
FORMAL METHODS
SPECIFICATION AND VERIFICATION

GUIDEBOOK
FOR SOFTWARE AND COMPUTER SYSTEMS

VOLUME I:
PLANNING AND TECHNOLOGY INSERTION

NASA-GB-002-95
RELEASE 1.0

JULY 1995

OFFICE OF SAFETY AND MISSION ASSURANCE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
WASHINGTON, DC 20546

NASA-GB-002-95
Release 1.0

iii

FORMAL METHODS SPECIFICATION AND VERIFICATION
GUIDEBOOK FOR SOFTWARE AND COMPUTER SYSTEMS

VOLUME I: PLANNING AND TECHNOLOGY INSERTION

FOREWORD

The Formal Methods Specification and Verification Guidebook for Software
and Computer Systems describes a set of techniques called Formal Methods
(FM), and outlines their use in the specification and verification of computer
systems and software. Development of increasingly complex systems has
created a need for improved specification and verification techniques.
NASA's Safety and Mission Quality Office has supported the investigation of
techniques such as FM, which are now an accepted method for enhancing the
quality of aerospace applications. The guidebook provides information for
managers and practitioners who are interested in integrating FM into an
existing systems development process. Information includes technical and
administrative considerations that must be addressed when establishing the
use of FM on a specific project. The guidebook is intended to aid decision
makers in the successful application of FM to the development of high-
quality systems at reasonable cost. This is the first volume of a planned two-
volume set. The current volume focuses on administrative and planning
considerations for the successful application of FM. Volume II will contain
more technical information for the FM practitioner, and will be released at a
later date.

Major contributors to the guidebook include, from the Jet Propulsion
Laboratory: Rick Covington (editor), John Kelly (task lead), and Robyn Lutz;
from Johnson Space Center: David Hamilton (Loral) and Dan Bowman
(Loral); from Langley Research Center: Ben DiVito (VIGYAN) and Judith
Crow (SRI International); and from NASA HQ Code Q: Alice Robinson.
Special thanks go to other contributors and numerous reviewers for their
assistance in preparing the guidebook. A special acknowledgment goes to
Alice Robinson for her leadership and guidance since the inception of the
task.

This document is a product of the NASA Software Program, an agencywide
program to promote continual improvement of software engineering within
NASA. The goals and strategies for this program are documented in the
NASA Software Strategic Plan, July 13, 1995. Additional information is
available from the NASA Software IV&V at the World Wide Web site
http://www.ivv.nasa.gov.

NASA-GB-002-95
Release 1.0

v

Office of Safety and Mission Assurance

Formal Methods Specification and Verification Guidebook
for Software and Computer Systems

Volume I: Planning and Technology Insertion

Approvals

John C. Kelly, Jet Propulsion Laboratory
Task Lead

Kathryn Kemp
Deputy Director, NASA IV&V Facility

Table of Contents NASA-GB-002-95
Release 1.0

vii

TABLE OF CONTENTS

FOREWORD..i i i
TABLE OF CONTENTS ..v i i
I. GENERAL..1

I.1. PURPOSE...1
I.2. BENEFITS..1
I.3. READER’S GUIDE ..3
I.4. ORGANIZATION OF THE GUIDEBOOK...4

II. CONCEPTS AND DEFINITIONS..5
II.1. CONCEPTS ...5
II.2. DEFINITIONS..6
II.3. A FORMAL METHODS EXAMPLE...7

III. INTEGRATING FORMAL METHODS INTO THE DEVELOPMENT PROCESS............................. 11
III.1. PROCESS PREREQUISITES... 11
III.2. WHERE TO ADD FORMAL METHODS.. 11
III.3. PROCESS CHANGES ... 12
III.4. ORDERING OF ACTIVITIES ... 13
III.5. SAFETY ANALYSIS... 13
III.6. MEASURING THE EFFECTIVENESS OF FORMAL METHODS 13

IV. ESTABLISHING FORMAL METHODS ON A PROJECT.. 15
IV.1. ADMINISTRATIVE CONSIDERATIONS... 16
IV.2. TECHNICAL CONSIDERATIONS.. 18
IV.3. INTEGRATING TECHNICAL AND ADMINISTRATIVE CONSIDERATIONS................ 24
IV.4. COST CONSIDERATIONS.. 24
IV.5. FORMAL METHODS LIMITATIONS... 25

V. OVERVIEW OF FORMAL METHODS TOOLS AND TECHNIQUES .. 27
VI. CONCLUSIONS... 29

VI.1. KEY FEATURES OF FORMAL METHODS.. 29
VI.2. PREREQUISITES .. 29
VI.3. BENEFITS OF FORMAL METHODS .. 31

REFERENCES.. 33
APPENDIX A : FORMAL METHODS CASE STUDIES... A-1

A.1. CASE STUDY DATA .. A-1
A.2. DESCRIPTIONS OF INDIVIDUAL TRIAL PROJECTS ... A-4

A.2.1. CASSINI CDS FAULT PROTECTION SOFTWARE..................................... A-4
A.2.2. SPACE SHUTTLE GPS SOFTWARE CR TASK.. A-7

A.3. REFERENCES ..A-11
APPENDIX B: GUIDE TO INFORMATION ON FORMAL METHODS TOOLSB-1

B.1. A COMPREHENSIVE LIST OF FORMAL METHODS TOOLSB-1
B.2. DETAILED DESCRIPTION OF SELECTED TOOLS...B-7

B.2.1. EVES..B-7
B.2.2. HOL...B-9
B.2.3. LARCH...B-10
B.2.4. NQTHM..B-11
B.2.5. NUPRL ...B-12
B.2.6. PVS..B-13
B.2.7. RAISE...B-15
B.2.8. VDM..B-16
B.2.9. Z ...B-17

B.3. STATE-SPACE EXPLORATION TOOLS..B-18

Table of Contents NASA-GB-002-95
Release 1.0

viii

B.3.1. COSPAN ...B-18
B.3.2. MURPHI ...B-20
B.3.3. SMV...B-21

B.4. REFERENCES...B-23
SUGGESTIONS FOR IMPROVEMENTS FORM...C-1

Section I NASA-GB-002-95
Release 1.0

1

I. GENERAL

I.1. PURPOSE

Formal Methods (FM) consist of a set of techniques and tools based on
mathematical modeling and formal logic that are used to specify and verify
requirements and designs for computer systems and software. The use of FM
on a project can assume various forms, ranging from occasional
mathematical notation embedded in English specifications, to fully formal
specifications using specification languages with a precise semantics. At their
most rigorous, FM involve computer-assisted proofs of key properties
regarding the behavior of the system. Project managers choose from this
spectrum of FM options as appropriate to optimize the costs and benefits of
FM use and to achieve a level of verification that meets the customer's needs
and budget constraints. Experience suggests that these choices are most
successful if based on certain managerial and technical considerations, which
are the major focus of the guidebook. FM play an important role in many
activities including certification, reuse, and assurance. Although the focus of
this guidebook is restricted to the role of FM in requirements analysis, much
of the discussion is also relevant to these other activities.

I.2. BENEFITS

The growing criticality and complexity of NASA applications and the
increasingly prominent role of software in these applications has led to
NASA's interest in FM techniques. This interest grows out of concerns such
as the following, which can be effectively addressed by the application of FM:

• Fault protection and safety functions can no longer be allocated solely
to hardware devices. Software in aerospace applications is needed to
detect failures, isolate them, and execute recovery routines.

• Software-intensive systems fail in ways that are characteristically
different from hardware components.

• Aerospace systems continue to become more complex, and
development of such systems places ever-increasing demands on
existing development and verification techniques.

• Organizations exercising existing techniques with a high degree of
discipline are experiencing "quality ceilings". In these projects,
traditional verification techniques have been improved and fine-tuned
to the point that major quality improvements can no longer be
achieved, even though some defects still remain in the developed
product.

• Although it is desirable to detect problems as early as possible after they
are introduced (because problems are cheaper to fix the earlier they are

Section I NASA-GB-002-95
Release 1.0

2

detected), few existing techniques which are appropriate for early life
cycle phases such as requirements and high-level design offer the rigor
and automatic support now considered necessary to verify the quality
of engineering products during these life cycle phases.

In addition, the development of requirements and design for software
systems can be particularly prone to errors, cause costly repairs, and have
lasting adverse effects. Studies of current and past software systems show the
necessity of building a better foundation for high quality systems during the
early phases of the developmental life cycle.

Software continues to play an increasingly prominent and critical role i n
complex systems. Since development life cycles, failure models, and
verification methods that have performed well for hardware systems are not
always optimal for systems that include a significant software component, the
identification and evaluation of better verification techniques for such
systems will be an ongoing need within the systems development discipline.
This need, coupled with substantial improvements in FM techniques and
tools, have made FM specification and verification a technique for
consideration by most projects delivering a product that includes software.
FM complement inductive techniques such as testing and help projects move
beyond traditional quality ceilings.

The following are some of the benefits realizable from effective applications
of FM:

• FM help find defects; as evidence of this, when applied to high-quality
software systems, FM have found defects that went undetected during
extensive testing [Miller2]. The inductive nature of testing ensures that
complex systems will always have scenarios which cannot be tested due
to practical considerations.

• Formal specifications allow defects in requirements and designs to be
detected earlier than they would be otherwise and greatly reduce the
incidence of mistakes in interpreting and implementing correct
requirements and designs.

• Formalized statements can be analyzed and their consequences
calculated in a repeatable manner. The risks of drawing conclusions
about a system's behavior by extrapolating from a finite number of tests
often can be avoided by using proof methods based on mathematics.
Such methods allow large (potentially infinite) classes of test cases to be
fully covered in a finite proof, and they support reasoning that can be
checked by colleagues or by machine, with minimal dependence on
subjective reasoning.

• Use of FM causes more defects to be detected than would otherwise be
the case and in certain circumstances guarantees the absence of certain
defects.

Section I NASA-GB-002-95
Release 1.0

3

I.3. READER’S GUIDE

This guidebook is written for project decision makers, including managers,
engineers, and assurance personnel, who are considering the use of FM on
their project. It is intended to be an easily understood overview of important
management issues associated with the use of formal specifications and a
useful guide to planning and implementing FM on a project. It is presented
in a tutorial rather than prescriptive style. The current volume is Volume I
of a planned two-volume set. Volume II will contain detailed information
for technical practitioners of FM, and will be released at a later date. The
second volume will also address the needs of technologists whose role it is to
evaluate new technologies, to transfer those technologies into practice i n
their organization, and to help projects in planning, training, and
implementation.

FM offer significant potential for improving defect detection early in the life
cycle. The guidebook is appropriate for candidate projects that use defect
prevention techniques such as formal inspections. The reader should be
aware that FM require commitment and a disciplined approach. This
guidebook will make it easier to start a serious investigation of how
appropriate FM are for a specific environment.

This guidebook includes some basic FM concepts and definitions. It
illustrates how FM facilitate the precise modeling of requirements and high-
level design using specifications based on the notations of discrete
mathematics. FM also support automated consistency checking and testing
specifications by proving key properties. The guidebook summarizes specific
FM tools and languages in Appendix B.

The use of formal specifications and proofs is not an "all-or-nothing"
approach. One can tailor the use to the level of rigor appropriate to specific
budget, schedule, and technical needs. This guidebook discusses the tailoring
necessary to integrate FM into an existing development process and the
tailoring to establish FM on a specific project. It also discusses how to gain
experience by applying FM on a relatively small trial project before
committing to wider project use. FM consist of many techniques that are
applied to different application domains in different ways.

This guidebook addresses the many benefits of FM, from enhancing the
likelihood of a correct implementation to finding more defects through
consistent, repeatable, and effective analysis. These benefits are directly
related to the use of precise unambiguous specifications and proofs supported
by computer-based tools. There are also indirect benefits. FM help engineers
focus on what a system should accomplish instead of how to accomplish it.
FM enhance existing review processes by encouraging rigorous arguments of
why and in what ways the specification is correct. Perhaps the biggest benefit

Section I NASA-GB-002-95
Release 1.0

4

is that FM are applicable to any life cycle phase, including the early phase
where a significant need currently exists for better analysis approaches.

Formal methods offer tangible benefits, but are not a panacea. FM have their
own limitations and potential pitfalls. This is precisely why this guidebook
has been developed: to help an organization reap the benefits and avoid the
pitfalls. In particular, the guidebook is intended to help a project choose the
level of FM appropriate for its schedule, budget, development environment,
and application domain. In the end, the reader will see that FM have
demonstrated unique capabilities that complement and go beyond existing
testing and analysis approaches.

I.4. ORGANIZATION OF THE GUIDEBOOK

The organization of the rest of this guidebook is as follows. In Section II, we
introduce FM concepts and definitions. In Section III, we discuss how to
integrate FM techniques into the systems development process, followed i n
Section IV by a detailed discussion of factors relevant to establishing FM on a
project. Section V provides an overview of FM tools and techniques. Finally,
we provide a summary and conclusions in Section VI. Case study
information on several small applications of FM to NASA pilot projects is
included in Appendix A. Appendix B offers a comprehensive list of FM tools
and more detailed descriptions of the most widely used tools.

Section II NASA-GB-002-95
Release 1.0

5

II. CONCEPTS AND DEFINITIONS

II.1. CONCEPTS

Formal Methods (FM) refer to the use of techniques from formal logic and
discrete mathematics in the specification, design, and construction of
computer systems and software. FM allow the logical properties of a
computer system to be predicted from a mathematical model of the system by
means of a logical calculation, which is a process analogous to numerical
calculation. That is, FM make it possible to calculate whether a certain
description of a system is internally consistent, whether certain properties are
consequences of proposed requirements, or whether requirements have been
interpreted correctly in the derivation of a design. These calculations provide
ways of reducing or in some cases replacing the subjectivity of informal and
quasi-formal review and inspection processes with a repeatable exercise. This
is analogous to the role of mathematics in all other engineering disciplines;
mathematics provides ways of modeling and predicting the behavior of
systems through calculation. The calculations of FM are based on reasoning
methods drawn mainly from formal logic. Systematic checking of these
calculations may be automated.

Formal modeling of a system usually entails translating a description of the
system from a non-mathematical model (data-flow diagrams, object diagrams,
scenarios, English text, etc.) into a formal specification, using one of several
formal languages. This results in a system description that possesses a high
degree of logical precision. FM tools can then be employed to logically
evaluate this specification to reach conclusions about the completeness and
consistency of the system's requirements or design. Manual analyses (e.g.,
peer reviews) of the formal model are used as an effective first check to assure
the general reasonableness of the model. These are followed by tool-based
analyses, which raise the level of reliability and confidence in the system
specification even further. FM analysis techniques are based on deductive
rather than inductive reasoning about system descriptions, allowing entire
classes of issues to be resolved before requirements are committed to the
design and implementation phases. FM complement the inductive testing
that follows implementation by allowing the testing phase to focus on a
potentially smaller or more problematic range of test cases.

FM techniques and tools can be applied to the specification and verification of
products from each development life cycle: requirements, high-level and
low-level design, and implementation1. The process of applying FM to

1Cost-benefit analysis generally favors FM applied to early life cycle phase products
(requirements and high-level design).

Section II NASA-GB-002-95
Release 1.0

6

requirements or design differs mainly in the level of detail at which the
techniques are applied. These techniques include: writing formal
specifications, internal checking (e.g., parsing and type correctness),
traceability checking, specification animation, and proof of assertions.
Although this entire suite of techniques could be applied to all requirements
and design elements, this is not the usual approach. Instead, an important
subset of the requirements is chosen to undergo FM, then a subset of the
techniques is chosen for application. This enables the project to choose a
level of verification rigor appropriate to its budget, schedule, and to the
development team's technical needs.

In addition to the function FM perform within a single development life
cycle phase, FM can also be used to establish and maintain strict traceability
between system descriptions across different life cycle phases. We can think
of a hierarchy of system description documents, each of which describes the
system at a different level of detail. Moving from the most abstract to the
most concrete, there are requirements, high-level design, low-level design,
and implementation. These documents also correspond to different life cycle
phases. FM can be used to demonstrate that a property at some level in the
hierarchy gets implemented correctly by the next-lower level. In a thorough
and rigorous treatment, FM can help demonstrate that requirements are
correctly reflected in a subsequent design and that design features are correctly
reflected in a subsequent implementation.

II.2. DEFINITIONS

The following are working definitions for basic terms and concepts discussed
in this guidebook.

