
- - 1

An Abstract Model for Programming Languages

Hongjun Zheng Naixiao Zhang
Department of Computer Science & Technology

 Peking University, Beijing 100871, P.R. China
Email: znx@sxx0.math.pku.edu.cn

naixiao@pku.edu.cn

Abstract This paper presents an abstract model for programming languages with algebraic
approach, and proposes a concept of abstraction for programming languages. Then the paper
describes the semantics of inheritance, extension and shielding of programming languages and the
semantics of language family to reveal connections between programming languages in language
family. +

Keywords programming language, language abstraction, abstract model, language family

1. Introduction

 With the development of computer science, programming languages are constantly emerging.
The differences between languages are the results of different selections of the criteria for
language design and different relative priorities of the criteria, some of them mutually conflicting.
Most of these languages differ markedly one from another in style, substance and appearance. The
unnecessary diversity and differences of languages bring about many difficulties not only for using
languages, but also for studying on connections between languages. Programming language
designers are attempting to alleviate the resulting problems by combining the merits of several
paradigms into a single more comprehensive language; but the signs of success in such a
combibation are difficult to recognise. A solution to these problems may emerge from a wider
understanding and agreement about the nature of programming and the choices available to the
programming language designer and user[6].
 This paper presents a concept of language abstraction and an abstract model for programming
languages through studying into the essence of programming languages based on the research of
Polya language++ and model-oriented transformational software development methodology[13].
Then the paper describes the semantics of language inheritance, extension, and shielding and also
the semantics of language family[13]. We hope that the abstract model of programming languages
the paper proposed may contribute to building up a theoretical foundation for studying on the
connections between languages. Furthermore, the abstract model mentioned above may be a
theoretical model, which can be implemented for language design and development. The

+ The research reported herein has been funded by the National Natural Science Fund.
++ Polya language was proposed by Prof. David Gries of Cornell University.

- - 2

implementation of this theoretical model can make it possible to separate language using from
language defining and so do language development from program development. As a result of it, it
is possible to improve the succinctness of language itself by the separation, and decrease the
complexity of software development. The framework discussed in this paper may allow us to
envision feasible solution to the problems raised by the limitations of current software technology.

2. Language Abstraction

 Describing programming languages with algebraic approach can enable programming
languages clear and arrangible[2], and also it is a beneficial attempt to study connections between
languages (providing an abstract model for languages). A signature ∑ =(S F,)[4], which consists
of a set of sorts S (basic grammar elements) and a set of operations F (combinatorial relations
among grammar elements), can be used to describe the abstract grammar of a language[7]. A set
of semantic equations assign the semantics to ∑ , i.e. to the language which the signature
∑ corresponds to. Different semantic equations assign different semantics to ∑ . The signature
and its semantic equations form an abstract model of a language. The abstract model of a
language is independent of the concrete notation of the language. Many authors have the similar
idea that describe abstract grammar of a language with signature[1][9][11].
 The general principle of describing the abstract grammar for a language with a signature
∑ =(S F,) is that each sort in S corresponds to a basic grammar element of the language—
nonterminal in its BNF; and an operation in F corresponds to the constructive relation among
basic grammar elements of the language. Namely, a BNF production
P s t s t s t s tn n n: :: ... 0 1 1 2 2 1= + , where ti is either a terminal or an empty εand si is a nonterminal,
corresponds to the operation P in the signature that is as
P s s s s s S i nn i: (,) ... 1 2 0 0× × × → ∈ ≤ ≤ . For example, we consider a tiny Pascal-like
language as follows, which we call it a kernel language K :
 prog ::= BEGIN stmt END
 stmt ::= stmt ‘;’ stmt
 | IF expr THEN stmt ELSE stmt FI
 | WHILE expr DO stmt OD
 | vid:=expr | skip
 expr ::= int | vid
 | expr ‘+’ expr | expr ‘∗’ expr | NOT expr
 Let’s see about part of semantics of K informally. In K , there is only integer type expression.
Boolean type can be implemented by integer type like the way in C language. Denote by eval:
EXPR INT→ the evaluation function for expressions in K . Then we can evaluate integer
expression as boolean value as follows:

eval(NOT expr) = LET v =eval(expr) IN v =0 → 1, 0
and the semantics of IF expr THEN stmt1 ELSE stmt2 FI can be specified informally as:
 eval(expr)=0 → stmt2 , stmt1 .
We can describe the abstract grammar of K by a signature ∑ K =(S FK K,), where

