters are assumed here to be passed
by value.

The collection of operations for the calculator can be collected into a mod-
ule. The syntax for modules is introduced in Chapter 9; for most of this book,
such grouping is performed informally by the surrounding text. One thing that
the module syntax provides is a way of de�ning initial states. In the textual
descriptions of collections of operations, the initial state is normally identi�ed
by introducing a variable subscripted with zero. Thus, if the initial state for the
calculator module contains a zero:

reg0 = 0

A format for speci�cations of individual operations is indicated in Figure 3.3.
Comparing this with Figure 3.4, the pre-condition de�nes the expected starting
conditions for OP { it is, in general, a truth-valued function of the input pa-
rameters and the values of the external variables before the operation. None of
these identi�ers are decorated. The post-condition is a truth-valued function of
the parameters, results, values of all external variables prior to execution of the
operation and (for read/write variables) their values after the operation. Since
there is, in post-conditions, a need to distinguish between two values for write
variables, the value before execution of the operation is decorated with a hook.
In both pre- and post-conditions, the undecorated identi�ers refer to the values
`where the condition applies'. The identi�ers within the pre- and post-conditions,
whether hooked or not, become bound within the operation speci�cation by the
variable names.

It is conceded in Section 3.1 that the choice of the term `post-condition' is not
entirely apposite. With operations, the post-conditions are truth-valued functions
of the values of the state before and after the operation: the use of `post' suggests
when it is expected to hold (i.e. after execution). It is as well to follow common
usage rather than coin some new term like `input/output relation'.

Many di�erent sequences of operations can result in the same state. For
example, reg would have the value 1 after any of the following sequences:

LOAD(1)
LOAD(0);ADD(1)
LOAD(7);DIVIDE (3)

82 3 Functions and Operations

p:Tp
OP

r :Tr

rd v1:T1 wr v2:T2

- -

6
6
?

Figure 3.4 Picture of operation speci�cation

Looking just at the state, there is no way of knowing which operations led to its
current value. The important property is that this value determines the e�ect of
the next operation: the history itself is not important.8 As more complex appli-
cations are studied, the task of eliminating irrelevant detail (about the history of
operations) from the state becomes important. It is precisely because the state
contains the essential details of what does a�ect subsequent behaviour that it
is an aid to perspicuous speci�cations. It is the need to refer to two states, in
operation speci�cations, which necessitates some distinguishing decoration (here
hooks for old values). With functions this could be avoided, as in post-f (n; f (n)),
because f (n) is an expression for the result. It must be accepted that functions
are more tractable mathematical objects than operations. One way to try to
hide the di�erence is to regard operations as functions over the history of all
state changes. This can be done. But this hides the fact that di�erent histories
give rise to situations which are not detectably di�erent. The experience in the
`VDM school' is that clearer speci�cations result from a direct acceptance of the
notion of state.

Specifying parts of a program

Another example (computing factorial) can be used to relate the speci�cation
format of Figure 3.3 to programs. Informally, it is clear that the speci�cation:

8Mathematically, one could say that the state induces an equivalence class on histories. An
extreme choice of state could just store all operations executed. The process of abstraction �xes
what is irrelevant in the history and should yield a state which captures only that information
which in
uences future operations.

3.4 Implicit speci�cation of operations 83

FACT

ext wr n : N;
wr fn : N

post fn =(�n !

is satis�ed by the following fragment of program:

fn : = 1;
while n 6= 0 do
(fn : = fn � n;
n : = n � 1)

Notice that the program has write access to the variable n but that its �nal value
is not constrained by the post-condition { it is, therefore, important that the
initial value of n is used in the post-condition.

This informal notion of a piece of program satisfying a speci�cation can be
made completely formal: Chapter 10 gives rules for such proofs and extends
the notion of satisfaction to cope with designs (or other speci�cations) satisfying
speci�cations. As an exercise, one can show how the factorial program might
be developed from its speci�cation. The overall task (FACT) could be decom-
posed into an initialization (INIT) and a loop (LOOP); the initialization can be
speci�ed:

INIT

ext wr fn : N
post fn = 1

Here, the variable n is not mentioned as an external. Showing which state vari-
ables are left unchanged by an operation is sometimes known as the frame prob-
lem. In this style of speci�cation, a variable which is either not mentioned, or
shown as read only, in the operation speci�cation cannot be changed by that
operation.

There are many possible speci�cations for LOOP . There is a temptation to
use a pre-condition of fn = 1 but this is not really required. It is possible to
write a more general speci�cation (i.e. one involving fewer assumptions) which
specializes to the required e�ect in the context of the above initialization:

LOOP

ext wr n : N;
wr fn : N

post fn =
(�
fn �(�n !

84 3 Functions and Operations

The techniques in Chapter 10 could be used to prove that the sequential combi-
nation of the speci�cations for INIT and LOOP satisfy that for FACT .

The next step of development would be to decompose LOOP into smaller
steps. The design might be:

while n 6= 0 do BODY

It is possible to give, to the body of the loop, a speci�cation which does not
constrain implementation to the speci�c two statements used above. What is
really required by the loop is that the product of the variable fn and the facto-
rial of the value of n remains constant; it is also necessary to avoid the trivial
implementation which does nothing: the second conjunct of the post-condition
for BODY requires that the value of n decreases. In order to ensure that this is
possible (given the type of n) the pre-condition is required:

BODY

ext wr n : N;
wr fn : N

pre n > 0

post fn � n! =
(�
fn �(�n ! ^ n < (�n

One important property of implicit speci�cations is to avoid implementation com-
mitments. Even on this small example, BODY is speci�ed so as to allow di�erent
implementations (e.g. n could be decreased by more than 1). However, the two
statements in the code above can also be seen to satisfy the speci�cation.

As might be expected, implicit speci�cation brings certain problems { the
need to �nd a suitable pre-condition for BODY demonstrates the need for a
check that a speci�cation is satis�able. This point is picked up in Section 5.3,
where it is treated as a formal proof obligation.

All of the arithmetic examples of the preceding chapter could be rewritten
as operations rather than functions but many would be not be instructive. The
greatest common divisor problem, however, does exhibit some useful points:

GCD

ext wr m : N1 ;
wr n : N1

post is-common-divisor((�m ;(�n ;m) ^

:9d 2 N1 � is-common-divisor(
(�m ;(�n ; d) ^ d > m

Notice that the result is left as the �nal value of m. The usefulness of building up
a post-condition from separate conjuncts can again be seen. It is also important
to observe the interaction between the external clause and the post-condition: the

3.4 Implicit speci�cation of operations 85

�nal value of n is not constrained other than by its type. Any temptation to claim
that a speci�cation is ine�cient must be resisted. The assertion post-GCD could
be thought of as implying a massive search in an implementation. The purpose
of a speci�cation is to constrain the results; its e�ciency should be measured in
terms of its ease of comprehension.

The case for implicitly specifying operations, rather than giving their imple-
mentations, is loaded heavily towards speci�cation. All of the reasons which make
it clearer to use implicit speci�cations of functions (e.g. range of results, explicit
pre-condition) recur. But for operations, there is an additional argument: se-
quences of statements are not normal mathematical expressions. In general, the
equivalence of two such sequences has to be proved by mapping both of them
to some common mathematical domain. For this reason, it is far easier to show
that a sequence of statements satis�es a speci�cation than it is to show that two
sequences of statements compute the same result. Indeed, two programs could
both satisfy the same speci�cation but not be equivalent!

In this chapter there are several examples where speci�cations can be made
clearer by de�ning a sequence of functions each in terms of the preceding ones.
It is also desirable to structure the speci�cations of operations. This has been
done above by using functions in pre- and post-conditions. It should be obvious
that it is not possible to use an operation, as such, in the pre- or post-condition
of another operation: these latter are logical expressions and a state-changing
operation has no meaning in such a context. This having been said, Section 9.1
introduces a way in which the logical speci�cation of one operation can be used
in the speci�cation of another.

The speci�cation of non-deterministic operations takes over another technique
from function speci�cation and makes the role of post-conditions for operations
clear. Loosely speci�ed functions (i.e. those with post-conditions which do not
determine a unique result) can only be implemented by deterministic functions.
For operations, there is good reason to take the alternative position: implemen-
tations of operations can be non-deterministic. In languages with parallelism or
explicit non-deterministic constructs, the need for this is obvious. There are also
more subtle reasons for permitting the non-deterministic view. All that really
need concern the reader for now is that the proof rules presented do cope with
this interpretation.

Exercise 3.4.1 Specify an operation which subtracts the initial value of n from
m, where both are treated as external variables.

Exercise 3.4.2 Specify an operation which has write access to two variables (say
m and n); although both variables can be changed, it is required that the sum
of their �nal values is the same as the sum of their initial values { furthermore,

86 3 Functions and Operations

the operation should decrease the value in m. Assume that both variables are
natural numbers.

Exercise 3.4.3 Specify the operation of integer division. There are to be three
external variables. The initial value (integer) in m is to be divided by the initial
value (integer) in n; the quotient is to be put into register q (integer) and the
remainder left in m. Make restrictions on m and n to make the task easier. Do
not use division or mod in the post-condition.

Respecify the operation so that n is a parameter and the quotient is given as
output from the operation.

Exercise 3.4.4 Another program for factorial (using a temporary variable t and
avoiding changes to n) is:

fn : = 1;
t : = 0;
while t 6= n do

(t : = t + 1;
fn : = fn � t)

Sketch (as above) how it might have been developed.

4

Set Notation

By relieving the brain of all unnecessary work, a
good notation sets it free to concentrate on more
advanced problems, and in e�ect increases the
mental power of the race.
A. N. Whitehead

The numeric data considered so far provides an introduction to the key concepts
of speci�cation and proof. However, many systems programs, or commercial ap-
plications, do relatively little calculation; the essential purpose of such programs
is the manipulation of data structures. Attention is now turned to speci�ca-
tion and proof techniques relating to data structures. This, and the next three
chapters show how abstraction on data structures plays a crucial part in writing
succinct speci�cations.

Clearly, one would not wish to specify large systems at the bit and byte level.
Most high-level programming languages tend to focus on those data structures
which can be implemented e�ciently: APL provides a rich set of array operations,
LISP provides list-processing facilities. In a speci�cation language, it would be
a mistake to favour one speci�c programming language. Rather, a speci�cation
language should be rich enough to model a wide range of problems prior to any
commitment to a particular programming language.

There is, however, a more important in
uence on the choice of data types
in speci�cation languages. Programming languages implement those structures
which can be mapped e�ciently onto the target machine. In writing speci�-
cations, concern should be focused on the task being speci�ed and not on its

87

88 4 Set Notation

eventual implementation. In general, it is possible to achieve concise speci�ca-
tions by using data types, like sets, which are more abstract than those, like
arrays, which are governed by implementation e�ciency considerations.

Such abstraction is, of course, possible only at the speci�cation level { the
eventual implementation must accept the constraints of the implementation ma-
chine. (Strictly, one should say here, the constraints of the implementation lan-
guage. It is, however, true that most languages simply transmit the constraints
of the underlying machines.) Data rei�cation is considered in Chapter 8 { this
can be seen as a process of making commitments which achieve e�ciency by
capitalizing on context. In writing speci�cations, whenever a trade-o� between
e�ciency and clarity has to be made, preference is always given to the latter.

This chapter begins by reviewing set notation informally; Section 4.2 cements
the understanding by developing a proof theory; Sections 4.3 and 4.4 develop the
use of set notation in speci�cations.

4.1 Set notation

A spell-checker speci�cation

Later sections show the use of set notation in speci�cations, but basic set notation
should be familiar enough to make a simple introductory example readable. Con-
sider the task of checking a large text �le against a dictionary of known words.
Such a program is useful in the location of possible spelling errors. There are, of
course, many representation details about the text �le to be resolved. But the
crucial design decisions undoubtedly concern the representation of the dictionary.
If this is to store tens of thousands of words in a way which facilitates e�cient
searching, some ingenuity is required in design { this issue is returned to in Chap-
ter 8 as an example of data rei�cation. Applying the dictum of abstraction, the
representation issue can { and should { be postponed. For a speci�cation the
only concern is with a �nite, unordered collection of distinct words { the state of
this system can be presented as:

Word-set

Even Word need not be further de�ned at this point. Apart from the detail that
the required notation is not covered until Chapter 7, there is a positive advan-
tage in postponing this implementation-speci�c information: the speci�cation is
thereby made more abstract. The operation which must be invoked once per
word in the text should return true if, and only if, its argument is a member of
the state; its speci�cation is:

4.1 Set notation 89

CHECKWORD (w :Word) b: B
ext rd dict : Word-set
post b , w 2 dict

Notice that w 2 dict yields a truth value and thus the equality with the Boolean
result, b, is de�ned using the equivalence operator.

The initial state for the system might be the empty set of words:

dict0 = f g

An operation to add one word to a dictionary can be speci�ed:

ADDWORD (w :Word)
ext wr dict : Word-set
pre w =2 dict

post dict =
(��
dict [fwg

This speci�cation appears simple precisely because an apposite data type is
used in de�ning its state. In terms of data structures usable in, for example,
Pascal, the de�nition would be far longer and less clear. Of course, such repre-
sentation details have to be faced in the design process but a concise speci�cation
is achieved by postponing implementation details.

It is interesting to note that the pre-condition of ADDWORD is not necessary
at the set level of description. It might, however, be important for the imple-
mentation and this justi�es its being recorded. It can be a mistake to become
so involved in the abstraction that the needs of the implementation are entirely
ignored. In fact, the crucial decision here is whether or not the user accepts this
limitation.

Notation

The speci�cation above has used a little set notation { as have earlier chapters.
It is now necessary to examine this notation in more detail. A set is an unordered
collection of distinct objects; set values are marked by braces, thus:

fa; bg = fb; ag

The fact that the values are distinct means that there is no concept of the number
of occurrences of an element in a set { elements are either present (2) or absent
(=2). Thus:

a 2 fa; bg
c =2 fa; bg

90 4 Set Notation

Notice that a set containing one element is distinct from that element:

fag 6= a

The sets above are formed by simple enumeration of their elements; sets can also
be de�ned by set comprehension { this de�nes a set which contains all elements
satisfying some property { thus:

fi 2 Z j 1 � i � 3g = f1; 2; 3g
x 2 fy 2 Y j p(y)g , x 2 Y ^ p(x)

The need for a set containing an interval of the integers is common enough to
justify a special notation:

fi ; : : : ; kg = f j 2 Z j i � j � kg
f1; : : : ; 3g = f1; 2; 3g
f2; : : : ; 2g = f2g

But:

j < i) fi ; : : : ; jg = f g

Where f g is the empty set.
It is possible to relax the set comprehension notation in the case that types are
obvious { write:

f f (i) j p(i)g

where f is a total function on D , meaning:

x 2 f f (i) j p(i)g , 9i 2 D � p(i) ^ x = f (i)

A way of forming new set types is to use the `-set' constructor applied to (the
names of) known sets, for example:

B -set = ff g; ftrueg; ffalseg; ftrue; falsegg

Providing BS is �nite:

BS -set = fS j S � BSg

The X -set constructor yields only �nite subsets of its base set1 but, just as with
natural numbers, there can be an in�nite set of such subsets. One argument for
this restriction is that it is rare, in writing speci�cations, that in�nite sets { as
such { are manipulated. Since computer stores are themselves �nite it would only

1If the base set is in�nite, this is not the same as the power set which yields the set of all
subsets; for �nite base sets, -set is identical with power set.

4.1 Set notation 91

be possible to perform such manipulation indirectly via some �nite representation.
The restriction to �nite values also facilitates inductive proofs (see page 96).

The distinction between sets and their elements is crucial. Notice that X -set
de�nes a set of sets. The signature of maxs is:

maxs:N-set ! N

This function can be applied to the elements of its domain, for example:

f1; 7; 17g 2 N-set

It yields an element of its range:

17 2 N

The operators which apply to operands which are sets are �rst discussed
by example and logical expressions. Suppose e1; e2, etc. are expressions which
evaluate to sets, ss evaluates to a set of sets, and:

S1 = fa; b; cg
S2 = fc; dg

The union of two sets is a set containing the elements of both sets (ignoring
which set the elements come from and whether they are present in only one set
or both):

S1 [S2 = fa; b; c; dg

It can be de�ned:

e1 [e2 = fx j x 2 e1 _ x 2 e2g

A natural generalization of this operator is the distributed union of a set of sets.
This unary (pre�x) operator yields all of the elements present in any of the sets
which are contained in its operand:

S
fS1; feg;S2; f gg = fa; b; c; d ; eg

It can be de�ned:
S
ss = fx j 9e 2 ss � x 2 eg

The intersection of two sets is a set which contains those elements common to
the two sets:

S1 \ S2 = fcg

It can be de�ned:

92 4 Set Notation

e1 \ e2 = fx j x 2 e1 ^ x 2 e2g

The di�erence of two sets is that set which contains the elements of the �rst
operand that are not present in the second operand:

S1 � S2 = fa; bg

It can be de�ned:

e1 � e2 = fx j x 2 e1 ^ x =2 e2g

The operators above all yield values which are sets. Other operators yield Boolean
results and can be used to test for properties of sets. Membership tests are used
above:

a 2 S1
d =2 S1

One set is a subset of (or is equal to) another if the second operand contains all
elements of the �rst:

fcg � S1
S1 � S1
S1 � (S1 [S2)
f g � S1

It can be de�ned:

e1 � e2 , (8x 2 e1 � x 2 e2)

Unquali�ed use of the word `subset' in this book implies that equality is sub-
sumed. Proper subset excludes the case of equality:

f g � S1
fa; bg � S1
: (S1 � S1)

It can be de�ned:

e1 � e2 , e1 � e2 ^ : (e2 � e1)

Set equality can be de�ned:

e1 = e2 , e1 � e2 ^ e2 � e1

These operators are analogous to the ordering operators on numbers (�, < and
=). The subset operator is not, however, total: there are Si and Sj such that:

: (Si � Sj _ Sj � Si)

4.1 Set notation 93

�
�

�
�

�
�

�
�

�
�

�
�r -card-rS(X -set)-set X -set N

���r
?

[;\;�

�
�

�
�X �

?

r
2; =2

�
�

�
�B

� �r
?

�;�

Figure 4.1 ADJ diagram of set operators

The cardinality of a (�nite) set is the number of elements in the set:

card S1 = 3
card S2 = 2
card f g = 0

A group of computer scientists who investigated an algebraic view of data
types dubbed themselves the `ADJ group'. They used a graphical notation for
describing the signatures of operators and an ADJ diagram of the set operators is
shown in Figure 4.1. In such diagrams, the ovals denote data types; the arcs from
ovals to operators show the types of the operands; and those arcs from operators
to ovals show the type of the result. Thus Figure 4.1 shows that 2 has the type
X �X -set! B .

Priorities are placed on the logical operators in order to minimize the paren-
theses required in complex expressions. There is an obvious argument for mir-
roring the priority of ^/_ by making \ higher priority than [{ thus:

S1 \ S2 [S3

means:

94 4 Set Notation

(S1 \ S2) [S3

There is less agreement in textbooks about what should be done beyond this.
The problem, which can be seen on the ADJ diagram, is that the operators
yield results of di�erent types. In general below, parentheses are used to make
expressions like:

(A [B) � C

x 2 (A [B)

clear. The set (or arithmetic) operators are assumed to be of higher priority than
the logical operators.

Exercise 4.1.1 Write down the values of:

fa; cg \ fc; d ; ag
fa; cg � fc; d ; ag
card fx 2 j x 2 f�1; : : : ;+1gg
5 2 f3; : : : ; 7g
f7; : : : ; 3g

fi 2 N j i2 2 f4; 9gg
fi 2 Z j i2 = igS
ffa; bg; f g; fb; cg; fdggS
f g

Exercise 4.1.2 Write set comprehension expressions for:

� the set of integers greater than 100 and less than 200 which are exactly
divisible by 9;

� the set of prime numbers in the same range.

Show the subset relationships between N, Z and N1 .

Exercise 4.1.3 Complete the following by replacing the question mark so as to
generate a true statement about sets (assume that the types are sensible):

e [e = ?
e \ f g = ?
(e1 � e2) , (e1 � e2 = ?)
e \ e = ?
e [f g = ?
e1 � e2 ^ e2 � e3) e1 ? e3
f g ? e

4.2 Reasoning about sets 95

card (e1 ? e2) = card e1 + card e2 � card (e1 \ e2)
(e1 � e2) \ e3 = (e1 ? e3)� e2
e1 � (e1 � e2) = e1 ? e2S
f
S
esg = ? es

Exercise 4.1.4 Write out the commutative and associative laws for intersection;
and the distributive laws for intersection over union.

Exercise 4.1.5 De�ne a predicate:

is-disj :X -set�X -set! B

is-disj (s1; s2) 4 � � �

which yields true if, and only if, the two sets have no common elements (i.e. they
are disjoint).

Exercise 4.1.6 De�ne a distributed intersection operator { is a pre-condition
required?

Exercise 4.1.7 (*) A symmetric di�erence operator can be de�ned:

s1 	 s2 = (s1 [s2)� (s1 \ s2)

Complete the following expressions so that they are true:

s1 	 s2 = f g) s1 ? s2
s1 	 s1 = ?
s1 ? s2 � s1 	 s2
s1 	 s2 = s2 ? s1
s1 	 s2 = (s1 � s2) ? (s2 � s1)
s1 	 (s1 	 s2) = ?

4.2 Reasoning about sets

Given the intuitive understanding of set operators from the preceding section, the
next step is to be able to construct proofs about sets. As this section progresses,
the proofs begin to contain less formal detail than in Section 3.2: the proofs are
rigorous without being completely formal.

96 4 Set Notation

Induction based on set generators

Inductive proofs about the natural numbers are based on the generators (i.e. 0
and succ). Proofs about �nite sets can be based on very similar inductive rules.2

Here again the crucial step is to recognize the generators for sets { these are the
empty set (f g) and an (in�x) insertion operator (�) which adds an element to
a set (its type is X � X -set ! X -set). This insertion operator is only used in
the construction of, and proofs about, the inductive structure of sets { one would
normally use set union with a unit set. The intuition behind these generators is
that any �nite set can be represented by an expression of the form:

e1 � (e2 � (: : : � fg))

Axiom 4.1 The fact that the elements of a set are unordered is re
ected by the
following commutativity property of the insertion operator:

�-comm
e1; e2 2 X ; s 2 X -set

e1 � (e2 � s) = e2 � (e1 � s)

Axiom 4.2 Similarly, the fact that sets do not contain duplicate elements is
re
ected by its property of absorption:

�-abs
e 2 X ; s 2 X -set

e � (e � s) = e � s

Notice that these two properties imply that the intuitive representations of sets
are not unique: syntactically di�erent expressions (e.g. e1 � (e2 � (e2 � fg)),
e2 � (e1 � fg)) stand for the same set value.

Axiom 4.3 The set induction rule which is suggested by the generators3 is:

Set-ind

p(f g);
e 2 X ; s 2 X -set; p(s) ` p(e � s)

s 2 X -set ` p(s)

This leads to proofs of the same shape as with N-ind and it again relies on the
�niteness of the possible values. As with the natural numbers, set operators
can be de�ned by recursive functions over the generators. One way of making
proofs about sets less tedious than those about natural numbers is to give the

2It is possible to prove many properties of sets by induction on their cardinality. This reduces
induction on sets to induction on the natural numbers. But the consistent approach of studying
the generators for each data type results in clearer proofs.

3This rule could be strengthened by adding e =2 s as a hypothesis to the induction step; this
is not done here since it is covered by the alternative rule given on page 102.

4.2 Reasoning about sets 97

from s 2 X -set
1 f g [f g = f g [-b
2 from e 2 X ; s1 2 X -set; s1 [f g = s1
2.1 (e � s1) [f g = e � (s1 [f g) [-i

infer (e � s1) [f g = e � s1 =-subs(ih2,2.1)
infer s [f g = s Set-ind(1,2)

Lemma 4.5

information about operators directly in terms of inference rules. Thus, for [4 the
rules are as follows.

Rule 4.4 A basis ([-b) and an inductive rule ([-i) are given:

[-b
s 2 X -set

f g [s = s

[-i
e 2 X ; s1; s2 2 X -set

(e � s1) [s2 = e � (s1 [s2)

Inductive proofs of set properties

Lemma 4.5 The rule [-b shows that [absorbs empty sets as left operand; a
proof must be given that the same happens on the right:

L4.5
s 2 X -set

s [f g = s

Lemma 4.6 ([-ass) Set union is associative:

[-ass
s1; s2; s3 2 X -set

(s1 [s2) [s3 = s1 [(s2 [s3)

Lemma 4.7 ([-comm) Set union is commutative:

4Strictly, the set operators are parameterized on the type of the set elements { this point is
not treated formally here.

98 4 Set Notation

from s1; s2; s3 2 X -set
1 (f g [s2) [s3

= s2 [s3 [-b
2 = f g [(s2 [s3) [-b
3 from e 2 X ; s 2 X -set; (s [s2) [s3 = s [(s2 [s3)
3.1 ((e � s) [s2) [s3

= (e � (s [s2)) [s3 [-i
3.2 = e � ((s [s2) [s3) [-i
3.3 = e � (s [(s2 [s3)) ih2

infer = (e � s) [(s2 [s3) [-i
infer (s1 [s2) [s3 = s1 [(s2 [s3) Set-ind(2,3)

Lemma 4.6: [-ass

[-comm
s1; s2 2 X -set

s1 [s2 = s2 [s1

Lemma 4.8 ([-idem) Set union is idempotent:

[-idem
s 2 X -set

s [s = s

Lemma 4.9 Distributed union distributes over union as follows:

L4.9
ss1; ss2 2 (X -set)-set

S
(ss1 [ss2) =

S
ss1 [

S
ss2

The proof for Lemma 4.5 is straightforward and is given on page 97. Detail
is omitted in these proofs by abbreviating the justi�cations: references to lines
which provide type information, are dropped. Clearly, the writer of a proof should
have checked the steps and a reviewer who is in doubt can ask for the details to
be provided. Just as with the proofs in Section 3.2, the presentation here is given
in the order for reading. This proof is actually best found by writing:

� the outer from/infer;

� line 1 and the inner from/infer (2) are generated by the induction rule;
this now permits the �nal justi�cation to be given;

� the justi�cation of line 1;

4.2 Reasoning about sets 99

� completion of the inner from/infer.

This way of generating proofs is quite general but it is not always immediately
obvious which variable to use in the induction. A proof that union is associative
(Lemma 4.6) is given (by induction on s1) on page 98. Here again, the induction
rule has been used to generate the sub-goals (1 and 3). What is more di�cult
in this proof is to choose the variable over which induction is to be performed.
Often it is necessary to make a few experiments before it becomes clear which of
the possible choices best decomposes the proof task. In addition to not referring
to all of the type assumptions, another way of shortening proofs is used here. It
is common in reasoning about data types to need many steps of substitution of
equal expressions (=-subs). In the proof of Lemma 4.5 this is shown explicitly.
Here, lines 1 and 2 follow by =-subs but only the subsidiary equality is cited.
Lines 3.1 to the conclusion of the inner box represent another chain of equalities.

Using the commutative property of �, it is possible to prove that union is
commutative (Lemma 4.7). A preliminary lemma and the main proof are given
on page 100. The separation of the lemma avoids the need for a nested induction.
The idempotence of union (Lemma 4.8), which relies on the absorptive property
of �, is proved on page 101.

Exercise 4.2.1 De�ne (over the generators { as with union above) set intersection
and prove:

s \ f g = f g

Also prove its associativity, commutativity, and idempotence as well as the
distribution of union over intersection and vice versa.

Exercise 4.2.2 De�ne the distributed union operator and prove:
S
f
S
ssg =

S
ss

Also prove Lemma 4.9.

Exercise 4.2.3 De�ne set di�erence and prove:

(S1 � S2) \ S3 = (S1 \ S3)� S2

Exercise 4.2.4 (*) De�ne and develop a useful theory of the symmetric di�erence
operator for sets (cf. Exercise 4.1.7 on page 95).

Exercise 4.2.5 (*) Exercise 2.1.6 on page 34 discusses the idea of reasoning about
types. Rather than give signatures for the derived (set) operators, it would be
possible to infer their types from the rules of generation. Based on [-b and [-i ,
infer that

100 4 Set Notation

from e 2 X ; s1; s2 2 X -set
1 e � (f g [s2)

= e � s2 [-b
2 = f g [(e � s2) [-b
3 from e2 2 X ; s 2 X -set; e � (s [s2) = s [(e � s2)
3.1 e � ((e2 � s) [s2)

= e � (e2 � (s [s2)) [-i
3.2 = e2 � (e � (s [s2)) �-comm
3.3 = e2 � (s [(e � s2)) ih3

infer = (e2 � s) [(e � s2) [-i
infer e � (s1 [s2) = s1 [(e � s2) Set-ind(2,3)

from s1; s2 2 X -set
1 f g [s2 = s2 [f g [-b, L4.5
2 from e 2 X ; s 2 X -set; s [s2 = s2 [s
2.1 (e � s) [s2

= e � (s [s2) [-i
2.2 = e � (s2 [s) ih2

infer = s2 [(e � s) Lemma
infer s1 [s2 = s2 [s1 Set-ind(1,2)

Lemma 4.7: [-comm

[-sig
s1; s2 2 X -set

(s1 [s2) 2 X -set

Proofs about membership

It is possible to characterize the set membership operator by inference rules and
thus provide the basis for formal proofs which include this operator. The basic
facts about membership are:

2-b
:9e 2 X � e 2 f g

4.2 Reasoning about sets 101

from s 2 X -set
1 f g [f g = f g [-b
2 from e 2 X ; s 2 X -set; s [s = s

2.1 (e � s) [(e � s)
= e � (s [(e � s)) [-i

2.2 = e � ((e � s) [s) [-comm
2.3 = e � (e � (s [s)) [-i
2.4 = e � (s [s) �-abs

infer = e � s ih2
infer s [s = s Set-ind(1,2)

Lemma 4.8: [-idem

2-i
e1; e2 2 X ; s 2 X -set

e1 2 (e2 � s) , e1 = e2 _ e1 2 s

It is now possible to prove properties like:

Lemma 4.10

L4.10
x 2 (s1 [s2)

x 2 s1 _ x 2 s2

Below, it is necessary to prove properties of the form:

8x 2 fx 2 X j p(x)g � q(x)

It should be clear that this is equivalent to:

8x 2 X � p(x)) q(x)

Similarly:

9x 2 fx 2 X j p(x)g � q(x)

is equivalent to:

9x 2 X � p(x) ^ q(x)

With the natural numbers, a second form of the induction rule is available
once subtraction has been introduced (N-indp). The rule has an inductive step
which shows that p inherits from n�1 to n. It is not the intention here to develop

102 4 Set Notation

the whole of the set notation formally, but { once set di�erence has been covered
{ the following induction rule can be used.

Axiom 4.11

Set-ind2

p(f g);
s 2 X -set; e 2 s; p(s � feg) ` p(s)

s 2 X -set ` p(s)

Notice that the validity of this rule relies on �-abs and �-comm . It would also
be possible to present a complete induction rule for sets.

4.3 Theories of data types

Importance of theories

The preceding section has established a theory of sets which can be used through-
out the remainder of this book. Whenever a new class of objects arises, it is worth
investigating its properties. In e�ect, a theory of the new objects is created which
gathers together useful results about the objects. Of course, for the well-known
basic types like sets, standard mathematical texts may be consulted. The advan-
tage of building such a theory for other types, as they arise, is that the collection
of results is then available for any use of that type. Several authors (includ-
ing [Jon79]) have recognized the crucial role that the development of theories will
play in making more widespread the use of formal methods.

Partitions

As an example of such a theory, this section outlines some results about the
concept of Partition. This theory is used in a speci�cation in the next section;
there, a motivation for the speci�c example is given. In this section, the theory is
developed abstractly. If this makes the material too di�cult to absorb, the reader
should skim it now and then return when the results are needed in Section 4.4.

A set (of, say, N) is partitioned if it is split into (a set of) disjoint subsets.
Thus:

Partition = f p 2 (N-set)-set j inv -Partition(p)g

Where:

inv -Partition : (N-set)-set! B

inv -Partition(p) 4 is-prdisj (p) ^ f g =2 p

4.3 Theories of data types 103

Pairwise disjointness is de�ned by:

is-prdisj : (N-set)-set! B

is-prdisj (ss) 4 8s1; s2 2 ss � s1 = s2 _ is-disj (s1; s2)

(A full discussion of, and notation for, such data type invariants is contained in
Section 5.2. The exclusion of the empty set is a technicality which is explained
in Chapter 11: for now, it should just be accepted.)

An example of a Partition is:

ff3; 6g; f5g; f1; 2; 7gg

Notice that elements of Partition are sets of sets { the collection of all partitions
is, of course, a set of such objects. Thus:

fpa ; pbg � Partition

pa = ff1g; f2gg
pb = ff1; 2gg

In pa , which is a `�ne' partition, each element is in a unit set; in the `coarse' pb ,
all elements are in the same set. But:

ff1; 2g; f1gg 2 (N-set)-set

is not a Partition because it fails to satisfy inv -Partition.
Given the de�nition of Partition it is possible to prove that certain properties

hold.

Lemma 4.12 The trivial empty partition satis�es the invariant:

L4.12
f g 2 Partition

Lemma 4.13 A simple way of extending partitions is given by:

L4.13
p 2 Partition; e 2 N; e =2

S
p

(p [ffegg) 2 Partition

Although these results might appear obvious, it is interesting to see how their
proofs can be formalized. Both boxed proofs follow the same pattern: �rstly the
type of the required expression is established; then it is shown that the expression
satis�es each clause of inv -Partition. Notice, in the proof of Lemma 4.13 on
page 105, how lines 2 and 3 establish the need for the double set of braces around
the element e. In the same proof, one can observe how properties of the more
basic data types are brought into play. Line 9 for example relies on the property
of Set theory that:

104 4 Set Notation

e =2 s1; e =2 s2
e =2 (s1 [s2)

While line 5 uses:

e =2
S
p

8s 2 p � is-disj (feg; s)

In a mechanized theorem proving system each of these properties would be spelled
out.

Partitions can be generated from one another by merging sets which satisfy
truth-valued functions:

merge :Partition � (N-set ! B) ! Partition

merge(p; t) 4 fs 2 p j : t(s)g [f
S
fs 2 p j t(s)gg

So, for example, if:

t(s) 4 : is-disj (s; f2; 3g)

then:

merge(ff1; 2; 7g; f5g; f6; 3gg; t)
= ff5gg [f

S
ff1; 2; 7g; f6; 3ggg

= ff5gg [ff1; 2; 3; 6; 7gg
= ff5g; f1; 2; 3; 6; 7gg

In order to know that this works in general, it is necessary to show that the
following lemma holds.

Lemma 4.14 Merging preserves the property of being a Partition:

L4.14
p 2 Partition; (t : N-set ! B); 9s 2 p � t(s); p 0 = merge(p; t)

p 0 2 Partition

Notice that the third hypothesis avoids the danger of generating an empty set
in p 0. No proof of this is given here but a closely related proof (Lemma 11.1) is
given on page 273.

It would be dishonest to camou
age the fact that this `theory' was actually
extracted from an initial attempt at the speci�cation of the equivalence relation
problem which is discussed in the next section. This admission does not un-
dermine the arguments for collecting together such bodies of knowledge. Only
when extensive collections are available will it be reasonable to expect that new
problems will be encountered which gain major support from what others have
done.

Exercise 4.3.1 (*) This exercise concerns the theory Partition.

4.3 Theories of data types 105

from defns

1 f g 2 (N-set)-set Set

2 8s1; s2 2 f g � s1 = s2 _ is-disj (s1; s2) 8
3 is-prdisj (f g) is-prdisj ,2
4 8e 2 N-set � e =2 f g f g
5 f g 2 N-set Set

6 f g =2 f g 8-E(4,5)
infer f g 2 Partition Partition,1,3,6

Lemma 4.12

from p 2 Partition; e 2 N; e =2
S
p

1 p 2 (N-set)-set h,Partition
2 ffegg 2 (N-set)-set h,Set
3 (p [ffegg) 2 (N-set)-set 1,2,[
4 is-prdisj (p) h,Partition
5 8s 2 p � is-disj (feg; s) h,Set
6 is-prdisj (p [ffegg) 4,5,is-prdisj
7 f g =2 p h,Partition
8 f g =2 ffegg Set

9 f g =2 (p [ffegg) 7,8,Set
infer (p [ffegg) 2 Partition Partition,3,6,9

Lemma 4.13

106 4 Set Notation

� Specify a function which, given a set of objects from N, will return a set
containing a partition of the input set into two sets whose sizes di�er by at
most one.

� Show that the coarsest partition of any �nite subset of N satis�es inv -Partition.

� Argue informally that f g =2 p ^ 8x 2
S
p � 9! s 2 p � x 2 s is an equivalent

formulation of inv -Partition.

� De�ne a function which can split sets (with two or more elements) of a
Partition and show that it preserves inv -Partition.

4.4 Speci�cations

The reader should now have a thorough grasp of set notation and some facility
with its manipulation in proofs. It would be worth looking back at the speci�-
cation of the spelling checker in Section 4.1 to ensure that its details are fully
understood.

A bu�er pool

Another simple speci�cation which uses only sets is for a resource manager pro-
gram. Suppose that the resource is a pool of bu�ers. Each bu�er might be
identi�ed by a bu�er identi�er which could, in the actual implementation, be an
address. This level of detail need not be decided in the initial speci�cation and
the bu�er identi�ers are shown as a set Bid . Again, in the likely representation,
the free bu�ers might be organized into a free list. The speci�cation can ignore
such representation details and build around an unused set (us). An operation
which resets the collection of free bu�ers is:

SETUP (s:Bid-set)
ext wr us : Bid -set
post us = s

A free bu�er can be obtained by the operation:

OBTAIN () r :Bid
ext wr us : Bid -set
pre us 6= f g

post r 2(�us ^ us =(�us � frg

4.4 Speci�cations 107

Notice that this post-condition does not determine which bu�er is to be allocated:
the speci�cation is non-deterministic. The operation which releases a bu�er is:

RELEASE (b:Bid)
ext wr us : Bid -set
pre b =2 us

post us =(�us [fbg

Census data base

This example illustrates how properties of operations are important in under-
standing speci�cations. A database is to be set up which records people's sex
and marital status. One possible way of modelling the information is to have
three sets: one each for male, female and married names. (Name is used as a
primitive set { in a real system some form of unique identi�er would be used.
Thus, no name change is shown on marriage.) In the initial state, all three
sets would be empty. One interrogation operation, and two which update the
database, are speci�ed:

MARMALE () rs:Name-set
ext rd male : Name-set;

rd married : Name-set
post rs = male \married

NEWFEM (f :Name)
ext wr female : Name-set;

rd male : Name-set
pre f =2 (female [male)

post female =
(����
female [ff g

MARRIAGE (m:Name; f :Name)
ext rd male : Name-set;

rd female : Name-set;
wr married : Name-set

pre m 2 (male �married) ^ f 2 (female �married)

post married =
(�����
married [fm; f g

In each of these operations, external variables are marked as `read only' where
they cannot be changed.

There are certain properties of the operations in this model. For example,
the married set is always a subset of the union of the other two sets { the male

108 4 Set Notation

and female sets are always disjoint. Such properties are invariants on the state
and are discussed in Section 5.2.

Another point which is taken up in subsequent chapters is the choice of the
most appropriate model for a particular speci�cation. That given above, for
example, is chosen for pedagogic reasons { the notation of Chapter 6 makes it
possible to provide a model with simpler invariants. Even with the set notation
alone, other models could be employed { one such is suggested in Exercise 4.4.4
below.

Exercise 4.4.1 The spell checking program of Section 4.1 would probably need
an operation which inserted many words into a dictionary at once. Specify an
operation which takes a set of words as arguments, adds all new ones to the
dictionary and returns all duplicates as result.

Exercise 4.4.2 A system is to be speci�ed which keeps track of which people are
in a secure area { ignore how the operations are invoked (perhaps via a badge
reader?) and assume that no two people have the same name. Specify operations
for ENTER, EXIT , ISPRESENT . Also show the initial state.

Exercise 4.4.3 A system is to be speci�ed which keeps track of which students
have done an example class. Specify operations which can be used to:

� record the enrollment of a student (only enrolled students can have the next
operation performed);

� record the fact that a student has successfully completed the examples;

� output the names of those students who have, so far, completed the exam-
ples.

Also show the initial state.

Exercise 4.4.4 Respecify the three operations in the text relating to the recording
of people based on a model:

singfem:Name-set
marfem:Name-set
singmale:Name-set
marmale:Name-set

What invariants hold over these sets?

Recording equivalence relations

An interesting example which can be handled with sets alone concerns the cre-
ation and interrogation of a database which records equivalence relations. Before

4.4 Speci�cations 109

discussing the speci�cation, some motivation is o�ered. Compilers for high-level
languages of the ALGOL family frequently have to map programs with many
variables onto machines in which some store access times (e.g. for registers) are
much faster than others. Storing variables in registers can considerably improve
the performance of the created object programs especially if they are used to in-
dex arrays. There is, however, a trap which must be carefully avoided. Distinct
variable names can be made to refer to the same location in store. This happens
when variables are passed by location in Pascal (i.e. to var parameters) or `by
name' in ALGOL. Any change made to one variable must be re
ected in that
variable's surrogates. A compiler writer therefore might need to keep track of a
relation between variables which might be known as `could share storage' and to
ensure that appropriate register-to-store operations follow updates. The use of
`could' indicates that this check should be fail-safe. Now, if both variable pairs
(A and B) and (B and C) could share storage then clearly (A and C) could also
share storage. This is one of the properties of an equivalence relation.

The form of relation being considered here records connections over elements
of a set.5 If R is a relation, xRy can be written to state that the pair of elements
(x and y) stand in the relation.6 There are a number of properties which are,
or are not, possessed by di�erent kinds of relations. A relation R is said to be
transitive if when xRy and yRz , then xRz necessarily holds. Figure 4.2 shows
which relations over the integers possess the properties being discussed; the reader
should use these to con�rm the intuition of the properties (note, in particular,
that inequality is not transitive). A relation R is symmetric if whenever xRy ,
then yRx . A relation R is re
exive if for all elements x , then xRx . A relation
is an equivalence relation if it is re
exive, symmetric and transitive. Referring
to Figure 4.2, it can be seen that equality is the only equivalence relation shown
there. The reader should be able to see that the `could share storage' relation
over variables is an equivalence relation.

There are very many applications of such relations in computing including,
for example, codebreaking. The applications in graph processing involve relations
over very large sets. (The compiler example might involve relatively small sets.)
The reader might like to spend some time thinking about how to represent the
relation so that it can be queried and updated e�ciently. But for now, the real
concern is to obtain a clear speci�cation which de�nes exactly what the system
does without getting involved in the implementation problems. The key to such
a speci�cation is to use a state containing a Partition (named p). The initial
value of this variable stores no elements: p0 = f g. The fact that p0 is a Partition

5Mathematically, such a relation is a subset of the Cartesian product of two instances of the
set.

6Other notational styles for stating this include (x ; y) 2 R and R: x 7! y .

110 4 Set Notation

Property De�nition Examples

Re
exive xRx =;�;�

Symmetric xRy) yRx =; 6=

Transitive xRy ^ yRz) xRz =; <;�; >;�

Figure 4.2 Properties of relations over integers

is the import of Lemma 4.12 on page 103. An operation which gives as its result
the set of elements which currently occur in any equivalence group is:

ELS () r :N-set
ext rd p : Partition
post r =

S
p

Notice that this operation only has read access to p. Its satis�ability therefore
relies only on the types matching in the post-condition of ELS : since

S
p does

yield a N-set the operation is satis�able. A simple state changing operation is
one which adds an element as an isolated equivalence group:

ADD (e:N)
ext wr p : Partition
pre e =2

S
p

post p =(�p [ffegg

Here the satis�ability consideration is less obvious. To know that the combina-
tion of the type information (Partition) and the post-condition for ADD do not
contradict, needs the result in Lemma 4.13 on page 103 from which it follows
that:

8e 2 N;(�p 2 Partition �

pre-ADD(e;(�p)) 9p 2 Partition � post-ADD(e;(�p ; p)

Another operation which only has read access to p shows the equivalent elements
to any given element:

GROUP (e:N) r :N-set
ext rd p : Partition
pre e 2

S
p

post r 2 p ^ e 2 r

Its satis�ability proof obligation is:

4.4 Speci�cations 111

8e 2 N; p 2 Partition �
pre-GROUP(e; p)) 9r 2 N-set � post-GROUP(e; p; r)

This again requires only a type check. The operation which EQUATEs two
elements (along with their equivalent elements) is:

EQUATE (e1:N; e2 :N)
ext wr p : Partition
pre e1; e2 2

S
p

post p = fs 2(�p j e1 =2 s ^ e2 =2 sg [f
S
fs 2(�p j e1 2 s _ e2 2 sgg

Its satis�ability proof obligation is:

8e1; e2 2 N;
(�p 2 Partition �

pre-EQUATE (e1; e2;
(�p)

) 9p 2 Partition � post -EQUATE (e1; e2;
(�p ; p)

This relies on Lemma 4.14 which was stated { but not proved { on page 104.
(Again, see Chapter 11 for a closely analogous example which is proved.) Notice
that the pre-condition establishes the third hypothesis of the lemma.

One virtue of this set-based speci�cation is that it is much more succinct than
a description based on an implementation. But a more important property is that,
because the algebra of the underlying objects is established, it is possible to make
deductions about a speci�cation more readily than reasoning about contorted
details of a particular representation. It is, for example, easy to prove:

p 2 Partition; e 2
S
p; post-GROUP(e; p; r) ` e 2 r

which asserts that the argument given to GROUP will also be a member of the
set returned as a result. Or, again:

p1; p2 2 Partition; e; e
0 2 N; e =2

S
p1;

e 0 2
S
p1; post-ADD(e; p1; p2); post -GROUP(e

0; p2; r) `
e =2 r

The collection and veri�cation of such properties goes some way towards validat-
ing the formal speci�cation against the (informal) understanding of the require-
ments for the system.

Exercise 4.4.5 Express the last inference rule in words and write some inference
rules which express other properties of (combinations of) the operations. Do not
feel obliged to provide formal proofs at this time.

Exercise 4.4.6 Respecify the equivalence relation problem so that the EQUATE
and GROUP operations take a set of elements as input.

112 4 Set Notation

5

Composite Objects and Invariants

We always require an outside point to stand on, in
order to apply the lever of criticism.
C. G. Jung

Sets are only one item in the collection from which abstract descriptions of ob-
jects can be built. Chapters 6 and 7 introduce further familiar mathematical
constructs. In this chapter, a way of forming multicomponent objects is de-
scribed. In many respects these composite objects are like the records of Pascal
or the structures of PL/I; since, however, the properties of composite objects are
not exactly the same as for records, a syntax is chosen which di�ers from that
used in programming languages. As with the objects discussed above, an (in-
ductive) proof method is given which facilitates proofs about composite objects.
In Section 5.2, data type invariants are discussed in detail. Section 5.3 provides
ampli�cation of the concept of states and some related proof obligations.

5.1 Notation

Constructors

Whereas instances of set objects are written using braces, the composite values
considered in this chapter are created by so-called make-functions. A composite

object has a number of �elds; each such �eld has a value. A make-function, when
applied to appropriate values for the �elds, yields a value of the composite type.
The notation to de�ne composite types is explained below. Suppose, for now,

113

114 5 Composite Objects and Invariants

that some composite type has been de�ned such that each object contains a form
of date. The type is called Datec; the �rst �eld contains a day and the second
the year; the relevant make-function might have the signature:

mk -Datec: f1; : : : ; 366g � N ! Datec

A make-function is speci�c to a type: its name is formed by pre�xing mk - to the
name of the type.

