An Abstract Model for Programming Languages

Hongjun Zheng Naixiao Zhang
Department of Computer Science & Technology
Peking University, Beijing 100871, P.R. China

Email: znx@sxx0.math.pku.edu.cn
naixiao@pku.edu.cn

Abstract This paper presents an abstract model for programming languages with algebraic
approach, and proposes a concept of abstraction for programming languages. Then the paper
describes the semantics of inheritance, extension and shielding of programming languages and the
semantics of language family to reveal connections between programming languages in language
family. +

Keywords programming language, language abstraction, abstract model, language family

1. Introduction

With the development of computer science, programming languages are constantly emerging.
The differences between languages are the results of different selections of the criteria for
language design and different relative priorities of the criteria, some of them mutually conflicting.
Most of these languages differ markedly one from another in style, substance and appearance. The
unnecessary diversity and differences of languages bring about many difficulties not only for using
languages, but aso for studying on connections between languages. Programming language
designers are attempting to dleviate the resulting problems by combining the merits of severa
paradigms into a single more comprehensive language; but the signs of success in such a
combibation are difficult to recognise. A solution to these problems may emerge from a wider
understanding and agreement about the nature of programming and the choices availade to the
programming language designer and user[6].

This paper presents aconcept of language abstraction and an abstract model for programming
languages through studying into the essence of programming languages based on the research of
Polya language** and model-oriented transformationa software devel opment methodol ogy[13].
Then the paper describes the semantics of language inheritance, extension, and shielding and also
the semantics of language family[13]. We hope that the abstract model of programming languages
the paper proposed may contribute to building up a theoretical foundation for studying on the
connections between languages. Furthermore, the abstract model mentioned above may be a
theoreticd model, which can be implemented for language design and development. The

* The research reported herein has been funded by the National Natural Science Fund.
** Polyalanguage was proposed by Prof. David Gries of Cornell University.

implementation of this theoretical modd can make it possible to separate language using from
language defining and so do language development from program development. As aresult of it, it
is possible to improve the succinctness of language itself by the separation, and decrease the
complexity of software development. The framework discussed in this paper may alow us to
envision feasible solution to the problems raised by the limitations of current software technology.

2. Language Abstraction

Describing programming languages with agebraic approach can enable programming
languages clear and arrangible[2], and dso it isabeneficia attempt to study connections between
languages (providing an abstract model for languages). A signature a =(S, F)[4], which consists
of aset of sorts S (basic grammar elements) and a set of operations F (combinatorid relations
among grammar elements), can be used to describethe abstract grammar of alanguage[7]. A set
of semantic equations assign the semantics to & , i.e. to the language which the signature
a corresponds to. Different semantic equations assign different semantics to & . The signature
and its semantic equations form an abstract model of a language. The abstract model of a
language is independent of the concrete notation of the language. Many authors have the similar
idea that describe abstract grammar of alanguage with signature] 1][9][11].

The general principle of describing the abstract grammar for a language with a signature
a =(S,F) is that each sort in S corresponds to a basic grammar element d the language—
nonterminal in its BNF; and an operation in F corresponds to the constructive relation among
basc grammar dements of the language. Namely, a BNF production
P: sa:=tisit2s2 ... taSntn+ 1, where ti iseither atermina or anempty € and S isanontermind,
corresponds to the operation P in the dgnature that is as
P.sa”s2” ... "sn® so(sil S, 0£i £n). For example, we consider a tiny Pascal-like
language as follows, which we cal it akernd language K :

prog ;= BEGIN ssmt END
stmt = stmt ;" stmt
| |Fexpr THEN stmt EL SE stmt FI
| WHILE expr DO stmt OD
| vid=expr | skip
expr »= int | vid
| expr'+ expr | expr*’ expr | NOT expr

Let’ssee about part of semanticsof K informaly. In K, thereisonly integer type expression.
Boolean type can be implemented by integer type like the way in C language. Denote by eval:
EXPR® INT the evauation function for expressons in K. Then we can evaluate integer
expression as boolean value as follows:

eval (NOT expr) = LET V=eval (expr) IN V=0® 1,0
and the semantics of | F expr THEN stmt; EL SE stmt, FI can be specified informally as:
eval (expr)=0 ® stmt,, stmt; .
We can describe the abstract grammar of K by asignature & k =(Sk, F), where

Sk ={ int, id, smt, expr, prog } ;