- - 3

 SK = { int, id, stmt, expr, prog } ;
 FK = { program : stmt→prog ; comp : stmt×stmt→stmt ;
 if : expr×stmt×stmt→stmt ; while : expr×stmt→stmt ;
 assign : id×expr→stmt ; skip : →stmt ;
 int_expr : int→expr ; id_expr : id→expr ;
 add : expr×expr→expr ; mul : expr×expr→expr ;
 not : expr→expr ; }
 The terminals may be "forgotten" here，as they are not essential and can be determined
uniquely by the operation's name P[2]. We can see, from the "forgotten" principle, that not only the
set of sorts in ∑ is abstract, but also the operation representing is abstract. Signature ∑ L , which is
constructed by the principle above, is called the abstract grammar of a language L . The process
of constructing the signature ∑ L is that of the grammar abstraction. This process is much like that
of [1][10]. Furthermore, the sort in ∑ L reflects the analyticity of the abstract grammar, and the
operation in ∑ L reflects the syntheticality of the abstract grammar.
 To assign semantics to signature ∑ L , it is necessary to introduce a set of ∑ L equations,
which are used to describe the semantics of ∑ L . ∑ L and the set of semantic equations, say EL ,
form a language (∑ L ,EL). Different EL assigns different semantics to ∑ L .
 We adopt the means of transformational semantics[2][7][12] to assign semantics to ∑ L ,
and regard ∑ L equations as transformation rules. Transformational semantics is to assume that
the semantics of a language L1 is known, and constucts in language L1 are used to describe every
construct in another language L by the means of transformation rule, then we can reach the
semantics of the language L [7]. We call language L abstract language, and language L1
concrete language or implementing language[12]. If the process above is continued, we can gain
a sequence of languages like L L L Ln n, , , ... , − 1 1 . Abstract language and concrete language are
relative to the different place in the sequence. Abstract language can be concrete language, and
vice versa. For abstract language L in the sequence, language L L Ln n, , ... , − 1 1 are all
concrete languages of L , and for abstract language L1, languages L L Ln n, , ... , − 1 2 are all
concrete languages of L1, and so forth. The most concrete language Ln in the sequence is called
kernel language, and other languages in the sequence are intermedia languages. If Ln is a machine
language, the sequence above represents a process of language compiling, i.e. the process of
language translation from high-level language to machine language[10][11].

Definition 1 A ∑ L equation is a pair <lhs ,rhs>, usually is of the form lhs=rhs , where lhs is
a term of ground term algebra T L()Σ [7][4], and rhs is a term of ground term algebra T L()"Σ . L

is an abstract language, and L" is the concrete language relative to L .

 For instance, we assume that the semantics of K is fixed by EK , then we can specify a
language M =(∑ M ME,) with K =(∑ K KE,) as follows:
 SM = SK ;
 FM = FK +{ and_expr : expr×expr→expr ;
 or_expr : expr×expr→expr ;
 repeat : stmt×expr→stmt }

- - 4

 EM =EK +{ and_expr(expr, expr) = mul(expr, expr) ;
 or_expr(expr, expr) = add(expr, expr) ;
 repeat(stmt, expr) = comp(stmt , while(not(expr) , stmt)) }
 The added constructs and_expr, or_expr and repeat in the language M are called “syntactic
sugar” in [5]. The three contructs above are expressible in K as showed in EM . By Felleisen[5],
M is a definitional extension of K . This kind of extension is a basis of Section 3 in this paper.
We can also specify another language N =(∑ N NE,) that is on the contrary of extension like in M ,
where
 SN =SK ;
 FN =FK －{ add:expr×expr→expr } ;
 EN =EK－{ eval(expr ‘+’ expr) } ;
 Since ∑ L and ∑ L" are the abstract grammars of language L and L", terms in the ground
term algebra T L()Σ and T L()"Σ are well-formed terms, i.e. the terms that are built up from the

operator symbols of ∑ L and ∑ L" . Equations in EL are the same as transformation rules in
transformational semantic description of the language L , they are closed under semantic
equivalence inference by reflexitivity, transitivity and symmetry of equality and by substitution. The
equation lhs = rhs means that the sentence lhs of language L can be transformed into the
sentence rhs of language L" preserving semantic consistence.

