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We survey recent progress in the development of mathematical techniques for specifying and ver�
ifying complex hardware and software systems� Many of these techniques are capable of handling
industrial�sized examples� in fact� in some cases these techniques are already being used on a
regular basis in industry� Success in formal speci�cation can be attributed to notations that are
accessible to system designers and to new methodologies for applying these notations e�ectively�
Success in veri�cation can be attributed to the development of new tools such as more powerful
theorem provers and model checkers than were previously available� Finally� we suggest some
general research directions that we believe are likely to lead to technological advances� Although
it is di�cult to predict where the future advances will come� optimism about the next generation
of formal methods is justi�ed in view of the progress during the past decade� Such progress� how�
ever� will strongly depend on continued support for basic research on new speci�cation languages
and new veri�cation techniques�
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�� INTRODUCTION

Hardware and software systems will inevitably grow in scale and functionality�
Because of this increase in complexity� the likelihood of subtle errors is much greater�
Moreover� some of these errors may cause catastrophic loss of money� time� or
even human life� A major goal of software engineering is to enable developers
to construct systems that operate reliably despite this complexity� One way of
achieving this goal is by using formal methods� which are mathematically�based
languages� techniques� and tools for specifying and verifying such systems� Use of
formal methods does not a priori guarantee correctness� However� they can greatly
increase our understanding of a system by revealing inconsistencies� ambiguities�
and incompletenesses that might otherwise go undetected�
The �rst part of this report assesses the state of the art in speci�cation and ver�

i�cation� For veri�cation� we highlight advances in model checking and theorem

proving� In the three sections on speci�cation� model checking� and theorem prov�
ing� we explain what we mean by the general technique and brie�y describe some
successful case studies and well�known tools� The second part of this report outlines
future directions in fundamental concepts� new methods and tools� integration of
methods� and education and technology transfer� We close with summary remarks
and pointers to resources for more information�

�� STATE OF THE ART

In the past� the use of formal methods in practice seemed hopeless� The notations
were too obscure� the techniques did not scale� and the tool support was inadequate
or too hard to use� There were only a few non�trivial case studies and together they
still were not convincing enough to the practicing software or hardware engineer�
Few people had the training to use them e�ectively on the job�
Only recently have we begun to see a more promising picture for the future of

formal methods� For software speci�cation� industry is open to trying out notations
like Z to document a system�s properties more rigorously� For hardware veri�ca�
tion� industry is adopting techniques like model checking and theorem proving to
complement the more traditional one of simulation� In both areas� researchers
and practitioners are performing more and more industrial�sized case studies� and
thereby gaining the bene�ts of using formal methods�

��� Speci�cation

Speci�cation is the process of describing a system and its desired properties� Formal
speci�cation uses a language with a mathematically�de�ned syntax and semantics�
The kinds of system properties might include functional behavior� timing behavior�
performance characteristics� or internal structure� So far� speci�cation has been
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most successful for behavioral properties� One current trend is to integrate di�erent
speci�cation languages� each able to handle a di�erent aspect of a system� Another
is to handle non�behavioral aspects of a system like its performance� real�time
constraints� security policies� and architectural design�
Some formalmethods such as Z �Spivey 	
���� VDM �Jones 	
��� and Larch �Gut�

tag and Horning 	

�� focus on specifying the behavior of sequential systems� States
are described in terms of rich mathematical structures like sets� relations� and
functions� state transitions are given in terms of pre� and post�conditions� Other
methods such as CSP �Hoare 	
���� CCS �Milner 	
���� Statecharts �Harel 	
����
Temporal Logic �Pnueli 	
�	� Manna and Pnueli 	

	� Lamport 	
���� and I�O
automata �Lynch and Tuttle 	
��� focus on specifying the behavior of concurrent
systems� states typically range over simple domains like integers or are left unin�
terpreted� and behavior is de�ned in terms of sequences� trees� or partial orders of
events� Still others such as RAISE �Nielsen et al� 	
�
� and LOTOS �ISO 	
���
wed two di�erent methods� one for handling rich state spaces and one for handling
complexity due to concurrency� Common to all these methods is the use of the
mathematical concepts of abstraction and composition�
The process of speci�cation is the act of writing things down precisely� The main

bene�t in so doing is intangible�gaining a deeper understanding of the system be�
ing speci�ed� It is through this speci�cation process that developers uncover design
�aws� inconsistencies� ambiguities� and incompletenesses� A tangible by�product
of this process� however� is an artifact� which itself can be formally analyzed� e�g��
checked to be internally consistent or used to derive other properties of the speci�ed
system� The speci�cation is a useful communication device between customer and
designer� between designer and implementor� and between implementor and tester�
It serves as a companion document to the system�s source code� but at a higher
level of description�

Notable Examples

�CICS� Oxford University and IBM Hursley Laboratories collaborated in the
	
��s on using Z to formalize part of IBM�s Customer Information Control Sys�
tem� an on�line transaction processing system with thousands of installations
worldwide �Houston and King 	