Fx ={ program : smt® prog ; comp : smtx stmt® stmt ;
if :exprx stmtx smt® stmt while: exprx stmt® stmt ;
assign : idx expr® stmt ; Kip : ® stmt ;
int_expr : int® expr ; id_expr : id® expr ;
add : exprx expr® expr X mul : exprx expr® expr X
not : expr® expr ; }

The terminals may be 'forgotten” here as they are not essential and can be determined
uniquely by the operation's name P[2]. We can see, from the "forgotten™ principle, that not only the
set of sortsin & isabstract, but also the operation representing is abstract. Signature & L, whichiis
constructed by the principle above, iscalled the abstract grammar of alanguage L . The process
of constructing the signature & L isthat of the grammar abstraction. This processis much like that
of [1][10]. Furthermore, the sort in & v reflects the analyticity of the abstract grammar, and the
operationin & L reflects the syntheticality of the abstract grammar.

To assign semantics to signature & L, it is necessary to introduce a set of & L equations,
which are used to describe the semanticsof & L. & L and the set of semantic equations, say EL,
form alanguage (& L,EL). Different EL assigns different ssmanticsto & L.

We adopt the means of transformational semantics[2][7][12] to assign semanticsto & L,
and regard & L equations as transformation rules. Transformational semartics is to assume that
the semantics of alanguage L1 isknown, and constuctsin language L1 are used to describe every
construct in another language L by the means of transformation rule, then we @an reach the
semantics of the language L [7]. We cal language L abstract language, and language L1
concrete language or implementing language[12]. If the process above is continued, we can gain
asequenceof languageslikeLn, Ln-1, ..., L1, L. Abstract language and concrete language are
relative to the different place in the sequence. Abstract language can be concrete language, and
vice versa. For abstract language L in the sequence, language Ln, Ln-1, ... , L1 aredl
concrete languages of L, and for abstract language L1, languages Ln, Ln-1, ..., L2 aredll
concrete languages of L1, and so forth. The most concrete language Ln in the sequenceis called
kernel language, and other languagesin the sequence areintermedialanguages. If Ln isamachine
language, the sequence above represents a process of language compiling, i.e. the process of
language trand ation from high-level language to machine language[10][11].

Definition1 A & L equationisapair <lhs,rhs>, usudly isof the form |hs=rhs , where lhs is
aterm of ground term algebra T (S.) [7][4], and rhsisaterm of ground term algebra T(S.+) . L

is an abstract language, and L" isthe concrete language relativeto L.

For instance, we assume that the semantics of K isfixed by Ek, then we can specify a
language M =(a m, Em) with K =(a «,Ek) asfollows:
Sm = Sk;
Fv = F«+H{ and_expr :exprx expr® expr ;
or_expr :exprx expr® expr;
repeat s gmtx expr® stmt }

Ev=Ex+{ and_expr(expr, expr) = mul(expr, expr) ;
or_expr(expr, expr) = add(expr, expr) ;
repeat(stmt, expr) = comp(stmt , while(not(expr) , stmt)) }

The added constructsand_expr, or_expr andrepeat inthelanguage M arecalled “syntactic
sugar” in [5]. Thethree contructs above are expressblein K asshowed in Em. By Felleisen[5],
M isadefinitiona extension of K. Thiskind of extension is a basis of Section 3 in this paper.
We can also specify another language N =(a n, En) that ison the contrary of extension likein M,
where

Sn=Sk;
Fn=F { add:exprx expr® expr} ;
En=Ex { eval(expr‘+ expr)} ;

Since d L and & L are the abstract grammars of language L and L", terms in the ground
termalgebra T(S.) and T(S.+) arewell-formed terms, i.e. the terms that are built up from the
operator symbols of & L and & L. Equations in EL are the same as transformation rules in
transformational semantic description of the language L, they are closed under semantic
equivaence inference by reflexitivity, transitivity and symmetry of equaity and by substitution. The
equation Ths=rhs means that the sentence |hs of language L can be transformed into the
sentence rhes of language L" preserving semantic consistence.

Definition 2 Alanguage L=(a ,EL) consistsof asignature & L and aset of & L equations
EL. We define (& L,EL) asan abstract model of programming language L .

From the abstract modd of language given above, the grammar of a language L can be
abstracted as a set of sorts and operations on the sorts, i.e. asasignature & L , whose semantics
can be abstracted as a set of & L equations EL. So a language L can be abstracted as the
abstract model (& v,EL) including grammar abstraction and semantic abstraction. The abstract
model of alanguage defined in Def. 2 provides a theoretical framework for studying connections
between languages in Section 3.