A useful property of make-functions is that they yield a tagged value1 such
that no two di�erent make-functions can ever yield the same value. Thus if two
sorts of temperature measurements are to be manipulated, one might have:

mk -Fahrenheit :R ! Fahrenheit

mk -Celsius:R ! Celsius

Even though each of these types has one �eld, and the �eld contains a real number
in each case, the types Fahrenheit and Celsius are disjoint (i.e.mk -Fahrenheit(0) 6=
mk -Celsius(0)). It is then possible to form the union type containing both
Fahrenheit and Celsius without them becoming confused.

A particular make-function yields distinct results (composite values) for dif-
ferent arguments (i.e. mk -Celsius(0) 6= mk -Celsius(1)).

Decomposing objects

One way of decomposing composite values is by selectors. The de�nitions of such
selectors are described below with the notation for de�ning the composite type
itself. For now, assume that the selectors day and year have been associated with
the two �elds of Datec { then:

day(mk -Datec(7; 1979)) = 7
year(mk -Datec(117; 1989)) = 1989

Such selectors2 are functions which can be applied to composite values to yield
the component values. Thus their signatures are:

day :Datec ! f1; : : : ; 366g
year :Datec ! N

There are several other ways of decomposing composite values; each uses the
name of the make-function in a context which makes it possible to associate

1In fact, a reasonable model for VDM's composite objects is a Cartesian product with a tag.
The explanation of the properties of composite objects avoids the need to discuss the model.
In particular, the selectors of composite objects can be given more meaningful names than the
numeric selectors of tuples.

2The selectors serve as projection functions and make-functions as injections.

5.1 Notation 115

names with the sub-components of a value. A notation used above for de�ning
local values is:

let i = � � � in � � � i � � �

The expression to the right of the equality sign is evaluated and its value is
associated with i , this value of i is used in evaluating the expression to the right
of in; the let construct provides a binding for free occurrences of i in the �nal
expression. This notation can be extended in an obvious way so that it might
be said to decompose composite values. Suppose that a function is to be de�ned
whose domain is Datec and the de�nition of the function requires names for the
values of the components. The function could be de�ned, using selectors:

inv -Datec :Datec ! B

inv -Datec(dt) 4 is-leapyr(year(dt)) _ day(dt) � 365

Using the extension of let, this can be written:

inv -Datec(dt) 4

let mk -Datec(d ; y) = dt in is-leapyr(y) _ d � 365

The let construct, in a sense, decomposes dt by associating names with the values
of its �elds. The frequency with which such decompositions occur on parameters
of functions prompts the use of the make-functions directly in the parameter list.
Thus an equivalent e�ect can be achieved by writing:

inv -Datec(mk -Datec(d ; y)) 4 is-leapyr(y) _ d � 365

The tagging property of make-functions can be used to support a useful cases
construct. A function which reduces either form of temperature to a Celsius value
might be written:

norm-temp : (Fahrenheit [Celsius)! Celsius

norm-temp(t) 4 if t 2 Fahrenheit
then let mk -Fahrenheit(v) = t in mk -Celsius((v � 32) � 5=9)
else t

This is rather cumbersome and an obvious `cases' notation can be used which,
as in a parameter list, names the components of a composite object:

norm-temp(t) 4 cases t of

mk -Fahrenheit(v)! mk -Celsius((v � 32) � 5=9);
mk -Celsius(v) ! t

end

116 5 Composite Objects and Invariants

At �rst sight, the range of ways for decomposing composite objects might
appear excessive. However, it is normally easy to choose the most economical
alternative. For example, it is briefer to use selector functions than decompose
an object with let if only a few �elds of a multicomponent object are referred to
within the function; if, on the other hand, all �elds are referred to, it is simpler to
name them all at once in a let. If no reference is made in the body of a function
to the value of the entire object, such a let can be avoided and the decomposition
made in the parameter list. Decomposition via the cases construct is obviously
of use when several options are to be resolved. Although the notations can be
used interchangeably, brevity and clarity result from careful selection.

De�ning composite types

The de�nition of composite types is now considered. While classes of values of
type set are de�ned by the -set constructor, the composite type is de�ned { for
the Datec example above:

compose Datec of

day : f1; : : : ; 366g;
year : N

end

In general, the name of the type (and thus of its make-function) is written between
the compose and of ; after the of is written the information about �elds { for
each �eld, the name of its selector is followed by the type of value. Similarly:

compose Fahrenheit of

v : R
end

compose Celsius of

v : R
end

If it is clear that values in a composite type are never going to be decomposed by
selectors, the selector names can be omitted altogether in the de�nition. Thus,
it is possible to write:

compose Celsius of R end

The corresponding sets of objects de�ned are:

fmk -Datec(d ; y) j d 2 f1; : : : ; 366g ^ y 2 Ng
fmk -Fahrenheit(v) j v 2 Rg
fmk -Celsius(v) j v 2 Rg

5.1 Notation 117

From the properties of make-functions, it follows that:

is-disj (Fahrenheit ;Celsius)

De�nitions of composite types can be used in any suitable context. Thus, one
could write:

(compose Datec of � � � end)-set

However, the most common context is just to associate a name with the set:

Datec = compose Datec of � � � end

This name is often the same as the constructor name. The frequency of this
special case justi�es an abbreviation. The above de�nition can be written:

Datec :: day : f1; : : : ; 366g
year : N

The : : symbol can be read as `is composed of'; the following two de�nitions are
equivalent:

Name :: � � �

Name = compose Name of � � � end

The : : is actually used far more often than the compose form in the sequel.
Names for types can be introduced in de�nitions to add clarity. For example,

the de�nition given above could be written:

Datec :: day : Day
year : Year

Day = f1; : : : ; 366g

Year = N

Since these are simple set equalities, the de�nitions of Day and Year have not,
however, been tagged by constructors { thus:

7 2 (Day \Year)

Modifying composite objects

The functions associated with composite objects (make-functions and selectors
so far) are unlike the operators on sets in that the latter are general whereas
those for composite objects are speci�c to a type. Thus the ADJ diagram given

118 5 Composite Objects and Invariants

�
�

�
�

�
�

�
�

�
�

�
�

�
�� r

�(; year 7!)

�
� -r

�(; day 7!)

f1; : : : ; 366g Datec N

6

� �� �r
mk -Datec

?

� �rday
?

� �ryear

Figure 5.1 ADJ diagram of Datec operators

in Figure 5.1 relates solely to the Datec example. Only one other function3

is de�ned for composite objects: the � function provides a way of creating a
composite value, which di�ers only in one �eld, from another; thus:

dt = mk -Datec(17; 1927)
�(dt ; day 7! 29) = mk -Datec(29; 1927)
�(dt ; year 7! 1937) = mk -Datec(17; 1937)

Concrete syntax notations (e.g. BNF) which can be used to de�ne the set of
strings of a language are discussed in Section 1.2. An abstract syntax is similar
in many respects but de�nes a set of objects which contain only the essential
information but do not retain the syntactic marks (e.g. : = , ;) which play a part
in parsing strings. The de�nition of the semantics of programming languages
uses an abstract syntax in order to avoid irrelevant detail. In fact, one of the
reasons that the uniqueness property of make-functions had to be adopted was
to simplify the description of the abstract syntax of programming languages.
Both the -set and compose constructs are used in describing abstract syntax

3Strictly, there is a whole family of � functions { one for each composite type. However,
since a � function cannot change the type of a composite object, no confusion arises if � is used
as a generic name. The � function could be generalized to change more than one �eld at a time.
This is not needed in the current book.

5.1 Notation 119

and many examples occur below. In spite of the di�erences, certain aspects
of concrete syntax notation carry over naturally to the description of abstract
syntax. The [� � �] notation for marking things as optional is taken over from
concrete syntax along with the idea of distinguishing elementary values by fount
change (here set in Small Caps). Thus:

Month = fJan;Feb;Mar;Apr;May;Jun;Jul;Aug;Sep;Oct;Nov;Decg

Record :: day : f1; : : : ; 366g
year : N
valid : [Error]

The brackets denoting optional items can be read as:

[Set] = Set [fnilg

Thus, an omitted �eld is marked by the nil value and:

mk -Record(366; 1984;nil) 2 Record
mk -Record(366; 1983;Error) 2 Record

Notice also that in the Record example the concrete syntax convention of letting
a single value be interpreted as a set has been adopted.

Naming conventions

A number of naming conventions are being followed in the examples in this book
{ although not strictly part of the notation, conformance to some stated set
of conventions can signi�cantly aid the readability of large speci�cations. The
conventions here are:

� names of types are printed in italics and have their �rst letter in upper case
and the rest of the name in lower case (e.g. Datec) { exceptions are standard
names for certain mathematical sets (e.g. N) which are distinguished by
being in special founts;

� names of functions (and thus selectors) are in all lower case italic letters;

� names of operations are in all upper case italic letters;

� elementary values (e.g. Error) are in a `small caps' fount.

Data type invariants

The topic of data type invariants which is touched upon above, is now explored
more fully. The day �eld of Datec is restricted to show that, for instance, 399

120 5 Composite Objects and Invariants

can never be a value. This sub-range concept is useful but does not solve the
problem of restricting values of composite objects. In several places above (and
very many below) it is necessary to show that certain combinations of �eld values
cannot arise. Data type invariants are truth-valued functions which can be used
to record such restrictions. The function inv -Datec discussed above is an obvious
invariant on dates. It is convenient to write such restrictions as part of the type
de�nition with a keyword (inv) to separate the invariant { thus:

Datec :: day : Day
year : Year

inv (mk -Datec(d ; y)) 4 is-leapyr(y) _ d � 365

de�nes the set:

fmk -Datec(d ; y) j d 2 Day ^ y 2 Year ^ inv -Datec(mk -Datec(d ; y))g

Where:

inv -Datec(mk -Datec(d ; y)) 4 is-leapyr(y) _ d � 365

Here, just as with pre- and post-conditions, the keyword gives rise to a truth-
valued function inv -Datec which can be used elsewhere. The valid objects of
Datec are those which, as well as belonging to the composite type, also satisfy
inv -Datec. Thus:

d 2 Datec

is taken to imply that the invariant is satis�ed.4

Referring back to the example of Section 4.3 which was written:

Partition = f p 2 (N-set)-set j inv -Partition(p)g

This can be given in the keyword form as:

Partition = (N-set)-set

inv inv -Partition(p)

The Datec example is typical of the way in which data type invariants arise.
Neat mathematical abstractions tend to �t regular situations; some objects which
are to be modelled are ragged and do not immediately �t such an abstraction.
The truth-valued function which is used as the data type invariant cuts out those

4This has a profound consequence for the type mechanism of the notation. In programming
languages, it is normal to associate type checking with a simple compiler algorithm. The in-
clusion of a sub-typing mechanism which allows truth-valued functions forces the type checking
here to rely on proofs. The next section shows how such proof obligations are generated and
discharged.

5.1 Notation 121

elements which do not arise in reality. Section 5.3 shows how invariants are also
useful on composite objects used as states.

Some interesting data types can be de�ned with the aid of recursion. It is
possible to write recursive abstract syntax de�nitions such as:

Llist = [Llistel]

Llistel :: hd : N
tl : Llist

These objects are reminiscent of the simplest lists in a list programming language;
elements of Llist can be nil; non-nil elements are of type Llistel and contain a
head and a tail where the latter is a (nil or non-nil element of) Llist . Just as
with sets, there is a clear argument for restricting attention to �nite objects and
it is assumed that all objects satisfying a recursive composite object de�nition
are �nite (but, of course, there is an in�nite set of such objects because their size
is unbounded). It can be useful to think of such objects as trees (notice that
cycles cannot be generated by the chosen constructors); Figure 5.2 pictures some
elements of Llist .

A function which sums the elements of such a list can be written:

lsum :Llist ! N

lsum(t) 4 cases t of

nil ! 0;
mk -Llistel(hd ; tl)! hd + lsum(tl)
end

Notice that this recursive function is well-de�ned (i.e. it terminates) only because
all elements of Llist are �nite.

Further examples of recursive de�nitions are given in the next section; these
are presented with their invariants and a discussion of the relevant proof methods.

Exercise 5.1.1 Given:

Date :: year : N
month : Month

day : f1; : : : ; 31g

� Write the signature of mk -Date and of the selectors.

� Use mk -Date to construct an object with an interesting date.

� De�ne a truth-valued function which determines whether the �rst of two

122 5 Composite Objects and Invariants

@
@
@
@

�
�

�
�

@
@
@
@

�
�

�
�

@
@
@
@

�
�

�
�

@
@
@
@

�
�

�
�

nil

nil4

2

1nil5

hd hd

hd

hd

tl tl

tl

tl

r r r
r r r r

r r
r r

Figure 5.2 Elements of Llist

Dates is earlier than a second. Three versions should be given using (re-
spectively) selectors, let, and putting mk -Date in the parameter list.

� Write a data type invariant for Date.

� Use a � function to modify the `interesting date'.

Exercise 5.1.2 De�ne a composite object which could be used to store the time
of day to the nearest second. Why is no data type invariant required? Give the
signature of a � function which modi�es the minute �eld of Time.

Exercise 5.1.3 Given a speci�cation of (UK) tra�c lights:

Light = Colour -set
Colour = fRed;Green;Amberg

limit the possible values with a data type invariant.

Exercise 5.1.4 Suppose a hotel requires a system which stores information about
room numbers. Floors are numbered 1 to 25 and rooms are numbered 0 to 63.
De�ne a composite object Roomno and an invariant to re
ect the facts that:

� there is no
oor number 13;

� level 1 is an open area and has only room number 0;

5.2 Structural induction and invariants 123

� the top �ve
oors consist of large suites and these are numbered with even
integers.

Exercise 5.1.5 Write expressions corresponding to the elements of Llist pictured
in Figure 5.2. Use a � function to insert a new tail (tl) into the �rst of these
objects. De�ne a (recursive) function ljoin which places one list at the end of
(i.e. in the nil position) of another.

Exercise 5.1.6 This exercise develops the form of list closer to those known in
LISP as `dotted pairs'. De�ne a set of objects (Pllist) which have �elds named
car and cdr ; these �elds can contain either integers or lists. De�ne one function
which gathers the set of numbers in such an object and another function which
sums all of the numbers.

Exercise 5.1.7 (*) Given

S = T

inv (s) 4 � � �

then:

(8s 2 S � p(s)) , (8s 2 T � inv -S (s)) p(s))
(9s 2 S � p(s)) , (9s 2 T � inv -S (s) ^ p(s))

Explain this using de Morgan's law.

5.2 Structural induction and invariants

Creating induction rules

Recursive de�nitions of composite objects de�ne in�nite sets of (�nite) objects;
induction rules are needed to prove properties of such sets. Induction rules are
given above for natural numbers and sets. For composite objects, in contrast,
there is no single induction rule. Instead, it is necessary to generate an induction
rule for each recursively de�ned class of objects. Structural induction provides a
way of generating the appropriate induction rules.

The fact that such induction rules exist depends on the �niteness of objects
which satisfy recursive type de�nitions. As with the other induction rules, those
for structural induction relate to the ways in which objects are generated.

Axiom 5.1 For Llist of the preceding section the appropriate induction rule is:

124 5 Composite Objects and Invariants

Llist-ind

p(nil);
hd 2 N; tl 2 Llist ; p(tl) ` p(mk -Llistel(hd ; tl))

l 2 Llist ` p(l)

Inspection of this example, should make clear how induction rules are generated
for recursively de�ned objects. The basis comes from the non-recursive (e.g. nil)
case(s) and the induction step from the recursive case(s).

To illustrate how the induction rule can be used, some proofs about the
following function can be performed:

ldbl :Llist ! Llist

ldbl(t) 4

cases t of

nil ! nil;
mk -Llistel(hd ; tl)! mk -Llistel(2 � hd ; ldbl(tl))
end

Lemma 5.2 A simple property to prove is that:

l 2 Llist ` 2 � lsum(l) = lsum(ldbl(l))

The proof is shown on page 125.

Exercise 5.2.1 Using the de�nitions above (including Exercise 5.1.5 on page 123),
prove by induction:

l1; l2 2 Llist ` lsum(ljoin(l1; l2)) = lsum(l1) + lsum(l2)

Exercise 5.2.2 Give an induction rule for Pllist (as in Exercise 5.1.6 on page 123).

� De�ne a function
atten which places the elements of a Pllist into a Llist .

� Prove ll 2 Pllist ` sumll(ll) = lsum(
atten(ll))

Where sumll is the function de�ned in Exercise 5.1.6.

Invariants in recursive de�nitions

In order to present more interesting examples of proofs, invariants are now added
to recursive de�nitions. Chapter 8 addresses the problem of �nding representa-
tions of abstract objects like sets and maps (see Chapter 6): it is necessary to
create such representations either because the abstractions are unavailable in the
implementation language or to enhance the e�ciency of an implementation. One
example is �nding representations of sets. The sets of Words required in the

5.2 Structural induction and invariants 125

from l 2 Llist
1 2 � lsum(nil)

= 0 lsum

2 = lsum(nil) lsum

3 = lsum(ldbl(nil)) ldbl

4 from hd 2 N; tl 2 Llist ; 2 � lsum(tl) = lsum(ldbl(tl))
4.1 2 � lsum(mk -Llistel(hd ; tl))

= 2 � hd + 2 � lsum(tl) lsum,N
4.2 = 2 � hd + lsum(ldbl(tl)) ih4
4.3 = lsum(mk -Llistel(2 � hd ; ldbl(tl))) lsum

infer = lsum(ldbl(mk -Llistel(hd ; ldbl(tl)))) ldbl

infer 2 � lsum(l) = lsum(ldbl(l)) Llist -ind(3,4)

Lemma 5.2: lsum

from lt ; rt 2 Setrep; mv 2 N;
inv -Node(mk -Node(lt ;mv ; rt)); i 2 retrns(mk -Node(lt ;mv ; rt))

1 from i < mv

1.1 retrns(mk -Node(lt ;mv ; rt)) = retrns

retrns(lt) [fmvg [retrns(rt)
1.2 i 6= mv h1
1.3 i =2 retrns(rt) h,inv -Node,h1

infer i 2 retrns(lt) 1.1,1.2,1.3
2 �(i < mv)
infer i < mv) i 2 retrns(lt)) -I (2,1)

Lemma 5.3

126 5 Composite Objects and Invariants

spell-checking application is a particular example studied below. Here, the prob-
lem of representing a set of natural numbers is considered. A large set of numbers
can be stored in a binary tree to facilitate e�cient updating and checking. Such
a binary tree:

� has two (possibly nil) branches and a number at each node;

� is arranged so that all numbers in the left branch of a node are less than
(and all numbers in the right branch are greater than) the number in the
node;

� is balanced to increase e�ciency.

The relevant data structure is de�ned:

Setrep = [Node]

Node :: lt : Setrep
mv : N
rt : Setrep

inv (mk -Node(lt ;mv ; rt)) 4

(8lv 2 retrns(lt) � lv < mv) ^ (8rv 2 retrns(rt) �mv < rv)

A function which retrieves the set of numbers in a tree is:

retrns : Setrep ! N-set
retrns(sr) 4

cases sr of

nil ! fg;
mk -Node(lt ;mv ; rt)! retrns(lt) [fmvg [retrns(rt)
end

The invariant captures the second requirement above; the third requirement is
discussed in Exercise 5.2.4 on page 127. Notice that writing the invariant with
Node requires that it applies to all occurrences of Node within the tree, not just
the root. If this were not done the invariant would have to be a recursive function;
moreover, proofs involving Nodes would be more complicated.

Lemma 5.3 The invariant results in the following simple Lemma about Nodes:

L5.3
i 2 retrns(mk -Node(lt ;mv ; rt))

i < mv) i 2 retrns(lt)

The proof is shown on page 125. Notice how the fact that the antecedent is
de�ned is used in order to prove that the implication holds.

5.2 Structural induction and invariants 127

A function which checks whether a number is in such a set representation can
be de�ned. Direct de�nitions are being used here rather than implicit speci�ca-
tions. This is often the case as design steps tackle implementation details.

Assuming inv -Node is true, a function which tests whether values are in Setrep
can be de�ned:

isin : N � Setrep ! B

isin(i ; sr) 4

cases sr of

nil ! false;
mk -Node(lt ;mv ; rt)! if i = mv

then true

else if i < mv then isin(i ; lt) else isin(i ; rt)
end

Axiom 5.4 The induction rule for Setrep is:

Setrep-ind

p(nil);
mv 2 N; lt ; rt 2 Setrep;
inv -Node(mk -Node(lt ;mv ; rt)); p(lt); p(rt) `

p(mk -Node(lt ;mv ; rt))

sr 2 Setrep ` p(sr)

This can be used to prove:

Lemma 5.5

L5.5
i 2 N; sr 2 Setrep

isin(i ; sr) , i 2 retrns(sr)

A proof is shown on page 128.

Exercise 5.2.3 De�ne a function which inserts a number into a Setrep and prove
that the function preserves the invariant (it will be necessary to conjoin a property
about the result in order to make the induction work). Do not bother to preserve
the `balanced tree' property (yet).

Exercise 5.2.4 (*) De�ne a function which deletes a number from a Setrep and
show that the function preserves the invariant and has the expected e�ect on the
set of numbers. (Deletion is signi�cantly harder than insertion.) Do not, in the
�rst attempt, try to preserve the `balanced tree' property.

The property of a tree being (height) balanced has not been formalized yet.
Write a suitable invariant. Use this to give an implicit speci�cation of a delete
function which does preserve the property.

128 5 Composite Objects and Invariants

from i 2 N; sr 2 Setrep
1 : isin(i ;nil) isin

2 retrns(nil) = f g retrns

3 i =2 retrns(nil) Set ,2
4 isin(i ;nil) , i 2 retrns(nil) ,-I(1,3)
5 from mv 2 N; lt ; rt 2 Setrep; inv -Node(mk -Node(lt ;mv ; rt));

(isin(i ; lt) , i 2 retrns(lt)); (isin(i ; rt) , i 2 retrns(rt))
5.1 i < mv _ i = mv _ i > mv N

5.2 from i = mv

5.2.1 isin(i ;mk -Node(lt ;mv ; rt)) isin,h5.2
5.2.2 i 2 retrns(mk -Node(lt ;mv ; rt)) retrns,h5.2

infer isin(i ;mk -Node(lt ;mv ; rt)) , , -I (5.2.1,5.2.2)
i 2 retrns(mk -Node(lt ;mv ; rt))

5.3 from i < mv

5.3.1 isin(i ;mk -Node(lt ;mv ; rt)) , isin(i ; lt) h5.3,isin
5.3.2 i 2 retrns(lt) , L5.3,ih5,h5.3

i 2 retrns(mk -Node(lt ;mv ; rt))
infer isin(i ;mk -Node(lt ;mv ; rt)) , , -trans(5.3.1,ih5,5.3.2)

i 2 retrns(mk -Node(lt ;mv ; rt))
5.4 from i > mv

similar
infer isin(i ;mk -Node(lt ;mv ; rt)) ,

i 2 retrns(mk -Node(lt ;mv ; rt))
infer isin(i ;mk -Node(lt ;mv ; rt)) , _-E(5.1,5.2,5.3,5.4)

i 2 retrns(mk -Node(lt ;mv ; rt))
infer isin(i ; sr) , i 2 retrns(sr) Setrep-ind(4,5)

Lemma 5.5

5.3 States and proof obligations 129

5.3 States and proof obligations

Satis�ability

The process of design proceeds, normally in several stages, from speci�cation to
implementation. At each stage of design, a claim is being made that the design
coincides, in some way, with what has gone before { for example some piece
of code satis�es a module speci�cation. In an informal development method,
such claims are often only implicit; they are not capable of formalization since
the speci�cations, etc. are informal. In the rigorous approach, such claims are
made explicit: they give rise to proof obligations. Such proof obligations are
in the form of sequents to be proved. The formality of the speci�cation makes
these proof obligations quite precise. The level of detail to be employed in a
particular proof depends on judgement { thus the method is rigorous rather
than completely formal. The virtue of recognizing proof obligations is to ensure
that issues like satis�ability are not overlooked and to provide a hook for extra
formality if required.

Even when speci�cations alone are considered, there are proof obligations. It
is possible to write implicit speci�cations which cannot be satis�ed. For example,
a post-condition can be written which requires a number such that it and its
successor are even, or a function can be speci�ed to produce the `largest prime
number'.

Proof obligation 5.6 The proof obligation of satis�ability requires that, for any
function or operation, some result must exist for each valid input. For example,
for:

f (i :D)d :R
pre-f :D ! B

post-f :D � R ! B

the condition is:

8d 2 D � pre-f (d)) 9r 2 R � post-f (d ; r)

This states that there must exist an f which satis�es the speci�cation. It is, how-
ever, the case that the need to establish satis�ability can frequently be discharged
with a minimum of work.

Theorem 5.7 For example, the appropriate sequent for proof obligation 5.6 for
the pi function of Section 3.2 is:

x 2 R ` 9r 2 R � abs(� � r) � 10�2

130 5 Composite Objects and Invariants

This expression is obviously true. Since, however, this is the �rst proof which
requires 9-I , its form is shown (notice how the bound variable r is substituted
for the 3:141):

from x 2 R
1 3:141 2 R R

2 abs(� � 3:141) � 10�2 R

infer 9r 2 R � abs(� � r) � 10�2 9-I (2)

Theorem 5.7: pi

Even in the case of some of the more complex explicit function de�nitions given
above, the satis�ability proof obligation is straightforward.

Theorem 5.8 For example, the square function requires:

i 2 N ` 9r 2 N � r = i2

Which is obviously true from knowledge of the natural numbers.
Some appreciation of the need for satis�ability can be seen from an example

where it does not hold. Suppose that square root were speci�ed so as to require:

8i 2 N � 9rt 2 N � rt2 = i

This is obviously not true, as can be shown by a simple counter example:

:9rt 2 N � rt2 = 2

There are cases where the satis�ability proof obligation is not at all obvious and
it is no easier to prove than simply creating the implementation. In such cases,
the proof obligation should be used as an item on a checklist in a review and {
given a strong feeling that it is satis�ed { work on the implementation should
proceed.

It must be kept in mind that type information interacts with the pre- and
post-conditions when considering satis�ability. Thus an operation with a pre-
condition of x < 2 and a post-condition of x = (�x � 2 is satis�able for integers
(or reals) but not where x is constrained to be a natural number.

Such satis�ability constraints carry over in an obvious way from functions to
operations. Since it is only necessary to �x an order for the parameters of the
pre- and post-conditions when they are taken out of their context.

5.3 States and proof obligations 131

In
uence of invariants

Invariants { which are a part of the type discipline { also play a part in satis�a-
bility. An operation which has write access to a variable of type Datec, must not
generate a value like mk -Datec(366; 1923).

Proof obligation 5.9 No operation speci�cation must be written which rules out
all valid elements of Datec. So:

OP (i :D) o:R
ext wr dt : Datec
pre p(i ; dt)

post q(i ;
(�
dt ; o; dt)

must satisfy:

8i 2 D ;
(�
dt 2 Datec �

pre-OP(i ;
(�
dt)) 9o 2 R; dt 2 Datec � post -OP(i ;

(�
dt ; o; dt)

Examples involving Setrep or Partition behave in exactly the same way and it
should now be clear why emphasis was placed on invariant preservation lemmas
when these objects were introduced. The concept of satis�ability provides a way
of identifying rules for di�erent contexts. In each case, the requirement is to see
that a speci�cation does not preclude all possible implementations.

The idea of recording the external variables of an operation makes it possible
to avoid mentioning any irrelevant variables. There is an obvious way in which
an operation can be used in a state which has, at least, all of the required ex-
ternal variables. There is, of course, also a requirement that the types match.
A state5 can be de�ned as a composite object and can have an invariant. The
satis�ability proof obligation for an operation which is to be used in such a state
must re
ect the invariant on that state. Consider the example, from Section 4.4,
which controls information about people. The state could be:

World :: male : Name-set
female : Name-set
married : Name-set

inv (mk -World(m; f ; e)) 4 is-disj (m; f) ^ e � (m [f)

No operation which has only read access to the state can disturb the invariant.
However, the operation:

5Section 9.1 introduces the module concept which binds operations together with a speci�c
state.

132 5 Composite Objects and Invariants

BIRTHM (n:Name)
ext wr male : Name-set;

rd female : Name-set
pre n =2 (male [female)

post male =
(��
male [fng

poses a non-trivial satis�ability proof obligation.

Theorem 5.10 The basic form is:

8n 2 Name;(�w 2World �

pre-BIRTHM (n;male((�w); female((�w)))
9w 2World �

post-BIRTHM (n;male((�w); female((�w);male(w)) ^

female(w) = female((�w) ^married(w) = married((�w)

The two �nal conjuncts come from the fact that the externals show that BIRTHM
cannot change these values. The setWorld is constrained by inv -World such that:

World = fmk -World(m; f ; e) j
m; f ; e 2 Name-set ^ inv -World(mk -World(m; f ; e))g

Proofs about quanti�ers ranging over such set comprehensions are discussed in
Exercise 5.1.7 on page 123. From the equivalences there, it can be seen that the
proof obligation becomes:

8n 2 Name;(�m ;
(�
f ;(�e 2 Name-set �

inv -World(mk -World((�m ;
(�
f ;(�e)))

(pre-BIRTHM (n;(�m ;
(�
f))

9m 2 Name-set �

inv -World(mk -World(m;
(�
f ;(�e))^post-BIRTHM (n;(�m ;

(�
f ;m))

Using Lemma 1.20 (page 27) and the usual translation into a sequent, the
proof is shown on page 133. It is not normally necessary to produce such formal
versions of satis�ability proofs. It is done here by way of illustration.

The role of invariants on states can perhaps best be visualized by considering
them as some form of global (or `meta') pre- and post-condition: an invariant on
a state is an assertion which can be thought of as having been conjoined to the
pre- and post-conditions of all operations on that state.

This raises the question of why it is thought worth separating data type
invariants. There are three main arguments:

� for consistency checking;

5.3 States and proof obligations 133

from n 2 Name; (�m ;
(�
f ;(�e 2 Name-set

1 from is-disj ((�m ;
(�
f) ^(�e � ((�m [

(�
f) ^ n =2 ((�m [

(�
f)

1.1 (�m [fng 2 Name-set h,[

1.2 is-disj ((�m [fng;
(�
f) h1,h1,is-disj

1.3 (�e � ((�m [fng [
(�
f) h1,[

1.4 (�m [fng =(�m [fng
infer 9m 2 Name-set� 9-I (^-I (1.2,1.3,1.4),1.1)

is-disj (m;
(�
f) ^(�e � (m [

(�
f) ^m =(�m [fng

infer is-disj ((�m ;
(�
f) ^(�e � ((�m [

(�
f) ^ n =2 ((�m [

(�
f))) -I

9m 2 Name-set�

is-disj (m;
(�
f) ^(�e � (m [

(�
f) ^m =(�m [fng

Theorem 5.10: BIRTHM

� to guide subsequent revisions; and

� to ease implementation.

It is not possible to prove formally that a speci�cation matches a user's wishes
since these latter are inherently informal but the more that can be done to pos-
tulate and prove theorems about a speci�cation, the greater is the chance of
discovering any unexpected properties of the chosen speci�cation. Thus the obli-
gation to prove results about invariants can be seen as an opportunity to increase
con�dence in the consistency of a speci�cation.

The techniques described in this book were originally developed in an indus-
trial environment. The sort of application considered was rarely stable; speci�ca-
tions often had to be updated. Recording data type invariants is one way in which
the authors of a speci�cation can record assumptions about the state on which
their operations work. An explicit assumption, and its attendant proof obligation,
are likely to alert someone making a revision to an error which could be missed if
the reliance were left implicit. The task of showing that representations are ade-
quate for abstractions used in speci�cations is addressed in Section 8.1. It should,
however, be intuitively clear that the search for representations is facilitated by
limits to the abstraction.

134 5 Composite Objects and Invariants

Long invariants can provide a warning. Di�erent states with di�erent invari-
ants can be used to de�ne exactly the same behaviour of a collection of operations.
How is one to choose between alternative models? Although there are these ad-
vantages in recording invariants, it is also true that their presence { or complexity
{ can provide a hint that a simpler state model might be more appropriate. This
point is pursued below when other data-structuring mechanisms are available.
But it is generally true that a state with a simpler invariant is to be preferred in
a speci�cation to one with a complex invariant.

The process of designing representations frequently forces the inclusion of
redundancy; typically, this might be done to make some operation e�cient. Such
redundancy (e.g. a doubly-linked list) gives rise to invariants. Thus, as in the
Setrep example above, more complex invariants do tend to arise in the design
process.

As can be seen, data type invariants provide information about any single
state which can arise. They do not provide information about the way in which
states change (e.g. a constraint that a variable does not increase in value). Knowl-
edge about single states (e.g. fn = t ! in the factorial example used in Exercise 3.4.4
on page 86) and between states (e.g. the greatest common divisor of i and j is
the same in each succeeding state) both have parts to play in the implementa-
tion proofs of Chapter 10. In speci�cations themselves, however, it is data type
invariants which are most useful.

Exercise 5.3.1 Write out the satis�ability proof obligation (without proof) for:

� double (cf. Exercise 3.2.1 on page 57);

� choose (cf. Exercise 3.2.3 on page 58);

� mult (cf. Exercise 3.2.6 on page 61).

Exercise 5.3.2 Outline the proof of the �rst part of Exercise 5.3.1 { this is very
simple but shows the overall idea.

Exercise 5.3.3 Exercise 4.4.3 on page 108 can be speci�ed in (at least) two
ways. The di�erent models are distinguished by their invariants. Document
the invariant used in answering that exercise and prove that the operations are
satis�able with respect to it. Then �nd another model and record its invariant.

Data types

The notion of data type is very important in modern programming methods.
The view taken in this book is that a data type characterizes a behaviour. The

5.3 States and proof obligations 135

behaviour is the relationship between the results of the operators of the data
type. The importance of this relationship is that a value is exposed in other,
more basic, data types. Thus, in the World example above, Name is taken as a
basic type and the behaviour of the operations can be observed via their inputs
and outputs.

Clearly, if one knows all about the behaviour of a data type, one need know
nothing else in order to use the data type. The fact that it is realized (or im-
plemented) in some particular way is unimportant. For the speci�cation of the
operations around the World example (BIRTHM , etc.) the choice of the speci�c
state is an artifact of the speci�cation. This focuses the discussion on how data
types can be speci�ed. For interesting data types, the behaviours are in�nite and
it is clear that they have to be speci�ed other than by enumeration. Section 9.4
shows how the properties themselves can sometimes be used to form a speci�ca-
tion. The approach followed in the body of this book is to specify data types via
models. Not only is a particular composite object (containing sets) chosen as the
model for World , but also the map objects in the next chapter can be modelled
by sets of pairs. This model-oriented approach appears to be appropriate for the
speci�cation of larger computer systems. There are some dangers in the approach
and these are discussed in Section 9.3. Basically, the model must be seen as a
way of describing the essential behaviour and implementation choices must be
avoided.

There is another distinction about data types which is worth clarifying since
it often confuses discussions about their speci�cation. Data types like sets or
integers have operators which are purely functional in the sense that their results
depend only on their arguments. In contrast, the results of operations (in an
example like the calculator of Section 3.4) depend on the state. This distinction
is made here by referring to functional data types and state-based data types.
In the main, the speci�cations of computer systems are state-based data types.
In the model-oriented approach to speci�cations, the states themselves are built
using functional data types (e.g. sets).

A model-oriented speci�cation of a state-based data type comprises:

� a de�nition of the set of states (normally including invariants);

� a de�nition of possible initial states (often exactly one); and

� a collection of operations whose external variables are parts of the state:
these operations must be satis�able.

Section 9.1 describes a �xed concrete syntax for presenting a whole data-type
speci�cation. This is not used in the body of this book because of the wish to

136 5 Composite Objects and Invariants

focus on concepts rather than details of syntax. In a state-based data type, the
history of the operations plays a part in governing the behaviour. Even so, the
behaviour can be seen as the essence of the data type. The model is a convenient
way of de�ning the behaviour. To a user of the data type, internal details of the
state are important only in so far as they a�ect the observable behaviour. Those
details which are not made visible by operations should be ignored.6

6Section 3.4 explains why one operation cannot, as such, be used in the speci�cation of
another. It is, however, clear that the separation provided by data types is very useful in
structuring speci�cations. There is, therefore, a need to be able to use, in some way, even
state-based data types in the speci�cations of others. This topic is taken up in Section 9.1.

6

Map Notation

If you are faced by a di�culty or a controversy in
science, an ounce of algebra is worth a ton of
verbal argument.
J. B. S. Haldane

Functions de�ne a mapping between their domain and range sets { a result can
be computed by evaluating the expression in the direct de�nition with particular
arguments substituted for the parameter names. Their de�nitions use powerful
concepts which make it { in general { impossible to answer even simple questions
about functions such as whether they yield a result for some particular argument
value. When a mapping is required in a speci�cation, it is often su�cient to con-
struct a �nite map; the virtue of explicitly recognizing the more restricted case is
that more powerful operators can be de�ned. The maps which are described in
this chapter are, however, similar to functions in many respects and the termi-
nology and notation adopted re
ects the similarities. The di�erences result from
the fact that the argument/result relationship is explicitly constructed for maps.
Building a map is like building a table of pairs; application of a map requires table
look-up rather than evaluation of a de�ning expression. Furthermore, whereas
functions are de�ned by a �xed rule, maps are often created piecemeal.

Access to information via keys is very common in computer applications and
poses signi�cant implementation problems. A powerful abstract notation for
maps provides a crucial tool for the construction of concise speci�cations. Con-
sequently, maps are the most common structure used in large speci�cations.

137

138 6 Map Notation

6.1 Notation

Representing equivalence relations

In order to provide an introduction to the notation, a speci�cation is shown { in
terms of maps { which de�nes the same behaviour for the operations as that for
the equivalence relation problem in Section 4.4. It should be remembered that
elements of N have to be separated into partitions; partitions can be merged by
an EQUATE operation; another operation makes it possible to �nd the GROUP
of elements in the same partition as some given element. In the de�nition to be
given here, the property of being in the same partition is captured by a map:
equivalent elements are mapped to the same partition identi�er (the set of which
is Pid). The required map type is de�ned:

Partrep = N
m
�! Pid

Thus the partition:

ff3; 6g; f5g; f7; 2; 1gg

might be represented by a table of N/Pid values:

3 pid1
6 pid1
5 pid2
7 pid3
2 pid3
1 pid3

A linear presentation of map values can be used: individual pairs are known
as maplets and the elements are separated by a special arrow (7!); the collection
of pairs is contained in set braces. Thus:

f3 7! pid1; 6 7! pid1; 5 7! pid2; 7 7! pid3; 2 7! pid3; 1 7! pid3g

The map is shown as a set of maplets or element pairs. Their order is unimportant
and a natural model for �nite maps is a �nite set of ordered pairs. Arbitrary sets
of such pairs would, however, be too general. In order for maps to be used with
a function style of notation, they must satisfy the restriction that no two pairs
have the same left-hand value. In other words, a map represents a many-to-one
mapping.

The information about variables, etc. for the GROUP operation can be rewrit-
ten:

6.1 Notation 139

GROUP (e:N) r :N-set
ext rd m : Partrep
pre � � �
post � � �

The post-condition must require that the set r contains all elements which map
to the same Pid as e. Application of a map is just like function application and
the same notation is used. Thus post-GROUP is:

r = fe 0 2 � � � j m(e 0) = m(e)g

Completing the post-condition { and writing the pre-condition { requires that the
domain of the map be known because the de�nition of a map �xes the maximum
set of values and each instance of such a map value has a domain (dom) which is
a subset of the maximum set. Using this operator, the speci�cation of GROUP
can be completed:

GROUP (e:N) r :N-set
ext rd m : Partrep
pre e 2 domm

post r = fe 0 2 domm j m(e 0) = m(e)g

The post-condition of the EQUATE operation must describe how m changes.
There is a mapping override operator (y) which enables pairs from its second
operand to take precedence over any pairs from its �rst operand for the same key
{ thus:

fa 7! 1; b 7! 2g y fa 7! 3; c 7! 4g = fa 7! 3; b 7! 2; c 7! 4g

It would be possible to write in post-EQUATE :

m =(�m y fe1 7!
(�m (e2)g

but this would be wrong! By changing only one key, other members of the e1
partition would not be updated (and the transitivity property would be lost). A
comprehension notation, like that for sets, can be used for maps. The correct
speci�cation of EQUATE is:

EQUATE (e1:N; e2 :N)
ext wr m : Partrep

post m =(�m y fe 7!(�m (e2) j e 2 dom
(�m ^(�m (e) =(�m (e1)g

The second operand of the override contains all pairs from the old value of m
which have the same key as e1 did in the old value of m.

The initial value of Partrep is de�ned to be the empty map: m0 = f g.

140 6 Map Notation

Continuing in this way would result in there being two speci�cations of the
equivalence relation problem. Chapter 8 introduces the methods by which one
can be shown to model the other. (The choice of the name Partrep was made
to suggest its being a representation of Partition.) Chapter 11 takes a variant of
this problem through the process of data rei�cation (and operation decomposition
down to code).

Now that the collection of data type constructors is larger, it is necessary to
spend more time considering which model best suits the task to be speci�ed and
this is taken up in Section 9.2. Abstraction is interesting { but not always easy.

Operators

The remainder of this section takes a closer look at the notation for maps. Maps
are associations between two sets of values; within a pair (maplet), the key and
value are separated by 7!; a map value contains a collection of such pairs where
no two pairs have the same �rst element. For example:

f1 7! 1; 2 7! 4;�1 7! 1; 0 7! 0g

The pairs can be written in any order within the braces:

f1 7! 1; 2 7! 4;�1 7! 1; 0 7! 0g = f�1 7! 1; 0 7! 0; 1 7! 1; 2 7! 4g

Map values can also be de�ned by comprehension in a way which re
ects the fact
that maps are simply sets of pairs. Thus:

fi 7! i2 2 N � N j i 2 f�1; : : : ; 2gg

is the same map value as above. The general form is:

fx 7! f (x) 2 X �Y j p(x)g

But, since it is normally obvious, the constraint is frequently omitted. Such
expressions must be written so as to generate only �nite1 maps. With care, one
can also write map comprehension as:

fx 7! y j q(x ; y)g

but, in order to be able to look up values, it is essential that q does not associate
two di�erent y values with the same x value.

The examples which follow use the values:

m1 = fa 7! 1; c 7! 3; d 7! 1g; m2 = fb 7! 4; c 7! 5g

1This restriction is required { as with other objects { to admit induction.

6.1 Notation 141

�
�

�
�

�
�

�
�

�
�

�
�r -rng� rdomD-set D

m
�! R R-set

���r
?

y;[

�
�

�
�R

�
�

�
�D -�r

()

��
6

� r
�;��

Figure 6.1 ADJ diagram of map operators

The domain operator yields, when applied to a map value, the set of �rst elements
of the pairs in that map value. Thus:

domm1 = fa; c; dg
domm2 = fb; cg

and for the empty map:

dom f g = f g

A map value can be applied to a value for which it is de�ned (is in the set
given by dom) { thus:

m1(a) = 1
m2(c) = 5

and for maps de�ned by comprehension:

m = fx 7! f (x) j p(x)g ^ p(x0)) m(x0) = f (x0)

Given an understanding of these operators, all other map operators (see Figure 6.1
for the ADJ diagram) can be de�ned.

142 6 Map Notation

The set of values on the right of the pairs contained in a map can be deter-
mined by the range operator:

rngm1 = f1; 3g
rngm2 = f4; 5g
rng f g = f g

which is de�ned:

rngm = fm(d) j d 2 dommg

Notice that, as a result of the many-to-one property, for any map value m:

card rngm � card domm

The map override operator yields a map value which contains all of the pairs
from the second (map) operand and those pairs of the �rst (map) operand whose
�rst elements are not in the domain of the second operand. Thus:

m1 ym2 = fa 7! 1; b 7! 4; c 7! 5; d 7! 1g
m2 ym1 = fa 7! 1; b 7! 4; c 7! 3; d 7! 1g
m y f g = m = f g ym

The types of all of the map operators can be read from Figure 6.1; map override
is de�ned:

ma ymb 4

fd 7!
(if d 2 dommb then mb(d) else ma(d)) j
d 2 (domma [dommb)g

Notice that the domain of the second operand can contain elements which are
not in the domain of the �rst operand.

The override operator is not commutative. When the domains of two map
values are disjoint, the values can be combined by a union operator:

m2 [fa 7! 7g = fa 7! 7; b 7! 4; c 7! 5g

for which:

is-disj (domma ;dommb)) ma [mb = mb [ma

The de�nition of map union is identical with that for override, so:

is-disj (domma ;dommb)) ma [mb = ma ymb

The advantage of identifying { with a distinct operator { the special case of
disjoint domains is that the commutativity property can be used in proofs. Re-

6.1 Notation 143

member, however, that the union operator is unde�ned if the domains of the
operands overlap.

The union symbol is used in two distinct contexts. Strictly, set union and
map union are two di�erent operators. The same symbol is used because of their
similarity. Such overloading is familiar both in mathematics and in programming
languages. For example, Pascal uses the same plus operator for integer and real
numbers (as well as for set union!).

A restriction operator (�) is de�ned with a �rst operand which is a set value
and a second operand which is a map value; the result is all of those pairs in the
map value whose �rst element is in the set value. Thus:

fa; d ; eg �m1 = fa 7! 1; d 7! 1g
f g�m1 = f g
s � f g = f g

Map domain restriction is de�ned:

s �m 4 fd 7! m(d) j d 2 (s \ domm)g

and for any map:

(domm)�m = m

Similarly, a domain deletion operator (��), with the same type as restriction,
yields those pairs whose �rst elements are not in the set:

fa; d ; eg ��m1 = fc 7! 3g

Map deletion is de�ned:

s ��m 4 fd 7! m(d) j d 2 (domm � s)g

and for any map values:

f g ��m = m

ma ymb = (dommb ��ma) [mb

A type whose values are to be maps each with maximum domain D and
maximum range R is de�ned by:

T = D
m
�! R

Any value of type T is a map whose (�nite) domain is a subset of D and whose
range is a subset of R. Thus:

fa; bg
m
�! f1; 2g

144 6 Map Notation

denotes a set of maps whose elements are:

f g; fa 7! 1g; fa 7! 2g; fb 7! 1g; fb 7! 2g;
fa 7! 1; b 7! 1g; fa 7! 1; b 7! 2g; fa 7! 2; b 7! 1g; fa 7! 2; b 7! 2g

Thus:

fa 7! 1; b 7! 2g 2 (fa; bg
m
�! f1; 2g)

It should be clear from this example that the type (given by map) de�nes the
maximum possible domain for a map. The domain operator determines the do-
main set of a particular map value. Thus:

dom fb 7! 2g = fbg � fa; bg
dom f g = f g � fa; bg

Because of the restriction that maps be many-to-one, the inverse of a map is
not { in general { a map. Only if a map is one-to-one is its inverse also a map.
Although it is needed less, this type can be shown by:

D
m
 ! R

where:

(D
m
 ! R) = fm 2 (D

m
�! R) j is-oneone(m)g

is-oneone : (D
m
�! R)! B

is-oneone(m) 4 card rngm = card domm

If:

m 2 D
m
 ! R

then the inverse, which is de�ned:

m�1 = fr 7! d j d 2 domm ^ r = m(d)g

is of type:

m�1 2 R
m
 ! D

Exercise 6.1.1 Given:

m1 = fa 7! x ; b 7! y ; c 7! xg
m2 = fb 7! x ; d 7! xg

what is the value (if de�ned) of:

6.1 Notation 145

m1(c)
domm1

rngm2

m1(x)

m1 ym2

m2 ym1

m1 [m2

fa; eg �m1

fd ; eg ��m2

Exercise 6.1.2 Complete the following expressions (mi are arbitrary maps):

m y f g = ?
f g ym = ?
m1 y (m2 ym3) = (m1 ym2) ?m3

dom (m1 ym2) = ?m1 ? ?m2

rng (m1 ym2) = ?
dom fx 7! f (x) j p(x)g = ?
rng (m1 ym2) ? (rngm1 [rngm2)

Exercise 6.1.3 Sketch a map value (2 Floor
m
�! Roomno-set) which shows

which rooms are on which
oors of the hotel mentioned in Exercise 5.1.4 on
page 122.