Definition 2 A language L =(∑ L ,EL) consists of a signature ∑ L and a set of ∑ L equations
EL . We define (∑ L ,EL) as an abstract model of programming language L .

 From the abstract model of language given above, the grammar of a language L can be
abstracted as a set of sorts and operations on the sorts, i.e. as a signature ∑ L , whose semantics
can be abstracted as a set of ∑ L equations EL . So a language L can be abstracted as the
abstract model (∑ L ,EL) including grammar abstraction and semantic abstraction. The abstract
model of a language defined in Def. 2 provides a theoretical framework for studying connections
between languages in Section 3.
 In Def. 2, we assume that S F EL L LI I ={⊥}, where ⊥ represents undefined element in SL ,
FL and EL respectively.

3. Language Inheritance, Extension and Shielding — Language Family

 In this section, we will discuss the semantics of inheritance, extension and shielding from L
to a new language L ' . The relation between L and L ' is that between concrete and abstract
language.

Definition 3 ∑ L =(SL , FL) and ∑ L ' =(SL ' , FL ') are signatures of language L and L '
respectively. Define the signature mapping σ from ∑ L to ∑ L ' :∑ L→∑ L ' as a pair (h g,),
where h : S SL L→ ' is the mapping from SL into SL ' and h (⊥)=⊥; g :F FL L→ ' is a partial
homomorphism from FL into FL ' , where g (⊥)=⊥. For s S i ni L∈ ≤ ≤()0 , and an operation
P s s s sn: ... 1 2 0× × × → ∈FL , we define

- - 5

 g (P s s s sn: ... 1 2 0× × × →) = {P h s h s h s h s
s h s or P F

n

i i L

: () () . . . () ()
 () = '

1 2 0× × × →
⊥ ∃ ⊥ ∉

and the operation P h s h s h s h sn: () () () () ... 1 2 0× × × → ∈FL ' .
 If both h and g are identity mappings, then the signature mapping σ is an identity mapping; if
both h and g are injections, then the signature mapping σ is an injection; if both h and g are
surjections, then the signature mapping σ is a surjection.

Definition 4 Let L =(∑ L ,EL) and L '=(∑ L ' ,EL') be two languages, σ be a signature mapping:
∑ L→∑ L ' .If equation (σ (lhs)=rhs)∈EL' for any equation lhs=rhs in EL , we also call σ a

language mapping : L→L ' .

 For languages K and M in Section 2, there exists a signature mapping from ∑ K to ∑ M , say,
σ1=(h g1 1,) according to Def. 3, where both h1 and g1 are identity mappings, thus σ1 is an
identity mapping. Notice, h1 is a surjection and injection because of SM = SK , but g1 is not a
surjection because of F FK M⊂ . So, σ1 is not a surjection. Then, in terms of Def. 4, σ1is a
language mapping: K M→ too. Furthermore, for languages K and N , there also exists a
signature mappping from ∑ K to ∑ N , say, σ2 =(h g2 2,) where h2 is an identity mapping:
S SK K→ , and g2 is a surjection because the operation add∉FN , i.e. F FK N⊃ , and
 g2(add: expr×expr→expr)=⊥; g2(⊥)=⊥;
Thus g2 is a surjection but not injection, and so does σ2 , because h2 is an identity mapping. Also
in terms of Def. 4, σ2 is a language mapping:K N→ too.
 In fact, the signature mapping and the language mapping in Def. 3
and Def. 4 respectively are a special case of commutable
communication diagram of Rus in[10]. We can simplify that diagram
by the two definitions as figure 4.1, where semL and semL’ are the
transformational semantics of L and L ' respectively, and synL and
synL’ are the syntax of L and L ' respectively. For more details, refer to [10][11].
 In Def. 4, lhs is a term of ground term algebraT L()Σ , and rhs is a term of ground term

algebra T L()"Σ where L" is a concrete language of L and also of L ' . The relationship between

L , L ' and L" expressed by a language sequence like in Section 2 is of L", L , L ' . As ground
term consists of sorts and operations in a signature, σ (lhs) means to map sorts and operations of
∑ L in lhs into corresponding sorts and operations of ∑ L ' . Assume that σ (lhs)=⊥ if σ (t)=
⊥ , where t is a sort or an operation on some sorts in lhs , and equation (σ (lhs)=rhs)∈{⊥} if

σ (lhs)=⊥. We define that σ (t)=⊥ if and only if h (t)=⊥ or g (t)=⊥.
 Without loss of generality, if a signature mappingσ :∑ L→∑ L ' is an injection and also a
surjection, then its language mappingσ :L→L ' means semantic inheritance between language L

and L ' , i.e. language L ' inheriting language L completely just as an identical language mapping
σ0: K K→ . If a signature mappingσ :∑ L→∑ L ' is an injection but not a surjection, then its
language mappingσ :L→L ' means extension relation under the semantic inheritance between L

and L ' . Language L ' is an extended language and also a definitional extension of language L
under semantic inheritance. As showed in σ1, M is a definitional extension of K . If a signature
mappingσ :∑ L→∑ L ' is a surjection but not an injection, then its language mapping σ : L→L '

semL

semL’

synL

synL’
figure 4.1

- - 6

means shielding relation between language L and L ' . Language L ' shields some construct
structures of language L in semantics, like that language N shields the add operation of language
K in σ2 .
Theorem The category[4] AL has languages as objects and mappings between languages as

arrows.
Proof：(1) identical language mapping exists.

 Let language L be L =(∑ L , EL), apparently, identity mapping σ : ∑ L → ∑ L on
signature ∑ L exists, e.g.σ 0 . Then for any equation (lhs=rhs)∈EL ,σ (lhs)=lhs , so equation
(σ (lhs)=rhs)∈EL .

 Based on Def. 4, signature mappingσ :∑ L→∑ L is a language mapping:L→L , and also

be an identity mapping.
(2) Composition of language mappings is still a language mapping.

 Let languages be L1=(∑ L1,EL1), L2 =(∑ L2 ,EL2), L3 =(∑ L3 ,EL3) and language mappings
beσ1:L1→L2 ,σ2 :L2→L3 . Then from Def. 4, there exist signature mappingsσ1:∑ L1→∑ L2 ,
σ2 :∑ L2→∑ L3 corresponding to those language mappings respectively. We can construct the
composition of signature mappings based on Def. 3, i.e. σ3=σ1·σ2 : ∑ L1→∑ L3 as the form of
< h1· h2 , g1· g2>, where <h1 , g1> and <h2 , g2> are the representations of σ1 and σ2
respectively, and "·" is composition operation of mappings.

 Also from Def. 4, for any equation (lhs=rhs)∈EL1 , equation (σ1(lhs)=rhs)∈EL2 . If
equation (σ1(lhs)=rhs) ∉{⊥}, then equation (σ2 (σ1 (lhs))=rhs)∈EL3 , namely, equation
(σ3(lhs)=rhs)∈EL3 . If equation (σ1(lhs)=rhs)∈{⊥}, then equation (σ2 (σ1(lhs))=rhs)∈{
⊥}, namely，equation (σ3(lhs)=rhs)∈{⊥}⊆ EL3 .

 Above all, for any equation (lhs=rhs)∈EL1, equation (σ3(lhs)=rhs)∈EL3 . According to
Def. 4, σ3 is a language mapping L1→ L3 , i.e. composition of language mappings is still a
language mapping.

 From (1), (2) above and the definition of category[4], the category AL has languages as
objects and mappings between languages as arrows. �

 In category AL , a based language consists of a
language L and all arrows {Li→L }, which point to L ,
represented as < L ,{ Li → L }>, where Li → L
represents language mapping between Li and L , Li are
base language of the language L .
 A based language may have many base languages,
some base languages may also be based languages,
namely, some based language may take other based
languages as its base languages, just illustrated as figure
4.2.
 In this figure, L1, L2 and L4 are base languages of
L . From the figure, we can also see that the based

L

L L

L

L

L

K

1 2

3

4

5

figure 4.2

- - 7

language L has three base languages L1, L2 and L4 , however, the base languages L1, L2 and
L4 themselves are also based languages. All languages in the figure construct a language family
model under inheritance, extension and shielding relations. It is possible that there are not the three
relations above between real languages, so we represent this situation by dotted arrows, e.g.
between L1 and L2 , L2 and L4 . Fortunately, we can construct one of the three relations
between L1 and L2 , L2 and L4 based on Def. 3 and Def. 4 exploiting the undefined element ⊥
and the translator T1 in [11]. In the language family, which is constructed by language inheritance,
extension and shielding, languages are in different levels. Each language in different language
levels in the language family has its own expressive abstract degree. The higher a language
level is, the higher the language expressive abstract degree is, and the stronger the language
descriptive power is. The lowest base language (e.g. K in the figure 4.2) is called kernel
language[13], just as the most concrete language. All languages in the language family are
achieved from the kernel language by language inheritance, extension and shielding undder the
assumption that the semantics of the kernel language is known. From the point of category theory,
a based language (like L in figure 4.2) consists of base languages (like L1, L2 and L4 in figure
4.2) and mappings between them, and they altogether construct a cocone[4]. That is, languages L ,
L1, L2 and L4 in figure 4.2, and mappings between them construct a cocone, becuase they
satisfy that

() ()
() ()
() ()

L L L L L L
L L L L L L
L L L L L L

2 1 2 1

4 2 4 2

1 4 1 4

→ ⋅ → = →
→ ⋅ → = →
→ ⋅ → = →

i.e. L , L1 and L2 are commutable, so do L , L2 , L4 and L , L1, L4 , where “·” is composition
operation of mappings. The meaning of a cocone in language family implies that the methods and
ways to development of a language are diverse. We still take figure 4.2 as an example for
discussing that the development of language L has many ways. We can develop L from L4
directly by inheritance, extension and shielding, and also can develop L1 from L4 , then L from L1
by the three ways above. The significance of the diversity of methods and ways for developing a
language exists in that we can design directly, based on a language Li (L1, L2 or L4), another
language L which is different from Li in descriptive power and descriptive way, and also can
design several different languages whose descriptive powers and descriptive ways range between
Li and L , which are all developed based on the kernel language (like K in figure 4.2). Then
language users can also have several selections, they can select those languages which can very fit
in their special needed descriptive ways to solve the problems they concern in their own special
domains. As a result of it, the problem, which is mentioned in Section 1, of diversity of programming
languages and incompatibility between languages may be resolved.

4. Language Abstraction is a Distillation of Data Abstraction

 Abstract data type[3] is a new stage of data abstraction. The grammar of an abstract data
type A can also be described by a signature. We call this signature ∑ A . The sorts in the signature
∑ A of an abstract data type A represent data types, and the operations represent operation