In Def. 2, weassumethat SnFinEL={ },where representsundefined elementin Si,
A and EL respectively.

3. Language I nheritance, Extension and Shielding— L anguage Family

Inthis section, we will discussthe semantics of inheritance, extension and shielding from L

to a new language L'. The relation between L and L' is that between concrete and abstract
language.
Definition 3 & L=(S.,FR) and & .'=(S.', ') are signatures of language L and L'
respectively. Define the signature mapping S from& Lto & v:8 L - & v asapair (h, g),
where h: S ® Su isthe mapping from SL into Sc'and h()= ;g:FL® Fu isapartid
homomorphism from F_into F.', where g()= . For sil SL(O£i £n), and an operation
P.s1a” 22” ... sn® so R, wedefine

s) = {"] $5 h(s)="or Pl R
P-h(s)" h(s)” ... " h(s)® his)
and the operation P: h(s1))” h(s2)” ... " h(s)® h(s0) FR.
If both h and g areidentity mappings, thenthe signaturemapping s isan identity mapping; if
both h and g are injections, then the signature mapping s isan injection; if both h and g are
surjections, then the signature mapping s isasurjection.

g(Ps1" 22" .. «@®

Definition4 Let L=(& .,EL)and L'=(a v',EL") betwolanguages, s be asignature mapping:
aL-av.lfequation(s (Ihs)=rhs) Ev for any equation lhs=rhsin EL,wedsocdl s a
language mapping: L - L".

For languages K and M in Section 2, there exists asignature mapping from & k to & w , say,
s1=(hi, g1) according to Def. 3, where both hi and g1 are identity mappings, thus S1 isan
identity mapping. Natice, h1 is a surjection and injection because of Sm = Sk, but g1 isnot a
surjection because of Fk 1 Fwm. So, S1 is not a surjection. Then, in terms of Def. 4, siisa
language mapping: K® M too. Furthermore, for languages K and N, there dso exists a
signature mappping from & k to & n, sy, s2=(hz2,g2) where hz is an identity mapping:
Sk ® Sk, and g2 isasurjection because the operation addl Fv, i.e. Fk E Fn, and

g2(add: exprx expr® expr)="; g2(™)=";

Thus g2 isasurjection but not injection, and so does S 2, because h2 is an identity mapping. Also
interms of Def. 4, s 2 isalanguage mapping: K ® N too.

In fact, the signature mapping and the language mapping in Def. 3
and Def. 4 respectively are a specid case of commutable SEML & YN
communication diagram of Rusin[10]. We can simplify that diagram { {
by the two definitions as figure 4.1, where sem_ and sem: are the
transformational semanticsof L and L' respectively, and syn, and ~ SEML «———syn-

syn.- arethe syntax of L and L' respectively. For more details, refer to [10] ﬂ%{re 4.1

In Def. 4, lhs is aterm of ground term algebraT (S.) , and rhe is a term of ground term
agebra T(S.+) where L" isaconcrete language of L and also of L'. The relationship between
L, L"and L" expressed by alanguage sequence like in Section 2 isof L", L, L'. Asground
term consists of sorts and operationsin asignature, s (Ihs) means to map sorts and operations of
a v in Ihs into corresponding sorts and operationsof & L. Assumethat s (lhs)= ifs (t)=

, Wwhere t isasort or an operation on some sortsin lhs, and equation (s (lhs)=rhs) { }if
s (Ihs)= .Wedefinethats (t)= ifadonlyif h(t)= org(t)=

Without loss of generdlity, if a signature mappings :d L — & L' is an injection and also a
surjection, then itslanguage mappings :L — L' means semantic inheritance between language L
and L', i.e language L' inheriting language L completely just as an identical language mapping
so. K® K. If asignature mappings :4 L — & L' is an injection but not a surjection, then its
language mappings :L — L' means extension relation under the semantic inheritance between L
and L'. Language L' is an extended language and also a definitional extension of language L

under semantic inheritance. Asshowed in s1, M isadefinitiona extenson of K. If a signature
mappings :a L — a L' isasurjection but not an injection, then its language mapping s : L — L'

means shielding relation between language L and L'. Language L' shields some construct

structures of language L in semantics, likethat language N shields theadd operation of language

Kinsoz.

Theorem Thecategory[4] AL haslanguages as objects and mappings between languages as
arrows.

Proof (1) identical language mapping exists.

Let language L be L =(& L ,EL), apparently, identity mapping s : &L -~ &L on
signature & L exists, eg9.S o. Then for any equation (lhs=rhs) EL,s (lhs)=lhs, so equation
(s (Ihs)=rhs) Ev..