	�� Measurements taken by IBM throughout
the development process indicated an overall improvement in the quality of the
product� a reduction in the number of errors discovered� and earlier detection
of errors found in the process� IBM also estimated a 
� reduction in the total
development cost of the new release� The success of this work is well�known and
resulted in the Queen�s Award for Technological Achievement� It inspired many
others to follow suit�

�CDIS� In 	

� Praxis delivered to the UK Civil Aviation Authority the CCF
Display Information System� a part of the new air tra�c management system for
London�s airspace �Hall 	

�� CDIS is a distributed� fault�tolerant system imple�
mented on nearly 	�� computers linked in a dual local area network� Praxis used
formal methods as an integral part of the development process and in conjunc�
tion with other software engineering� project management� and quality assurance
techniques� During requirements analysis� formal description supplemented infor�
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mal and structured requirements notations� At the system speci�cation stage� an
abstract VDM model was developed in conjunction with concrete user interface
de�nitions� semi�formal de�nitions of the concurrent behavior� and de�nitions
of external interfaces� During design� the abstract VDM was re�ned into more
concrete module speci�cations� At a lower level� the software for the dual LAN
was speci�ed and developed formally using CCS�

Productivity on the project was the same or better than on comparable projects
carried out using informal methods� There was� in other words� no net cost
in using formal methods� However� the perceived and measured quality of the
software was much higher� The delivered software had a defect rate of about ����
faults per thousand lines of code� a �gure two to ten times better than that for
published projects and on comparable software in air tra�c control applications
that did not use formal methods�

�Lockheed C���J� Praxis has been recently working with Lockheed on analyzing
the code for the avionic software of the Lockheed C	��J �Croxford and Sutton
	

�� being supplied to the US Air Force and RAF� The software is coded in the
SPARK�annotated subset of Ada� Speci�cations are written in the Software Pro�
ductivity Consortium�s CORE notation �SPC 	

��� which is based on Parnas�s
tabular speci�cations �Heninger 	
��� Janicki et al� 	

�� Many would expect
that the use of SPARK would add to the cost of the software� while improving
its quality� The added quality� however� decreased the overall cost of software
development because of the huge savings in testing� The use of SPARK anno�
tations to specify the behavior of the modules led to software which is close to
being �correct by construction� and hence passes its tests instead of requiring
expensive rework�

�TCAS� In the early 	

�s� the Safety�Critical Systems Research Group at the
University of California� Irvine �now at the University of Washington� produced
a formal requirements speci�cation for the Tra�c Collision Avoidance System
�TCAS� II� required on all commercial aircraft �ying in U�S� airspace� They
used the Requirements State Machine Language �RSML�� which is based on
Statecharts with changes made to overcome di�culties found during the spec�
i�cation process� Although an industry group was attempting to provide an
English language speci�cation at the same time� the complexity of TCAS im�
peded that process� eventually the English speci�cation e�ort was abandoned
and the RSML speci�cation was adopted instead� After a group of industry and
university representatives produced a �rst draft of the TCAS II speci�cation� a
private company on behalf of the Federal Aviation Administration took over the
speci�cation e�ort� o�cial TCAS II documentation still uses RSML� Both the
private company and the original university researchers have produced automated
tools for RSML including simulators� test case generators and other test tools�
and safety analysis tools� The TCAS II speci�cation has been automatically
checked for mathematical completeness and consistency �Heimdahl and Leveson
	

� and provably�correct code can now be automatically generated from RSML
speci�cations�

The TCAS II project demonstrated �	� the practicality of writing a formal re�
quirements speci�cation for a complex� process�control system and ��� the feasi�
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bility of building a formal model of a system that is readable and reviewable by
application experts without special training�

Other case studies in formal speci�cation have been performed primarily on com�
mercial and safety�critical systems� Some are proprietary or lack documentation
that we can cite� To give the reader a sense of the applicability of formal methods�
we list below some for which we can provide references�

�Databases� An HP Medical Instruments real�time database for storing patient
monitoring information �Bear 	

	��

�Devices� A Tektronix family of oscilloscopes �Delisle and Garlan 	

��� a Schlum�
berger line of household electricity meters �Arnold et al� 	

��

�Hardware� An INMOS �oating point processor �Barrett 	
�
�� the virtual chan�
nel processor in INMOS�s T
��� transputer �Barrett 	

��� �Also see Section
�������

�Medical� The Clinical Neutron Therapy System at the University of Washington
�cyclotron controller� �Jacky 	

���

�Nuclear� Argonne National Laboratories� work on the Reactor Safety System for
the Experimental Breeder Reactor�II �Chisolm et al� 	
��� Kljaich et al� 	
�
�� the
shutdown system of the Darlington Nuclear Generating System in Canada �Archi�
no� et al� 	

���

�Security� The security policy model for the NATO Air Command and Control
System �Boswell 	

��� the secure transmission of datagrams in the Multinet
Gateway System �Dinolt et al� 	
���� the Token�based Access Control System of
the U�S� National Institute of Standards and Technology �Kuhn and Dray 	

���

�Telephony� Various features of AT�T�s �ESS telephone switching system using
Esterel �Jagadeesan et al� 	