Exercise 6.1.4 The reader should now look back at the introductory example of
the equivalence relation speci�cation built on Partrep. To check the understand-
ing of the way maps are used:

� Specify, on Partrep, the ELS and ADD operations of Section 4.4.

� Reformulate post-EQUATE in a way which leaves open the choice of whether
the key of e1 or e2 is used in the update.

� Respecify the GROUP and EQUATE operations (as in Exercise 4.4.6 on
page 111) to take sets as arguments.

A model of maps

In the description of the notation given above, all of the operators are de�ned
formally except dom and application: the other operators are de�ned in terms

146 6 Map Notation

of these two. The reliance on explanation by examples can also be eliminated for
these basic operators. The general style of speci�cation in this book is to provide
a model for any new data type; the model being de�ned using data types which
are already understood. Maps can be de�ned in this way. The essence of the
de�nition is to �nd a model for ordered pairs. If a pair is formed by the function
pr and �rst and second are functions which decompose a pair, the key properties
are:

�rst(pr(a; b)) = a

second(pr(a; b)) = b

(pr(a; b) = pr(c; d)) , (a = c ^ b = d)

Either of the data type constructors from the preceding chapters can be used to
construct a suitable model. Using composite objects, for given types D and R:

Pair :: �rst : D
second : R

This satis�es the required properties with:

pr (a; b) 4 mk -Pair(a; b)

Notice that, by choosing the selectors appropriately, the decomposition functions
come automatically.

It is also possible to model pairs solely in terms of sets { though this takes
some thought. In order to be able to decompose the pair and to obtain the
uniqueness property, it is necessary to de�ne:

pr (a; b) 4 ffag; fa; bgg

There is a problem with naming2 the results of the decomposition functions. This
is overcome here by writing implicit speci�cations:

�rst (p:Pair) v :D
post fvg 2 p

second (p:Pair) v :R
post 9u 2

S
p � p = ffug; fu; vgg

If the reader �nds these de�nitions contorted, a few moments should be spared
trying out values like:

pr(1; 1)

2Here again, the iota (�) operator could be used in a direct de�nition.

6.2 Reasoning about maps 147

Either of these models su�ces and only the properties of pairs are important. A
map can be modelled by a set of pairs in which no two elements have the same
�rst value:

Map = Pair -set

inv (s) 4 8p1; p2 2 s � p1 = p2 _ �rst(p1) 6= �rst(p2)

It is then straightforward to de�ne:

domm = f�rst(p) j p 2 mg

Application is again de�ned implicitly but, because it is an in�x operator, this is
written:

m(v) = r) 9p 2 m � v = �rst(p) ^ r = second(p)

All of the map notation has now been de�ned in terms of other types and
thus, in some sense, it could be avoided by writing everything in terms of one of
the models of Pair . As subsequent examples show, however, the map notation
is one of the main tools for achieving concise speci�cations and it is much more
convenient to use the special operators.

Exercise 6.1.5 In the text of the chapter, operators like rng and [are de�ned
in terms of dom and application. Rede�ne all of the map operators directly in
terms of sets of pairs (use the composite object model of Pair).

6.2 Reasoning about maps

Map induction

As with other data types, the interesting proofs about maps require induction.
It would be possible to conduct such proofs by using set induction on the domain
of the map. Rather than do this, speci�c induction rules are given for maps. As
above, these rules rely on the operators which generate �nite maps. The ones
chosen are very like those for sets. The empty map (f g) is a map and there is
a (ternary) operator (�) which inserts one new pair into a map (its signature is:
D�R� (D

m
�! R)! (D

m
�! R)). A few detailed points are worth making here.

The `pun' on f g being both the empty set and the empty map should cause no
confusion. It would be more confusing to index each value with its type (although
they are coded di�erently in the LATEXsource �les!). Furthermore, the insertion
operator (�) is used only in the de�nitions of { and proofs about { the normal
map operators: the speci�cations in Section 6.3 and subsequent chapters use the
normal operators which are introduced in the previous section.

148 6 Map Notation

The generators provide an intuitive representation for any �nite map:

fd1 7! r1g � (: : : � fg)

The absorption and commutativity properties are slightly di�erent from those for
sets.

Axiom 6.1 Of two insertions for the same key, only the outer one has e�ect:

�-pri
d 2 D ; r1; r2 2 R; m 2 D

m
�! R

fd 7! r1g � (fd 7! r2g �m) = fd 7! r1g �m

Axiom 6.2 However, for di�erent keys, insertions can be commuted:

�-comm
d1; d2 2 D ; r1; r2 2 R; m 2 D

m
�! R; d1 6= d2

fd1 7! r1g � (fd2 7! r2g �m) = fd2 7! r2g � (fd1 7! r1g �m)

The intuitive representation given above is, therefore, not unique.

6.2 Reasoning about maps 149

Axiom 6.3 (Map-ind) More important for the current purpose is the fact that
the full induction rule re
ects the absorption:

Map-ind

p(f g);

d 2 D ; r 2 R; m 2 (D
m
�! R); p(m); d =2 domm `

p(fd 7! rg �m)

m 2 (D
m
�! R) ` p(m)

Thus it is necessary to prove that a property holds for the empty map and that
it inherits over insertion in order to conclude that the property holds for any
map. The �nal hypothesis of the induction step shows that any map can be
generated with no key occurring more than once. However, one of the operators
which is discussed below is the domain operator; in proving its properties the
�nal hypothesis is not used.

Map application is de�ned over the generators. The rules are given here less
formally than for sets (i.e. types are not shown as antecedents in the inference
rules { they are suggested by the choice of identi�ers).

(fd 7! rg �m)(d) = r

d2 2 domm ` d1 6= d2) (fd1 7! rg �m)(d2) = m(d2)

These rules do not permit the empty map to be applied to any value.

Proofs about override

The override operator can be de�ned in terms of the generators.

Rule 6.4 (y-b) The base case:

y-b
m 2 (D

m
�! R)

m y f g = m

Rule 6.5 (y-i) The induction case:

y-i
d 2 D ; r 2 R; m1;m2 2 (D

m
�! R)

m1 y (fd 7! rg �m2) = fd 7! rg � (m1 ym2)

It is worth noticing that, in the case of set union, the �rst operand is the one
which is analyzed by the cases of the de�nition. Here, it is necessary to analyze
the second argument because of the priority given to values of the second operand.
The y-i rule essentially decomposes the second operand and generates a series of
inserts around the �rst operand. This process could generate a string of insertions
with duplicate keys (one instance coming from each operand). In conjunction
with the { limited { commutativity of insertion, these can be eliminated by the

150 6 Map Notation

from m 2 (D
m
�! R)

1 f g y f g = f g y-b

2 from d 2 D ; r 2 R; m 2 (D
m
�! R); f g ym = m

2.1 f g y (fd 7! rg �m)
= fd 7! rg � (f g ym) y-i

infer = fd 7! rg �m ih2
infer f g ym = m Map-ind (1,2)

Lemma 6.6

absorption rule (�-pri) for keys given above.

Lemma 6.6 The �rst proof about maps (see page 150) shows that the empty
map is absorbed also when used as left operand of override.

L6.6
m 2 (D

m
�! R)

f g ym = m

Lemma 6.7 (y-ass) The associativity of override:

y-ass
m1;m2;m3 2 (D

m
�! R)

m1 y (m2 ym3) = (m1 ym2) ym3

is also proved on page 151.
From the development of sets, the next property to consider is commutativity.

It is made clear in Section 6.1 that override is not commutative. Consulting the
proof of the property for set union (see page 100), it can be seen that the lack of
this property for override results from the restriction placed on the commutativity
of insert (�-comm).

Lemma 6.8 A useful result is:

L6.8
m1;m2 2 (D

m
�! R); is-disj (domm1;domm2)

m1 ym2 = m1 [m2

Proofs about the domain operator

The de�nition of the domain operator can also be given in terms of the generators.

Rule 6.9 (dom -b) The basis:

6.2 Reasoning about maps 151

from m1;m2;m3 2 (D
m
�! R)

1 m1 y (m2 y f g)
= m1 ym2 y-b

2 = (m1 ym2) y f g y-b

3 from d 2 D ; r 2 R; m 2 (D
m
�! R);

m1 y (m2 ym) = (m1 ym2) ym
3.1 m1 y (m2 y (fd 7! rg �m))

= m1 y (fd 7! rg � (m2 ym)) y-i
3.2 = fd 7! rg � (m1 y (m2 ym)) y-i
3.3 = fd 7! rg � ((m1 ym2) ym) ih3

infer = (m1 ym2) y (fd 7! rg �m) y-i
infer m1 y (m2 ym3) = (m1 ym2) ym3 Map-ind(2,3)

Lemma 6.7: y-ass

dom -b
dom f g = f g

Rule 6.10 (dom -i) The inductive step:

dom -i
d 2 D ; r 2 R; m 2 (D

m
�! R)

dom (fd 7! rg �m) = fdg [domm

Notice how the insert case relies on the absorption property of set union.

Lemma 6.11 The relationship between the domain and override operators:

L6.11
m1;m2 2 (D

m
�! R)

dom (m1 ym2) = domm1 [domm2

is proved on page 152.
The development of the results for maps is { given an understanding of the

proofs about sets { routine. A number of further results are considered in the
exercises.

Exercise 6.2.1 The proofs in this section are presented in less detail than in
earlier chapters. In particular, note all of the line numbers are referenced. To
show that the process of completing such proof sketches is made possible by their
overall structure, complete the details of the proof of Lemma 6.7 on page 151.

152 6 Map Notation

from m1;m2 2 (D
m
�! R)

1 dom (m1 y f g)
= domm1 y-b

2 = domm1 [f g L4.5
3 = domm1 [dom f g dom -b

4 from d 2 D ; r 2 R; m 2 (D
m
�! R);

dom (m1 ym) = domm1 [domm

4.1 dom (m1 y (fd 7! rg �m))
= dom (fd 7! rg � (m1 ym)) y-i

4.2 = dom (m1 ym) [fdg dom -i
4.3 = domm1 [domm [fdg ih4

infer = domm1 [dom (fd 7! rg �m) dom -i
infer dom (m1 ym2) = domm1 [domm2 Map-ind(3,4)

Lemma 6.11

Exercise 6.2.2 De�ne, in terms of the generators for maps, the map operators
(�, �� and [). It will prove convenient for Exercise 6.2.3 to analyze the �rst
operand when writing the last de�nition.

Exercise 6.2.3 Prove (showing any necessary assumptions):

f g�m = f g
m [f g = m

(m1 [m2) [m3 = m1 [(m2 [m3)
fd 7! rg � (m1 [m2) = m1 [(fd 7! rg �m2)
(This splits out the equivalent of the lemma used in set union.)
m1 [m2 = m2 [m1

m1 ym2 = m1 [m2

Exercise 6.2.4 (*) Develop further results about map operators including links
to application.

Exercise 6.2.5 (*) Prove the properties of Exercise 4.4.5 on page 111 about the
equivalence relation speci�cation on the Partrep model.

6.3 Speci�cations 153

6.3 Speci�cations

Bank example

It is claimed above that maps are the most ubiquitous of the basic data types.
In order to indicate why this is so, a simple bank system is speci�ed: the need
to locate information by keys is typical of many computing applications. The
example is also just complicated enough to rehearse some arguments which must
be considered when choosing a model to underlie a speci�cation. This is done on
the level of alternative states before the operations are speci�ed in detail.

The customers of the bank to be modelled are identi�ed by customer numbers
(Cno); accounts are also identi�ed by numbers (Acno). One customer may have
several accounts whose balances must be kept separately. A customer has an
overdraft limit which applies to each account { a credit in one account cannot be
set against a debit elsewhere.

There are, then, two sorts of information to be stored for each customer: the
relevant overdraft and the balance information. Both pieces of information can
be located by maps whose domains are customer numbers. But should there be
one map or two? There are advantages in either solution. Separating the maps
into:

odm:Cno
m
�! Overdraft

acm:Cno
m
�! : : :

makes it possible for some operations to reference (in their ext clause) only one
of the maps. With separate maps, however, there is the need to de�ne a data
type invariant which requires that the domains of the two maps are always equal.
The need for this invariant is avoided by using one map to composite objects:

Bank = Cno
m
�! Acinf

Acinf :: od : Overdraft

ac : Acno
m
�! Balance

inv (mk -Acinf (od ;m)) 4 8acno 2 domm � �od � m(acno)

Overdraft = N

Balance = Z

Invariants, as seen above, can complicate the satis�ability proof obligation. It
is therefore worth avoiding gratuitous complexity and the second model is used

154 6 Map Notation

here.3

Before considering other general issues raised by this speci�cation, some minor
points about interpretation should be cleared up. Both Overdraft and Balance

concern sums of money. The temptation to treat these as real numbers should
be resisted. Although most currencies do have fractional parts, � is an unusual
balance! The fractions are there for human use and a whole number of the
lowest denomination is clearly appropriate in a computer system. Balances can
be negative { it is necessary to choose how to show overdrafts. The decision
here can be seen clearly from the invariant on Acinf (representing the overdraft
information as a minimum balance would be a possibility which would avoid a
minus sign).

A larger and more general point surrounds the uniqueness of account numbers.
Most banks make account numbers unique to a customer. An invariant can be
used to show that no two di�erent customers can have the same account number:

Bank = Cno
m
�! Acinf

inv (m) 4

8cno1; cno2 2 domm �
cno1 6= cno2) is-disj (dom ac(m(cno1));dom ac(m(cno2)))

However, this suggests that the account information could be organized in a
totally di�erent way. Consider:

Bank :: am : Acno
m
�! Acdata

odm : Cno
m
�! Overdraft

inv (mk -Bank(am; odm)) 4

8mk -Acdata(cno; bal) 2 rng am �cno 2 dom odm ^bal � �odm(cno)

Acdata :: own : Cno
bal : Balance

The invariant is not too complex and the many-to-one relationship between ac-
counts and customers has been �tted naturally onto a map. This model looks
plausible enough to justify attempting some operation speci�cations.

The operation to introduce a new customer into the system can be speci�ed:

NEWC (od :Overdraft) r :Cno

ext wr odm : Cno
m
�! Overdraft

post r =2 dom
(��
odm ^ odm =

(��
odm [fr 7! odg

3Once the material in Chapter 8 on relating models is understood, it is possible to work with
more than one model in the case where advantages of di�erent contending models are desired
(one can `have one's cake and eat it' !).

6.3 Speci�cations 155

Notice that this operation allocates the new customer number. It is also worth
observing that both post-NEWC and inv -Bank rely on the LPF. Since many
map operators are partial, the reliance on the non-strict propositional operators
is even greater than in earlier chapters.

An operation to introduce a new account is:

NEWAC (cu:Cno) r :Acno

ext rd odm : Cno
m
�! Overdraft ;

wr am : Acno
m
�! Acdata

pre cu 2 dom odm

post r =2 dom(�am ^ am =(�am [fr 7! mk -Acdata(cu; 0)g

Both of the foregoing operations trivially preserve the invariants. A simple en-
quiry operation is:

ACINF (cu:Cno) r :Acno
m
�! Balance

ext rd am : Acno
m
�! Acdata

post r = facno 7! bal(am(acno)) j acno 2 dom am^own(am(acno)) = cug

The chosen model stands up to the test of de�ning these operations. Things
are rarely so easy and it is only the restriction to a very simpli�ed system which
gives this slightly unrealistic outcome. In large speci�cations, the writer must be
prepared to revise the underlying model. Time spent in ensuring that the state
matches the problem can lead to a vastly clearer speci�cation than results from
simply using one's �rst guess.

There is also another trade-o� which is worth mentioning here. As richer
sets of operations are required, it often becomes tempting to add redundant
information into the state to shorten their speci�cations. This redundancy would
of course result in further data type invariants and is to be avoided. It is in general
better to de�ne auxiliary functions which extract the necessary information from
a minimal state.

Exercise 6.3.1
For the banking system specify operations which:

� close an account;

� remove a customer;

� transfer money between accounts;

� change an overdraft limit.

What changes need to be made to the model if each account has a separate
overdraft limit? The informal descriptions of each of these operations can be

156 6 Map Notation

interpreted in di�erent ways { record any assumptions which are made in formal-
izing the speci�cation.

Specifying bags

The next speci�cation is of a di�erent type. The preceding section showed that
maps can be modelled on other types. Here, another type is modelled on maps.
A bag (sometimes known as a multiset) can contain multiple elements but the
order of elements is not preserved. Bags thus share the unordered property with
sets and the possibility to store duplicates with sequences. The model of a bag
(over some set X) is:

Bag = X
m
�! N1

This can be viewed as associating the multiplicity with each element which has
a non-zero multiplicity. The initial object { the empty bag { is:

b0 = f g

Clarity can be heightened in this speci�cation if an auxiliary function (mpc) is
identi�ed to compute (possibly zero) multiplicities.

mpc :X � Bag ! N

mpc(e;m) 4 if e 2 domm then m(e) else 0

The operation which shows how many occurrences of an element are in a bag
is speci�ed:

COUNT (e:X) c:N
ext rd b : Bag
post c = mpc(e; b)

An operation to update a bag is speci�ed:

ADD (e:X)
ext wr b : Bag

post b =
(�
b y fe 7! mpc(e;

(�
b) + 1g

Exercise 6.3.2 Specify an operation to remove an occurrence of an element from
a bag and show that it is satis�able. (Hint: notice the range of Bag).

Describing virtual storage

As an example of the use of maps in describing a feature of machine architecture,
the concept known as virtual store is considered. A virtual store is one which

6.3 Speci�cations 157

provides multiple users each with an apparent addressing space larger than the
real store which is actually available to the user { perhaps even larger than the
real store of the whole machine. This is achieved by paging inactive portions of
store onto a backing store with slower access. The penalty is, of course, that a
reference to a page which is not in fast store must be delayed while the page fault
is handled.

This speci�cation provides a good example of how abstraction can be used
to explain concepts in an orderly way. The �rst step is to obtain a clear under-
standing of the basic role of store. This has nothing, as yet, to do with virtual
store. The following should be easily understood by the reader:

Store = Addr
m
�! Val

RD (a:Addr) v :Val
ext rd s : Store
pre a 2 dom s

post v = s(a)

There is an overhead in a virtual store system: the current position (i.e. in fast
or slow store) of each addressable value has to be tracked. In order to reduce
this overhead, addresses are grouped into pages which are always moved between
levels of store as a unit. The Addr set has not so far been de�ned. It is now
assumed to contain a page number and an o�set (i.e. position within its page)
and a Page maps O�set to Val :

Addr :: p : Pageno
o : O�set

Page = O�set
m
�! Val

inv (m) 4 domm = O�set

The invariant (inv -Page) records that the domain of any particularm 2 (O�set
m
�!

Val) is a subset of O�set . The virtual store system can now be de�ned to have
front and backing stores, each of which contain pages:

Vstore :: fs : Pageno
m
�! Page

bs : Pageno
m
�! Page

inv (mk -Vstore(fs; bs)) 4 is-disj (dom fs ;dom bs)

The read operation can be respeci�ed on Vstore. At this level, the concept of
page faulting is introduced by showing that the relevant page must be in fs

after the read operation. Any consideration of a speci�c algorithm (e.g. least

158 6 Map Notation

recently used) to choose which page to move out is deferred. The post-condition
only shows that no pages are lost and leaves open how much paging activity
occurs. This non-determinism is being used as an abstraction to postpone design
decisions.

RDVS (a:Addr) v :Val

ext wr fs : Pageno
m
�! Page;

wr bs : Pageno
m
�! Page

pre p(a) 2 (dom fs [dom bs)

post fs [bs =
(�
fs [

(�
bs ^ p(a) 2 dom fs ^ v = fs(p(a))(o(a))

There are systems in which a very clean abstraction can be given of nearly
all of the functionality but where some detail distorts the �nal model. If one
is involved in designing such an architecture, one can use this as a prompt to
check whether the complexity could be avoided. If an established architecture
is being described, there is no choice but to accept the extra complexity in the
�nal model. This virtual store system provides a basis for an example. Virtual
store systems in actual computers need many extra features: it is often possible
to lock pages into fast store; some operations might allow access to values which
cross the page boundaries. In such a case, it is good practice to record the
simpli�ed versions so as to convey the basic concepts. For some architectures
this process of approximating to the �nal functionality can require several stages
but can enormously help the comprehension of systems whose entire `architecture'
is opaque.

LISP-like lists

Chapter 5 introduces various forms of lists as occur in list-processing languages.
The most LISP-like of these is shown (cf. Exercise 5.1.6 on page 123) as:

Pllist = [Node]

Node :: car : Pllist [N
cdr : Pllist [N

This fails to re
ect the possibility { which exists in most dialects of LISP {
that sub-lists are shared. Handling this possibility is an example of the need to
introduce an intermediate link. Thus, one model which covers sharing is:

Lisp1 :: l : Lisplist

nm : Nid
m
�! Node

6.3 Speci�cations 159

@
@
@
@

�
�

�
�

@
@
@
@

�
�

�
�

@
@
@
@

�
�

�
�

@
@
@
@

�
�

�
�

car

car car

car

cdr

cdr cdr

cdr

a

b c

5 d 2

3 7

Figure 6.2 LISP list

Lisplist = [Nid]

Node :: car : Lisplist [N
cdr : Lisplist [N

Given the basic idea of intermediate links, there are various ways in which it can
be employed. It would, for example, be possible to de�ne:

Lisp2 :: carrel : Nid
m
�! (Nid [N)

cdrrel : Nid
m
�! (Nid [N)

Figure 6.2 pictures a structure. The two possible representations are:

mk -Lisp1(a; fa 7! mk -Node(b; c);
b 7! mk -Node(5; d);
c 7! mk -Node(d ; 2);
d 7! mk -Node(3; 7)g)

mk -Lisp2(fa 7! b; b 7! 5; c 7! d ; d 7! 3g;
fa 7! c; c 7! 2; b 7! d ; d 7! 7g)

160 6 Map Notation

The drawback of the second is the need for a relatively complicated invariant.

Well-founded relations

Sections 4.4 and 6.1 (and Chapter 11) address various representations of equiv-
alence relations. General relations cannot be represented so compactly. The
obvious model for general relations over D is sets of Pairs.

Rel = Pair -set

Pair :: f : D
t : D

Such a relation is said to be `over D ' because both the domain and range elements
are chosen from that set. The claim that a particular pair of (D) elements stand in
the R relation is written e1Re2. These more general relations also have interesting
properties: the topic of well-foundedness a�ects several examples below and has
a key part to play in the proof obligations (cf. Chapter 10) for loop constructs.
It is therefore worth spending a little time on the topic. Intuitively, a well-
founded relation is one which has no loops. For R to be well-founded, eRe must
obviously be prohibited but so also must any indirect loops like e1Re2 and e2Re1.
In order to capture this with a predicate, one might try to trace along the relation
collecting the elements that are encountered. This can be done but some care
is necessary in order to make sure that the function does not become unde�ned
in precisely the cases where the invariant should be false. Of the alternative
approaches, the most straightforward is to require that, in any non-empty subset
of the (potential) domain of the relation, there must be an element which is not
related to an element in that subset. Thus:

8s � D �
s 6= f g) 9e 2 s � : (9e 0 2 s � eRe 0)

Observe that:

fmk -Pair(i ; i � 1) j i 2 N1g

is well-founded (over N), as also is:
S
ffmk -Pair(i ; j) j j 2 N ^ j < ig j i 2 N1g

The concept of well-foundedness plays a signi�cant part in other branches of
mathematics and it is interesting to compare the above de�nition with the more
common mathematical de�nition:

: (9f :N ! D � 8i 2 N � f (i)Rf (i + 1))

6.3 Speci�cations 161

This is a direct way of stating that there must be no in�nite descending paths
but it does require the use of higher-order quanti�cation over functions.

Exercise 6.3.3 (*) An alternative model for relations (over D) is to view them
as:

Rel = D
m
�! D-set

De�ne the concept of well-foundedness over this model.

Other applications

Exercise 6.3.4 Repeat Exercise 4.4.3 on page 108 using a map as a state:

Studx = Studnm
m
�! fYes;Nog

What is the advantage of this state?

Exercise 6.3.5 Write the speci�cation of a system which keeps track of which
rooms people at a conference are in. Assume that operations ARRIVE , MOVE

and WHO (giving all names in a given room) are automatically triggered.

Exercise 6.3.6 Assume that a state is available for a hotel system which shows
the set of possible room numbers and the current occupancy:

Hotel :: rooms : Roomno-set

occupancy : Roomno
m
�! Name

inv (mk -Hotel(rms; occ)) 4 dom occ � rms

Specify some useful operations such as allocating a room, checking out and de-
termining if there are empty rooms.

Exercise 6.3.7 A simple `bill of materials' system uses a database which, for each
assembly, keeps track of the immediate components or sub-assemblies required in
its construction. In this �rst { simpli�ed { system, no attempt is made to record
the number of each component required. Some way is needed of distinguishing
basic components (no sub-assemblies). An `explosion' can trace recursively from
some assembly down to its basic components.

� De�ne a suitable data type with invariant for the bill of materials. (Hint:
use well-founded relations.)

� De�ne a function which shows all sub-assemblies and components required
to produce some given assembly.

162 6 Map Notation

� De�ne a function similar to the preceding one which yields only the basic
components required.

� Specify an operation (say, WHEREUSED) which looks up in the database
all of the assemblies which need a given part number as an immediate
component.

Exercise 6.3.8 (*) Write a speci�cation for a bill of materials system which
counts the number of required components. Obviously, the basic data type must
include the number of components per part. Furthermore, the required number
of parts must be computed by multiplying the number of assemblies required by
the number of components. This, and the requirement to sum such counts, will
best be achieved by developing some theory of such maps.

Exercise 6.3.9 (*) Specify some operations relating to a database for an em-
ployment agency. The database should record people and their skills (more than
one per person) as well as the required skills for available jobs. Operations should
include showing people suitable for jobs and various updates.

7

Sequence Notation

Various models of the same objects are possible,
and these may di�er in various respects. We should
at once denote as inadmissible all models which
contradict our laws of thought. We shall denote as
incorrect any permissible models, if their essential
relations contradict the relations of the external
things. But two permissible and correct models of
the same external objects may yet di�er in respect
of appropriateness. Of two models of the same
object : : : the more appropriate is the one which
contains the smaller number of super
uous or
empty relations; the simpler of the two.
Heinrich Hertz

The concept of a sequence is both familiar to programmers and something whose
manipulation is very intuitive { almost tactile. The notation developed in this
chapter is, however, abstract in the sense that useful mathematical properties,
rather than implementation e�ciency, are taken as guidance to the choice of
operators and their de�nitions. As a consequence, a speci�cation written in
terms of this sequence notation will need to be subjected to design steps (i.e. data
rei�cation) before it can be used as the basis for a program.

The basic collection of speci�cation notation (sets, composite objects, maps
and sequences) is completed by this chapter. It is possible to specify large systems
with the help of such a tool kit; on the other hand, careful thought has to be
given to the choice of an appropriate model for an application since the range

163

164 7 Sequence Notation

of choices is now wide. Section 7.3 explores some interesting examples of such
speci�cation choices.

7.1 Notation

Sequences can be viewed as maps with a restricted domain. The advantage in
recognizing sequences as a special case is that operators, such as concatenation,
which are natural for sequences can be de�ned.

Modelling queues

The description of the notation itself is, as in previous chapters, preceded by an
introductory example: this speci�cation concerns queues. Operations are to be
de�ned, for this �rst-in-�rst-out data structure, which enqueue, dequeue, and test
whether a queue is empty. The state must record the collection of elements which
are in the queue. It is possible for multiple occurrences of a Qel to be present
and the order of elements is clearly important. These are exactly the properties
of sequences. Thus:

Queue = Qel�

The queue elements Qel are not further de�ned. Queue is a type whose values
are sequences of Qel . The initial queue object is an empty sequence { sequence
brackets are square { thus:

q0 = []

The operator for forming larger sequences from smaller ones is concatenation
(y). Both operands of a concatenation operator must be sequences so the post-
condition of the enqueue operation has to use a unit-sequence containing the new
element:

ENQUEUE (e:Qel)
ext wr q : Queue

post q =(�q y [e]

This operation requires no pre-condition. In contrast, it is only possible to remove
an element from a non-empty queue. A pleasing symmetry with post-ENQUEUE
is shown by the following speci�cation:

DEQUEUE () e:Qel
ext wr q : Queue
pre q 6= []

7.1 Notation 165

�
�

�
�

�
�

�
�

�
�

�
�-rlen-rdconc

(X �)� X � N

���r
?

y

�
�

�
�X

?

� �r
()

� -

r
hd

� �
6

r
tl

Figure 7.1 ADJ diagram of sequence operators

post (�q = [e]y q

Alternatively, the post-condition could be written:

q = tl(�q ^ e = hd(�q

This shows the operators which yield the �rst element { or head { of a sequence
(hd) and the rest of a sequence { or tail { after its head is removed(tl).

The operation which can be used to check whether a queue is empty is spec-
i�ed:

ISEMPTY () r : B
ext rd q : Queue
post r , (len q = 0)

The operator which yields the length of a sequence (len) is used in a comparison
to check for an empty sequence.

166 7 Sequence Notation

Sequence operators

The �rst topic to be considered in the more formal treatment of sequence notation
is the creation of sequence values. As is indicated above, these are written in
square brackets. With sequences, both the position of values and the occurrence
of duplicate values is important, thus:

[b; a] 6= [a; b]
[a; b] 6= [a; b; b]

The examples which follow use the sequences:

s1 = [b; b; c]
s2 = [a]

The length operator counts the number of (occurrences of) elements in a sequence,
thus:

len s2 = 1
len s1 = 3

and for the empty sequence:

len [] = 0

The signatures of the sequence operators are shown in the ADJ diagram in Fig-
ure 7.1.

Sequences can be applied to valid indices { the validity of indices can be
determined via the length operator { indexing has the properties:

s 2 X � ^ 1 � i � len s) s(i) 2 X
s1(1) = s1(2) = b

All of the other sequence operators can be de�ned in terms of len and index-
ing. These two basic sequence operators can be de�ned if the sequence type is
viewed as a particular form of map:

Sequence = N1
m
�! X

inv (s) 4 9n 2 N � dom s = f1; : : : ;ng

Thus:

len s = card dom s

and sequence indexing is simply map application. The set of valid indices to a
sequence is given by its domain but a special operator (inds) is de�ned:

7.1 Notation 167

inds s = f1; : : : ; len sg
inds s1 = f1; 2; 3g
inds s2 = f1g
inds [] = f g

The collection of elements contained in a sequence can be determined by the
elems operator. Naturally, the set which results from this operator loses any
duplications of elements:

elems s = fs(i) j i 2 inds sg
elems s2 = fag
elems s1 = fb; cg
elems [] = f g

Equality over sequences must take account of the position and duplications of
elements and cannot, therefore, be de�ned in terms of the elems operator. In-
stead:

sa = sb , len sa = len sb ^ 8i 2 inds sa � sa(i) = sb(i)

Sequence values can be concatenated (i.e. joined together) by:

concat (sa :X
�; sb :X

�) rs:X �

post len rs = len sa + len sb ^
(8i 2 inds sa � rs(i) = sa(i)) ^ (8i 2 inds sb � rs(i + len sa) = sb(i))

But this is written as an in�x operator (sa
ysb rather than concat(sa ; sb)). Thus:

s1
y s2 = [b; b; c; a]

s2
y s1 = [a; b; b; c]

s2
y s2 = [a; a]

s2
y [] = s2

Notice that concatenation is neither commutative nor absorptive. A distributed
concatenation operator is also available which concatenates all of the sequences
within a sequence of sequences. This is de�ned by a recursive function:

dconc : (X �)� ! X �

dconc(ss) 4 if ss = [] then [] else (hd ss)y dconc (tl ss)

This is written as a pre�x operator (dconc ss rather than dconc(ss)). Thus:

dconc [s1; []; s2; s2] = [b; b; c; a; a]

The head of a non-empty sequence is given by:

hd (s:X �) r :X

168 7 Sequence Notation

pre s 6= []
post r = s(1)

Notice that this operator yields the �rst element of a sequence whereas the tail
operator yields a sequence:

tl (s:X �) rs:X �

pre s 6= []
post s = [hd s]y rs

Both are treated as operators and are thus written in the keyword fount without
parentheses:

hd s1 = b

hd s2 = a

tl s1 = [b; c]
tl s2 = []

A useful operator for extracting a contiguous sub-sequence (from i to j {
inclusive) of a sequence is:

subseq (s:X �; i :N1 ; j :N) rs:X
�

pre i � j + 1 ^ i � len s + 1 ^ j � len s
post 9s1; s2 2 X

� �
len s1 = i � 1 ^ len s2 = len s � j ^ s = s1

y rs y s2

Although it rather overloads the parenthesis symbol, subseq(s; i ; j) is written as
s(i ; : : : ; j). The pre-condition of this operation is chosen to permit the extraction
of empty sequences:

s1(2; : : : ; 2) = [b]
s1(1; : : : ; 3) = [b; b; c]
s1(1; : : : ; 0) = []
s1(4; : : : ; 3) = []

The reader should study the other boundary conditions of this operator. Notice
that:

len rs = len s � (i � 1 + (len s � j))
= (j � i) + 1

Amongst other useful properties, careful consideration of such end cases simpli�es
the construction of a delete function:

del(t ; i) 4 t(1; : : : ; i � 1)y t(i + 1; : : : ; len t)

7.1 Notation 169

A sequence type, X �, de�nes values of the type to be any �nite sequence all
of whose elements are members of X . Thus, if X = fa; b; cg, members of X �

include:

[]
s1
[a; a; a; a; a; a]

Because of the possibility of duplicates, the number of potential sequences is
in�nite even when the base set is �nite. The type X+ excludes the empty sequence
but is otherwise the same as X �.

Exercise 7.1.1 Which of the following expressions is true (in general)?

sa
y (sb

y sc) = (sa
y sb)

y sc
sa
y sb = sb

y sa
sa
y [] = sa

sa
y sa = sa

Exercise 7.1.2 What is the value of each of the following?

tl [a; b]
len [[a; b]; [a; b]]
hd [a]
tl [a]
hd [[a; b]; [c]]

elems [a; b; a]
elems [fag; a; [a]; a]
[a]y [a]
[a]y [[b]]

Exercise 7.1.3 In each of the following three cases, identify a possible value for
a sequence which satis�es the properties:

len sa 6= card (elems sa)
hd sb = [b];hd tl sb = f1g; tl tl sb = [b]
tl sc = [hd sc]

Exercise 7.1.4 De�ne a function which determines whether a sequence has only
one occurrence of each of its elements. Specify a function which, given a set, lays
it out as a sequence without duplicates { in a random order.

170 7 Sequence Notation

Exercise 7.1.5 It is often useful to be able to locate things within sequences
(i.e. to determine indices where values are located). Specify a function which
show all indices where a value can be found:

alloccs:X � �X ! N1 -set

Specify a function which gives the �rst index where a value can be found assuming
that it does occur:

�rstocc:X � �X ! N1

7.2 Reasoning about sequences 171

Specify a function which locates (the �rst contiguous occurrence of) one sequence
within another:

locate:X � �X � ! N

such that:

locate([a; b]; [a; a; b; a]) = 2
locate([b; b]; [a; a; b; a]) = 0

Exercise 7.1.6 In the text of this chapter, operators like concatenation and tail
are de�ned via the more basic operators length and application. Rede�ne all of
the sequence operators directly in terms of the map model.

7.2 Reasoning about sequences

Sequence induction

The theory of �nite sequences is strongly related to that of (�nite) sets. As the
reader should by now expect, the genesis of the theory is the generator functions
{ here they are the empty sequence ([]) and a constructor function (cons) whose
signature is X � X � ! X �. The function to insert an element into a sequence
is called cons (rather than �) because the name is familiar from list-processing
languages. Thus sequence values can be created by:

cons(e1; � � � (cons(en ; [])) � � �)

Whereas with both sets and maps, di�erent terms built from the constructors
correspond to the same value, the expressions built from sequence constructors
stand in one-to-one correspondence with the values. For sets and maps, properties
were given which showed that certain terms were equal; no such properties need
be given for sequences. The distinction between the theory of sequences and that
of sets is that any properties which rely on the commutativity and absorption of
� do not carry over to sequences.

Axiom 7.1 (Seq-ind) The induction rule for sequences is, apart from the changes
of symbols, the same as the �rst one given for sets:

Seq-ind

p([]);
e 2 X ; t 2 X �; p(t) ` p(cons(e; t))

t 2 X � ` p(t)

This induction axiom { as with those above { relies on the �niteness of individual
sequence values.

172 7 Sequence Notation

Proofs about operators

The de�nition of concatenation (over the constructors) is essentially a translation
of that for set union:

Rule 7.2 (y-b) Basis:

y-b
s 2 X �

[]y s = s

Rule 7.3 (y-i) Induction:

y-i
e 2 X ; s1; s2 2 X

�

cons(e; s1)
y s2 = cons(e; s1

y s2)

It should therefore be obvious that the following two lemmas hold.

Lemma 7.4 Concatenation absorbs empty sequences on the right:

L7.4
s 2 X �

s y [] = []

Lemma 7.5 (y-ass) Concatenation is associative:

y-ass
s1; s2; s3 2 X

�

(s1
y s2)

y s3 = s1
y (s2

y s3)

The proofs of these are simple transliterations of the corresponding ones for sets.
The next properties which are developed for set union are commutativity and
absorption. These proofs rely on the corresponding properties of the insertion
operator and do not therefore carry over to concatenation. In general:

cons(a; cons(b; s)) 6= cons(b; cons(a; s))
cons(a; cons(a; s)) 6= cons(a; s)

A lemma which is used in later chapters is:

Lemma 7.6 The elements collected from the concatenation of two sequences are
the union of the elements of the two sequences.

L7.6
s1; s2 2 X

�

elems (s1
y s2) = (elems s1) [(elems s2)

The de�nitions of the other operators are left to the exercises.

Axiom 7.7 (Seq-ind2) Once these are de�ned, a restatement of the induction
rule for sequences is possible. The two forms of the rule correspond to the option
of de�ning induction over the natural numbers in terms of either succ or pred .

7.2 Reasoning about sequences 173

Seq-ind2

p([]);
t 2 X+; p(tl t) ` p(t)

t 2 X � ` p(t)

Exercise 7.2.1 Write out the proofs for Lemmas 7.4 { 7.6.

Exercise 7.2.2 Only concatenation is de�ned in the text of this section. De�ne
the operators len , application, hd and tl over the constructors. Prove some
useful results like:

8s1; s2 2 X
� � len (s1

y s2) = len s1 + len s2
8s 2 X � � s = [] _ cons(hd s; tl s) = s

Reversing sequences

A de�nition of a function which reverses a sequence is:

rev :X � ! X �

rev(s) 4 if s = [] then [] else rev(tl s)y [hd s]

Its properties can be given by the two rules.

Rule 7.8 The basis:

rev -b
rev([]) = []

Rule 7.9 The inductive step:

rev -i
e 2 X ; s 2 X �

rev(cons(e; s)) = rev(s)y [e]

Rule 7.10 It is useful to de�ne unit sequences as an abbreviation:

R7.10
e 2 X

[e] = cons(e; [])

Lemma 7.11 An obvious property of rev is that applying it twice to any sequence
should yield the original sequence.

L7.11
s 2 X �

rev(rev(s)) = s

A frontal attack on this result yields a messy proof. The identi�cation of two
preliminary lemmas (see page 174) gives rise to a more readable presentation (see
page 175).

174 7 Sequence Notation

from e 2 X
1 rev([e])

= rev(cons(e; [])) R7.10
2 = rev([])y [e] rev -i
3 = []y [e] rev -b
infer = [e] y-b

from s1; s2 2 X
�

1 rev([]y s2)
= rev(s2)

y-b
2 = rev(s2)

y [] L7.4
3 = rev(s2)

y rev([]) rev -b
4 from e 2 X ; t 2 X �; rev(t y s2) = rev(s2)

y rev(t)
4.1 rev(cons(e; t)y s2)

= rev(cons(e; t y s2))
y-i

4.2 = rev(t y s2)
y [e] rev -i

4.3 = (rev(s2)
y rev(t))y [e] ih4

4.4 = rev(s2)
y (rev(t)y [e]) y-ass

infer = rev(s2)
y rev(cons(e; t)) rev -i

infer rev(s1
y s2) = rev(s2)

y rev(s1) Seq-ind(3,4)

Lemmas on rev

Exercise 7.2.3 Specify the function rev by a post-condition using quanti�ers
and indexing. Sketch the argument that applying rev twice acts as an identity
function on sequences.

A palindrome is a word (e.g. `dad') which is the same when it is reversed.
De�ne a palindrome by properties over the indices and prove that the result of
applying rev to a palindrome p is equal to p.

Exercise 7.2.4 (*) Another alternative speci�cation of rev could characterize the
split point implicitly and not �x that only the head is moved on each recursive
call. Experiment with the development of results about such a de�nition. This
should show that being more abstract often results in a clearer exposition.

7.3 Speci�cations 175

from t 2 X �

1 rev(rev([])) = rev([]) rev -b
2 rev(rev([])) = [] rev -b
3 from e 2 X ; t 2 X �; rev(rev(t)) = t

3.1 rev(rev(cons(e; t)))
= rev(rev(t)y [e]) rev -i

3.2 = rev([e])y rev(rev(t)) Lemma-b
3.3 = [e]y t Lemma-a,ih3

infer = cons(e; t) y

infer rev(rev(t)) = t Seq-ind(2,3)

Lemma 7.11: rev is its own inverse

7.3 Speci�cations

Specifying sorting

The task of sorting provides an obvious application for the sequence notation.
Suppose records are to be sorted whose structure is:

Rec :: k : Key
d : Data

The fact that a sequence of records is ordered in ascending key order can be
de�ned:

is-orderedk :Rec� ! B

is-orderedk (t) 4 8i ; j 2 inds t � i < j) k(t(i)) � k(t(j))

For compactness, the ordering relation on keys is written �. Because the ordering
relation is transitive, it is equivalent to write:

is-orderedk (t) 4 8i 2 f1; : : : ; len t � 1g � k(t(i)) � k(t(i + 1))

Notice how the rule about universal quanti�cation over an empty set conveniently
covers unit and empty sequences. Accepting, for the moment, some intuitive
notion of permutation, the speci�cation for the sorting task can be written:

SORT ()
ext wr rs : Rec�

176 7 Sequence Notation

post is-orderedk(rs) ^ is-permutation(rs;(�rs)

De�ning the concept of one sequence being a permutation of another is an inter-
esting exercise. Clearly, if the sequences can contain duplicates, it is not enough
to check that their ranges (elems) are equal. Nor does it cover all cases to check
both len and elems . One possibility is to write is-permutation as a recursive
function which, in the recursive case, locates and removes the element at the
head of one sequence from wherever it is in the other. Such a de�nition is rather
mechanical for a speci�cation and would not be easy to use in subsequent proofs.
A direct model of the idea of counting occurrences can be given using bags. Thus:

bagof :X � ! Bag

bagof (t) 4 fe 7! card fi 2 inds t j t(i) = eg j e 2 elems tg

Then:

is-permutation :X � �X � ! B

is-permutation(s1; s2) 4 bagof (s1) = bagof (s2)

Another possibility is to think of a permutation as inducing a one-to-one map
between the two sequences:

is-permutation(s1; s2) 4

len s1 = len s2 ^
9m 2 N1

m
 ! N1 �

domm = rngm = inds s1 ^ 8i 2 inds s1 � s1(i) = s2(m(i))

It is not possible to argue convincingly that one of these is better than the other
for all purposes. It is, however, likely that the last one would be of more use in
developing a theory of sequences. For the sorting program itself, the only proper-
ties of is-permutation required for most internal sorts are re
exivity, transitivity
and the fact that swapping two elements creates a permutation. It is clear that
these properties follow easily from the latter de�nition of is-permutation.

The speci�cation of SORT is non-deterministic in that the �nal placing of
two di�erent records with the same key is not determined. This re
ects the fact
that the sorting task is described as bringing the records into key order. There
are applications where a stable sort is required in which records with the same
key preserve their relative order from the starting state. The speci�cation can
be modi�ed to cover this requirement by simply adding an extra conjunct to
post -SORT whose de�nition is:

is-stable :Rec� �Rec� ! B

is-stable(s1; s2) 4 8key 2 extractks(s1) � sift(s1; key) = sift(s2; key)

7.3 Speci�cations 177

The keys required are de�ned by:

extractks :Rec� ! Key-set
extractks(s) 4 fk(r) j r 2 elems sg

The sub-sequence of Recs with a given key can be de�ned:

sift :Rec� �Key ! Rec�

sift(rs; key) 4 if rs = []
then []
else if k(hd rs) = key

then [hd rs]y sift(tl rs; key)
else sift(tl rs; key)

Priority queues

The introductory example in Section 7.1 speci�ed a simple �rst-in-�rst-out queue.
Another form of queue which is used in computing systems relies on a priority to
govern which element is dequeued. This example provides a basis for a discussion
of the choices to be made in constructing a model. Assume that there is some
given set Priority which, for conciseness, is assumed to be ordered by �. Then
items in the queue might be de�ned:

Qitem :: p : Priority
d : Data

Perhaps the most obvious model for the queue type itself is:

Qtp = Qitem�

where the data type invariant (say, is-orderedp) would require that the priority
order holds in the sequence. This would permit the operation for adding elements
to the queue to be speci�ed:

ENQ (it :Qitem)
ext wr q : Qtp

post 9i 2 inds q � del(q ; i) =(�q ^ q(i) = it

Recall that the invariant can be thought of as being conjoined to the pre- and
post-conditions. It is then clear that the post-condition combines two of the
techniques used to achieve concise speci�cations. The existentially quanti�ed ex-
pression works back from the result to the starting state { thus providing a simple
description of insertion. The (implied) conjunction of is-orderedp with that ex-
pression captures the required speci�cation by stating two separate properties.

178 7 Sequence Notation

The speci�cation as it stands does not constrain the placing of queue items
with equal priority. Providing this matches the requirements, the next question
to ask is whether the sequence model given is the most appropriate. Why are the
queue items ordered in the state? Presumably because it makes the dequeuing
operation easy to specify! But this is not really a convincing argument. In fact
an alternative speci�cation could be based on sets (or, if duplicate records have
to be handled, bags). Thus:

Qtps = Qitem-set

The ENQ operation simply adds its argument to the state and the DEQ opera-
tion locates one of the elements with lowest priority number. With the limited
repertoire of operations, it is di�cult to say which is the better model, but the
set model is more abstract and might be preferred.

If, however, it is required to preserve the arrival order of queue items with the
same priority, it is clear that the set model cannot support the intended semantics.
On the other hand, it is easy to see how to extend the post-condition of ENQ ,
as de�ned on sequences, to ensure correct placement. The sequence model is,
however, not the only one which would cover the ordering requirement. The
ENQ operation is easier to specify if the queues for each priority are separated:

Qtpm = Priority
m
�! Data�

Some decisions have to be made in this model about whether each priority always
has a (possibly empty) sequence associated with it. But, on balance, the map
model is the best �t to the operations. The complete set of operations would have
to be agreed before a �nal decision were made. (One could envisage operations
which force consideration of the queue as a whole { for example, operations which
manipulated the priorities.)

Exercise 7.3.1 Complete the operation speci�cations for enqueuing, dequeuing,
and testing for empty for all three of the models discussed in the text for priority
queues.

Exercise 7.3.2 A stack is a last-in-�rst-out storage structure.