A formal specification is a concise description of the behavior and properties
of a system written in a mathematically-based language, specifying what a
system is supposed to do as abstractly as possible, thereby eliminating
distracting detail and providing a general description resistant to future
system modifications. The most formal specifications are written in a
language with a well-defined semantics that supports formal deduction and
allows the consequences of the specification to be calculated through proof of
putative theorems.

A formal proof is a complete and convincing argument for the validity of a
statement about a system description. A proof proceeds in a series of steps,
each of which draws conclusions from a set of assumptions. Justification for
each step is derived from a small set of rules which state what conclusions
can be reasonably drawn from assumptions. Such justification eliminates
ambiguity and subjectivity from the argument. Formal proofs may be

Section II NASA-GB-002-95
Release 1.0

7

prepared manually or, preferably, with the assistance of an automated FM
tool.

Abstraction is the process of simplifying and ignoring irrelevant details and
focusing, distilling, and generalizing what remains. In FM, abstraction is a
tool for eliminating distracting detail, avoiding premature commitment to
implementation choices, and focusing on the essence of the problem at hand.

Specification animators (also called emulators) are executable programs
which reinterpret a formal specification into a high-level dynamically
executable form. Specification animations are not formal in a strict sense, but
support the formal requirements and design verification process by providing
analysts with an early view of the high-level dynamic behavior of the
requirements.

II.3. A FORMAL METHODS EXAMPLE

At this point we introduce a small example to clarify many of the concepts
introduced earlier. The example illustrates the use of formal specifications to
model a system, to enhance the consistency of the specification, and to suggest
the role of proof in establishing desired system properties. The purpose of
this discussion is to provide a concrete, albeit small and highly simplified
example. Readers interested in a more detailed tutorial discussion should
consult [Butler], [Weber-Wulf], and [Wordsworth]. Those interested in more
realistic or industrial-scale applications can find excellent discussions i n
papers, technical reports, and books, including [Miller1] and [Bowen2].

Consider the following typical informal requirements expressed in English:

A tank of cooling water shall be refilled when its low level sensor
comes on. Refilling consists of adding 9 units of water to the tank.

Notes:
• The maximum capacity of the tank is 10 units of water.
• From one reading of the water level to the next reading of the

water level, 1 unit of water will be used.
• The low level sensor comes on when the tank contains 1 unit of

water or less.

The above statement contains several descriptions, including two key
notions: the water level in the tank and the water usage. Formally, these

Section II NASA-GB-002-95
Release 1.0

8

notions can be modeled as follows (statements 1 and 2):

1 level is represented by a restricted integer type: a number
between 0 and 10, inclusive

2 usage is represented as the integer constant 1

That is, level describes an amount of water that the tank may hold at any
point in time and usage describes the amount of water used during one cycle.

The primary requirement is that 9 units of water will be added to the tank
whenever the level is less than or equal to 1. This can be more precisely2

stated as (statement 3):

3 Function fill takes, as input, a water level and returns, as
output, a water level. Given an input of L units of water, fill
returns L+9 if L is one or less, otherwise it returns L.

That is, we claim that fill(L) accounts for any filling of water in the tank.

A commonsense property of this system is that, at the next cycle, the new
water level will be the current water level, plus any amount that was added,
minus the amount that was used. That is, given L as the current level of
water, the level at the next cycle should be given by statement 4:

4 level = L + fill(L) - usage

One approach to checking this specification is to ensure that each reference to
a level of water is consistent with the definition of level, i.e., it should
always be a number between 0 and 10. It turns out that the specification for
fill given in 3 above is consistent with the definition of level if the
following two logical statements are true:

5 FORALL levels L
(L <= 1) IMPLIES THAT

(0 <= L + 9) AND
(L + 9 <= 10)

6 FORALL levels L
(0 <= L + fill(L) - usage) AND
(L + fill(L) - usage <= 10)

(Statements 5 and 6 can be derived straightforwardly by means of FM
techniques. Many FM tools can produce such expressions automatically from

2 This specification is given in a form of structured English so that the reader can easily follow
it without having to learn a formal specification language. Such specifications are more precise
than those written in conversational English but are still less precise than those written in a
formal specification language.

Section II NASA-GB-002-95
Release 1.0

9

a set of system definitions.) The following statements (statements 5.1 and
5.2) constitute an informal proof that the first FORALL statement (statement
5) is true:

5.1 L+9 >= 0 because L >= 0 (and the sum of any two numbers greater
than zero is greater than zero)

5.2 L+9 <= 10 because L <=1 (and any number less than or equal to 1
plus 9 is less than or equal to 10)

However, the second FORALL statement (statement 6) is not true. Consider
the case when L is 9:

L + fill(L) - 1 = L+L-1 = 9+9-1 = 17 (which is not <= 10)

So clearly, something is wrong. Upon closer examination, it is found that
statement 4, our expression for the water level at the next cycle, is in error:

4 level = L + fill(L) - usage (incorrect)

This statement is inconsistent with the definition of fill because fill
returns the new level of water, not just the amount of water added. The
(corrected) expression for level, denoted by 4', is simply:

4' level = fill(L) - usage (correct)

and the (corrected) FORALL statement (statement 6) is:

6' FORALL levels L:
(0 <= fill(L) - usage) AND
(fill(L) - usage <= 10)

This example illustrates the following:

• Formal Specification: Modeling informal English statements using
mathematical expressions

• Type Checking: Checking that all types of items are used consistently
(e.g., level)

• Stating Properties: Identifying and defining expected behavior of the
system (e.g., the expected new level in the tank).

• Proving Logical Conditions: Constructing logical proofs which show
that a given condition holds under all possible situations.

This example also illustrates how formal analysis can expose errors and
inconsistencies in a specification. In the example, the name chosen for the
“fill” function in statement 3 is misleading because the function returns the
“actual level” rather than the “amount added”. Statement 4, although

Section II NASA-GB-002-95
Release 1.0

10

wrong, is consistent with the casual reader’s expectations, so the error is easy
to overlook.

In simple cases such as this, an informal inspection of the specification can be
expected to find the error. However, the use of FM resulted in a systematic
and reproducible approach to uncovering the problem. Similar results can be
achieved in challenging industrial-scale specifications, where such errors can
be obscured within many pages of requirements.

This example does not show how tools can be used to assist in formal
analysis. That topic will be addressed in Volume II of this guidebook.

Section III NASA-GB-002-95
Release 1.0

11

III. INTEGRATING FORMAL METHODS INTO THE
DEVELOPMENT PROCESS

The purpose of this section is to provide guidance on identifying changes
necessary to integrate formal methods (FM) into an existing software process.

III.1. PROCESS PREREQUISITES

An effective introduction of FM assumes that a sufficiently well-defined
process with the following characteristics has already been established:

• Discrete phases or steps are clearly defined and documented, e.g.,
requirements phase, high-level design phase, etc.

• Work products are specified for each phase, e.g., requirements
document, high-level design diagrams, etc.

• Analysis procedures are established to ensure correctness of work
products, e.g., proofs of key system properties.

• Reviews of major work products are scheduled, e.g., design inspections.

A process which lacks these aspects is unlikely to be mature enough to realize
substantial benefit from the application of FM. Put somewhat differently, FM
is not a "silver bullet" that solves all development problems. For example,
quality problems in a new or immature process are more likely to benefit
from establishing a well-defined process and including basic defect
prevention techniques such as formal inspections. On the other hand, if
existing techniques are well-established and performing effectively, then the
addition of FM-based strategies can further enhance quality assurance
activities.

III.2. WHERE TO ADD FORMAL METHODS

As was pointed out in Section II.1., FM can be applied to any or all phases of
the process, although the benefit-to-cost ratio of applying FM seems to be best
during the requirements and high-level design phases. FM complement
early development phases, which are currently less automated and less tightly
coupled to specific languages and notations, and for which work products are
typically less effectively analyzed than those of later development stages. FM
compensate for these limitations without intruding on the existing process.
For example, requirements are currently maintained as English language
statements that are hard to check with automated tools. This deficiency is
mitigated by the systematic, repeatable analysis supported by FM requirements
specification and proof, while necessitating no changes to the natural
language requirements statements.

Section III NASA-GB-002-95
Release 1.0

12

As FM are injected into later life cycle phases, integration raises more
technically challenging problems and the injection of FM becomes more
intrusive. For example, the languages used for FM specification and proof
and those used for programming generally exhibit fundamental semantic
differences that make it difficult to synthesize a process that effectively uses
both. Extreme care is required to ensure that the semantic differences
between the formal specification language and the programming language are
not a source of ambiguity or other type of error during development.

The best strategy is to apply FM to the earlier life cycle phases where it will
have the most positive impact and consider adding it to selected later phases
based on the guidance in Section IV. The application of formal specifications
at the requirements life cycle phase will help ensure that the resulting
software is verifiable. The addition of FM will usually add a certain amount
of cost to these phases while saving cost in later phases and during
maintenance of the work products. In this respect, the use of FM is similar to
other defect prevention techniques such as formal inspections. If heavy
emphasis is already placed on analysis of early work products (e.g.,
requirements), the use of FM could potentially reduce the cost in these early
phases by replacing expensive ad-hoc techniques (e.g., manual verification of
interface tables) with more effective and systematic ones.

III.3. PROCESS CHANGES

To each phase in which FM is applied, some of the following products and
activities may be added:

1. A new analysis activity called "modeling", during which an initial,
often graphical, description of the relationship between system entities
is proposed. Various methodologies (finite-state machines, object-
oriented design, etc.) are possible.

2. A new development activity called "formalization" during which the
formal specification is created.

3. A new type of work product called a "formal specification". This can be
a separate product or an addition to an existing work product such as a
requirements document.

4. A new analysis activity called "specification animation" (defined i n
Section II.2.) to better understand the behavior implied by the formal
specification.

5. A new analysis activity called "proving assertions" (see Section II for
details) to enhance the correctness of the formal specification and to
understand the implications of the design captured in the
requirements and specification.

Section III NASA-GB-002-95
Release 1.0

13

6. A review of the formal specification to check the coverage,
"correctness," and comprehensibility of the formal specification.

7. An enhancement of traceability tools and techniques to track new
products such as formal specifications and proofs, and their
relationships to existing products.

While the above activities can be broad in scope, they pose no significant
technical challenge. Additions 1-3 and 7 are typically a minimal set, while
additions 4-6 are optional. Consult Section IV for guidance on integrating
additions 4-6.

III.4. ORDERING OF ACTIVITIES

There is no rigid ordering of the activities for FM; in fact, an iterative
approach is the most effective for developing and analyzing specifications.
Reviews can be productive at any point after the specification is reasonably
well-developed, either before or after key properties have been proved. At a
minimum, a review should be held after the specification is complete. If an
extensive set of assertions are to be proven after the initial specification
review, a subsequent review will be useful to assess the adequacy of the
proven assertions, and to motivate discussion of changes to the specification,
if any, that might have been introduced to support the proofs.

III.5. SAFETY ANALYSIS

Standard analysis focuses on functional correctness, i.e., behavior that the
system should exhibit. Safety analysis generally focuses on behavior that the
system should not exhibit because it would create an unsafe or hazardous
condition, e.g., the system should not send an erroneous command or fail to
respond in a timely fashion. Safety analysis requires looking at a work
product from a safety point of view, and can be combined with traditional
analysis or performed as a separate activity. Analysis techniques for software
safety are currently not as well-defined as those for hardware safety, but FM
complement existing techniques by providing methods for stating and
analyzing safety properties. More specifically, FM provide a way of stating
functional correctness and safety properties within a formal specification, and
then demonstrating that the specification satisfies the given safety properties.

FM can be used to formalize and automate an existing safety analysis step or
to assist and reinforce the addition of a safety analysis step to an existing
process.

III.6. MEASURING THE EFFECTIVENESS OF FORMAL METHODS

Section III NASA-GB-002-95
Release 1.0

14

Little is known about effective metrics for FM [Craigen1, Fenton].
Nevertheless, a mature process should include provisions for collecting data
on the effectiveness of FM, or on the effectiveness of any process activity.
Due to the iterative nature of the process of specification and proof, it is best
to combine the two activities for an assessment of cost-effectiveness.
Potentially useful metrics include:

• Number of pages of English description that were used as the basis for
the formal specification, along with a subjective indication of their
level of detail and completeness (e.g., high, medium, low).

• Number of lines of formal specification produced.
• Amount of time spent in developing specifications, including

properties and proofs.
• Number of issues found in the original requirements (i.e., the

requirements in their English description form, before being
formalized), along with a subjective ranking of importance (e.g., major,
minor).

• Amount of time spent in reviewing and in inspection meetings, along
with a number and type of issues found during this activity.

• Number of issues found after requirements analysis, along with a
description of why the issue was not found (e.g., inadequate analysis,
outside the scope of the analysis, etc.)

Section IV NASA-GB-002-95
Release 1.0

15

IV. ESTABLISHING FORMAL METHODS ON A PROJECT

The previous section provided a general discussion of the impact of
introducing and integrating formal methods (FM) into the development
process. In this section, we move to more specific considerations that should
be reviewed each time FM are proposed for a given project. There are
basically two types of considerations, one of which is largely administrative,
the other largely technical. A summary of each appears below.

Administrative Factors:
• Project Staffing: The team responsible for planning the role of FM on a

project should include at least one person knowledgeable in FM and
one person knowledgeable about the application domain. The team
responsible for applying FM must have FM expertise or be provided
with hands-on training.

• Project Scale: The scale of the project should be taken into
consideration. If project staff has little or no previous FM experience,
an initial study may be advisable either as a final objective or as a lead-
in to the full-scale project.

• FM Training: The training available to those project staff responsible
for applying FM should be rigorous and include hands-on experience
with the tool(s) and type of application that will be encountered on the
project.

• Process Integration: The strategy for integrating FM into a new or
existing process should be thoroughly planned and documented,
preferably early in the project.

• Project Guidelines: Project guidelines, standards, and conventions,
both for documentation and specification, should be developed early
and adhered to.

Technical Factors:
• Type of Application: FM are not equally appropriate for all

applications; they are best suited to analyzing complex problems, taken
singly and in combination, and less suited for numerical algorithms or
highly computational applications.

• Size and Structure of Application: The size and structure of an
application determine the difficulty of using FM; ideally, applications
should be of moderate size (guidance on how to assess size will be
addressed in this item's section below), decomposable into subsystems
or components, and based on a coherent underlying structure.

• Type of Analysis/Formal Method: The type of analysis, i.e., the reasons
for applying FM, determine the most appropriate level of
formalization and the most suitable FM and FM tools. Objectives i n
using FM range from producing clear, unambiguous documentation to

Section IV NASA-GB-002-95
Release 1.0

16

mechanically verifying the correctness of crucial algorithms or
components.

• Levels of Rigor in FM: FM may be applied at varying levels of rigor.
The rigor, or extent to which a method is "truly formal" and "really
calculates," can range from the occasional appearance of mathematical
notation in an otherwise informal document, through "rigorous"
methods that employ a standardized specification language, to "fully
formal" methods that make use of mechanically-checked theorem
proving.

• Scope of Formal Method Use: There are at least three dimensions to
the scope of formal method use: (1) all/selected stages of development
life cycle, (2) all/selected system components, (3) full/selected (system)
functionality.

• Type of Formal Method Tool: The choice of FM tool, if any, should be
directly determined by the application profile generated by evaluating
the five preceding factors. Primary considerations include the type of
specification language and the need for mechanical proof support.

These administrative and technical considerations are, of course, closely
coupled, each having implications for the other. This is particularly true
because the process of determining whether a given application is a good
candidate for FM is not cut and dried and because the use of FM entails a
serious technical commitment by project staff and a corresponding
commitment to support and invest in the FM activity on the part of
management. This discussion offers useful guidance, but can not supplant
the judgment that comes with experience, i.e., with diligent practice and
accumulated expertise.

The discussion is organized as follows. Section IV.1. provides a more detailed
account of the administrative considerations listed above, Section IV.2.
similarly elaborates the technical considerations, Section IV.3. collapses the
administrative and technical considerations into a generic plan, Section IV.4.
sketches cost considerations, and Section IV.5. summarizes general caveats
with respect to FM use.

IV.1. ADMINISTRATIVE CONSIDERATIONS

FM offer significant potential for improving system and software analysis on
many types of projects. The adoption of FM requires careful planning and
management, ideally including a planning activity that addresses the five
administrative considerations introduced previously and discussed further i n
the following paragraphs.