� and combinations of Z and CSP �Mataga and Zave
	

�� Zave 	

�� Zave and Jackson 	

�� the University of Passau and Siemens
Nixdorf�s joint work on customizable telephone services and features �Ste�en
et al� 	

�� recently done for Deutsche Telekom�

�Transportation� The automatic train protection system for the Paris Metro �Carnot
et al� 	

�� Guiho and Hennebert 	

��� British Rail�s signaling rules �King 	

���
and the on�board avionics software for an Israel aircraft �Harel 	

���

See also �Craigen et al� 	

�a� Craigen et al� 	

�b� Craigen et al� 	

�� Craigen
et al� 	

�� for a description of twelve case studies in formal methods �most cited
above��

��� Veri�cation

Two well�established approaches to veri�cation are model checking and theorem
proving� They go one step beyond speci�cation� these formal methods are used to
analyze a system for desired properties�

����	 Model Checking� Model checking is a technique that relies on building a
�nite model of a system and checking that a desired property holds in that model�
Roughly speaking the check is performed as an exhaustive state space search which
is guaranteed to terminate since the model is �nite� The technical challenge in
model checking is in devising algorithms and data structures that allow us to handle
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large search spaces� Model checking has been used primarily in hardware and
protocol veri�cation �Clarke and Kurshan 	

�� the current trend is to apply this
technique to analyzing speci�cations of software systems�
Two general approaches to model checking are used in practice today� The �rst�

temporal model checking� is a technique developed independently in the 	
��s by
Clarke and Emerson �Clarke and Emerson 	
�	� and by Queille and Sifakis �Queille
and Sifakis 	
���� In this approach speci�cations are expressed in a temporal
logic �Pnueli 	
�	� and systems are modeled as �nite state transition systems� An
e�cient search procedure is used to check if a given �nite state transition system is
a model for the speci�cation��

In the second approach� the speci�cation is given as an automaton� then the sys�
tem� also modeled as an automaton� is compared to the speci�cation to determine
whether or not its behavior conforms to that of the speci�cation� Di�erent notions
of conformance have been explored� including language inclusion �Har�El and Kur�
shan 	

�� Kurshan 	

�a�� re�nement orderings �Cleaveland et al� 	

�� Roscoe
	

��� and observational equivalence �Cleaveland et al� 	

�� Fernandez et al� 	

�
Roy and de Simone 	

��� Vardi and Wolper �Vardi and Wolper 	
�� showed how
the temporal�logic model�checking problem could be recast in terms of automata�
thus relating these two approaches�
In contrast to theorem proving� model checking is completely automatic and

fast� sometimes producing an answer in a matter of minutes� Model checking can
be used to check partial speci�cations� and so it can provide useful information
about a system�s correctness even if the system has not been completely speci�ed�
Above all� model checking�s tour de force is that it produces counterexamples� which
usually represent subtle errors in design� and thus can be used to aid in debugging�
The main disadvantage of model checking is the state explosion problem� In

	
�� McMillan used Bryant�s ordered binary decision diagrams �BDDs� �Bryant
	
�� to represent state transition systems e�ciently� thereby increasing the size
of the systems that could be veri�ed� Other promising approaches to alleviating
state explosion include the exploitation of partial order information �Peled 	

��
localization reduction �Kurshan 	

�a� Kurshan 	

�b�� and semantic minimiza�
tion �Elseaidy et al� 	

� to eliminate unnecessary states from a system model�
Model checkers today are routinely expected to handle systems with between 	��

and ��� state variables� They have checked interesting systems with 	���� reachable
states �Burch et al� 	

��� and by using appropriate abstraction techniques� they can
check systems with an essentially unlimited number of states �Clarke et al� 	

���
As a result� model checking is now powerful enough that it is becoming widely used
in industry to aid in the veri�cation of newly developed designs�

Notable Examples

�IEEE Futurebus�� In 	

� Clarke and his students at Carnegie Mellon used
SMV �McMillan 	

�� to verify the cache coherence protocol described in the
IEEE Futurebus� Standard �
�	�	

	 �Clarke et al� 	

�� Long 	

��� They

�Exhaustive state space search� or reachability analysis� dates back to the earliest papers on Petri
Nets� The term �model checking� was coined by Clarke and Emerson �Clarke and Emerson 	��	��
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constructed a precise model of the protocol in the SMV input language and
then used SMV to show that the resulting transition system satis�ed a formal
speci�cation of cache coherence� They found a number of previously undetected
errors and potential errors in the design of the protocol� This appears to be the
�rst time that an automatic veri�cation tool has been used to �nd errors in an
IEEE standard� Although the development of the protocol began in 	
��� all
previous attempts to validate it were based entirely on informal techniques�

�IEEE SCI� In 	

� Dill and his colleagues at Stanford developed the Murphi
�nite state veri�cation system and veri�ed the cache coherence protocol of the
Scalable Coherent Interface� IEEE Standard 	�
�	