- - 8

relations between the data types. However, the sorts in the signature ∑ L of a language L
represent grammar elements of the language L , the operations represent constructive relations
between the grammar elements. So ∑ L is the distillation of ∑ A in the eyes of the contents that
∑ L and ∑ A expressed and the level of the objects they described, i.e. ∑ L describes the
grammar of the language L , and ∑ A describes the grammar of the abstract data type A.
 Also being the same as ∑ L , abstract data type A can be assigned semantics by a set of
equations EA (a sequence of axioms). An equation lhs =rhs in EA represents logic relation
between operations and data types in the abstract data type A, where lhs and rhs both are terms
of term algebra[7], i.e. finite operations on data types. Nevertheless, equations in EL , which the
language L corresponds to, represent the transformational relations between languages under
semantic equivalence. Easy to see, EL is different from EA in the level of objects they used and in
that of properties of the relations they described.
 On the other hand, programming languages can be considered as hierarchical types based on
abstract data types theory. From this point, the context-free syntax of a language corresponds to
the signatures of the types; the context conditions of a language construct are expressed by total,
boolean-valued terms; the semantics of the languages is specified by a set of conditional
equations[2]. We can gain a complete specification of a programming language with this approach.
However, it is difficult, by way of hierarchical types, to show clearly relations (e.g. inheritance,
extension and shielding relations) between languages because of the hierarchichal types. From our
points in Section 3, and based on the language abstraction and the abstract model from it, we can
see clearly the inheritance, extension and shielding relations between languages. Under these
relations, languages construct a language family and category AL as showed in Section 3. A
programming language family, in fact, is organised as hierarchical languages which are distillation
of hierarchical types.
 Above all, comparing language abstraction (∑ L , EL) with data abstraction (∑ A , EA),
language abstraction is a distillation of data abstraction.

5. Related Work and Conclusion

 Several authors have discussed about the model of programming languages and related topics.
Milner[8] proposed a fully abstract model of typed lambda-calculi and showed that under certain
conditions, there exists, for an extended typed lambda-calculus, a fully abstract model including
algebraic model. We can also envision that there exists an abstract model we have proposed for
programming languages. Pair[9] and Broy et al.[2] studied on the algebraic definition of
programming languages. Both two papers emphasized the algebraic semantics of programming
languages based on abstract data types. Under the proposal that “programming languages should
be studied in terms of algebraic theories”[Goguen], Broy et al. described, analyzed and constrasted
the transformational semantics and weakly terminal semantics. We combine transformational
semantics to abstract data types theory to specify programming languages. From the point of
language implementation, Rus[10][11] gave an algebraic model for programming languages. BNF
plays central role in his framework. However, in his papers, Rus did not discuss how to describe

- - 9

semantics of programming languages in his model. Moreover, under some conditions, e.g., the
undefined condition in this paper, the consistency relation in his papers between languages may not
exist. Felleisen[5] provided a formal framework for comparing the expressive power of
programming languages. He took Scheme as an example language, and discussed about the
coservative and definitional extension of Scheme. One of the purposes of our work is to apply and
explain his research work in the abstract model of this paper. Under the transformational semantics
of programming languages, the mappingσ1:K M→ in Section 3 means a conservative and
definitional extension of language K to M in our abstract model. In the framework of Felleisen, it
is difficult to explain the meaning of the mapping likeσ2 :K N→ , because he discussed only about
language extension. However, there are some differences between language extension and
shielding to some extend after all.
 Language abstraction discussed in this paper is the distillation of data abstraction. This concept
builds up a theoretical model for researching connections between languages. Language family
developed from kernel language is a powerful language development tool and supporting
environment of the model-oriented transformational software development methodology. While we
develop the Polya-BD[12][13], which is a double environment for language development and
program development, we also have advanced a mechanism, based on the language abstract model
we have proposed, for language abstraction and encapsulation called Garment, whose details will
be given in another prepared paper[13]. Garment is an implementation of the abstract model of
language. By the mechanism, we can implement language inheritance, extension and shielding, and
can construct a language family consisted of languages which are different domain-oriented.
Language users can work on any language level they need in language family in order to develop
software easily. Further work is to study on the sufficiency of kernel language, the correctness
and semantics of language transformation, the sufficient completeness and consistence of
language extension.

References

[1] Bjorner, D. Toward the Meaning of VDM ‘M’. LNCS 352; TAPSOFT’89: 1—35; 1989.
[2] Broy, M. et al. On the Algebraic Definition of Programming Languages. ACM

Transaction on Programming Languages and Systems 9(1): 54—99; 1987.
[3] Cardelli, L. and Wegner, P. On Understanding Types, Data Abstraction, and

Polymorphism, ACM Computing Surveys 17(4): 471—522; 1985.
[4] Chen, Yiyun. Category Theory in Computer Science. Science & Technology University

Press, China; 1994.
[5] Felleisen, M. On the Expressive Power of Programming Languages. LNCS 432; ESOP’90:

134—151; 1990.
[6] Hoare, C.A.R. The Varieties of Programming Languages. LNCS 351; TAPSOFT’89: 1—

18; 1989.