Project Staffing Construction of a successful plan for using FM on a project
requires the participation of people with the right combination of skills --

Section IV NASA-GB-002-95
Release 1.0

17

people with FM expertise and people with project domain knowledge. FM
skills are required to ensure that suitable applications are paired with
effective tools, and domain knowledge is needed to identify candidate
applications. It will not be possible for people with domain knowledge to
learn FM or for people with FM knowledge to learn the application
domain during the initial planning period; the transition staffing plan
should include at least one FM lead and one key project lead to head the
planning phase.

After the initial planning phase, staffing for project execution must take
into account the discipline and commitment required for effective FM use.
It is also essential to identify domain and FM leads willing and available to
act as project advisors and to field the questions about tools, strategies,
domain issues, etc. that inevitably arise during formalization and proof.

Project Scale When FM are applied to a project for the first time, it may be
advisable to use FM on a scale less than the entire project, i.e., to define an
initial study. Although many FM pilot projects have been performed, a
project may choose to perform its own study

• as a training exercise,
• to better understand what parts of the system will most benefit from

FM use,
• to learn what types of FM are most suitable for project use, or
• to validate the feasibility of using FM in the given project

environment.

By performing one or more small trial studies, the project can introduce a
few key people to FM and demonstrate that FM do indeed produce benefits
in the given environment. People introduced to FM on the trial study can
later serve as sources of expertise for this and subsequent projects,
providing moral support as necessary. Support and consultation from
peers and colleagues have been shown to be one of the most effective
strategies for introducing new techniques and systems (a "product
champion" approach).

Project Training Effective FM use requires staff with existing FM expertise or
a management commitment to rigorous, hands-on training that includes
exposure to the tool(s) and type of application(s) that will be encountered
on the project. It is not realistic to expect untrained project staff to make
significant use of sophisticated specification languages and mechanical
theorem checkers. The amount of training required depends on the
person's technical background, as well as predictable traits such as
discipline, perseverance, willingness to experiment, ability to assimilate
new knowledge quickly, etc. The level of training required also varies
depending on project responsibilities; staff responsible for writing and

Section IV NASA-GB-002-95
Release 1.0

18

analyzing specifications will require more training than staff using
specifications largely as documentation. The fact that some FM are easier
to learn and use than others will also affect the level of training required.
If FM expertise is not available within the project, expertise may need to be
brought in for training purposes and retained during the early phases of
the project.

Process Integration If the existing process includes defined requirements
analysis steps and reviews, the integration of FM will probably involve
little, if any, change to the established process; FM can generally be
effectively inserted at relevant points in the existing process. For example,
formal specifications can be used to complement or replace the existing
documentation used to conduct formal or quasi-formal reviews. If the
existing process is new or not well established or defined, the process itself,
as well as the integration of FM, should be explicitly planned and
documented. A possible exception is the integration of FM on a pilot
project, in which case process definition and documentation may follow,
rather than precede the project. Specific process considerations are
discussed in Section III above.

Project Guidelines Writing specifications in a language designed to support
FM is analogous to writing programs in a conventional programming
language; the same considerations of configuration management,
language conventions, reusable modules, standards, and documentation
apply. As in the conventional software domain, such guidelines are most
effective if they are in place before the project (including training) begins.
From an administrative perspective, the benefits of timely, well-
established guidelines are improved project communication and
productivity; sharing and reuse of specifications is one of many possible
benefits realizable in the context of explicit project guidelines.

IV.2. TECHNICAL CONSIDERATIONS

FM cover a wide range of techniques that have different characteristics and
utility. In this section, we discuss the scope and implications of these
differences with respect to five technical factors that should be evaluated
when considering the use of FM for a given application. The factors are
introduced in the suggested order of consideration; e.g., before choosing a
formal method tool, it is important, first, to define the type and scope of
application, second, to specify the type of analysis to be performed, and third,
to determine the rigor and scope of the analysis.

Type of Application FM are not equally suitable for all types of applications.
Although, in principle, the methods can be applied to nearly any
application, in practice, the benefits that can be realized and the difficulty

Section IV NASA-GB-002-95
Release 1.0

19

of achieving them will differ significantly from one application to
another, and from one subsystem to another within a single application.
Suitability should be evaluated with respect to the characteristics of the
problem domain and their implications for the modeling domain.

Higher complexity applications stand to gain from FM much more than
lower complexity ones simply because less complex problems can be
solved dependably using less rigorous methods. Of particular interest are
problem domains whose complexity stems not so much from the size and
structure of the design, but from inherently difficult algorithms such as
those for fault tolerance and parallel or distributed processes.

A further consideration is the mathematical domain of discourse.
Applications that are heavily based on numerical processing, especially
those using floating point arithmetic, pose some difficulties for FM3, while
those that can be modeled using the domains of logic and discrete
mathematics benefit from easier formalization, more tractable reasoning,
and better FM tool support.

Size and Structure of Application The size of an application is a major factor
in the cost and difficulty of its formalization. To make the issue of size
more concrete, consider the experience base of industrial software projects
that have made serious use of FM with automated tool support. A
common measure of application size used in this environment is
thousands of source lines of code (KSLOC). For design-level specification
and verification efforts, most of the industrial systems or subsystems have
been in the neighborhood of tens of KSLOC in size, with an upper limit of
perhaps 100 KSLOC. For code-level verification, which is less commonly
employed and usually limited to R&D efforts, the sizes have been under
10 KSLOC [Polak, Smith]. For applications using less rigorous FM, i.e.,
those lacking tool support and limited to formal specifications only, there
have been efforts in the hundreds of KSLOC range4.

Due to considerable variation in the level of detail represented, it is more
difficult to get a good measure of size in the case of FM used primarily to
model requirements. A reasonable estimate is that requirements analysis
efforts have been performed for architectures ultimately expanding into
systems on the order of hundreds of KSLOC.

As these figures suggest, FM are most effectively applied to systems or
subsystems of moderate size; currently, FM cannot be applied in full to the
largest systems implementable using conventional programming

3Historically, working with axiomatizations of real numbers to reason with rigor about
traditional engineering mathematics has been found to be an awkward and daunting task.
4 See [Craigen1], Figure 2 on p. 8 of Volume 1.

Section IV NASA-GB-002-95
Release 1.0

20

techniques. An alternative is to limit the scope of the formal method
activity to critical properties or components of a very large system,
assuming, of course, that the system is decomposable into small or
medium-sized subsystems or components with well-defined interfaces.
This clean structuring property is vital in any medium- or large-scale
application to ensure that the results of separate FM analyses can be
combined and valid inferences drawn about the composite behavior of
cooperating subsystems.

A second structural property, loosely referred to as structural entropy, is
also important. If an application has intrinsically high entropy, i.e., is
primarily a random collection of special cases with weak cohesion or few
unifying principles, little can be expected from a formalization activity.
Conversely, if an application exhibits strong underlying structural
principles, well understood and easily expressed in a logically meaningful
way, FM can effectively capture and exploit this structure.

Type of Analysis/Formal Method The type of analysis or formal method to
be employed is determined largely by project objectives; the purpose for
which FM are to be applied should be clearly defined and explicitly
documented. For example, one application may use FM primarily to
develop specifications for documentation, another may exploit the
precision inherent in formally specified requirements to catch errors early
in the life cycle, a third may use FM to analyze and assure the correctness
of critical properties or algorithms. These equally legitimate objectives
have very different implications for the rigor of the formal method
analysis and the type of formal method tool appropriate for the project, as
discussed below.

Levels of Rigor in Formal Methods FM techniques may be applied at varying
levels of rigor. Here, rigor is used in a technical sense to mean the degree
of formality of a method, i.e., the extent to which a method formulates
specifications in an axiomatic style, explicitly enumerates all assumptions,
and reduces proofs to explicit applications of elementary rules of inference.
Increasing formality allows the products of FM (i.e., specifications and
proofs) to be less dependent on subjective reviews and consensus and
more amenable to systematic analysis and replication. (Note that
"rigorous" in a broader sense is sometimes used to mean "painstakingly
serious and careful", which implies nothing about the level of formality
in the mathematical sense used here.) Since it is extremely difficult to be
truly formal with pencil and paper (cf., for example, [Rushby]), increasing
formality is usually associated with increasing dependence on mechanical
support.

Listed in order of increasing formality and effort, a suggestive guide to
levels of rigor includes:

Section IV NASA-GB-002-95
Release 1.0

21

1. Use of manual review and inspection (e.g., "structured walk-throughs"
and "formal inspections") [Fagan1, Fagan2, NASAGB1, NASAGB2,
Weller], relying on documents written in a natural language,
pseudocode, or programming language, possibly augmented with
diagrams and equations, and validated with conventional testing
techniques. Activities at this level are not "formal" in a strict sense,
but represent current recommended practice, and serve as a baseline of
discipline and structure necessary to support the additional activities at
higher levels of formality.

2. Use of notations and concepts derived from logic and discrete math to
develop more precise requirements statements and specifications.
Proof, if any, is informal. This level of FM typically augments existing
processes without imposing wholesale revisions. Examples include
the "A7" or Software Cost Reduction (SCR) methodology [vanSchou,
Heninger] and various case and object-oriented modeling techniques
[Rumbaugh] and Mills and Dyer's Cleanroom methodology [Dyer,
Mills], although the latter is an exception in that it supplants rather
than augments existing processes.

3. Use of formalized specification languages with mechanized support
tools ranging from syntax checkers and prettyprinters to typecheckers.
This level of formality usually includes support for modern software
engineering constructs, e.g., modules, abstract data types, and objects, all
with explicit interfaces, but has not historically offered mechanized
theorem proving.5 Examples include Larch [Guttag], RAISE [Nielsen],
VDM [Jones], and Z [Spivey].

4. Use of fully formal specification languages with rigorous semantics and
correspondingly formal proof methods that support mechanization.
Examples include HOL, Nqthm, PVS [Owre], Eves [Craigen2], and SDVS
[Cook]. State exploration [Dill], model checking [McMillan], and
language inclusion [Kurshan] technologies also exemplify this level,
although these technologies are highly specialized, automatic theorem
provers that are limited to checking properties of finite-state systems.

Higher levels of rigor are not necessarily superior to lower levels; factors
that determine the appropriate level of rigor include: project objectives,
criticality of the application, and available resources. For example, if FM
are used simply as documentation, Level 2 may be appropriate; if they are
used to justify the design of a new and critical component, Level 4 may be
the best choice. On the other hand, routine applications adequately
handled by conventional processes are probably most appropriately left to

5Formal methods are evolving and many of these methods are in the process of migrating
"upward" as increasing mechanization occurs. The distinctions in this classification should be
interpreted broadly, as a guide to a diverse range of techniques; the characteristics of
individual techniques change and need to be reevaluated before use on a given application.

Section IV NASA-GB-002-95
Release 1.0

22

Level 1. Finally, it is possible to use a formal method at a level of rigor
lower than its ultimate capability, e.g., by using the specification language,
but not the theorem-proving capability of a Level 4 formal method.

Scope of Formal Method Use The extent to which FM are applied can also
vary. There are at least the following three dimensions to the notion of
extent.

1. All or selected stages of the development life cycle: It is generally felt
that the biggest payoff from the use of FM occurs in early life cycle
stages, given that errors become more expensive to correct as they
proceed undetected through later development stages; early detection
leads to lower life cycle costs. Moreover, the use of FM in the early
stages provides additional precision where it is currently most needed
in the conventional development process.

2. All or selected system components: Criticality assessments, assurance
considerations, and architectural characteristics are among the key
factors used to determine which subsystems or components to analyze
with FM. Since large systems are typically composed of components
with widely differing criticalities, the extent of formal method use
should be dictated by project-specific criteria. For example, a system
architecture that provides fault containment for a critical component
through physical or logical partitioning provides an obvious focus for
FM activity and enhances its ability to assure key system properties.

3. Full or selected system functionality: Although FM have traditionally
been associated with "proof of correctness," i.e., ensuring that a system
component meets its functional specification, they can equally well be
applied to only the most important system properties. Moreover, i n
some cases it is more important to ensure that a component does not
exhibit certain negative properties or failures, rather than to prove that
it has certain positive properties, including full functionality.

These are the three most commonly used variations on the extent of FM
application, although others are certainly possible. Varying the degree of
rigor along each of these three dimensions yields a wide range of options
and provides maximal benefit from a limited investment in FM.

Type of Formal Method Tool The choice of tool is dictated by the application
profile defined by consideration of all of the preceding factors, although
the issue of tools is clearly moot if the most appropriate level of rigor falls
below Level 3. For example, Level 3 documentation of sequential
components is consistent either with a typical Level 3 notation supported
by a typechecker, or, if more powerful mechanization and stronger
guarantees of consistency are desired, with a system normally used to
support Level 4. Similarly, when choosing a Level 4 tool, the capability of
the tool, the constraints of the problem domain, and the objectives of the

Section IV NASA-GB-002-95
Release 1.0

23

analysis must be well matched. For example, verifying the correctness of
fault-tolerant algorithms is probably best pursued with a general-purpose
theorem prover, while exploring the properties of mode-switching or
other complex control logic is probably more effectively pursued with a
state-exploration system.

The process of selecting a formal method tool is in many ways similar to
selecting any other software system; the usual considerations of
documentation, tutorials, history of use, ease of use, etc. apply. In this
case, effective support for the selected formal method(s) is also important.
A suggestive, but by no means exhaustive, list of the additional
considerations necessary for judicious tool selection appears below.6 These
considerations are largely technical in nature, and the reader new to FM
may wish to skip to Section IV.3.

• Specification Language: Is the language adequately expressive for the
given application and which of the following features important for
the application does the language offer: well-defined semantics,
modern programming language constructs (including support for
abstraction, modularity, and encapsulation), familiar and convenient
syntax, strong typing, encapsulation, parameterization, built-in model
of computation, executable subset or other provision for animating
specifications, support for state exploration, model checking, and
related methods?

• Theorem Prover: Does the FM tool offer a theorem prover or proof
checker? If so, how is the theorem prover controlled and guided; is
there automated support for arithmetic reasoning, efficient handling of
large propositional expressions, and rewriting; what support is there
for developing and viewing the proof; can lemmas be used before they
are proved and can new definitions be introduced and existing
definitions modified during proof; how is the proof presented to the
user (e.g., user input or canonical expressions, with or without
quantifiers); are the foundations (i.e., all axioms, definitions,
assumptions, lemmas) of the proof identified; are there facilities for
editing proofs; is it reasonably easy to reverify a theorem after slight
changes to the specification?

• Utilities: Does the formal method offer a reasonably comprehensive
library of standard types, functions, and other constructions and is the
library validated; what, if any, editing and document preparation tools
does the system provide; are there facilities for cross-referencing,
browsing, and requirements tracing; is there support for incremental

6A more detailed discussion of these and other considerations can be found in [NASAFAA, pp.
154-173] Technical aspects of tool selection will be discussed in detail in Volume II of this
guidebook.

Section IV NASA-GB-002-95
Release 1.0

24

development across multiple sessions and for change control and
version management?

IV.3. INTEGRATING TECHNICAL AND ADMINISTRATIVE CONSIDERATIONS

The two preceding sections discussed administrative and technical factors that
should be evaluated when considering the use of FM. In this section, these
two types of factors are integrated into a generic plan summarizing the steps
involved in establishing FM on a project. The plan is presented in tabular
form and includes 8 steps listed (from top to bottom) in chronological order.

Planning Step Notes
Identify FM and Application Domain
Expertise

FM & Application Expertise Essential

Define Scale Trial, Partial or Full Scale Project?
Choose Application Application type, available personnel, etc.
Select Methods Use FM Expertise to identify suitable FM
Select Tools Consider application type, human & system

resources
Implement Training View training as an investment
Develop Project Guidelines Considerations analogous to those for

conventional software
Track & Document Process Changes Update & revise process & documentation

with project feedback

For additional information on general issues of technology transfer, see also
[Davis] and [Potts].

IV.4. COST CONSIDERATIONS

Data collected in several pilot projects [NASAFM] show that the act of
formally stating specifications is generally cost-effective. For critical
applications, the act of proving key properties also appears to be cost-effective,
although there is less data to support this claim. Due to the difficulty of using
statistical techniques to analyze software engineering methods [Fenton],
reliable data on FM cost and effectiveness is hard to come by, although
available data strongly suggests that judiciously applied FM are cost-effective.