Based on Def. 4, signature mappings :a L — a L isalanguage mapping:L — L, and dso
be an identity mapping.

(2) Composition of language mappingsis still a language mapping.

Let languages be L1=(a L1,EL1), L2=(& L2,EL2), L3=(& L3,EL3) and language mappings
besi:Li- L2,52:L2 - L3. Then from Def. 4, there exist signature mappingss1:a L1 - a L2,
S2:4 L2 — & L3 corresponding to those language mappings respectively. We can construct the
composition of signature mappings based on Def. 3, i.e. S3=S1- S2: & L1- A& L3 astheform of
<ht- h2,01- g2>, where <h1,g1> and <h2 ,Qg2> are the representations of S1 and S2
respectively, and " " is composition operation of mappings.

Also from Def. 4, for any equation (Ihs=rhs) Ev1, equation (s1(lhs)=rhs) EL2. If
equation (s1(lhs)=rhs)| { }, then equation (s2(s1(lhs))=rhs) ELs, namely, equation
(s3(lhs)=rhs) Evs. If equation (s1(lhs)=rhs) { 1}, then equation (s 2(s1(lhs))=rhs) {

}, namdy equation (s3(lhs)=rhs) { }I Eus.

Above al, for any equation (lhs=rhs) Ev1, equation (s3(lhs)=rhs) EvLs. According to
Def. 4, s3 is a language mapping Li- L3, i.e. compostion of language mappings is Hill a
language mapping.

From (1), (2) above and the definition of category[4], the category AL has languages as
objects and mappings between languages as arrows. a

In category AL, a based language consists of a
language L and all arrows { Li —» L}, which pointto L,
represented as <L { Li - L}> whee Li - L
represents language mapping between Li and L, Li are
base language of thelanguage L.

A based |language may have many base languages,
some base languages may aso be based languages,
namely, some based language may take other based
languages as its base languages, just illustrated as figure
4.2.

Inthisfigure, L1, L2 and L4 are base languages of
L. From the figure, we can also see that the based

figure 4.2

language L has three base languages L1, L2 and L4, however, the base languages L1, L2 and
L4 themselves are aso based languages. All languagesin the figure construct alanguage family
model under inheritance, extension and shielding relations. It is possible that there are not the three
relations above between red languages, so we represent this situation by dotted arrows, e.g.
between Liand L2, L2 and L4. Fortunately, we can construct one of the three relations
between L1 and L2, L2 and L4 based on Def. 3 and Def. 4 exploiting the undefined element
and thetrandator T1 in[11]. In the language family, which is constructed by language inheritance,
extenson and shielding, languages are in different levels. Each language in different language
levels in the language family has its own expressive abstract degree. The higher a language
level is, the higher the language expressive abstract degree is, and the stronger the language
descriptive power is. The lowest base language (e.g. K in the figure 4.2) is called kernel
language[13], just as the most concrete language. All languages in the language family are
achieved from the kernel language by language inheritance, extension and shielding undder the
assumption that the semantics of the kernel language isknown. From the point of category theory,
a based language (like L in figure 4.2) consists of base languages (like L1, L2 and L4 in figure
4.2) and mappings between them, and they atogether construct acocone[4]. That is, languages L,
L1, L2 and L4 in figure 4.2, and mappings between them construct a cocone, becuase they
satisfy that

(L2® L)>(Li® L2) = L.® L

(Ls® L)XL2® La) L2® L

(Li® L)XLs® L1) = La® L

i.e. L, Li1and L2 arecommutable, sodo L, L2, L4 and L, L1, L4, where®- " iscompodtion
operation of mappings. The meaning of a cocone in language family implies that the methods and
ways to development of a language are diverse. We till take figure 4.2 as an example for
discussing that the development of language L has many ways. We can develop L from L4
directly by inheritance, extension and shielding, and also can develop L1 from L4,then L from L1
by the three ways above. The significance of the diversity of methods and ways for developing a
language exists in that we can design directly, based on a language Li (L1, L2 or La4), another
language L which is different from Li in descriptive power and descriptive way, and aso can

design severd different languages whose descriptive powers and descriptive ways range between
Li and L, which are al developed based on the kernd language (likeK in figure 4.2). Then

language users can a so have several selections, they can select those languages which can very fit
in their special needed descriptive ways to solve the problems they concern in their own special

domains. Asaresult of it, the problem, which ismentioned in Section 1, of diversity of programming
languages and incompatibility between languages may be resolved.

4. Language Abstraction isa Distillation of Data Abstraction

Abstract data type[3] is a new stage of data abstraction. The grammar of an abstract data
type A can also be described by a signature. We call this signature & A. The sortsin the signature
a A of an abstract data type A represent data types, and the operations represent operation

relations between the data types. However, the sorts in the signature & L of alanguage L
represent grammar elementsof thelanguage L, the operations represent constr uctive relations
between the grammar elements. So & L isthe distillation of & a in the eyes of the contents that
aLand & A expressed and the level of the objects they described, i.e. & L describes the
grammar of the language L, and & A describes the grammar of the abstract data type A.

Also being the same as & L, abstract data type A can be assigned semantics by a set of
equations Ea (a sequence of axioms). An equation |hs=rhsin Ea represents logic relation
between operations and data types in the abstract data type A, where Ihs and rhs both are terms
of term algebrg[7], i.e. finite gperations on data types. Nevertheless, equations in EL, which the
language L corresponds to, represent the transformational relations between languages under
semantic equivalence. Easy to see, EL isdifferent from Ea intheleve of objectsthey used andin
that of properties of the relations they described.

On the other hand, programming languages can be considered as hierarchical types based on
abstract data types theory. From this point, the context-free syntax of a language corresponds to
the signatures of the types; the context conditions of a language construct are expressed by totd,
boolean-valued terms; the semantics of the languages is specified by a set of conditiona
equationg 2]. We can gain acomplete specification of a programming language with this approach.
However, it is difficult, by way of hierarchical types, to show clearly relations (e.g. inheritance,
extension and shielding rel ations) between languages because of the hierarchicha types. From our
points in Section 3, and based on the language abstraction and the abstract model from it, we can
see clearly the inheritance, extension and shielding relations between languages. Under these
relations, languages construct a language family and category AL as showed in Section 3. A
programming language family, in fact, is organised as hierarchical languages which are digtillation
of hierarchical types.

Above dl, comparing language abstraction (& L, EL) with data abstraction (@ A, Ea),
language abstraction is a ditillation of data abstraction.

5. Related Work and Conclusion

Severa authors have discussed about the mode of programming languages and related topics.
Milner[8] proposed afully abstract model of typed lambda-calculi and showed that under certain
conditions, there exists, for an extended typed lambda-caculus, a fully abstract model including
algebraic model. We can aso envision that there exists an abstract model we have proposed for
programming languages. Pair[9] and Broy et al.[2] studied on the adgebraic definition of
programming languages. Both two papers emphasized the algebraic semantics of programming
languages based on abstract data types. Under the proposal that “programming languages should
be studied in terms of algebraic theories’ [Goguen], Broy et al. described, analyzed and constrasted
the transformational semantics and weakly termina semantics. We combine transformational
semantics to abstract data types theory to specify programming languages. From the point of
language implementation, Rug10][11] gave an agebraic model for programming languages. BNF
plays centra role in his framework. However, in his papers, Rus did not discuss how to describe

semantics of programming languages in his model. Moreover, under some conditions, e.g., the
undefined condition in this paper, the consistency relation in his papers between languages may not
exist. Felleisen[5] provided a formal framework for comparing the expressive power of
programming languages. He took Scheme as an example language, and discussed about the
coservative and definitional extension of Scheme. One of the purposes of our work is to apply and
explain hisresearch work in the abstract model of this paper. Under the transformational semantics
of programming languages, the mappings1: K ® M in Section 3 means a conservative and

definitional extension of language K to M in our abstract model. In the framework of Felleisen, it
isdifficult to explain themeaning of the mapping likes 2: K ® N, because he discussed only about
language extension. However, there are some differences between language extension and

shielding to some extend after all.

Language abstraction discussed in this paper isthe distillation of data abstraction. This concept
builds up a theoretical model for researching connections between languages. Language family
developed from kernd language is a powerful language development tool and supporting
environment of the model-oriented transformational software development methodology. Whilewe
develop the Polya-BD[12][13], which is a double environment for language development and
program devel opment, we also have advanced a mechanism, based on the language abstract model
we have proposed, for language abstraction and encapsulation called Garment, whose details will
be given in another prepared paper[13]. Garment is an implementation of the abstract model of
language. By the mechanism, we can implement language inheritance, extension and shielding, and
can congtruct a language family consisted of languages which are different domain-oriented.
Language users can work on any language level they need in language family in order to develop
software easily. Further work is to study on the sufficiency of kernel language, the correctness
and semantics of language transformation, the sufficient completeness and consistence of
language extension.

References

[1] Bjorner, D. Toward the Meaning of VDM ‘M’. LNCS 352; TAPSOFT’ 89: 1—35; 1989.

[2] Broy, M. et al. On the Algebraic Definition of Programming Languages. @ ACM
Transaction on Programming Languages and Systems 9(1): 54—99; 1987.

[3] Carddli, L. and Wegner, P. On Understanding Types, Data Abstraction, and
Polymorphism, ACM Computing Surveys 17(4): 471—522; 1985.

[4] Chen,Yiyun. Category Theoryin Computer Science. Science & Technology University
Press, China; 1994.

[5] Felleisen, M. On the Expressive Power of Programming Languages. LNCS 432; ESOP 90:
134—151; 1990.

[6] Hoare, CA.R. TheVarietiesof Programming Languages. LNCS 351; TAPSOFT’ 89: 1—
18; 1989.

[7] Lu, Rugian. Formal Semantics of Computer Languages, Science Press, China; 1994.

[8] Milner, M. Fully Abstract Models of Typed Lambda-Caculi. Theoretical Computer
Science 4(1): 1—22; 1977.

[9] Pair, C. Abstract Data Types and Algebraic Semantics of Programming Languages.
Theoretical Computer Science 18: 1—31; 1982.

[10] Rus, T. An Algebraic Mode for Programming Languages. Computer Languages 12(3/4):
173—195; 1987.

[11] Rus, T. An Algebraic Tool for Language Processing. Computer Languages 20(4): 213—
238; 1994.

[12] Zhang, Naixiao Notation of Program Transformation in Programming Languages —on
Transformational Language. Chinese Journal of Software 4(5): 17—23; 1993.

[13] Zhang, Naixiao et al. On Mode-Oriented Transformationa Software Development
Methodology. Theoretical Computer Science(China) 2: 54—64; 1994.

[14] Zhang, Naixiao and Zheng, Hongjun ~ Garment — A New Mechanism of Abstraction and
Encapsulation. Technical Report; 1996.

-10-

Summary

(An Abstract Model for Programming Languages)

This paper presents a concept of language abstraction and an abstract model for programming
languages through studying into the essence of programming languages based on the research of
Polya language and model-oriented transformational software development methodology. Then
the paper describes the semantics of language inheritance, extension, and shielding and aso the
semantics of language family.

In Section 2, we describe the abstract grammar of alanguage with a signature & =(S, F),
which consists of a set of sorts S (basic grammar elements) and a set of operations F
(combinatorial relations among grammar elements), and adopt the means of transformational
semanticsto assign semanticsto & inwhichweregard & equations EL astransformation rules.
So alanguage L can be abstracted as the abstract model (& L, EL) including grammar
abstraction and semantic abstraction. The abstract model d a language provides a theoretical
framework for studying connections between languages based on which we discuss in Section 3
the semantics of inheritance, extension and shielding from L to anew language L'.

According to the definitions of sgnature mapping and language mapping in the paper, we
conclude, without loss of generdity, that if thesignaturemapping s : a L — & L' isaninjection and
aso a surjection, then the language mapping s : L — L' means semantic inheritance between
language L and L'; if signature mapping s : & L — & L' isan injection but not a surjection, then
the language mapping s : L - L' means extension relation under the semantic inheritance
between L and L'; and if signature mapping s : & L — & L' is a surjection but not an injection,
then thelanguagemapping s : L — L' means shielding relation between language L and L'. We
also give several examplesto illustrate the conclusion above. Furthermore, we proof thethoeremin
this paper, that languages and mappings between them constitute a category AL . Then, discuss
about the semantics of language family in the category AL .

In Section 4, we try to explain, by comparing language abstraction (A L, EL) with data
abstraction (& A,E»), that language abstraction proposed in the paper is a distillation of data
abstraction from three points. grammar, semantics and language specification method.

Finaly, we discuss about some related work which have something to do with this paper, and
give some concluding remarks in Section 5.

-11-

Two referees suggested by the authors:

Professor David Gries

Address: Computer Science Department
Cornell University
Ithaca, New York 14853 - 7501
USA

Professor Dines Bjorner
Address: Internationa Institute for Software Technology
The United Nations University (UNU/IIST)
P.O. Box 3085
18/F Ed. Banco Luso Intl.
1- 3, RuaDr. Pedro Jose Lobo
Macau

Email: db@iist.unu.edu

~12-

