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Abstract  Domain-specific languages are closely related to interface languages of 
domain-oriented software. Thus, the specifications of such software can be abstracted to 
specifications of language systems, and implementation of such software can be abstracted 
to implementation of the language systems. As a unified model to support software 
development and research, a mechanism named Garment for abstracting and encapsulating 
languages is proposed. Garment provides a unified framework for defining languages 
(syntax and semantics) and describing relations between languages (which are classified as 
inheritance, shielding and extension). Finally, an experimental environment, which supports 
software development with Garment, is introduced briefly. 
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1  Introduction 

 Languages are tools for thinking and expressing. Domain-specific languages, i.e., the 
language of mathematics and the language of chemistry, are formed in the disciplines. They 
are powerful in describing domain-specific objects and processes, and reflect the research 
states of the discipline.  

 Due to the development of computer science and technology, computation has become 
another important means in scientific research, besides theoretical and experimental 
approaches. Many new branches of sciences have appeared and form a new trade, called 
computational science. Examples are computational physics, computational chemistry, 
computational mechanics, and computational linguistics. The flourishing of computational 
sciences comes from the fact that computational models of most research problems can be 
built on computers. Computational scientists deal with domain-specific problems with 
computer. It is desirable for these scientists to have powerful software for modeling objects 
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and processes in their fields. The systems should be efficient programming environments in 
building models for solving practical problems. It is more convenient if the models could be 
described directly by domain-specific languages. To the designers of domain-oriented 
software, the ideal goal is to provide an abstract machine on which the domain-specific 
language can be used directly (in some sense). In that case, the systems act as 
virtual-reality environment for the domain-scientists. Under this ideal situation, the relations 
between the discipline and the software, the domain-specific language and the interface 
language of the software, the domain-related research work and the programming are shown 
in Figure 1. 

 
 

 

 

 

 
Figure 1. Discipline and Software 

 In this paper, we will focus on the domain-oriented software with programmable interface 
languages. To form a unified view and model for such software and its development, the 
nature of software is studied, and a new model for software development is formed. 

2  MOSAT - A Systematic Development Method 

 For supporting development of domain-specific software, we propose a systematic 
development method called MOSAT (Model-Oriented Specification And Transformation 
[1]). In MOSAT, the development of program, software, and the environment is divided into 
three levels, as shown in Figure 2. The environment developers, taking views of software 
theory, build a unified software development environment. This environment includes a 
software development language (SDL) which is suitable for defining software and an 
interpreter of SDL. Software developers use SDL as tool to describe their software and its 
interface language, forming domain-specific abstract model. The compiler of the interface 
language is then generated by SDL interpreter. On the third level, the program developers 
(computational scientists) focus on domain problems, build their problem solving models 
(programs) using the developed language. These models are translated by the compiler into 
executable programs for solving of the problems. 

 In MOSAT, the concept “model” introduced in VDM [11] is extended, and divided into 
general models of software, abstract models of domains, and special models of practical 
problems. Theory and implementation of these models can be studied separately. In MOSAT, 
abstract data types (ADT) are the basic units in defining languages, and the programming 
language is fundamental objects in software research. The specification of software is 
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abstracted to the specification of language-system. The relations between languages are 
classified into three categories: inheritance, shielding** and extension [6]. Data abstraction 
is enhanced to language abstraction. As the type definition language of Polya [8,9], 
abstract and concrete grammar, syntax and semantics definitions are separated in our SDL, 
which will benefit software reuse [15] and partial implementation [14]. Referring to 
transformational semantics in CIP [13], both of the definition and implementation of 
languages can be described in SDL in unified form. This can not only improve the brevity of 
languages but also decrease the inconsistencies in development. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Three different levels in MOSAT 

 
 MOSAT supports software reuse in many facets. For productivity, all languages 
developed in the environment may be organized, according to inheritance relations, into a 
language family, and stored in a Language Knowledge Base (LKB) [4]. In developing a 
new software system, a suitable language in LKB can be chosen as the parent language to 
define the new language of the software, by ways of inheriting, shielding and extending. The 
semantics of extension parts can be defined by transformation rules. The inherited parts can 
be redefined, when necessary. All of the description can be thought as a specification of the 
new software. Afterwards, the software, including the complete definition of the interface 
language and the internal implementation of facilities, can be generated by the environment 

                                                 
** Shielding is a special case of inheritance, namely, partial inheritance. Language L1 shields some constructs of L2 

means that these constructs are not usable for users of L1, but are usable for implementers of L1. 
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automatically. In this approach, the development of software could be think as 
“specification + transformation”. 
 The example in figure 3 illustrates something under MOSAT. In the figure, the base 
software of the environment provides language L0. L0 is usually an implemented language 
(such as C or Pascal). It is called kernel language in the language family. The base 
software provides a programming environment for L0. A software for theoretical mechanics 
(for example) can be built; its language L1 is defined upon L0. Then, the software for elastic 
mechanics and fluid mechanics can be developed, which provide language L2 and L3. As an 
alternate, the software for fluid mechanics could also be developed on the elastic mechanics 
software. In this case, the parent language of L3 is L2. In choice of the parent language, two 
factors are important to consider. From which language the newer can inheritance more, i.e., 
reuse more existing components and implementations. From which language the new 
extensions can be implemented more easily and efficiently. 

Figure 3. An Example  

3  Garment —  A Mechanism for Abstraction and 
Encapsulation of Programming Languages 

 To implement MOSAT method, it is crucial to design an SDL for describing software of 
various domains. The SDL should have mechanism to indicate parent language selection, 
describe inheritance, shielding and extension regarding the parent language, and to express 
transformational semantics for new extended constructs and modified inheritance constructs. 
A mechanism called Garment is defined in our SDL. A Garment could be think as an 
abstraction and encapsulation of a language. We discuss the conceptual framework of 
Garment here. 

 Syntactically, a Garment begins with keyword garment, with its specification and 
implementation parts indicated by spec and impl respectively. In the spec part, language 
constructs are defined with abstract grammar and concrete grammar. The part of abstract 
grammar specifies grammatical properties—such as kind, type, and scope —possessed by 
the basic constructs of the language. The concrete grammar part specifies concrete 
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representations of these constructs as used in real programs. Language constructs are 
grouped into two catalogs: control structures (represented by structure statements) and data 
structures (represented by abstract data types). The transformational semantics of language 
constructs are defined in the impl part. Transformation rules are used to define the 
semantics of structure statements and abstract data types of the new language with respect 
to its parent. A key point is that the parent language is not only part of the specification 
language for the semantics of the new language, but also its implementation language. 

 The syntax of Garment is given bellow. For convenience, BNF is extended: the notation [] 
is used to describe non-empty list, []-s a non-empty list of element separated by s, {} an 
optional entity. Boldface words are keywords of the SDL. 

 garment  ::= garment   id1   from   id2    /*  head  */ 
  spec  /* specification */ 
   import     inher_part； 
   [type_def  | struc_def ]-;  
  {with   op_list} 
  impl        /* implementation */ 

             [trans_def ]-; 

  end       id1   

Where id1 is the name of the language to be defined, id2 is name of the parent language. 
The specification of inheritance relation takes the form 

 inher _part ::= [id3]-; | all { except [id3]-, } 

where id3 are the names of constructs, that is, names of structure statements and abstract 
data types in the parent language. Listing constructs are inherited (this means that other 
constructs are shielded to users of this language). All of the parent language can be inherited 
(all is for this), also can only list names to be shielded behind keyword except.  

 The syntax for description of new abstract data type and structure statement is as: 

 type_def ::= type     id4          { ‘(’ parameter_part ‘)’ } 
  { literal    [  literal_part  ]-;    } 
  operation   [ operation_part ]-; 

 struc_def ::=  struc   id5          { ‘(’ parameter_part ‘)’} 
  [  struc_part  ]-; 

where id4 and id5 are names of constructs. Parameter_part describes type parameters or 
length parameters of constructs. For example, qualified type “stack” can be represented by 
stack(*t), where *t is a type parameter. Literal_part and operation_part describe 
grammar of constants and operations of type id4. The operations can be defined by 
procedures, expressions, operators, or statements. The Struc_part is used to define 
structure statements, including their constructs. The details of these definitions take a way 
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similar to type definitions in Polya language[9].  

 At the end of specification part, keyword with introduces an op_list to specify 
precedence and associatively of operators of language id1. The semantics of language 
constructs is specified by a set of transformation rules named transform [8]: 

 trans_def ::=  transform   id3   { ‘(’ parameter_part ‘)’ } 
  {   repr   type   
   /*  represent  invariant  */  } 
       rule    [rule]- 

 A transform describes the semantics of an abstract data type or a structure statement of 
the new language (child language) with regard to its parent. Semantics of all extended 
constructs must be defined by transforms. For inherited constructs without a transform, the 
original semantics is inherited. For new extended abstract data types, it is necessary to 
introduce a representation type, following repr in the transform. Representing invariants are 
recommended as annotation to describe relations between new types and their representing 
types.  

 A rule has two parts which are separated by a key word repl. The left part is a pattern 
(for the child language) that must be satisfied when the rule is applied to make a 
transformation, right part is its replacement (in the parent language). For details of definitions 
and effects of transform and transformation correctness, please refer to [2][3]. 

 Here is a simple example, where L0 is the parent language and child language L1 inherits 
all constructs of L0 and extends it to L1 with stack type stack  and a loop structure loop: 

 garment  Li  from  Lj      /*  head  */ 
 spec  /*  specification */ 
 import   all； 
 type       stack(*t) 
   operation   
     makeempty ( s:stack (*t) ) ; 
     push ( e:*t, s:stack (*t) ) ; 
     pop ( s:stack (*t) ) ; 
     top ( s:stack (*t) ) *t ; 
        isempty ( s:stack (*t) ) BOOL 
 struc    loop 
    loop  {[stmt-s]-;} exp-e {[stmt-t]-;}  (e:BOOL)    as    
     “LOOP”{ [s]-;} “WHEN” e “EXIT”{“;”[t]-; }“ENDLOOP” 
 impl  /*  implementation */  
   transform   stack(*t) 
     repr   RECORD 
  a: ARRAY (*t, 100) ; 
    i: INT 
    END   
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     rule           
       makeempty(s)  repl   s.i:=0 
      push(e,s)      repl   s.a[s.i], s.i:=e, s.i＋1    
/*precondition s,i<100*/ 
      pop(s)      repl   s.i:=s.i－1            /*precondition s,i>0  */ 
      top(s)        repl   s.a[s.i] 
      isempty(s)     repl   s.i=0 
   transform   loop 
     rule           
      LOOP [s]-; WHEN e EXIT; [t]-; ENDLOOP 
                     repl VAR temp:BOOL; 
              temp:=true; 
               WHILE temp  DO  [s]-; 
         IF e →  temp := false 
            � not(e) → [t]-;   
         FI  
      OD 
      LOOP  WHEN e EXIT; [t]-; ENDLOOP 
  repl WHILE not(e) DO  [t]-; OD 
      LOOP  [s]-;  WHEN e EXIT   ENDLOOP 
   repl  REPEAT  [s]-; UNTIL  e 
      LOOP   WHEN e EXIT   ENDLOOP 
   repl  REPEAT  SKIP  UNTIL  e 
        end      Li   

 

 Type stack  is represented by a record as usual. The operations of stack are defined as 
procedures. Designers can use other representation types and other ways, such as operators, 
expressions, or even statements, to define the operations according to their needs and taste. 
The definition of loop statement follows D. Knuth’s paper on GOTO [16]. Before keyword 
as  is the abstract grammar of loop. Where the two parts s and t are optional statement 
sequences and e is a logic expression. Following the as  is the concrete grammar. A 
transform named loop describes the implementation of loop, in which four rules make 
possibly for the transformation system to select the best one according to the presence of 
statements. The assumption in the example is that types BOOL, RECORD, and statements 
IF, WHILE and REPEAT are all constructs of language L0. 

4  Garden - An Implementation of Garment 

 We implemented a Garment development environment named Garden. The language 
knowledge base (LKB) in Garden supports building of the language family organized as a 
tree. The language family focus to application domains and could have various abstraction 
levels [4]. People can select an existing language from LKB if it is good enough for solving 
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their domain problems. Otherwise, they can develop their suitable language with Garment, 
based on some existed language in LKB. 
 Garden implements two major functions. One is to implement languages specified by SDL. 
The other is to transform abstract models of problems described in a language in the LKB, 
into the kernel language. The latter amounts to program implementation.  
 Figure 4 illustrates the architecture of Garden. All the syntax and semantic information of 
existing languages are stored in the LKB. Language definitions are stored as text for 
reference. Constructs of languages, underlying relations (inheritance, shielding and 
extension), type and structure environment of languages, the language transformation 
environments are all stored in inner representation for language development and program 
development. The compilers generated for languages are stored in a separated compiler 
library. 
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Firgure 4. Architecture of Garden

 In language development, the definition of a new language is first parsed. With the parent 
language in the LKB, the system generates an environment for developing the new language. 
In addition, Garden deals with new types and structures in the language, updates the 
environment for the types and structures in the LKB. It performs transforms, updates the 
environment for language transformation, and generates a compiler of the language. 

 Supported by LKB, the program development system parses the user programs, forms 
local environments for the model transformation. Furthermore, the system makes type 
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checking by attribute matching and program transformation, and generates the final program. 

 Figure 5 shows the work flow in Garden. The Garment interpreter is the heart of the 
system. The specification of a language Lij for some domain is represented by Garment Gij. 

It is interpreted by the Garment interpreter. Information of the parent language in LKB is 
added to results of the interpretation. The block of language knowledge is formed and stored 
into LKB. The lexical analyzer and parser of language Lij are formed in the interpretation. 

Joining with some general program modules, through compiling and linking, a compiler of 
language Lij is generated. In program development, if solution of a practical problem is 
described in Lij, forms a program Pij, the compiler of Lij is called to compile Pij into an 
equivalent program Pi in parent language Li. This process is repeated until a kernel language 
program P0 is formed. 

 

  General speaking, there are two major ways to improve software quality in Garden. 
First, partial implementation [4] can improve representations of important types and 
implementations of common operations in these types. Second, using of existed definitions 
and implementations in LKB can reduce costs of software development. 

 Garden is only an attempt for testing Garment mechanism and supporting the MOSAT 
method. With it, we have developed by self-application a program transformation system and 
modeled a telephone exchange system. The feasibility and effectiveness of this method are 
verified [5]. Afterwards, a Pascal-like language named Poly0 is defined as the kernel 
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language. Using Garment, Poly0 is augmented to language Poly1 with types linked list, tree, 
stack, and pair. Binary tree traversing and heap sorting are implemented in Poly1. 
Furthermore, language Poly2 is defined on Poly1, with set, sequence and bag etc. The 
Huffman algorithm and a prototype of library management system are implemented in Poly2. 
Poly0, Poly1 and Poly2 and some other languages construct a small language family. All of 
these are beneficial explorations in developing software with MOSAT method and 
accumulating experiences for using and improving Garment. 

5  Software and Langauge 

 In views of its architecture, Garden may appear to be simple. It reflects our ideas on 
software. The statements and results in this section should be taken with a grain of salt. 
They reflect our concern for explaining and reconciling the ideas. It is hoped that they 
provide some insights leading to more substantial work on the questions. 

 The software crisis motivated computer scientists to dig into the field. In the last twenty 
years, many inspiring results have been developed. Nevertheless, the software crisis has not 
disappeared yet. In our opinion, one of the important reasons is that the concept, software, 
has not been distinguished clearly from “program”. As the result, occur often chaos in 
dealing with software development and programming, software development language 
and programming language, software development environment and programming 
environment etc. In the language research area, this problem appears as mixing extending 
definitions and declarations in languages. Meta-features have tended to be included into 
programming languages that increase the complexity of programming and affect the 
efficiency of the implementation. 

 The word software refers to a larger entity than a program. Software, such as a control 
system, application system, or utility tool, refers to systems developed for users. In software 
development, people pay attention to building abstract computation systems for specific 
domains and abstract models. For program, they concern on suitable algorithms, data 
structures, and their implementations. Research on software concentrates on usefulness, 
flexibility, reliability and robustness of the models (and final systems), while research on 
programs focuses on correctness and efficiency.  

 Software systems are in fact abstract machines for dealing with problems of certain kinds. 
A software system implements a new level of computation facilitie s. Consequently, it forms 
a new face between computer and users as a “garment ” draped over the original computer 
system. Problem-solving models for specific problems can be constructed on it.  

 Programming language systems (compiling systems) are the earliest successful 
software. High-level languages are abstract models of programming. The development of 
language systems makes computer “understand” high-level languages and provides better 
programming environments. They are very important in the progress of programming science. 
In the case of computational sciences and compiling systems, the differences between 
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software development and programming are obvious. They are similar to the differences 
between building a lab and doing experiments in the lab (in experimental sciences), or 
creating an axiom system and proving theorems in it (in theoretical sciences). 

 It is the time to develop separated software science apart from programming to some 
extent. In this way, we can concentrate on the nature of software in itself and the laws of 
software development. The general approach of computational sciences is also good for 
software science, which may lead to some approaches in which the software development 
could be treat as what was done in programming [7]. 

 The framework introduced in this paper is only a first step toward the goal. In this work, 
we analyzed the theories and techniques about typing, formal semantics, program 
transformation, data abstraction, software reuse, partial implementation and so forth. Many 
of our ideas are affected by Polya, VDM, CIP and Ada. We also have some discussion of a 
mathematical model of Garment [6] and built an abstract model for programming languages. 
The model is used to describe the semantics of language inheritance, shielding, and extension, 
and to show the inherent connections between languages in a language family.  

 Our further researches will concentrate on properties of the kernel language and the 
semantics of language transformation. Another interesting direction would be uniformity of 
language extension. 
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