� Specify an (unbounded) stack with operations for PUSH , POP and ISEMPTY ;
also show the initial stack object.

� As above, but assume a bound (say 256) on the contents of a stack; specify
an additional operation ISFULL.

� As above but, instead of making PUSH partial, arrange that pushing an
element onto a full stack loses the oldest element!

7.3 Speci�cations 179

� Another form of stack which has attracted some interest is known as `Veloso's
Traversable Stack'. This stack { in addition to the normal operations { can
be READ from a point indicated by a cursor; the cursor can be RESET to
the top of the stack or moved DOWN one element; the normal POP and
PUSH operations can only be performed with the cursor at the top of the
stack but the operations preserve this property. Specify this form of stack.

Ciphering

Another example in which some thought must be applied to the choice of model
is a speci�cation for a cipher machine. Many children play games with coding
messages by, for instance, changing letter a to b, b to c, etc. Such a cipher is
called monoalphabetic and is very susceptible to cryptanalysis (code breaking)
by measuring the frequency of letters. A more sophisticated polyalphabetic (or
Vigen�ere) coding is somewhat more secure. The idea of substituting one letter by
another is extended so that di�erent letters of the original message (plain text)
are coded under di�erent translations. In order that the enciphered message can
be deciphered, the appropriate transliterations must be known or be computable.
One way to achieve this is to have a table of translation columns each headed
by a letter; a keyword is then agreed and the ith letter of the keyword indicates
the column under which the ith letter of the message is to be (or was) ciphered;
the keyword can be replicated if it is shorter than the message. A table for a
restricted alphabet could be:

a b c

a a c b

b b a c

c c b a

The plaintext acab is coded under keyword abc to abbb:

plaintext a c a b

keyword a b c/ a

ciphered text a b b b

A simple frequency analysis of letters will no longer disclose the coding table
since, on the one hand, di�erent letters are translated to the same letter and, on
the other hand, the same plaintext letter can be translated to di�erent letters.

How is this polyalphabetic cipher to be speci�ed? The regular appearance of
the table above might tempt one to describe the coding by index arithmetic on
a sequence of twenty-six letters. There are two reasons to resist this particular
temptation: the regular tables are only a subset of the possible tables, and anyway

180 7 Sequence Notation

the index arithmetic becomes very confusing. The best model of an individual
column appears to be a map from letters to letters. As is discussed below, it is
necessary that such a map be one-to-one. Thus:

Mcode = Letter
m
 ! Letter

inv (m) 4 domm = Letter

The invariant ensures that there is a translation for each letter.
The whole (polyalphabetic) table can be de�ned:

Pcode = Letter
m
�! Mcode

inv (m) 4 domm = Letter

In practice, it is obviously desirable that Pcode stores di�erent Mcodes for each
letter { this requirement is not, however, enshrined in the invariant. A function
which de�nes the (polyalphabetic) translation of message ml under key kl is:

ptrans :Letter � Letter � Pcode ! Letter

ptrans(kl ;ml ; code) 4 (code(kl))(ml)

The remaining hurdle, before the speci�cation can be written, is to choose
a representation for the keyword. The obvious model is a sequence of letters.
The problem of su�cient replications then becomes a manipulation of indices
which is made slightly messy by the fact that the sequences here are indexed
from one. (The alternative, to index all sequences from zero, turns out to be just
as inconvenient in other cases.) Here, indexing from zero is simulated by:

Key = N
m
�! Letter

inv (m) 4 9n 2 N � domm = f0; : : : ;ng

This ensures that a Key is non-empty. It could be argued that the keyword should
be replicated in the state but this is not done here since it appears to make the
task of designing representations unnecessarily tiresome. The �nal speci�cation
is then:

CODE (m:Letter�) t :Letter�

ext rd c : Pcode;
rd k : Key

post len t = lenm ^
let l = maxs(dom k) + 1 in

8i 2 inds t � t(i) = ptrans(k(i mod l);m(i); c)

The speci�cation of DECODE is written as a mirror image of that for CODE .

7.3 Speci�cations 181

DECODE (t :Letter�) m:Letter�

ext rd c : Pcode;
rd k : Key

post lenm = len t ^
let l = maxs(dom k) + 1 in
8i 2 inds t � t(i) = ptrans(k(i mod l);m(i); c)

This shows clearly that the task of DECODE is to recreate the input to CODE .
It is possible, from this requirement, to deduce the need for the invariant on
Mcode. The correct decipherment of messages can be stated (omitting all of the
quanti�ers):

post-CODE (m; : : : ; t) ^ post-DECODE (t ; : : : ;m 0)) m = m 0

Inspecting the two post-conditions it is clear that the length of m and m 0 must be
the same and thus the question is pushed back to whether ptrans is one-to-one.
The function ptrans simply selects a (determined) Mcode in either case and thus
it can be seen that Mcode must be a one-to-one map in order to prevent, for some
i , two di�erent letters m(i) and m(j) from giving the same translation t(i).

Exercise 7.3.3 The German cipher machine which was known as `Enigma' achieved
polyalphabetic substitution but was constructed with a re
ecting property (i.e. if
a was coded as n then n was coded as a). This meant that the operator per-
formed the same operation whether coding or decoding a text. What changes
does this make to the speci�cation given above?

Exercise 7.3.4 Specify an operation which has access to a set of �le names (char-
acter strings). Given the pre�x of a �le name as input, the operation should yield
the set of matching �le names.

Exercise 7.3.5 Develop operators, predicates and a theory for sequences which
are (not necessarily contiguous) sub-sequences of other sequences in the sense that
the former can be within the latter (e.g. [a; b; c] is a sub-sequence of [a; c; a; d ; b; c; a; b]).
Re�ne the notation by writing speci�cations of a number of tasks (e.g. a func-
tion which merges two sequences, a function which �nds the `longest ascending
sub-sequence' of a sequence of natural numbers).

Exercise 7.3.6 (*) A formal model of the (English) children's game of snakes
and ladders can be based on sequences. Design an appropriate state and specify
some operations (e.g. MOVE).

Exercise 7.3.7 (*) De�ne an abstract syntax (cf. Section 5.1) for expressions of
propositional logic (there are some interesting points to be decided upon). Write
a function which determines, in classical two-valued logic, whether an expression

182 7 Sequence Notation

is a tautology. Implication and equivalence operators can be expanded out using
their de�nitions. In Disjunctive Normal Form (DNF) expressions are reduced
to a form which is a disjunction of conjunctions of (possibly negated) literals
(Ei). De�ne a function which converts arbitrary propositional expressions into
DNF. In terms of this limited structure de�ne an e�cient algorithm for tautology
checking.

Consider the changes required to handle the LPF (cf. Section 3.3) used in this
book and de�ne a function which checks LPF propositional sequents for validity.
Design an abstract syntax for proofs in the propositional calculus. There is
considerable scope for experiment here and it is worth considering the need for
relations. De�ne an abstract syntax for formulae of the predicate calculus and
functions to determine the free variables of a logical expression and to apply
systematic substitution.

Exercise 7.3.8 (*) Develop the state for a relational database system. Unless the
reader is an expert in this area, an actual system should be used as a reference
point. Focus the work on building a model for the storage of, and the type
information for, relations.

8

Data Rei�cation

More than anything else mathematics is a method.
Morris Kline

It should be clear that the construction of a formal speci�cation can yield greater
understanding of a system than is normally possible before implementation is
undertaken. On larger examples the process of constructing the formal speci�-
cation can also prompt consideration of questions whose resolution results in a
cleaner architecture. It is, therefore, possible that the work involved in producing
a formal speci�cation would be worthwhile even if the ensuing development were
undertaken using informal methods. But the remaining chapters of this book
present another exciting avenue which is opened up by formal speci�cation: a
formal speci�cation provides a reference point against which a proof can be con-
structed. A proof can show that a program satis�es its speci�cation for all valid
inputs. Clearly, no real proof could be based on an informal description whose
semantics are unclear. The idea that programs can be proved to satisfy formal
speci�cations is now well-documented in scienti�c papers. More interestingly, it
has been shown that a design process can be based on formal speci�cations. The
essence of such a design process is to record a design step with a series of assump-
tions about subsequent development (i.e. speci�cations of sub-components) and
then to show that the design step is correct under the given assumptions. Once
this has been done, the assumptions (speci�cations of the sub-components) are
tackled. It is a crucial property of the development method presented here that
each subsidiary task in development is isolated by its speci�cation. Without such
a property of isolation, a development method is open to some of the worst risks

183

184 8 Data Rei�cation

of testing: errors are detected long after they are made and work based on such
mistakes must be discarded when errors are detected. The isolation property is
sometimes called compositionality .

There are a number of ways in which the above description is over-simpli�ed.
Firstly, a development hardly ever proceeds strictly top-down. But, even if one is
forced to backtrack, the eventual design will be made clearer by documentation
presented in a neat hierarchy. Sub-components can also be developed bottom-
up; but such sub-components will be used safely only if they are accompanied
by formal speci�cations. Another issue which could be taken with the over-
simpli�ed description is the level of formality to be used in the design process.
Any design step generates a proof obligation. Such proof obligations can be
discharged completely formally and some proofs are shown below in detail. Once
one knows how to conduct such proofs, the level of formality can be relaxed
for most steps of design. The formal structure provides a way of giving more
detail when required. A knowledge of the formal structure will itself minimize
the danger of mistakes. It is, however, clear that more con�dence is justi�ed in
a machine-checked formal proof than an outline correctness argument.

The process of design can be seen as making commitments. The data rep-
resentation chosen is a commitment which the designer makes based on an un-
derstanding of the required operations and their relative frequencies of use. The
method outlined here is not intended to help make such choices. Design relies on
invention. Such invention has been `automated' only in very narrow areas. What
is provided is a notation for recording designs and the proof obligations neces-
sary to establish their correctness (rather than their optimality). Experience has
shown that the formal structure does aid designers by clarifying their choices but
the case for the rigorous approach should never be construed as claiming that
the design process can be automated.

The style of formal speci�cation proposed in the preceding chapters uses (ab-
stract) models of data types and implicit speci�cation by pre- and post-conditions.
High-level design decisions normally involve choosing the representation of data:
data rei�cation1 involves the transition from abstract to concrete data types and
the justi�cation of the transition. At the end of this process, the data types
are those of the implementation language but the transformations are still de-
�ned implicitly (i.e. by pre- and post-conditions). Operation decomposition {
described in Chapter 10 { is the process of choosing, and justifying, a sequence

1The term rei�cation is preferred here to the more widely-used word `re�nement'. Michael
Jackson pointed out to the author that the latter term is hardly appropriate for the step from
a clean mathematical abstraction to a messy representation dictated by a particular machine
architecture. The Concise Oxford Dictionary de�nes the verb `reify' as `convert (person, abstract
concept) into thing, materialize'.

8.1 Retrieve functions and adequacy 185

of transformations which can be expressed in the implementation language.
In choosing the data types for a speci�cation, the aim is that they should

be as abstract as possible. Although this notion is not made precise until Sec-
tion 9.3, the reader should by now have a general feel for avoidance of unnecessary
details in a state. The proof obligations given in Sections 8.1 and 8.2 relate to
the special case where `bias' increases at each step of rei�cation. This is a very
common special case: designers make commitments { commitments which re
ect
special properties of the application and of the implementation machine. These
commitments give rise to redundancy, complexity (e.g. of invariants) and e�-
ciency! Thus the data types which result from rei�cation tend to require long
descriptions and give rise to complex operation speci�cations. The examples in
Chapters 4 to 7 include descriptions of data types which arise in design. For
example, the choice of one form of binary tree is motivated by noting that it can
provide a representation of a set. In general, a representation (of one data type)
is just another data type { as such it can be described by the data structuring
devices used above.

The key to relating an abstract data type and its representation is a `retrieve'
function { this concept, and the �rst of the proof obligations, is introduced in
Section 8.1. The proof obligations which concern the operations are explained in
the succeeding section. Section 8.3 discusses the problems of prede�ned interfaces
and presents some larger examples.

8.1 Retrieve functions and adequacy

Establishing a link between states

Given a speci�cation, a designer chooses a representation which re
ects imple-
mentation considerations. The notion of satisfaction provides a criterion by which
the correctness of the choice of representation can be judged. The proof obliga-
tions, which are explained here and in Section 8.2, are based on a satisfaction rela-
tion for which an implementation must exhibit an acceptable behaviour. (These
proof obligations re
ect an extremely common special case of data rei�cation;
Section 9.3 reviews some alternatives.) In these proof obligations, it is possible
to separate some questions about the rei�cation of the state itself from consider-
ation of the operations which are associated with the states.

Suppose that some speci�cation uses dates (Date) as in Exercise 5.1.1 on
page 121. A representation might be chosen which packs the date into two bytes
(5 bits for the day, 4 bits for the month, 7 bits for the year { this last allowing an
increment from 0 to 127 to be added to some notional base date). One could �x
the relation between elements of Date and the bit representation by a relation.

186 8 Data Rei�cation

'

&

$

%

'

&

$

%

�

�

-
�
�
�
�
�
�
�
�
�
�
��

C
C
C
C
C
C
C
C
C
C
CC

A
A
A
A
A
A
A
A
A
A
AA

abstraction

retr

representation

Figure 8.1 Retrieve function

The relation would be one-to-one, and this should suggest to the reader that a
function could be used to record the relationship. In this simple example, there
is no obvious reason to prefer one direction or the other for the function { more
guidance comes from considering an example like the use of a binary tree to
represent a set. The set might have been chosen in the speci�cation because
its properties were appropriate to the application being speci�ed; a binary tree
might be chosen as a representation so that a test operation could be performed
e�ciently for large volumes of data. In this example, each abstract set value has
more than one possible representation as a tree. The relation between abstraction
and representation values is one-to-many. Clearly, a one-to-many relation can be
treated as a general relation. But there is also the possibility that it is treated as a
function (from the `many' to the `one'). Is the reverse situation likely to arise? If
di�erent abstract values correspond to one concrete value, it is intuitively obvious
that such values could have been merged in the abstraction. So, in the situation
where the objects used in the speci�cation were abstract enough, the many-to-
one situation would not arise. Working with relations can lead to rather heavy
notation. Here, the opportunity to avoid this heaviness is taken. The relationship
between abstract values and their representations is expressed by a function from
the latter to the former (e.g. from binary trees to sets). Because such functions
can be thought of as regaining the abstraction from among the implementation
details, they are called retrieve functions.

8.1 Retrieve functions and adequacy 187

from d 2 Dict
1 [] 2 Dicta Dicta

2 retr -Dict([]) = f g retr -Dict ; elems
3 9da 2 Dicta � retr -Dict(da) = f g 9-I (1,2)
4 from d 2Word-set; w =2 d ;

9da 2 Dicta � retr -Dict(da) = d

4.1 from da 2 Dicta; retr -Dict(da) = d

4.1.1 elems da = d h4.1,retr -Dict
4.1.2 w =2 elems da h4,4.1.1
4.1.3 da y [w] 2 Dicta Dicta; 4:1:2; is-uniques
4.1.4 elems (da y [w]) = elems da [fwg L7.6
4.1.5 retr -Dict(da y [w]) = d [fwg 4.1.1,4.1.4,retr-Dict

infer 9e1 2 Dicta � retr -Dict(e1) = d [fwg 9-I (4.1.3, 4.1.5)
infer 9e1 2 Dicta � retr -Dict(e1) = d [fwg 9-E(h4,4.1)

infer 9da 2 Dicta � retr -Dict(da) = d Set-ind(h,3,4)

Theorem 8.2: adequacy of Dicta

The spell-checking speci�cation of Section 4.1 is based on:

Dict =Word-set

Assuming that the dictionary is large, the designer is faced with the problem of
choosing a representation which makes e�cient searching possible. Many facets
of e�ciency must be considered: the choice must re
ect not only algorithms but
also storage usage { wasted store could cause excessive paging and subvert the
performance of a representation which was chosen to support some particular
algorithm. Here, some alternative representations are considered. The �rst is
chosen for pedagogic, rather than implementation, reasons. Suppose the dictio-
nary is represented by a sequence without duplicates:

Dicta =Word�

inv (ws) 4 is-uniques(ws)

The one-to-many situation mentioned above is shown clearly here { to each ab-
stract set with n words, there correspond n! di�erent possible sequence repre-
sentations. The relationship between the representation and abstraction is easily
expressed:

188 8 Data Rei�cation

retr -Dict :Dicta ! Dict

retr -Dict(ws) 4 elemsws

Here, retr -Dict can be said to be retrieving the abstract set from among the
irrelevant ordering information of the sequence values.

Proof obligation 8.1 One straightforward property which is required of retrieve
functions is that they be total. In this case there is no doubt about retr -Dict
since the elems operator is total on sequences. In some cases, however, it is
necessary to tighten an invariant on the representation in order to ensure that
the retrieve function is de�ned for all values which can arise.

Adequacy

It is intuitively clear that there should be at least one representation for any
abstract value. This property is embodied in the adequacy proof obligation which,
for the case of Dicta is shown in the following lemma.

Theorem 8.2 There must exist at least one sequence (without duplicates) which
can be retrieved onto any possible set value:

d 2 Dict ` 9da 2 Dicta � retr -Dict(da) = d

The result here is obvious and the proof on page 187 is given only for illustration.
In the majority of cases, the adequacy proof obligation can be discharged by

an informal, constructive argument. For example:

Given any �nite set, its elements can be arranged into a sequence
by taking them in an arbitrary order { choosing each element once
ensures that the representation invariant is not violated.

Proof obligation 8.3 Figure 8.1 illustrates the idea behind the adequacy proof
obligation; the general form (for retr :Rep ! Abs) is:

8a 2 Abs � 9r 2 Rep � retr(r) = a

Strictly, a representation is adequate { or not { with respect to a retrieve function.
When the retrieve function in question is clear, the quali�cation is omitted.

Intuitively, a retrieve function2 can be seen as providing an interpretation of
the representation. In the initial example, two bytes are interpreted as a date.

2Technically, the retrieve function is a homomorphism between the carrier of the representa-
tion and that of the abstraction. The retrieve function can also be seen to induce an equivalence
relation on the representation: two elements are considered to be equivalent if they are retrieved
onto the same abstract value. This is a key concept for the proofs of the operations: the proof
obligations in Section 8.2 require that the induced equivalence relation is respected.

8.1 Retrieve functions and adequacy 189

In the case of the sequence of words, the retrieve function interprets it as the
unordered set of Dict { such a sequence could just as well have represented the
current book (where the order of the words is believed to be important).

Understanding a proof obligation is often made easier by considering cases
where it fails. The attempt to represent dates in two-bytes discussed earlier in
this section is not adequate because the limitation of the representation was not
matched by the abstraction which put no limit (e.g. 1900-2027) on the possible
years. Clearly, proof obligations are likely to uncover genuine errors only on larger
examples { such failures are discussed below. With Dict and Dicta, however, a
simple illustration can be given: suppose that the speci�cation had been based
on the sequences (Dicta) and the implementation on sets (Dict). Even with this
reversal of roles, a retrieve function could be given:

retr -Dicta:Dict ! Dicta

For example, the function could deliver a sequence sorted in alphabetical order.
But the representation would not be adequate because there would be elements
of the speci�cation state (e.g. unordered sequences) for which there was no corre-
sponding set. Although the example is, in some sense, just a restatement of the
need to avoid `bias' in a speci�cation, it should give some feel for why adequacy
is a useful check. In more realistic examples, there are two likely causes of inade-
quacy. The obvious one is that some combination of values has been overlooked.
This is clearly what the proof obligation is intended to uncover, and the situation
must be remedied by redesigning the representation. The other way in which
adequacy might fail is if the invariant on the abstraction is too loose: values
might satisfy it which never arise as a result of a sequence of operations. If such
values cannot be represented in the chosen design, the adequacy failure is only a
technical issue. The invariant in the speci�cation can be tightened (satis�ability
must be rechecked) and the design can then be pursued.

More dictionary representations

The notions of retrieve functions and adequacy can now be applied to a more re-
alistic design for the spell-checking speci�cation. One way to provide for e�cient
searching is to split the dictionary into sections by word length; each such section
is then stored in alphabetical order. As words are scanned from the text to be
checked, their length is computed. The relevant dictionary section can then be
located via a table and the word to be tested sought in the selected section. The
search can use a technique known as `binary search' (cf. Section 10.3), which is
e�cient because it relies on the order.

A series of distinct design decisions are embodied in this description. A record

190 8 Data Rei�cation

of the �rst design decision can be given in terms of the following objects:

Dictb = Section�

inv (sl) 4 8i 2 inds sl � 8w 2 sl(i) � lenw = i

Section =Word-set

Word = Letter+

Notice that, in order to describe the invariant, it has been necessary to say more
about Words than in the speci�cation. The retrieve function required here is:

retr -Dict :Dictb ! Dict

retr -Dict(sl) 4
S
elems sl

Here again there is no di�culty with totality, since both distributed union and
elems are total; adequacy can be established by a simple constructive argument:

the empty set can be represented by an empty sequence of sections;
the way of representing a newWord depends on whetherWords of the
same length already occur in the Dictb value; if so, the new word is
placed in the set; if not, the Section sequence is extended (if necessary)
with empty Sections and the new Word is placed in a unit Section at
the appropriate place in the Section sequence.

The next step of development might again be a rei�cation of each Section

onto a sequence. The �nal steps would concern the decomposition of operations
speci�ed by post-conditions onto the envisaged binary search algorithms.

The choice of representation is the crucial decision made by a designer to
achieve e�ciency: no amount of clever coding can restore performance squan-
dered on ill-conceived data structures. Equally, correctness is vital. Represen-
tation decisions are normally made early in design. Errors made at this stage
can be eradicated only by repeating the work based on the mistaken decision.
It is, then, very important to make careful checks at this stage. The documen-
tation of a retrieve function requires little e�ort and experience shows that this
e�ort often uncovers errors. Similarly, outlining an adequacy argument for the
representation of a state is not onerous and may uncover serious errors. Here
the state alone is being considered; the proof obligations in Section 8.2 must be
undertaken for each operation of the data type. It is therefore harder to justify
the work of completely formal proofs for the operation proof obligations. It is,
then, fortunate that experience has shown that these proof obligations are less
likely (than adequacy) to uncover important errors.

8.1 Retrieve functions and adequacy 191

The preceding representation required that a whole word be scanned before
any searching could be done. A student project on this example proposed a way
of using each letter as it is scanned. The initial proposal was to use Pascal arrays
indexed by letters; the values stored in such arrays were to be pointers to other
arrays; all of the arrays were allocated on the heap; nil pointers were to be used
to mark where words ended. Using map notation, it is possible to represent this
by nesting maps as follows:

Dicte = Letter
m
�! Dicte

The word set:

f[a;n; d]; [a;n; t]g

can then be represented by:

fa 7! fn 7! fd 7! f g; t 7! f gggg

Notice how the lack, for example, of any word beginning with b is shown by the
absence of this letter from the domain of the outer map.

But one must also notice that this representation is not adequate (with respect
to any retrieve function)! There is, for example, no way of adding a word in
Dicte which is a pre�x of an existing word (consider [a;n]). On realizing this,
the students had to add an indicator to each array (in Pascal, a record is used
with a Boolean value and the array of pointers as its �elds) { here:

Dictc :: eow : B

map : Letter
m
�! Dictc

The retrieve function required is de�ned by recursion:

retr -Dict :Dictc ! Dict

retr -Dict(mk -Dictc(eow ;m)) 4
S
ff[l]y w j w 2 retr -Dict(m(l))g j l 2 dommg [

if eow then f[]g else f g

The reader should experiment with this retrieve function in order to understand
the distinction in the second case of the set union. From this understanding it is
possible to provide an invariant for Dictc.

Exercise 8.1.1 This exercise continues the spell-checking problem:

� In terms of some particular programming language, discuss the e�ciency {
especially storage requirements { of Dictb and Dictc.

� De�ne a representation in which all words with the same �rst letter are

192 8 Data Rei�cation

collected into a set, each such set is the range element of a map from
the �rst letter. Write a retrieve function and argue the adequacy of the
representation.

Exercise 8.1.2 Document the relationship between the state given in Exer-
cise 4.4.4 on page 108 and that given in the text of Section 4.4 by writing retrieve
functions in both directions.

Exercise 8.1.3 Consider the set of objects Llist described in Section 5.1 and the
sequences of Chapter 7. In which directions can retrieve functions be written?

Exercise 8.1.4 Explain the binary trees (Setrep) of Section 5.2 as representations
of sets by using retrieve functions, and present an adequacy proof.

Exercise 8.1.5 Many encodings are used for integers. A binary numeral can be
thought of as a sequence of symbols { show how a (natural number) value can
be associated with such a symbol sequence by providing a retrieve function. The
sign-and-magnitude representation of integers used in some computers reserves
one bit for the sign and the remaining bits in a word are used as above { again, ex-
plain this relation with a retrieve function. The ones-complement representation
essentially stores, for negative numbers, the bit-wise complement of the positive
number { here again, explain the relation by a retrieve function (remember that
all zeros or all ones represent the number zero).

Exercise 8.1.6 Consider the abstract state:

State :: as : X -set
bs : X -set

X = f1; :::;ng

(for some n) and a representation:

Arep = B �

in which it is intended to use one `bit' for each number. Write a retrieve function
and either prove Arep to be adequate or show how it fails to be and suggest an
invariant on State which ensures that the representation is adequate.

8.2 Operation modelling proofs

Section 8.1 gives some examples of the way in which design steps of data rei�ca-
tion give rise to complex data objects. This complexity re
ects the move from

8.2 Operation modelling proofs 193

data objects which are chosen to match the task being speci�ed to representa-
tions which can be e�ciently implemented. E�ciency might require redundancy
(e.g. doubly-linked lists or extra copies) and this results in lengthier invariants.
Turning now to the operations: in general, representation detail forces opera-
tion speci�cations to be more algorithmic; for example, neat post-conditions on
the abstraction might give way to recursive functions on the representation. As
the examples below illustrate, post-conditions are more concise than code { but
the closer the representation is to the data types of programming languages, the
more complex will be the speci�cations. This is, of course, precisely the reason
that overall functional speci�cations should be written in terms of abstract data
types. But the time has come to look at the proof obligations associated with
the modelling of operations.

Modelling in the function case

An abstract speci�cation consists of a set of states, the initial states, and oper-
ations. The preceding section has shown how the states themselves are rei�ed.
The next design task is to respecify the operations on the chosen state repre-
sentation. The format of such operation speci�cations is standard. Thus the
CHECKWORD operation of Section 4.1 would be respeci�ed on Dicta of the
preceding section by:

CHECKWORDa (w :Word) b: B
ext rd dict : Dicta
post b , 9i 2 inds dict � dict(i) = w

This operation on Dicta has to be shown to exhibit the same behaviour as
CHECKWORD on Dict . It is easier, however, to picture the proof obligations
which arise in the case of functions than operations. Figure 8.2 shows an (ab-
stract) function fa over elements of A; an alternative way of performing such a
mapping is to �nd a corresponding element of R (assume, for now, that retr is
one-to-one so that its inverse rep is a function), apply a function fr on R, and
then map this back to A by applying retr . The function fr models fa if the alter-
native mapping is the same as fa for all values in the domain of fa . This could
be written:

8a 2 A � retr(fr (rep(a))) = fa(a)

The essence of this is to require that fr 's behaviour is the same as that of fa .
A neater way of presenting this (which avoids the need for the inverse: rep)

is to require:

8r 2 R � retr((fr (r)) = fa(retr(r))

194 8 Data Rei�cation

-

6

-

?

ai aj

rjri

fa

retr

fr

rep

Figure 8.2 Function modelling

But this only works in the case that the representation is adequate: the univer-
sally quanti�ed statement would be true for an empty R. This transition then
shows why adequacy is important and prepares the way for the rules required for
operations.

Proof obligations for operation modelling

The proof obligations needed for operations have the same motivation as those
for the functional case but have to cope with two complications. Firstly, oper-
ations themselves are partial (cf. pre-condition) and non-deterministic (cf. post-
condition); secondly, retrieve functions are normally many-to-one and thus their
inverses are not functions. The basic proof obligations for operation modelling

follow.3

Proof obligation 8.4 The domain rule is:

8r 2 R � pre-A(retr(r))) pre-R(r)

Proof obligation 8.5 The result rule is:

3The validity of the proof rules given here relies on the adequacy of the representation. The
concept of viewing under the retrieve function can be formalized by requiring that representation
operations respect the equivalence relation induced on the representation states by the retrieve
function.

8.2 Operation modelling proofs 195

8(�r ; r 2 R �

pre-A(retr((�r)) ^ post-R((�r ; r)) post-A(retr((�r); retr(r))

These rules can be extended in an obvious way to cope with inputs and results
of operations since these do not get changed by rei�cation: it is the behaviour {
as seen via the inputs/outputs { which is preserved by rei�cation. One way of
comprehending the resulting proof rules is to think of viewing the behaviour of the
operations on the representation via the retrieve function. The second of these
proof obligations is known as the result rule. This can be seen as requiring that
any pair of states in the post-R relation must { when viewed under the retrieve
function { satisfy the post-A relation. An implementation should not be rejected
for an unnecessarily wide pre-condition, nor should it be forced to perform any
particular (e.g. post-R) computation outside the required domain. Thus the �rst
conjunct of the antecedent of the implication limits the proof obligation to those
states which { when viewed under the retrieve function { satisfy the abstract
pre-condition. The result rule requires that, although de�ned on di�erent states,
the operations R and A model the same behaviour.

The explanation of the result rule argues against requiring too much of the
operations on the representation. It must, however, be remembered that the
speci�cation of the operations on the representation consist of two parts. The
result rule ensures that the post-condition is not too wide; the domain rule (�rst
above) requires that the pre-condition of the operation on the representation
is not too narrow. So, if the pre-condition of the abstract operation is true of
a retrieved state, the representation state must satisfy the pre-condition of the
representation operation.

Theorem 8.6 For the �rst example in the preceding section, the sequent form of
the domain obligation 8.4:

ws 2 Dicta; w 2Word `
pre-CHECKWORD(w ; retr -Dict(ws))
) pre-CHECKWORDa(w ;ws)

is vacuously true because the operation on the representation is total.

Theorem 8.7 Noting that the pre-condition of the abstract operation is also
true, the sequent form of the result obligation (8.5) becomes:

ws 2 Dicta; w 2Word ; b 2 B `
post-CHECKWORDa(w ;ws; b))
post-CHECKWORD(w ; retr -Dict(ws); b)

which follows from:

196 8 Data Rei�cation

ws 2Word�; w 2Word ; b 2 B `
(b , 9i 2 indsws � ws(i) = w)) (b , w 2 elemsws)

Thus, CHECKWORDa can be said to model CHECKWORD . Strictly, this
statement is with respect to retr -Dict but, here again, the quali�cation can nor-
mally be omitted without confusion.

The ADDWORD operation changes the state and can be modelled by:

ADDWORDa (w :Word)
ext wr dict : Dicta
pre :9i 2 inds dict � dict(i) = w

post dict =
(��
dict y [w]

Theorem 8.8 Its domain rule becomes:

ws 2 Dicta; w 2Word `
pre-ADDWORD(w ; retr -Dict(ws))) pre-ADDWORDa(w ;ws)

This is proved on page 197.

Theorem 8.9 It is often convenient to expand out the de�nitions. The result
rule becomes:

(�ws ;ws 2 Dicta; w 2Word `

w =2 elems(�ws ^ ws =(�ws y [w]) elemsws = elems(�ws [fwg

Which is, again, straightforward (cf. page 197).
Thus ADDWORDa models ADDWORD . If these are the only operations,

the rei�cation has been justi�ed and attention can be turned to the next step of
development.

If de�ned, it is also necessary to show that the initial states correspond { with
respect to the retrieve function. The proof is straightforward in this case and is
shown explicitly only on examples where the initial states are less obvious.

In large applications of the rigorous approach, there are likely to be several
stages of data rei�cation: when the data objects have been re�ned to the level of
the machine or language constructs, operation decomposition is carried out. In
either case, the compositionality property of the development method requires
that the next step of development relies only on the result (e.g. Dicta, etc.) of
this stage of development and not on the original speci�cation.

8.2 Operation modelling proofs 197

from ws 2Word�; w 2Word

1 from w =2 elemsws
infer :9i 2 indsws � w = ws(i) elems

2 �(w =2 elemsws) 2,h
3 w =2 elemsws) :9i 2 indsws � w = ws(i)) -I (2,1)
infer pre-ADDWORD(w ; retr -Dict(ws))) pre-ADDWORDa(w ;ws)

Theorem 8.8: domain rule for ADDWORDa

from (�ws ;ws 2Word�; w 2Word

1 from ws =(�ws y [w]

1.1 elemsws = elems(�ws [elems [w] L7.6(h1)

infer = elems(�ws [fwg elems

2 �(ws =(�ws y [w]) y, h

infer ws =(�ws y [w]) elemsws = elems(�ws [fwg) -I (2,1)

Theorem 8.9: result rule for ADDWORDa

Modelling proofs for the other dictionary representation

The operations on the second dictionary representation are addressed in Exer-
cise 8.2.1 below. The third dictionary representation given above is more inter-
esting. In this case, the initial state is worth special consideration.

Theorem 8.10 The proof obligation for initial states is (with retr -Dict :Dictc
! Dict):

dictc0 2 Dictc ` retr -Dict(dictc0) = dict0

This can be satis�ed with:

dictc0 = mk -Dictc(false; f g)

198 8 Data Rei�cation

The speci�cation of CHECKWORDc must be written in terms of Dictc. A
speci�cation which used the retrieve function would make little real progress in
design. To avoid such insipid steps of development, one could use a function:

is-inc :Word �Dictc ! B

is-inc(w ;mk -Dictc(eow ;m)) 4

w = [] ^ eow _
w 6= [] ^ hdw 2 domm ^ is-inc(tlw ;m(hd w))

Theorem 8.11 The modelling proof relies on the lemma:

w 2Word ; d 2 Dictc ` is-inc(w ; d) , w 2 retr -Dict(d)

This can be proved by structural induction.
In fact, a theory of Dictc can be developed. A function which inserts words

is:

insc :Word �Dictc ! Dictc

insc(w ;mk -Dictc(e;m)) 4

if w = []
then mk -Dictc(true;m)
else if hdw 2 domm

then mk -Dictc(e;m y [hdw 7! insc(tlw ;m(hd w))])
else mk -Dictc(e;m [[hd w 7! insc(tlw ;mk -Dictc(false; f g)])

Lemma 8.12 The relevant lemma here is:

L8.12
w 2Word ; d 2 Dictc

retr -Dict(insc(w ; d)) = retr -Dict(d) [fwg

Bu�er pools and non-determinism

In the spell-checking example, all of the operations are deterministic. The bu�er
pool example of Section 4.4 exhibits non-determinism. The abstract bu�er pool
is shown as:

Bid-set

Suppose this is modelled by:

Bu
 = Bid�

inv (l)4 is-uniques(l)

Clearly this is an adequate representation with respect to the retrieve function:

8.2 Operation modelling proofs 199

retr -BUF :Bu
 ! Bid-set
retr -BUF (bidl) 4 elems bidl

The model of OBTAIN can be speci�ed:

OBTAIN 1 () res:Bid
ext wr us : Bu

pre us 6= []

post (�us = [res]y us

The domain proof obligation is straightforward.

Theorem 8.13 That for the result becomes:

(�us ; us 2 Bu
 ; res 2 B `

retr -Buf ((�us) 6= f g ^(�us = [res]y us)

res 2 retr -Buf ((�us) ^ retr -Buf (us) = retr -Buf ((�us)� fresg

Notice that a proof of this result relies on the invariant of Bu
 .
Thus OBTAIN 1 resolves the non-determinism in OBTAIN and exhibits an ac-
ceptable behaviour.

Exercise 8.2.1 The spell-checker application can be used to show that the proof
obligation given in this section caters for non-determinism in representation oper-
ations. Respecify ADDWORDa to insert the new word anywhere in the sequence
and show that the revised operation speci�cation models ADDWORD . Specify
operations to work on Dictb of the preceding section and show that they model
those of the speci�cation in Section 4.1.

Other applications

Two models are in some sense equivalent if retrieve functions can be written in
both directions. There is, in fact, a one-to-one correspondence4 between elements
of both models. It can be useful to build a speci�cation around two or more
equivalent models. For example, one model may require a minimal invariant,
while another may o�er a state with many sub-components, thus shortening the
speci�cations of operations which a�ect only some of the sub-components. In such
a case, two models should be used and the appropriate retrieve functions given.
This is an alternative to the creation of extra functions which de�ne alternative
views of one basic model.

4They are isomorphic.

200 8 Data Rei�cation

Exercise 8.2.2 Exercise 4.4.2 on page 108 introduces a security tracking appli-
cation. De�ne a representation in terms of sequences; provide retrieve functions
and adequacy proofs; specify operations on the sequences; and prove that they
model those on the abstract state.

Exercise 8.2.3 Exercise 4.4.3 on page 108 and Exercise 6.3.4 on page 161 use
two di�erent states for the same family of operations. Show that the speci�cation
based on a pair of sets can be thought of as a rei�cation of that based on a map
(expand and check the proof obligations for the state and the operations).

Exercise 8.2.4 It is easy to specify operations which allocate elements onto two
distinct sequences. If there is not a reasonable upper size bound for at least one
of the sequences, the representation in a normal linearly addressed store presents
problems. Such a situation arises with the stack and heap in some programming
languages. One well-known technique is to reserve a large contiguous area for both
sequences and to allocate their space from opposite ends of the space. Describe
the abstract problem and its solution using two models and show that one is a
rei�cation of the other (consider the initial state).

Exercise 8.2.5 Section 6.3 includes a discussion of virtual store showing abstract
and implemented models. Justify the correctness of the development in terms of
the proof obligations of this chapter.

Exercise 8.2.6 Complete the development begun in Exercise 8.1.4 on page 192
by specifying and justifying the operations on Setrep (consider the initial state).

8.3 Exercises in rei�cation

This section presents a larger exercise in data rei�cation and, as well as this
development from abstraction to representation of the sort discussed above, it
indicates the way in which the same techniques can be used to handle interfaces
which are prede�ned in a project. Although many people argue that systems
should be developed top-down { thus developing interfaces as part of the design
process { many large systems are in fact split by setting some concrete interface
decisions very early. The problem of working to a prede�ned interface is also
often faced by developers who design an addition to an existing system.

Binary tree representations

Section 5.2 shows that a form of binary tree (Setrep) can be used to store rep-
resentations of sets. The advantage of the binary tree representation is that it
facilitates e�cient search and update operations: the number of search steps is

8.3 Exercises in rei�cation 201

proportional to the logarithm { base 2 { of the number of elements, provided the
tree is balanced. A great many computer applications rely in some way on large
associations between keys and data. An extended form of binary tree can be used
to provide similar performance advantages for representations of such maps. In
contrast to those used for set representations (cf. Setrep), these trees have nodes
which contain a Key/Data pair.

The top-level speci�cation of a map from Keys to Data is made trivial by the
availability of suitable base objects. Thus:

Kdm = Key
m
�! Data

The initial object in Kdm is: m0 = f g. Operations can be de�ned:

FIND (k :Key) d :Data
ext rd m : Kdm
pre k 2 domm

post d = m(k)

INSERT (k :Key ; d :Data)
ext wr m : Kdm
pre k =2 domm

post m =(�m [fk 7! dg

DELETE (k :Key)
ext wr m : Kdm
pre k 2 domm

post m = fkg ��(�m

The maps (Kdm) can be represented by:

Mrep = [Mnode]

Mnode :: lt : Mrep

mk : Key
md : Data
rt : Mrep

inv (mk -Mnode(lt ;mk ;md ; rt)) 4

(8lk 2 collkeys(lt) � lk < mk) ^ (8rk 2 collkeys(rt) �mk < rk)

Where:

202 8 Data Rei�cation

collkeys :Mrep ! Key-set
collkeys(t) 4

cases t of

nil ! fg;
mk -Mnode(lt ;mk ;md ; rt)! collkeys(lt) [fmkg [collkeys(rt)
end

A small theory of the Mrep type can be developed. Some lemmas which are
stated here without proof are:

Lemma 8.14 The function collkeys is total:

L8.14
t 2 Mrep

collkeys(t) 2 Key-set

Lemma 8.15 Left and right sub-trees contain, because of the invariant, disjoint
sets of keys:

L8.15
mk -Mnode(lt ;mk ;md ; rt) 2 Mnode

is-prdisj (collkeys(lt); fmkg; collkeys(rt))

where:

is-prdisj :X -set �X -set�X -set! B

Lemma 8.16 The value mk shows which sub-tree to search:

L8.16

mk -Mnode(lt ;mk ;md ; rt) 2 Mnode;
k 2 collkeys(mk -Mnode(lt ;mk ;md ; rt))

(k < mk) k 2 collkeys(lt)) ^ (mk < k) k 2 collkeys(rt))

The retrieve function is:

retr -Kdm :Mrep ! Kdm

retr -Kdm(t) 4 cases t of

nil ! fg;
mk -Mnode(l ; k ; d ; r)! retr -Kdm(l) [fk 7! dg [retr -Kdm(r)
end

The totality of this retrieve function relies on Lemma 8.15. The adequacy of
Mrep can be argued in a way similar to the proof for Setrep in Section 5.2.

Lemma 8.17 Another useful lemma is:

L8.17
t 2 Mrep

dom retr -Kdm(t) = collkeys(t)

8.3 Exercises in rei�cation 203

This example is developed in Section 10.4 where the induction rule (A10.1) is
given.

Exercise 8.3.1 (*) B-trees are generalizations of binary trees. The order (say N)
of a B-tree limits the branching at each node and can be chosen to achieve e�cient
transfers from backing store. Any (non-root) node of a B-tree has between N

and 2N elements; in leaf nodes, these elements are pairs of key and data; for
intermediate nodes, the elements are pointers to other nodes { as with binary
trees, keys which guide the search are also stored at intermediate nodes. (A
full description can be found in The Ubiquitous B-tree by D. Comer in ACM
Computing Surveys, Vol.11, No.2, pp121-137.) Write descriptions of B-trees on
several levels of abstraction.

Exercise 8.3.2 (*) Hashing provides an alternative way of storing information
for rapid searching. A hash function maps Keys to a subset of natural numbers.
If the hash function were one-to-one, this would simply be a computed address
where the information (Key/Data) is stored. Hash functions are, in fact, many-
to-one and the interesting problems concern the handling of collisions where two
or more Keys are mapped to the same hash address. (Much of the subtlety in
developing hashing techniques for particular applications concerns the minimiza-
tion of collision { these aspects are not of concern here.) Describe on two levels
of abstraction the general idea of hashing where records with colliding keys are
placed in the `next gap'.

Exercise 8.3.3 (*) A graph consists of a set of nodes and arcs. An abstract
representation considers an arc as an ordered pair (of node identi�ers) and the
whole graph as a set of arcs. Document this abstract description and de�ne
simple operations to test if an arc is present and to add an arc.

Two possible representations are:

� a two-dimensional array (where each dimension is indexed by the node
identi�ers) which records whether or not the relevant pairs are linked by an
arc;

� a one-dimensional array of pointers (indexed by the node identi�ers) to
linked lists of records; the non-link information in each record is the iden-
ti�er of nodes to which arcs are present.

Document and justify these two representations at sensible levels of abstraction.

Handling �xed interfaces

The method of developing from an abstract type to a more concrete representation
should be clear. There are, however, situations in software development where a

204 8 Data Rei�cation

concrete interface de�nition is one of the reference points in a development. There
is nothing essentially wrong with this situation, and the remainder of this section
shows how the data rei�cation ideas can still be applied. The problems which can
occur with interface descriptions are legion. Firstly, interfaces are often recorded
with far too much syntactic detail. Information on physical control blocks is
sometimes described at the bit and byte level. This militates against the modern
programming ideas of abstract data types. Use of such detail can lead to e�ciency
but almost certainly results in systems which are not maintainable. Many very
large systems have made the mistake of �xing bit/byte details and an enormous
penalty has resulted. In spite of the fact that this mistake is so serious, it is not
the purpose of the current book to preach ideas which have long been standard
practice in better organized development groups. Here, it is necessary to show
only how the data rei�cation ideas can help avoid the problem. An even more
common failing is the lack of semantics in interface descriptions. In contrast to
the excessive syntactic detail, the actual meaning or e�ect of �elds in an interface
is often suggested by no more than the �eld names. The programming language
Ada is in danger of perpetuating this problem by using the term `interface' to
describe something which only has the power to de�ne syntactic (procedure)
interface questions.

Faced with a �xed concrete interface in a development, there is a series of
steps which can be used to clarify an interface and to record the understanding.
These steps are:

1. write an (abstract) data type with only the essential information content;

2. record the semantics with respect to this abstract interface;

3. relate the (given) concrete details to the abstraction with a retrieve function.

These steps cannot, in large applications, be performed strictly sequentially: there
is a constant interplay between them.

A major application in which the author was involved concerned the devel-
opment of a compiler for the PL/I language. The interest was in the back-end
(object time organization and object code) issues and it was decided to take
over the front-end (parser and dictionary building) of an existing compiler. The
text interface had a fairly obvious linearized version of the parse tree (see Exer-
cise 8.3.5 on page 207). Variable references in the text were represented (among
other things) by pointers into the dictionary. The dictionary had been designed
for compactness and was a mass of special cases. The documentation was quite
good on byte values but the main part of the semantics had to be deduced from
examples. The proposal to follow the plan set out above was met with some scep-
ticism as to whether the time was available. Only the impossibility of getting the

8.3 Exercises in rei�cation 205

interface under intellectual control in any other way convinced the group. (Some
of the material is available as a technical report { see [Wei75].) The e�ect was
certainly worthwhile from this point of view alone.

Here, a simpler { but equally representative problem { is considered. A paper
by Henderson and Snowdon { see [HS72] { includes the following introduction of
a problem:

A program is required to process a stream of telegrams. This
stream is available as a sequence of letters, digits and blanks on some
device and can be transferred in sections of predetermined size into a
bu�er area where it is to be processed. The words in the telegrams
are separated by sequences of blanks and each telegram is delimited
by the word `ZZZZ'. The stream is terminated by the occurrence of
the empty telegram, that is a telegram with no words. Each telegram
is to be processed to determine the number of chargeable words and
to check for occurrences of overlength words. The words `ZZZZ' and
`STOP' are not chargeable and words of more than twelve letters are
considered overlength. The result of the processing is to be a neat
listing of the telegrams, each accompanied by the word count and a
message indicating the occurrence of an overlength word.

A number of questions are unresolved by this text and some computing sci-
entists have used this as a criticism of the text as a speci�cation. Although this
is not an excuse, far worse documents are used as the basis of far larger systems.
The debate is, however, sterile, and here the text is treated as an indication of
requirements. One important by-product of the proposed method for addressing
interfaces is that it is likely to expose many of the lacunae. Questions on the text
fall into two broad areas. Questions about the e�ect (semantics) of the operations
include:

� Are overlength words to be truncated in the output?

� How are overlength words to be charged?

� What output is to be printed for overlength words?

� Does the count for overlength really not count digits?

� Is a report required for the empty telegram?

� What error handling is to be provided?

Some of the questions about how the information is represented are:

206 8 Data Rei�cation

� What is the meaning of `delimit'?

� What is the meaning of `sequence' (e.g. zero occurrences)?

� What determines the bu�er size?

� Can words span blocks?

� What is an `empty' telegram?

� What is a `neat listing'?

� Are leading spaces allowed in records?

It is not di�cult { in this case { to �nd a suitable abstract description of both
the input and output:

Input = Telegram�

Telegram =Word�

Word = Character�

Character = Letter [Digit

Output = Report�

Where Telegram and Word are non-empty sequences; but [Z ;Z ;Z ;Z] =2 Word ;
and:

Report :: tgm : Telegram
count : N
ovlen : B

This abstraction ignores the details of the blanks which delimit words or the
special words used to terminate telegrams. The required meaning is given by:

ANALYZE (in:Telegram�) out :Report�

post len out = len in ^
8i 2 inds in � out(i) = analyze-telegram(in(i))

analyze-telegram(wordl) 4

mk -Report(wordl ; charge-words(wordl); check -words(wordl))

8.3 Exercises in rei�cation 207

charge-words (wordl) 4

card fj 2 indswordl j wordl(j) 6= [S,T,O,P]g

check -words(wordl) 4 9w 2 elemswordl � lenw > 12

This has shown how the process of recording such a description can be used to
document the interpretation of open semantic questions. For this author, it was
also the way of generating the list of questions about the requirements. The next
step is obviously to face the other part of the problem, which is the representation
details. The representation can be viewed as:

Inputr = Block�

Block = Symbol�

Symbol = Character [fBlankg

The speci�cation is completed by documenting the relationship of Inputr to
Input via a retrieve function. Here, this is left as an exercise. The important
message of this approach to interfaces is both the value for uncovering imprecision
and the ability to record precisely the chosen understanding. The documenta-
tion can also be an aid in implementation: separate data types can be readily
identi�ed.

One of the reasons that the Henderson and Snowdon paper has evoked so
much interest is their description of how one error got into their design. Not only
was this error avoided by the development based on the abstract speci�cation
given here, but also other errors were uncovered in the program given in the
original paper.

Exercise 8.3.4 Write a retrieve function for the input to the telegram analysis
problem. Fix a representation for output and document its relationship to the
abstraction.

Exercise 8.3.5 (*) Choose a simple linear form (e.g. reverse Polish) for an ex-
pression language and document the relationship to a tree form for expressions.

Exercise 8.3.6 (*) A syntax-directed editor permits a user to enter, at a termi-
nal, a program by placing information into an abstract syntax tree. The current
content of a program (and the identi�cation of holes) is displayed by an `un-
parsing scheme' which relates concrete to abstract syntax. Such syntax-directed
editors are table driven in that the abstract syntax and projection schemes are
stored as data. Describe the general idea of syntax-directed editors.

208 8 Data Rei�cation

9

More on Data Types

Everything should be made as simple as possible,
but not more so.
A. Einstein

The material in this book is, in spite of using VDM, not speci�c to that notation.
A reader interested in the ideas { but working with another notation { should have
had no di�culty in following the concepts presented. When one wishes to employ
tools to handle speci�cations, it is necessary to become pedantic about syntax.
Whereas formulae can be linked by text in a textbook, a framework of keywords
is needed by a mechanical parser. The �rst two sections of this chapter discuss
further aspects of VDM notation as de�ned by the British Standards Institution
(BSI) committee (BSI IST 5/50). Section 9.1 develops the material on abstract
data types by showing how modules can be used as a unit of encapsulation.
Section 9.2 describes notation for specifying exceptional conditions. Since the
module notation is one of the parts of the BSI work which is marked as tentative
(see [BSI89] { the essential parts of which are reproduced in Appendix F), only
an outline is provided. There should be no di�culty in �lling in the details when
the standard is �nally frozen in this area.

A number of more subtle points about data types are also considered in this
chapter. The approach described above is to de�ne the data types in terms of
models. This model-oriented approach presents some danger of overspeci�cation.
In particular, models can be biased towards certain implementations. A test
for bias is given in Section 9.3 together with some general proof rules for data
rei�cation. Section 9.4 presents an alternative way of specifying data types: the

209

210 9 More on Data Types

property-oriented approach is shown to be well-suited to basic types; the applica-
bility of this approach to the sort of data types required in larger applications is
also reviewed; a comparison with the model-oriented approach is included along
with an attempt to de�ne appropriate roles for the two approaches.

9.1 Modules as data types

This section outlines notation which binds a model and a collection of operations
together into a module. Such modules (with import/export lists governing what
can be used across the interfaces) make it possible for one module to rely on
another in a controlled way. It is important to understand that the concept of
modules in a speci�cation language is intended to help form a speci�cation; it
is not intended to provide a guide to the implementations. There are several
reasons for this caveat. The most obvious one is that the implementation might
need to adopt a di�erent structuring in order to achieve acceptable performance.

Module notation

The basic module notation is very simple. Keywords are used around a module as
follows (the example of bags from Section 6.3 is used to introduce the notation):

module BAG
...

end BAG

Thought of as a collection of a state description { possibly some auxiliary func-
tions { and a collection of operations, one can see the use of the following key-
words:

9.1 Modules as data types 211

module BAG
...

de�nitions
types
...

state
...

end ;
functions
...

operations
...

end BAG

The need to de�ne the interface of a module leads to keywords for (in this case)
export lists:

module BAG

exports

types

Bag

operations
...

de�nitions
...

end BAG

Putting this structure around the material in Section 6.3 yields:

212 9 More on Data Types

module BAG

parameters types X

exports

types

Bag

operations

COUNT : X
o
! N;

ADD : X
o
!

de�nitions

types

Bag = X
m
�! N1 ;

state

State of b: Bag
init (mk -State(b0))4 b0 = f g

end ;

functions

mpc :X � Bag ! N

mpc(e;m) 4 if e 2 domm then m(e) else 0

operations

COUNT (e:X) c:N
ext rd b : Bag
post c = mpc(e; b)

ADD (e:X)
ext wr b : Bag

post b =
(�
b y fe 7! mpc(e;

(�
b) + 1g

end BAG

One important property of data types is the possibility which they o�er to
`close o�' one piece of work so that it can be used in another. One manifestation
of the separation property { in the case of state-based data types { is the ability
to change the internal details of one data type without needing to change any
data type which uses it. This can be achieved only if the behaviour of the op-
erations within the used type remains the same: insulation is given only against
changes to internal details. But, providing the change is to an equivalent speci�-

9.1 Modules as data types 213

cation in the sense that sequences of its operations yield the same results in the
externally visible types, it is true that an operation using it will itself preserve
its original behaviour. Thus, given the de�nition of the module BAG , objects
of type Bag can now be used in other data types. Such objects can, however,
only be manipulated by the exported operations and the internal representation
of Bag could be changed without a�ecting the data types which use BAG . The
next subsection explains how the exported operations can be used.

The insulation provided by data types is a valuable property, but it certainly
does not justify making every component of every state into a separate data type.
Taste in the selection of data types comes both from consideration of their likely
reuse and of their representing coherent concepts. This latter consideration has
to be judged on whether the operators present a clear theory.

Operation quotation

In a programming language, the exported operations of one data type would be
invoked in another data type as procedures. VDM's operations are like procedures
in that they change a state. Although this fact has been seen to be very useful in
constructing speci�cations of systems, it does present a di�culty when operations
in a new data type are to be de�ned by predicates in terms of an existing data
type. It would be meaningless just to `call' such operations from within, say, a
post-condition. The use of operations in one (state-based) data type from another
is facilitated by quoting their pre- and post-conditions. That is, their `e�ect'
is shown by using their post-conditions with appropriate arguments (and their
applicability is shown by using their pre-conditions in the same way). Looking
at the de�nition of BAG , the explanation of the signatures of pre- and post-
conditions given in Section 3.4 shows that the following are intended:

pre-COUNT : X � Bag ! B

post-COUNT : X �Bag � N � Bag ! B

pre-ADD : X � Bag ! B

post-ADD : X � Bag � Bag ! B

Using these truth-valued functions, and:

init-Bag : ! Bag

it is easy to de�ne a module for a data type which uses BAG to build a collection
of bags:

214 9 More on Data Types

module MBAG

imports
...

exports
...

de�nitions

types

Mbag = D
m
�! Bag ;

-- The bags can be stored in a map indexed by elements of D
state

State of m: Mbag

init (mk -State(m0)) 4m0 = f g
end ;
operations

-- An operation which enlarges the collection of bags could be speci�ed:

MNEW (w :D)
ext wr m : Mbag

pre w =2 domm

post m =(�m [fw 7! init -Bag()g

-- Counting within a bag can be shown by quotation:

MCOUNT (w :D ; e:X) c:N
ext rd m : Mbag

post post-COUNT (e;m(w); c)

-- An operation which adds an element to a stated bag is:

MADD (w :D ; e:X)
ext wr m : Mbag

post 9b 2 Bag � post-ADD(e;(�m (w); b) ^m =(�m y fw 7! bg

end MBAG

9.1 Modules as data types 215

Remember that the speci�cation of these three operations is insulated from any
reformulation of the speci�cation of Bag itself. This ability to adapt with such
changes is the essential feature of a module notation.

Annotating speci�cations

It is obvious that formal speci�cations for large systems are likely to be long. The
formal description of the PL/I language contains about 120 pages of formulae.
Care and preparedness to rewrite parts of such a speci�cation can make the model
itself far easier to understand. The tasteful use of natural language annotations
can also make it much easier for a reader to begin to understand a large formal
speci�cation. There are several possible styles of annotation:

� in-line comments { as in programming languages;

� numbered formulae lines with annotations which relate to line numbers
placed after each block of formulae;

� careful decomposition into abstract data types with text introducing each
such separate concept.

The �rst of these options (marked by --) is used in the example above. For this
textbook, the third option has been used in preference to a somewhat heavy
alternative with:

annotation

". . . "
end annotation

which is possible in the BSI syntax. It is likely that the development of ap-
propriate machine support will make a form of the second approach much more
attractive.

Compiler dictionary example

The idea of quoting the post-condition of one operation in the speci�cation of
another is most often used for applying operations to parts of a state. The
following speci�cation is a case where this is used in a way which neatly separates
(state-based) data types. A compiler dictionary can be used to record attribute
information about identi�ers. Many texts on compiler writing refer to such a
dictionary as a `symbol table'. Information is added to a local dictionary when
the declarations of a block are processed, and this information can be looked

216 9 More on Data Types

up when code is to be generated for the statements in the block. In a block-
structured language like ALGOL, the declaration information for di�erent blocks
must be kept separately. The attributes of a non-local identi�er must be found by
looking in the local dictionaries for outer blocks, but the appropriate declaration
is always the one in the closest surrounding block. Here, it is assumed that the
compiler is one-pass and that entering (and leaving blocks) causes the creation
of empty (and the destruction of) local dictionaries. The reader should have no
di�culty in specifying such a system as one module. Here, the speci�cation is
presented by �rst de�ning a module with the operations on the local dictionaries.

module LDICT

parameters types Id ;Attribs
exports operations

STOREL: Id �Attribs
o
!;

ISINL: Id
o
! B ;

LOOKUPL: Id
o
! Attribs

de�nitions

types

Ldict = Id
m
�! Attribs;

state

State of ld : Ldict
init (mk -State(ld0)) 4 ld0 = f g

end ;
operations

STOREL (i : Id ; a:Attribs)
ext wr ld : Ldict
pre i =2 dom ld

post ld =
(�
ld [fi 7! ag

ISINL (i : Id) r : B
ext rd ld : Ldict
post r , i 2 dom ld

LOOKUPL (i : Id) r :Attribs
ext rd ld : Ldict
pre i 2 dom ld

post r = ld(i)

end LDICT

9.1 Modules as data types 217

The de�nition Ldict can be regarded as a state-based data type whose module
can be used in the de�nition of the main operations.

module CDICT

parameters types Id ;Attribs
exports operations

ENTER: ()
o
!;

LEAVE : ()
o
!;

STORE : Id �Attribs
o
!;

ISLOC : Id
o
! B ;

LOOKUPC : Id
o
! Attribs

de�nitions

types

Cdict = LDICT :State�;
state

State of cd : Cdict
init (mk -State(cd0)) 4 cd0 = []

end ;

STORE (i : Id ; a:Attribs)
ext wr cd : Cdict
pre cd 6= [] ^ pre-STOREL(i ; a;hd cd)

post 9ld 2 Ldict � post-STOREL(i ; a;hd
(�
cd ; ld) ^ cd = [ld]y tl

(�
cd

ISLOC (i : Id) r : B
ext rd cd : Cdict
pre cd 6= []
post post-ISINL(i ;hd cd ; r)

LOOKUPC (i : Id) r :Attribs
ext rd cd : Cdict
pre 9j 2 inds cd � pre-LOOKUPL(i ; cd(j))
post let k = minsfj 2 N j pre-LOOKUPL(i ; cd(j))g in

post-LOOKUPL(i ; cd(k); r)

ENTER ()
ext wr cd : Cdict

post cd = [init-Ldict()]y
(�
cd

218 9 More on Data Types

LEAVE ()
ext wr cd : Cdict
pre cd 6= []

post cd = tl
(�
cd

end CDICT

As explained above, quoting the pre- and post-conditions makes it possible
to change the internal detail of Ldict without having to change CDICT .

File stores

The next example, as well as making use of operation quotation, also illustrates
the extent to which the state model of a speci�cation can be used to investigate
the possibilities of an architecture. It is possible to discern the architecture of a
system without reading the whole description. With experience, the underlying
state-like objects of a de�nition can be understood to de�ne the overall architec-
ture. In the (120 page) PL/I description, the so-called `semantic objects' occupy
about �ve pages. A clear understanding of this material ties down many facets of
the language without having to read all of the �ne detail. Here, the importance
of the state is shown by the development of a series of vignettes of �le systems.
Suppose { for all of the de�nitions { the internal structure of a �le is of no inter-
est. (A File might be an unstructured sequence of bytes or it might have a richer
structure. In the latter case, it could be treated as a separate data type.) If �les
are to be accessed, they must be named. Thus the state of the most trivial �le
system is:

Trivfs = Name
m
�! File

It would be possible to de�ne a range of operations on this state (e.g. CREATE ,
DELETE , COPY); but it is more interesting to observe what cannot be done.
It is obvious from the properties of maps that no two di�erent �les can have the
same name. If two users wish to have separate name spaces, the state of this �le
system is not rich enough. This observation can be made without an exhaustive
search of operation speci�cations or { as here { even before the e�ort is expended
to write such de�nitions.

It is not di�cult to extend the state in a way which permits nested directories.
For example:

Nestedfs = Dir

Dir = Name
m
�! Node

9.1 Modules as data types 219

Node = Dir [File

This allows separate users to utilize the same name in the way that Unix (tm)

directories support. Here again, operations could be speci�ed on this state; but
one can also see what still cannot be done in any system based on this state. In
particular, it is not possible to share the same �le via two di�erent name paths.
Here sharing is taken to imply that if a user changes the �le by one path, the
change will appear when the �le is accessed via another path. There is a standard
way of establishing such sharing patterns in speci�cations and that is to introduce
some intermediate link, or surrogate, (here a �le identi�er { Fid). Thus:

Sharedfs :: root : Dir

�lem : Fid
m
�! File

Dir = Name
m
�! Node

Node = Dir [Fid

It is now clear, from the state above, that �les can be shared in the sense that
di�erent paths can lead to the same �le identi�er.

Having developed a plausible state, some operations are given. An operation
to show the contents of a directory is:

SHOW () m:Dirstatus
ext rd d : Dir
post m = fnm 7! (if d(nm) 2 Dir then DIR else FILE) j

nm 2 dom dg

Dirstatus = Name
m
�! fFile;Dirg

An operation to create a new directory is:

MKDIR (n:Name)
ext wr d : Dir
pre n =2 dom d

post d =
(�
d [fn 7! f gg

Once more, a somewhat optimistic pre-condition is given. A way to avoid this
and indicate exceptions is described in the next section.

It is then possible to quote these operations in order to form other, more
global, operations such as:

Path = Name�

220 9 More on Data Types

SHOWP (p:Path) m:Dirstatus
ext rd d : Node
pre d 2 Dir ^

(p = [] _
p 6= [] ^ hd p 2 dom d ^ pre-SHOWP(tl p; d(hd p)))

post p = [] ^ post-SHOW (d ;m) _
p 6= [] ^ post-SHOWP(tl p; d (hd p);m)

The claim being made here is that the state can convey a great deal of useful
information about a system. This is, of course, only true where the state is well
chosen. An alternative state for the system above is:

Sharedfs :: access : Path
m
�! Fid

�lem : : : :

A state which has basically this form is chosen by Carroll Morgan and Bernard
Sufrin in their contribution to [Hay87]. It is instructive to compare this with
the earlier state. The most obvious comment is that this would complicate the
de�nition of SHOW . It is also clear that there would have to be a complicated
invariant on this state. This having been said, it is possible to de�ne all of the
operations on such a state. What is left is the observation that this second state
conveys a much less clear picture of the intended system than the �rst state
shows.

In specifying even moderately sized systems, one must be prepared to discard
possible states as it becomes clear that some operations or invariants become
inconvenient. In this way the state comes to be the essence of the speci�cation,
and can then provide much insight.

The point about the knowledge derivable from a well-chosen state can also be
made by counter-example. The ECMA/ANSI speci�cation of PL/I is based on a
formal model. As with the the Vienna de�nition ([BBH+74]), the state is given
formally and is rather short. However, it contains many sequences but no sets
since there was some feeling that sets might be too abstract for the standards
organization! On checking, one �nds that no use is made of the order of some of
these sequences. To know which sequences do convey essential order one has to
inspect the remaining 300 or more pages of the de�nition. Thus information which
could have been made clear in the state is dispersed over the whole de�nition.

The reference to standards activities presents an appropriate point to contrast
the terms `speci�cation' and `description'. Although the former term has been
used in this book, it should be noted that it really relates to an o�cial status; the
term `description' is often the more appropriate one. It is, of course, the hope of
the author that it will become ever more frequent for standards committees to

9.2 Exceptions 221

adopt formal speci�cations.

Exercise 9.1.1 A very simple diary reminder system can be speci�ed around:

Diary = Date
m
�! Task�

Specify an operation which adds a Task for a given Date (do not assume that
the Date is already in the Diary). This operation should then be quoted in the
speci�cation of an operation for a given user in a state:

Diarysys = Uid
m
�! Diary

Exercise 9.1.2 (*) Exercise 9.1.1 introduces a trivial diary system. Write down
a reasonable list of requirements and then develop (using separate data types and
combining them) a speci�cation of a realistic computer-based diary manager.

9.2 Exceptions

Some of the operation speci�cations given in this book have overly restrictive pre-
conditions. It is pointed out, in earlier chapters, that this might well be realistic
for operations which are used within a system: essentially, the environment of
the operations ensures that the pre-condition is ful�lled. There are, however,
operations which might be invoked in a way which makes such restrictive pre-
conditions unrealistic. This section introduces some notational extensions which
can be used to record exceptions.

It is worth introducing the extended notation by considering the e�ect of
trying to avoid it. Suppose it were wished to make the DEQUEUE operation of
Section 7.1 total in the sense that it did not have the pre-condition given there.
It would be possible to write:

DEQUEUE () e: [Qel]
ext wr q : Queue
pre true

post (�q 6= [] ^(�q = [e]y q _
(�q = [] ^(�q = q ^ e = nil

Here, the return of the nil value is taken to indicate an error.
It would also be possible to base the speci�cation on the signature:

DEQUEUE () e: [Qel] err : [QueueEmpty]

There are several observations which can be made about this approach. Perhaps
the most obvious problem is that the speci�cation of the normal case can be-

222 9 More on Data Types

come submerged in detail. But, this may not be the worst problem. This style of
speci�cation forces decisions about how errors are to be shown. In some program-
ming languages (e.g. Pascal) it might be necessary to return an extra result, or
a distinguished value, in order to indicate an exception; but there are languages
(e.g. PL/I, Ada, ML) which contain explicit exception mechanisms. As far as
possible, it is worth postponing commitments to implementation languages. It
should certainly not be necessary to choose an implementation language in order
to record a speci�cation.

The requirements for exception speci�cations thus include the ability to sep-
arate exceptional cases from the normal and an avoidance of commitment as to
how exceptions are to be signalled.

BSI-VDM has adopted one possible notation which adds error clauses to op-
eration speci�cations. In general, the format becomes (where the ri are logical
expressions):

OP (i :Ti) r :Tr
ext wr v : Tv
pre p

post r0
errs COND1: c1 ! r1

COND2: c2 ! r2

The condition names (CONDi) can be taken to be the name of the exception:
how this is returned is a matter for the implementation. Leaving aside the name,
the speci�cation can be explained by its translation to:

OP (i :Ti) r :Tr
ext wr v : Tv
pre p _ c1 _ c2
post p ^ r0 _ c1 ^ r1 _ c2 ^ r2

Some consequences of this translation should be noted. Firstly, the pre-condition
is e�ectively widened by the conditions on the error clauses. Secondly, the form
of the given post-condition is, in general, non-deterministic: if both c1 and c2
are true, either exception can be signalled and the corresponding state transfor-
mation can occur. Even if both the normal case and an exception can arise, this
translation does not �x the e�ect. In practice, it is wise to make the normal and
exception conditions mutually disjoint, but there are advantages in not determin-
ing which of several exceptions should occur since it leaves an implementation
some freedom to choose the order in which tests are made. If it is important which
exception is signalled, the conditions can again be made mutually exclusive.

The above example could now be written:

9.3 Implementation bias in models 223

DEQUEUE () e: [Qel]
ext wr q : Queue
pre q 6= []

post (�q = [e]y q

errs QueueEmpty: q = []! q =(�q ^ e = nil

A very common special case is where the exceptions do not cause a state change.
This is, in fact, a very desirable property of a system. It is possible to further
economize on notation by recognizing this special case.

Exercise 9.2.1 Rewrite the speci�cation of Exercise 4.4.2 on page 108 using the
exception notation.

Exercise 9.2.2 Write the exception speci�cations (where appropriate) for the
stack examples given in Exercise 7.3.2 on page 178.

Exercise 9.2.3 (*) Extend the speci�cation of the �le system given in Sec-
tion 9.1 so that operations MKDIR and SHOWP handle exceptions. Now that
the exception notation is understood, it is reasonable to de�ne other operations
on Sharedfs. Consider new features (e.g. security/authority, stored path names)
and show how these a�ect the state. In all operation de�nitions, attempt to use
operation quotation to separate the data types.

9.3 Implementation bias in models

The remainer of this chapter addresses special issues about the concept of data
types.

Biased model of queues

The concept of implementation bias is most simply introduced by example. Sec-
tion 7.1 begins by introducing a speci�cation of a queue based on objects Queue.
A speci�cation which de�nes the identical behaviour is:

Queueb :: s : Qel�

i : N

inv (mk -Queueb(s; i)) 4 i � len s

init q0 = mk -Queueb([]; 0)

ENQUEUE (e:Qel)
ext wr s : Qel�

post s =(�s y [e]

224 9 More on Data Types

DEQUEUE () e:Qel
ext rd s : Qel�;

wr i : N
pre i < len s

post i =(�{ + 1 ^ e =(�s (i)

ISEMPTY () r : B
ext rd s : Qel�;

rd i : N
post r , (i = len s)

The model in this speci�cation keeps unnecessary history of the queue and this is
intuitively wrong. This intuitive concern can be made more formal by considering
retrieve functions. A retrieve function can easily be constructed in one direction:

retr -Queue :Queueb ! Queue

retr -Queue(mk -Queueb(s; i)) 4 s(i + 1; : : : ; len s)

Thus:

retr -Queue(mk -Queueb([a; b; c; d]; 1) = [b; c; d]

But a retrieve function cannot be constructed in the other direction because
the unnecessary history information cannot be found in Queue. This discloses
why the problem is referred to as `implementation bias'. Using the rei�cation
proof obligations given in Sections 8.1 and 8.2, the Queueb model is biased to-
wards (proving correct) implementations which retain at least as much informa-
tion. An implementation which keeps even more history (e.g. the exact order of
ENQUEUE/DEQUEUE operations) can be proved correct: a retrieve function
can be constructed to Queueb.

It is important to realize that the behaviour of the operations on Queueb is
the same as that on Queue. Thus it is possible to show that the operations on
the former model those on the latter. It is only the acceptability of the Queueb
model as a speci�cation which is being challenged. As an implementation, its
behaviour is as required.

The bias of the Queueb speci�cation is a criticism of a speci�c model. Is it
also an indication of a weakness of the model-oriented approach to speci�cation?
There are certainly some computer scientists who have argued in this direction.
The proof rules shown below permit even a biased model to be used as a starting
point for development. More importantly, it is normally possible to avoid bias.
Moreover, it is possible to prove that bias is absent.

9.3 Implementation bias in models 225

A test for bias

The problem which is to be avoided is that an implementation is invented such
that a retrieve function from its states to those of the speci�cation cannot be
constructed. This itself cannot serve as a test of a speci�cation since it requires
consideration of possible implementations. The problem with the storage of un-
necessary history information in Queueb can, however, be described in another
way: the information is unnecessary precisely because it cannot be detected by
any of the available operations. The following de�nition is therefore given:

A model-oriented speci�cation is based on an underlying set of states.
The model is biased (with respect to a given set of operations) if
there exist di�erent elements of the set of states which cannot be
distinguished by any sequence of the operations.

In terms of the example above, there is no way of distinguishing between:

mk -Queueb([a; b; c]; 1) and mk -Queueb([b; c]; 0)

The precision of this test makes it possible to use it as a proof obligation. A
model is su�ciently abstract (to be used as a speci�cation) providing it can be
shown to be free of bias.

It is important to realize that the bias test is relative to a particular set of
operations. The Queue model of Section 7.1 is unbiased for the collection of
operations given there. However, for a di�erent set of operations, Queue is a
biased model. For example, if the DEQUEUE operation were replaced by one
which only removed, but did not show, the removed value:

REMOVE ()
ext wr q : Queue
pre q 6= []

post q = tl(�q

there is no operation which could distinguish between the queues:

[a; b] [b; a] [c; d]

An unbiased model1 for this collection of operations is a natural number which
records the number of elements in the queue. Furthermore, if the REMOVE

operation is entirely discarded, the only distinction which can be detected is
between empty and non-empty queues. A su�ciently abstract model for this
restricted set of operations is a single Boolean value.

1Another term which is used in connection with bias is `full abstraction'. A speci�cation can
be said to be fully abstract (with respect to a given set of operations) if it is not biased.

226 9 More on Data Types

The test for bias was discovered after many model-oriented speci�cations had
been written. Since then, it has been applied to a number of speci�cations which
were written without its guidance. The experience is that very few speci�cations
were found to have been biased. Even those which were revolve around rather
subtle problems. It is therefore not envisaged that this proof obligation need
normally be discharged in a formal way. The concept of su�cient abstractness
is more likely to be useful in general discussions about alternative models. One
cause of failure is where an invariant on the speci�cation state has been over-
looked. It must be understood that there is not a unique su�ciently abstract
model for any particular application. Di�erent models can pass the bias test.
With such a class of models, it will be possible to construct retrieve functions in
either direction between any pair.2

Among the class of unbiased models, some are more complex than others.
Consider, for example, a problem in which a set can be used to de�ne the needed
operations. A model based on a list is likely to be biased { state values might,
for instance, store a history of the order of operations which cannot be detected.
It is, however, possible to reduce the equivalent states to single values by adding
an invariant. If the elements of a list are required to be in a particular order
(e.g. numeric order), there is then a one-to-one correspondence between the lists
(with invariants) and sets. The restricted lists are not biased { but the model is
certainly more complicated.

This appears to suggest another criterion for the choice of models: in general,
it is better to choose a state which minimizes the need for invariants. There are,
however, exceptions to this guideline, and the reader is reminded of the discussion
in Section 8.3 about the use of more than one isomorphic model. One such model
may have a minimum invariant while another might be more complicated; if the
more complicated model makes some operations easier to de�ne, it can pay its
way.

All of the above comments about bias relate to the choice of models for
speci�cations. Rei�cation certainly brings in bias. In fact, the commitments
which are made by the designer are intended to introduce implementation bias.
At each successive step of data rei�cation, the range of models (which can be
justi�ed using retrieve functions) is intentionally reduced. The designer's goal is
to arrive at a �nal, single implementation.

2Technically, the unbiased models form an isomorphism class { they partition the possible
behaviour histories into equal sets.

9.3 Implementation bias in models 227

More general proof rules

The remainder of this section is concerned with proof rules for handling develop-
ment from biased speci�cations. There are two reasons for what may appear to
be a volte-face. Firstly, bias may occur by accident. Although the point is made
above that the investment of rewriting speci�cations (even several times) is likely
to pay o� in clarity, not all industrial environments are prepared to accept this
austere advice. It is shown below that there are ways of handling development
from biased speci�cations. Some users of formal methods may choose to employ
the more general rei�cation rules.

The other reason for presenting ways of handling the more general situation
is that there are places where a speci�cation which is technically biased should
be used! The most common situation where (technical) bias is justi�ed is when
the full extent of the set of operations is unknown. Michael Jackson presents
examples in his books (see, for example, [Jac83]) in which attempts to tailor
the state too closely to a particular collection of operations makes subsequent
extension all but impossible. It is argued in Section 8.3 that the state represents
the essence of the operations. When the operations are not a �xed collection, the
state must be chosen to be the essence of the application itself. The extent to
which this rather vague goal is achieved, will govern the di�culty of subsequent
modi�cations.

There are some cases where a biased state can lead to a clearer speci�cation
than an unbiased one. Such cases are rare. An example is forming the average
and standard deviation of a collection of values. An obvious speci�cation �rst
stores all of the numbers; to avoid bias, a speci�cation has to rely on subtle
properties of the de�nitions.

There is one more case where the state of a speci�cation has more information
than that of correct implementations. This is the most technical of the cases. It
is sometimes necessary for the state of the speci�cation to contain information
which de�nes the range of non-determinacy. An implementation which resolves
the non-determinism in a particular way may need less information in the state.
A representative example of this situation can be built around a symbol table.
A speci�cation can use the state:

Symtab = Sym
m
�! Addr

Addr = N

A non-deterministic operation to allocate addresses is:

ALLOC (s:Sym) a:Addr
ext wr t : Symtab

228 9 More on Data Types

pre s =2 dom t

post a =2 rng
(�
t ^ t =

(�
t [fs 7! ag

An implementation of this speci�cation can use:

Symtabrep = Sym�

inv (t) 4 is-uniques(t)

with:

ALLOCr (s:Sym) a:Addr
ext wr t : Symtabrep
pre s =2 elems t

post t =
(�
t y [s] ^ a = len t

An attempt to use the rei�cation rules of Chapter 8 may lead to the retrieve
function:

retr -Symtab : Symtabrep ! Symtab

retr -Symtab(t) 4 ft(i) 7! i j i 2 inds tg

But this clearly shows that Symtabrep is not adequate: any value of Symtab with
gaps in the allocated addresses cannot be represented. The need to provide a
general model in the speci�cation was to express the potential non-determinacy;
the decision to yield particular addresses in the implementation renders this in-
formation redundant.

One way of handling this situation is to generate a special proof obligation
for steps of development which reduce non-determinacy in this way. Although
straightforward, this avenue is not pursued here since the more general proof rule
covers this somewhat rare case.

It has been made clear that the behaviour of a data type is what is to be
speci�ed and veri�ed. But there are steps of rei�cation which cannot be proved
correct by the rules of Chapter 8 even though the putative implementation mani-
fests the same behaviour as the speci�cation. Thus, it is clear that the given rules
are too weak in the sense that they are su�cient but not necessary. Although
they cover a very large percentage of the development steps which one is likely
to meet, it is useful to know the more general rule.

The key to the more general rule is to realize that the retrieve function can
revert to a relation. The proof rules of Chapter 8 capitalized on the one-to-many
situation brought about by the lack of bias. If this restriction no longer applies,
the many-to-many situation can be represented by:

rel :Abs �Rep ! B

9.3 Implementation bias in models 229

Suppose the biased Queueb from the beginning of this section were to have been
used in a speci�cation; the relation to Queue (now taken as an implementation!)
could be recorded by:

rel -Queue :Queueb �Queue ! B

rel -Queue(mk -Queueb(l ; i); s) 4 l(i + 1; : : : ; len l) = s

With the more general rules, there is no adequacy proof obligation. The domain
rule is similar to that of Chapter 8:

rel -Queue(qb; q) ^ pre-OPA(qb)) pre-OPR(q)

Notice that OPA works on Queueb and OPR on Queue. The result rule is:

rel -Queue(
(�
qb ;(�q) ^ pre-OPA(

(�
qb) ^ post-OPR((�q ; q))

9qb 2 Queueb � post -OPA(
(�
qb ; qb) ^ rel-Queue(qb; q)

Proofs using these results are left as exercises. In general, they become more
di�cult than proofs using the rules of Chapter 8, if for no other reason than the
appearance of the existential quanti�er.3 It is also necessary to handle initial
states { the rule should be obvious from the corresponding rule in Chapter 8.

There are other ways of handling situations where bias occurs in the speci�ca-
tion. In early work on formal development of compilers, Peter Lucas (see [Luc68])
showed how ghost variables can be erected in the implementation state. These
variables initially retain any redundant information but can be disposed of once
there are no essential references to them.

Exercise 9.3.1 Justify Queueb as an implementation with respect to the Queue
speci�cation given in Section 7.1.

Exercise 9.3.2 Design an implementation of the queue operations which retains
the full history of the queue. Since this is even more information than is contained
in Queueb, it is possible to use the (biased) Queueb operations as a speci�cation.
Sketch a justi�cation which illustrates this fact.

Exercise 9.3.3 Justify Queue as an implementation of the speci�cation Queueb

{ since this latter is biased, the more general proof rule of this section must be
used.

Exercise 9.3.4 Write a biased speci�cation of a stack (cf. Exercise 7.3.2 on
page 178).

3It is, however, the existential quanti�er in the result rule which ensures that this more general
rule covers the sort of non-deterministic situation which arose in the symbol table example.

230 9 More on Data Types

Exercise 9.3.5 The �rst conjunct in invp (Section 4.2) bars an empty set from
a partition. One reason for needing this is the equivalence relation speci�cation
mentioned in Section 4.4. Discuss the problem in terms of bias.

Exercise 9.3.6 Outline the proof of the operation ALLOC for the Symtabrep

representation of Symtab. The proof obligation will have to use the more general
rule.

Exercise 9.3.7 (*) It is standard practice to de�ne the rational numbers as a
pair of integers. Set up such a model and de�ne some functions (e.g. addition of
rationals). Discuss the problem of bias in this, functional, context.

9.4 Property-oriented speci�cations of data types

The preceding section should have allayed any fears about being forced into over-
speci�cation in the model-oriented approach. But the concern has been fruitful
in that it is one of the stimuli which have led computer scientists to develop a
way of specifying data types without using a model at all. The idea goes back to
the concept of a data type being a pattern of behaviour. The property-oriented
approach4 to specifying data types de�nes properties of these behaviours by a
series of equations.

This section does not aim to provide a course on the property-oriented ap-
proach: it only explores the presentations, given in Chapters 4 to 7 above, for
the basic data types, and discusses the role of property-oriented speci�cations in
data types required in applications.

Properties of collections

It has already been seen that the generators for sequences, etc. present a conve-
nient basis for proofs. In Chapter 7 the generating operators are given as [] and
cons (X � X � ! X �). There, these generators are closed o� by an induction
rule; in a property-oriented speci�cation, the induction rule is subsumed by the
interpretation which is ascribed to the equations.

The properties of concatenation can be given by the equations:

[]y t = t

cons(e; t1)
y t2 = cons(e; t1

y t2)

4What is referred to here as the `property-oriented approach' is known in the literature under
a variety of di�erent names: `(equational) presentations of algebras'; `the axiomatic approach'
(viewing the equations as axioms); or even `the algebraic approach'.

9.4 Property-oriented speci�cations of data types 231

Viewed innocently, the equalities in these equations indicate that terms of one
form can be rewritten into another form. In the initial interpretation, the objects
denoted by terms are equal exactly when the terms can be proven to be equal
from the equations. This appears to be a very plausible position but it is not the
only one possible. In fact, the consequence that inequalities can be established
only by showing that a term cannot be deduced is extremely aggravating.

The reader should remember that Chapter 4 introduced the set constructors
(f g;�) by equations which, apart from the symbols, are identical to those given
for sequences. But clearly the sets denoted by the terms:

e1 � (e2 � fg) and e2 � (e1 � (e1 � fg))

should be equal. In the initial interpretation, it is necessary to add extra equa-
tions in order to ensure that term equality de�nes object equality. The need
for these equations can be avoided in the alternative �nal interpretation of such
equations. In the �nal interpretation, objects are assumed to be equal unless
the terms which they denote can be proved unequal. The normal way to show
that terms are unequal is by using some external (already understood) type. In
the �nal interpretation for sets, there would be no need to add the absorptive
and commutative equations for �. It would, however, be necessary to add some
operators in order to prevent the complete collapse of the value space. In this
case the membership operator could be used (see below).

To make these points clear, the speci�cation of three data types (sequences,
bags and sets) are considered under the two interpretations. A useful concept in
this discussion is a term algebra. Given some set of operators, the term algebra

is the set of all terms which can be generated such that each application respects
the types. (This set of terms could be formalized using an abstract syntax.)

With the types:

null:Colln
�:X � Colln ! Colln

the initial model of Colln is exactly the sequence values. In fact, the term alge-
bra of these generators can be thought of as providing a model on which other
operators (e.g. concatenation) can be de�ned. The initial interpretation of these
equations is a natural match for sequences. The operator + (of type Colln�Colln
! Colln) which satis�es:

null+ c = c

(e � c1) + c2 = e � (c1 + c2)

automatically becomes sequence concatenation.
The same generators can be used for the bags, but here the term algebra

232 9 More on Data Types

for the operators above needs breaking into equivalence classes. Since bags do
not have the concept of the order of their elements, any terms which di�er only
by position denote the same objects. This fact can be captured by the single
equation:

e1 � (e2 � b) = e2 � (e1 � b)

This equation can be used (cf. Section 4.2) to show the commutative properties
of bag operators de�ned over these generators (e.g. + on bags becomes union).
In some sense, the initial interpretation is not such a good match for bags. The
values now correspond to sets of terms. One possibility is to think of choosing
a representative member of each equivalence class (e.g. relying on some ordering
over the elements).

For sets, the equivalence classes have to be made yet coarser. The necessary
e�ect can again be achieved by adding one more equation:

e � (e � s) = e � s

One can picture what has been done by considering the set of all possible terms
formed from null/� and partitioning this set into equivalence classes as indicated
by the equations de�ning the commutativity and absorption of �. To each such
(in�nite) set of terms, there corresponds one set value which is denoted by each
of the terms.

In the �nal interpretation, the equivalence classes of terms are as coarse as
possible. Thus, the �nal interpretation comes closest to matching sets. However,
there is nothing about the generating operators which prevents even the terms:

e1 � null null

from being treated as equal. The danger is that all terms are in one equivalence
class. This is avoided by adding an operator which yields values in another
type. For sets, an appropriate operator is membership. Equations for 2 (of type
X � Colln ! B) which show:

: (e 2 null); e 2 (e � s); e 2 s) e 2 (e 0 � s)

result in the appropriate algebra.
For bags (cf. Section 6.3), the equivalence relation on terms must be made

�ner. This can be done by replacing the membership operator with count (of
type X � Colln ! N), where:

count(e;null) = 0
count(e1; (e2 � b)) = count(e1; b) e1 6= e2
count(e1; (e1 � b)) = count(e1; b) + 1

9.4 Property-oriented speci�cations of data types 233

The equivalence class so de�ned still has:

e1 � (e2 � t) e2 � (e1 � t)

in the same partition since they cannot be proved unequal. To make Colln behave,
in the �nal interpretation, like sequences, one could add hd (Colln ! X) with:

hd (e � c) = e

There are then at least two interpretations of a set of equations. Clearly, if
speci�cations of data types are to be given by properties, the interpretation must
be de�ned.

Implementation proofs

The choice of interpretation is closely related to the question of how one shows
that an implementation is correct with respect to a property-oriented speci�ca-
tion. The obvious approach to such proofs might be to check that all terms which
are in the same equivalence classes denote the same value in the implementation.
Chapter 8 shows that, in an implementation, there may be several representa-
tions for the same abstract object. The equality of terms cannot, therefore, be
used as the criterion for the correctness of implementations.

The (equivalence classes of) terms are, however, the basis for such implemen-
tation proofs. Where, as for sequences, the equivalence classes contain exactly
one term, it is possible to use a style of implementation proof similar to that
of Chapter 8 (i.e. based on retrieve functions). In the case that the equivalence
classes contain more than one element, another technique is required. The ba-
sis of this technique is to de�ne a homomorphism from the set of terms to the
implementation. This is like a retrieve function in reverse. It can always be con-
structed (at least in the deterministic case) since the term algebra is the �nest
possible partition. The proof obligation is, then, to show that the equivalence
classes represented by the equations are respected.

Scope of alternative methods

The remainder of this section considers the extent to which the property-oriented
approach can be applied to speci�cations of applications. Property-oriented spec-
i�cations are given by a signature part and a set of equations. The signature

de�nes the syntactic information about the functions. The equations �x the se-
mantics of the functions. (For the sake of de�niteness, the initial interpretation
is assumed.)

Just as the factorial program is a standard example for program proof meth-
ods, the stack is the standard example for data type speci�cations. The signature

234 9 More on Data Types

part of a property-oriented speci�cation is:

init :! Stack

push:N � Stack ! Stack

top:Stack ! (N [Error)
remove:Stack ! Stack

isempty :Stack ! B

Several comments are in order. The standard texts on algebra consider functions
rather than (what are called in this book) operations. It is possible to generalize
functions to return more than one result and then operations can be viewed as
functions which receive and deliver an extra (state) value. Here, the operation
POP (cf. Section 7.3) has been split into two functions (i.e. top, remove). An-
other restriction is that functions are deterministic. Thus, the post-condition
idea does not have an immediate counterpart here. Nor, at �rst sight, do the
pre-conditions and their role in de�ning partial functions. There is a consider-
able literature on the algebraic treatment of errors in algebraic presentations of
data types. In this section, special error values are used.

The semantics of the stack functions are �xed by the equations:

top(init()) = Error

top(push(i ; s)) = i

remove(init()) = init()
remove(push(i ; s)) = s

isempty(init()) = true

isempty(push(i ; s)) = false

Only the �rst and third of these equations should require comment. The third is
somewhat arti�cial in that it extends the domain of remove to avoid introducing
an error value for stacks. The �rst shows when it is not possible to generate a
natural-number result from top.

When the restrictions implied by the comments above are acceptable, one
might prefer a property-oriented to a model-oriented speci�cation because a def-
inition without a model would appear to avoid problems like implementation
bias. As is shown below, however, it is not always straightforward to �nd a
property-oriented speci�cation.

The reader would have no di�culty in providing a model-oriented speci�cation
of the above stacks. Nor would there be any di�culty in showing the changes
required to de�ne a queue. The signature of the property-oriented speci�cation
is also easy to change:

9.4 Property-oriented speci�cations of data types 235

init :! Queue

enq :N �Queue ! Queue

�rst :Queue ! N

deq :Queue ! Queue

isempty :Queue ! B

The changes to the equations are, however, less obvious. Clearly:

�rst(enq(e; init())) = e

but this covers only half of the corresponding stack equation (the second above).
The remaining case must be speci�ed:

�rst(enq(e1; enq(e2; q))) = �rst(enq(e2; q))

A similar split is required for:

deq(enq(e; init())) = init()
deq(enq(e1; enq(e2; q))) = enq(e1; deq(enq(e2; q)))

This second equation is particularly disappointing since it has the feeling of recre-
ating the queue in a very operational way, whereas a state automatically de�nes
an equivalence over the histories. In fact property-oriented speci�cations can
be thought of as being built on models. The model is the term algebra of the
generating functions. This, in some sense, has more mathematical economy than
introducing a separate model. But predetermining the model in this way has
the disadvantage that it is sometimes less convenient than others. For stacks the
model is convenient; for queues it is less so.

It is also possible that the generating functions do not provide an unbiased
model. An example can be constructed for the integers with 0 and succ (as for
the natural numbers) and a general minus operator: there are then many terms
corresponding to each negative number.

The generators can be taken as guidance to the equations which are needed.
The speci�c choice of equations is, however, a task requiring some mathematical
sophistication. For example, sets could be introduced via the union operator and
its properties. Another example is apparent if one considers the wide range of
axiomatizations of propositional calculus.

There are also some technical points which must be considered. A set of
equations (axioms) must be shown to be consistent and complete.5 There are also
data types which cannot be characterized by a �nite set of equations (Veloso's
stack { cf. Exercise 7.3.2 on page178 { is an interesting example).

Rather than criticize the property-oriented approach, the intention here is

5Or to de�ne a non-trivial class of models.

236 9 More on Data Types

to determine the correct roles for property-oriented and model-oriented speci�-
cations. It would be useful if all of the data types which were to be used in
other speci�cations were given property-oriented speci�cations. This, basically,
has been done in Chapters 4 to 7. The advantages of this approach include its
�rm mathematical framework, which is particularly needed to de�ne type param-
eterization. Such speci�cations should, however, be constructed with great care
and { at least { checked by a mathematician. The model-oriented approach can,
in contrast, be used relatively safely for speci�cations of applications which are
to be implemented (e.g. a database system). The state model itself can provide
considerable insight into a system and makes it possible to consider operations
separately. Given an understanding of the concept of implementation bias, it
should be possible to provide model-oriented speci�cations which are su�ciently
abstract.

A number of examples above have shown how properties can be deduced from
a model-oriented speci�cation. Such properties can be used as a check against the
intuitive requirements for a system. This section shows that sets of properties can
be completed in a way which elevates them to a property-oriented speci�cation.
This book adopts the position that the e�ort required to do this is rarely justi�ed
for applications. (The respective roles suggested here correspond closely to those
for denotational and axiomatic semantics of programming languages.)

Exercise 9.4.1 Present a property-oriented speci�cation of maps.

Exercise 9.4.2 The �rst person to introduce the idea of abstract syntax was John
McCarthy. Make-functions (as they are called here) and selectors were presented
by their properties. Experiment with this idea on some abstract syntax.

Exercise 9.4.3 It is possible to characterize the equivalence-relation speci�cation
by a property-oriented speci�cation. Write an appropriate signature and set of
equations.

10

Operation Decomposition

I feel that controversies can never be �nished . . .
unless we give up complicated reasonings in favour
of simple calculations, words of vague and
uncertain meaning in favour of �xed symbols . . .
every argument is nothing but an error of
calculation. [With symbols] when controversies
arise, there will be no more necessity for
disputation between two philosophers than between
two accountants. Nothing will be needed but that
they should take pen and paper, sit down with their
calculators, and say `Let us calculate'.
Gottfried Wilhelm Leibniz

In spite of the discussion of alternative approaches in Section 9.4, the main ap-
proach in this book uses speci�cations which are built around abstract states with
a collection of operations each speci�ed by pre- and post-conditions. Chapter 8
describes techniques by which abstract objects (particularly states) are rei�ed
onto data types which are available in the implementation language. After such
rei�cation the related operations are, however, still only speci�ed: their pre- and
post-conditions say what should be done but not how to do it. Post-conditions
are not, in general, executable. The process of operation decomposition devel-
ops implementations (for operations) in terms of the primitives available in the
language and support software.

The control constructs (e.g. while) which are used to link the primitive in-
structions can be thought of as combinators. The speci�c combinators available

237

238 10 Operation Decomposition

vary from one programming language to another. Here fairly general forms of
the main combinators for structured coding are employed. It is interesting to
note that this is the �rst place in this book that there is a clear commitment
to procedural programming languages. Although operations are introduced in
Section 3.4, all of the ideas of using abstract objects could be employed in the
speci�cation of functional programs and the data rei�cation techniques could be
applied to the arguments and results of functions.

The placing of this material on operation decomposition re
ects the fact that
it applies to the later stages of the design process. Other textbooks treat this
material at far greater length { normally at the expense of adequate discussion
of data abstraction and rei�cation.

As the reader should by now expect, the process of operation decomposition
gives rise to proof obligations. Section 10.1 introduces the proof obligations and
Section 10.2 exhibits a style in which programs can be annotated with their
correctness arguments. There are similarities between such texts and the natural
deduction style of proof used in the preceding chapters. Ways in which these
ideas can be used in the development of programs are discussed in Section 10.3
and this approach is further developed in Section 10.4 where an alternative rule
for loops is given.

10.1 Decomposition rules

A speci�ed operation might be decomposed into a while loop. The body of the
loop might, in a simple case, contain a few assignment statements; in larger prob-
lems the body can be an operation whose speci�cation is recorded for subsequent
development. Thus operation decomposition is normally an iterative design pro-
cess. The decomposition rules show the conditions under which combinations of
proposed code and speci�cations of sub-components provide correct decomposi-
tions of a given speci�cation: the rules facilitate showing that a design step is
correct.

When a design is presented as a speci�c combination of (speci�ed) sub-
problems it becomes important to identify the precise nature of the claims that
can be made at this stage of development. The need is for development meth-
ods which have the property that implementations which satisfy speci�cations
of sub-components can be composed so as to satisfy the speci�cation of a sys-
tem without further proof. A compositional development method permits the
veri�cation of a design in terms of the speci�cations of its sub-programs. Thus,
one step of development is independent of subsequent steps in the sense that
any implementation of a sub-program can be used to form the implementation of
the speci�cation which gave rise to the sub-speci�cation. In a non-compositional

10.1 Decomposition rules 239

development method, the correctness of one step of development might depend
not only on the ful�lment of the speci�cations of the sub-components but also on
their subsequent development.

Sequential decomposition

Consider the following speci�cation (in order to introduce the new concepts sim-
ply, the initial examples in this chapter use only arithmetic variables; later sec-
tions pick up some of the non-numeric applications from earlier chapters):

MULT

ext wr m;n; r : Z
pre true

post r =(�m �(�n

A designer might decide that the overall task would be easier if one of the variables
were de�nitely positive so that a loop could be designed which counted up to that
value. It might also be a design decision to copy { possibly negated versions of
{ the variables m and n into new variables (the method for introducing new
variables is not discussed in this �rst step). The design step could be recorded
as the sequential composition of two new operations:

MULT : COPYPOS ; POSMULT

The two operations are speci�ed:

COPYPOS

ext rd m;n : Z
wr mp;nn : Z

pre true

post 0 � mp ^mp � nn =(�m �(�n

POSMULT

ext rd mp;nn : Z
wr r : Z

pre 0 � mp

post r =(�mp �(�nn

Hopefully, a few minutes inspection of these speci�cations should give the reader
a feeling that the design step is correct. This concept is made completely for-
mal below. But, before looking at the proof rules in detail, it is worth making
explicit what is being claimed in such a design step. The given task is to pro-
duce a program which satis�es the speci�cation MULT (i.e. for all variables of

240 10 Operation Decomposition

the appropriate type which satisfy pre-MULT , the program must terminate and
the initial/�nal states must satisfy post -MULT). If the whole development were
done in one step, the designer would claim that the presented program had this
behaviour. A proof of such a big step might be di�cult but could theoretically
be written (providing the program is indeed correct!). Here, it is assumed that
the designer is more circumspect: in fact, this `designer' obligingly makes a step
of development for each inference rule which has to be covered. The decision to
implement MULT by a composition of COPYPOS and POSMULT is equivalent
to the claim that, given any code which satis�es their speci�cations, the combina-
tion of such code must satisfy the speci�cation of MULT .1 The reader's earlier,
intuitive, check of the decomposition should have observed:

� the �rst operation can be applied in (at least) the states in which MULT

is expected to work: compare pre-COPYPOS with pre-MULT ;

� the second operation can safely be applied in the states which result from ex-
ecuting the �rst operation: compare pre-POSMULT with post-COPYPOS
(in fact, pre-POSMULT records the interface between COPYPOS and
POSMULT);

� the composition of the e�ects of the two operations achieves the required
e�ect of MULT : compare post-COPYPOS/post-POSMULT with (recog-
nizing which states are referred to) post-MULT .

This could be recorded in a proof rule which looked like:

;-I

S1 sat (pre1; post1); S2 sat � � � ;
...

(S1;S2) sat � � �

But these rules are made much easier to read by writing the assertion that S
satis�es a particular pre/post as:

fpreg S fpostg

This useful shorthand has no other meaning than that S is claimed, for all states
which satisfy pre, to bring about a state transition which satis�es post .2 (Notice

1The notion of satisfaction used, a denotational semantics, and proofs that the decompo-
sition rules are consistent with the denotational semantics are all discussed in the Teacher's

Notes. Furthermore, each of the programming constructs has been shown to be monotone in
the satisfaction ordering which justi�es the claim to compositionality.

2This is closely linked to the so-called `Hoare-triples' introduced in [Hoa69]. Notice, however,
that `total correctness' is required here (i.e. termination for all states satisfying pre) and that

10.1 Decomposition rules 241

that the use of braces here has nothing to do with set notation: they are employed
as comment delimiters.) Using these triples the inference rule for sequential
composition can be stated:

;-I
fpre1g S1 fpre2 ^ post1g; fpre2g S2 fpost2g

fpre1g (S1;S2) fpost1 j post2g

Where the composition of two post-conditions is de�ned:

post1 j post2 4 9�i 2 � � post1(
(�� ; �i) ^ post2(�i ; �)

(The generalization to longer sequences is straightforward.) For the example
above:

fpre-MULTg (COPYPOS ;POSTMULT) fpost -MULTg

follows because:

pre-MULT , pre-COPYPOS
pre-POSMULT is a conjunct of post-COPYPOS
post-COPYPOS j post-POSMULT

, 9mpi ;nni �mpi � nni =
(�m �(�n ^ r = mpi � nni

) post-MULT

Section 10.2 shows that it is not normally necessary to write such proofs in
as great a level of detail as has been done for this initial example. But the reader
should be aware of the advantages of such formal rules: the decomposition rules
are like the rules for the logical operators in that they provide a completely sound
basis, whose proofs can be mechanically checked, for the claim that particular
design steps are correct.

Decomposition into conditionals

Having brought out most of the general points about decomposition inference
rules in the discussion of ;-I , the other rules can be more easily covered. To
illustrate the introduction of conditional statements, it is assumed that the next
step of design is to decompose COPYPOS as follows:

COPYPOS : if 0 � m then TH else EL

where:

the post-condition here is a predicate of two states. It is for this reason that VDM cannot use
the Hoare rules and { more subtly { that VDM's post-conditions hook initial, rather than prime
�nal, values.

242 10 Operation Decomposition

TH

ext rd m;n : Z
wr mp;nn : Z

pre 0 � m

post 0 � mp ^mp � nn =(�m �(�n

EL

ext rd m;n : Z
wr mp;nn : Z

pre m < 0

post 0 � mp ^mp � nn =(�m �(�n

There is, however, a danger here which results from the generous interpretation
of logical expressions given in LPF. The logical expressions in the pre-conditions
are now to be used in code; this is only valid if they are de�ned (�l) in the
programming language { this is the third hypothesis of the decomposition rule:

if -I
fpre ^ testg TH fpostg; fpre ^ : testg EL fpostg; pre) �l (test)

fpreg (if test then TH else EL) fpostg

It is not di�cult to see that:

f0 � mg (mp : =m;nn : = n) fpost-TH g
fm < 0g (mp : = �m;nn : = � n) fpost-ELg

The actual rules for assignment are given in Section 10.2.

Weakening triples

This `decomposition' of COPYPOS must appear rather strange: even by the
standard of this pedagogic example, the step is rather insipid and the actual
code would be more clearly foreshadowed if the designer speci�ed the putative
sub-components:

TH

ext rd m;n : Z
wr mp;nn : Z

pre true

post mp =(�m ^ nn =(�n

EL

ext rd m;n : Z
wr mp;nn : Z

10.1 Decomposition rules 243

pre true

post mp = �(�m ^ nn = �(�n

Although this does not then directly �t the if -I rule, it ought to be possible
to prove it to be a valid design. (Remember that the claimed decomposition of
COPYPOS has to satisfy the former speci�cation for any code which satis�es the
speci�cations of TH and EL only in the context of if 0 � m then TH else EL.)
This situation is handled by a rule which claims that anything which satis�es a
speci�cation necessarily satis�es a weaker one:

weaken
pres) pre; fpreg S fpostg; post) postw

fpresg S fpostw g

Notice that a `weaker' speci�cation is one with a narrower pre-condition or a
wider post-condition. In either case, the implication could be just an equivalence
thus changing only the other part of the speci�cation. The reader should check
that, for both TH and EL, the second speci�cation given above is the stronger
and the `insipid' one can be inferred by weaken providing information about the
state prior to an operation is available in the post-condition. This inheritance of
information can be formalized with the rule:

pre
fpreg S fpostg

fpreg S f(�pre ^ postg

where (�pre is like pre except that all of its free variables have been hooked.

Introducing blocks

Clearly, the real work of the initial decomposition of MULT remains to be done
in designing POSMULT . Its development will introduce a loop and, at this �rst
attempt, a local variable is �rst de�ned to control the loop. Thus:

POSMULT :
begin var t : = 0; r : = 0; LOOP end

Where:

LOOP

ext rd mp;nn : Z
wr t ; r : Z

pre r = t � nn ^ t � mp

post r =(�mp �(�nn ^ t =(�mp

To see that this decomposition is correct it is necessary to use weaken to get
(t = 0 ^ r = 0 ^ 0 � mp) pre-LOOP):

244 10 Operation Decomposition

ft = 0 ^ r = 0 ^ 0 � mpg LOOP fpost-LOOPg

and ;-I to obtain:3

ft = 0 ^ 0 � mpg r : = 0;LOOP fpost-LOOPg

The introduction of the block is justi�ed by:

block-I
fpre ^ v = eg S fpostg

fpreg begin var v : = e;S end f9v � postg

Which gives:

fpre-POSMULTg POSMULT fpost-POSMULTg

Decomposing into loops

The actual introduction of the carefully prepared loop construct:

LOOP :
while t 6= mp do
(t : = t + 1; r : = r + nn)

is now somewhat of an anti-climax! The intuitive process of convincing oneself
that this satis�es pre-LOOP/post-LOOP should cover the following points:

� the body of the loop keeps the assertion r = t � nn true;

� the negation of the test condition (t 6= mp) conjoined with r = t � nn, and
the knowledge that mp and nn are read-only, justi�es post-LOOP ;

� the loop terminates: this follows from the fact that t � mp initially and,
because of the test, remains true after any number of iterations coupled
with the fact that increasing t and holding mp constant must eventually
result in the test evaluating to false.

The actual rule (while-I) which is given below can be seen as a consequence of
an unfolding of a while loop into a conditional. Thus if:

WH = while test do S

then (with skip as a null statement which changes nothing):

WH = if test then (S ;WH) else skip

3The meaning of the assignment should be obvious; a formal rule is given is the next section.

10.1 Decomposition rules 245

If inv is the condition which remains true at each iteration, sofar is a post-
condition for S , and iden for skip, then an overall post-condition for the loop
could be proved by the conditional rule as follows:

finv ^ : testg skip finv ^ : test ^ ideng
finv ^ testg (S ;WH) finv ^ : test ^ sofarg
inv) �l (test) `
finvg if test then (S ;WH) else skip finv ^: test^(sofar _ iden)g

The �rst hypothesis follows from the meaning of skip. The second hypothesis is
true providing:

finv ^ testg S finv ^ sofarg

and the relation sofar is transitive (i.e. sofar j sofar) sofar) and well-founded:
this follows by induction on the well-founded ordering sofar .

This unfolding idea is provided only to introduce the rule, formally, the
while-I rule requires that a loop invariant (inv : �! B) is identi�ed which limits
the states which can arise in the computation and that a relation (sofar : � � �
! B) is given which holds over one or more iterations of the loop; technically the
requirement that (sofar j sofar) sofar) is stated by saying that sofar must
be transitive. It is also necessary to ensure termination and this can be done by
ensuring that the sofar is well-founded (cf. the discussion in Section 6.3) over the
set de�ned by inv . The rule then is:

while-I
finv ^ testg S finv ^ sofarg; inv) �l (test)

finvg while test do S end finv ^ : test ^ (sofar _ iden)g
sofar is twf

The decomposition of LOOP given above can be seen to be an instance of this
rule with:

inv , r = t � nn ^ t � mp

test , t 6= mp

sofar ,
(�
t < t

(sofar _ iden) ,
(�
t � t

In this, as in most cases, well-foundedness is easy to exhibit by identifying some
expression (mp� t) which decreases at each iteration and is bounded below. The
body satis�es:

fr = t�nn^t � mp^t 6= mpg t : = t+1; r : = r+nn fr = t�nn^t � mp^
(�
t < tg

Finally:

inv ^ (sofar _ iden) ^ : test) r =(�mp �(�nn ^ t =(�mp

246 10 Operation Decomposition

Notice the role played by the external clause of LOOP : the fact that mp and
nn are read-only enables many assertions to be simpli�ed. Without them, sofar
would also need to record mp =(�mp ^ nn =(�nn.

An alternative development

One of the advantages claimed for VDM's post-conditions which are truth-valued
functions of two states is that they facilitate the speci�cation of operations which
modify their input values. This advantage carries over to the inference rules
presented above (and, more particularly, to that of Section 10.4). A demonstra-
tion of this is obtained by an alternative development of MULT which provides
practice with the formal use of the inference rules.

Since m and n can be overwritten (cf. the externals clause of the given spec-
i�cation of MULT), an implementation which is adumbrated by:

MULT : MAKEPOS ; POSMUL

is possible, with:

MAKEPOS

ext wr m;n : Z
pre true

post 0 � m ^m � n =(�m �(�n

POSMUL

ext wr m;n; r : Z
pre 0 � m

post r =(�m �(�n

Notice that, although somewhat similar to POSMULT above, the new operation
can change the values of m on n. The actual details of these justi�cations are
left as exercises (see Exercises 10.1.1 and 10.1.2 on page 247).

The development of POSMULT needed a local variable. The need for a tem-
porary variable is avoided by overwriting the value in m. POSMUL is developed
directly into the loop:

POSMUL:
r : = 0;
while m 6= 0 do
(m : =m � 1; r : = r + n)

The termination argument for this loop is even simpler than that above. The
loop invariant shows that m is never made negative inv , 0 � m and the

10.1 Decomposition rules 247

relation is well-founded by showing that the value of m decreases at each iteration
(m < (�m). The freedom has been left (and is exploited in Exercise 10.1.4 to give
a more e�cient algorithm) to change the value of n. Since this is not actually

used in this �rst algorithm, a constraint (n = (�n) is added to the relation. It is,
observe, no longer possible to capture the function of the loop by some invariant
clause like r = t � nn. The essence of the loop must now be captured in the
relation by noting that the value of the expression r + m � n is unchanged by
executing the body of the loop: what gets added to r gets removed from the
product. Thus:

sofar , r +m � n =(�r +(�m �(�n ^ n =(�n ^m < (�m

Notice that sofar is transitive. Here again, the detailed justi�cation is deferred
to an exercise on page 247. The result in Exercise 10.1.3 is not exactly what
is required for post-POSMUL but remember that POSMUL's implementation
begins with the initialization of r to zero. Intuitively the reader should be able
to see that this provides the key result: the required rule is pre. Thus:

f0 � m ^ r = 0g LOOP fr =(�r +(�m �(�n g `

f0 � m ^ r = 0g LOOP f(�r = 0 ^ r =(�r +(�m �(�n g

f0 � mg r : = 0 f0 � m ^ r = 0 ^ n =(�n ^m =(�m g

f0 � m ^ r = 0g LOOP fr =(�m �(�n g `

f0 � mg r : = 0;LOOP fr =(�m �(�n g

conclude the development.
The use of the inference rules in this section has been rather pedantic so as

to make clear how they can be used formally. The next section indicates how
annotations of (evolving) designs can rely on the inference rules; this opens a less
formal route to documenting justi�cations which is akin to the level of rigour
which has been sought in the natural deduction proofs in this book. Finally, Sec-
tions 10.3 and 10.4 show how the inference rules can actually help with choosing
speci�cations of sub-components during the design process.

Exercise 10.1.1 Justify the �rst step of the alternative development of MULT

using the ;-I rule.

Exercise 10.1.2 The development of MAKEPOS to a conditional is straightfor-
ward except that one of the branches is an identity: in the mould set by the
discussion of COPYPOS , present two developments of MAKEPOS .

Exercise 10.1.3 Use while-I to prove:

248 10 Operation Decomposition

f0 � mg while m 6= 0 do(m : =m � 1; r : = r + n) fr =(�r +(�m �(�n g

Exercise 10.1.4 Both the initial and the alternative algorithms for MULT take
time proportional to m to compute multiplication. Clearly this is ine�cient.
The speci�cation of POSMUL has been written so that it is easy to develop an
algorithm that takes time proportional to log2m. For the code:

r : = 0;
while m 6= 0 do
(while is-even(m) do
(m : =m=2; n : = n � 2)

;
r : = r + n; m : =m � 1)

Prove that the outer loop provides a correct step of development (Hint: compare
with the version in the text). Then with inv as 1 � m and sofar as m � n =
(�m �(�n ^m < (�m prove that the inner loop is a valid step.

Exercise 10.1.5 Develop an algorithm for integer division according to the fol-
lowing speci�cation:

IDIV

ext wr m;n; q : N
pre n 6= 0

post (�n � q +m =(�m ^m < (�n

Use the proof rules of this section to justify each step of decomposition.

Exercise 10.1.6 Just as with the material on logic, it is possible to develop de-
rived rules for programming constructs. Loops are often easier to understand if
they are viewed together with their initialization rather than viewing the initial-
ization and the loop as being composed by the rule ;-I . Develop a derived rule
for initialized loops (such rules { in a clumsier notation than used in this book {
were given in [Jon80].)

10.2 Assertions as annotations

The preceding section introduced and exempli�ed the decomposition proof rules
at a very detailed level. This can be compared with the presentation of the
inference rules for logic in Section 1.3; subsequent use of these rules in the ensuing
chapters has become more relaxed. The rules are the �nal recourse while most
proofs are at the level of sketches whose detail is provided only in case of doubt.

10.2 Assertions as annotations 249

MULT :
wr m;n; r :Z
pre true

pre true
if 0 < m then (m : = �m;n : = � n)

post 0 � m ^m � n =(�m �(�n
;
pre 0 � m

r : = 0;
pre 0 � m

while m 6= 0 do
inv 0 � m

(m : =m � 1; r : = r + n)

sofar r +m � n =(�r +(�m �(�n ^m < (�m
post r =(�r +(�m �(�n

post r =(�m �(�n
post r =(�m �(�n

Figure 10.1 Annotated program for multiplication

This section shows that annotating programs with assertions can provide the same
sort of sketch. Section 10.3, however, shows that the proof rules for operation
decomposition can signi�cantly aid the design process and might be used quite
formally for this reason.

Figure 10.1 displays the �nal program for the second version of MULT as
developed in the preceding section. It should be clear how this relates to the
detailed inferences of the earlier presentation. Such annotated programs are far
easier to review in walkthroughs or inspections than uncommented code. Not only
do the assertions record the programmer's intentions; they also provide precisely
stylized comments which can be checked against the code by using the inference
rules.

The reader might well feel a strong link between annotated programs of this
sort and the from/infer presentations of natural deduction proofs. It is certainly
fair to think of both from and pre as hypotheses and of infer and post as goals;
what is between them is { in both cases { a form of deduction. Furthermore,
the link could be made more obvious if the inference rules used in the steps of
Figure 10.1 were shown; that this is not necessary results from there being only
one rule per construct. But, in the case of annotated programs, some extra care
is required in the handling of variable names. Notice, for example, that the post-

250 10 Operation Decomposition

1 3 7 4
5 9 0 6
6 7 1 9
4 3 3 7
7 7 6 8

2 6 1 0 4

3 2 3

Figure 10.2 Turing's addition example

condition r = (�m �(�n of the code developed from the speci�cation of POSMUL

refers to the values of m and n before r : = 0 is executed, while the same formula
as the overall post-condition refers to the values of the variables when execution
of MULT begins. This is emphasized by the indentation. Furthermore, the
inv/sofar assertions { written to annotate the while construct { play a threefold
part in while-I : discharging the hypothesis (finv ^ testg S finv ^ sofarg), the

step from inv ^ : test ^ (sofar _ iden) to r = (�r +(�m �(�n , and the check that
the pre-condition of the whole loop justi�es inv .

As experience with this style of annotation increases, the amount which ac-
tually needs to be written diminishes. In the extreme, the absolute minimum
is to record the pre- and post-conditions of each procedure. These provide the
essential documentation of its speci�cation. But, apart from the oft-repeated ar-
gument that { because of the formal framework { more detail can be provided if
it is needed to convince readers, the author should be prepared to record enough
to help future readers (which might well include the author after many months
of separation from the text). The British mathematician Alan Turing made this
point very graphically4 with a comparison to the simple addition in Figure 10.2:
if the carry digits are recorded, the task of checking can be separated into four
disjoint tasks whereas, without the carries, the whole sum must be checked.

Figure 10.1 represents the �nal code but the annotation idea can be used to
record intermediate stages of development. On such a simple example, this is
less convincing but Figure 10.3 gives an indication of what can be done. The
ideal is to have a computer-based support system which could work at a level
of design like that in Figure 10.3 and facilitate (generate proof obligations, etc.)
proof of that level of design; it could then separate the speci�cations of the sub-
operations showing only their speci�cations to the programmer developing the

4This was in a paper published, incredibly, in 1949 { see [MJ84] for a discussion of his proof
method.

10.2 Assertions as annotations 251

MULT :
wr m;n; r :Z
pre true

MAKEPOS

wr m;n:Z
pre true

post 0 � m ^m � n =(�m �(�n
;
POSMUL

pre 0 < m

post r =(�m �(�n
post r =(�m �(�n

Figure 10.3 Annotated design

respective code. Furthermore, when all is complete, the system could gather the
code for compilation (and present any level of annotation selected by a subsequent
reader). References to such systems can be found in [Lin88, JL88].

Assignment statements

At the level of detail suggested here, it is not normally necessary to reason very
formally about the basic building blocks of procedural programming. The obvious
rule for assignment statements is:

: = -I
ftrueg x : = e fx =(�e g

The so-called `frame problem' has been referred to above. To state that
variables other than that on the left-hand-side of the assignment do not change
either requires some extended notation to describe state identity over a set of
variables, or { as here { can be de�ned:

: = -pres
fEg x : = e fEg

x does not occur free in E

Notice that this relies on the assumption that the programming language does
not allow di�erent references to refer to the same variable. This property has
been ensured by stating that all parameters are assumed to be passed by value.

Exercise 10.2.1 Present the design of POSMUL from Exercise 10.1.4 on page 248
as an annotated program.

252 10 Operation Decomposition

Exercise 10.2.2 Present the design of the program from Exercise 10.1.5 as an
annotated program.

10.3 Decomposition in design

The preceding section introduces the decomposition proof rules by showing their
use on given programs. This section shows how the proof obligations can be used
to stimulate program design steps. An obvious example of the way in which a
proof rule can help a designer's thinking about decomposition is given by the rule
for sequence { the assertion pre2 �xes an interface between the two sub-operations.

It is, however, important that the reader is not led to expect too much from
this idea. Design requires intuition and cannot, in general, be automated. What
is o�ered is a framework into which the designer's commitments can be placed.
If done with care, the veri�cation then represents little extra burden. Even so,
false steps of design cannot be avoided in the sense that even a veri�ed decision
can lead to a blind alley (e.g. a decomposition which has unacceptable perfor-
mance implications). If this happens, there is no choice but to reconsider the
design decision which led to the problem. Once again, what is being o�ered is a
framework into which a �nal design explanation can be �tted. This section aims
only to show that the need for veri�cation can also help the design process.

Searching

The outline annotations of the preceding section can be used, together with the
associated proof rules, as an aid to the design process. As a �rst example, consider
the task of searching for some value e in a vector v ; if the value is found a
ag is
set and i is to contain a (not necessarily unique) index to v such that v(i) = e;
if the value is absent, the
ag found is to be set to false. The speci�cation can
be written:

SEARCH

ext rd v : El�

rd e : El
wr i : N
wr found : B

pre true

post checked(v ; e; i ; found)

where:

10.3 Decomposition in design 253

checked : (El�)� El � N � B ! B

checked(v ; e; i ; f) 4 f ^ v(i) = e _ : f ^ e =2 elems v

An obvious approach to the design is to iterate over the indices of v with
the variable i and exit if and when a suitable index is found. This suggests a
loop invariant which as well as constraining i , asserts that checked is true for the
initial (v(1; : : : ; i)) part of v :

inv i � len v ^ checked(v(1; : : : ; i); e; i ; found)

Since the major variables are read-only, the invariant expresses most of what is
going on in the loop. The loop relation need only provide evidence of termination:
well-foundedness of len v � i is established with:

sofar (�{ < i

which is obviously transitive. The loop test needs to be such that the conjunction
of its negation with the loop invariant yields post -SEARCH :

: test ^ i � len v ^ checked(v(1; : : : ; i); e; i ; found) ` checked(v ; e; i ; found)

With test as : found ^ i < len v this follows because : test ^ i � len v gives:

found _ i = len v

which, when distributed over the disjunction in checked(v(1; : : : ; i); e; i ; found),
gives:

found ^ v(i) = e _ : found ^ e =2 elems v

The last step needed in the design is to establish the invariant: this is simply
done by setting i to 0 and found to false. Thus the summary of the design step
can be written as in Figure 10.4. Code which achieves the preservation of the
invariant and which also respects the loop relation is:

i : = i + 1; if v(i) = e then found : = true;

Binary search

The SEARCH problem as speci�ed has poor performance for large vectors but a
small change makes a much faster algorithm possible. If frequent searches of this
sort were necessary it would be worth trying to ensure that v is kept in order:

Ordv = El�

inv(v)4 is-ord(v)

254 10 Operation Decomposition

pre true

pre true

found : = false;
i : = 0;

post i � len v ^ checked([]; e; i ; found)
while : found ^ i < len v do

inv i � len v ^ checked(v(1; : : : ; i); e; i ; found)
BODY

sofar (�{ < i

post checked(v ; e; i ; found)

Figure 10.4 Summary of �rst design step

Then the speci�cation becomes:

BSEARCH

ext rd v : Ordv
rd e : El
wr ind : N
wr found : B

pre true

post checked(v ; e; ind ; found)

This could { if e�ciency were ignored { be realized by the development above,
but could also be implemented by a binary search. The �rst steps of this design
again show the advantage of thinking about loop construction via inv=sofar
pairs. The basic concept is to move two indices m and n so that they delimit the
yet-to-be-checked portion of v . The loop invariant is, in spirit, very like that for
SEARCH ; it is only longer because of the need to constrain both indices and to
de�ne the checked area:

inv 1 � m^n � len v^checked(v(1; : : : ;m�1)yv(n+1; : : : len v); e; ind ; found)

Here again, the (transitive) loop relation only has to ensure termination:

sofar (n �m) < ((�n �(�m) _ found

The loop test needed to ensure post-BSEARCH is { by very similar reasoning
to that used above:

: found ^m � n

10.3 Decomposition in design 255

BODY

pre 1 � m � n � len v^e =2 elems v(1; : : : ;m�1)^e =2 elems v(n+1; : : : ; len v)
PICKIND

ext rd m;n:N
wr ind :N

pre m � n

post m � ind � n

;
if v(ind) = e then found : = true

else if v(ind) < e then m : = ind + 1
else n : = ind � 1

post 1 � m ^ n � len v ^
checked(v(1; : : : ;m � 1)y v(n + 1; : : : ; len v); e; ind ; found) ^

(n �m < (�n �(�m _ found)

Figure 10.5 BODY for BSEARCH

So, not surprisingly, the �rst design step is very like that in Figure 10.4 (the
initialization sets m to 1 and n to len v). The interest is in BODY . Figure 10.5
shows the next stage of design. The overall pre- and post-conditions are formed
from the loop invariant and relation in an obvious way. The next level of design
is also shown. The process of picking an index (roughly midway between m and
n) is left as an under-determined speci�cation. The task of adjusting the search
area (after possibly setting found) is written as nested conditional statements. If
this design were the subject of an inspection, the author might be called on to
justify that { for example { the big steps to m retained checked(1; : : : ;m � 1)
in post-BODY : it is precisely here that the invariant on v would have to be
mentioned in addition to v(ind) < e.

Sorting

The obvious territory to explore after searching { with the development method
at hand { is that vast area of knowledge about sorting algorithms. Partly because
this is covered so thoroughly elsewhere (see [Dro87] for a recent paper with useful
references), but also because most algorithms fail to illustrate what is important
about VDM's post-conditions of two states, this foray is limited. The task of
sorting is discussed in Section 6.3; the main points are collected as:

SORT

ext wr v : Rec�

256 10 Operation Decomposition

pre len v � 1

post is-ord(v) ^ is-perm(v ;(�v)

It is exactly here that, were a longer discourse planned, a theory of ordered
sequences and permutations might be undertaken. This work is left to a (starred)
exercise but, rather than expand out the de�nitions, properties of is-ord and
is-perm are identi�ed below as needed.

The simplest approach to internal sorting appears to be to have an increasing
group of ordered elements at one end of the vector. Using an index i to mark the
end of this area suggests a loop invariant:

inv 1 � i � len v ^ is-ord(v(1; : : : ; i))

Unlike the searching task above, it is of the essence of internal sorting that the
major data structure changes. The loop relation then is used both to ensure that
a permutation of the original values is retained and to establish termination:

sofar is-perm(v ;(�v) ^(�{ < i

This sofar is transitive but { since the fact is less obvious { the reader should
check the fact. The invariant is easily established by setting i to 1 (notice the
sequence is non-empty) since it is a property of is-ord that it is true for any
unit sequence (i.e. v(1; : : : ; 1)). A loop test condition which, combined with
both the invariant and the (re
exive closure of the) relation, gives post-SORT is
i 6= len v (or i < len v). The comments thus far give the outer structure shown
in Figure 10.6 where n has been written as a constant for len v . The body of
the loop clearly has to preserve the loop invariant and respect the loop relation.
Given the test, it is safe to increase i by 1 and still respect the �rst clause of
the invariant. The second conjunct is clearly more interesting. The obvious

element to absorb into (�v (1; : : : ;
(�
i) (to form v(1; : : :(�{ + 1) or v(1; : : : ; i)) is

that located at (�v ((�{ + 1) but the invariant is only satis�ed if it is correctly
placed. It seems reasonable to postpone the issue of how this is achieved to the
next step of development. The post-condition of SBODY 1 therefore de�nes the
movement of (�v (i) to some position (j) in v and �xes the constancy (or limited
movement) of the rest of v :

SBODY 1
ext wr v : Rec�

rd i : N
pre is-ord(v(1; : : : ; i)) ^ 1 � i < n

10.3 Decomposition in design 257

SORT

ext wr v :Rec�

pre len v � 1
var i :N
i : = 1;
while i 6= n do

inv 1 � i � n ^ is-ord(v(1; : : : ; i))
SBODY 1

sofar is-perm(v ;(�v) ^(�{ < i

post is-ord(v) ^ is-perm(v ;(�v)

Figure 10.6 Development of insertion sort

post i =(�{ + 1 ^ is-ord(v(1; : : : ; i)) ^
9j 2 f1; : : : ; ig �

del((�v ; i) = del(v ; j) ^(�v (i) = v(j)

Two signi�cant points can be drawn from this material. Firstly, notice how
the is-ord and is-perm naturally slotted into the loop invariant and relation
respectively. Secondly, the use of a speci�cation for SBODY 1 has made it easy
to �x one design decision (which element to absorb) and postpone another {
the algorithm by which it is to be placed in its correct position. (In fact, one
should really say `an acceptable position' since { in the presence of duplicates
{ the algorithm is under-determined.) This algorithm could now be developed
into a `straight insertion' or, if there are more elements, the binary search idea
presented above can be used to achieve a `binary insertion' with slightly better
performance.

As mentioned above, it is not the intention in this chapter to reproduce the
wealth of material published on sorting as illustrations of the use of the decom-
position rules in design. However, in order to prompt interested readers in this
direction, one further class of sorting strategies can be mentioned. Algorithms
which �nd the correct �nal placing of an element need an additional clause in
the loop invariant which records the fact that the sequence (v) is split around a
point:

split :Rec� � N ! B

split(v ; i) 4 8j 2 f1; : : : ; ig � 8k 2 fi + 1; : : : ;ng � v(j) � v(k)

Exercise 10.3.1 Complete the development of SBODY to, at least, a simple
insertion routine. Continue the development of an algorithm with the property

258 10 Operation Decomposition

that it places elements in their �nal position.

Exercise 10.3.2 (*) Pursue the development of some non-trivial sorting algo-
rithms using the method described in this section. In particular, use inv=sofar
pairs in the design of loops and attempt to make only one design decision per step
and, if possible, develop di�erent algorithms from the same intermediate step to
show their family likeness.

Integer division

Part of the interest in the developments from the speci�cation of SORT is the
fact that the programs have to overwrite v . A development from the speci�cation
given in Exercise 10.1.5 on page 248 wallows in this sort of overwrite and o�ers
a challenge for clear exposition. The intuition behind the algorithm is the way
in which mechanical calculators performed division. For the speci�cation on
page 248, n is shifted (i.e. multiplied by 10i) until it is larger thanm; after shifting
one place back, subtraction is performed until the next step would cause the
evolving remainder in m to go negative; this is repeated in each of the remaining
i � 1 positions.

So, in the �rst step of development, the interface between left-shifting (LS)
and right-shifting (RS) is mediated by:

10i divides n ^m < n

The variable q also has to be initialized to 0 and this task can also be given
to LS . Generalizing post-RS in a way which should by now be familiar, the
reader should easily be able to verify the �rst step of development as shown in
Figure 10.7. The exact form of pre-RS is not contained in post-LS but the �rst
conjunct of the former is a consequence of the latter. The remaining information
in n = (�n � 10i is used in post -LS j post-RS to show (using ;-I) that the value
of n reverts over the composition of the two operations to its value before their
execution. Notice that m =(�m over LS because it only has read access.

The development of LS is straightforward (cf. Figure 10.8) but it is interesting
to note that the design of the loop is controlled entirely by the loop relation with
the invariant o�ering no constraint. (Notice that the argument about q = 0 is
not fully formalized.)

Surprisingly, the �rst step of development of RS is simple (see Figure 10.9):
the loop relation is derived by generalizing the �rst conjunct of post-RS , con-
joining this with an unchanged second conjunct of post -RS and �nally a term to
ensure termination. The loop invariant is exactly pre-RS . It is not di�cult to see
how to describe one step of right shifting i : = i � 1 and the attendant changes
(n : = n=10; q : = q � 10) to re-establish the loop relation. The key problem is

10.3 Decomposition in design 259

IDIV

ext wr m;n; q ; i :N
pre n 6= 0
LS

ext rd m:N
wr n; q ; i :N

pre n 6= 0
post n =(�n � 10i ^m < n ^ q = 0
;
RS

ext wr m;n; q ; i :N
pre 10i divides n ^m < n

post n =(�n =10
(�{ ^ n � q +m =(�n �(�q +(�m ^m < n

post (�n � q +m =(�m ^m < (�n

Figure 10.7 First step of integer division

LS

ext rd m:N
wr n; q ; i :N

pre n 6= 0
q : = 0; i : = 0;
while n � m do

inv true

(n : = n � 10; i : = i + 1)

sofar n � 10
(�{ =(�n � 10i ^(�n < n

post n =(�n � 10i ^m < n ^ q = 0

Figure 10.8 LS development for integer division

260 10 Operation Decomposition

RS

ext wr m;n; q ; i :N
pre 10i divides n ^m < n

while i 6= 0 do
inv 10i divides n ^m < n

i : = i � 1;n : = n=10; q : = q � 10
;
INNER

ext rd n:N
wr m; q :N

pre n 6= 0
post n � q +m =(�n �(�q +(�m ^m < n

sofar n=10i =(�n =10
(�{ ^ n � q +m =(�n �(�q +(�m ^ i < (�{

post n +(�n =10
(�{ ^ n � q +m =(�n �(�q +(�m ^m < n

Figure 10.9 RS development for integer division

INNER

ext rd n:N
wr m; q :N

pre n 6= 0
while n � m do

inv true

m : =m � n; q : = q + 1
sofar n � q +m =(�n �(�q +(�m ^m < (�m

post n � q +m =(�n �(�q +(�m ^m < n

Figure 10.10 Design of INNER for RS

how to re-establish the second clause of the loop invariant. The task of so doing
is pushed on to the yet-to-be-developed INNER.

Here again, the design step is not di�cult. The loop relation comes naturally
from post-INNER and the loop invariant is true (see Figure 10.10). Gathering
the �nal code from Figures 10.7{10.10 yields a short program. It is, however,
one which a reader is unlikely to make any sense of without the aid of assertions.
It is particularly interesting how the tendency to overwrite variables appears to
force more reliance on loop relations at the expense of loop invariants.

10.4 An alternative loop rule 261

Exercise 10.3.3 Provide annotated code for both versions of the factorial pro-
gram in Section 3.4 (one in the body of the section, the other in Exercise 3.4.4
on page 86).

10.4 An alternative loop rule

Strictly the while-I rule is powerful enough to prove any result needed about
while loops.5 There are, however, pragmatic grounds for presenting the alterna-
tive rule given below. Recall that one of the objectives of the operation decom-
position rules given in this book is to cope with post-conditions of two states.
This they do; they have even been shown above to deal naturally with programs
which overwrite the initial values of some variables. But there is something un-
natural in the way that sofar has to be de�ned in some examples. Consider again
Figure 10.1 on page 249 { sofar contains r + m � n = (�r +(�m �(�n . The fact
that the essential operation { multiplication in this case { appears on both sides
of the equality is disturbing. It is needed because while-I essentially relies on
relating the state after n loop iterations back to the initial state. If, instead, the
relational predicate relates states after some arbitrary number of loop iterations
to the �nal state of the loop, it is possible to write:

r =(�r +(�m �(�n

This neatly expresses the intended function of the whole loop if one considers the
situation after zero iterations.

It might appear to be excessively pernickety to introduce another decompo-
sition rule for while statements just to avoid a repeated multiplication sign but
this is a di�culty which can become more serious with larger examples. As is
shown below, the alternative rule also functions very well when used in the design
process.

If the analysis via conditional statements which was done in Section 10.1 is
followed, the reader should obtain a good grasp of the alternative rule. Here
again, assume:

WH = while test do S

In order to show that:

finvgWH ftoendg

is true, the analysis of the conditional unfolding of WH gives:

5Peter Aczel (Manchester University) has provided a completeness proof in an unpublished
note.

262 10 Operation Decomposition

pre 0 � m

while m 6= 0 do
inv 0 � m

(m : =m � 1; r : = r + n)

toend r =(�r +(�m �(�n
post r =(�r +(�m �(�n

Figure 10.11 Alternative rule for POSMUL annotation

finv ^ : testg skip ftoendg
finv ^ testg (S ;WH) ftoendg `
finvg if test then (S ;WH) else skip ftoendg

The �rst of these requirements is adopted as a hypothesis ofwhile-I 2. The second
requirement must again rely on induction. If S conserves inv , it is su�cient
to prove that finv ^ testg (S ;WH) ftoendg holds under the assumption that
finvg WH ftoendg is true. The termination of the loop is assured providing S
reduces some value which is bounded in inv . The �nal rule is then:

while-I2

finv ^ : testg skip ftoendg;
finv ^ testg S finvg;

finvgWH ftoendg ` finv ^ testg (S ;WH) ftoendg

finvg while test do S ftoendg

The hypotheses of this rule are more complicated than for while-I , but it is
the simplicity of the conclusion which is the key to its usefulness in design. It
naturally prompts the designer to think of the loop for say POSMUL as computing
r : = r+m�n and then to convert this to a predicate of two states and to compute
the other predicates needed.

The annotated code for POSMUL is shown in Figure 10.11. As before, it is
important to see that each of the steps in while-I 2 is established. Thus:

f0 � m ^ : (m 6= 0)g skip fr =(�r +(�m �(�n g
f0 � m ^m 6= 0g (m : =m � 1; r : = r + n) f0 � mg

and:

f0 � mg WH fr =(�r +(�m �(�n g `

f0 � m ^m 6= 0g (m : =m � 1; r : = r + n;WH) fr =(�r +(�m �(�n g

must all be true as must the fact that the meaning of the body of the loop is
well-founded over the states de�ned by inv .

10.4 An alternative loop rule 263

INNER

pre n 6= 0
q : = 0;
pre n 6= 0
while n � m do

inv true

m : =m � n; q : = q + 1
toend q =(�q +(�m �(�n ^m =(�m mod (�n

post q =(�q +(�m �(�n ^m =(�m mod (�n
post q =(�m �(�n ^m =(�m mod (�n

Figure 10.12 Simple algorithm for integer division

The integer division problem introduced in Exercise 10.1.5 on page 248 and
pursued in Sections 10.2 and 10.3 provides another illustration of the use of
while-I 2. The annotated inner loop of the program is shown in Figure 10.12.
Notice it is now natural to state the speci�cation and development in terms of �
and mod .

Binary trees

As a further example of a decomposition proof, the binary tree problem is picked
up from Section 8.3. An exercise o�ers the challenge of developing a loop-based
solution to the problem. This subsection explores how a recursive program can
be developed. In particular, the topic of parameter passing `by reference' (`by
variable', `by location') is considered. Recall (cf. Section 3.4) that sharing has
been avoided so far by insisting that the parameters to operations themselves are
passed by value. Particularly in the case of recursion, this mode is sometimes
unacceptable for performance reasons. The development of this example shows
that the e�ect of `by location' parameters can be simulated with external vari-
ables. No formal rules are given here but the overall argument is presented so
that the recursive program is easy to create.

The development of Setrep in Section 5.2 employs recursive functions (e.g. isin)
which can be used in the speci�cations of operations. The disadvantage of this
approach is that it does not lend itself to the form of recursion which is intended
in the recursive program. In particular, the code to be presented here uses lo-
cation parameters. Rather than mirror the development of Setrep, quotation of
post-conditions is used in the development of Mrep:

Mrep = [Mnode]

264 10 Operation Decomposition

Mnode :: lt : Mrep

mk : Key
md : Data
rt : Mrep

inv (mk -Mnode(lt ;mk ;md ; rt)) 4

(8lk 2 collkeys(lt) � lk < mk) ^ (8rk 2 collkeys(rt) �mk < rk)

The (read-only) search operation is speci�ed:

FINDB (k :Key) d :Data
ext rd t : Mrep

pre k 2 collkeys(t)
post let mk -Mnode(lt ;mk ;md ; rt) = t in

k = mk ^ d = md _
k < mk ^ post-FINDB(k ; lt ; d) _
mk < k ^ post-FINDB(k ; rt ; d)

The proof that FINDB satis�es the speci�cation FIND uses { in addition to
Lemmas 8.16 and 8.17 { the following induction rule.

Axiom 10.1

A10.1

p(nil);
mk 2 Key ; md 2 Data; lt ; rt 2 Mrep; p(lt);
inv -Mnode(mk -Node(lt ;mk ;md ; rt)); p(rt) `

p(mk -Mnode(lt ;mk ;md ; rt))

t 2 Mrep ` p(t)

The insertion operation on Mrep is speci�ed:

INSERTB (k :Key ; d :Data)
ext wr t : Mrep

pre k =2 collkeys(t)

post
(�
t = nil ^ t = mk -Mnode(nil; k ; d ;nil) _
(�
t 2 Mnode ^

let mk -Mnode(
(�
lt ;mk ;md ;

(�
rt) =

(�
t in

k < mk^
9lt 2 Mrep �

post-INSERTB(k ; d ;
(�
lt ; lt)^ t = mk -Mnode(lt ;mk ;md ;

(�
rt) _

mk < k ^
9rt 2 Mrep �

post-INSERTB(k ; d ;
(�
rt ; rt) ^ t = mk -Mnode(

(�
lt ;mk ;md ; rt)

10.4 An alternative loop rule 265

This completes the development of operations on Mrep which can now be
taken as a speci�cation of the next step of design. The tree-like objects of Mrep

cannot be directly constructed in a language like Pascal. Instead, each node must
be created on the heap; nested trees must be represented by pointers. Pascal-like
objects can be de�ned by:

Root = [Ptr]

Heap = Ptr
m
�! Mnoder

Mnoder :: lp : [Ptr]
mk : Key
md : Data
rp : [Ptr]

It is clear that the Heap relation should be well-founded (cf. Section 6.3) and that
all Ptrs contained in Mnoders should be contained in the domain of the Heap.
The retrieve function can then be de�ned:

retr -Mrep :Root �Heap ! Mrep

retr -Mrep(r ; h) 4

if r = nil

then nil

else let mk -Mnoder(lp;mk ;md ; rp) = h(r) in
mk -Mnode(retr -Mrep(lp; h);mk ;md ; retr -Mrep(rp; h))

The function:

collkeysh:Root �Heap ! Key-set

is an obvious derivative of collkeys.
The �nd operation on Heap is speci�ed:

FINDH (k :Key) d :Data
ext rd p : Ptr ;

rd h : Heap
pre k 2 collkeysh(p; h)
post let mk -Mnoder(lp;mk ;md ; rp) = h(p) in

k = mk ^ d = md _
k < mk ^ post-FINDH (k ; lp; h; d) _
mk < k ^ post-FINDH (k ; rp; h; d)

This is fairly simple because the pointer can be passed by value and is thus a
read-only external variable. In the insert operation, the pointer can be changed

266 10 Operation Decomposition

in the case that a new node is created. Thus, in addition to the obvious write
access on the heap itself, the pointer is shown as an external variable to which
the operation has read and write access. In the actual code, this is achieved by
using a parameter passed `by location'.

INSERTRH (k :Key ; d :Data)
ext wr h : Heap;

wr p : Ptr
pre k =2 collkeysh(p; h)

post (�p = nil ^ p =2 dom
(�
h ^

h =
(�
h [fp 7! mk -Mnoder(nil; k ; d ;nil)g _

(�p 6= nil ^

let mk -Mnoder(
(�
lp ;mk ;md ;(�rp) =

(�
h ((�p) in

k < mk^
(9hi 2 Heap; lp 2 Ptr �

post-INSERTRH (k ; d ;
(�
h ;

(�
lp ; hi ; lpi) ^

h = hi y f(�p 7! �(h((�p); lp 7! lpi)g ^ p =(�p) _
mk < k ^
(9hi 2 Heap; rp 2 Ptr �

post-INSERTRH (k ; d ;
(�
h ;(�rp ; hi ; rpi) ^

h = hi y f(�p 7! �(h((�p); rp 7! rpi)g ^ p =(�p)

The Pascal equivalent of the data objects there is:

type Ptr = " Binoderep
Binnoderep =

record

lp:Ptr
mk :Key
md :Data
rp:Ptr

end

The FINDBH function can be coded (with auxiliary functions �ndbhn and depth
for the assertions) as shown in Figure 10.13.

Exercise 10.4.1 Consider the two programs given for factorial in Exercise 10.3.3
on page 261. One of them can be proved more conveniently with while-I 2 than
with while-I as used: write this as an annotated program. What happens if you
try to reformulate the other one with while-I 2.

Exercise 10.4.2 (*) Continue (down to code) the development of B-Trees started

10.4 An alternative loop rule 267

in Exercise 8.3.1 on page 203.

Exercise 10.4.3 (*) Write one or more versions of programs to sum the elements
in a vector. Experiment with while-I and while-I 2

Exercise 10.4.4 (*) Develop a loop version of the binary tree example of the
last subsection.

268 10 Operation Decomposition

function FINDBH (k :Key)d :Data
ext rd rt :Ptr ; rd h:Heap
pre k 2 collkeysh(rt ; h)
var p:Ptr ;
begin

p : = rt

;
pre k 2 collkeysh(p; h)
while k 6= p " mk do
inv k 2 collkeysh(p; h)
with p " do

if k < mk

then p : = lp

else p : = rp;

rel �ndbhn(k ; p) = �ndbhn(k ;(�p) ^ depth(p) < depth((�p)
post p = �ndbhn(k ; p)
;
FINDBH : = p " md

post d = md(�ndbhn(k ;
(�
rt))

end

Figure 10.13 Development of FIND

11

A Small Case Study

Formalization is an experimental science.
Dana Scott

The main purpose of this chapter is to pull together the strands of the develop-
ment method presented in the book: one example is used to indicate the text to
be created for speci�cation, design of data structures (and veri�cation thereof),
and design of code (and its veri�cation). There is no pretension as to size in
calling this a `case study'. Clearly, textbooks are not the ideal receptacles for
industrial size applications. (Apart from anything else, this author's own expe-
rience in industry convinces him that a medium more dynamic than a printed
book would be required!) This example has purposefully been chosen to be small
so as to explore all of the stages of a development. The companion case studies
book [JS90] includes signi�cant fragments of larger problems and the Teacher's
Notes contains a host of references to industrial use.

A subsidiary purpose of this chapter is to develop a (slightly mixed) analogy
on the roles of proof in mathematics and in the design of computer systems. It is
made clear above that one should not talk about a program `being correct' but
only of its `satisfying a (formal) speci�cation'. The obvious analogy then is to
regard the claim that a program satis�es its speci�cation as the statement of a
theorem and to regard all of the intervening stages of development and the detail
of discharging the relevant proof obligations as the proof of the theorem. Many
objections can be raised to this attempted analogy. Here, three main di�erences
with theorems and proofs in mathematics are considered. Firstly, including the
code in the statement of the theorem results in texts which are large when com-

269

270 11 A Small Case Study

pared with whole papers { if not books; they certainly bear no relation to the
length of the statement of mathematical theorems. Secondly, the proof { which
is even larger { is denied the structure (of lemmas, etc.) beloved of mathematical
presentations. Thirdly, there is almost no precedent in mathematics for proofs
at the level of detail used even in this chapter.

A di�erent analogy is needed. It is perhaps more appropriate to regard the
speci�cation as the statement of a theorem that an implementation exists. The
(multistage) development is then a proof of this claim. This naturally leads one
to view the choice of steps of development as the major decompositions of the
argument. This comparison gives a much more realistic estimate of the amount of
intellectual e�ort required to �nd the proper joints at which to break a problem.

What then is to be made of the sorts of detailed proofs which occupy so much
of this book? Clearly, there is a pedagogic need to begin work on proofs with
easily understandable examples. Furthermore, it is precisely the hindrance of
the low level of detail required which can be ameliorated by the development of
`theories of data types' as illustrated below. But it would still be useful to have
a mathematical analogy for a task which does appear to occupy so much time
in formal program development. It is perhaps (and this is where the analogy
becomes mixed) useful to compare intermediate steps of design such as the cre-
ation of a loop { together with its invariant and relation { with integration in
calculus; this naturally prompts a comparison between the detailed use of a proof
rule and the di�erentiation with which careful mathematicians check their inte-
grand. This analogy gives a rationale for the level of (somewhat shallow) detail
required in discharging proof obligations and emphasizes the need for mechanical
support. It is the intention in this chapter, however, to use less formal proofs for
the algorithms themselves than for the data type theories.

11.1 Partitions of a �xed set

Partitions revisited

The task for which an implementation is sought in this chapter is a variant of the
`equivalence relation' problem used in Chapters 4, 6 and 8. The changes from
the set of operations used above both present new interest and open the way to
a particularly e�cient implementation.

The set of operations might be motivated by the need to keep track of equiv-
alent component numbers in a manufacturing environment. Equivalences over
some �xed set X are created by an EQUATE operation and pairs of e1; e2 2 X

are tested for equivalence by TEST ; initially, the whole set of X is present but
no two unequal elements are considered to be equivalent.

11.1 Partitions of a �xed set 271

This section introduces the objects (Part) which are used in the Section 11.2
as the basis of the operation speci�cations.

Part = (X -set)-set

inv (p) 4
S
p = X ^ is-prdisj (p) ^ f g =2 p

Remember that:

is-prdisj : (X -set)-set! B

is-prdisj (ss) 4 8s1; s2 2 ss � s1 = s2 _ is-disj (s1; s2)

is-disj :X -set�X -set! B

is-disj (s1; s2) 4 s1 \ s2 = f g

Notice that the �rst conjunct of inv -Part is an addition to the invariant for
Partition of earlier chapters; it expresses the fact that the equivalence relations
considered in this chapter are over some �xed set.

Some lemmas

As well as the objects themselves, some theory is developed.

Lemma 11.1 The �nest partition of X is the set which contains unit sets each
of which contains one element of X .

L11.1
ffxg j x 2 X g 2 Part

A proof of Lemma 11.1 is given on page 272. This lemma is straightforward and
the proof is not given very formally. Of more interest is the proof that merging
sets within a partition yields a partition. (A similar result was suggested, but not
proven, in Section 4.2.) With a truth-valued function t :X -set! B the merging
is achieved using:

merge :Part � (X -set! B) ! Part

merge(p; t) 4 fs 2 p j : t(s)g [f
S
fs 2 p j t(s)gg

Lemma 11.2 The claim that merging preserves the property of being a partition
can be written:

L11.2
p 2 Part ; t :X -set! B ; 9s 2 p � t(s); p 0 = merge(p; t)

p 0 2 Part

A proof is given on page 273. Notice how the third hypothesis is needed at step
19 to ensure that empty sets cannot arise by t being false on all sets.

272 11 A Small Case Study

from de�nitions

1 ffxg j x 2 X g 2 (X -set)-set Set

2
S
ffxg j x 2 X g

= fx j x 2 X g Set

3 = X Set

4 is-prdisj (ffxg j x 2 X g) is-prdisj ;Set
5 s 2 ffxg j x 2 X g , 9x 2 X � s = fxg Set

6 8x 2 X � fxg 6= f g Set

7 f g =2 ffxg j x 2 X g 5,6
infer ffxg j x 2 X g 2 Part 1,3,4,7,Part

Lemma 11.1

Pursuing the analogy about steps of development, the level of abstraction in
this step has been useful to establish key properties of the �nal program.

11.2 Speci�cation

The operations

Having constructed the theory of Part , it is now a simple task to specify the
equivalence relation problem.

The initial partition is the `�nest' in which no two unequal elements are
considered to be equivalent:

p0 = ffxg j x 2 X g

Lemma 11.1 shows that p0 2 Part .
The equivalence of elements is tested by:

TEST (e1:X ; e2:X) r : B
ext rd p : Part
post r , 9s 2 p � fe1; e2g � s

Since this operation has only read access to p, its satis�ability relies only on the
type correctness of post-TEST : this is trivial to see.

The operation which records in p that elements have been equated (and which
re
ects the consequences thereof) is more challenging. Its speci�cation is:

11.2 Speci�cation 273

from t :X -set! B ; p 2 Part ; 9s 2 p � t(s); p 0 = merge(p)
1 p 0 = fs 2 p j : t(s)g [f

S
fs 2 p j t(s)gg h,merge

2 p 2 (X -set)-set h,Part
3 fs 2 p j : t(s)g 2 (X -set)-set 2,h,Set
4

S
fs 2 p j t(s)g 2 X -set 2,h,Set

5 f
S
fs 2 p j t(s)gg 2 (X -set)-set 4,Set

6 p 0 2 (X -set)-set 1,3,5,Set
7

S
p 0

=
S
fs 2 p j : t(s)g [

S
f
S
fs 2 p j t(s)gg 1,

S

8 =
S
fs 2 p j : t(s)g [

S
fs 2 p j t(s)g Set

9 =
S
(fs 2 p j : t(s)g [fs 2 p j t(s)g) Set

10 =
S
p Set

11 = X h,Part
12 is-prdisj (p) h,Part
13 is-prdisj (fs 2 p j : t(s)g) 12,is-prdisj
14 is-prdisj (f

S
fs 2 p j t(s)gg) is-prdisj

15 8s 2 fs 2 p j : t(s)g � is-disj (s; f
S
fs 2 p j t(s)gg) 12,is-prdisj

16 is-prdisj (p 0) 1,is-prdisj ,13,14,15
17 f g =2 p h,Part
18 f g =2 fs 2 p j : t(s)g 17,Set
19

S
fs 2 p j t(s)g 6= f g 17,Set ,h

20 f g =2 f
S
fs 2 p j t(s)gg 19,Set

21 f g =2 p 0 1,18,20,Set
infer p 0 2 Part Part ,6,11,16,21

Lemma 11.2

274 11 A Small Case Study

EQUATE (e1:X ; e2:X)
ext wr p : Part

post p = fs 2(�p j e1 =2 s ^ e2 =2 sg [f
S
fs 2(�p j e1 2 s _ e2 2 sgg

Lemma 11.2 can be used to show that EQUATE is satis�able by observing that
e1 2 s _ e2 2 s (whose negation by de Morgan's laws is e1 =2 s ^ e2 =2 s) can
be used in place of t which must be true for one or more s 2 p because of the
invariant which ensures that all elements of X are present in a set. It follows,
therefore, that:

Theorem 11.3 EQUATE is satis�able.

8(�p 2 Part ; e1; e2 2 X � 9p 2 Part � post-EQUATE (e1; e2;
(�p ; p)

This speci�cation, following the opening analogy, is the statement of a theo-
rem that an implementation exists. The task now is to �nd an e�cient one.

Properties of the speci�cation

As has been done with examples above, it is useful to check that the formal
speci�cations of these operations satisfy intuitively acceptable properties. One
might show:1

Theorem 11.4 Any element is equivalent to itself in any partition:

post-TEST (e1; e2; p; r) ` e1 = e2) r

Theorem 11.5 In the initial state, such trivial equalities are the only tests which
yield true:

p = ffxg j x 2 X g; post-TEST (e1; e2; p; r) ` r) (e1 = e2)

Theorem 11.6 Property 11.4 is called `re
exivity'; `symmetry' can be expressed
by:

post-TEST (e1; e2; p; ra); post-TEST (e2; e1; p; rb) ` ra , rb

Theorem 11.7 In a similar way, the fact that the recorded relation is `transitive'
in any state can be expressed by:

1Type information such as (�p ; p 2 Part ; ei 2 X ; ri 2 B has been omitted in all of these
rules.

11.2 Speci�cation 275

from e1; e2 2 X ; (�p ; p 2 Part ; r 2 B ;

post-TEST (e1; e2;
(�p ; r); post -EQUATE (e1; e2;

(�p ; p)
1 : r _ r h,B
2 from : r

infer : r _ (p =(�p) _-I (h2)
3 from r

3.1 9s 2(�p � fe1; e2g � s h,h3,post-TEST

3.2 from sa 2
(�p ; fe1; e2g � sa

3.2.1 is-prdisj ((�p) h,Part

3.2.2 8sb 2
(�p � sb = sa _ is-disj (fe1; e2g; sb) 3.2.1,h3.2,is-prdisj

3.2.3 p

= fs 2(�p j s 6= sag[post-EQUATE ,h3.2,3.2.2

f
S
fs 2(�p j s = sagg

3.2.4 = fs 2(�p j s 6= sag [fsag Set

infer =(�p h3.2,Set

3.3 p =(�p 9-E(3.1,3.2)

infer : r _ (p =(�p) _-I (3.3)

infer : r _ (p =(�p) _-E (1,2,3)

Lemma 11.8

post-TEST (e1; e2; p; ra);
post-TEST (e2; e3; p; rb);
post-TEST (e1; e3; p; rc) `

ra ^ rb) rc

Theorem 11.8 The fact that equating two equivalent elements does not change
the state is expressed:

post-TEST (e1; e2;
(�p ; r); post-EQUATE (e1; e2;

(�p ; p) ` : r _ (p =(�p)

Proofs of the above results rely on fairly routine expansion of the de�nitions; as
an example, Lemma 11.8 is proved on page 275.

Theorem 11.9 The fact that EQUATE does record the transitive consequences
can be written:

276 11 A Small Case Study

�
�

�

@
@
@

6 � I

3

6

7

2 1

5

Figure 11.1 Fischer/Galler Trees

post-TEST (e1; e2;
(�p ; ra);

post-EQUATE (e2; e3;
(�p ; p);

post-TEST (e1; e3; p; rb) `
ra) rb

11.3 A theory of forests

The Fischer/Galler idea

The description in Section 6.1 uses Partrep. Viewed as a speci�cation, there
is no worry about e�ciency. But, as an implementation, the searching implied
in post-EQUATE would be unacceptable for large collections of elements. The
map provides fast response to TEST operations but not to EQUATE . The
need to implement equivalence relations over very large collections of data has
given rise to considerable research. The aim is to �nd a way of implementing
both TEST and EQUATE e�ciently. The technique, known after the names
of its authors as the Fischer/Galler algorithm, employs a clever data structure
in order to achieve e�ciency. The basic idea is that equivalent elements should
be collected into trees. These trees can be searched from any element to �nd
a root. Two elements are equivalent if, and only if, they have the same roots.
These trees { cf. Figure 11.1 { are unlike those formed from recursive abstract
syntax de�nitions: there, the essential operations are to break up the trees into
their sub-components. To EQUATE two elements it is necessary only to `graft'
the root of one element onto some point in the tree of the other element. Notice
that it is essential that the grafted tree is taken by the root so that all equivalent
elements are carried over.

11.3 A theory of forests 277

A map model

The basic idea then is to use a representation of X
m
�! X . There is a decision

to be made about how the `roots' are to be represented. Two alternatives are
to make root elements map to themselves or to leave them out of the domain of
the map. Either choice has advantages and disadvantages and some experimen-
tation is needed to select the approach which results in the clearest presentation:
although they are isomorphic, the choice between them a�ect the presentation of
the theory. Representing root elements by mapping to themselves makes the map
total and obviates the need for a case distinction in post-EQUATE .2 Marking
roots by their absence from the domain of the map makes it easier to discuss its
well-foundedness and it is this choice which is followed here. Therefore, the set
of roots can be determined by:

roots : (X
m
�! X)! X -set

roots(m) 4 X � domm

But how do we know there are roots, or more generally, how do we know that
there are no `loops'? After all, f1 7! 2; 2 7! 1g 2 (N

m
�! N). Such loops would

make it impossible to locate the roots of arbitrary elements. What is needed here
is a notion of `well-foundedness' that says the relation is such that one cannot
follow its links for ever. There are several ways of expressing this idea.3 One
approach is to say that for all non-empty subsets of the domain of the map there
must be at least one element which is mapped to an element not in the set:

8s � domm � s 6= f g) 9e 2 s �m(e) =2 s

(Note that a slight liberty with notation is taken here but 8s � X � p(s) can be
rewritten as 8s 2 (X -set) � p(s).) If any set of maplets (including the unit set)
were to represent a loop, their domain would be an s which prevented the above
universal quanti�cation from holding. The above formulation is perfectly usable
but a higher-level of expression can be achieved if the same basic idea is expressed
as:

8s � domm � s 6= f g) : (rng (s �m) � s)

Lifting this de�nition to the relational view simpli�es some of the proofs which
follow.

Thus, formally:

Forest = X
m
�! X

2This representation was used in [Jon79] and by several other authors.
3For general functions f :X ! X the constraint is often expressed in mathematics books by

saying that there must not exist a function g :N ! X such that f (g(i)) = g(i + 1) for all i .

278 11 A Small Case Study

inv (m) 4 8s � domm � s 6= f g) : (rng (s �m) � s)

It is then possible to de�ne:

root :X � Forest ! X

root (e; f) 4 if e 2 roots(f) then e else root(f (e); f)

That this function is total over Forest (but not over arbitrary X
m
�! X) follows

from the invariant.
The empty Forest is:

f0 = f g

and satis�es inv -Forest because the only s � dom f g is f g which vacuously
satis�es the implication.

A theory of forests

Of more interest is the way in which trees are grafted onto each other to de�ne
new Forests from old. It is pointed out above that the e�ect of EQUATE can
only be achieved if the root of the tree to be grafted is found; trees will remain
shorter if the graft is also made onto the root of the other tree. Since this also
simpli�es the reasoning, updates for this special case are considered (but see
Exercise 11.5.1 on page 289).

Lemma 11.10 The key result is:

L11.10

(�
f 2 Forest ; fr1; r2g � roots(

(�
f); r1 6= r2; f =

(�
f [fr1 7! r2g

f 2 Forest

The proof given on page 279 is argued at the element level. (Notice that r1 =2
dom f follows from the fact that r1 is a root; thus f is intended to be like
(�
f 2 Forest except that r1 has been grafted onto r2.) The level of reasoning in
subsequent proofs can be heightened by de�ning:

collapse :Forest ! (X
m
�! X)

collapse(f) 4 fe 7! root(e; f) j e 2 X g

The well-de�nedness of collapse follows from the totality of root over Forests.
Notice that, taking Pid = X , this function creates the Partrep of Section 6.1
from Forest .

The collapse function has some interesting properties.

Lemma 11.11 The fact that:

11.3 A theory of forests 279

from
(�
f 2 Forest ; fr1; r2g � roots(

(�
f); r1 6= r2;

f =
(�
f [fr1 7! r2g

1 r1; r2 2 X roots(h)

2
(�
f 2 X

m
�! X h,Forest

3 r1 =2 dom
(�
f roots(h)

4 f 2 X
m
�! X h,1,2,3,[

5 inv -Forest(
(�
f) h,Forest

6 8s � dom
(�
f � s 6= f g) : (rng (s �

(�
f) � s) inv -Forest ,5

7 from s � dom f

7.1 from s 6= f g
7.1.1 s � (dom f � fr1g) _ r1 2 s h7,Set
7.1.2 from s � (dom f � fr1g)

7.1.2.1 s � f = s �
(�
f h, h7.1.2,Map

7.1.2.2 s � dom
(�
f h,h7.1.2,Map

7.1.2.3 s 6= f g) : (rng (s �
(�
f) � s)8-E (6,7.1.2.2)

7.1.2.4 : (rng (s �
(�
f) � s)) -E (h7.1,7.1.2.3)

infer : (rng (s � f) � s)=-subs(7.1.2.4,7.1.2.1)
7.1.3 from r1 2 s

7.1.3.1 r2 =2 dom
(�
f roots,h

7.1.3.2 dom f = dom
(�
f [fr1g h,Map

7.1.3.3 r2 =2 dom f 7.1.3.1,7.1.3.2,h
7.1.3.4 r2 =2 s h7.1.3.3,h7

infer : (rng (s � f) � s) h7.1.3,7.1.3.4,h,Map

infer : (rng (s � f) � s) _-E(7.1.1,7.1.2,7.1.3)
7.2 �(s 6= f g) h7,Set

infer s 6= f g) : (rng (s � f) � s)) -I (7.1,7.2)
8 8s � dom f � s 6= f g) : (rng (s � f) � s) 8-I (7)
9 inv -Forest(f) inv -Forest ,8
infer f 2 Forest Forest ,4,9

Lemma 11.10

280 11 A Small Case Study

from f 2 Forest ; fr1; r2g � roots(f); r1 6= r2
1 dom (collapse(f

S
fr1 7! r2g)� fr2g)

= collect(r2; f [fr1 7! r2g) Lemma

2 = collect(r1; f) [collect(r2; f) Lemma

infer = dom (collapse(f)� fr1; r2g) Lemma

from f 2 Forest ; fr1; r2g � roots(f); r1 6= r2
1 from r 2 roots(f); r 6= r1; r 6=2

1.1 dom (collapse(f [fr1 7! r2g)� frg)
= collect(r ; f [fr1 7! r2g) Lemma

1.2 = collect(r ; f) Lemma

infer = dom (collapse(f)� frg) Lemma

infer above

from f 2 Forest ; e 2 X
1 r = root(e; f)

, e 2 fe 2 X j root(e; f) = rg Set

2 , e 2 dom (fe 7! root(e; f) j e 2 X g� frg) Set

infer , e 2 dom (collapse(f)� frg) collapse

Properties of collapse

L11.11
8e 2 X � (collapse(f))(e) = root(e; f)

follows immediately from its de�nition.
Another useful function { which �nds all elements with a common root { is:

collect :X � Forest ! X -set
collect(r ; f) 4 fe 2 S j root(e; f) = rg

pre r 2 roots(f)
This can be seen to be total for roots.

Lemma 11.12 The relationship between collect and collapse should be clear:

11.3 A theory of forests 281

L11.12
f 2 Forest ; r 2 roots(f)

collect(r ; f) = dom (collapse(f)� frg)

The operator � is a range restriction de�ned as:

m � s 4 fd 7! m(d) j d 2 domm ^m(d) 2 sg

A plethora of properties can now be established:

Lemma 11.13

L11.13
f 2 Forest ; e 2 X

e 2 collect(root(e; f); f)

Lemma 11.14

L11.14
f 2 Forest ; fr ; r1; r2g � roots(f); r1 6= r2; r 6= r1; r 6= r2

collect(r ; f [fr1 7! r2g) = collect(r ; f)

Lemma 11.15

L11.15
f 2 Forest ; fr1; r2g � roots(f); r1 6= r2

collect(r2; f [fr1 7! r2g) = collect(r1; f) [collect(r2; f)

Lemma 11.16

L11.16
f 2 Forest ; fr1; r2g � roots(f); r1 6= r2
is-disj (collect(r1 ; f); collect(r2; f))

Lemma 11.17 The preceding can then be raised to the collapse level as follows:

L11.17
f 2 Forest ; fr ; r1; r2g � roots(f); r1 6= r2; r 6= r1; r 6= r2

dom (collapse(f [fr1 7! r2g)� frg) = dom (collapse(f)� frg)

Lemma 11.18

L11.18
f 2 Forest ; fr1; r2g � roots(f); r1 6= r2

dom (collapse(f [fr1 7! r2g)� fr2g) = dom (collapse(f)� fr1; r2g)

Lemma 11.19

L11.19
f 2 Forest ; e 2 X

r = root(e; f) , e 2 dom (collapse(f)� frg)

The proofs are sketched on page 280.
Building such theories is the only way of avoiding having to tackle each proof

from scratch; this tabula rasa situation is a major inhibitor to the use of proofs
in program development. Although only shown to a limited extent in the next

282 11 A Small Case Study

section, these lemmas could support a range of algorithms for this Partition prob-
lem and even the use of a Forest representation for other tasks. Such collections
should be built independently of particular program developments.

Exercise 11.3.1 Do some of the above proofs.

Exercise 11.3.2 An alternative approach could be developed around:

is-before :X �X � Forest ! B

is-before(e; d ; f) 4

if e 2 roots(f) then false else if d = e then true else is-before(f (e); d ; f)

trace :X � Forest ! X -set
trace(e; f) 4 if e 2 roots(f) then feg else feg [trace(f (e); f)

Develop a suitable set of lemmas to support the proofs in the next section.

11.4 The Fischer/Galler algorithm

Adequacy

The data structure of the preceding section (Forest) can now be used to provide
a representation for the Part of Section 11.1 and thus a way of modelling the
operations in Section 11.2. As explained in Chapter 8, the �rst step is to formally
relate the two types with a retrieve function:

retr -Part :Forest ! Part

retr -Part (f) 4 fcollect(r ; f) j r 2 roots(f)g

Notice that:

retr -Part(f) = fdom (collapse(f)� frg) j r 2 roots(f)g

Theorem 11.20 It is then necessary to prove adequacy:

8p 2 Part � 9f 2 Forest � retr -Part(f) = p

For p 2 Part , it is clear that p 2 (X -set)-set then:
S
ffe 7! min(s) j e 2 (s � fmin(s)g)g j s 2 pg

is of type (X
m
�! X) because inv -Part guarantees that the sets s 2 p are non-

empty and disjoint; the invariant inv -Forest holds trivially (notice collapse is an
identity on these squashed trees); and retr -Part gives the required result.

11.4 The Fischer/Galler algorithm 283

It should now be clear that the restriction of f g =2 p is necessary to ensure
adequacy: the representation has no way of distinguishing between the presence
and absence of anything corresponding to the empty set.

Justifying the operations

Theorem 11.21 It is easy to see that the initial states relate:

L11.21
f0 = f g

retr -Part(f0) = ffxg j x 2 X g

since all x 2 X are roots in the empty map.
The TEST operation is now speci�ed as:

TEST (e1:X ; e2:X) r : B
ext rd f : Forest
post r , (root(e1; f) = root(e2; f))

This looks straightforward and, picking up our introductory analogy, represents
the major insight (or, in terms of the analogy advanced at the beginning of
this chapter, `integrand'); the check requires the detailed work of generating and
discharging the relevant proof obligations. The satis�ability of TEST on Forest

is trivial because root is applied to appropriate arguments. There is no domain
rule to be discharged since pre-TEST is, by convention, true.

Theorem 11.22 The interesting result is therefore to show:

(9s 2 retr -Part(f) � e1 2 s ^ e2 2 s) , root(e1; f) = root(e2; f)

which is straightforward (given the lemmas) { see page 284.
This concludes the justi�cation for TEST (on Forest). Clearly, more work is

to be expected for EQUATE . Its speci�cation is:

EQUATE (e1:X ; e2:X)
ext wr f : Forest

post root(e1;
(�
f) = root(e2;

(�
f) ^ f =

(�
f _

root(e1;
(�
f) 6= root(e2;

(�
f)^f =

(�
f [froot(e1;

(�
f) 7! root(e2;

(�
f)g

In fact, there is a trap for the unwary here: if the post-condition were written just

as f =
(�
f [fr1 7! r2g it would be possible when root(e1;

(�
f) = root(e2;

(�
f) to

create loops in the X
m
�! X and thus violate inv -Forest . It is for this reason that

so many of the lemmas in the preceding section needed the hypothesis r1 6= r2.

284 11 A Small Case Study

from f 2 Forest ; e1; e2 2 X
9s 2 retr -Part(f) � e1 2 s ^ e2 2 s

, 9s 2 fcollect(r ; f) j r 2 roots(f)g � e1 2 s ^ e2 2 s retr -Part
infer , root(e1; f) = root(e2; f) Lemma

Lemma 11.22

The satis�ability of EQUATE on Forest follows immediately from Lemma 11.10.
There is, again, no domain condition to be considered.

Theorem 11.23 The more interesting part of the result proof obligation becomes:

(�
f 2 Forest ; e1; e2 2 X ; (�p = retr -Part(

(�
f);

r1 = root(e1;
(�
f); r2 = root(e2;

(�
f); r1 6= r2 `

retr -Part(
(�
f [fr1 7! r2g) =

fs 2(�p j e1 =2 s ^ e2 =2 sg [f
S
fs 2(�p j e1 2 s _ e2 2 sgg

This proof is given on page 285.
The de�nition of post-EQUATE is overspeci�c in that it would be possible

to graft the trees in the other order. A non-deterministic speci�cation could be
constructed in order to avoid this commitment. It would even be possible to graft
the root of one tree onto some arbitrary point in the other. There is, however, a
considerable incentive to keep the trees as short as possible. That is, the depth
of any branch of the tree must be kept as low as possible. This follows from
the use of the root function in both of the main operations. It would be ideal if
trees could be kept to a maximum depth of one. Irrespectively of the order in
which EQUATE is made to graft the trees, they can become deeper than this
ideal. The overall e�ciency of the Fischer/Galler algorithm is, however, very
good. The search time is proportional to the average depth of a tree { rather
than the number of elements.

Exercise 11.4.1 Repeat the third part of Exercise 6.1.4 on page 145 on a state
using Forest ; also specify ELS but comment on the implementation problem with
this operation.

Exercise 11.4.2 (*) Another representation for the equivalence relation applica-
tion would be to have two di�erent data structures. One of these would support
the TEST operation and would store the map discussed in Section 6.1; the other

11.5 Operation decomposition 285

from
(�
f 2 Forest ; e1; e2 2 X ; (�p = retr -Part(

(�
f);

r1 = root(e1;
(�
f); r2 = root(e2;

(�
f); r1 6= r2

1 retr -Part(
(�
f [fr1 7! r2g)

= fdom (collapse(
(�
f [fr1 7! r2g)� frg) j

r 2 (roots(
(�
f)� fr1g)g retr -Part ,Set

2 = fdom (collapse(
(�
f [fr1 7! r2g)� frg) j

r 2 (roots(
(�
f)� fr1; r2g)g[

fdom (collapse(
(�
f [fr1 7! r2g)� fr2g)g Set

3 = fdom (collapse(
(�
f)� frg) j r 2 (roots(

(�
f)� fr1; r2g)g[

fdom (collapse(
(�
f [fr1 7! r2g)� fr2g)g L11.17

4 = fdom (collapse(
(�
f)� frg) j r 2 (roots(

(�
f)� fr1; r2g)g[

fdom (collapse(
(�
f)� fr1; r2g)g L11.18

5 = fs 2 fdom (collapse(
(�
f)� frg) j r 2 roots(f)g j e1 =2 s ^ e2 =2 sg[

f
S
fdom (collapse(

(�
f)� frg) j r 2 roots(f)g j

e1 2 s _ e2 2 sg h,L11.19

infer = fs 2(�p j e1 =2 s ^ e2 =2 sg [f
S
fs 2(�p j e1 2 s _ e2 2 sggretr -Part ,h

Result rule for EQUATE on Forest

would link all elements in the same equivalence class into a ring { EQUATE can
then locate all keys in the �rst data structure which need updating. Specify this
development and justify its correctness.

11.5 Operation decomposition

Pascal data structures

The preceding section has brought the representation close to the level that could
be used directly in a Pascal-like language; this section must show how to achieve
the e�ect of the post-conditions in terms of primitive operations of the chosen
implementation language. (As in Chapter 10, no particular language is intended
but it should be clear how to translate what is written here into Pascal.) Clearly

286 11 A Small Case Study

then code is required for TEST , EQUATE and to create the initial state. It is
convenient also to write a separate function for ROOT .

Assuming that the type X is a subset of N (X = f1; : : : ;ng), Forests can
be represented in an array providing there is some way of representing roots.
Remember that in Section 11.3 it was decided to denote a root by its not being
in the domain of the map. This is one of the ways in which the convenient
mathematical abstraction of Chapter 6 is more general than the arrays of those
programming languages which essentially just pass on to the programmer the
restrictions of addressing from von Neumann architecture. In this case, however,
it is easy to circumvent the di�culty by making the array:

a: array X to X0

with X0 = f0; : : : ;ng and rede�ning:

roots(a) 4 fi 2 X j a[i] = 0g

Because of its use of roots, the function root needs no revision. A new function,
which determines the `depth' or distance from the root is required in the argument
below:

depth(e; a) 4 if e 2 roots(a) then 0 else depth(a[e]; a) + 1

Although it would be easy to provide, no formal argument about this revised
representation of Forest is given here: the design step is considered to be small
enough that it can be made safely without such formality. Of course, as is always
the case in the development method presented here, it is clear what would need
to be done to provide progressively more formality (i.e. begin with retr -Forest).

The initialization of the array can be achieved by:

for i = 1 to n do a[i] : = 0

which achieves the condition that roots(a) = X .

Function ROOT

As mentioned above, it is convenient to separate a function to locate the root
of an element: an annotated program for ROOT is shown in Figure 11.2. A
few comments on its correctness annotations might be helpful. All assertions
of the form a = (�a have been omitted because ROOT only has read access
to a. (Clearly, in a complete support system it would be necessary to check
that such constraints were respected by the code.) The essence of the while
construct is to compute the root of v so toend (in inference rule while-I 2) is

v = root((�v ; a). The result of the loop can be combined with the ;-I rule and the

11.5 Operation decomposition 287

ROOT (e:X) X
ext rd a:array X to X0

assert inv -Forest
begin
var v :X ;
pre true

v : = e;
pre true

while a[v] 6= 0 do
inv depth(v ; a) 2 N

v : = a[v]

toend v = root((�v ; a)

post v = root((�v ; a)
post v = root(e; a)
ROOT : = v

end

Figure 11.2 Annotated code for ROOT

initializing assignment v : = e to justify the overall condition v = root(e; a). The
termination of the loop follows from the decrease at each iteration of the depth
of v . The fact that this is a natural number (i.e. the tree has no loops) follows
from the invariant.

Remaining code

Given the ROOT function, it is easy to program both TEST and EQUATE .
The annotated code for TEST is shown in Figure 11.3. It is necessary to note
that ROOT has read-only access to a in order to carry forward the information
about v1 to the second assertion. This information is also necessary in order to
check that TEST respects its read-only constraint.

The annotated code for EQUATE is given in Figure 11.4. Similar observations
to those above about preserving the root assertions hold here. In addition, it is
necessary to comment on the change in post -EQUATE from using map union to
map override in de�ning the relationship between a and (�a . It is a property of
maps that the change in this direction is always valid (cf. Lemma 6.8 on page 150)
and it more clearly represents the change made to the array.

The code presented in this section satis�es the speci�cation given in Sec-
tion 11.2. It is far easier to see that this is true having related the Forest type to

288 11 A Small Case Study

TEST (e1:X ; e2:X) B
ext rd a:array X to X0

assert inv -Forest
begin

var v1; v2:X ;
pre true

v1 : = ROOT (e1);
assert v1 = root(e1; a)
v2 : = ROOT (e2);
assert v1 = root(e1; a) ^ v2 = root(e2; a)
TEST : = (v1 = v2)

post TEST , (root(e1; a) = root(e2; a))
end

Figure 11.3 Annotated code for TEST

EQUATE (e1:X ; e2:X)
ext wr a:array X to X0

assert inv -Forest
begin

var v1; v2:X ;
pre true

v1 : = ROOT (e1; a);
assert v1 = root(e1; a)
v2 : = ROOT (e2; a);
assert v1 = root(e1; a) ^ v2 = root(e2; a)
if v1 6= v2then a[v1] : = v2

post root(e1; a) 6= root(e2; a) ^ a =(�a y fv1 7! v2g _

root(e1; a) = root(e2; a) ^ a =(�a
end

Figure 11.4 Annotated code for EQUATE

11.5 Operation decomposition 289

Part than if one attempts to read the code alone. Thus, to pick up the analogy
from the beginning of this chapter, the major steps of speci�cation, representa-
tion choice and code present the overall proof of the theorem that an (e�cient)
implementation exists; the lemmas and loops are like integrands whose value is
cross-checked by detailed proofs of the created proof obligations. Even here, the
weight of this burden would be shared when the results in the theories were used
in other algorithms.

Exercise 11.5.1 (*) Short bushy trees take less steps to search than tall thin
ones. It is for this reason that the graft is performed onto the root of e2 rather
than onto e2 itself. Convince yourself that, even so, the algorithms given above
can { with worst case data { result in tall thin trees. Develop a modi�cation of
EQUATE which compresses the tree each time it is traced back to its root. (A
presentation of this algorithm is given in [Dij76]. The theories presented in this
chapter have been used in a variety of other justi�cations including the design of
a concurrent tree compression routine in [Jon83].)

Exercise 11.5.2 (*) Repeat the whole development of Sections 11.3{11.5 using
a forest representation with loops at the roots.

290 11 A Small Case Study

12

Postscript

If we try to solve society's problems without
overcoming the confusion and aggression in our
own state of mind, then our e�orts will only
contribute to the basic problems, instead of solving
them.
Ch�ogyam Trungpa

The decision to write a personal postscript to this book was partly prompted by
my involvement in a panel discussion on Social Responsibility at the TAPSOFT
conference in Berlin. Computer systems are now so widely used that computer
scientists must consider where they stand on issues relating to the systems they
build. We should not expect others to accept our judgements, but we should
provoke discussion and be prepared to accept criticism. A crucial issue is the
reliance being put on computer systems. The probability of random (physical)
hardware errors has been decreased signi�cantly over the last twenty years, but
software (and hardware) design errors persist. One clear personal responsibility
is not to oversell our ideas. This postscript attempts to put the proposals made
in this book into a slightly wider context.

One must �rst recognize that there are many problems associated with the
development of computer systems. Some of these problems have nothing at all
to do with speci�cations (formal or otherwise).

The material relating to speci�cations in this book attempts to show how
mathematical notation can be used to increase the precision of a speci�cation.
The mathematical notation can, when used with care, achieve conciseness of ex-

291

292 12 Postscript

pression as well as precision. I believe that these ideas are important. But a
major issue relating to speci�cations is whether they match the user's require-
ments. The idea of proving properties of formal speci�cations is proposed above.
But it is also conceded that this can never ensure a match with the, inherently
informal, requirements. One can argue that this match can only be tested in the
same way in which a scienti�c theory is tested. It is also possible to claim that
Popper's arguments for refutability are a support for formality on the speci�ca-
tion side of the comparison { and experience supports this claim. But the fact
that there is no way of proving that a system matches the user's requirements
should force us to consider, in every system with which we are involved, the
danger of a mismatch.

The material in this book relating to design aims to provide developers with
ways to increase their con�dence that the systems they create satisfy the speci-
�cations. This must be a part of a software engineer's training. With machine-
checked proofs, an enormous increase in con�dence would be justi�ed, but it must
be understood that nothing can ever provide absolute certainty of correctness.
The same is, of course, true of physical systems. Designing a system requires
comparing probabilities of error in di�erent sub-systems.

There is a great danger associated with people's perception of new concepts.
If improved methods are used to tackle the same sort of problems previously
handled by ad hoc methods, the systems created could be far safer. If, on the
other hand, the improved methods are used to justify tackling systems of even
greater complexity, no progress will have been made.

A

Glossary of Symbols

Function Speci�cation

f (d :D) r :R
pre : : : d : : :
post : : : d : : : r : : :

Operation Speci�cation

OP (d :D) r :R
ext rd e1 : T1;

wr e2 : T2

pre : : : d : : : e1 : : : e2 : : :

post : : : d : : : e1 : : :
(�e2 : : : r : : : e2 : : :

Functions

f :D1 �D2 ! R signature
f (d) application
if : : : then : : : else : : : conditional
let x = : : : in : : : local de�nition

Numbers

N1 f1; 2; : : :g
N f0; 1; 2; : : :g
Z f: : : ;�1; 0; 1; : : :g
Q rational numbers
R real numbers
+;�; �; "; < normal (in�x) arithmetic operators
abs (pre�x) absolute value
mod (in�x) modulus

293

294 Appendix A

Logic

B ftrue; falseg
:E negation (not)
E1 ^ E2 conjunction (and)

E1;E2 are conjuncts
E1 _ E2 disjunction (or)

E1;E2 are disjuncts
E1) E2 implication

E1 antecedent, E2 consequent
E1 , E2 equivalence
8x 2 S � E universal quanti�er 1

9x 2 S � E existential quanti�er
9! x 2 S � E unique existence
� ` E sequent

� hypothesis, E conclusion
�

E
inference rule

E1

E2
bi-directional inference rule

Composite Objects

: : compose
nil omitted object
mk -N (: : :) generator
s1(o) selector
�(o; s1 7! t) modify a component

1With all of the quanti�ers, the scope extends as far as possible to the right; no parentheses
are required but they can be used for extra grouping.

Glossary of Symbols 295

Sets

T -set all �nite subsets of T
ft1; t2; : : : ; tng set enumeration
f g empty set
fx 2 S j p(x)g set comprehension
fi ; : : : ; jg subset of integers (from i to j inclusive)
t 2 S set membership
t =2 S : (t 2 S)
S1 � S2 set containment (subset of)
S1 � S2 strict set containment
S1 \ S2 set intersection 2

S1 [S2 set union
S1 � S2 set di�erenceS
SS distributed union

card S cardinality (size) of a set

Maps

D
m
�! R �nite maps

D
m
 ! R One-one map

domm domain
rngM range
fd1 7! r1; d2 7! r2; : : : ; dn 7! rng map enumeration
f g empty map
fd 7! f (d) 2 D � R j p(d)g map comprehension
m(d) application
m�1 map inverse
s �m domain restriction
s ��m domain deletion
m � t range restriction
m1 ym2 overwriting

2Intersection is higher priority than union.

296 Appendix A

Sequences

T � �nite sequences
T+ non-empty, �nite sequences
len s length
[t1; t2; : : : ; tn] sequence enumeration
[] empty sequence
s1
y s2 concatenation

dconc ss distributed concatenation
hd s head
tl s tail
inds s indices
elems s elements
s(i ; : : : ; j) sub-sequence

B

Glossary of Terms

Absorption An operator is absorptive if x op x = x for all valid operands.

Abstract syntax An abstract syntax de�nes the structure of objects. The term
was �rst used in the description of programming languages where objects
which are de�ned abstract away from the details of the concrete syntax
which has to include syntactic clues for parsing: in the abstract syntax
only the necessary information content is present. The semantic de�nition
of a language is normally based on its abstract syntax.

Abstraction The process of excluding unnecessary details so as to focus atten-
tion on the essential aspects of a system, problem, etc.

Adequacy The adequacy proof obligation { which is used in data rei�cation {
establishes that there is at least one representation for each abstract value.

ADJ diagram An ADJ diagram provides a graphical representation of the sig-
natures of the operators of a data type.

Antecedent The left-hand side of an implication is its antecedent.

Application A function or map is applied to an element in its domain; the result
is an element of the range.

Associativity An operator is associative if x op (y op z) = (x op y) op z for
all valid operands.

Backus-Naur Form (BNF) BNF is the notation used to de�ne the concrete
syntax of ALGOL 60; BNF or some variant thereof is now used in most
language descriptions.

Bag A bag (also known as multiset) is an unordered collection of values where
values can be contained more than once (thus it is possible to count the
occurrences).

297

298 Appendix B

Basis In an inductive proof, the basis is the subsidiary proof that the required
expression is true for the minimum element (or minimal elements) of the
set of values.

Behaviour The behaviour of a data type determines (for a functional data type)
the result of its operators and functions or (for a state-based data type) of its
operations. In particular, for a collection of operations the behaviour is the
relationship established between the inputs and outputs of the operations
{ these are the externally visible e�ects while the state changes are hidden
from the user of the operations.

Bias See implementation bias.

BNF See Backus-Naur Form.

Body The body of a quanti�ed expression is that expression following the raised
dot.

Bound identi�ers In a quanti�ed expression the bound identi�ers are those
appearing after the quanti�er; all free occurrences of the identi�er in the
body of such an expression are bound in the overall quanti�ed expression.
There are other ways of binding identi�ers { for example, the names cor-
responding to the values of parameters and external variables are bound
within an operation speci�cation.

Cardinality The cardinality of a �nite set is the number of elements contained
in the set.

Commutativity An operator is commutative if x op y = y op x for all valid
operands.

Complete An axiomatization is complete with respect to a model if all state-
ments which are true in that model can be proved from the axioms using
the rules of inference.

Composite objects Composite objects are tagged Cartesian products; they are
created by make-functions.

Composite type A composite type de�nes a set of composite objects.

Concatenation The concatenation operator creates a sequence from the ele-
ments of its two (sequence) operands; the result contains the elements of
the �rst sequence followed by the elements of the second.

Glossary of Terms 299

Conclusion In a sequent, the conclusion is the logical expression on the right of
a turnstile.

Concrete syntax The concrete syntax of a language de�nes the set of strings
which form sentences of the language. One notation for de�ning a concrete
syntax is BNF.

Conjunction A logical expression whose principal operator is `and' (^) is a
conjunction.

Consequent The right-hand side of an implication is its consequent.

Constraint The constraint of a quanti�ed expression �xes the type of the iden-
ti�er(s) bound by the quanti�er; it governs the values over which the vari-
able(s) ranges.

Contingent A logical expression is contingent if there are contexts in which it
evaluates to true while in others it evaluates to false.

Contradiction A logical expression is a contradiction if there is no context in
which it evaluates to true.

Data rei�cation Abstract objects are rei�ed to chosen representations in (the
early stages of) system development from a speci�cation. Chapter 8 de-
scribes how data rei�cation steps are made in VDM.

Data type A data type is a set of values together with ways of manipulating
those values; functional data types (e.g. natural numbers or sequences) have
operators or functions whose results depend only on their arguments; state-
based data types are manipulated by operations whose result is a�ected by
and whose execution a�ects a state.

Data type invariant A data type invariant is a truth-valued function which
de�nes a subset of a class of objects.

Decidable A logical calculus is decidable if an algorithm exists which can de-
termine, for any expression of the calculus, whether the formula is true or
not.

Decomposition See operation decomposition.

De�nition (direct) A direct de�nition of a function provides a rule for com-
puting the result of applying the function to its arguments.

300 Appendix B

Derived rule Derived rules are conclusions from an axiomatization of a theory
which can be used in constructing further proofs.

Di�erence The di�erence of two sets is the set containing exactly those elements
of the �rst set which are absent from the second.

Disjoint sets Two sets are disjoint if they have no common elements; a collec-
tion of sets is pairwise disjoint if any two (di�erent) sets in the collection
are disjoint.

Disjunction A logical expression whose principal operator is `or' (_) is a dis-
junction.

Distributed union The distributed union of a set of sets is the set containing
exactly those elements of the sets which are themselves elements of the
operand.

Distributivity An operator (opa) is said to left distribute over another operator
(opb) if, for all valid operands, x opa (y opb z) = (x opa y) opb (x opa z);
and conversely for right distribution.

Domain The domain of a function (map) is the set of values to which the func-
tion (map) can be applied.

Equations The equations of a property-oriented speci�cation provide the se-
mantics of a data type (without giving a model).

Equivalence An equivalence is a logical expression whose principal operator is
an equivalence symbol (,).

Equivalence relation An equivalence relation is a relation which is re
exive,
symmetric and transitive.

Equivalent Two logical expressions are equivalent if they yield the same value
for all possible values of their free variables.

Exception The speci�cation of exceptions can be separated from the normal
pre- and post-conditions as shown in Section 9.2.

Existential quanti�er An existential quanti�er (9) can be read as `there exists
(one or more)'.

Final interpretation The �nal interpretation of a (property-oriented) speci�-
cation is one in which values are considered to be equivalent if and only if

Glossary of Terms 301

their denoting expressions cannot be proved to be di�erent by deductions
from the equations.

Formal language A formal language is one which has precise syntax and se-
mantics.

Formal proof A formal proof is one in which all steps are stated precisely and
completely; thus a formal proof can be checked by a computer program.

Free variables The free variables of an expression are the identi�ers which occur
in the expression but are not bound (e.g. by a quanti�er).

Full abstraction A speci�cation is fully abstract if it is not biased (with respect
to a given collection of operations).

Function A function is a mapping between two sets of values (i.e. from elements
in the domain to elements in the range).

Functional speci�cation A functional speci�cation de�nes the intended in-
put/output behaviour of a computer system: what the system should do.

Generators The generators of a type are the functions which can, in suitable
combinations, generate all values of the type (e.g. 0 and succ for the natural
numbers).

Hypothesis A logical expression on the left of a sequent is (one of) its hypothe-
ses.

Implementation bias A model-oriented speci�cation is biased (towards certain
implementations) if equality on the states cannot be de�ned in terms of the
available operations; in other words, there are two, or more, state values
which cannot be distinguished by the operations. (See Section 9.3 for a
fuller discussion.)

Implication An implication is a logical expression whose principal operator is
an implication sign ()).

Implicit speci�cation An implicit speci�cation characterizes what is to be done
without (if possible) saying anything about how the result is to be achieved.

Indexing The application of a sequence to a valid index is called indexing; it
yields an element of the sequence.

Induction rule An induction rule is an inference rule which facilitates proofs
about in�nite classes of (�nite) objects; typically, there is a base case and
an inductive step to be proved.

302 Appendix B

Induction step In an inductive proof, the inductive step shows that the re-
quired expression inherits over the successor function for the type.

Inductive hypothesis In the induction step of an inductive proof, the induc-
tion hypothesis is the assumption of the required property from which its
inheritance has to be proved.

Inductive proof An inductive proof is one which uses the induction principle
for a type.

Inference rule An inference rule consists of a number of hypotheses and a con-
clusion separated by a horizontal line; an appropriate instance of the conclu-
sion is justi�ed if corresponding matches can be made with the hypotheses.
A bi-directional rule can also be used from bottom to top.

Initial interpretation The initial interpretation of a property-oriented speci�-
cation is one in which values are considered to be equivalent if, and only if,
their denoting expressions can be proven to be equal from the equations.