� �Dill et al� 	

��� The SCI
standard de�nes several protocols� each a subset of the next� They constructed a
model of a �typical� protocol and supplied a speci�cation of properties necessary
for cache coherence� To avoid errors in the translation� they based their model
directly on the C code that is given as a de�nition of the SCI standard� Since
the number of states of the model could be very large� they veri�ed only small
instances of the system� Even with this simpli�cation� they found several errors
in the protocol� ranging from omissions of variable initializations to subtle logical
errors� These errors existed in the rather basic subset that they de�ned� although
the protocol had been extensively discussed� simulated� and even implemented�

�Stereo components� One of the emerging application domains of automatic
veri�cation is the design of hybrid systems� which consist of both discrete and
continuous components� In 	

�� Bosscher� Polak� and Vaandrager won a best�
paper award for proving manually the correctness of a control protocol used in
Philips stereo components �Bosscher et al� 	

��� In 	

�� Ho and Wong�Toi
veri�ed an abstraction of the protocol using the symbolic model checker HyTech
and inferred� fully automatically� a more e�cient timing of the protocol than the
one used by Philips �Ho and Wong�Toi 	

��� Also in 	

�� Daws and Yovine
used the veri�cation tool Kronos �Daws and Yovine 	

�� to check automatically
all the properties stated and handproved by Bosscher et al� In 	

� Bengtsson
and his colleagues model checked the entire protocol� thus completing the quest
of fully automating a human proof that as little as two years ago was considered
far out of reach for algorithmic methods �Bengtsson et al� 	

��

�ISDN�ISUP� The NewCoRe Project was the �rst full�scale application of formal
veri�cation methods in a routine software design project within AT�T �Chaves
	

�� Holzmann 	

��� The project lasted from 	
�
 until 	

�� Formal mod�
eling and automated veri�cation were applied to the development of the Inter�
national Telecommunications Union �formerly CCITT� ISDN�IUPP �ISDN User
Part Procotol�� A team of �ve �veri�cation engineers� formalized 	�� require�
ments in temporal logic� and rendered the proofs with the help of a special�
purpose model checker �Holzmann 	

�� Holzmann and Patti 	
�
�� A total of
����� lines of Speci�cation and Description Language �SDL� source code �exclud�
ing comments� was veri�ed� 		� errors were revealed �and �xed� in the high�level
designs� approximately ��� of the original design requirements were discovered
to be logically inconsistent�

�HDLC� A High�level Data Link Controller �HDLC� transmitter core was being
designed at the Bell Labs Microelectronics Design Center in Madrid� Spain for
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an Application�Speci�c Integrated Circuit library of telecommunication macro�
cells� The standard design process included capture at the register�transfer level
using VHDL� simulation� and synthesis� In 	

� late in the process� the formal
veri�cation team at Bell Labs o�ered to run some additional functional veri�ca�
tion on the design �Calero et al� 	

��� Since this design was considered to be
practically �nished� it was not expected that any errors would be found� Within
�ve hours of work� six properties were speci�ed and �ve were veri�ed� using the
FormalCheck veri�cation tool �DePalma and Glaser 	

�� The sixth property
was found by FormalCheck to fail� uncovering a bug that would have at least
reduced the throughput of the HDLC channel� More likely� this bug would have
confused the higher level protocols causing lost transmissions� It took just a few
minutes to identify and propose a �x for a design error that managed to escape
many hours of logic simulation� The error was corrected and the correction was
formally veri�ed using FormalCheck� Plans are now in the works at the Madrid
design center to include model checking as part of the standard design process�

�PowerScale In 	

� a group at Bull in collaboration with researchers of the
Verimag Laboratory used LOTOS to describe the processors� memory controller�
and bus arbiter of the multiprocessor architecture called PowerScale� This ar�
chitecture is based on IBM�s PowerPC microprocessor and is used in Bull�s Es�
cala series of servers and workstations�� They identi�ed four correctness prop�
erties� which express the essential requirements for a proper functioning of the
arbitration algorithm� and formalized the properties and algorithm in terms of
bisimulation relations �modulo abstractions� between �nite labelled transition
systems� Using the compositional and on�the��y model checking techniques im�
plemented in the C�sar�Ald�ebaran Development Package �CADP� toolbox�
the correctness of the arbitration algorithm was established automatically in a
few minutes �Chehaibar et al� 	

��

�Buildings� In 	

� civil engineers at North Carolina State University used the
Concurrency Workbench to analyze the timing properties of a distributed active
structural control system �Elseaidy et al� 	

�� The system in question was de�
signed to make buildings more resistant to earthquakes by sampling the forces
being applied to the structure and using hydraulic actuators to exert countervail�
ing forces� The engineers �rst coded their design in a timed version of the CCS
language� the resulting model contained in excess of ��	� � 	��� states and was
not directly analyzable� However� by using the semantic minimization feature of
the Concurrency Workbench� they were able to construct automatically a much
smaller system with the same timing properties that could be analyzed� In the
course of their analysis they uncovered an error in a timer setting that� if un�
detected� could have caused the active structural control component to worsen�
rather than dampen� the vibration experienced by buildings during earthquakes�

Other successful industrial�sized case studies in model checking are too numerous
to list� Evidence that model checking has �come�of�age� is that industry is building
their own model checkers or simply using existing ones� Listed below are some well�
known model checkers� roughly categorized according to whether the speci�cation

