
Formal Methods� State of the Art and Future

Directions

Edmund M� Clarke and Jeannette M� Wing

Carnegie Mellon University

We survey recent progress in the development of mathematical techniques for specifying and ver�
ifying complex hardware and software systems� Many of these techniques are capable of handling
industrial�sized examples� in fact� in some cases these techniques are already being used on a
regular basis in industry� Success in formal speci�cation can be attributed to notations that are
accessible to system designers and to new methodologies for applying these notations e�ectively�
Success in veri�cation can be attributed to the development of new tools such as more powerful
theorem provers and model checkers than were previously available� Finally� we suggest some
general research directions that we believe are likely to lead to technological advances� Although
it is di�cult to predict where the future advances will come� optimism about the next generation
of formal methods is justi�ed in view of the progress during the past decade� Such progress� how�
ever� will strongly depend on continued support for basic research on new speci�cation languages
and new veri�cation techniques�

Categories and Subject Descriptors� B�	�
 �Hardware�� Control Structure Performance Analysis
and Design AidsFormal models� B�	�� �Hardware�� Microprogram Design AidsVeri�cation�
B�
�
 �Arithmetic and Logic Structures�� Performance Analysis and Design AidsVeri��
cation� B���� �Memory Structures�� Performance Analysis and Design AidsFormal models�
B���� �Input�Output and Data Communications�� Performance Analysis and Design Aids
Formal models� veri�cation� B���
 �Register�Transfer�Level Implementation�� Design Aids
Veri�cation� B���� �Logic Design�� Design AidsVeri�cation� B���
 �Integrated Circuits��
Design AidsVeri�cation� D�
�	 �Software Engineering�� Requirements�Speci�cations� D�
��
�Software Engineering�� Program Veri�cationAssertion checkers� correctness proofs� D���

�Programming Languages�� Language Classi�cationsDesign languages� Very high�level lan�
guages� F���	 �Logics and Meanings of Programs�� Specifying and Verifying and Reasoning

This research is sponsored in part by the Wright Laboratory� Aeronautical Systems Center� Air
Force Materiel Command� USAF� and the Advanced Research Projects Agency �ARPA� under
grant number F���	�����	�	���� Views and conclusions contained in this document are those
of the authors and should not be interpreted as necessarily representing o�cial policies or en�
dorsements� either expressed or implied� of Wright Laboratory or the United States Government�
Address� Computer Science Department� Carnegie Mellon University� ���� Forbes Avenue� Pitts�
burgh� PA 	�
	�
Working Group Members� Rajeev Alur� Edmund Clarke �co�chair�� Rance Cleaveland� David
Dill� Allen Emerson� Stephen Garland� Steven German� John Guttag� Anthony Hall� Thomas
Henzinger� Gerard Holzmann� Cli� Jones� Robert Kurshan� Nancy Leveson� Kenneth McMillan�
J Moore� Doron Peled� Amir Pnueli� John Rushby� Natarajan Shankar� Joseph Sifakis� Prasad
Sistla� Bernhard Ste�en� Pierre Wolper� Jeannette Wing �co�chair�� Jim Woodcock� and Pamela
Zave�
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for pro�t or direct commercial
advantage and that copies show this notice on the �rst page or initial screen of a display along
with the full citation� Copyrights for components of this work owned by others than ACM must
be honored� Abstracting with credit is permitted� To copy otherwise� to republish� to post on
servers� to redistribute to lists� or to use any component of this work in other works� requires prior
speci�c permission and�or a fee� Permissions may be requested from Publications Dept� ACM
Inc�� 	�	� Broadway� New York� NY 	���� USA� fax �	 �
	
� �������	� or permissions�acm�org�

� � E�M� Clarke and J�M� Wing

About ProgramsMechanical veri�cation� Speci�cation techniques� F���	 �Mathematical Logic
and Formal Languages�� Mathematical LogicMechanical theorem proving

General Terms� Software engineering� formal methods� hardware veri�cation

Additional Key Words and Phrases� Software speci�cation� model checking� theorem proving

�� INTRODUCTION

Hardware and software systems will inevitably grow in scale and functionality�
Because of this increase in complexity� the likelihood of subtle errors is much greater�
Moreover� some of these errors may cause catastrophic loss of money� time� or
even human life� A major goal of software engineering is to enable developers
to construct systems that operate reliably despite this complexity� One way of
achieving this goal is by using formal methods� which are mathematically�based
languages� techniques� and tools for specifying and verifying such systems� Use of
formal methods does not a priori guarantee correctness� However� they can greatly
increase our understanding of a system by revealing inconsistencies� ambiguities�
and incompletenesses that might otherwise go undetected�
The �rst part of this report assesses the state of the art in speci�cation and ver�

i�cation� For veri�cation� we highlight advances in model checking and theorem

proving� In the three sections on speci�cation� model checking� and theorem prov�
ing� we explain what we mean by the general technique and brie�y describe some
successful case studies and well�known tools� The second part of this report outlines
future directions in fundamental concepts� new methods and tools� integration of
methods� and education and technology transfer� We close with summary remarks
and pointers to resources for more information�

�� STATE OF THE ART

In the past� the use of formal methods in practice seemed hopeless� The notations
were too obscure� the techniques did not scale� and the tool support was inadequate
or too hard to use� There were only a few non�trivial case studies and together they
still were not convincing enough to the practicing software or hardware engineer�
Few people had the training to use them e�ectively on the job�
Only recently have we begun to see a more promising picture for the future of

formal methods� For software speci�cation� industry is open to trying out notations
like Z to document a system�s properties more rigorously� For hardware veri�ca�
tion� industry is adopting techniques like model checking and theorem proving to
complement the more traditional one of simulation� In both areas� researchers
and practitioners are performing more and more industrial�sized case studies� and
thereby gaining the bene�ts of using formal methods�

��� Speci�cation

Speci�cation is the process of describing a system and its desired properties� Formal
speci�cation uses a language with a mathematically�de�ned syntax and semantics�
The kinds of system properties might include functional behavior� timing behavior�
performance characteristics� or internal structure� So far� speci�cation has been

Formal Methods� State of the Art and Future Directions � �

most successful for behavioral properties� One current trend is to integrate di�erent
speci�cation languages� each able to handle a di�erent aspect of a system� Another
is to handle non�behavioral aspects of a system like its performance� real�time
constraints� security policies� and architectural design�
Some formalmethods such as Z �Spivey 	
���� VDM �Jones 	
��� and Larch �Gut�

tag and Horning 	

�� focus on specifying the behavior of sequential systems� States
are described in terms of rich mathematical structures like sets� relations� and
functions� state transitions are given in terms of pre� and post�conditions� Other
methods such as CSP �Hoare 	
���� CCS �Milner 	
���� Statecharts �Harel 	
����
Temporal Logic �Pnueli 	
�	� Manna and Pnueli 	

	� Lamport 	
���� and I�O
automata �Lynch and Tuttle 	
��� focus on specifying the behavior of concurrent
systems� states typically range over simple domains like integers or are left unin�
terpreted� and behavior is de�ned in terms of sequences� trees� or partial orders of
events� Still others such as RAISE �Nielsen et al� 	
�
� and LOTOS �ISO 	
���
wed two di�erent methods� one for handling rich state spaces and one for handling
complexity due to concurrency� Common to all these methods is the use of the
mathematical concepts of abstraction and composition�
The process of speci�cation is the act of writing things down precisely� The main

bene�t in so doing is intangible�gaining a deeper understanding of the system be�
ing speci�ed� It is through this speci�cation process that developers uncover design
�aws� inconsistencies� ambiguities� and incompletenesses� A tangible by�product
of this process� however� is an artifact� which itself can be formally analyzed� e�g��
checked to be internally consistent or used to derive other properties of the speci�ed
system� The speci�cation is a useful communication device between customer and
designer� between designer and implementor� and between implementor and tester�
It serves as a companion document to the system�s source code� but at a higher
level of description�

Notable Examples

�CICS� Oxford University and IBM Hursley Laboratories collaborated in the
	
��s on using Z to formalize part of IBM�s Customer Information Control Sys�
tem� an on�line transaction processing system with thousands of installations
worldwide �Houston and King 	

	�� Measurements taken by IBM throughout
the development process indicated an overall improvement in the quality of the
product� a reduction in the number of errors discovered� and earlier detection
of errors found in the process� IBM also estimated a
� reduction in the total
development cost of the new release� The success of this work is well�known and
resulted in the Queen�s Award for Technological Achievement� It inspired many
others to follow suit�

�CDIS� In 	

� Praxis delivered to the UK Civil Aviation Authority the CCF
Display Information System� a part of the new air tra�c management system for
London�s airspace �Hall 	

�� CDIS is a distributed� fault�tolerant system imple�
mented on nearly 	�� computers linked in a dual local area network� Praxis used
formal methods as an integral part of the development process and in conjunc�
tion with other software engineering� project management� and quality assurance
techniques� During requirements analysis� formal description supplemented infor�

� � E�M� Clarke and J�M� Wing

mal and structured requirements notations� At the system speci�cation stage� an
abstract VDM model was developed in conjunction with concrete user interface
de�nitions� semi�formal de�nitions of the concurrent behavior� and de�nitions
of external interfaces� During design� the abstract VDM was re�ned into more
concrete module speci�cations� At a lower level� the software for the dual LAN
was speci�ed and developed formally using CCS�

Productivity on the project was the same or better than on comparable projects
carried out using informal methods� There was� in other words� no net cost
in using formal methods� However� the perceived and measured quality of the
software was much higher� The delivered software had a defect rate of about ����
faults per thousand lines of code� a �gure two to ten times better than that for
published projects and on comparable software in air tra�c control applications
that did not use formal methods�

�Lockheed C���J� Praxis has been recently working with Lockheed on analyzing
the code for the avionic software of the Lockheed C	��J �Croxford and Sutton
	

�� being supplied to the US Air Force and RAF� The software is coded in the
SPARK�annotated subset of Ada� Speci�cations are written in the Software Pro�
ductivity Consortium�s CORE notation �SPC 	

��� which is based on Parnas�s
tabular speci�cations �Heninger 	
��� Janicki et al� 	

�� Many would expect
that the use of SPARK would add to the cost of the software� while improving
its quality� The added quality� however� decreased the overall cost of software
development because of the huge savings in testing� The use of SPARK anno�
tations to specify the behavior of the modules led to software which is close to
being �correct by construction� and hence passes its tests instead of requiring
expensive rework�

�TCAS� In the early 	

�s� the Safety�Critical Systems Research Group at the
University of California� Irvine �now at the University of Washington� produced
a formal requirements speci�cation for the Tra�c Collision Avoidance System
�TCAS� II� required on all commercial aircraft �ying in U�S� airspace� They
used the Requirements State Machine Language �RSML�� which is based on
Statecharts with changes made to overcome di�culties found during the spec�
i�cation process� Although an industry group was attempting to provide an
English language speci�cation at the same time� the complexity of TCAS im�
peded that process� eventually the English speci�cation e�ort was abandoned
and the RSML speci�cation was adopted instead� After a group of industry and
university representatives produced a �rst draft of the TCAS II speci�cation� a
private company on behalf of the Federal Aviation Administration took over the
speci�cation e�ort� o�cial TCAS II documentation still uses RSML� Both the
private company and the original university researchers have produced automated
tools for RSML including simulators� test case generators and other test tools�
and safety analysis tools� The TCAS II speci�cation has been automatically
checked for mathematical completeness and consistency �Heimdahl and Leveson
	

� and provably�correct code can now be automatically generated from RSML
speci�cations�

The TCAS II project demonstrated �	� the practicality of writing a formal re�
quirements speci�cation for a complex� process�control system and ��� the feasi�

Formal Methods� State of the Art and Future Directions � �

bility of building a formal model of a system that is readable and reviewable by
application experts without special training�

Other case studies in formal speci�cation have been performed primarily on com�
mercial and safety�critical systems� Some are proprietary or lack documentation
that we can cite� To give the reader a sense of the applicability of formal methods�
we list below some for which we can provide references�

�Databases� An HP Medical Instruments real�time database for storing patient
monitoring information �Bear 	

	��

�Devices� A Tektronix family of oscilloscopes �Delisle and Garlan 	

��� a Schlum�
berger line of household electricity meters �Arnold et al� 	

��

�Hardware� An INMOS �oating point processor �Barrett 	
�
�� the virtual chan�
nel processor in INMOS�s T
��� transputer �Barrett 	

��� �Also see Section
�������

�Medical� The Clinical Neutron Therapy System at the University of Washington
�cyclotron controller� �Jacky 	

���

�Nuclear� Argonne National Laboratories� work on the Reactor Safety System for
the Experimental Breeder Reactor�II �Chisolm et al� 	
��� Kljaich et al� 	
�
�� the
shutdown system of the Darlington Nuclear Generating System in Canada �Archi�
no� et al� 	

���

�Security� The security policy model for the NATO Air Command and Control
System �Boswell 	

��� the secure transmission of datagrams in the Multinet
Gateway System �Dinolt et al� 	
���� the Token�based Access Control System of
the U�S� National Institute of Standards and Technology �Kuhn and Dray 	

���

�Telephony� Various features of AT�T�s �ESS telephone switching system using
Esterel �Jagadeesan et al� 	

� and combinations of Z and CSP �Mataga and Zave
	

�� Zave 	

�� Zave and Jackson 	

�� the University of Passau and Siemens
Nixdorf�s joint work on customizable telephone services and features �Ste�en
et al� 	

�� recently done for Deutsche Telekom�

�Transportation� The automatic train protection system for the Paris Metro �Carnot
et al� 	

�� Guiho and Hennebert 	

��� British Rail�s signaling rules �King 	

���
and the on�board avionics software for an Israel aircraft �Harel 	

���

See also �Craigen et al� 	

�a� Craigen et al� 	

�b� Craigen et al� 	

�� Craigen
et al� 	

�� for a description of twelve case studies in formal methods �most cited
above��

��� Veri�cation

Two well�established approaches to veri�cation are model checking and theorem
proving� They go one step beyond speci�cation� these formal methods are used to
analyze a system for desired properties�

����	 Model Checking� Model checking is a technique that relies on building a
�nite model of a system and checking that a desired property holds in that model�
Roughly speaking the check is performed as an exhaustive state space search which
is guaranteed to terminate since the model is �nite� The technical challenge in
model checking is in devising algorithms and data structures that allow us to handle

� � E�M� Clarke and J�M� Wing

large search spaces� Model checking has been used primarily in hardware and
protocol veri�cation �Clarke and Kurshan 	

�� the current trend is to apply this
technique to analyzing speci�cations of software systems�
Two general approaches to model checking are used in practice today� The �rst�

temporal model checking� is a technique developed independently in the 	
��s by
Clarke and Emerson �Clarke and Emerson 	
�	� and by Queille and Sifakis �Queille
and Sifakis 	
���� In this approach speci�cations are expressed in a temporal
logic �Pnueli 	
�	� and systems are modeled as �nite state transition systems� An
e�cient search procedure is used to check if a given �nite state transition system is
a model for the speci�cation��

In the second approach� the speci�cation is given as an automaton� then the sys�
tem� also modeled as an automaton� is compared to the speci�cation to determine
whether or not its behavior conforms to that of the speci�cation� Di�erent notions
of conformance have been explored� including language inclusion �Har�El and Kur�
shan 	

�� Kurshan 	

�a�� re�nement orderings �Cleaveland et al� 	

�� Roscoe
	

��� and observational equivalence �Cleaveland et al� 	

�� Fernandez et al� 	

�
Roy and de Simone 	

��� Vardi and Wolper �Vardi and Wolper 	
�� showed how
the temporal�logic model�checking problem could be recast in terms of automata�
thus relating these two approaches�
In contrast to theorem proving� model checking is completely automatic and

fast� sometimes producing an answer in a matter of minutes� Model checking can
be used to check partial speci�cations� and so it can provide useful information
about a system�s correctness even if the system has not been completely speci�ed�
Above all� model checking�s tour de force is that it produces counterexamples� which
usually represent subtle errors in design� and thus can be used to aid in debugging�
The main disadvantage of model checking is the state explosion problem� In

	
�� McMillan used Bryant�s ordered binary decision diagrams �BDDs� �Bryant
	
�� to represent state transition systems e�ciently� thereby increasing the size
of the systems that could be veri�ed� Other promising approaches to alleviating
state explosion include the exploitation of partial order information �Peled 	

��
localization reduction �Kurshan 	

�a� Kurshan 	

�b�� and semantic minimiza�
tion �Elseaidy et al� 	

� to eliminate unnecessary states from a system model�
Model checkers today are routinely expected to handle systems with between 	��

and ��� state variables� They have checked interesting systems with 	���� reachable
states �Burch et al� 	

��� and by using appropriate abstraction techniques� they can
check systems with an essentially unlimited number of states �Clarke et al� 	

���
As a result� model checking is now powerful enough that it is becoming widely used
in industry to aid in the veri�cation of newly developed designs�

Notable Examples

�IEEE Futurebus�� In 	

� Clarke and his students at Carnegie Mellon used
SMV �McMillan 	

�� to verify the cache coherence protocol described in the
IEEE Futurebus� Standard �
�	�	

	 �Clarke et al� 	

�� Long 	

��� They

�Exhaustive state space search� or reachability analysis� dates back to the earliest papers on Petri
Nets� The term �model checking� was coined by Clarke and Emerson �Clarke and Emerson 	��	��

Formal Methods� State of the Art and Future Directions � �

constructed a precise model of the protocol in the SMV input language and
then used SMV to show that the resulting transition system satis�ed a formal
speci�cation of cache coherence� They found a number of previously undetected
errors and potential errors in the design of the protocol� This appears to be the
�rst time that an automatic veri�cation tool has been used to �nd errors in an
IEEE standard� Although the development of the protocol began in 	
��� all
previous attempts to validate it were based entirely on informal techniques�

�IEEE SCI� In 	

� Dill and his colleagues at Stanford developed the Murphi
�nite state veri�cation system and veri�ed the cache coherence protocol of the
Scalable Coherent Interface� IEEE Standard 	�
�	

� �Dill et al� 	

��� The SCI
standard de�nes several protocols� each a subset of the next� They constructed a
model of a �typical� protocol and supplied a speci�cation of properties necessary
for cache coherence� To avoid errors in the translation� they based their model
directly on the C code that is given as a de�nition of the SCI standard� Since
the number of states of the model could be very large� they veri�ed only small
instances of the system� Even with this simpli�cation� they found several errors
in the protocol� ranging from omissions of variable initializations to subtle logical
errors� These errors existed in the rather basic subset that they de�ned� although
the protocol had been extensively discussed� simulated� and even implemented�

�Stereo components� One of the emerging application domains of automatic
veri�cation is the design of hybrid systems� which consist of both discrete and
continuous components� In 	

�� Bosscher� Polak� and Vaandrager won a best�
paper award for proving manually the correctness of a control protocol used in
Philips stereo components �Bosscher et al� 	

��� In 	

�� Ho and Wong�Toi
veri�ed an abstraction of the protocol using the symbolic model checker HyTech
and inferred� fully automatically� a more e�cient timing of the protocol than the
one used by Philips �Ho and Wong�Toi 	

��� Also in 	

�� Daws and Yovine
used the veri�cation tool Kronos �Daws and Yovine 	

�� to check automatically
all the properties stated and handproved by Bosscher et al� In 	

� Bengtsson
and his colleagues model checked the entire protocol� thus completing the quest
of fully automating a human proof that as little as two years ago was considered
far out of reach for algorithmic methods �Bengtsson et al� 	

��

�ISDN�ISUP� The NewCoRe Project was the �rst full�scale application of formal
veri�cation methods in a routine software design project within AT�T �Chaves
	

�� Holzmann 	

��� The project lasted from 	
�
 until 	

�� Formal mod�
eling and automated veri�cation were applied to the development of the Inter�
national Telecommunications Union �formerly CCITT� ISDN�IUPP �ISDN User
Part Procotol�� A team of �ve �veri�cation engineers� formalized 	�� require�
ments in temporal logic� and rendered the proofs with the help of a special�
purpose model checker �Holzmann 	

�� Holzmann and Patti 	
�
�� A total of
����� lines of Speci�cation and Description Language �SDL� source code �exclud�
ing comments� was veri�ed� 		� errors were revealed �and �xed� in the high�level
designs� approximately ��� of the original design requirements were discovered
to be logically inconsistent�

�HDLC� A High�level Data Link Controller �HDLC� transmitter core was being
designed at the Bell Labs Microelectronics Design Center in Madrid� Spain for

	 � E�M� Clarke and J�M� Wing

an Application�Speci�c Integrated Circuit library of telecommunication macro�
cells� The standard design process included capture at the register�transfer level
using VHDL� simulation� and synthesis� In 	

� late in the process� the formal
veri�cation team at Bell Labs o�ered to run some additional functional veri�ca�
tion on the design �Calero et al� 	

��� Since this design was considered to be
practically �nished� it was not expected that any errors would be found� Within
�ve hours of work� six properties were speci�ed and �ve were veri�ed� using the
FormalCheck veri�cation tool �DePalma and Glaser 	

�� The sixth property
was found by FormalCheck to fail� uncovering a bug that would have at least
reduced the throughput of the HDLC channel� More likely� this bug would have
confused the higher level protocols causing lost transmissions� It took just a few
minutes to identify and propose a �x for a design error that managed to escape
many hours of logic simulation� The error was corrected and the correction was
formally veri�ed using FormalCheck� Plans are now in the works at the Madrid
design center to include model checking as part of the standard design process�

�PowerScale In 	

� a group at Bull in collaboration with researchers of the
Verimag Laboratory used LOTOS to describe the processors� memory controller�
and bus arbiter of the multiprocessor architecture called PowerScale� This ar�
chitecture is based on IBM�s PowerPC microprocessor and is used in Bull�s Es�
cala series of servers and workstations�� They identi�ed four correctness prop�
erties� which express the essential requirements for a proper functioning of the
arbitration algorithm� and formalized the properties and algorithm in terms of
bisimulation relations �modulo abstractions� between �nite labelled transition
systems� Using the compositional and on�the��y model checking techniques im�
plemented in the C�sar�Ald�ebaran Development Package �CADP� toolbox�
the correctness of the arbitration algorithm was established automatically in a
few minutes �Chehaibar et al� 	

��

�Buildings� In 	

� civil engineers at North Carolina State University used the
Concurrency Workbench to analyze the timing properties of a distributed active
structural control system �Elseaidy et al� 	

�� The system in question was de�
signed to make buildings more resistant to earthquakes by sampling the forces
being applied to the structure and using hydraulic actuators to exert countervail�
ing forces� The engineers �rst coded their design in a timed version of the CCS
language� the resulting model contained in excess of ��	� � 	��� states and was
not directly analyzable� However� by using the semantic minimization feature of
the Concurrency Workbench� they were able to construct automatically a much
smaller system with the same timing properties that could be analyzed� In the
course of their analysis they uncovered an error in a timer setting that� if un�
detected� could have caused the active structural control component to worsen�
rather than dampen� the vibration experienced by buildings during earthquakes�

Other successful industrial�sized case studies in model checking are too numerous
to list� Evidence that model checking has �come�of�age� is that industry is building
their own model checkers or simply using existing ones� Listed below are some well�
known model checkers� roughly categorized according to whether the speci�cation

�PowerScale and Escala are registered trademarks of Bull�

Formal Methods� State of the Art and Future Directions �

they check is given as a logical formula or as a machine�

�Temporal logic model checkers� The very �rst two model checkers were
EMC �Clarke and Emerson 	
�	� Clarke et al� 	
�� Browne et al� 	
�� and
C SAR �Queille and Sifakis 	
��� Fernandez et al� 	

�� SMV �McMillan
	

�� is the �rst model checker to use BDDs� The Spin system �Gerth et al�
	

�� Holzmann 	

	� uses partial order reduction to reduce the state explosion
problem �Holzmann and Peled 	

�� Peled 	

�� Murphi �Dill et al� 	

�� and
UV �Kaltenbach 	

�� are based on the Unity programming language �Chandy
and Misra 	
���� The Concurrency Workbench �Cleaveland et al� 	

�� veri�es
CCS processes for properties expressed as mu�calculus formulas� SVE �Filkorn
et al� 	

��� FORMAT �Damm et al� 	

�� Damm and Delgado�Kloos 	

�� and
CV �D!eharbe and Borrione 	

�� all focus on hardware veri�cation� HyTech �Alur
et al� 	

� is a model checker for hybrid systems� Kronos �Daws and Yovine 	

��
Henzinger et al� 	

��� for real�time systems�

�Behavior conformance checkers� The Cospan�FormalCheck system �De�
Palma and Glaser 	

� Har�El and Kurshan 	

�� is based on showing inclusion
between omega automata� FDR �Roscoe 	

�� checks re�nement between CSP
programs� most recently� it has been used to verify and debug the Needham�
Schroeder authentication protocol �Lowe 	

�� The Concurrency Workbench �Cleave�
land et al� 	

�� checks a similar notion of re�nement between CCS programs� it
and the tool Auto �Roy and de Simone 	

�� may also be used to minimize sys�
tems with respect to observational equivalence and to determine if two systems
are observably equivalent�

�Combination checkers� Berkeley�s HSIS �Hojati et al� 	

�� combines model
checking with language inclusion� Stanford�s STeP �Bj"rner et al� 	

� system�
with deductive methods� and VIS �Brayton et al� 	

�� with logic synthesis� The
PVS theorem prover �Owre et al� 	

�� has a model checker for the modal mu�
calculus �Rajan et al� 	

��� METAFrame �Ste�en et al� 	

� is an environment
that supports model checking in the entire software development process�

����� Theorem Proving� Theorem proving is a technique where both the system
and its desired properties are expressed as formulas in some mathematical logic�
This logic is given by a formal system� which de�nes a set of axioms and a set of
inference rules� Theorem proving is the process of �nding a proof of a property
from the axioms of the system� Steps in the proof appeal to the axioms and rules�
and possibly derived de�nitions and intermediate lemmas� While proofs can be
constructed by hand� here� we focus only on machine�assisted theorem proving�
Theorem provers are increasingly being used today in the mechanical veri�cation
of safety�critical properties of hardware and software designs�
Theorem provers can be roughly classi�ed in a spectrum from highly automated�

general�purpose programs to interactive systems with special�purpose capabilities�
The automated systems have been useful as general search procedures and have
had noteworthy success in solving various combinatorial problems� The interactive
systems have been more suitable for the systematic formal development of mathe�
matics and in mechanizing formal methods�
In contrast to model checking� theorem proving can deal directly with in�nite

state spaces� It relies on techniques like structural induction to prove over in�nite