Given the above, prudent advice to projects would be the following. In the
context of a stable, controlled software process that includes an emphasis on
quality assurance in the requirements phase7, generate a formal specification
for a core subset of important requirements. Conscientiously and

7Without a stable software process and a commitment to ensuring correct requirements, it is not
clear that the use of FM or any other analytical approach will result in significant benefits to
the project.

Section IV NASA-GB-002-95
Release 1.0

25

competently performed, this formalization step will yield tangible, cost-
effective benefits. Next, identify the most critical parts of the core
requirements and (1) define, (2) formalize, and (3) prove key properties of
these critical system components or algorithms. Iterate the specification and
proof steps until the process shows noticeable signs of diminishing returns.
This point is reached when either no further requirements issues/problems
are detected or a large increase in effort is required to carry out the next step.

The only way to ascertain that the money spent on FM is indeed well spent is
to collect cost-benefit data for the given application. As with any method, the
cost-effectiveness of using FM depends on the characteristics of the project,
the productivity of the staff, the nature of the work environment, and the
available resources. All of these factors vary over time; regular sampling and
analysis of data and overall system quality with respect to cost considerations
are strongly advised.

One additional factor should be considered when evaluating cost, namely, the
potential effect of reuse. Like software development itself, FM can benefit
greatly by reusing assets. Abstract specifications and general theories can be
reused on other parts of the same project or in entirely different projects.
This is especially true when mechanized forms of FM are employed. If FM
are approached with a view toward future reuse of specifications, significant
cost savings can be realized in subsequent efforts and amortized over a long
period. This effect is more pronounced than a mere learning-curve
phenomenon. It stems from an emphasis on generic modes of expression
encouraged by the formalization process. Only experience can determine how
much of a factor reuse will be, but its potential should be recognized from the
outset.

IV.5. FORMAL METHODS LIMITATIONS

FM do not guarantee a superior product. As with all tools, the potential
benefits of FM can be realized only if the tools are judiciously applied to
suitable applications. FM may provide less benefit than anticipated due to
anomalies such as the following.

• Erroneous specifications: Writing formal specifications, like writing
correct programs, requires dedication and attention to detail. In both cases,
an informal requirement must be turned into something that can be
mechanically interpreted, with the potential for undetected gaps,
misconceptions, or defects in the informal requirements, or for
misinterpretations or erroneous formalizations of correctly stated
requirements.

• "Flawed" verifications: In logic and FM, "proof" is a technical term that
describes a certain type of symbolic manipulation or "logical calculation."

Section IV NASA-GB-002-95
Release 1.0

26

Like numerical calculations, logical calculations can fail due to: a mistake
in the calculation, a specification or system of equations that does not
accurately model the real world or the requirements, or a mistake i n
interpreting the result calculated.

Although these anomalies are not unique to FM, the most effective responses
are generally available only through FM techniques. For example, informal
as well as formal specifications can be inconsistent, but only FM provide an
effective response to these potential problems in the form of typechecking to
insure certain forms of internal consistency; theorem proving to challenge
the content and implications of the specification; and clear, unambiguous
specifications to facilitate peer review.

Section V NASA-GB-002-95
Release 1.0

27

V. OVERVIEW OF FORMAL METHODS TOOLS AND
TECHNIQUES

In this section, we provide a generic description of an automated formal
methods (FM) tool. This information is intended to be suggestive, rather
than exhaustive; our aim is to provide a starting point that will enable
readers to explore the existing literature for further information on general
FM techniques as well as specific FM tools.

We begin with a brief classification; FM can be classified according to whether
their primary purpose is descriptive or analytic. Descriptive methods focus
largely on specification as a tool for review and discussion, whereas analytic
methods focus on the utility of specification as a mathematical model for
analyzing and predicting the behavior of (hardware and software) systems, i n
addition to their utility for communication. Not surprisingly, these different
emphases are reflected in the type of formal language favored by each of the
two methods. Descriptive FM generally use the notations of conventional
mathematics, most commonly, notations based on set theory, with
quantification restricted to first order functions that are essentially partial, and
types imposed on an inherently untyped foundation. These language choices
do not readily support automation and descriptive methods typically offer
attractive user interfaces and little in the way of deductive machinery. VDM
[Jones] and Z [Spivey] are examples of primarily descriptive FM.

Analytic FM place considerable emphasis on mechanization and general
design specification languages capable of supporting efficient automated
deduction. These methods can be further classified according to the degree of
automation provided by the theorem prover, or, conversely, by the amount
of user-interaction in the proof process. There are FM systems with
automatic theorem proving and virtually no user interaction, FM systems
with proof checking and virtually no automatic proof steps, and FM that
combine elements of both. Predictably, this spectrum represents tradeoffs
with respect to specification language, proof development, and user-
accessibility. FM systems that support fully automatic theorem proving
typically have restricted specification languages and powerful theorem
provers that can be difficult to control and offer little feedback on failed
proofs, but perform impressively in the hands of experts, e.g., Nqthm [Boyer].
Most state exploration tools also fall into this category. FM systems based on
proof checking generally offer more expressive languages, but require
significant manual input for theorem proving, e.g., HOL [Gordon]. FM
systems that combine a significant level of automation and user input fall
somewhere in between, depending on language characteristics and proof
methodology, e.g., Eves [Craigen2], PVS [Owre1].

Section V NASA-GB-002-95
Release 1.0

28

A typical analytic FM tool consists of the following components:
• User Interface: integrates tool components, manages input and output.
• Parser: checks specifications for syntactic consistency and builds an

internal representation used by other components of the system.
• Prettyprinter or unparser: translates the internal representation of the

specification into a standard format for user display and output.
• Typechecker: checks specifications for semantic consistency, possibly

adding semantic information to the internal representation built by the
parser. If the type system of the specification language is not decidable8,
theorem proving may be required to establish the type-consistency of a
specification. Systems in which the typechecker and prover are closely
integrated attempt to prove type correctness theorems automatically.

• Prover (proof checker): performs proofs over a syntactically and
semantically correct specification. As noted above, automated theorem
provers differ with respect to level of automation and degree of user
interaction.

• Other: Most FM systems also offer some or all of the following:
• Browser: produces cross-reference and displays cross-reference

information; particularly useful for large specifications possibly spread
across several files.

• Status Recorder, Reporter: maintains and reports status of specification
(e.g., parsed, typechecked) and proofs (e.g., proof complete or
incomplete, axiomatic foundation, status of lemmas used in proof).

• Output Generator: provides customized and possibly user-
customizable formatting for specifications and proofs.

Many toolsets are available to support work in FM. A comprehensive list of
tools available as of Spring, 1995, as well as an annotated list of the most
widely available, commonly used tools, appear in Appendix B. Most of these
tools have been developed in research environments and, consequently,
often lack certain features considered standard in the world of commercial
software (e.g., features such as sophisticated user interfaces, online technical
support, and software maintenance contracts). Nevertheless, most of these
tools represent the collective effort of high caliber research teams, some of
whom have been refining their tools for nearly 20 years. Many FM tools were
created under the sponsorship of government agencies active in the
development of software with much higher criticality of requirements than
that of most commercial software. Of all the large, publicly available software
packages, FM tools are quite possibly the most dependable. As a result, these
offerings should be considered viable candidates for project use, provided the
users understand they are not dealing with commercial tool vendors and that
they need to make appropriate allowances.

8Loosely, a problem is "not decidable" if no algorithm or computer program can be described to
solve all instances of the problem.

Section VI NASA-GB-002-95
Release 1.0

29

VI. CONCLUSIONS

This guidebook has presented a management overview of formal methods
(FM) techniques for systems specification and verification. The overview is
based on recent experience in applying FM to real applications (see Appendix
A). The sections of the guidebook provide concrete suggestions on how to
integrate FM into an existing development process, how to establish FM on a
specific project, and what FM tools and techniques are available.

We review below the most important issues to be addressed by managers and
systems development personnel contemplating the application of FM to a
development process or a specific project:

• What are the key features of FM?
• Does the existing process or intended project meet the prerequisites for

application of FM?
• What are the benefits of using FM?

VI.1. KEY FEATURES OF FORMAL METHODS

FM involve the use of logically precise specifications based on discrete
mathematics. This type of mathematics is well suited for modeling discrete
systems, especially those involving logical interactions. These formal
specifications greatly facilitate the modeling of requirements and high level
design (modeling of low level design and code is possible, but less cost-
effective).

The primary types of analysis supported by FM are checking the internal
consistency of a specification and proving that the system specified satisfies
desired properties. These types of analyses can be partially automated using
computer-based tools that not only support the initial development and
analysis of specifications, but also reduce the time required for re-analysis i n
response to subsequent modifications or extensions.

VI.2. PREREQUISITES

FM are most beneficial when used in a reasonably mature, disciplined
environment. Processes that are chaotic, poorly organized or ill-defined and
understood, and those that have not yet employed conventional methods
such as formal inspections and testing regimes will generally realize less
benefit from the application of FM.

Motivation for adopting FM typically arises in environments with a strong
quality emphasis, where there exists a commitment to improve system

Section VI NASA-GB-002-95
Release 1.0

30

quality beyond that provided by current practices. Achieving the level of FM
mastery necessary to apply them at their most rigorous will require
commitment and a disciplined approach. In an environment in which more
ad hoc and less systematic approaches are deemed adequate, fully rigorous FM
may be perceived as too hard and not worth the effort. Yet even in such an
environment, FM applied at a level less than full rigor can, with a reasonable
level of effort, make a contribution to overall system quality as a
comprehensive checking technique. On the other hand, FM are not
appropriate for highly procedural or numerical applications, or for
applications that are loosely structured with weak cohesion and few unifying
features.

Not all types of applications are equally suitable for FM. Safety-critical
systems are generally suitable for FM because they typically satisfy other
prerequisites such as a strong quality emphasis and because FM appear to be
particularly suitable for analyzing safety properties. Systems involving a high
degree of logical interactions (e.g., those with several modes or states
determined by Boolean conditions) are well-suited to FM because FM are
well-suited for representing logical conditions. Systems required to handle
safety or fault protection are particularly suitable for FM because they are both
safety critical and involve logical interactions.

Understanding the limitations of FM can help in the choice of which
applications and processes are likely to benefit from FM. For example, it is
generally not practical to prove an entire system correct. Complete formal
proofs have only been achieved for problems of small to moderate size.
Managing larger problems requires careful tailoring of the methods or the
problem. FM does not eliminate the need for system testing. However, FM
can help focus testing and complement the inherent incompleteness of
standard testing regimes with an exhaustive analysis, covering all cases. In
projects where sufficiently comprehensive testing is too costly or otherwise
infeasible, FM may be a viable alternative. Typically, however, FM are used
to complement inspections and testing, rather than to replace them.

In summary, positive answers to one or more of the following for a given
development environment indicate that FM can make a contribution in that
environment:

• Has the development organization achieved most of the elements of a
mature process (e.g., the Software Engineering Institute's Level 3)?

• Is greater quality of software subsystems required? Or have there been
problems with low quality requirements (or design) in the past?

• Is testing cost and coverage a problem that conventional techniques do
not adequately address?

• Would failure of one or more components cause the entire system to
fail catastrophically?

• Does the system involve complex switching or multiple modes?

Section VI NASA-GB-002-95
Release 1.0

31

• Is the system required to handle safety or fault protection?

VI.3. BENEFITS OF FORMAL METHODS

• Formal specifications feature a high degree of logical precision which
eliminates much of the ambiguity that is found inevitably in informal
specifications. This precision translates into a higher likelihood that all
requirements writers and readers have a consistent understanding of the
requirements and a higher likelihood that the requirements will be
implemented correctly. Since formal specifications support abstract
descriptions, they help engineers focus on what they want to accomplish
instead of how to accomplish it. This may reduce the amount of detail
needed in a requirements document.

• Formal proofs eliminate ambiguity and subjectivity from requirements
analysis by providing a logical and precise argument for the behavior of
the requirements. This enhances the analysis performed in informal
reviews and inspections.

• The use of formal specifications and formal proofs provides a systematic,
repeatable approach to analysis. This translates into more consistent
analysis and a process that is less dependent on the skill and perseverance
of a particular analyst.

• The use of formal specifications and proofs is not an all-or-nothing
approach. It can be tailored to the level of rigor appropriate to a given
budget, schedule, and technical need. That is, it can be scaled to match the
needs of a project.

• Formal specifications and proofs can be applied at any life cycle phase,
including early in the life cycle where better analysis approaches are
currently most needed. Detecting and fixing defects earlier in the process
is far cheaper than finding them later in the process. For example, one
could tailor the use of specifications and proofs to focus on the verification
of critical properties early in the life cycle.

• Formal specification and proofs can be supported by computer-based tools.
This provides automation for tasks such as consistency checking and the
preparation of proofs. These tools are analogous to the use of automatic
calculators (and computers) in the analysis of engineering equations, but
rather than "plug in" numbers into a formal specification, one "plugs i n "
symbolic variables and calculates the equivalent of a closed form solution.
This is an important benefit that provides an additional level of assurance
as well as reducing the cost of certain aspects of the analysis. These tools
greatly enhance the repeatability of the analysis by allowing proofs to be re-
executed. This also allows quick answers to the consequences of "What
if..." questions early in the developmental life cycle.

• Formal specifications and proofs complement the existing testing
approach, but go beyond what testing can accomplish. They complement
testing by providing a precise specification from which better test plans can

Section VI NASA-GB-002-95
Release 1.0

32

be derived. They go beyond testing because they have the unique
capability to show that key properties are satisfied in entire classes of
scenarios.

• There is hard evidence that FM can increase the quality of real systems as
well as solve historically difficult problems in computer science. This
evidence comes from demonstrations of formal methods on several
NASA projects (see Appendix A) as well as from increasing use i n
commercial systems and other government programs [Craigen1]. FM
have been used to find issues in mature requirements and to improve the
understanding of complex systems.

In summary, FM enable defects in requirements to be detected earlier than
otherwise, and can greatly reduce the incidence of mistakes in interpreting,
formalizing, and implementing correct requirements. Furthermore, used
early in the life cycle, FM yield formalized statements that can be analyzed
and their consequences calculated in a repeatable manner. In addition to
these generic benefits attributable to the full spectrum of FM, the most
rigorous and fully formal versions of FM cause more defects to be detected
than would otherwise be the case and, in certain circumstances, subject to
certain caveats, guarantee the absence of certain defects. When used
judiciously and skillfully on suitable applications, FM provide compelling
evidence of correctness early enough to be useful, cheaply enough to be
feasible, and on the basis of modeling that is simple enough to be credible.
This guidebook attempts to provide project management the information
and insight necessary to make informed decisions concerning the application
of FM and to enable them to provide guidance that will allow their projects to
realize the benefits of FM use.

References NASA-GB-002-95
Release 1.0

33

REFERENCES

[Ackerman] A. F. Ackerman, L. S. Buchwald, and F. H. Lewski. "Software
Inspections: An Effective Verification Process," IEEE
Software, 6(3):31-36, May, 1989.

[Austin] S. Austin and G. Parkin, Formal Methods: a Survey,
Division of Information Technology and Computing,
National Physical Laboratory, Teddington, Middlesex, UK,
March, 1993.

[Bowen1] J. Bowen and V. Stavridou, "Safety-Critical Systems, Formal
Methods, and Standards", Software Engineering Journal, July,
1993

[Bowen2] J.P. Bowen and M.G. Hinchey, Applications of Formal
Methods, Prentice-Hall International, Ltd., 1995.

[Boyer] R.S. Boyer and J.S. Moore, A Computational Logic Handbook ,
Academic Press, New York, NY, 1988.

[Butler] R.W. Butler, An Elementary Tutorial on Formal
Specification and Verification Using PVS, NASA Technical
Memorandum Number 108991, June, 1993.

[Cook] J.V. Cook, I.V. Filippenko, B.H. Levy, L.G. Marcus, and T.K.
Menas, "Formal Computer Verification in the State Delta
Verification System (SDVS)", in AIAA Computing i n
Aerospace VIII, pp. 77-87, Baltimore, MD, October, 1991.

[Craigen1] D. Craigen, S. Gerhart, and T. Ralston, An International
Survey of Industrial Applications of Formal Methods, U.S.
National Institute of Standards and Technology, Reports
NIST GCR 93/626 (Vols. 1 and 2), March 1993. Also available
from the U.S. Naval Research Laboratories, Formal Report
5546-93-9581/9582 (September 1993), and from the Atomic
Energy Control Board of Canada, Reports INFO-0474-1 (Vol.
1) and INFO-0474-2 (Vol. 2), January, 1995.

[Craigen2] D. Craigen, S. Kromodimoeljo, I. Meisels, B. Pase, and M.
Saaltink, "EVES: An Overview" in S. Prehn and W.J.
Toetenel, eds., VDM '91: Formal Software Deve lopment
Methods, pp. 389-405, v. 551 of Lecture Notes in Computer
Science, Noordwijkerhout, The Netherlands, October, 1991.

References NASA-GB-002-95
Release 1.0

34

[Craigen3] D. Craigen, S. Gerhart, and T. Ralston, “Formal Methods
Reality Check: Industrial Usage”, in Proceedings of Formal
Methods Europe ‘93 (FME’93), Springer-Verlag, 1993. Also i n
Transactions on Software Engineering, February 1995.

[Davis] A. M. Davis, "Why Industry often says 'No Thanks' to
Research," IEEE Software , 9(6):97-99, November, 1992.

[Dill] D. Dill, A. Drexler, A. Hu, and C. Yang, "Protocol Verification
as a Hardware Design Aid," IEEE International Conference
on Computer Design: VLSI in Computers and Processors, pp.
522-525, IEEE Computer Society, October, 1992.

[Dyer] M. Dyer, The Cleanroom Approach to Quality Software
Development, John Wiley and Sons, New York, NY, 1992.

[Fagan1] M. E. Fagan, "Design and Code Inspections to Reduce Errors
in Program Development," IBM Systems Journal, 15(3): 182-
211, March, 1976.

[Fagan2] M. E. Fagan, "Advances in Software Inspection," IEEE
Transactions on Software Engineering, SE-12(7):744-751, July,
1986.

[Fenton] N. Fenton, "How Effective Are Software Engineering
Methods?," Journal of Systems and Software, 22:141-146, 1993.

[Gordon] M.J.C. Gordon and T.F. Melham, eds., Introduction to HOL:
A Theorem Proving Environment for Higher-Order Logic,
Cambridge University Press, Cambridge, UK, 1993.

[Guttag] J. V. Guttag, J. J. Horning, with S.J. Garland, K.D. Jones, A.
Modet, and J.M. Wing, LARCH: Languages and Tools f or
Formal Specification, Texts and Monographs in Computer
Science, Springer-Verlag, 1993.

[Heninger] K. L. Heninger, "Specifying Software Requirements for
Complex Systems: New Techniques and their Application,"
IEEE Transactions on Software Engineering, SE-6(1):2-13,
January, 1980.

[Jones] C. B. Jones, Systematic Software Development Using VDM,
2/e, Prentice Hall International Series in Computer Science,
Prentice Hall, Hemel Hempstead, UK, 1990.

References NASA-GB-002-95
Release 1.0

35

[Kurshan] R. Kurshan, Automata-Theoretic Verification o f
Coordinating Processes, Princeton University Press, 1993.

[McMillan] K. McMillan, Symbolic Model Checking, Kluwer, Boston,
MA, 1993.

[Miller1] S.P. Miller, M.Srivas, Formal Verification of a Commercial
Microprocessor, Technical Report SRI-CSL-95-4, SRI
International, Menlo Park, CA, February, 1995.

[Miller2] S.P. Miller, M. Srivas, “Formal Verification of the AAMP5
Microprocessor -- A Case Study in the Industrial Use of
Formal Methods”, in Proceedings of the 1995 Workshop o n
Industrial-Strength Formal Specification Techniques
(WIFT’95), IEEE Computer Society, Orlando, FL, April 5-8,
1995.

[Mills] H. D. Mills, M. Dyer, and R. Linger, "Cleanroom Software
Engineering," IEEE Software , 4(5):19-25, September, 1987.

[NASAFAA] John Rushby, Formal Methods and Digital Systems
Validation for Airborne Systems, NASA Contractor Report
4551, December, 1993.

[NASAFM] NASA, Formal Methods Demonstration Project for Space
Applications - Phase I Case Study: Space Shuttle Orbit DAP
Jet Select, JPL Document D-11432, December 22, 1993.

[NASAGB1] NASA Office of Safety and Mission Assurance, Software
Formal Inspections Guidebook , NASA-GB-A302, August,
1993.

[NASAGB2] NASA Engineering Division, Software Formal Inspections
Standard, NASA-STD-2202-93, April, 1993.

[Nielsen] M. Nielsen, K. Havelund, K. R. Wagner, and C. George, "The
RAISE Language, Method and Tools," Formal Aspects o f
Computing, 1(1):85-114, January-March, 1989.

[Owre1] S. Owre, J.M. Rushby, and N. Shankar, "PVS: A Prototype
Verification System," in Deepak Kapur, ed., 11th
International Conference on Automated Deduction (CADE),
Saratoga, NY, June 1992, pp. 748-752, v. 607 of Lecture Notes
in Artificial Intelligence, Springer-Verlag.

References NASA-GB-002-95
Release 1.0

36

[Owre2] S. Owre, J. Rushby, N. Shankar, and F. von Henke, “Formal
Verification for Fault-Tolerant Architectures: Prolegomena
to the Design of PVS”, in IEEE Transactions on Software
Engineering, 21(2), February 1995.

[Potts] C. Potts, "Software-Engineering Research Revisited," IEEE
Software , 10(5):19-28, September, 1993.

[Polak] W. Polak, “An Exercise in Automatic Program Verification”,
IEEE Transactions on Software Engineering, 5(5), September
1979.

[Rumbaugh] J. Rumbaugh, M. Blaha, W. Pramerlani, F. Eddy, W .
Lorenson, Object-Oriented Modeling and Design, Prentice
Hall, 1991.

[Rushby] J. Rushby and F. von Henke, “Formal Verification of
Algorithms for Critical Systems,” IEEE Transactions o n
Software Engineering, 19(1):13-23, January 1993.

[Smith] M. Smith, B. Divito, A. Siebert, and D. Good, “A Verified
Encrypted Packet Interface”, ACM Software Engineering
Notes, 6(3), July, 1981.

[Spivey] J. M. Spivey, Understanding Z, A Specification Language a n d
its Formal Semantics, Cambridge University Press, 1988.

[vanSchou] A.J. van Schouwen, The A-7 Requirements Model: Re-
Examination for Real-Time Systems and an Application t o
Monitoring Systems, Technical Report 90-276, Department of
Computing and Information Science, Queen's University,
Kingston, Ontario, Canada, May, 1990.

[Weber-Wulf] D. Weber-Wulf, “Proof-Movie -- A Proof with the Boyer-
Moore Prover, in Formal Aspects of Computing, 5(2):121-151,
1993.

[Weller] E. F. Weller, "Lessons from Three Years of Inspection Data,"
IEEE Software, 10(5):38-45, September, 1993.

[Wing] J. Wing, "A Specifier's Introduction to Formal Methods,"
IEEE Computer, September, 1990.

[Wordsworth] J.B. Wordsworth, Software Development with Z: A Practical
Approach to Formal Methods in Software Engineering,
Addison-Wesley, Ltd, 1992.

Appendix A NASA-GB-002-95
Release 1.0

A-1

APPENDIX A : FORMAL METHODS CASE STUDIES

This appendix summarizes the results of the application of formal methods
(FM) to requirements analysis for several NASA case studies. These
applications are drawn from the Space Shuttle, Space Station, and Cassini
(JPL) projects. Section A.1. presents a short overview of each case study,
including a table at the end that summarizes the goals, cost, and benefits for
each study. Section A.2. presents a more detailed report on two of the studies,
the Space Shuttle GPS CR (Change Request) study, and the Cassini Fault
Protection Software study.

A.1. CASE STUDY DATA

Space Shuttle Jet Select
The first project was the formal specification of a very mature piece of the
Space Shuttle flight control requirements called Jet Select. The cost data for
this project are very rough because much time was spent organizing the team
and learning the toolset. The specification productivity was approximately 10
pages of requirements per work month. Few proofs were produced for the
first specification, but 46 issues were identified and several minor errors were
found in the requirements. A second specification was produced for an
abstract (i.e., high level) representation of the Jet Select requirements. This
abstraction, along with the 24 proofs of key properties, was accomplished i n
under 2 work months, and although it only uncovered 6 issues, several of
these issues were significant9. Although it would be foolhardy to calculate a
productivity rate or error-detection rate based on this data, it is reasonable to
conclude that FM, including the proofs, did not take a prohibitively long
amount of time and that it did have positive benefits.

Next, two additional specifications were developed for other parts of the
Space Shuttle flight control requirements. A high-level formal model of the
on-orbit Digital Auto Pilot (DAP) requirements (approximately 200 pages) was
developed in approximately 4 work weeks; this model focused on the
interfaces between functions. An object-oriented model of the DAP was also
developed in 2 work weeks. A goal of this trial project was to see how FM
and an object-oriented approach such as Object Modeling Technique (OMT)
could be used together. No issues were found (though a large set of
redundant requirements was identified), but a much better understanding of
how the pieces of the DAP fit together was gained. The study concluded that
FM can help the requirements analyst (RA) navigate through a large set of

9No error was found in the Space Shuttle requirements that would have affected the software
performance during a mission. The issues were significant because they were apparently not
previously considered and led to a better understanding of how the software would behave
under various off-nominal scenarios.

Appendix A NASA-GB-002-95
Release 1.0

A-2

requirements, focusing on key interface data and logical interactions of
components, without significantly increasing the amount of time necessary to
analyze the requirements (i.e., 4-6 weeks is comparable to the amount of time
it would take a new RA to get a good overview of a subsystem of this size and
complexity without FM).

To gain better insight into the cost of proofs, a specification was made of a
three-contact, two-switch redundant event triggering system. The goal was to
prove that the system, under various assumptions was two fault tolerant.
The proof was successful and no errors were found. However, some cases
missing from the original analysis were found, some implicit assumptions
were documented, and a better understanding of the system was gained. The
size of the requirements was about 3 pages. The total cost, including proofs
was just over one work week. The overall proof was divided into 15 small
pieces each of which took about 10 minutes to prove. See [NASA] and [Kelly]
for additional detail.

Space Station FDIR
Next, an assessment was made of the highest level requirements for Failure
Detection, Isolation, and Recovery (FDIR) of the International Space Station
Alpha (ISSA) U.S. segment. These were system-level requirements which
contained a large software content. Fourteen (14) pages of FDIR requirements
were specified and analyzed in two-workmonths (2 people working 1/2 time
for 2 months); one comprehensive proof was done to assess completeness of
the specification. This assessment resulted in 12 issues, including 3 major
issues. The requirements development team concurred with all findings and
planned to correct the problems in the next release of the requirements
document. See [Hamilton] for additional detail.

Space Shuttle GPS CR
A task was undertaken in 1994 involving a Space Shuttle software change
request (CR) concerning the integration of new Global Positioning System
(GPS) functions. The Shuttle is to be retrofitted with GPS receivers i n
anticipation of the TACAN navigation system being phased out by the Air
Force. Additional navigation software will be incorporated to process the
position and velocity vectors generated by these receivers. A decision was
made to focus the trial project on just a few key areas because the CR itself is
very large and complex. A set of preliminary formal specifications was
developed for the new Shuttle navigation principal functions known as GPS
Receiver State Processing and GPS Reference State Processing, using the
language of SRI's Prototype Verification System (PVS). While writing the
formal specifications, 43 minor discrepancies were detected in the CR and
these have been reported to Loral requirements analysts.

Cassini CDS FP

Appendix A NASA-GB-002-95
Release 1.0

A-3

Another trial project used FM for the requirements analysis of safety-critical
software. The selected applications were the requirements for portions of the
Cassini spacecraft's system-level fault protection software. Object-oriented
modeling was used to guide the formal specification of the requirements.
Fifteen pages of object-oriented diagrams and 25 pages of PVS specifications
were produced. Thirty-seven lemmas specified properties essential for the
correct and hazard-free behavior of the software. Of these lemmas, 21 were
proven to be true and three were disproved using the PVS theorem prover.
A total of thirty-seven issues were found in the requirements, including
undocumented assumptions, inadequate requirements for boundary cases,
inconsistency and traceability issues, imprecise terminology, and one logical
error. Appendix A contains a fuller description of the trial projects and their
results. See also [Lutz].

Space Shuttle Three Engine Out CR
The Three Engine Out (3 E/O) Task is executed each cycle during powered
flight until either a contingency abort maneuver is required or progress along
the powered flight trajectory is sufficient to preclude a contingency abort even
if three main engines fail. The 3 E/O task consists of two parts: 3 E/O Region
Selection and 3 E/O Guidance. 3 E/O Region Selection is responsible for
selecting the type of external tank (ET) separation maneuver and assigning
the corresponding region index. 3 E/O Guidance monitors ascent parameters
and determines if an abort maneuver is necessary. If the ascent phase is
nominal, the primary function of this task is to provide display support,
indicating the 3 E/O contingency region status. If an abort maneuver is
required, 3 E/O guidance switches from display support to an auto guidance
steering function that involves calculating and commanding the appropriate
maneuvers with respect to external tank separation, post-separation -Z
translation, interconnected OMS dump (as necessary), maneuver to entry
attitude, and transition to the next abort phase (major mode 602).

We have developed and analyzed a formal model of the series of sequential
maneuvers that comprise the 3 E/O algorithm. To date, 20 potential issues
have been found, including undocumented assumptions, logical errors, and
inconsistent and imprecise terminology. These findings are listed as potential
issues pending review by the 3 E/O requirements analyst.

Appendix A NASA-GB-002-95
Release 1.0

A-4

Summary
The costs and benefits are summarized in Table A.1.

Problem Goals Cost Benefits Notes
Jet Select
(low level)

Gain familiarity
with Shuttle
requirements / FM

Approximately 6
months (very
rough estimate),
75 pages of
requirements

46 issues raised most issues were
minor, requirements
were very mature

Jet Select
(high level)

Prove key system
properties

Approximated 2
months, 3 pages
of high level
requirements

6 issues raised several issues were
very significant even
though requirements
were very mature

Orbit DAP Compare FM with
OMT, investigate
internal interfaces

4 weeks (FM)
2 weeks (OMT),
200 pages of
requirements

redundant requirements
identified, increased
understanding gained

requirements were
very mature

3 Contact
Switch

Prove safety
properties

1 week, 3 pages of
requirements

uncovered missing cases,
clarified assumptions

requirements were
very mature

ISSA FDIR Assess consistency
and completeness

2 months, 14
pages of
requirements

12 issues system level
requirements with
large software
content

Cassini
fault
protection

Requirements
analysis of safety-
critical software

12 months, 100
pages of
requirements

37 issues system under
development

Table A.1.: Summary of Cost and Benefits for Trial Projects

A.2. DESCRIPTIONS OF INDIVIDUAL TRIAL PROJECTS

A.2.1. CASSINI CDS FAULT PROTECTION SOFTWARE

1. Introduction
Another trial project used FM for the requirements analysis of mission-
critical software. The selected applications were the requirements for portions
of the Cassini spacecraft's system-level fault protection software. This on-
board software autonomously detects and responds to spacecraft faults. It was
targeted as an application in which the extra assurance possible via formal
specification and analysis was merited.

2. Approach
The approach taken in this demonstration project was to:

• Select the application domain. The selected applications were the
requirements for portions of the Cassini spacecraft's system-level fault-
protection software.

• Model the selected applications using object-oriented diagrams. The
object-oriented modeling tool used in this work was Paradigm Plus
(registered trademark of Protosoft, Inc.), which is an implementation of
OMT, the Object Modeling Technique.

Appendix A NASA-GB-002-95
Release 1.0

A-5

• Develop formal specifications in PVS using the PVS tool set, including
the type checker.

• Prove required properties. We determined properties that must hold
for the target software to be hazard-free and function correctly, specified
them in PVS as lemmas (claims), and proved or disproved them using
the interactive theorem-prover.

• Feedback results to the Project. Because we were analyzing
requirements that were still being updated, part of our task was to keep
current with the changes and to provide timely feedback to the Project
as they resolved the remaining requirements issues and began design
development.

3. Results
The experiment described here produced 25 pages of PVS specifications and 15
pages of OMT diagrams. 37 lemmas were specified. Of these, 21 were proven
to be true and 3 were disproved. An additional 13 lemmas were stated but not
proven. Five of these unproved lemmas were obviously true from the
formal specifications; four were out of the scope of our application; and four
remain to be proven.

The lemmas that were proved or disproved helped in the analysis of whether
the specifications were accurate, whether the software could introduce
hazards into the system, and whether any hidden assumptions were needed
for the software to function correctly.

The results obtained from the specification and analysis (including proofs) of
the requirements were of two types, issues found in the requirements and an
evaluation of our process of applying FM.

A total of 37 issues were found in the requirements. These were categorized
as follows:

• Undocumented assumptions: 11.
• Inadequate requirements for off-nominal or boundary cases: 10.
• Traceability and inconsistency: 9.
• Imprecise terminology: 6.
• Logical error: 1.

The evaluation of the process we used to specify and analyze the
requirements led us to three conclusions:

• Using object-oriented models: For the target applications, object-
oriented modeling offered several advantages as an initial step i n
developing formal specifications. First, the object-oriented modeling
defined the boundaries and interfaces of the embedded software
applications at the level of abstraction chosen as appropriate by the
specifiers. In addition, the modeling offered a quick way to gain
multiple perspectives on the requirements. They were easy to

Appendix A NASA-GB-002-95
Release 1.0

A-6

understand and review. Finally, the graphical diagrams served as a
frame upon which to base the subsequent formal specification and
guided the steps of its development. Since the elements of the
diagrammatic model often mapped in a straightforward way to
elements of the formal specifications, this reduced the effort involved
in producing an initial formal specification. We also found that the
object-oriented models did not always represent the "why," of the
requirements, i.e., the underlying intent or strategy of the software. In
contrast, the formal specification often clearly revealed the intent of the
requirements.

• Using FM for requirements analysis: Unlike earlier work in this
research project on software in which the requirements were very
mature and stable and the formal specification entailed reverse
engineering (Space Shuttle's Jet Select Subsystem), the work on
Cassini's fault-protection subsystem analyzed requirements at a much
earlier phase of development. Consequently, the requirements that we
analyzed were known to be in flux, with several key issues still being
worked (e.g., timing details, number of priority levels). A negative
effect of the lack of stability was that time was spent staying current
with changes and updating specifications to conform to changes in the
requirements. A positive effect was that issues identified during our
analysis could be readily fed back into the development process before
the design was frozen.

Based on our experience with this trial project, the formal specification
of unstable requirements had the following advantages:
• Laid the foundation for future work.
• Allowed rapid review of proposed changes and alternatives.
• Clarified requirements issues still being worked by elevating

undocumented concerns to clear, objective dilemmas.
• Complemented the lower-level FMEA (Failure Modes and Effects

Analysis) already being performed on the software, by providing
higher-level verification of system properties.

• Added confidence in the adequacy of the requirements that had
been analyzed using FM.

• Uncovered issues that might impact the subsequent design phase.

• Using FM for safety-critical software: For a safety analysis it is
important to ensure that a hazardous situation does not occur, as well
as that the correct behavior does occur. Fault Tree Analysis, which
backtracks from a hazard to its possible causes, is one method used for
this kind of hazards analysis. However, unlike FM of specification and
proof, Fault Tree Analysis is an informal method which in practice
permits ambiguous or inadequate descriptions.

Appendix A NASA-GB-002-95
Release 1.0

A-7

FM helped us find hazardous scenarios by forcing us to show every
condition and by prompting us to define new, undocumented
assumptions through rigorous specification. The process of developing
formal specifications and proofs caused us to think about the full range
of cases, some of which were unanticipated.

In conclusion, our main contributions to the FM RTOP in the Cassini
demonstration project have been:

• Applying FM to the software requirements analysis of a project
currently under development,

• Using object-oriented diagrams to guide the formal specification of
software requirements,

• Formally specifying and proving a set of properties essential for the
correct and hazard-free behavior of the software, and

• Demonstrating that FM can be used to specify and analyze an
application involving safety-critical software.

A.2.2. SPACE SHUTTLE GPS SOFTWARE CR TASK

1. Introduction
A task was undertaken in 1994 involving a Space Shuttle software change
request (CR) concerning the integration of new Global Positioning System
(GPS) functions. The Shuttle is to be retrofitted with GPS receivers i n
anticipation of the TACAN navigation system being phased out by the DoD.
Originally, GPS was required for navigation only during the entry flight phase
after the disappearance of TACAN, but the scope has been broadened to cover
all mission phases. Additional navigation software will be incorporated i n
the Shuttle to process the position and velocity vectors generated by these
receivers. In particular, the Shuttle GPS software CR will provide the
capability to update the Shuttle navigation filter states with selected GPS state
vector estimates similar to the way state vector updates currently are received
from the ground. In addition, the CR will provide aid to the GPS receivers
and will support crew control and operation of GPS/GPC processing.

The goal of this FM task is to develop a model for a core subset of the GPS-
extended navigation functions for a single flight phase. Members of the
project team are working with requirements analysts from Loral Space
Information Systems to derive a set of formal specifications to describe the
new requirements and to model interfaces to existing Shuttle navigation
functions. This trial project will serve as another opportunity for the Shuttle
requirements analysts to evaluate the effectiveness of FM in the requirements
analysis process.

Appendix A NASA-GB-002-95
Release 1.0

A-8

2. Approach
A decision was made to focus the trial project on just a few key areas because
the CR itself is very large and complex. The general criteria for where to focus
were the following:

• Include as much of the new GPS principal functions as possible. It is
important to capture the essence of these new functions and their
interfaces to existing principal functions.

• Exclude as much of the crew interface functions as possible. We can
omit the display and crew input functions for now.

• Focus on entry-phase navigation functions both as the place with the
greatest need for GPS as well as the best place to put the archetype
model that can be cloned later, if desired, for handling other flight
phases.

After preliminary study of the CR and discussions with the responsible R A
for this CR, it was felt that the most promising approach was to hone in on
the new functions that provide selected GPS state vectors for consumption by
the existing entry navigation functions. This means emphasizing the
following principal functions:

• GPS Receiver State Processing
• GPS Reference State Processing
• GPS Subsystem Operating Program, except for the portions concerned

with low-level I/O processing

If positive results are obtained from this effort, the remaining portion of entry
navigation can be undertaken as a follow-on activity.

The FM approach is loosely based on the work conducted during 1993 on Jet
Select and Orbit DAP. Those techniques are being adapted as necessary to
accommodate the needs of this new area of the Shuttle software. All work is
being mechanically assisted by SRI's Prototype Verification System (PVS)
toolset.

3. Results
This task began with the Mod C version of the GPS CR. Initially, the relevant
portions of the CR were analyzed to determine the basic structure of the
principal functions and how they are decomposed into subfunctions. Based
on this organization, a general approach for modeling the functions and
expressing the formal specifications was devised. A white paper on this
prescribed technique for writing formal specifications for the GPS CR was
written and sent to the Loral requirements analysts. The formalization of
requirements is based on the use of an abstract state machine model. Each
principal function is modeled as such a state machine, which takes inputs and
local state values and produces outputs and new state values. This method
provides a simple computational model that nevertheless accommodates the

Appendix A NASA-GB-002-95
Release 1.0

A-9

key features of a principal function and its software architecture and has a
straightforward realization in PVS.

Next, the interfaces of the principal functions and their subfunctions were
carefully scrutinized. Particular emphasis was placed on being able to identify
the types of all inputs and outputs, and to match up all the data flows that are
implicit in the tabular format presented in the requirements. While
conducting this analysis and preparing to write the formal specifications, 43
minor discrepancies were detected in the CR and these have been reported to
Loral requirements analysts.

A set of preliminary formal specifications was developed for the principal
functions known as GPS Receiver State Processing and GPS Reference State
Processing, using the language of PVS. Assumptions were made as needed to
overcome the discrepancies encountered. Additional detail will be provided
to the formal specifications to characterize the functions with adequate
precision. In parallel with this activity, a small team of Loral requirements
analysts have been learning FM and PVS and positioning themselves to carry
out this work after the trial project is completed. The GPS CR task had been
on hold pending the outcome of a Space Shuttle decision to shelve the CR,
but it has been resumed as of 12/1/94.

Appendix A NASA-GB-002-95
Release 1.0

A-11

A.3. REFERENCES

[Hamilton] D. Hamilton, R. Covington, and J. Kelly, "Experiences i n
Applying Formal Methods Analysis of Software and System
Requirements," Proceedings of the Workshop on Industrial-
Strength Formal Specification Techniques (WIFT'95), Boca
Raton, FL, April 5-8, 1995.

[Kelly] J. Kelly, R. Covington, D. Hamilton, "Results of a Formal
Methods Demonstration Project," Proceedings, WESCON/94
& Idea/Microelectronics Conference, Los Angeles, CA, Sept.
27-29, 1994.

[Lutz] R. Lutz and Y. Ampo, "Experience Report: Using Formal
Methods for Requirements Analysis of Critical Spacecraft
Software," Proceedings of the Nineteenth Annual Software
Engineering Workshop, NASA Goddard Space Flight Center,
Greenbelt, MD, December, 1994.

[NASA] NASA, Formal Methods Demonstration Project for Space
Applications - Phase I Case Study: Space Shuttle Orbit DAP
Jet Select, JPL Document D-11432, December 22, 1993.

Appendix A NASA-GB-002-95
Release 1.0

A-12

Appendix B NASA-GB-002-95
Release 1.0

B-1

APPENDIX B: GUIDE TO INFORMATION ON FORMAL
METHODS TOOLS

The following is a comprehensive list of formal methods (FM) tools available
throughout the world. Nearly all are available electronically and come free of
charge. This list has been compiled (in part) from the FM virtual library
maintained on the World Wide Web (WWW) by Jonathan Bowen at the
following URL:

http://www.comlab.ox.ac.uk/archive/formal-methods.html

Links to further information about these tools may be followed from the cited
home page.

Several of the tools from this list have been described in more detail below
for the benefit of the reader. This selection is not intended to be an
endorsement of any of these tools, but serves to highlight tools that are better
known, better supported, and have been subjected to more widespread use.

Additional information in compiling this list has been drawn from [Craigen]
and from several online databases of FM tools:

• The Formal Methods Tools Database maintained by Tim Denvir.
URL file://chopwell.ncl.ac.uk/pub/fm_tools/fm_tools_db

• The Database of Automated Reasoning Systems maintained by Carolyn
Talcott.
URL ftp://sail.stanford.edu/pub/clt/ARS/README

B.1. A COMPREHENSIVE LIST OF FORMAL METHODS TOOLS

Most of the entries listed here can be found in the FM virtual library at the
Oxford University URL cited above. The links from that page can be followed
to obtain more detailed information. Those tools not directly accessible via a
WWW link from that page are annotated with either an e-mail address for
the appropriate contact person or an explicit URL for WWW access.

Acl2 theorem prover, a successor to the Boyer-Moore theorem prover,
is under development at Computational Logic, Inc. in Austin, Texas.
In progress.

Action Semantics, a framework for specifying formal semantics of
programming languages, is being pursued by an international group of
researchers, with an archive maintained at the University of Aarhus i n
Denmark.

Appendix B NASA-GB-002-95
Release 1.0

B-2

Algebraic Design Language, a higher-order software specification
language based on algebraic concepts, has been developed at the Oregon
Graduate Institute.

ASLAN, a specification language processor/proof obligation generator
(email Dick Kemmerer on kemm@cs.ucsb.edu for further details), and
GIL, a graphical interval logic tool created by Laura Dillon
(dillon@cs.ucsb.edu) are available from a formal support tools archive
at UC Santa Barbara.

Boyer-Moore theorem prover (a forerunner of Nqthm) is available via
ICOT Free Software for use under Unix at ICOT (Japan), SICS (Sweden),
GMD (Germany) and Univ. of Oregon (USA).

B-Method, developed by Jean-Raymond Abrial (originator of Z) and
others, is a formal method for developing software from specifications
written in the Abstract Machine Notation. Tool support is provided i n
the form of an interpreter called the B-Tool and an integrated set of
additional tools called the B-Toolkit, both available from B-CORE Ltd.,
UK. Email Ib.Sorensen@comlab.ox.ac.uk.

Circal (CIRcuit CALculus) is a system supporting a process algebra that
may be used to rigorously describe, verify and simulate concurrent
systems. It is available from Strathclyde University (UK).

Concurrency Workbench, from the University of Edinburgh, is an
automated tool for analyzing concurrent systems using model checking
under a variety of different process semantics.

Coq, the Calculus of Inductive Constructions, was developed at INRIA
in France by a team led by Gerard Huet. A proof assistant is provided as
well as the tool CtCoq, a working environment for the Coq theorem
prover.

CSP (Communicating Sequential Processes) is a process algebra
originally devised by C.A.R. Hoare at Oxford University. CSP is
supported by a model checking tool called FDR, developed by Bill
Roscoe.

DisCo is specification method for reactive systems including a tool
developed at the Tampere University of Technology, Finland. It has a
semantics and proof methodology based on the Temporal Logic of
Actions (TLA).

Appendix B NASA-GB-002-95
Release 1.0

B-3

Estelle, a formal notation based on an extended state transition model,
is supported by EDT (Estelle Development Toolset) and example
specifications. Contact estelle-request@cs.umb.edu to join the mailing
list.

EVES tool, based on ZF set theory, is from ORA, Canada. See Section
B.2 in this guidebook for additional information.

Evolving Algebras, developed at the University of Michigan, is a
method that focuses on semantics and seeks to bridge the gap between
computation models and specification methods.

Extended ML, a framework for the specification and formal
development of modular Standard ML programs, is a method
developed at the University of Edinburgh.

HOL is a mechanical theorem proving system. See Section B.2 in this
guidebook for additional information.

HyTech, from Cornell University, is an automatic tool for the analysis
of embedded systems. It computes the condition under which a linear
hybrid system satisfies a temporal-logic requirement. Installation
requires a Mathematica license.

IMPS, the Interactive Mathematical Proof System, is intended to
provide mechanical support for traditional mathematical techniques
and styles of practice. It was developed at the MITRE Corporation i n
Bedford, Massachusetts.

Isabelle, from Cambridge University, is a generic theorem prover
supporting a variety of logics and providing a high degree of
automation. See also the Cambridge Automated Reasoning Group and
FTP access including an index. Email Larry.Paulson-
request@cl.cam.ac.uk for information, including requests concerning
the mailing list isabelle-users@cl.cam.ac.uk.

JAPE (Just Another Proof Editor), by Bernard Sufrin and Richard
Bornat from Oxford University, is an interactive tool supporting the
application of logical reasoning. It is available via anonymous FTP.

LAMBDA toolset from Abstract Hardware Ltd, UK, supports formal
verification for hardware/software co-design. Email lamba@ahl.co.uk.
To join the usergroup mailing list, email lambda-usergroup-
request@dcs.ed.ac.uk.

Appendix B NASA-GB-002-95
Release 1.0

B-4

Larch and LP (Larch Prover) support algebraic specification. See Section
B.2 in this guidebook for additional information.

LeanTaP, a tableau-based deduction theorem prover for classical first-
order logic, is available from the University of Karlsruhe in Germany.

LEGO is an interactive proof checker developed at the University of
Edinburgh and based on Standard ML and the Calculus of
Constructions.

LOTOS (Language of Temporal Ordering Specifications) is a formal
specification technique and process algebra from the University of
Twente in the Netherlands.

Maintainer's Assistant, a tool for reverse engineering and re-
engineering code using formal methods, was developed at the
University of Durham, UK.

Meije tools for the verification of concurrent programs are available
from INRIA in France.

Mural, from Manchester University (UK), is a tool to aid formal
reasoning about specifications including a proof assistant and VDM
support. See also the Mural Project.

Nqthm is a theorem prover and Pc-Nqthm is an interactive proof-
checker enhancement of the Boyer-Moore Theorem Prover from
Computational Logic Inc. See Section B.2 in this guidebook for
additional information.

Nuprl is a tool based on intuitionistic type theory. See Section B.2 i n
this guidebook for additional information.

OBJ, originated by Joseph Goguen, includes the OBJ3 specification
language and the 2OBJ theorem prover, available from Oxford
University.

Otter, a fourth-generation automated deduction system, is a resolution-
based theorem prover developed at the Argonne National Laboratory
in Illinois.

Penelope, from Odyssey Research Associates in Ithaca, New York, is an
assertion language and theorem proving environment that supports
the specification and verification of sequential Ada programs. Email
maureen@oracorp.com.

Appendix B NASA-GB-002-95
Release 1.0

B-5

Petri Nets, a formal graphical notation for modeling systems with
concurrency, is a well-established technique supported by a variety of
tools accessible through the Petri Nets Web.

Pi-calculus is based on CCS (Calculus of Communicating Systems)
developed by Robin Milner et al. at the University of Edinburgh.
Supporting tools include the Mobility Workbench from Uppsala
University of Sweden.