�PowerScale and Escala are registered trademarks of Bull�
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they check is given as a logical formula or as a machine�

�Temporal logic model checkers� The very �rst two model checkers were
EMC �Clarke and Emerson 	
�	� Clarke et al� 	
�� Browne et al� 	
�� and
C SAR �Queille and Sifakis 	
��� Fernandez et al� 	

�� SMV �McMillan
	

�� is the �rst model checker to use BDDs� The Spin system �Gerth et al�
	

�� Holzmann 	

	� uses partial order reduction to reduce the state explosion
problem �Holzmann and Peled 	

�� Peled 	

�� Murphi �Dill et al� 	

�� and
UV �Kaltenbach 	

�� are based on the Unity programming language �Chandy
and Misra 	
���� The Concurrency Workbench �Cleaveland et al� 	

�� veri�es
CCS processes for properties expressed as mu�calculus formulas� SVE �Filkorn
et al� 	

��� FORMAT �Damm et al� 	

�� Damm and Delgado�Kloos 	

�� and
CV �D!eharbe and Borrione 	

�� all focus on hardware veri�cation� HyTech �Alur
et al� 	

� is a model checker for hybrid systems� Kronos �Daws and Yovine 	

��
Henzinger et al� 	

��� for real�time systems�

�Behavior conformance checkers� The Cospan�FormalCheck system �De�
Palma and Glaser 	

� Har�El and Kurshan 	

�� is based on showing inclusion
between omega automata� FDR �Roscoe 	

�� checks re�nement between CSP
programs� most recently� it has been used to verify and debug the Needham�
Schroeder authentication protocol �Lowe 	

�� The Concurrency Workbench �Cleave�
land et al� 	

�� checks a similar notion of re�nement between CCS programs� it
and the tool Auto �Roy and de Simone 	

�� may also be used to minimize sys�
tems with respect to observational equivalence and to determine if two systems
are observably equivalent�

�Combination checkers� Berkeley�s HSIS �Hojati et al� 	

�� combines model
checking with language inclusion� Stanford�s STeP �Bj"rner et al� 	

� system�
with deductive methods� and VIS �Brayton et al� 	

�� with logic synthesis� The
PVS theorem prover �Owre et al� 	

�� has a model checker for the modal mu�
calculus �Rajan et al� 	

��� METAFrame �Ste�en et al� 	

� is an environment
that supports model checking in the entire software development process�

����� Theorem Proving� Theorem proving is a technique where both the system
and its desired properties are expressed as formulas in some mathematical logic�
This logic is given by a formal system� which de�nes a set of axioms and a set of
inference rules� Theorem proving is the process of �nding a proof of a property
from the axioms of the system� Steps in the proof appeal to the axioms and rules�
and possibly derived de�nitions and intermediate lemmas� While proofs can be
constructed by hand� here� we focus only on machine�assisted theorem proving�
Theorem provers are increasingly being used today in the mechanical veri�cation
of safety�critical properties of hardware and software designs�
Theorem provers can be roughly classi�ed in a spectrum from highly automated�

general�purpose programs to interactive systems with special�purpose capabilities�
The automated systems have been useful as general search procedures and have
had noteworthy success in solving various combinatorial problems� The interactive
systems have been more suitable for the systematic formal development of mathe�
matics and in mechanizing formal methods�
In contrast to model checking� theorem proving can deal directly with in�nite

state spaces� It relies on techniques like structural induction to prove over in�nite
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domains� Interactive theorem provers� by de�nition� require interaction with a
human� so the theorem proving process is slow and often error�prone� In the process
of �nding the proof� however� the human user often gains invaluable insight into
the system or the property being proved�

Notable Examples

�SRT division algorithm� In 	

� Clarke� German� and Zhao used automatic
theorem�proving techniques based on symbolic algebraic manipulation to prove
the correctness of an SRT division algorithm similar to the one in the Pen�
tium �Clarke et al� 	

�� This veri�cation method runs automatically and could
have detected the error in the Pentium� which was caused by a faulty quotient
digit selection table� Later Rue#� Shankar� and Srivas used SRI�s general�purpose
theorem prover� PVS �Owre et al� 	

��� on this same example �Rue#et al� 	

��

�Processor designs� The Verity veri�cation tool �Kuehlmann et al� 	

�� is
widely used within IBM in the design of many processors such as the PowerPC
and System��
�� Applied in a hierarchical manner� the tool can handle entire
processor designs containing millions of transistors �Appenzeller and Kuehlmann
	

��� Using this tool� the functional behavior of a hardware system at the
register transfer level� gate level� or transistor level� is modeled as a boolean state
transition function� Algorithms based on BDDs are used to check the equivalence
of the state transition functions for di�erent design levels�

�Motorola ���	�� In 	

	 Boyer and Yu constructed an Nqthm �Boyer and
Moore 	
�
� Boyer and Moore 	
��� speci�cation of the Motorola ���� mi�
croprocessor �including ��� of the user�mode instructions� �Boyer and Yu 	