- - 10

[7] Lu, Ruqian. Formal Semantics of Computer Languages, Science Press, China; 1994.
[8] Milner, M. Fully Abstract Models of Typed Lambda-Calculi. Theoretical Computer

Science 4(1): 1—22; 1977.
[9] Pair, C. Abstract Data Types and Algebraic Semantics of Programming Languages.

Theoretical Computer Science 18: 1—31; 1982.
[10] Rus, T. An Algebraic Model for Programming Languages. Computer Languages 12(3/4):

173—195; 1987.
[11] Rus, T. An Algebraic Tool for Language Processing. Computer Languages 20(4): 213—

238; 1994.
[12] Zhang, Naixiao Notation of Program Transformation in Programming Languages —on

Transformational Language. Chinese Journal of Software 4(5): 17—23; 1993.
[13] Zhang, Naixiao et al. On Model-Oriented Transformational Software Development

Methodology. Theoretical Computer Science(China) 2: 54—64; 1994.
[14] Zhang, Naixiao and Zheng, Hongjun Garment — A New Mechanism of Abstraction and

Encapsulation. Technical Report; 1996.

- - 11

Summary

(An Abstract Model for Programming Languages)

 This paper presents a concept of language abstraction and an abstract model for programming
languages through studying into the essence of programming languages based on the research of
Polya language and model-oriented transformational software development methodology. Then
the paper describes the semantics of language inheritance, extension, and shielding and also the
semantics of language family.
 In Section 2, we describe the abstract grammar of a language with a signature ∑ =(S F,),
which consists of a set of sorts S (basic grammar elements) and a set of operations F
(combinatorial relations among grammar elements), and adopt the means of transformational
semantics to assign semantics to ∑，in which we regard ∑ equations EL as transformation rules.
So a language L can be abstracted as the abstract model (∑ L , EL) including grammar
abstraction and semantic abstraction. The abstract model of a language provides a theoretical
framework for studying connections between languages based on which we discuss in Section 3
the semantics of inheritance, extension and shielding from L to a new language L ' .
 According to the definitions of signature mapping and language mapping in the paper, we
conclude, without loss of generality, that if the signature mapping σ : ∑ L→∑ L ' is an injection and
also a surjection, then the language mapping σ : L→L ' means semantic inheritance between
language L and L '; if signature mapping σ : ∑ L→∑ L ' is an injection but not a surjection, then
the language mapping σ : L → L ' means extension relation under the semantic inheritance
between L and L '; and if signature mapping σ : ∑ L→∑ L ' is a surjection but not an injection,
then the language mapping σ : L→L ' means shielding relation between language L and L ' . We

also give several examples to illustrate the conclusion above. Furthermore, we proof the thoerem in
this paper, that languages and mappings between them constitute a categoryAL . Then, discuss
about the semantics of language family in the categoryAL .
 In Section 4, we try to explain, by comparing language abstraction (∑ L , EL) with data
abstraction (∑ A ,EA), that language abstraction proposed in the paper is a distillation of data
abstraction from three points: grammar, semantics and language specification method.
 Finally, we discuss about some related work which have something to do with this paper, and
give some concluding remarks in Section 5.

- - 12

Two referees suggested by the authors:

 Professor David Gries

 Address: Computer Science Department
 Cornell University
 Ithaca, New York 14853 - 7501
 U.S.A

 Professor Dines Bjorner

 Address: International Institute for Software Technology
 The United Nations University (UNU/IIST)
 P.O. Box 3085
 18/F Ed. Banco Luso Intl.
 1 - 3, Rua Dr. Pedro Jose Lobo
 Macau

 Email: db@iist.unu.edu