ProofPower is a commercial tool, developed and marketed by ICL (UK),
supporting development and checking of specifications and formal
proofs in Higher Order Logic and/or Z. Support for Z uses a deep(ish)
embedding of Z into HOL, but includes syntax and type checking
customized for Z.

PVS (Prototype Verification System) is a tool based on classical typed
higher-order logic developed at the SRI International Computer
Science Laboratory. See Section B.2 in this guidebook for additional
information.

RAISE language and tools are available from CRI, Denmark. Email
raise@csd.cri.dk. See Section B.2 in this guidebook for additional
information.

Refinement Calculus, by Ralph Back et al at Abo Akademi University
in Finland, is a method of program construction based on stepwise
refinement.

RESOLVE, developed by the Reusable Software Research Group of the
Ohio State University, is a framework for component-based software
together with a specification language based on abstract data types and a
discipline for using the language. An archive is accessible from the
URL http://www.cis.ohio-state.edu/hypertext/rsrg/RSRG.html.

RRL, the Rewrite Rule Laboratory, supports theorem proving in first
order logic with equational theories. Email kapur@cs.albany.edu or
hzhang@cs.uiowa.edu.

SDL (Specification and Description Language) is an ITU-standardized
language for modeling communications systems based on an extended
state machine formalism. Various tools are available as noted in the
SDL WWW Server maintained by Tele Danmark Research of
Denmark.

Appendix B NASA-GB-002-95
Release 1.0

B-6

SDVS (State Delta Verification System), from the Aerospace Corp. of El
Segundo, California, is based on state deltas/temporal logic with
extensive proof support. Email blevy@aero.org.

SPIN is an automated verification tool (model checker), using a
language based on CSP for finite state systems such as protocols or
validation models of distributed systems. It was developed at AT&T
Bell Labs.

STeP, the Stanford Temporal Prover, is being developed by a team of
Stanford University researchers to support the formal verification of
concurrent and reactive systems based on temporal specifications and
model checking techniques.

TAM, the Temporal Agent Model, is a refinement calculus from the
Real-Time Systems Research Group at York University (UK) that
supports the specification of both functional and timing behavior.

TLA (Temporal Logic of Actions), developed by Leslie Lamport of the
DEC Systems Research Center, is a logic for specifying and reasoning
about concurrent and reactive systems. Tool support for TLA has been
provided by the University of Dortmund in Germany.

TPS and ETPS, the Theorem Proving System and the Educational
Theorem Proving System, provide an automated proving capability for
first order logic and type theory. They are available from Carnegie
Mellon University.

TTM/RTTL, from York University in Ontario, Canada, is a framework
for the specification and verification of real-time reactive systems based
on timed transition systems (TTMs) and real-time temporal logic
(RTTL).

UNITY, a programming notation and a logic to reason about parallel
and distributed programs, was developed by J. Misra and K.M. Chandy.
Various reports and a model checker for UNITY are available from the
University of Texas at Austin.

VDM (Vienna Development Method) is a comprehensive software
development methodology. See Section B.2 in this guidebook for
additional information.

Z is a notation for formal specification with tool support. See Section
B.2 in this guidebook for additional information.

Appendix B NASA-GB-002-95
Release 1.0

B-7

B.2. DETAILED DESCRIPTION OF SELECTED TOOLS

B.2.1. EVES

NAME: EVES

LANGUAGE: Verdi. Variant of classical set-theory (ZFC), with a library
mechanism for information hiding and abstraction, and an imperative
programming language.

FEATURES: GNU Emacs interface, well-formedness checker, integrated
automated deduction system (NEVER), proof checker, reusable library
framework, interpreter, compiler, facilities for status reporting,
portable.

SYNOPSIS: EVES is an integrated environment supporting the formal
development of systems from requirements to code. Additionally, it
may be used for formal modeling and mathematical analysis. To date,
EVES applications have primarily been in the realm of security-critical
systems.

The EVES mathematics is based on ZFC set theory without the
conventional distinction between terms and formulas. Development
is treated as “theory extension:” each declaration extends the current
theory with a set of symbols and axioms pertaining to those symbols.
Proof obligations are associated with every declaration to guarantee the
conservative extension property. The EVES library is the repository of
reusable concepts (e.g., a variant of the Z mathematical toolkit is
included with EVES releases) and is the main support for scaling,
information hiding, and abstraction. Library units are either
specification units (axiomatic descriptions), model units (models or
implementations of specifications), or freeze units (for saving work i n
progress). The language Verdi is a wide-spectrum language that
provides all linguistic constructs for formally expressing requirements,
specifications, code, and EVES prover and system commands.

The automated deduction component of EVES (NEVER) provides
powerful automated deduction support with integrated decision
procedures. The design of NEVER has aimed for a balance between
what a computer can do well with what a developer can do well.
Hence, the support for simplification, rewriting, and heuristics,
provide significant automated capabilities. Additionally, there are
many prover commands that allow the developer to carefully direct
the prover as needed. The prover is fully integrated with EVES and

Appendix B NASA-GB-002-95
Release 1.0

B-8

makes full use of the modularization capabilities of the library. EVES
distinguishes between “proof discovery” and “proof certification.”
NEVER aids in proof discovery and makes use of non-axiomatic
reasoning (e.g., the linear programming techniques used by the
simplifier). However, once a proof has been discovered, NEVER logs
the proof and a separate proof checker will certify that the proof meets
the requirements of the EVES logic.

DOCUMENTATION
M. Saaltink, S. Kromodimoeljo, B. Pase, D. Craigen and I. Meisels,
“Data Abstraction in EVES”, in Proceedings of Formal Methods Europe
'93 (FME'93), Odense, Denmark, April 1993.

D. Craigen, S. Kromodimoeljo, I. Meisels, B. Pase, and M. Saaltink,
“EVES: An Overview”, in Proceedings of VDM'91, Noordwijkerhout,
The Netherlands, October, 1991.

Extensive documentation, including the reference manual, is available
electronically through the ORA Canada WWW page at URL
http://www.ora.on.ca/

TOOL REQUIREMENTS: EVES is implemented in a disciplined subset of
Common Lisp and is currently available on Suns (UNIX) and PCs
(under DOS and OS/2). EVES requires at least 16Mb RAM.

AVAILABILITY: EVES is available by tape or, by arrangement, FTP. All
installations of EVES must be licensed by ORA Canada. For academic
and research use, there is no charge for FTP access and a nominal
distribution fee for tapes. Requests should be sent to eves@ora.on.ca or
to the following contact person.

Dan Craigen
ORA Canada
Suite 100, 267 Richmond Road
Ottawa, Ontario K1Z 6X3 CANADA

Email: dan@ora.on.ca
Phone: +1 613 722 3700
Fax: +1 613 722 3531

Appendix B NASA-GB-002-95
Release 1.0

B-9

B.2.2. HOL

NAME: HOL (HOL, HOL2, HOL88, HOL90)

LANGUAGE: Higher order logic with definition and polymorphic
extensions.

FEATURES: Parser, pretty-printer, typechecker, forward and goal oriented
theorem prover.

SYNOPSIS: The HOL system is an interactive mechanized proof assistant.
The system supports both forward and backward proofs. The forward
proof style applies inference rules to existing theorems to obtain new
theorems and eventually the desired theorem. Backward or goal
oriented proofs start with the goal to be proven. Tactics are applied to
the goal and subgoals until the goal is decomposed into simpler
existing theorems.

Higher order logic is used as the description language of the HOL
system. Higher order logic provides a general and expressive vehicle
for reasoning about various classes of systems. Some of the
applications of the HOL system include the specification and
verification of compilers, microprocessors, interface units, algorithms,
and the formalization of process algebras, program refinement tools,
and distributed algorithms.

The HOL system is used by research groups throughout the world. A
technical discussion and support group exists via the electronic mailing
list info-hol@leopard.cs.byu.edu. Users regularly contribute to the HOL
theory library and an extensive library exists that can be obtained with
the HOL system distribution.

DOCUMENTATION:
M. J. C. Gordon and T. F. Melham (eds.). Introduction to HOL.
Cambridge University Press, 1993.

A system manual is provided with the distribution in four volumes:
Tutorial, Description, Reference, and Libraries. The release also
contains case studies and LaTeX sources for training course slides.

HOL system information is available on the World Wide Web with
URL:

http://lal.cs.byu.edu/lal/hol-documentation.html

Appendix B NASA-GB-002-95
Release 1.0

B-10

TOOL REQUIREMENTS: The HOL system requires a platform running
Common Lisp (HOL88) or Standard ML (HOL90). The HOL system has
been used on workstations and PCs. A minimum of 8 megabytes of
memory is recommended for HOL88 and 24 megabytes for HOL90.

AVAILABILITY: HOL is available by tape (hol-support@cl.cam.ac.uk) or FTP:
HOL88 (lal.cs.byu.edu: pub/hol/holsys.tar.gz)
HOL90 (research.att.com: dist/ml/hol90/hol90.5.tar.Z)
SML/NJ (princeton.edu: pub/ml)

B.2.3. LARCH

NAME: Larch

LANGUAGE: First order logic with equational rewrite rules.

FEATURES: Parser, typechecker, user-directed prover.

SYNOPSIS: Larch is a specification language supporting equational theories
embedded in a first order logic. The Larch Prover (LP) is designed to
treat equations as rewrite rules and carry out other inferences such as
induction and proof by cases. A user may introduce operators and
assertions about the operators as part of the formalization process.

LP is designed to work midway between proof checking mode and fully
automatic theorem proving mode. Users may direct the proof process
at a fairly high level. LP attempts to carry out routine steps in a proof
automatically and provide useful information about why proofs fail.
LP is not designed to find difficult proofs automatically.

Larch and LP have been used in a variety of applications including
digital circuit specification and verification, reasoning about
concurrency, programming language semantics, and mathematics.
There has also been some Larch work with mainstream programming
languages such as the Larch/C Interface Checker (LCL) and C Program
Checker (LCLint).

DOCUMENTATION:
S. J. Garland and J. V. Guttag. A Guide to LP, the Larch Prover. DEC
Systems Research Center Report 82, 1991.

TOOL REQUIREMENTS: The Larch Prover is written in CLU and runs on
DEC MIPS, Alpha, and VAX computers as well as Sun workstations.

Appendix B NASA-GB-002-95
Release 1.0

B-11

AVAILABILITY: LP is available by FTP (larch.lcs.mit.edu: pub/Larch/lp2.4.*).
Contacts include garland@lcs.mit.edu and guttag@lcs.mit.edu.

B.2.4. NQTHM

NAME: Nqthm (Boyer-Moore Theorem Prover)

LANGUAGE: A variant of Pure Lisp.

FEATURES: Parser, pretty-printer, limited typechecker (language is largely
untyped), theorem prover, animator.

SYNOPSIS: Nqthm-1992, the final release of the Nqthm (Boyer-Moore)
prover, is a toolset based on a powerful heuristic theorem prover for a
restricted logic. There is no explicit specification language; one writes
specifications directly in the Lisp-like language that encodes the
quantifier-free, untyped logic. Recursion is the main technique for
defining functions and mathematical induction is the main technique
for proving theorems.

The highly automated prover can be driven by large databases of
previously supplied (and proved) lemmas. The tool distribution
comes with many megabytes of formalized and proved applications.
For over a decade, the Nqthm series of provers has been used to
formalize a wide variety of computing problems including critical
algorithms, operating systems, compilers, security devices,
microprocessors, and pure mathematics.

An interactive enhancement (Pc-Nqthm-1992) is also available. This
front-end tool adds a higher degree of user control to the proof process
making the system act more like a proof checker than an automatic
prover. Acl2, the successor to Nqthm, is currently under development
by Boyer, Moore and Kaufmann.

DOCUMENTATION:
Robert S. Boyer and J Strother Moore. A Computational Logic
Handbook. Academic Press, 1988.

Additional documentation comes with the tool distribution, including
updated chapters of the Handbook.

TOOL REQUIREMENTS: Can be built on top of any Common Lisp on a
platform with about 8 megabytes of memory.

Appendix B NASA-GB-002-95
Release 1.0

B-12

AVAILABILITY: Available by ftp (ftp.cli.com: pub/nqthm/nqthm-1992) or
tape.

Computational Logic, Inc.
Suite 290
1717 W. 6th Street
Austin, TX 78703 USA

+1-512-322-9951 +1-512-322-0656
software-request@cli.com

B.2.5. NUPRL

NAME: Nuprl

LANGUAGE: Based on constructive type theory with an extensible syntax.

FEATURES: Window-based proof development system including library
management and structure editor.

SYNOPSIS: Nuprl was designed originally by Joseph Bates and Robert
Constable at Cornell University and has been expanded and improved
over the past 15 years by a large group of students and research
associates. Nuprl is a highly extensible open system that provides for
interactive creation of proofs, formulas, and terms in a typed language.
The Nuprl system supports higher order logics and rich type theories.
The logic and the proof system are built on a highly regular untyped
term structure, a generalization of the lambda calculus. Mechanisms
are given for reduction of these terms. The style of the Nuprl logic is
based on the stepwise refinement paradigm for problem solving in that
the system encourages the user to work backwards from goals to
subgoals until one reaches what is known.

As a computer system, Nuprl supports a window-based interactive
environment for editing, proof generation and function evaluation.
The system incorporates a sophisticated display mechanism that allows
users to customize the display of terms, even allowing for the use of
user-extended fonts. Based on structure editing, the system is free to
display terms without regard to parsing of syntax. The system also
includes the functional programming language ML as its meta-
language; users extend the proof system by writing their own proof-
generating programs (tactics) in ML. Since tactics invoke the primitive
Nuprl inference rules, user extensions via tactics cannot corrupt system
soundness. The system includes a library mechanism and is provided
with a set of libraries supporting the basic types including the integers,

Appendix B NASA-GB-002-95
Release 1.0

B-13

lists, and Booleans. The system also provides an extensive collection of
tactics.

The Nuprl system has been used as a research tool to solve open
problems in constructive mathematics. It has been used in formal
hardware verification and as a research tool in software engineering
and to teach mathematical logic to Cornell undergraduates. It is now
being used to support parts of computer algebra and is linked to the
Weyl computer algebra system.

DOCUMENTATION: An earlier version of the system is documented in the
book, Implementing Mathematics with the Nuprl Proof Development
System, by Constable et al. and published by Prentice Hall in 1986.
Documentation for version 4.1 comes online with the system. There is
also a Mosaic Nuprl Library Browser accessible from the Cornell
Computer Science Department home page on the World Wide Web.

TOOL REQUIREMENTS: Lucid or Allegro Common Lisp, X11R5.

AVAILABILITY: The system is available free via FTP or on tape.

Professor Robert Constable
Computer Science Department
Upson Hall
Cornell University
Ithaca, NY 14853

phone: +1-607-255-9204
email: nuprl@cs.cornell.edu
WWW: http://www.cs.cornell.edu/Info/Projects/NuPrl/nuprl.html

B.2.6. PVS

NAME: PVS (Prototype Verification System)

LANGUAGE: Classical, typed higher-order logic with predicate subtypes,
dependent typing, and abstract data types.

FEATURES: Customized GNU Emacs interface, parser, typechecker,
integrated proof checker, BDD simplifier, prettyprinter, browser,
specification libraries, and facilities for status-reporting, cross-reference
generation, and LaTeX-printing.

SYNOPSIS: PVS provides an integrated environment for the development
and analysis of formal specifications and is intended primarily for the

Appendix B NASA-GB-002-95
Release 1.0

B-14

formalization of requirements and design-level specifications, and for
the rigorous analysis of difficult problems. PVS has been applied to
algorithms and architectures for fault-tolerant flight control systems, to
problems in real-time system design, and to hardware verification.

PVS specifications are organized into parameterized theories that may
contain assumptions, definitions, axioms and theorems. Definitions
are guaranteed to provide conservative extension. Libraries of proved
specifications from a variety of domains are available.

PVS offers a rich type system, strict typechecking, and powerful
automated deduction with integrated decision procedures for linear
arithmetic and other useful domains, and a comprehensive support
environment. A PVS specification is typically expressed using type
constraints that are enforced through automatically generated proof
obligations, many of which are automatically discharged by the system.
The expressive specification language allows concise and natural
specifications across a wide range of problem domains. The proof
checker provides direct control by the user for the higher levels of
proof development, and powerful automation for the lower levels,
using a collection of primitive inference procedures that can also be
combined by the user to develop higher-level proof strategies. Proofs
yield scripts that are displayed in a readily understood format and can
be edited and reused. Context is preserved across sessions.