��
They used the speci�cation to prove the correctness of many binary machine code
programs produced by commercial compilers from source code in such high�level
languages as Ada� Lisp� and C� For example� Yu veri�ed the MC���� binary
code produced by the �gcc� compiler for �	 of the �� C programs in the Berkeley
string library�

�AMD
K��� In 	

� Moore and Kaufmann of Computational Logic� Inc�� and
Lynch of Advanced Micro Devices� Inc�� collaborated to prove the correctness of
Lynch�s microcode for �oating point division on the AMD�K�� Starting from
an informal proof of correctness they formalized their argument in the ACL�
logic �Kaufmann and Moore 	

�� and checked it with the ACL� mechanical
theorem prover� Gaps and mistakes were found in the informal �proof� but in
the end the microcode was mechanically shown to be correct �Moore et al� 	

��
The entire e�ort took about nine weeks� The mechanical proof ended doubt of
the code�s correctness and allowed testers to focus on other routines� In 	


Russino� used ACL� to check the correctness of the �oating point square root
microcode �Russino� 	

�� He found bugs in the microcode itself� after they
were �xed� the �nal version of the square root microcode was also mechanically
proved correct�

�Motorola CAP� During 	

��	

 Brock of Computational Logic� Inc�� work�
ing in collaboration with Motorola designers� developed an ACL� speci�cation
of the entire Motorola Complex Arithmetic Processor �CAP�� a microprocessor
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for digital signal processing �DSP�� The CAP is the most complicated micro�
processor yet formalized� with a three stage pipeline� six independent memories�
four multiplier�accumulators� over ��� programmer�visible registers� and an in�
struction set allowing the simultaneous modi�cation of well over 	�� registers in
a single instruction� The formal speci�cation tracked the evolving design and
included a simpler non�pipelined view that was proved equivalent on a certain
class of programs� Finally� Brock used ACL� to verify the binary microcode for
several DSP algorithms �Brock et al� 	

��

�AAMP
� During 	

��	

� Srivas of the Stanford Research Institute and Miller
of Rockwell International collaborated on the speci�cation and veri�cation of
the Collins Commercial Avionics AAMP� microprocessor� They used PVS to
specify 	�� of the ��
 AAMP� instructions and veri�ed the microcode for 		
representative instructions �Miller and Srivas 	

���

As with model checking� an increase in the number and kinds of theorem provers
provides evidence for a growing interest in theorem proving� There has been a
corresponding increase in the number and kinds of examples to which theorem
provers have been applied� Below is a list of some well�known theorem provers�
categorized roughly by their degree of automation�

�User�guided automatic deduction tools� Systems like ACL� �Kaufmann
and Moore 	

��� Eves �Craigen et al� 	
���� LP �Garland and Guttag 	
����
Nqthm �Boyer and Moore 	
�
�� Reve �Lescanne 	
���� and RRL �Kapur and
Musser 	
��� are guided by a sequence of lemmas and de�nitions but each theo�
rem is proved automatically using built�in heuristics for induction� lemma�driven
rewriting� and simpli�cation� Nqthm� the Boyer�Moore theorem prover� has been
used to check a proof of G$odel�s �rst incompleteness theorem� and in a variety of
large�scale veri�cation e�orts�

�Proof checkers� Examples include Coq �Cornes et al� 	

��� HOL �Gordon
	
���� LEGO �Luo and Pollack 	

��� LCF �Gordon et al� 	
�
�� and Nuprl �Con�
stable et al� 	
��� They have been used to formalize and verify hard problems
in mathematics and in program veri�cation�

�Combination provers� Analytica �Clarke and Zhao 	

��� which combines
theorem proving with the symbolic algebra system Mathematica� has success�
fully proved some hard number�theoretic problems due to Ramanujam� Both
PVS �Owre et al� 	

�� and STeP �Bj"rner et al� 	

� combine powerful decision
procedures and model checking with interactive proof� PVS has been used to
verify a number of hardware designs and reactive� real�time� and fault�tolerant
algorithms�

�� FUTURE DIRECTIONS

The overarching goal of formal methods is to help engineers construct more reliable
systems� Formal methods is thus an area that cuts across almost all other areas
in Computer Science� Its foundations lie squarely in mathematics� its intended
applications are hardware and software systems� and its potential users are all
developers involved in the system engineering process�
Tremendous advances in the past decade have been made on all fronts� As

technology improves� it becomes more feasible to attack harder and larger problems�
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Progress in the area depends on doing fundamental research� inventing new methods
and building new tools� integrating di�erent methods to work together� and making
concerted e�orts by researchers to work with practitioners to transfer technology
e�ectively�

��� Fundamental Concepts

Signi�cant advances in the practical use of formal methods have relied on funda�
mental results drawn from all areas in Computer Science� not necessarily directly
intended for formal methods� Further work needs to be done in the areas of

�Composition� We need to understand how to compose methods� compose spec�
i�cations� compose models� compose theories� and compose proofs�

�Decomposition� We need to develop more e�cient methods for decomposing
a computationally demanding global property into local properties whose veri��
cation is computationally simple �e�g�� the task decomposition and localization
reduction methods of �Kurshan 	