Intersection The intersection of two sets is the set containing exactly those
elements contained in both sets.

Invariants See data type invariant or loop invariant.

Logic of partial functions (LPF) LPF is a logic which copes with unde�ned
terms. The rules of this logic are given in Appendix C.

Loop invariant A loop invariant is basically just a data type invariant which
de�nes the subset of states which can arise at the head of a loop construct
like while.

LPF See logic of partial functions.

Make-function Each composite type has an associated make-function which
forms elements of the type from elements of the sets of values for the �elds
of the composite object.

Map Map values de�ne a �nite (many-to-one) relationship between two sets;
the map can be applied to elements in its domain to �nd the corresponding
element in the range.

Maplet The ordered pairs of an explicitly given map are written as maplets with
the two values separated by a small arrow (7!).

Glossary of Terms 303

Model oriented A model-oriented speci�cation of a data type de�nes the be-
haviour of its operators in terms of a class of objects known as its state;
this state is a `hidden' type in the sense that it is not a part of the visible
behaviour of the operations.

Model theory A model theory for a calculus associates its formulae with a
collection of mathematical objects.

Module A module in BSI-VDM combines a state with a collection of operations;
such modules correspond to data types.

Modus ponens Modus ponens is an inference rule which from (E1) E2) and
E1 justi�es E2.

Monotone A function is monotone with respect to some ordering if its applica-
tion respects that ordering.

Multiset See bag.

Natural deduction Natural deduction is a particular style for presenting for-
mal proofs in propositional and predicate calculus: inference rules for the
introduction and elimination of each operator are given.

Negation A negation is a logical expression whose principal operator is `not'
(:).

Non-determinism An operation whose speci�cation permits more than one
result for a particular argument is said to be non-deterministic.

Operation The term `operation' is used for a program or piece thereof (often
a procedure); an operation depends on and changes external variables (its
state).

Operation decomposition Operations are decomposed into constructs which
combine operations (e.g. while loops); proof obligations to check operation
decomposition are given in Chapter 10.

Operation quotation Operations of one module (data type) can be used in the
speci�cations of another module by quotation of pre- and post-conditions.

Operator Common functions are written as in�x or pre�x operators in order to
shorten expressions and make the statement of algebraic properties clearer.

Partial function A partial function is one which is not de�ned for all of the
values indicated in the domain part of its signature; the values to which it
can be safely applied are de�ned by a pre-condition.

304 Appendix B

Partition A partition of a set S is a set of pairwise disjoint subsets of S whose
union is S .

Post-condition The post-condition of a function or operation is a truth-valued
function which de�nes the required relation between input and output.

Power set The power set of a set S is the set of all subsets of S .

Pre-condition The pre-condition of a function is a truth-valued function which
de�nes the elements of the domain of a partial function (operation) for
which the existence of a result is guaranteed. The pre-condition of an
operation de�nes the state/inputs to which the operation can be applied.

Predicate A predicate is a truth-valued expression which may contain free vari-
ables.

Predicate calculus The expressions of the predicate calculus are built up from
truth-valued functions, propositional operators and quanti�ers.

Proof obligations Claims such as `this piece of code satis�es that speci�ca-
tion' give rise to proof obligations; if formal notation is used, these proof
obligations are sequents to be proved.

Proof theory A proof theory for a calculus provides a way of deducing formulae;
deductions begin with (instances of) axioms and use the given rules of
inference.

Proper subset One set is a proper subset of another set if it is a subset and if
the second set contains some elements absent from the �rst set.

Property oriented A property-oriented speci�cation of a data type consists of
a signature and a collection of equations.

Proposition An expression which, in classical logic, has the value true or false;
in LPF, propositions can be unde�ned by virtue of unde�ned terms.

Propositional calculus The expressions of the propositional calculus are built
up from propositions and the operators : ;^;_;);,; laws relate expres-
sions and form a calculus.

Quanti�ers Symbols of the predicate calculus: 8 `for all', 9 `there exists (one
or more)', 9! `there exists exactly one'.

Quoting The speci�cation of one data type can be made to depend on the spec-
i�cation of another by quoting the pre- and post-conditions of its operators.

Glossary of Terms 305

Range The range of a function is a speci�ed set which contains the results of
function application.

Recursive de�nition (abstract syntax) A recursively de�ned abstract syn-
tax de�nes a class of �nite, but arbitrarily deeply nested, objects by using
the name of the class being de�ned within its de�nition.

Recursive de�nition (function) A recursive de�nition of a function is one in
which the name of the function being de�ned is used within the de�nition.

Re
exivity A relation R is re
exive if, for all x , (x ; x) 2 R.

Rei�cation Rei�cation is the development of an abstract data type to a (more)
concrete representation.

Relation A relation can be viewed as a subset of the Cartesian product of two
sets. Many of the relations of interest in this book (e.g. equivalence rela-
tions) are such that the same set (X) constitutes the domain and range;
such relations are said to be `on X '.

Retrieve function A retrieve function relates a representation to an abstraction
by mapping the former to the latter. Retrieve functions provide the basic
link for data rei�cation proofs.

Rigorous arguments A rigorous argument outlines how a proof could be con-
structed; the reason for accepting such an argument is the knowledge of
how it could be made formal.

Satis�ability The use of implicit speci�cation gives rise to a proof obligation
known as satis�ability: for all acceptable inputs there must be some possible
result.

Satisfy (speci�cation) An implementation is said to satisfy a speci�cation if,
over the range of values required by the (pre-condition of the) speci�cation,
the implementation produces results which agree with the (post-condition
of the) speci�cation.

Satisfy (truth-valued function) Values satisfy a truth-valued function if its
application to those values yields the value true.

Selectors The selectors for a composite type can be applied to values of that
type to yield values of the components.

Semantics The semantics of a language are its meaning.

306 Appendix B

Sequence A sequence is an ordered collection of values in which values can occur
more than once; elements are of a speci�ed type and the sequence itself is
of �nite size.

Sequent A sequent consists of a list of logical expressions (the assumptions), fol-
lowed by a turnstile, followed by another logical expression (its conclusion);
it is to be read as a claim that, in all contexts where all of the assumptions
are true, the conclusion can be deduced.

Set A set is an unordered collection of distinct objects.

Set comprehension A set can be de�ned by set comprehension to contain all
elements satisfying some property.

Signature The signature of a function gives its domain and range.

Speci�cation Strictly, a precise statement of all external characteristics of a
system used here as a shorthand for `functional speci�cation'.

State A state is a collection of variables; the state of a state-based data type is
such that the externals of all of its operations have compatible names and
types with the state.

Structural induction Structural induction provides a way of generating induc-
tion rules for composite types.

Subset One set is a subset of another set if all of the elements of the �rst set
are contained in the second. A set is thus a subset of itself.

Su�ciently abstract A model-oriented speci�cation is said to be su�ciently
abstract if it is not biased towards some particular implementations.

Symmetry A relation R is symmetric if, for all x and y , (x ; y) 2 R) (y ; x) 2
R.

Syntax See abstract syntax/concrete syntax.

Tautology A logical expression which evaluates to true for any values of its
constituent propositions is a tautology.

Term A term is an expression involving constants, identi�ers and operators;
such a term denotes a value.

Transitivity A relation R is transitive if for all x , y and z , (x ; y) 2 R^(y ; z) 2 R
) (x ; z) 2 R.

Glossary of Terms 307

Truth table A truth table is a tabular presentation of truth values which can
be used either to de�ne propositional operators or to verify facts about
propositional expressions.

Truth-valued function A truth-valued function is one whose range is the truth
values (B).

Turnstile The turnstile (`) symbol is used to record that the conclusion can be
deduced from the hypotheses.

Union The union of two sets is the set containing exactly the elements contained
in either (or both) sets.

Universal quanti�er The universal quanti�er (8) can be read as `for all'.

VDM See Vienna Development Method.

Vienna Development Method (VDM) VDM is the name given to a collec-
tion of notation and concepts which grew out of the work of the IBM Lab-
oratory, Vienna. The original application was the denotational description
of programming languages. The same speci�cation technique has been ap-
plied to many other systems. Design rules which show how to prove that a
design satis�es its speci�cation have been developed.

Well-founded A well-founded relation is one in which there are no in�nite de-
scending chains.

308 Appendix B

C

Rules of Logic

^-defn
: (:E1 _ :E2)

E1 ^ E2

) -defn
:E1 _ E2

E1) E2

, -defn
(E1) E2) ^ (E2) E1)

E1 , E2

8-defn
: (9x 2 X � :E (x))

8x 2 X � E (x)

_-I
Ei

E1 _ � � � _ En
1 � i � n

^-I
E1; � � � ; En

E1 ^ � � � ^ En

: _-I
:E1; � � � ; :En

: (E1 _ � � � _ En)

: ^-I
:Ei

: (E1 ^ � � � ^ En)
1 � i � n

) -I
E1 ` E2; �(E1)

E1) E2

309

310 Appendix C

)vac-I
:E1

E1) E2

)vac-I
E2

E1) E2

, -I
E1 ^ E2

E1 , E2

, -I
:E1 ^ :E2

E1 , E2

9-I
s 2 X ; E (s=x)

9x 2 X � E (x)

:9-I
x 2 X ` :E (x)

: (9x 2 X � E (x))

8-I
x 2 X ` E (x)

8x 2 X � E (x)

:8-I
s 2 X ; :E (s=x)

: (8x 2 X � E (x))

_-E
E1 _ � � � _ En ; E1 ` E ; � � � ; En ` E

E

^-E
E1 ^ � � � ^ En

Ei
1 � i � n

: _-E
: (E1 _ � � � _ En)

:Ei
1 � i � n

: ^-E
: (E1 ^ � � � ^ En); :E1 ` E ; � � � ; :En ` E

E

) -E
E1) E2; E1

E2

Rules of Logic 311

, -E
E1 , E2

E1 ^ E2 _ :E1 ^ :E2

:: -I =E
E

::E

9-E
9x 2 X � E (x); y 2 X ;E (y=x) ` E1

E1
y is arbitrary

:9-E
: (9x 2 X � E (x)); s 2 X

:E (s=x)

8-E
8x 2 X � E (x); s 2 X

E (s=x)

:8-E
: (8x 2 X � E1(x)); y 2 X ;:E1(y=x) ` E2

E2
y is arbitrary

contr
E1; :E1

E2

_-comm
E1 _ E2

E2 _ E1

^-comm
E1 ^ E2

E2 ^ E1

_-ass
(E1 _ E2) _ E3

E1 _ (E2 _ E3)

^-ass
E1 ^ (E2 ^ E3)

(E1 ^ E2) ^ E3

_-subs
E1 _ � � � _ Ei _ � � � _ En ; Ei ` E

E1 _ � � � _ E _ � � � _ En

^-subs
E1 ^ � � � ^ Ei ^ � � � ^ En ; Ei ` E

E1 ^ � � � ^ E ^ � � � ^ En

312 Appendix C

_^-dist
E1 _ E2 ^ E3

(E1 _ E2) ^ (E1 _ E3)

^_-dist
E1 ^ (E2 _ E3)

E1 ^ E2 _ E1 ^ E3

_-deM
: (E1 _ E2)

:E1 ^ :E2

^-deM
: (E1 ^ E2)

:E1 _ :E2

9-deM
: (9x 2 X � E (x))

8x 2 X � :E (x)

8-deM
: (8x 2 X � E (x))

9x 2 X � :E (x)

) -contrp
E1) E2

:E2) :E1

L1.19
E1 _ E2) E3

(E1) E3) ^ (E2) E3)

L1.20
E1) (E2) E3)

E1 ^ E2) E3

D

Properties of Data

D.1 Natural numbers

N-ind

p(0);
n 2 N; p(n) ` p(n + 1)

n 2 N ` p(n)

N-indp

p(0);
n 2 N1 ; p(n � 1) ` p(n)

n 2 N ` p(n)

N-cind
n 2 N; (8m 2 N �m < n) p(m)) ` p(n)

n 2 N ` p(n)

D.2 Finite sets

�-comm
e1; e2 2 X ; s 2 X -set

e1 � (e2 � s) = e2 � (e1 � s)

�-abs
e 2 X ; s 2 X -set

e � (e � s) = e � s

Set-ind

p(f g);
e 2 X ; s 2 X -set; p(s) ` p(e � s)

s 2 X -set ` p(s)

Set-ind2

p(f g);
s 2 X -set; e 2 s; p(s � feg) ` p(s)

s 2 X -set ` p(s)

313

314 Appendix D

[-b
s 2 X -set

f g [s = s

[-i
e 2 X ; s1; s2 2 X -set

(e � s1) [s2 = e � (s1 [s2)

L4.5
s 2 X -set

s [f g = s

[-ass
s1; s2; s3 2 X -set

(s1 [s2) [s3 = s1 [(s2 [s3)

[-comm
s1; s2 2 X -set

s1 [s2 = s2 [s1

[-idem
s 2 X -set

s [s = s

\-b
s 2 X -set

f g \ s = f g

\-i
e 2 X ; s1; s2 2 X -set; e 2 s2
(e � s1) \ s2 = e � (s1 \ s2)

\-i
e 2 X ; s1; s2 2 X -set; e =2 s2

(e � s1) \ s2 = s1 \ s2

L??
s 2 X -set

s \ f g = f g

\-ass
s1; s2; s3 2 X -set

(s1 \ s2) \ s3 = s1 \ (s2 \ s3)

S
-b S

f g = f g

S
-i

s 2 X -set; ss 2 (X -set)-set
S
(s � ss) = s [

S
ss

Properties of Data 315

L4.9
ss1; ss2 2 (X -set)-set

S
(ss1 [ss2) =

S
ss1 [

S
ss2

d-b
s 2 X -set

f g � s = f g

d-i
e 2 X ; s1; s2 2 X -set; e =2 s2
(e � s1)� s2 = e � (s1 � s2)

d-i
e 2 X ; s1; s2 2 X -set; e 2 s2

(e � s1)� s2 = s1 � s2

2-b
:9e 2 X � e 2 f g

2-i
e1; e2 2 X ; s 2 X -set

e1 2 (e2 � s) , e1 = e2 _ e1 2 s

D.3 Finite maps

�-pri
d 2 D ; r1; r2 2 R; m 2 D

m
�! R

fd 7! r1g � (fd 7! r2g �m) = fd 7! r1g �m

�-comm
d1; d2 2 D ; r1; r2 2 R; m 2 D

m
�! R; d1 6= d2

fd1 7! r1g � (fd2 7! r2g �m) = fd2 7! r2g � (fd1 7! r1g �m)

Map-ind

p(f g);

d 2 D ; r 2 R; m 2 (D
m
�! R); p(m); d =2 domm `

p(fd 7! rg �m)

m 2 (D
m
�! R) ` p(m)

y-b
m 2 (D

m
�! R)

m y f g = m

y-i
d 2 D ; r 2 R; m1;m2 2 (D

m
�! R)

m1 y (fd 7! rg �m2) = fd 7! rg � (m1 ym2)

316 Appendix D

L6.6
m 2 (D

m
�! R)

f g ym = m

y-ass
m1;m2;m3 2 (D

m
�! R)

m1 y (m2 ym3) = (m1 ym2) ym3

dom -b
dom f g = f g

dom -i
d 2 D ; r 2 R; m 2 (D

m
�! R)

dom (fd 7! rg �m) = fdg [domm

�-b
s 2 D-set

s � f g = f g

�-i
s 2 D-set; m 2 (D

m
�! R); d 2 D ; r 2 R; d =2 s

s � (fd 7! rg �m) = s �m

�-i
s 2 D-set; m 2 (D

m
�! R); d 2 D ; r 2 R; d 2 s

s � (fd 7! rg �m) = fd 7! rg � (s �m)

��-b
s 2 D-set

s �� f g = f g

��-i
s 2 D-set; m 2 (D

m
�! R); d 2 D ; r 2 R; d =2 s

s �� (fd 7! rg �m) = fd 7! rg � (s ��m)

��-i
s 2 D-set; m 2 (D

m
�! R); d 2 D ; r 2 R; d 2 s

s �� (fd 7! rg �m) = s ��m

[-b
m 2 (D

m
�! R)

f g [m = m

[-i
m1;m2 2 (D

m
�! R); d 2 D ; r 2 R; is-disj (fdg [domm1;domm2)

(fd 7! rg �m1) [m2 = fd 7! rg � (m1 [m2)

L6.11
m1;m2 2 (D

m
�! R)

dom (m1 ym2) = domm1 [domm2

Properties of Data 317

[m -ass
m1;m2;m3 2 (D

m
�! R)

(m1 [m2) [m3 = m1 [(m2 [m3)

[m -comm
m1;m2 2 (D

m
�! R)

m1 [m2 = m2 [m1

L6.8
m1;m2 2 (D

m
�! R); is-disj (domm1;domm2)

m1 ym2 = m1 [m2

D.4 Finite sequences

Seq-ind

p([]);
e 2 X ; t 2 X �; p(t) ` p(cons(e; t))

t 2 X � ` p(t)

Seq-ind2

p([]);
t 2 X+; p(tl t) ` p(t)

t 2 X � ` p(t)

y-b
s 2 X �

[]y s = s

y-i
e 2 X ; s1; s2 2 X

�

cons(e; s1)
y s2 = cons(e; s1

y s2)

y-ass
s1; s2; s3 2 X

�

(s1
y s2)

y s3 = s1
y (s2

y s3)

len -b
len [] = 0

len -i
e 2 X ; s 2 X �

len cons(e; s) = len s + 1

L7.6
s1; s2 2 X

�

elems (s1
y s2) = (elems s1) [(elems s2)

318 Appendix D

rev -b
rev([]) = []

rev -i
e 2 X ; s 2 X �

rev(cons(e; s)) = rev(s)y [e]

L7.11
s 2 X �

rev(rev(s)) = s

E

Proof Obligations

E.1 Satis�ability

Functions:

8d 2 D � pre-f (d)) 9r 2 R � post-f (d ; r)

Operations:

8(�� 2 � � pre-OP((��)) 9� 2 � � post-OP((�� ; �)

Remember the role of invariants in such proofs.

E.2 Satisfaction of speci�cation

Functions:

8d 2 D � pre-f (d)) f (d) 2 R ^ post -f (d ; f (d))

Operations:

8(�� 2 � �

pre-OP((��))

(9� 2 � � ((�� ; �) 2 OP) ^

(8� 2 � � ((�� ; �) 2 OP) post-OP((�� ; �))

E.3 Data rei�cation

Adequacy:

8a 2 A � 9r 2 R � retr(r) = a

Initial state:

retr(r0) = a0

319

320 Appendix E

Domain:

8r 2 R � pre-A(retr(r))) pre-R(r)

Result:

8(�r ; r 2 R �

pre-A(retr((�r)) ^ post-R((�r ; r)) post-A(retr((�r); retr(r))

E.4 Operation decomposition

: = -I
ftrueg x : = e fx =(�e g

: = -pres
fEg x : = e fEg

x does not occur free in E

;-I
fpre1g S1 fpre2 ^ post1g; fpre2g S2 fpost2g

fpre1g (S1;S2) fpost1 j post2g

if -I
fpre ^ testg TH fpostg; fpre ^ : testg EL fpostg; pre) �l (test)

fpreg (if test then TH else EL) fpostg

while-I
finv ^ testg S finv ^ sofarg; inv) �l (test)

finvg while test do S end finv ^ : test ^ (sofar _ iden)g
sofar is twf

block-I
fpre ^ v = eg S fpostg

fpreg begin var v : = e;S end f9v � postg

weaken
pres) pre; fpreg S fpostg; post) postw

fpresg S fpostw g

pre
fpreg S fpostg

fpreg S f(�pre ^ postg

F

Syntax of VDM Speci�cations

This appendix contains parts of the `Mathematical Syntax' for those parts of
VDM used in this book. It is derived from [BSI89] but, since that document
is still evolving, some predictions as to its �nal form have been made. In some
cases, alternatives present in [BSI89] have been removed because they are not
used in this book.

The proposed concrete representation for the BSI VDM speci�cation language
is de�ned by a context-free grammar which conforms to the BSI standard for
grammars which is described by means of a BNF notation which employs the
following special symbols:

, the concatenate symbol
= the de�ne symbol
j the de�nition separator symbol (lower precedence than

concatenate)
[] enclose optional syntactic items
f g enclose syntactic items which may occur zero or more

times
` ' single quotes are used to enclose terminal symbols
meta identi�er non-terminal symbols are written in lower-case letters

(possibly including spaces)
; terminator symbol to denote the end of a rule
.. used (within brackets) to describe a range of terminal

symbols, e.g. (`a'..`z',`A'..`Z'). Note that `,' in this
context means `and', not `concatenate'.

321

322 Appendix F

F.1 Documents

document = modules
j de�nitions ;

modules = module, f module g ;

F.2 Modules

module = `module', identi�er, interface, de�nitions, `end', identi�er ;

F.3 Interfaces

interface = [module parameters],
[import de�nition list],
[instantiation instance list],
[export module signature] ;

module parameters = `parameters', module signature ;

import de�nition list = `imports', import de�nition, f `,', import de�nition g ;

import de�nition = `from', identi�er, `:', module signature ;

instantiation instance list = `instantiation', instantiation instance,
f `,', instantiation instance g ;

instantiation instance = identi�er, `as', instance ;

export module signature = `exports', module signature ;

module signature = f signatures g ;

signatures = type signatures
j value signatures
j function signatures
j operation signatures ;

type signatures = `types', type description, f `,', type description g ;

type description = name
j type de�nition ;

Syntax of VDM Speci�cations 323

value signatures = `values', value description, f `,', value description g ;

value description = name list, `:', type ;

function signatures = `functions', function signature,
f `,', function signature g ;

function signature = name list, `:', function type ;

operation signatures = `operations', operation signature,
f `,', operation signature g ;

operation signature = name list, `:', operation type, [`using', name] ;

instance = identi�er, `(', [substitution], `)', module signature ;

substitution = substitute, f `,', substitute g ;

substitute = identi�er, `!', name ;

F.4 De�nitions

de�nitions = [`de�nitions', de�nition block, f [`;'], de�nition block g] ;

de�nition block = type de�nitions
j state de�nition
j value de�nitions
j function de�nitions
j operation de�nitions ;

Type de�nitions

type de�nitions = `types', type de�nition, f [`;'], type de�nition g ;

type de�nition = identi�er, `=', type, [invariant]
j identi�er, `::', �eld list, [invariant]
j identi�er, is not yet de�ned ;

type = bracketed type
j type name
j basic type
j quote type

324 Appendix F

j composite type
j union type
j set type
j seq type
j map type
j function type
j optional type
j product type
j type variable ;

bracketed type = `(', type, `)' ;

type name = name ;

basic type = `B ' j `N' j `N1 ' j `Z' j `R' ;

quote type = quote literal ;

composite type = `compose', identi�er, `of ', �eld list, `end' ;

�eld list = �eld, f �eld g ;

�eld = [identi�er, `:'], type ;

union type = type, `j', type ;

set type = type, `-set' ;

seq type = seq0 type
j seq1 type ;

seq0 type = type, `�' ;

seq1 type = type, `+' ;

map type = general map type
j bijective map type ;

general map type = type, `
m
�!', type ;

bijective map type = type, `
m
 !', type ;

Syntax of VDM Speci�cations 325

function type = type, `!', type
j `()', `!', type ;

optional type = `[', type, `]' ;

product type = type, `�', type ;

type variable = `@', identi�er ;

is not yet de�ned = `is', `not', `yet', `de�ned' ;

State de�nitions

state de�nition = `state', identi�er, `of ', �eld list,
[invariant], [initialization], `end' ;

invariant = `inv', invariant initial function ;

initialization = `init', invariant initial function ;

invariant initial function = pattern, `4', expression ;

Value de�nitions

value de�nitions = `values', value de�nition, f [`;'], value de�nition g ;

value de�nition = identi�er, [`=', expression], [`:', type] ;

Function de�nitions

function de�nitions = `functions', function de�nition,
f [`;'], function de�nition g ;

function de�nition = function heading, function body ;

function heading = function signature heading
j function colon heading ;

function signature heading = identi�er, `:', function type,
identi�er, parameter list, [identi�er] ;

function colon heading = identi�er, parameter type list, [identi�er type pair] ;

326 Appendix F

parameter type list = parameter types, f parameter types g ;

identi�er type pair = [identi�er, `:'], type ;

parameter types = `(', [pattern type pair list], `)' ;

pattern type pair list = pattern list, `:', type, f `,', pattern list,`:', type g ;

parameter list = parameters, f parameters g ;

parameters = `(', [pattern list], `)' ;

function body = explicit function
j function post ;

explicit function = `4', expression, [`pre', expression] ;

function post = [`pre', expression], `post', expression ;

Operation de�nitions

operation de�nitions = `operations', operation de�nition,
f [`;'], operation de�nition g ;

operation de�nition = operation heading, operation body ;

operation heading = operation signature heading
j operation colon heading ;

operation signature heading = identi�er, `:', operation type, identi�er,
parameter list, [identi�er] ;

operation type = type, `
o
!', [type]

j `()', `
o
!', [type] ;

operation colon heading = identi�er, parameter type list,
[identi�er type pair], externals ;

operation body = operation post ;

operation post = [`pre', expression], `post', expression, [exceptions] ;

externals = external, var information, f var information g ;

Syntax of VDM Speci�cations 327

external = `external' j `ext' ;

var information = mode, state name list, `:', type ;

mode = `read' j `write' j `rd' j `wr' ;

state name list = name, f `,', name g ;

exceptions = errors, error list ;

errors = `errs' j `errors' ;

error list = error, f error g ;

error = identi�er, `:', expression, `!', expression ;

F.5 Expressions

expression list = expression, f `,', expression g ;

expression = complex expression
j unary expression
j binary expression
j general quanti�ed expression
j iota expression
j set expression
j sequence expression
j map expression
j record expression
j apply expression
j simple expression
j literal
j names ;

Complex expressions

complex expression = let expression
j if expression
j cases expression ;

let expression = `let', equal de�nition list, `in', expression ;

328 Appendix F

if expression = `if ', expression, `then', expression, f elsif expression g,
`else', expression ;

elsif expression = `elseif ', expression, `then', expression ;

cases expression = `cases', expression, `:', cases expression alternatives,
[`,', others expression], `end' ;

cases expression alternatives = cases expression alternative,
f `,', cases expression alternative g ;

cases expression alternative = case pattern, `!',expression ;

others expression = `others', `!', expression ;

Unary expressions

unary expression = pre�x expression j map inverse ;

pre�x expression = unary operator, expression ;

unary operator = `+'
j `�'
j `abs'
j `
oor'
j `: '
j `card'
j `

S
'

j `hd'
j `tl'
j `len'
j `elems'
j `inds'
j `conc'
j `dom'
j `rng' ;

map inverse = expression, `-1' ;

Syntax of VDM Speci�cations 329

Binary expressions

binary expression = in�x expression j set range expression ;

in�x expression = expression, binary operator, expression ;

binary operator = `+'
j `�'
j `�'
j `='
j `rem'
j `mod'
j `"'
j `div'
j `['
j `\'
j `�'
j `�'
j `�'
j `2'
j `=2'
j `y'
j `['
j `y'
j `�'
j `��'
j `�'
j `��'
j `^'
j `_'
j `) '
j ` , '
j `='
j `6='
j `<'
j `�'
j `>'
j `�' ;

set range expression = `f', expression, `,', `. . . ', `,', expression, `g' ;

330 Appendix F

Quanti�ed expressions

general quanti�ed expression = quanti�ed expression
j exists unique expression ;

quanti�ed expression = quanti�er, bind list, `�', expression ;

quanti�er = `8' j `9' ;

bind list = bind, f `,', bind g ;

exists unique expression = `9!', bind, `�', expression ;

bind = set bind ;

set bind = pattern, `2', expression ;

iota expression = `�', bind, `�', expression ;

Set expressions

set expression = set enumeration
j set comprehension ;

set enumeration = `fg' j `f', expression list, `g' ;

set comprehension = `f', bind, `j', expression, `g ' ;

Sequence expressions

sequence expression = sequence enumeration
j sequence comprehension
j subsequence ;

sequence enumeration = `[]' j `[', expression list, `]' ;

sequence comprehension = `[', sequence apply, `2', expression, `j',
expression, `]' ;

subsequence = expression, `(', expression, `,', `. . . ', `,', expression, `)' ;

Syntax of VDM Speci�cations 331

Map expressions

map expression = map enumeration
j map comprehension ;

map enumeration = `fg' j `f', maplet list, `g' ;

maplet list = maplet, f `,', maplet g ;

maplet = expression, ` 7!', expression ;

map comprehension = `f', maplet, `2', expression, `j', expression, `g' ;

Record expressions

record expression = record constructor
j record modi�er ;

record constructor = `mk-', name, `(', [expression list], `)' ;

record modi�er = `�', `(', expression, record modi�cation,
f record modi�cation g, `)' ;

record modi�cation = identi�er, 7̀!', expression ;

Apply expressions

apply expression = function apply
j sequence apply
j map apply
j �eld select ;

function apply = expression, `(', [expression list], `)' ;

sequence apply = expression, `(', expression, `)' ;

map apply = expression, `(', expression list, `)' ;

�eld select = identi�er, `(', expression, `)' ;

Simple expressions

simple expression = bracketed expression ;

bracketed expression = `(', expression, `)' ;

332 Appendix F

F.6 Names

names = name j oldname ;

name list = name, f `,', name g ;

name = f identi�er, `.' g, identi�er ;

old name =
(�����
identi�er ;

identi�er = mark, f mark j digit j prime j hyphen g ;

mark = letter j greek ;

prime = `0' ;

hyphen = `-' ;

greek = (`�' .. `
') ;

(* Any component of an identi�er except the �rst mark can also be either a
subscript or a superscript. *)

F.7 Literals

literal = unde�ned literal
j nil literal
j Boolean literal
j numeral
j character literal
j text literal
j quote literal ;

unde�ned literal = `unde�ned' ;

nil literal = `nil' ;

Boolean literal = `true' j `false' ;

numeral = natural number, [`�10', integer literal (* as a superscript *)] ;

integer literal = [`+' j `�'], natural number ;

Syntax of VDM Speci�cations 333

natural number = digit, f digit g ;

digit = `0' j `1' j `2' j `3' j `4' j `5' j `6' j `7' j `8' j `9' ;

character literal = `", char, `" ;

text literal = `"', meta string, `"' ;

meta string = f char g ;

char = `""' j character { (`"') ;

quote literal = distinguished letter, f distinguished letter g ;

upper case letter = (`A' .. `Z') ;

lower case letter = (`a' .. `z') ;

distinguished letter = (`a' .. `z') ;

odd character = (* to be de�ned *) ;

character = upper case letter j lower case letter j digit j odd character ;

letter = upper case letter j lower case letter ;

F.8 Patterns

pattern list = pattern, f `,', pattern g ;

pattern = pattern identi�er
j match value
j record pattern ;

pattern identi�er = identi�er j `-' ;

match value = `(', expression, `)' ;

record pattern = [name], `(', [pattern list], `)' ;

F.9 Comments

comments = brief comment ;

brief comment = `--', character, f character g, new line character ;

334 Appendix F

Bibliography

[BBH+74] H. Beki�c, D. Bj�rner, W. Henhapl, C.B. Jones, and P. Lucas. A formal
de�nition of a PL/I subset. Technical Report 25.139, IBM Laboratory,
Vienna, 1974.

[BM79] R.S. Boyer and J.S. Moore. A Computational Logic. Academic Press,
1979.

[BSI89] BSI. VDM Speci�cation Language: Proto-Standard, 1989. IST/5/50.

[Dij76] E.W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.

[Dro87] R.G. Dromey. Derivation of sorting algorithms from a speci�cation.
The Computer Journal, 30(6):512{518, 1987.

[Hay87] I. Hayes, editor. Speci�cation Case Studies. Prentice Hall Interna-
tional, 1987.

[Hoa69] C.A.R. Hoare. An axiomatic basis for computer programming. Com-
munications of the ACM, 12(10):576{580, 583, 1969.

[HS72] P. Henderson and R. Snowdon. An experiment in structured program-
ming. BIT, 12, 1972.

[Jac83] M.A. Jackson. System Development. Prentice Hall International, 1983.

[JL88] C.B. Jones and P.A. Lindsay. A support system for formal reasoning:
Requirements and status. In R. Bloom�eld, L. Marshall, and R. Jones,
editors, VDM'88: VDM|The Way Ahead, pages 139{152. Springer-
Verlag, 1988. Lecture Notes in Computer Science, Vol. 328.

[Jon79] C.B. Jones. Constructing a theory of a data structure as an aid to
program development. Acta Informatica, 11:119{137, 1979.

[Jon80] C.B. Jones. Software Development: A Rigorous Approach. Prentice
Hall International, Englewood Cli�s, NJ, 1980.

335

336 Bibliography

[Jon83] C.B. Jones. Speci�cation and design of (parallel) programs. In Pro-

ceedings of IFIP '83, pages 321{332. North-Holland, 1983.

[JS90] C.B. Jones and R.C.F. Shaw, editors. Case Studies in Systematic

Software Development. Prentice Hall International, 1990.

[Lin88] P.A. Lindsay. A survey of mechanical support for formal reasoning.
Software Engineering Journal, 3(1), 1988.

[Luc68] P. Lucas. Two constructive realizations of the block concept and their
equivalence. Technical Report TR 25.085, IBM Laboratory, Vienna,
1968.

[MJ84] F.L. Morris and C.B. Jones. An early program proof by Alan Turing.
Annals of the History of Computing, 6(2):139{143, 1984.

[RT89] B. Ritchie and P. Taylor. The interactive proof editor: An experi-
ment in interactive theorem proving. In G. Birtwistle and P.A. Sub-
rahmanyam, editors, Current Trends in Hardware Veri�cation and

Automated Theorem Proving. Springer-Verlag, 1989.

[Wei75] F. Weissenb�ock. A formal interface speci�cation. Technical Report
TR 25.141, IBM Laboratory, Vienna, 1975.

Index of Functions and Operations

abs, 31, 51, 58{60
absprod , 31
ACINF , 150
ADD , 78, 107, 151, 206
add , 62, 66
ADDWORD , 87
ADDWORDa, 191
ALLOC , 220
ALLOCr , 221
ANALYZE , 201
analyze-telegram, 202
arbs, 49

bagof , 171
BIRTHM , 127
BODY , 82
BSEARCH , 245

charge-words, 202
check -words, 202
checked , 244
CHECKWORD , 86
CHECKWORDa, 189
choose, 57
CODE , 175
collapse, 268
collect , 268
collkeys, 197
concat , 163
conv , 57
COPYPOS , 231
COUNT , 151, 205

dconc, 163
DECODE , 175
del , 164
DELETE , 196
depth, 276
DEQUEUE , 160, 214, 216, 217
DIVIDE , 78
divides, 32
double, 57, 77

EL, 233, 234
ELS , 107
ENQ , 172
ENQUEUE , 160, 216
ENTER, 211
EQUATE , 108, 135, 262, 273
extractks, 172

f , 49, 51, 281
FACT , 81
FIND , 196
FINDB , 255
FINDH , 256
�rst , 142
foo, 55, 56

GCD , 83
gcd , 49
greatereq , 39
GROUP , 107, 134, 135

hd , 163

IDIV , 240

337

338 Index of Functions and Operations

INIT , 82
insc, 193
INSERT , 196
INSERTB , 255
INSERTRH , 257
inv -Datec, 111, 116
inv -Partition, 100
is-before, 271
is-common-divisor , 32
is-disj , 93, 261
is-even, 32
is-hexable, 32
is-inc, 193
is-leapyr , 33
is-odd , 32
is-oneone, 140
is-orderedk , 170
is-permutation, 171
is-prdisj , 100, 261
is-prime, 36
is-stable, 171
ISEMPTY , 161, 217
isin, 123
ISINL, 209
ISLOC , 210

ldbl , 120
LEAVE , 211
less-than-three, 32
lessthan, 35
LOAD , 77
LOOKUPC , 210
LOOKUPL, 210
LOOP , 82, 235
lsum, 117

MADD , 208
MAKEPOS , 238
MARMALE , 104
MARRIAGE , 105
max , 48, 58

maxs, 47, 48
MCOUNT , 207
merge, 101, 261
MKDIR, 212
MNEW , 207
mpc, 151, 205
MULT , 231
mult , 60, 61
multp, 61, 62, 66, 68

NEWAC , 150
NEWC , 149
NEWFEM , 104
norm-temp, 111, 112

OBTAIN , 104
OBTAIN 1, 194
OP , 79, 127, 215, 281

pi , 52, 53
POSMUL, 238
POSMULT , 231
post-idiv , 33
post-sqrt , 33
post-sub, 33
pr , 142
ptrans, 175

RD , 152
RDVS , 152
rel-Queue, 221
RELEASE , 104
REMOVE , 218
retr -BUF , 194
retr -Dict , 183, 185, 187
retr -Kdm, 198
retr -Mrep, 256
retr -Part , 272
retr -Queue, 217
retr -Symtab, 221
retrns, 122

Index of Functions and Operations 339

rev , 168
root , 267
roots, 267, 275

s, 139
SBODY 1, 248
scm, 51
SEARCH , 244
second , 142
SETUP , 103
SHOW , 78, 212
SHOWP , 213
sift , 172
sign, 59
SORT , 170, 246
split , 249
sq , 65
square, 31
STORE , 210
STOREL, 209
sub, 50
subp, 50, 68, 69, 73
subseq , 164
sumn, 65

t , 101
TEST , 262, 272
TH , 233, 234
tl , 163
trace, 271

340 Index of Functions and Operations

Index of Types

Acdata, 149
Acinf , 148
Addr , 152, 220
Arep, 188

Bag , 151
Balance, 148
Bank , 148, 149
Block , 202
Bu
 , 194

Character , 201

Date, 117
Datec, 113, 116
Day , 113
Diary , 214
Diarysys, 214
Dict , 182
Dicta, 183
Dictb, 185
Dictc, 187
Dicte, 186
Dir , 212
Dirstatus, 212

Forest , 267

Heap, 255
Hotel , 156

Input , 201
Inputr , 202

Kdm, 196
Key , 175

Lisp1, 154
Lisp2, 154
Lisplist , 154
Llistel , 117

Map, 142
Mcode, 174
Mnode, 197, 254
Mnoder , 256
Mrep, 197, 254

Name, 113
Nestedfs, 212
Node, 122, 154, 212

Output , 201
Overdraft , 148

Page, 152
Pair , 142, 154
Part , 261
Partition, 116
Partrep, 134
Path, 213
Pcode, 175
Pllist , 153

Qitem, 172
Qtp, 172
Qtpm, 173
Qtps, 173

341

342 Index of Types

Queueb, 216

Rec, 170
Record , 115
Rel , 154, 155
Report , 201
Root , 255

S , 119
Section, 185
Sequence, 162
Sharedfs, 212, 213
State, 188
Studx , 155
Symbol , 202
Symtab, 220
Symtabrep, 220

T , 139
Telegram, 201
Trivfs, 211

Vstore, 152

Word , 185, 201
World , 127

X , 188

Year , 113

General Index

absorption, 94, 97, 143{145, 163, 166,
167, 224

abstract syntax, 114, 228
abstraction, xii, 81, 85, 86, 136, 151{

153, 182
adequacy, 184, 186, 187, 190, 221
ADJ diagram, 90, 113, 137, 162
ADJ group, 90
annotated program, 240
annotations, 208
antecedent, 3
application (of a function), 29
application (of a map), 137, 144
application (of a sequence), 162
arbitrary, 41
architecture, 179, 211
argument (of a function), 29
associativity, 6, 13, 17, 19, 22, 92, 95,

97, 145, 167
auxiliary function, 150

B-tree, 198
bag, 151, 171, 224
basis, 94, 119
behaviour, 130, 134, 181, 189, 190,

194, 206, 216, 217, 221
bias, 203, 216, 218, 220, 227
binary tree, 120
BNF, 114
body, 34
Boole, G., 3
Boolean value, 3, 4, 71
bound identi�er, 34

bound variable, 38, 40
boxed proof, 11, 13
BSI, xi, 203, 208

cardinality, 90
cases, 111
classical logic, 72
commutativity, 2, 6, 15, 70, 92, 94{

97, 138, 143{145, 163, 166,
224

complete induction, 67, 99
completeness, 72
composite object, 109, 113, 115, 119
compositionality, 180, 192, 230
concatenation, 160, 163, 167, 223, 224
conclusion, 6, 11
concrete interface, 199
concrete syntax, 14, 114, 202
conditional expression, 6, 31, 57
conjunction, 3, 11, 20, 70
consequent, 3
constraint, 34, 35
contingent expression, 5
contradiction, 5
contrapositive, 26

data rei�cation, 180, 192, 195, 199,
219

data rei�cation (general rules), 221
data type, 130, 203, 206
data type invariant, 100, 105, 116,

120, 126, 128, 130, 148, 150,
172, 185, 213, 219

343

344 General Index

data types, 209
de Morgan's laws, 24, 38, 42, 119
decidable, 8
Dedekind, R., 29
deduction theorem, 7, 24, 25, 72
derived rule, 13, 14, 16, 19, 40, 54
design, 243
design process, 179
development method, 259
di�erence (set), 89, 98
direct de�nition, 31, 45, 51, 53, 73,

122
disjoint, 93
disjunction, 3, 6, 10, 14, 70
distributed concatenation, 163
distributed intersection, 93
distributed union, 89, 96, 97
distributivity, 6, 23, 30, 43, 92, 96,

97
domain (of a function), 29
domain (of a map), 136, 139
domain rule, 190
domain rule (general), 221
double negation, 15

e�ciency, 76, 83, 86, 120, 182, 185,
186, 188, 199, 239, 246, 264,
266

Einstein, A., 203
elements (of a sequence), 162
empty map, 136, 143
empty sequence, 162, 166
empty set, 88, 93
equality, 73
equality (of sequences), 163
equality (of sets), 90
equations, 226, 228
equivalence, 3, 8, 14, 26, 70, 87
equivalence relation, 106, 134, 154,

260

equivalent expressions, 3
exception, 214, 215
excluded middle (law of), 25
exclusive or, 8, 27
existential quanti�er, 34, 41
exists unique, 38
external variable, 77

�nal interpretation, 223, 225
�nite object, 88, 117, 119, 136, 166
formal methods, xi, 100
formal proof, 9, 51, 52
formal speci�cation, 1, 208, 279
frame problem, 82, 242
free identi�er, 32, 34, 111
free variable, 2, 40
full abstraction, 218
function, 29, 133

generator, 61, 93, 94, 143, 166, 223,
224

ghost variable, 222

Haldane, J. B. S., 133
hashing, 198
head, 161, 163
Henderson, P., 200
Hertz, H., 159
Hoare, C. A. R., ix, 232
Hoare-triples, 232
hypotheses, 6, 11

idempotence, 96, 97
implementation, 219
implication, 3, 8, 24, 25, 70
implicit speci�cation, 45, 46, 48, 50,

51, 60, 67, 77, 83
implies, 3, 14
indexing, 162
indices, 162
induction, 63, 66

General Index 345

induction rule, 63, 99, 119, 144, 166,
167

induction step, 119
inductive proof, 64, 93, 119, 143
inductive rule, 94
inference rule, 10, 11, 73, 74
inference rule (bi-directional), 15
initial interpretation, 223
initial state, 79, 160, 192, 193, 222
interface, 196, 204, 205
intersection, 89, 97

Jackson, M. A., 180, 220
judgement, 4, 6, 8
Jung, C. G., 109

Kline, M., 179

Leibniz, G. W., 229
length (of a sequence), 162
let, 31, 111
logical expression, 34
logical value, 3
loop invariant, 237, 238, 244, 246,

247
LPF, 71, 149, 234
Lucas, P., 222

machine architecture, 151
maintenance, 199
make-function, 109, 110, 113
map, 134, 136, 139, 148
map comprehension, 135, 136
map deletion, 139
map induction, 143
map inverse, 140
map restriction, 139
map union, 138
maplet, 134, 136
mathematical logic, 1
mathematics, 259, 260

McCarthy, J., 1, 228
membership, 90, 98
model, 153, 159, 172, 174, 204, 208,

219, 228
model theory, 9
model-oriented speci�cation, 131, 141,

203, 217, 227, 228
module, 79, 204{210
modulus, 30
modus ponens, 24
monotone, 71, 74
Morgan, C., 213
multiple quanti�ers, 36
multiset, 151

naming conventions, 115
natural deduction, 10, 12, 13, 17, 19,

54, 230, 240
natural numbers, 61, 63, 66
negation, 3, 70
non-determinism, 67, 83, 104, 171,

190, 194, 215, 220, 273

Oakley, B., xi
one-to-one map, 140
operation, 77, 204
operation decomposition, 180, 230,

252
operation modelling, 190
operation quotation, 206, 208, 211
operator, 2, 30
operator precedence, 4, 91
ordered pair, 141
ordering relation, 71
overloading, 138
override, 135, 138, 144, 145
overspeci�cation, 203, 222

palindrome, 169
parameter, 111
partial function, 47, 68, 72, 74

346 General Index

partition, 100, 106
performance, 196, 204, 243, 245, 254
permutation, 171
Popper, K., 280
post-condition, 33, 47, 48, 50, 60, 77,

80, 172, 188, 206, 229, 237
power set, 88
pre-condition, 47, 50, 52, 55, 58, 68,

78, 214, 215
predicate, 2
predicate calculus, 38, 40
program, 76
programming language, 85, 188, 199,

215, 229, 234, 243
proof, 9
proof discovery, 9, 13, 17, 21, 54
proof obligation, 9, 51, 69, 125, 129,

155, 180, 184, 189, 190, 230,
243

proof theory, 9, 14, 71
proper subset, 90
properties, 265, 279
property of a speci�cation, 108
property-oriented speci�cation, 203,

223, 227, 228
proposition, 1, 31, 69
propositional calculus, 1, 8, 14, 38
propositional logic, 8
propositional operator, 2

quanti�er, 34
quotation, 254

range, 30, 60
range operator, 137
recursion, 49, 61, 116
recursive function, 94, 188
redundancy, 150
re�nement, 180
re
exivity, 106, 171, 265
relation, 106, 154, 181, 221

relational operator, 2
representation, 180, 182, 186, 196,

272
requirements, 108, 200, 279, 280
result rule, 190
result rule (general), 221
retrieve function, 182, 184, 186, 190,

199, 202, 217, 221
reverse, 168
rigorous argument, 7, 9, 93, 125
Russell, B., 45

satisfaction, 51, 81, 181
satis�ability, 49, 83, 125, 126
satisfy, 32
Scott, D., 259
selector, 110, 112, 113
semantic object, 211
sequence, 159, 160, 166, 175, 224
sequent, 6, 7, 10, 11
sequential composition, 231, 232
set, 86, 87, 224
set comprehension, 87, 128
set enumeration, 87
set induction, 94
set insertion, 93
signature, 29, 47, 60, 226
Snowdon, R. A., 200
sorting, 48, 170
speci�cation, xi, 85, 131, 217
state, 76, 80, 81, 148, 150, 211, 213,

220
strong equality, 74
structural induction, 119, 193
subset, 90
substitution, 40, 53, 54, 96
su�ciently abstract, 218
Sufrin, B., 213
symmetric di�erence, 93, 98
symmetry, 106, 265

General Index 347

syntax directed editor, 202

tail, 161, 163
tautology, 4, 5, 7, 73
term, 2
term algebra, 224
theory, 100, 197, 260, 261, 271
total function, 68
transitivity, 106, 135, 170, 171, 237,

265
truth table, 3, 4, 8, 9, 69{71
truth-valued function, 2, 31
Turing, A., 241
turnstile, 6
type checking, 116

union, 89
universal quanti�er, 35, 41, 42, 53,

170

variable capture, 40
VDM, 81, 203, 232, 237
Veloso, P., 173

weak equality, 73, 74
well-founded, 237, 267
well-founded relation, 155
well-foundedness, 256
Whitehead, A. N., 85