DOCUMENTATION:
S. Owre, N. Shankar, J.M. Rushby. "User Guide for the PVS
Specification and Verification System (Beta Release)". Computer
Science Laboratory, SRI International. Three volumes: Language,
System, and Prover Reference Manuals.

These and other manuals, papers, and technical reports both by the FM
group at SRI and outside users are documented in the SRI WWW page
and available by anonymous FTP.

FTP: ftp to ftp.csl.sri.com, connect to directory /pub/reports
WWW: http://www.csl.sri.com/sri-csl-fm.html
User group: pvs@csl.sri.com

TOOL REQUIREMENTS: PVS is implemented in Common Lisp and runs on
most modern workstations; the requirements are a Unix machine that
runs Gnu Emacs and a Common Lisp compiler with integrated CLOS.
If typeset specifications are of interest, LaTeX and an appropriate viewer
must also be available. The standard version of PVS is implemented
in Allegro Lisp and runs on Sun SPARCstations. PVS requires about

Appendix B NASA-GB-002-95
Release 1.0

B-15

20 megabytes of disk space, 50 megabytes of swap space, and 32
megabytes of real memory.

AVAILABILITY: PVS is available by tape or by FTP. All installations of PVS
must be licensed by SRI. There is no license fee and no charge for a
PVS system obtained via FTP. A nominal distribution fee is charged
for tapes and for nonstandard versions. Requests should be addressed
to pvs-request@csl.sri.com or to one of the following contacts.

John Rushby, N. Shankar, Sam Owre

Computer Science Laboratory
SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025 USA

Email: {rushby, shankar, owre}@csl.sri.com
Phone: +1-415-859-5456/5272/5114
Fax: +1-415-859-2844

B.2.7. RAISE

NAME: RAISE (Rigorous Approach to Industrial Software Engineering)

LANGUAGE: Wide-spectrum language for specifying operations and
processes plus derivations from one level of specification to the next.

FEATURES: Window-based editor, parser, typechecker, proof tools, database,
translators to C, Ada.

SYNOPSIS: RAISE is an approach that is based on a rigorous development
methodology with less emphasis on mechanical theorem proving and
formal analysis. Under the RAISE methodology, development steps
are carefully organized and formally annotated using the RAISE
specification language. The CORE requirements method is also
provided as a requirements approach for front-end analysis.

Derivations from one level to the next generate proof obligations.
These obligations may be addressed using the proof tools. A notion of
validation (establishing system properties) is also supported. Detailed
descriptions of the development steps and overall process are available
under the tools. The final implementation step may be partially
mechanized for common languages (C, Ada).

Appendix B NASA-GB-002-95
Release 1.0

B-16

RAISE evolved from the VDM formal approach. It has been supported
by the European ESPRIT projects and the VDM Europe support
organization. The LaCoS project is the primary user community,
under support from ESPRIT. The specification language and the
toolset are still evolving.

DOCUMENTATION:
M. Nielsen, K. Havelund, K. Wagner, and C. George. The RAISE
Language, Methods, and Tools. Formal Aspects of Computing, 1:85-
114, 1989.

Other documentation includes overviews, method manual, tool
manuals, and specification language manuals.

TOOL REQUIREMENTS:

AVAILABILITY: RAISE tools are available from Computer Resources
International in Denmark (raise@csd.cri.dk).

B.2.8. VDM

NAME: VDM (Vienna Development Method)

LANGUAGE: First order logic with abstract data types.

FEATURES: Parsers, typecheckers, pretty-printers, proof support, animators,
test case generators.

SYNOPSIS: VDM is a model-oriented formal specification and design
method based on discrete mathematics. The formal specification
language component of VDM is known as META-IV. In VDM, a
system is to be developed by first specifying the system formally and
proving that the specification is consistent, then iteratively refining
and decomposing the specification while proving that each refinement
satisfies the previous specification. In theory, this continues until the
implementation level is reached.

Specifications are written as constructive specifications of an abstract
data type, by defining a class of objects and a set of operations that act
upon the objects. The model of a system or subsystem is then based on
such an abstract data type. A number of primitive data types are
provided in the language along with facilities for user-defined types.
Included are conventional first order logic features.

Appendix B NASA-GB-002-95
Release 1.0

B-17

VDM has been used extensively in Europe. Its methods are closely
related to those of RAISE and Z. A number of tools have been
developed to support formalization using VDM including the Mural
tool to aid formal reasoning via a proof assistant.

DOCUMENTATION:
D. Bjorner and C. B. Jones (eds.). The Vienna Development Method:
The Meta-Language. Lecture Notes in Computer Science, 61, Springer-
Verlag, 1978.

D. Bjorner and C. B. Jones. Formal Specification and Software
Development. Prentice-Hall, 1982.

S. Hekmatpour and D. Ince. Software Prototyping, Formal Methods
and VDM. Addison-Wesley, 1988.

TOOL REQUIREMENTS: VDM tools are provided by a variety of sources and
are not integrated into a single toolset. Most will run on conventional
Unix workstation platforms.

AVAILABILITY: VDM tools are available from a variety of sources. See the
VDM WWW page (file://hermes.ifad.dk/pub/docs/vdm.html) for
details.

B.2.9. Z

NAME: Z (pronounced "zed")

LANGUAGE: Set theory and first order logic with graphical representations.

FEATURES: Parsers, typecheckers, pretty-printers, proof support.

SYNOPSIS: Z has evolved from being initially only a loose representation for
formal specifications to a semi-standardized language with tool support
provided by a variety of third parties. It has been under development
by the Programming Research Group at Oxford University. Z is based
on set theory and is oriented toward constructing models. The basic
form used is called a "schema," which is used to introduce an
axiomatization of a function. Models are constructed by specifying a
series of schemas using (typically) a state transition style.

Tools for Z initially were limited to formatting and typechecking, but
are progressing into proof support, primarily through the use of HOL
as the underlying theorem proving engine. These include both limited
proof checking tools as well as more aggressive theorem proving tools.

Appendix B NASA-GB-002-95
Release 1.0

B-18

The standardization of Z should solidify the tool base and enhance
interest in mechanized support.

Z is currently undergoing standardization in the UK and inter-
nationally through ISO. Z has been used extensively in Europe,
primarily in the UK, but has seen little North American use. It has
been used to write formal specifications for various industrial software
development efforts and has resulted in two awards for technological
achievement: for the IBM CICS project and for a specification of the
IEEE standard for floating-point arithmetic.

DOCUMENTATION:
A. Diller. Z: An Introduction to Formal Methods. John Wiley & Sons,
1990.

J. M. Spivey. Understanding Z, A Specification Language and its
Formal Semantics. Cambridge University Press, 1988.

J. M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall,
1989.

TOOL REQUIREMENTS: Z tools are provided by a variety of sources and are
not integrated into a single toolset. Most will run on conventional
Unix workstation platforms. Heavy use is made of LaTeX for printing
formatted specifications.

AVAILABILITY: Z tools are available from a variety of sources. See the Z
WWW page (http://www.comlab.ox.ac.uk/archive/z.html) for details.

B.3. STATE-SPACE EXPLORATION TOOLS

B.3.1. COSPAN

NAME: COSPAN (COordination SPecification ANalysis)

LANGUAGE: S/R (selection/resolution) belongs to a class of languages, the
omega-regular languages, that are expressible as finite-state automata
on infinite strings or behavioral sequences. The s/r language is used to
define both the system and its requirements and is particularly suited
to developing distributed or state-machine-based environments
viewed in terms of data flow.

FEATURES: COSPAN is a general-purpose, rapid-prototyping tool developed
at AT&T that provides a theoretically seamless interface between an

Appendix B NASA-GB-002-95
Release 1.0

B-19

abstract model or standard and its target implementation, thereby
supporting top-down system development and analysis. COSPAN
offers facilities for documentation, conformance testing, software
maintenance, debugging, and statistical analysis, as well as libraries of
abstract data types and reusable pretested components.

SYNOPSIS: COSPAN has been used in the commercial development of both
software and hardware systems, a partial list of which includes:
analysis of high-level models of several communications protocols
(e.g., the X.25 packet switching link layer protocol, the file transfer and
management protocol (FTAM) of the International Telegraph and
Telephone Consultative Committee (CCITT), and AT&T's Datakit
universal receiver protocol (URP) level C), verification of a custom
VLSI chip to implement a packet layer protocol controller, and analysis
and implementation of AT&T's Trunk Operations Provisioning
Administration System (TOPAS).

COSPAN is based on homomorphic reduction and refinement of
omega-automata, i.e., the use of homomorphisms to relate two
automata in a process based on successive refinement that guarantees
that properties verified at one level of abstraction hold in all successive
levels. Reduction of the state space is achieved by exploiting
symmetries and modularity inherent in large, coordinating systems.
Verification is framed as a language-containment problem; checking
consists of determining whether the language of the system automaton
is contained in the language of the specification automaton. Omega-
automata are particularly well-suited to expressing liveness properties,
i.e., events that must occur at some finite, but unbounded time.

DOCUMENTATION:
Z. Har'EL and R. Kurshan. "Software for Analytical Development of
Communications Protocols." AT&T Technical Journal, pp. 45-59. Jan,
Feb 1990.

R. Kurshan. Automata-Theoretic Verification of Coordinating
Processes. Princeton University Press, 1993. A compressed post-script
version of this book is available as notes.PS.Z via ftp (host:
ftp.research.att.com; directory: /dist/COSPAN).

TOOL REQUIREMENTS:

AVAILABILITY: COSPAN may be obtained by universities for
educational/research purposes through a written request by the
department chair on departmental letterhead to the contact listed
below. Once a non-disclosure agreement is signed, COSPAN binaries
are made available at no charge by tape or ftp.

Appendix B NASA-GB-002-95
Release 1.0

B-20

Contact: R. Kurshan
AT&T Bell Labs, Room 2C-353
Murray Hill, NJ 07974
Email: k@research.att.com

B.3.2. MURPHI

NAME: Murphi

LANGUAGE: High-level, transition-rule-based description language for
concurrent systems.

FEATURES: Automatic state exploration tool that can be used as a verifier or
simulator.

SYNOPSIS: Murphi is a complete finite-state verification system that has
been tested on extensive industrial-scale examples including cache
coherence protocols and memory models for commercially-designed
multiprocessors.

The Murphi Verification System consists of the Murphi Compiler, and
the Murphi description language for finite-state asynchronous
concurrent systems which is loosely-based on Chandy and Misra's
Unity model and includes user-defined datatypes, procedures, and
parameterized descriptions. A version for synchronous concurrent
systems is under development. A Murphi description consists of
constant and type declarations, variable declarations, rule definitions,
start states, and a collection of invariants. The Murphi compiler takes a
Murphi description and generates a C++ program that is compiled into
a special-purpose verifier that checks for invariant violations, error
statements, assertion violations, deadlock, and (in certain versions)
liveness. The verifier attempts to enumerate all possible states of the
system, while the simulator explores a single path through the state
space. Efficient encodings, including symmetry-based techniques, and
effective hash-table strategies are used to alleviate state explosion.

DOCUMENTATION:
D. Dill, A. Drexler, A. Hu, and C. Yang. "Protocol Verification as a
Hardware Design Aid." IEEE International Conference on Computer
Design: VLSI in Computers and Processors, pp. 522-525. IEEE
Computer Society, October, 1992.

Appendix B NASA-GB-002-95
Release 1.0

B-21

C.N. Ip and D. Dill. "Better Verification through Symmetry."
International Conference on Computer Hardware Description
Languages, pp. 87-100. April, 1993.

These and other papers and manuals are available by FTP from host
snooze.stanford.edu in directory /pub/papers/verification.

TOOL REQUIREMENTS: C++ compiler.

AVAILABILITY:
Available by FTP; host: snooze.Stanford.Edu, directory: /pub/murphi
Email inquiries: murphi@snooze.stanford.edu

Contact: David L. Dill
Computer Science Department
Stanford University
Stanford, CA 94305

Email: dill@hohum.Stanford.Edu or
Phone: +1-415-725-3642
FAX: +1-415-725-6278

B.3.3. SMV

NAME: SMV (Symbolic Model Verifier)

LANGUAGE: The input language, SMV, is a relatively high-level description
language that provides modular hierarchical descriptions and
definition of reusable components. The specification language,
Computation Tree Logic (CTL), is a propositional, branching-time
temporal logic.

FEATURES: Symbolic model checker that verifies finite state systems
described in the SMV language against specifications written in CTL.
Implemented with BDDs (reduced, ordered Binary Decision Diagrams),
SMV can handle both synchronous and asynchronous systems, and
arbitrary safety and liveness properties.

SYNOPSIS: The SMV system has been distributed widely and used to verify
industrial-scale circuits and protocols, including the cache coherence
protocol described in the IEEE Futurebus+ standard and the cache
consistency protocol developed at Encore Computer Corporation for
their Gigamax distributed multiprocessor.

Appendix B NASA-GB-002-95
Release 1.0

B-22

SMV is designed to provide largely automatic verification of finite state
system descriptions that run the gamut from completely synchronous
to completely asynchronous, and from detailed to abstract. The SMV
input language offers a set of basic data types consisting of bounded
integer subranges and symbolic enumerated types, which can be used to
construct static, structured types. CTL provides a concise syntax for
expressing a rich class of temporal properties including safety, liveness,
fairness, and deadlock freedom. SMV uses a BDD-based symbolic
model checking algorithm to avoid explicitly enumerating the states of
the model. With carefully-tuned variable ordering, the BDD algorithm
yields a system capable of verifying circuits with extremely large
numbers of states. Examples of the scalability of this approach include
a pipelined ALU with over 10120 states and an asynchronous stack with
over 1050 states.

DOCUMENTATION:
J. Burch, E. Clarke, D. Long, K. McMillan and D. Dill. "Symbolic Model
Checking for Sequential Circuit Verification." IEEE Transactions o n
Computer-Aided Design, Vol. 13, No. 4, April, 1994.

K. McMillan. Symbolic Model Checking. Kluwer, Boston, MA, 1993.

Additional papers and manuals are available by FTP from the CMU
host and directory shown below.

TOOL REQUIREMENTS: SMV runs on Sun3's and Encore Multimaxen
under the Mach operating system. It may also run on Sun4, DecStation
3000, and VAX, but performance varies. Certain dependencies on the
MACH operating system may need to be removed via minor
modifications to makefiles for non-MACH sites.

AVAILABILITY: SMV is available by FTP or by tape. All users are asked to
sign a license agreement available online. There is no license fee.

FTP: host: emc.cs.cmu.edu, directory: /pub/tape

Contact: Edmund Clarke
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Email: emc+@cs.cmu.edu.

Appendix B NASA-GB-002-95
Release 1.0

B-23

B.4. REFERENCES

[Craigen] D. Craigen, S. Gerhart, and T. Ralston, An International
Survey of Industrial Applications of Formal Methods, U.S.
National Institute of Standards and Technology, Reports
NIST GCR 93/626 (Vols. 1 and 2), March 1993. Also available
from the U.S. Naval Research Laboratories, Formal Report
5546-93-9581/9582 (September 1993), and from the Atomic
Energy Control Board of Canada, Reports INFO-0474-1 (Vol.
1) and INFO-0474-2 (Vol. 2), January, 1995.

Appendix B NASA-GB-002-95
Release 1.0

B-24

Suggestions for Improvements Form NASA-GB-002-95
Release 1.0

C-1

SUGGESTIONS FOR IMPROVEMENTS FORM

Product Name: Formal Methods Specification and Verification Guidebook for

Software and Computer Systems
Volume I: Planning and Technology Insertion

Product Version Number: NASA-GB-002-95
RELEASE 1.0

NASA Change Request Tracking Number:

Name of Submitting Organization:
Organization Contact: Telephone:
Mailing Address:

Date: Short Title:
Change Location Tag (use section or paragraph #, figure #, key process area ID, practice ID,

etc.):

Proposed Change:

Rationale for Change:

Note: For NASA to take appropriate action on the change request, we must have a clear

description of the recommended change along with supporting rationale.

Send US Mail To:
FM Specification and Verification Guidebook, Vol. I
NASA IV&V Facility
100 University Drive
Fairmont, WV 26554

Send via Internet Email To:
John.C.Kelly@ccmail.jpl.nasa.gov

Suggestions for Improvements Form NASA-GB-002-95
Release 1.0

C-2