�b���

�Abstraction� Real systems are di�cult to specify and verify without abstrac�
tions� We need to identify di�erent kinds of abstractions� perhaps tailored for
certain kinds of systems or problem domains� and we need to develop ways to
justify them formally� perhaps using mechanical help�

�Reusable models and theories� Rather than de�ning models and theories
from scratch each time a new application is tackled� it would be better to have
reusable and parameterized models and theories�

�Combinations of mathematical theories� Many safety�critical systems have
both digital and analog components� These hybrid systems require reasoning
about both discrete and continuous mathematics�
System developers would like to be able to predict how well their system will
operate in the �eld� Indeed they often care more about performance than cor�
rectness� Performance modeling borrows strongly from probability� statistics�
and queueing theory�

�Data structures and algorithms� To handle larger search spaces and larger
systems� new data structures and algorithms� e�g�� more concise data structures
for representing boolean functions� are needed�

��� Methods and Tools

No one method or tool can serve all purposes� We need to support all di�erent kinds�
From past experience� we have learned what kinds can have the most impact� To be
attractive to practitioners� methods and tools should satisfy the following criteria�
We realize that some of these criteria are ideals� but they are still good to strive
for�

�Early payback� Methods and tools should provide signi�cant bene�ts almost
as soon as people begin to use them�

�Incremental gain for incremental e�ort� Bene�ts should increase as de�
velopers get more adept or put more e�ort into writing speci�cations or using
tools�
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�Multiple use� It should be possible to amortize the cost of a method or tool
over many uses� For example� it should be possible to derive bene�ts from a
single speci�cation at several points in a program�s life cycle� in design analysis�
code optimization� test case generation� and regression testing�

�Integrated use� Methods and tools should work in conjunction with each other
and with commonprogramming languages and techniques� Developers should not
have to �buy into� a new methodology completely to begin receiving bene�ts�
The use of tools for formal methods should be integrated with that of tools for
traditional software development� e�g�� compilers and simulators�

�Ease of use� Tools should be as easy to use as compilers� and their output
should be as easy to understand�

�Eciency� Tools should make e�cient use of a developer�s time� Turnaround
time with an interactive tool should be comparable to that of normal compilation�
Developers are likely to be more patient� however� with completely automatic
tools that perform more extensive analysis�

�Ease of learning� Notations and tools should provide a starting point for
writing formal speci�cations for developers who would not otherwise write them�
The knowledge of formal speci�cations needed to start realizing bene�ts should
be minimal�

�Error detection oriented� Methods and tools should be optimized for �nding
errors� not for certifying correctness� They should support generating counterex�
amples as a means of debugging�

�Focused analysis� Methods and tools should be good at analyzing at least one
aspect of a system well� e�g�� the control �ow of a protocol� They need not be
good at analyzing all aspects of a system�

�Evolutionary development� Methods and tools should support evolutionary
system development by allowing partial speci�cation and analysis of selected
aspects of a system�

More ambitiously� rather than build a single tool� we can build �meta�tools�
which themselves produce tools customized for a particular problem domain �Ste�en
et al� 	

�� formal notation �Cleaveland et al� 	

��� or logic �Gordon 	
��� Kindred
and Wing 	

�� These meta�tools� like compiler generators� provide an automatic
way to build specialized model checkers or proof checkers�
Finally� for any new method or tool� its developer should state explicitly what

its strengths� limitations� modeling assumptions� ease of integration with other
methods and tools� and start�up costs are� Clear selection criteria help potential
users decide what method or tool is most appropriate for the problem at hand�

��� Integration of Methods

Given that no one formalmethod is likely to be suitable for describing and analyzing
every aspect of a complex system� a practical approach is to use di�erent methods
in combination� When combining methods it is important to consider both�

�Finding a suitable style for using di�erent methods together� and

�Finding a suitable meaning for using di�erent methods together�



�� � E�M� Clarke and J�M� Wing

Very often neither is addressed adequately� Failure to �nd a suitable style misses
out on the true advantages of combining methods� For example� the Z school
stresses the importance of presentation of speci�cations in an accessible form� with
plenty of natural language� This emphasis has helped in popularizing its notation�
Any combination must preserve this style of presentation�
Failure to attend to the theoretical foundations of the combination misses out

on the true advantages of formality� In chemistry� a distinction is drawn between
a mixture and a compound� In a mixture� the ingredients merely mingle together�
in a compound� the ingredients become chemically united� So it is with combining
di�erent formal methods� If the meaning of the combination is not properly ex�
plained� then the result is merely a mixture� nothing more can be deduced from the
joint description than from the separate ones� If the meaning of the combination is
explained� then the result is much more powerful� It then becomes possible to have
two views of a system speci�cation� and to reason with and re�ne one view� and to
understand the consequences in the other view�

����	 Model Checking and Theorem Proving� One of the most promising direc�
tions in method integration is in combining model checking and theorem prov�
ing �Kurshan and Lamport 	