�� � E�M� Clarke and J�M� Wing

domains� Interactive theorem provers� by de�nition� require interaction with a
human� so the theorem proving process is slow and often error�prone� In the process
of �nding the proof� however� the human user often gains invaluable insight into
the system or the property being proved�

Notable Examples

�SRT division algorithm� In 	

� Clarke� German� and Zhao used automatic
theorem�proving techniques based on symbolic algebraic manipulation to prove
the correctness of an SRT division algorithm similar to the one in the Pen�
tium �Clarke et al� 	

�� This veri�cation method runs automatically and could
have detected the error in the Pentium� which was caused by a faulty quotient
digit selection table� Later Rue#� Shankar� and Srivas used SRI�s general�purpose
theorem prover� PVS �Owre et al� 	

��� on this same example �Rue#et al� 	

��

�Processor designs� The Verity veri�cation tool �Kuehlmann et al� 	

�� is
widely used within IBM in the design of many processors such as the PowerPC
and System��
�� Applied in a hierarchical manner� the tool can handle entire
processor designs containing millions of transistors �Appenzeller and Kuehlmann
	

��� Using this tool� the functional behavior of a hardware system at the
register transfer level� gate level� or transistor level� is modeled as a boolean state
transition function� Algorithms based on BDDs are used to check the equivalence
of the state transition functions for di�erent design levels�

�Motorola ���	�� In 	

	 Boyer and Yu constructed an Nqthm �Boyer and
Moore 	
�
� Boyer and Moore 	
��� speci�cation of the Motorola ���� mi�
croprocessor �including ��� of the user�mode instructions� �Boyer and Yu 	

��
They used the speci�cation to prove the correctness of many binary machine code
programs produced by commercial compilers from source code in such high�level
languages as Ada� Lisp� and C� For example� Yu veri�ed the MC���� binary
code produced by the �gcc� compiler for �	 of the �� C programs in the Berkeley
string library�

�AMD
K��� In 	

� Moore and Kaufmann of Computational Logic� Inc�� and
Lynch of Advanced Micro Devices� Inc�� collaborated to prove the correctness of
Lynch�s microcode for �oating point division on the AMD�K�� Starting from
an informal proof of correctness they formalized their argument in the ACL�
logic �Kaufmann and Moore 	

�� and checked it with the ACL� mechanical
theorem prover� Gaps and mistakes were found in the informal �proof� but in
the end the microcode was mechanically shown to be correct �Moore et al� 	

��
The entire e�ort took about nine weeks� The mechanical proof ended doubt of
the code�s correctness and allowed testers to focus on other routines� In 	

Russino� used ACL� to check the correctness of the �oating point square root
microcode �Russino� 	

�� He found bugs in the microcode itself� after they
were �xed� the �nal version of the square root microcode was also mechanically
proved correct�

�Motorola CAP� During 	

��	

 Brock of Computational Logic� Inc�� work�
ing in collaboration with Motorola designers� developed an ACL� speci�cation
of the entire Motorola Complex Arithmetic Processor �CAP�� a microprocessor

Formal Methods� State of the Art and Future Directions � ��

for digital signal processing �DSP�� The CAP is the most complicated micro�
processor yet formalized� with a three stage pipeline� six independent memories�
four multiplier�accumulators� over ��� programmer�visible registers� and an in�
struction set allowing the simultaneous modi�cation of well over 	�� registers in
a single instruction� The formal speci�cation tracked the evolving design and
included a simpler non�pipelined view that was proved equivalent on a certain
class of programs� Finally� Brock used ACL� to verify the binary microcode for
several DSP algorithms �Brock et al� 	

��

�AAMP
� During 	

��	

� Srivas of the Stanford Research Institute and Miller
of Rockwell International collaborated on the speci�cation and veri�cation of
the Collins Commercial Avionics AAMP� microprocessor� They used PVS to
specify 	�� of the ��
 AAMP� instructions and veri�ed the microcode for 		
representative instructions �Miller and Srivas 	

���

As with model checking� an increase in the number and kinds of theorem provers
provides evidence for a growing interest in theorem proving� There has been a
corresponding increase in the number and kinds of examples to which theorem
provers have been applied� Below is a list of some well�known theorem provers�
categorized roughly by their degree of automation�

�User�guided automatic deduction tools� Systems like ACL� �Kaufmann
and Moore 	

��� Eves �Craigen et al� 	
���� LP �Garland and Guttag 	
����
Nqthm �Boyer and Moore 	
�
�� Reve �Lescanne 	
���� and RRL �Kapur and
Musser 	
��� are guided by a sequence of lemmas and de�nitions but each theo�
rem is proved automatically using built�in heuristics for induction� lemma�driven
rewriting� and simpli�cation� Nqthm� the Boyer�Moore theorem prover� has been
used to check a proof of G$odel�s �rst incompleteness theorem� and in a variety of
large�scale veri�cation e�orts�

�Proof checkers� Examples include Coq �Cornes et al� 	

��� HOL �Gordon
	
���� LEGO �Luo and Pollack 	

��� LCF �Gordon et al� 	
�
�� and Nuprl �Con�
stable et al� 	
��� They have been used to formalize and verify hard problems
in mathematics and in program veri�cation�

�Combination provers� Analytica �Clarke and Zhao 	

��� which combines
theorem proving with the symbolic algebra system Mathematica� has success�
fully proved some hard number�theoretic problems due to Ramanujam� Both
PVS �Owre et al� 	

�� and STeP �Bj"rner et al� 	

� combine powerful decision
procedures and model checking with interactive proof� PVS has been used to
verify a number of hardware designs and reactive� real�time� and fault�tolerant
algorithms�

�� FUTURE DIRECTIONS

The overarching goal of formal methods is to help engineers construct more reliable
systems� Formal methods is thus an area that cuts across almost all other areas
in Computer Science� Its foundations lie squarely in mathematics� its intended
applications are hardware and software systems� and its potential users are all
developers involved in the system engineering process�
Tremendous advances in the past decade have been made on all fronts� As

technology improves� it becomes more feasible to attack harder and larger problems�

�� � E�M� Clarke and J�M� Wing

Progress in the area depends on doing fundamental research� inventing new methods
and building new tools� integrating di�erent methods to work together� and making
concerted e�orts by researchers to work with practitioners to transfer technology
e�ectively�

��� Fundamental Concepts

Signi�cant advances in the practical use of formal methods have relied on funda�
mental results drawn from all areas in Computer Science� not necessarily directly
intended for formal methods� Further work needs to be done in the areas of

�Composition� We need to understand how to compose methods� compose spec�
i�cations� compose models� compose theories� and compose proofs�

�Decomposition� We need to develop more e�cient methods for decomposing
a computationally demanding global property into local properties whose veri��
cation is computationally simple �e�g�� the task decomposition and localization
reduction methods of �Kurshan 	

�b���

�Abstraction� Real systems are di�cult to specify and verify without abstrac�
tions� We need to identify di�erent kinds of abstractions� perhaps tailored for
certain kinds of systems or problem domains� and we need to develop ways to
justify them formally� perhaps using mechanical help�

�Reusable models and theories� Rather than de�ning models and theories
from scratch each time a new application is tackled� it would be better to have
reusable and parameterized models and theories�

�Combinations of mathematical theories� Many safety�critical systems have
both digital and analog components� These hybrid systems require reasoning
about both discrete and continuous mathematics�
System developers would like to be able to predict how well their system will
operate in the �eld� Indeed they often care more about performance than cor�
rectness� Performance modeling borrows strongly from probability� statistics�
and queueing theory�

�Data structures and algorithms� To handle larger search spaces and larger
systems� new data structures and algorithms� e�g�� more concise data structures
for representing boolean functions� are needed�

��� Methods and Tools

No one method or tool can serve all purposes� We need to support all di�erent kinds�
From past experience� we have learned what kinds can have the most impact� To be
attractive to practitioners� methods and tools should satisfy the following criteria�
We realize that some of these criteria are ideals� but they are still good to strive
for�

�Early payback� Methods and tools should provide signi�cant bene�ts almost
as soon as people begin to use them�

�Incremental gain for incremental e�ort� Bene�ts should increase as de�
velopers get more adept or put more e�ort into writing speci�cations or using
tools�

Formal Methods� State of the Art and Future Directions � ��

�Multiple use� It should be possible to amortize the cost of a method or tool
over many uses� For example� it should be possible to derive bene�ts from a
single speci�cation at several points in a program�s life cycle� in design analysis�
code optimization� test case generation� and regression testing�

�Integrated use� Methods and tools should work in conjunction with each other
and with commonprogramming languages and techniques� Developers should not
have to �buy into� a new methodology completely to begin receiving bene�ts�
The use of tools for formal methods should be integrated with that of tools for
traditional software development� e�g�� compilers and simulators�

�Ease of use� Tools should be as easy to use as compilers� and their output
should be as easy to understand�

�Eciency� Tools should make e�cient use of a developer�s time� Turnaround
time with an interactive tool should be comparable to that of normal compilation�
Developers are likely to be more patient� however� with completely automatic
tools that perform more extensive analysis�

�Ease of learning� Notations and tools should provide a starting point for
writing formal speci�cations for developers who would not otherwise write them�
The knowledge of formal speci�cations needed to start realizing bene�ts should
be minimal�

�Error detection oriented� Methods and tools should be optimized for �nding
errors� not for certifying correctness� They should support generating counterex�
amples as a means of debugging�

�Focused analysis� Methods and tools should be good at analyzing at least one
aspect of a system well� e�g�� the control �ow of a protocol� They need not be
good at analyzing all aspects of a system�

�Evolutionary development� Methods and tools should support evolutionary
system development by allowing partial speci�cation and analysis of selected
aspects of a system�

More ambitiously� rather than build a single tool� we can build �meta�tools�
which themselves produce tools customized for a particular problem domain �Ste�en
et al� 	

�� formal notation �Cleaveland et al� 	

��� or logic �Gordon 	
��� Kindred
and Wing 	

�� These meta�tools� like compiler generators� provide an automatic
way to build specialized model checkers or proof checkers�
Finally� for any new method or tool� its developer should state explicitly what

its strengths� limitations� modeling assumptions� ease of integration with other
methods and tools� and start�up costs are� Clear selection criteria help potential
users decide what method or tool is most appropriate for the problem at hand�

��� Integration of Methods

Given that no one formalmethod is likely to be suitable for describing and analyzing
every aspect of a complex system� a practical approach is to use di�erent methods
in combination� When combining methods it is important to consider both�

�Finding a suitable style for using di�erent methods together� and

�Finding a suitable meaning for using di�erent methods together�

�� � E�M� Clarke and J�M� Wing

Very often neither is addressed adequately� Failure to �nd a suitable style misses
out on the true advantages of combining methods� For example� the Z school
stresses the importance of presentation of speci�cations in an accessible form� with
plenty of natural language� This emphasis has helped in popularizing its notation�
Any combination must preserve this style of presentation�
Failure to attend to the theoretical foundations of the combination misses out

on the true advantages of formality� In chemistry� a distinction is drawn between
a mixture and a compound� In a mixture� the ingredients merely mingle together�
in a compound� the ingredients become chemically united� So it is with combining
di�erent formal methods� If the meaning of the combination is not properly ex�
plained� then the result is merely a mixture� nothing more can be deduced from the
joint description than from the separate ones� If the meaning of the combination is
explained� then the result is much more powerful� It then becomes possible to have
two views of a system speci�cation� and to reason with and re�ne one view� and to
understand the consequences in the other view�

����	 Model Checking and Theorem Proving� One of the most promising direc�
tions in method integration is in combining model checking and theorem prov�
ing �Kurshan and Lamport 	

�� Rajan et al� 	

�� Bj"rner et al� 	

�� ideally
to bene�t from the advantages of both approaches� One way is to employ model
checking as a decision procedure within a deductive framework� as is done in tools
such as PVS and STeP� For example� a su�ciently expressive logic can be used to
de�ne temporal operators over �nite state transition systems in terms of maximal
or minimal �xed points� For �nite state transition systems� these �xed points can
be evaluated using a model checker as a decision procedure� For structures with
unbounded state spaces� the temporal properties can be veri�ed by means of �xed
point induction�
Another way of combining deductive and model checking approaches is to use

deduction to obtain a �nite state abstraction of an implementation that can be
veri�ed using model checking� Such abstractions are commonly used in preparing
a problem for model checking but are seldom rigorously veri�ed� Deduction can
also be used to verify assumption�commitment proof obligations generated by com�
posing component implementations that have been separately veri�ed by means of
model checking� Induction can be combined with model checking to verify systems
composed of networks of �nite state processes�

����� Integration with the System Development Process� Formal methods can
complement less formal methods that are used in the overall system development
process� They could be used not instead of� but in addition to� informal methods�
as was done by Praxis in the CDIS example� So far formal methods have shown
their strength in their use in speci�cation and veri�cation� It is worth exploring
how they can be used in requirements analysis� re�nement� and testing�

�Requirements analysis necessarily deals with customers who often have an
imprecise idea of what they want� formal methods can help customers nail down
their system requirements more precisely�

�Re�nement is the reverse of veri�cation� it is the process of taking one level of
speci�cation �or implementation� and through a series of �correctness�preserving

Formal Methods� State of the Art and Future Directions � ��

transformations� synthesizing a lower�level speci�cation �or implementation�� Al�
though much theoretical work on re�nement has been done� the results have not
transferred to practice yet�

�Testing is an area that is one of the most costly in all software projects� Formal
methods can play a role in the validation process� e�g�� using formal speci�ca�
tions to generate test suites �Richardson et al� 	
�
�� and using model and proof
checking tools to determine formal relationships between speci�cations and test
suites and between test suites and code�

��� Education and Technology Transfer

Education is vital to the success of the formal methods� There are di�erent kinds
of audiences�

�Our research peers� Some of our greatest skeptics are our own colleagues� We
can overcome this skepticism by collaborating with them and their students on
systems that they care about�

�Practitioners� Technology transfer should be taken very seriously from the
very beginning� The recent spread of formal methods is directly related to e�orts
made by researchers in teaching their techniques to industry�

For e�ective technology transfer� however� we must keep in mind that success
for industry depends on� timely delivery� continuously�enhanced functionality�
understanding customers� needs� re�use of legacy code� commitment to quality�
elimination of errors� cost�e�ective development� and real�time performance�

�Students� at all levels� Some graduate programs now incorporate formalmeth�
ods in their curricula �Garlan et al� 	

�� Oxford 	

�� Educators are starting
to consider teaching formal methods at the undergraduate level� Students need
to understand not just how to build single stand�alone programs from scratch�
but also how to construct large systems� perhaps using o��the�shelf components
and how to maintain legacy code� they need to know not just how to code� but
also how to do high�level system design�

�� CONCLUDING REMARKS

Commercial pressure to produce higher�quality software is always increasing� For�
mal methods have already demonstrated success in specifying commercial and
safety�critical software� and in verifying protocol standards and hardware designs�
In the future� we expect that the role of formal methods in the entire system devel�
opment process will increase� especially as the tools and methods successful in one
domain carry over to others� Progress� however� will strongly depend on contin�
ued support for basic research on new speci�cation languages and new veri�cation
techniques�
Ideally� system developers would all be trained su�ciently well that they would

not even think that they are using a formal method or tool� They would routinely
use the mathematics underlying the notation of a formal speci�cation language as
simply a means of communicating ideas to others on their team or of documenting
their own design decisions� They would routinely use tools like model and proof
checkers with as much ease as they use compilers� Therefore� as researchers in and

�� � E�M� Clarke and J�M� Wing

educators of formal methods� we should strive to make our notations and tools
accessible to non�experts�
Towards this ideal� however� it makes sense to cultivate a new career path for

specialists in formal methods� They could be experts in the use of one method or
tool� or they could be knowledgeable in many� o�ering their advice on which to use
for a given application� Wing envisioned over ten years ago the idea of speci�cation
�rms �Wing 	
���� analogous to architecture and law �rms� whose employees would
be hired for their skills in formal methods� This vision has been realized by the
growth both in the number of in�house teams that consult on projects within large
corporations �e�g�� AT�T and Intel� and in the number of independent companies
�e�g�� Computational Logic� Inc�� Kestrel Institute� and ORA� that specialize in the
use of formal methods and do contract work for industry and government agencies�
Some companies� such as Praxis� use formal methods as a routine part of their
development process�
Finally� for further reading� see the April 	

 issue of IEEE Computer� which

contains a roundtable discussion on formal methods� and the June 	

 issue of
IEEE Spectrum� which gives an overview of model checking� On�line forums in�
clude the net newsgroup� comp�specification� and its subnewgroups for speci�c
methods� and the formal methods mailing list� fsdm�cs�uq�oz�au� The Oxford
University�s web page

http���www�comlab�ox�ac�uk�archive�formal�methods�html

points to a wealth of information about formal methods� including papers� reports�
tools� conferences� journals� projects� and people�

REFERENCES

Alur� R�� Henzinger� T�� and Ho� P��H� 	���� Automatic symbolic veri�cation of embed�
ded systems� IEEE Transactions on Software Engineering ��� �� 	�	�
�	�

Appenzeller� D� P� and Kuehlmann� A� 	���� Formal veri�cation of a PowerPC mi�
croprocessor� In Proceedings of the IEEE International Conference on Computer Design
�ICCD���	 �Austin� TX� Oct� 	����� pp� ������

Archinoff� G� et al� 	���� Veri�cation of the shutdown system software at the Darlington
Nuclear Generating System� In Intl
 Conf
 on Control and Instrumentation in Nuclear
Installations �Glasgow� Scotland� May 	�����

Arnold� A�� Begay� D�� and Radoux� J��P� 	���� The embedded software of an elec�
tricity meter� An experience in using Formal Methods in an industrial project� Science of
Computer Programming�

Barrett� G� 	���� Formal methods applied to a �oating�point number system� IEEE
Trans
 on Soft
 Eng
 ��� � �May�� �		��
	�

Barrett� G� 	���� Model checking in practice� The t���� virtual channel processor� IEEE
Trans
 on Soft
 Eng
 ���
 �Feb��� ������

Bear� S� 	��	� An overview of HP�SL� In Proc
 of VDM���� Formal Development Methods�
Volume ��	 of Lecture Notes in Computer Science �	��	�� Springer�Verlag�

Bengtsson� J�� Griffioen� W�� Kristoffersen� K�� Larsen� K�� Larsson� F�� Pettersson�

P�� and Yi� W� 	���� Veri�cation of an audio protocol with bus collision using UppAal�
In R� Alur and T� Henzinger Eds�� Computer�Aided Veri�cation �� � Lecture Notes in
Computer Science 		�
� pp�
���
��� Springer�Verlag�

Bj�rner� N� et al� 	���� STeP� Deductive�algorithmicveri�cationof reactiveand real�time
systems� In Proc
 of the �th International Conference on Computer�Aided Veri�cation�
Number 		�
 in Lecture Notes in Computer Science �July 	����� pp� �	���	�� Springer�
Verlag�

Formal Methods� State of the Art and Future Directions � ��

Bosscher� D�� Polak� I�� and Vaandrager� F� 	���� Veri�cation of an audio�control
protocol� In H� Langmaack� W��P� de Roever� and J� Vytopil Eds�� FTRTFT ���
Formal Techniques in Real�time and Fault�tolerant Systems � Lecture Notes in Computer
Science ���� pp� 	���	�
� Springer�Verlag�

Boswell� A� 	���� Speci�cation and validation of a security policy model� IEEE Trans
 on
Software Engineering ���
 �Feb��� ������

Boyer� R� and Yu� Y� 	���� Automated proofs of object code for a widely used micropro�
cessor� Journal of the ACM ��� 	 �January�� 	���	�
�

Boyer� R� S� and Moore� J� S� 	���� A Computational Logic� Academic Press� New York�

Boyer� R� S� and Moore� J� S� 	���� A Computational Logic Handbook� Academic Press�
New York�

Brayton� R� et al� 	���� VIS� A system for veri�cation and synthesis� In Proc
 of the �th
International Conference on Computer�Aided Veri�cation� Number 		�
 in Lecture Notes
in Computer Science �July 	����� pp� �
���
�� Springer�Verlag�

Brock� B�� Kaufmann� M�� and Moore� J� S� 	���� Heavy inference� Theorems about
commercial microprocessors� In M� Srivas and A� Camilleri Eds�� Formal Methods in
Computer�Aided Design �FMCAD��	 �November 	����� pp� �to appear�� Springer�Verlag�

Browne� M� C�� Clarke� E� M�� Dill� D� L�� and Mishra� B� 	���� Automatic veri�cation
of sequential circuits using temporal logic� IEEE Transactions on Computers C���� 	
�
	����	����

Bryant� R� E� 	���� Graph�based algorithms for boolean function manipulation� IEEE
Trans
 on Computers C���� ��

Burch� J� R�� Clarke� E� M�� Long� D� E�� McMillan� K� L�� and Dill� D� L� 	����
Symbolic model checking for sequential circuit veri�cation� IEEE Trans
 on Computer�
Aided Design of Integrated Circuits and Systems ��� � �April�� ��	��
��

Calero� J�� Roman� C�� and Palma� G� D� 	���� A practical design case using formal
veri�cation� In Proc
 of Design�SuperCon��� �	����� To appear�

Carnot� M�� DaSilva� C�� Dehbonei� B�� and Meija� F� 	��
� Error�free software develop�
ment for critical systems using the B�methodology� In Third International IEEE Symposium
on Software Reliability Engineering �	��
��

Chandy� K� and Misra� J� 	���� Parallel Program Design� Addison�Wesley�

Chaves� J� 	��
� Formal methods at AT�T� An industrial usage report� In Proc
 Formal
Description Techniques IV � ���� �North�Holland� 	��
�� pp� ������

Chehaibar� G�� Garavel� H�� Mounier� L�� Tawbi� N�� and Zulian� F� 	���� Speci�
�cation and veri�cation of the powerscale bus arbitration protocol� An industrial experi�
ment with LOTOS� In Proceedings of FORTE�PSTV�� �Kaiserslautern �Germany�� 	�����
Chapman � Hall�

Chisolm� G�� Kljaich� J�� Smith� B�� and Wojcik� A� 	���� An approach to the veri��
cation of a fault�tolerant� computer�based reactor safety system� A case study using au�
tomated reasoning �volume 	� interim report�� Technical Report NP���
� �Jan��� Electric
Power Research Institute� Palo Alto� CA� Prepared by Argonne National Laboratory�

Clarke� E�� German� S�� and Zhao� X� 	���� Verifying the SRT division algorithm using
theorem proving techniques� In Proc
 of the �th International Conference on Computer�
Aided Veri�cation � Number 		�
 in Lecture Notes in Computer Science �July 	����� pp�
			�	

� Springer�Verlag�

Clarke� E� and Kurshan� R� �	����� Computer�Aided Veri�cation� IEEE Spectrum ��� ��
�	����

Clarke� E� and Zhao� X� 	���� Analytica� A theorem prover for Mathematica�The Math�
ematica Journal � ����	�

Clarke� E� M� and Emerson� E� A� 	��	� Synthesis of synchronization skeletons for
branching time temporal logic� In Logic of Programs� Workshop� Yorktown Heights� NY�
May ���� � Volume 	�	 of Lecture Notes in Computer Science �	��	�� Springer�Verlag�

Clarke� E� M�� Emerson� E� A�� and Sistla� A� P� 	���� Automatic veri�cation of �nite�
state concurrent systems using temporal logic speci�cations�ACM TOPLAS ��
�
���
���

�	 � E�M� Clarke and J�M� Wing

Clarke� E� M�� Grumberg� O�� Hiraishi� H�� Jha� S�� Long� D� E�� McMillan� K� L�� and

Ness� L� A� 	���� Veri�cation of the Futurebus� cache coherence protocol� In Proc

CHDL �	�����

Clarke� E� M�� Grumberg� O�� and Long� D� E� 	��
� Model checking and abstraction�
In Proc
 of Principles of Prog
 Lang
 �	��
��

Cleaveland� R�� Madelaine� E�� and Sims� S� 	���� Generating front ends for veri�cation
tools� In E� Brinksma� R� Cleaveland� K� Larsen� and B� Steffen Eds�� Tools and
Algorithms for the Construction and Analysis of Systems �TACAS ���	� Volume 	�	� of
Lecture Notes in Computer Science �Aarhus� Denmark� May 	����� pp� 	���	��� Springer�
Verlag�

Cleaveland� R�� Parrow� J�� and Steffen� B� 	���� The Concurrency Workbench� A
semantics�based tool for the veri�cationof concurrent systems�ACM TOPLAS ��� 	 �Jan���
����
�

Constable� R� et al� 	���� Implementing Mathematics with the NuPRL Proof Develop�
ment Environment� Prentice�Hall�

Cornes� C�� Courant� J�� Filli�atre� J��C�� Huet� G�� Manoury� P�� Paulin�Mohring�

C�� Munoz� C�� Murthy� C�� Parent� C�� Sa��bi� A�� and Werner� B� 	���� The
coq proof assistant reference manual version ��	�� Technical Report 	�� �July�� INRIA�
http���pauillac�inria�fr�coq�systeme coq�eng�html�

Craigen� D�� Gerhart� S�� and Ralston� T� 	���a� An international survey of indus�
trial applications of formal methods� Technical Report NIST GCR ����
� �vols� 	 and

� �March�� U�S� National Institute of Standards and Technology� Also published by the
U�S� Naval Research Laboratory �Formal Rep� �����������
� Spet� 	����� and the Atomic
Energy Control Board of Canada�

Craigen� D�� Gerhart� S�� and Ralston� T� 	���b� Observations on industrial practice
using formal methods� In Proc
 ��th Int
 Conf
 on Software Eng
 �May 	�����

Craigen� D�� Gerhart� S�� and Ralston� T� 	���� Formal methods in critical systems�
IEEE Software ��� 	 �Jan���

Craigen� D�� Gerhart� S�� and Ralston� T� 	���� Formal methods reality check� Indus�
trial usage� IEEE Trans
 on Software Engineering ���
 �Feb��� ������

Craigen� D�� Kromodimoeljo� S�� Meisels� I�� Neilson� A�� Pase� B�� and Saaltink� M�

	���� m�EVES� A tool for verifying software� In Proceedings of the ��th International
Conference on Software Engineering �Singapore� April 	����� pp� �
������

Croxford� M� and Sutton� J� 	���� Breaking through the V and V bottleneck� In Pro�
ceedings of Ada in Europe ���� �	����� Springer�Verlag�

Damm� W� and Delgado�Kloos� C� 	���� Practical Formal Methods for Hardware Design�
Lecture Notes in Computer Science� Springer�Verlag� To appear�

Damm� W�� Josko� B�� and Schl�or� R� 	���� Speci�cation and Validation methods for
Programming Languages and Systems� Chapter Speci�cationand veri�cationof vhdl�based
system�level hardware designs� pp� ��	��	�� Oxford University Press�

Daws� C� and Yovine� S� 	���� Two examples of veri�cation of multirate timed automata
with KRONOS� In Proc
 ���� IEEE Real�Time Systems Symposium� RTSS��� �Pisa� Italy�
Dec� 	����� IEEE Computer Society Press�

D�eharbe� D� and Borrione� D� 	���� Semantics of a veri�cation�oriented subset of vhdl�
In P� Camurati and H� Eveking Eds�� CHARME���� Correct Hardware Design and Veri�
�cation Methods� Volume ��� of Lecture Notes in Computer Science �Frankfurt� Germany�
Oct� 	����� pp�
����	�� Springer�Verlag�

Delisle� N� and Garlan� D� 	���� A formal speci�cation of an oscilloscope� IEEE Soft�
ware �� � �Sept���
�����

DePalma� G� and Glaser� A� 	���� Formal veri�cation augments simulation� Electronic
Engineering Times� ���

Dill� D� L�� Drexler� A� J�� Hu� A� J�� and Yang� C� H� 	��
� Protocol veri�cation as
a hardware design aid� In IEEE International Conference on Computer Design� VLSI in
Computers and Processors �	��
�� pp� �

��
��

Formal Methods� State of the Art and Future Directions � �

Dinolt� G� et al� 	���� Multinet gatewaytowards A	 certi�cation� In IEEE Symp
 on
Security and Privacy �	�����

Elseaidy� W�� Cleaveland� R�� and Baugh� J� 	���� Modeling and verifying active struc�
tural control systems� Science of Computer Programming� To appear� A preliminaryversion
of this paper appears in the Proceedings of the ���� Real�Time Systems Symposium�

Fernandez� J��C�� Garavel� H�� Kerbrat� A�� Mateescu� R�� Mounier� L�� and Sighire�

anu� M� 	���� CADP �C�SAR�ALDEBARAN development package�� A protocol val�
idation and veri�cation toolbox� In Proc
 of the �th International Conference on Computer�
Aided Veri�cation� Number 		�
 in Lecture Notes in Computer Science �July 	�����
Springer�Verlag�

Filkorn� T�� Schneider� H�� Scholz� A�� Strasser� A�� and Warkentin� P� 	���� SVE
User s Guide� Technical Report ZFE BT SE 	�SVE�	� Siemens AG� Corporate Research
and Development� Munich�

Garlan� D�� Abowd� G�� Jackson� D�� Tomayko� J�� and Wing� J� 	���� The CMU Mas�
ter of Software Engineering Core Curriculum� In Proceedings of the Eighth SEI Conference
on Software Engineering Education �CSEE	� Volume ��� of Lecture Notes in Computer
Science �New Orleans� March 	����� pp� ������ Springer�Verlag�

Garland� S� J� and Guttag� J� V� 	���� Inductive methods for reasoning about abstract
data types� In Proc
 of the ��th Symposium on Principles of Programming Languages
�	����� pp�
	��

��

Gerth� R�� Peled� D�� Vardi� M� Y�� and Wolper� P� 	���� Simple on�the��y automatic
veri�cation of linear temporal logic� In Proc
 IFIP�WG
� Symp
 on Protocol Speci�cation�
Testing� and Veri�cation �Warsaw� Poland� June 	�����

Gordon� M� 	���� HOL� A proof generating system for higher�order logic� In VLSI Speci�
�cation� Veri�cation and Synthesis �	����� Kluwer�

Gordon� M� J�� Milner� A� J�� and Wadsworth� C� P� 	���� Edinburgh LCF� Volume ��
of Lecture Notes in Computer Science� Springer�Verlag�

Guiho� G� and Hennebert� C� 	���� SACEM software validation� In Twelfth International
Conf
 on Software Engineering �	�����

Guttag� J� and Horning� J� 	���� Larch� Languages and Tools for Formal Speci�cation�
Springer�Verlag� Written with S�J� Garland� K�D� Jones� A� Modet� and J�M� Wing�

Hall� A� 	���� Using formal methods to develop an ATC information system� IEEE Soft�
ware ��� � �March�� ������

Harel� D� 	���� Statecharts� A visual formalism for complex systems� Science of Computer
Programming ��
�	�
��� Preliminary version� Tech� Report CS������ The Weizmann In�
stitute of Science� Rehovot� Israel� February 	����

Harel� D� 	��
� Biting the silver bullet� Toward a brighter future for system development�
IEEE Computer ��� 	 �Jan��� ��
��

Har	El� Z� and Kurshan� R� P� 	���� Software for analytical development of communica�
tions protocols� AT�T Bell Laboratories Technical Journal �� 	 �Jan��Feb��� ������

Heimdahl� M� and Leveson� N� 	���� Completeness and consistency in hierarchical state�
based requirements� IEEE Transactions on Software Engineering SE���� � �June�� ��������

Heninger� K� 	���� Specifying software requirements for complex systems� New techniques
and their application� IEEE Trans
 on Soft
 Eng
 � 	 �Jan���
�	��

Henzinger� T� A�� Nicollin� X�� Sifakis� J�� and Yovine� S� 	���� Symbolic model check�
ing for real�time systems� Information and Computation ���� 			�
���

Ho� P��H� and Wong�Toi� H� 	���� Automated analysis of an audio control protocol� In
P� Wolper Ed�� Computer�Aided Veri�cation ��� � Lecture Notes in Computer Science ����
pp� ��	����� Springer�Verlag�

Hoare� C� A� R� 	���� Communicating Sequential Processes� Prentice�Hall International�

Hojati� R�� Brayton� R�� and Kurshan� R� 	���� BDD�based debugging of designs using
language containment and fair CTL� In C� Courcoubetis Ed�� Proceedings of the �th
International Conference on Computer�Aided Veri�cation� Number ��� in Lecture Notes
in Computer Science �	����� pp� �	���� Springer�Verlag�

�� � E�M� Clarke and J�M� Wing

Holzmann� G� 	��	� Design and Validation of Computer Protocols� Prentice�Hall� Engle�
wood Cli�s� New Jersey�

Holzmann� G� 	��
� Practical methods for the formal validation of SDL speci�cations�
Computer Communications� Special issue on Practical Uses of FDT s�

Holzmann� G� 	���� The theory and practice of a formal method� NewCoRe� In Proc
 IFIP
World Computer Congress �Hamburg� Germany� August 	�����

Holzmann� G� and Patti� J� 	���� Validating SDL speci�cations� An experiment� In
C� Vissers and E� Brinksma Eds�� Proc
 �th Int
 Conf on Protocol Speci�cation� Testing�
and Veri�cation� INWG�IFIP �Twente� Neth�� June 	�����

Holzmann� G� and Peled� D� 	���� An improvement in formal veri�cation� In Proc

FORTE�� �Berne� Switzerland� October 	�����

Houston� I� and King� S� 	��	� CICS project report� Experiences and results from using
Z� In Proc
 of VDM���� Formal Development Methods� Volume ��	 of Lecture Notes in
Computer Science �	��	�� Springer�Verlag�

ISO� 	���� Information Systems Processing�Open Systems InterconnectionLOTOS�
Technical report� International Standards Organization DIS �����

Jacky� J� 	���� Specifying a safety�critical control system in Z� IEEE Trans
 on Software
Engineering ���
 �Feb��� ���	���

Jagadeesan� L�� Puchol� C�� and Olnhausen� J� V� 	���� A formal approach to reactive
systems software� A telecommunications application in Esterel� Formal Aspects of Com�
puting ��
 �March�� 	
��	�	�

Janicki� R�� Parnas� D� L�� and Zucker� J� 	���� Tabular representations in relational
documents� In C� Brink Ed�� Relational Methods in Computer Science� Springer�Verlag�
To appear�

Jones� C� B� 	���� Systematic Software Development Using VDM� Prentice�Hall Interna�
tional� New York�

Kaltenbach� M� 	���� Model checking for UNITY� Technical Report TR����	 �Dec��� The
University of Texas at Austin�

Kapur� D� and Musser� D� 	���� Proof by consistency�Arti�cial Intelligence ��� 	
��	���

Kaufmann� M� and Moore� J� S� 	���� ACL�� A Computational Logic for Applicative
Common Lisp� The User�s Manual �Version �
�	� ftp���ftp�cli�com�pub�acl
�v	���acl
�
sources�doc�HTML�acl
�doc�html�

Kindred� D� and Wing� J� 	���� Fast� automatic checking of security protocols� In Proc

of the USENIX Workshop on Electronic Commerce Protocols �	����� To appear�

King� T� 	���� Formalising British Rail s signalling rules� In FME���� Industrial Bene�t
of Formal Methods� Volume ��� of Lecture Notes in Computer Science �	����� pp� ������
Springer�Verlag�

Kljaich� J�� Smith� B�� and Wojcik� A� 	���� Formal veri�cation of fault tolerance using
theorem�proving techniques� IEEE Transactions on Computers ��� ��������

Kuehlmann� A�� Srinivasan� A�� and LaPotin� D� P� 	���� Verity � a formal veri�cation
program for custom CMOS circuits� IBM Journal of Research and Development ��� 	�
�
	���	���

Kuhn� D� and Dray� J� 	���� Formal speci�cation and veri�cation of control software for
cryptographic equipment� In Sixth Computer Security Applications Conference �	�����

Kurshan� R� and Lamport� L� 	���� Veri�cation of a Multiplier� �� Bits and Beyond�
In C� Courcoubetis Ed�� Computer Aided Veri�cation� Volume ��� of Lecture Notes in
Computer Science �	����� pp� 	���	��� Springer�Verlag�

Kurshan� R� P� 	���a� Computer�Aided Veri�cation of Coordinating Processes� Princeton
University Press�

Kurshan� R� P� 	���b� The Complexity of Veri�cation� In Proc
 �th ACM Symposium on
Theory of Computing �STOC	 �Montreal� 	����� pp� ������	�

Lamport� L� 	���� The temporal logic of actions� ACM TOPLAS � ��
��
��

Lescanne� P� 	���� Computer experiments with the REVE term rewriting system gen�
erator� In Proceedings of the ��th Symposium on Principles of Programming Languages

Formal Methods� State of the Art and Future Directions � ��

�Austin� Texas� Jan� 	����� pp� ���	���

Long� D� L� 	���� Model checking� abstraction� and compositional reasoning� Ph� D� thesis�
Carnegie Mellon Computer Science Department�

Lowe� G� 	���� Breaking and �xing the Needham�Schroder public�key protocol using FDR�
In Tools and Algorithms for the Construction and Analysis of Systems � Volume 	��� of
Lecture Notes in Computer Science �March 	����� Springer�Verlag�

Luo� Z� and Pollack� R� 	��
� LEGO proof development system� User s manual� Techni�
cal Report ECS�LFCS��
�
		 �May�� Computer Science Dept�� University of Edinburgh�

Lynch� N� and Tuttle� M� 	���� Hierarchical correctnessproofs for distributedalgorithms�
Technical report �April�� MIT Laboratory for Computer Science� Cambridge� MA�

Manna� Z� and Pnueli� A� 	��	� The Temporal Logic of Reactive and Concurrent Systems�
Springer�Verlag� New York�

Mataga� P� and Zave� P� 	���� Multiparadigmspeci�cationof an AT�T switching system�
In M� G� Hinchey and J� P� Bowen Eds�� Applications of Formal Methods� pp� ��������
Prentice�Hall International�

McMillan� K� L� 	���� Symbolic Model Checking� An Approach to the State Explosion
Problem� Kluwer Academic Publishers�

Miller� S� P� and Srivas� M� 	���� Formal veri�cation of the AAMP� microprocessor� A
case study in the industrial use of formal methods� In WIFT ���� Workshop on Industrial�
Strength Formal Speci�cation Techniques �Boca Raton� FL� 	����� pp�
�	�� IEEE Com�
puter Society�

Milner� A� 	���� A Calculus of Communicating Systems� Volume �
 of Lecture Notes in
Computer Science� Springer�Verlag�

Moore� J� S�� Lynch� T�� and Kaufmann� M� 	���� A mechanically checked
proof of the correctness of the AMD�K�� �oating point division algorithm�
http���devil�ece�utexas�edu���� lynch�divide�divide�html�

Nielsen� M�� Havelund� K�� Wagner� K�� and George� C� 	���� The RAISE language�
method and tools� Formal Aspects of Computing �� ���		��

Owre� S�� Rushby� J�� and Shankar� N� 	��
� PVS� A prototype veri�cation system� In
D� Kapur Ed�� ��th International Conference on Automated Deduction �CADE	� Volume
��� of Lecture Notes in Arti�cial Intelligence �June 	��
�� pp� ������
� Springer�Verlag�

Oxford� 	���� http���www�comlab�ox�ac�uk�igdp� � Master s of Science in Software En�
gineering�

Peled� D� 	���� Combining partial order reductions with on�the��y model�checking� Jour�
nal of Formal Methods in Systems Design � ��	� ������ Also appeared in the Proc
 of the
th International Conference on Computer Aided Veri�cation ����� Stanford CA� USA�
Lecture Notes in Computer Science �	�� Springer�Verlag� ��������

Pnueli� A� 	��	� A temporal logic of concurrent programs� Theor
 Comp
 Sci
 ��� ������

Queille� J� and Sifakis� J� 	��
� Speci�cation and veri�cation of concurrent systems in
C�SAR� In Proc
 of Fifth ISP �	��
��

Rajan� S�� Shankar� N�� and Srivas� M� 	���� An integration of model�checking with
automated proof checking� In P� Wolper Ed�� Computer�Aided Veri�cation ��� � Volume
��� of Lecture Notes in Computer Science �Liege� Belgium� June 	����� pp� ������ Springer�
Verlag�

Richardson� D�� O	Malley� T�� and Moore� C� T� 	���� Approaches to speci�cation�
based testing� In ACM SIGSOFT ��� Third Symposium on Software Testing� Analysis�
and Veri�cation �Dec� 	�����

Roscoe� A� 	���� Model�checking CSP� In A� Roscoe Ed�� A Classical Mind� Essays in
Honour of C
A
R
 Hoare �	����� Prentice�Hall�

Roy� V� and de Simone� R� 	���� Auto�Autograph� In E� Clarke and R� Kurshan Eds��
Computer�Aided Veri�cation ��� � Volume � of DIMACS Series on Discrete Mathematics
and Theoretical Computer Science �Piscataway� NJ� June 	����� pp�
���
��� American
Mathematical Society�

�� � E�M� Clarke and J�M� Wing

Rue
� H�� Shankar� N�� and Srivas� M� 	���� Modular veri�cation of SRT division� In
Proc
 of the �th International Conference on Computer�Aided Veri�cation� Number 		�

in Lecture Notes in Computer Science �July 	����� pp� 	
��	��� Springer�Verlag�

Russinoff� D� 	���� A mechanically checked proof of the correctness of the AMD K�
�oating�point square root algorithm� Submitted�

SPC� 	���� Consortium requirements engineering guidebook� Technical Report SPC��
����
CMC version �	������� Software Productivity Consortium� Herndon� VA�

Spivey� J� M� 	���� Introducing Z� a Speci�cation Language and its Formal Semantics�
Cambridge University Press� Cambridge�

Steffen� B�� Margaria� T�� Cla
en� A�� and Braun� V� 	���� The Meta �� envi�
ronment� In Computer�Aided Veri�cation �� � Lecture Notes Computer Science �New
Brunswick� NJ� July 	����� Springer�Verlag� Experience Report for the Industry Day�

Steffen� B�� Margaria� T�� Cla
en� A�� Braun� V�� and Reitenspie
� M� 	���� An
environment for the creation of intelligent network services� In I� E� Consortium Ed��
Intelligent Networks� IN�AIN Technologies� Operations� Services� and Applications � A
Comprehensive Report �Chicago IL� 	����� pp�
������� Invited contribution� Also invited
to the Annual Review of Communications� IEC� 	���� pp� �	������

Vardi� M� Y� and Wolper� P� 	���� An automata�theoretic approach to automatic pro�
gram veri�cation� In Proc
 of Logic in Computer Science �	�����

Wing� J� 	���� Speci�cation �rms� A vision for the future� In Proceedings of the Third
International Workshop on Software Speci�cation and Design �London� Aug� 	����� pp�

�	�
���

Zave� P� 	���� Secrets of call forwarding� A speci�cation case study� In Proceedings of the
Eighth International IFIP Conference on Formal Description Techniques for Distributed
Systems and Communications Protocols �FORTE ���	 �	����� pp� 	���	��� Chapman �
Hall�

Zave� P� and Jackson� M� 	���� Where do operations come from! A multiparadigm
speci�cation technique� IEEE Transactions on Software Engineering ��� � �July�� ����
�
��

