
Garment

---A Mechanism for Abstraction and Encapsulation of Languages

Zhang Naixiao1, Zheng Hongjun2 and Qiu Zongyan3

(Peking University, Beijing 100871, China)

Abstract Domain-specific languages are closely related to interface languages of
domain-oriented software. Thus, the specifications of such software can be abstracted to
specifications of language systems, and implementation of such software can be abstracted
to implementation of the language systems. As a unified model to support software
development and research, a mechanism named Garment for abstracting and encapsulating
languages is proposed. Garment provides a unified framework for defining languages
(syntax and semantics) and describing relations between languages (which are classified as
inheritance, shielding and extension). Finally, an experimental environment, which supports
software development with Garment, is introduced briefly.

Keywords Garment Software development
methodology

 Software development language Software development

environment

1 Introduction

 Languages are tools for thinking and expressing. Domain-specific languages, i.e., the
language of mathematics and the language of chemistry, are formed in the disciplines. They
are powerful in describing domain-specific objects and processes, and reflect the research
states of the discipline.

 Due to the development of computer science and technology, computation has become
another important means in scientific research, besides theoretical and experimental
approaches. Many new branches of sciences have appeared and form a new trade, called
computational science. Examples are computational physics, computational chemistry,
computational mechanics, and computational linguistics. The flourishing of computational
sciences comes from the fact that computational models of most research problems can be
built on computers. Computational scientists deal with domain-specific problems with
computer. It is desirable for these scientists to have powerful software for modeling objects

1 Dept. of Information Sciences, School of Math. Sciences, Email : naixiao@pku.edu.cn

2 Dept. of Computer Science and Technology,
3 Dept. of Information Sciences, School of Math. Sciences, Email : zyqiu@pku.edu.cn

 2

and processes in their fields. The systems should be efficient programming environments in
building models for solving practical problems. It is more convenient if the models could be
described directly by domain-specific languages. To the designers of domain-oriented
software, the ideal goal is to provide an abstract machine on which the domain-specific
language can be used directly (in some sense). In that case, the systems act as
virtual-reality environment for the domain-scientists. Under this ideal situation, the relations
between the discipline and the software, the domain-specific language and the interface
language of the software, the domain-related research work and the programming are shown
in Figure 1.

Figure 1. Discipline and Software

 In this paper, we will focus on the domain-oriented software with programmable interface
languages. To form a unified view and model for such software and its development, the
nature of software is studied, and a new model for software development is formed.

2 MOSAT - A Systematic Development Method

 For supporting development of domain-specific software, we propose a systematic
development method called MOSAT (Model-Oriented Specification And Transformation
[1]). In MOSAT, the development of program, software, and the environment is divided into
three levels, as shown in Figure 2. The environment developers, taking views of software
theory, build a unified software development environment. This environment includes a
software development language (SDL) which is suitable for defining software and an
interpreter of SDL. Software developers use SDL as tool to describe their software and its
interface language, forming domain-specific abstract model. The compiler of the interface
language is then generated by SDL interpreter. On the third level, the program developers
(computational scientists) focus on domain problems, build their problem solving models
(programs) using the developed language. These models are translated by the compiler into
executable programs for solving of the problems.

 In MOSAT, the concept “model” introduced in VDM [11] is extended, and divided into
general models of software, abstract models of domains, and special models of practical
problems. Theory and implementation of these models can be studied separately. In MOSAT,
abstract data types (ADT) are the basic units in defining languages, and the programming
language is fundamental objects in software research. The specification of software is

Domain-specific

Language

Research

Discipline Specific Software

Interface-language

of software

Programming

 3

abstracted to the specification of language-system. The relations between languages are
classified into three categories: inheritance, shielding** and extension [6]. Data abstraction
is enhanced to language abstraction. As the type definition language of Polya [8,9],
abstract and concrete grammar, syntax and semantics definitions are separated in our SDL,
which will benefit software reuse [15] and partial implementation [14]. Referring to
transformational semantics in CIP [13], both of the definition and implementation of
languages can be described in SDL in unified form. This can not only improve the brevity of
languages but also decrease the inconsistencies in development.

Figure 2. Three different levels in MOSAT

 MOSAT supports software reuse in many facets. For productivity, all languages
developed in the environment may be organized, according to inheritance relations, into a
language family, and stored in a Language Knowledge Base (LKB) [4]. In developing a
new software system, a suitable language in LKB can be chosen as the parent language to
define the new language of the software, by ways of inheriting, shielding and extending. The
semantics of extension parts can be defined by transformation rules. The inherited parts can
be redefined, when necessary. All of the description can be thought as a specification of the
new software. Afterwards, the software, including the complete definition of the interface
language and the internal implementation of facilities, can be generated by the environment

** Shielding is a special case of inheritance, namely, partial inheritance. Language L1 shields some constructs of L2

means that these constructs are not usable for users of L1, but are usable for implementers of L1.

Development
of

Environment

Language of Domain Software

Description of
Domain Objects

Description of
Object Processing

Theoretical Model
of Software

Software Development Environment

Software Development Language Interpreter of SDL

Compiler for Language
of

Domain-Oriented Software

Model of
Practical Problem

Model of Problem Solving

Data Structures Algorithms

Executable
Program

Abstract Model
of Domain Development

of
Software

Development
of

Program

 4

automatically. In this approach, the development of software could be think as
“specification + transformation”.
 The example in figure 3 illustrates something under MOSAT. In the figure, the base
software of the environment provides language L0. L0 is usually an implemented language
(such as C or Pascal). It is called kernel language in the language family. The base
software provides a programming environment for L0. A software for theoretical mechanics
(for example) can be built; its language L1 is defined upon L0. Then, the software for elastic
mechanics and fluid mechanics can be developed, which provide language L2 and L3. As an
alternate, the software for fluid mechanics could also be developed on the elastic mechanics
software. In this case, the parent language of L3 is L2. In choice of the parent language, two
factors are important to consider. From which language the newer can inheritance more, i.e.,
reuse more existing components and implementations. From which language the new
extensions can be implemented more easily and efficiently.

Figure 3. An Example

3 Garment — A Mechanism for Abstraction and
Encapsulation of Programming Languages

 To implement MOSAT method, it is crucial to design an SDL for describing software of
various domains. The SDL should have mechanism to indicate parent language selection,
describe inheritance, shielding and extension regarding the parent language, and to express
transformational semantics for new extended constructs and modified inheritance constructs.
A mechanism called Garment is defined in our SDL. A Garment could be think as an
abstraction and encapsulation of a language. We discuss the conceptual framework of
Garment here.

 Syntactically, a Garment begins with keyword garment, with its specification and
implementation parts indicated by spec and impl respectively. In the spec part, language
constructs are defined with abstract grammar and concrete grammar. The part of abstract
grammar specifies grammatical properties—such as kind, type, and scope —possessed by
the basic constructs of the language. The concrete grammar part specifies concrete

 base software

software for theoretical mechanics

software for fluid

L0

L1

L2 L3 software for elastic mechanics

 5

representations of these constructs as used in real programs. Language constructs are
grouped into two catalogs: control structures (represented by structure statements) and data
structures (represented by abstract data types). The transformational semantics of language
constructs are defined in the impl part. Transformation rules are used to define the
semantics of structure statements and abstract data types of the new language with respect
to its parent. A key point is that the parent language is not only part of the specification
language for the semantics of the new language, but also its implementation language.

 The syntax of Garment is given bellow. For convenience, BNF is extended: the notation []
is used to describe non-empty list, []-s a non-empty list of element separated by s, {} an
optional entity. Boldface words are keywords of the SDL.

 garment ::= garment id1 from id2 /* head */
 spec /* specification */
 import inher_part；
 [type_def | struc_def]-;
 {with op_list}
 impl /* implementation */

 [trans_def]-;

 end id1

Where id1 is the name of the language to be defined, id2 is name of the parent language.
The specification of inheritance relation takes the form

 inher _part ::= [id3]-; | all { except [id3]-, }

where id3 are the names of constructs, that is, names of structure statements and abstract
data types in the parent language. Listing constructs are inherited (this means that other
constructs are shielded to users of this language). All of the parent language can be inherited
(all is for this), also can only list names to be shielded behind keyword except.