�� Rajan et al� 	

�� Bj"rner et al� 	

�� ideally
to bene�t from the advantages of both approaches� One way is to employ model
checking as a decision procedure within a deductive framework� as is done in tools
such as PVS and STeP� For example� a su�ciently expressive logic can be used to
de�ne temporal operators over �nite state transition systems in terms of maximal
or minimal �xed points� For �nite state transition systems� these �xed points can
be evaluated using a model checker as a decision procedure� For structures with
unbounded state spaces� the temporal properties can be veri�ed by means of �xed
point induction�
Another way of combining deductive and model checking approaches is to use

deduction to obtain a �nite state abstraction of an implementation that can be
veri�ed using model checking� Such abstractions are commonly used in preparing
a problem for model checking but are seldom rigorously veri�ed� Deduction can
also be used to verify assumption�commitment proof obligations generated by com�
posing component implementations that have been separately veri�ed by means of
model checking� Induction can be combined with model checking to verify systems
composed of networks of �nite state processes�

����� Integration with the System Development Process� Formal methods can
complement less formal methods that are used in the overall system development
process� They could be used not instead of� but in addition to� informal methods�
as was done by Praxis in the CDIS example� So far formal methods have shown
their strength in their use in speci�cation and veri�cation� It is worth exploring
how they can be used in requirements analysis� re�nement� and testing�

�Requirements analysis necessarily deals with customers who often have an
imprecise idea of what they want� formal methods can help customers nail down
their system requirements more precisely�

�Re�nement is the reverse of veri�cation� it is the process of taking one level of
speci�cation �or implementation� and through a series of �correctness�preserving
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transformations� synthesizing a lower�level speci�cation �or implementation�� Al�
though much theoretical work on re�nement has been done� the results have not
transferred to practice yet�

�Testing is an area that is one of the most costly in all software projects� Formal
methods can play a role in the validation process� e�g�� using formal speci�ca�
tions to generate test suites �Richardson et al� 	
�
�� and using model and proof
checking tools to determine formal relationships between speci�cations and test
suites and between test suites and code�

��� Education and Technology Transfer

Education is vital to the success of the formal methods� There are di�erent kinds
of audiences�

�Our research peers� Some of our greatest skeptics are our own colleagues� We
can overcome this skepticism by collaborating with them and their students on
systems that they care about�

�Practitioners� Technology transfer should be taken very seriously from the
very beginning� The recent spread of formal methods is directly related to e�orts
made by researchers in teaching their techniques to industry�

For e�ective technology transfer� however� we must keep in mind that success
for industry depends on� timely delivery� continuously�enhanced functionality�
understanding customers� needs� re�use of legacy code� commitment to quality�
elimination of errors� cost�e�ective development� and real�time performance�

�Students� at all levels� Some graduate programs now incorporate formalmeth�
ods in their curricula �Garlan et al� 	

�� Oxford 	

�� Educators are starting
to consider teaching formal methods at the undergraduate level� Students need
to understand not just how to build single stand�alone programs from scratch�
but also how to construct large systems� perhaps using o��the�shelf components
and how to maintain legacy code� they need to know not just how to code� but
also how to do high�level system design�

�� CONCLUDING REMARKS

Commercial pressure to produce higher�quality software is always increasing� For�
mal methods have already demonstrated success in specifying commercial and
safety�critical software� and in verifying protocol standards and hardware designs�
In the future� we expect that the role of formal methods in the entire system devel�
opment process will increase� especially as the tools and methods successful in one
domain carry over to others� Progress� however� will strongly depend on contin�
ued support for basic research on new speci�cation languages and new veri�cation
techniques�
Ideally� system developers would all be trained su�ciently well that they would

not even think that they are using a formal method or tool� They would routinely
use the mathematics underlying the notation of a formal speci�cation language as
simply a means of communicating ideas to others on their team or of documenting
their own design decisions� They would routinely use tools like model and proof
checkers with as much ease as they use compilers� Therefore� as researchers in and
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educators of formal methods� we should strive to make our notations and tools
accessible to non�experts�
Towards this ideal� however� it makes sense to cultivate a new career path for

specialists in formal methods� They could be experts in the use of one method or
tool� or they could be knowledgeable in many� o�ering their advice on which to use
for a given application� Wing envisioned over ten years ago the idea of speci�cation
�rms �Wing 	
���� analogous to architecture and law �rms� whose employees would
be hired for their skills in formal methods� This vision has been realized by the
growth both in the number of in�house teams that consult on projects within large
corporations �e�g�� AT�T and Intel� and in the number of independent companies
�e�g�� Computational Logic� Inc�� Kestrel Institute� and ORA� that specialize in the
use of formal methods and do contract work for industry and government agencies�
Some companies� such as Praxis� use formal methods as a routine part of their
development process�
Finally� for further reading� see the April 	

 issue of IEEE Computer� which

contains a roundtable discussion on formal methods� and the June 	

 issue of
IEEE Spectrum� which gives an overview of model checking� On�line forums in�
clude the net newsgroup� comp�specification� and its subnewgroups for speci�c
methods� and the formal methods mailing list� fsdm�cs�uq�oz�au� The Oxford
University�s web page

http���www�comlab�ox�ac�uk�archive�formal�methods�html

points to a wealth of information about formal methods� including papers� reports�
tools� conferences� journals� projects� and people�
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