 The syntax for description of new abstract data type and structure statement is as:

 type_def ::= type id4 { ‘(’ parameter_part ‘)’ }
 { literal [literal_part]-; }
 operation [operation_part]-;

 struc_def ::= struc id5 { ‘(’ parameter_part ‘)’}
 [struc_part]-;

where id4 and id5 are names of constructs. Parameter_part describes type parameters or
length parameters of constructs. For example, qualified type “stack” can be represented by
stack(*t), where *t is a type parameter. Literal_part and operation_part describe
grammar of constants and operations of type id4. The operations can be defined by
procedures, expressions, operators, or statements. The Struc_part is used to define
structure statements, including their constructs. The details of these definitions take a way

 6

similar to type definitions in Polya language[9].

 At the end of specification part, keyword with introduces an op_list to specify
precedence and associatively of operators of language id1. The semantics of language
constructs is specified by a set of transformation rules named transform [8]:

 trans_def ::= transform id3 { ‘(’ parameter_part ‘)’ }
 { repr type
 /* represent invariant */ }
 rule [rule]-

 A transform describes the semantics of an abstract data type or a structure statement of
the new language (child language) with regard to its parent. Semantics of all extended
constructs must be defined by transforms. For inherited constructs without a transform, the
original semantics is inherited. For new extended abstract data types, it is necessary to
introduce a representation type, following repr in the transform. Representing invariants are
recommended as annotation to describe relations between new types and their representing
types.

 A rule has two parts which are separated by a key word repl. The left part is a pattern
(for the child language) that must be satisfied when the rule is applied to make a
transformation, right part is its replacement (in the parent language). For details of definitions
and effects of transform and transformation correctness, please refer to [2][3].

 Here is a simple example, where L0 is the parent language and child language L1 inherits
all constructs of L0 and extends it to L1 with stack type stack and a loop structure loop:

 garment Li from Lj /* head */
 spec /* specification */
 import all；
 type stack(*t)
 operation
 makeempty (s:stack (*t)) ;
 push (e:*t, s:stack (*t)) ;
 pop (s:stack (*t)) ;
 top (s:stack (*t)) *t ;
 isempty (s:stack (*t)) BOOL
 struc loop
 loop {[stmt-s]-;} exp-e {[stmt-t]-;} (e:BOOL) as
 “LOOP”{ [s]-;} “WHEN” e “EXIT”{“;”[t]-; }“ENDLOOP”
 impl /* implementation */
 transform stack(*t)
 repr RECORD
 a: ARRAY (*t, 100) ;
 i: INT
 END

 7

 rule
 makeempty(s) repl s.i:=0
 push(e,s) repl s.a[s.i], s.i:=e, s.i＋1
/*precondition s,i<100*/
 pop(s) repl s.i:=s.i－1 /*precondition s,i>0 */
 top(s) repl s.a[s.i]
 isempty(s) repl s.i=0
 transform loop
 rule
 LOOP [s]-; WHEN e EXIT; [t]-; ENDLOOP
 repl VAR temp:BOOL;
 temp:=true;
 WHILE temp DO [s]-;
 IF e → temp := false
 � not(e) → [t]-;
 FI
 OD
 LOOP WHEN e EXIT; [t]-; ENDLOOP
 repl WHILE not(e) DO [t]-; OD
 LOOP [s]-; WHEN e EXIT ENDLOOP
 repl REPEAT [s]-; UNTIL e
 LOOP WHEN e EXIT ENDLOOP
 repl REPEAT SKIP UNTIL e
 end Li

 Type stack is represented by a record as usual. The operations of stack are defined as
procedures. Designers can use other representation types and other ways, such as operators,
expressions, or even statements, to define the operations according to their needs and taste.
The definition of loop statement follows D. Knuth’s paper on GOTO [16]. Before keyword
as is the abstract grammar of loop. Where the two parts s and t are optional statement
sequences and e is a logic expression. Following the as is the concrete grammar. A
transform named loop describes the implementation of loop, in which four rules make
possibly for the transformation system to select the best one according to the presence of
statements. The assumption in the example is that types BOOL, RECORD, and statements
IF, WHILE and REPEAT are all constructs of language L0.

4 Garden - An Implementation of Garment

 We implemented a Garment development environment named Garden. The language
knowledge base (LKB) in Garden supports building of the language family organized as a
tree. The language family focus to application domains and could have various abstraction
levels [4]. People can select an existing language from LKB if it is good enough for solving

 8

their domain problems. Otherwise, they can develop their suitable language with Garment,
based on some existed language in LKB.
 Garden implements two major functions. One is to implement languages specified by SDL.
The other is to transform abstract models of problems described in a language in the LKB,
into the kernel language. The latter amounts to program implementation.
 Figure 4 illustrates the architecture of Garden. All the syntax and semantic information of
existing languages are stored in the LKB. Language definitions are stored as text for
reference. Constructs of languages, underlying relations (inheritance, shielding and
extension), type and structure environment of languages, the language transformation
environments are all stored in inner representation for language development and program
development. The compilers generated for languages are stored in a separated compiler
library.

Language Knowledge BaseLanguage Development Program Development

Processing Types and
Structures of Language

Generating Local
Environment of Language

Parsing Garment

Processing
Semantics of Language

Generating Compiler

Environment for
Types and Structures

Library of
Language Definition

Environment for
Language Transformation

Library of Compiler

Management
of Knowledge Base

Parsing Program

Generating
Local Environment
for Transformation

Type
Checking and Inference

Attribute Matching and
Program Transformation

Transformation Control

Firgure 4. Architecture of Garden

 In language development, the definition of a new language is first parsed. With the parent
language in the LKB, the system generates an environment for developing the new language.
In addition, Garden deals with new types and structures in the language, updates the
environment for the types and structures in the LKB. It performs transforms, updates the
environment for language transformation, and generates a compiler of the language.

 Supported by LKB, the program development system parses the user programs, forms
local environments for the model transformation. Furthermore, the system makes type

 9

checking by attribute matching and program transformation, and generates the final program.

 Figure 5 shows the work flow in Garden. The Garment interpreter is the heart of the
system. The specification of a language Lij for some domain is represented by Garment Gij.

It is interpreted by the Garment interpreter. Information of the parent language in LKB is
added to results of the interpretation. The block of language knowledge is formed and stored
into LKB. The lexical analyzer and parser of language Lij are formed in the interpretation.

Joining with some general program modules, through compiling and linking, a compiler of
language Lij is generated. In program development, if solution of a practical problem is
described in Lij, forms a program Pij, the compiler of Lij is called to compile Pij into an
equivalent program Pi in parent language Li. This process is repeated until a kernel language
program P0 is formed.

 General speaking, there are two major ways to improve software quality in Garden.
First, partial implementation [4] can improve representations of important types and
implementations of common operations in these types. Second, using of existed definitions
and implementations in LKB can reduce costs of software development.

 Garden is only an attempt for testing Garment mechanism and supporting the MOSAT
method. With it, we have developed by self-application a program transformation system and
modeled a telephone exchange system. The feasibility and effectiveness of this method are
verified [5]. Afterwards, a Pascal-like language named Poly0 is defined as the kernel

Garment Definition

Gij

Pij

Interpreter Generator

Interpreter for Garment

Lexical Analyzer
for Language Lij

Parser
for Language Lij

Compiler Generator

Compiler
for Language Lij

Pi

Model Transformation
Program

Management Mechanism
for Knowledge Base

Language
Knowledge Base

Figure 5. Work Flow of Garden

 10

language. Using Garment, Poly0 is augmented to language Poly1 with types linked list, tree,
stack, and pair. Binary tree traversing and heap sorting are implemented in Poly1.
Furthermore, language Poly2 is defined on Poly1, with set, sequence and bag etc. The
Huffman algorithm and a prototype of library management system are implemented in Poly2.
Poly0, Poly1 and Poly2 and some other languages construct a small language family. All of
these are beneficial explorations in developing software with MOSAT method and
accumulating experiences for using and improving Garment.

5 Software and Langauge

 In views of its architecture, Garden may appear to be simple. It reflects our ideas on
software. The statements and results in this section should be taken with a grain of salt.
They reflect our concern for explaining and reconciling the ideas. It is hoped that they
provide some insights leading to more substantial work on the questions.

 The software crisis motivated computer scientists to dig into the field. In the last twenty
years, many inspiring results have been developed. Nevertheless, the software crisis has not
disappeared yet. In our opinion, one of the important reasons is that the concept, software,
has not been distinguished clearly from “program”. As the result, occur often chaos in
dealing with software development and programming, software development language
and programming language, software development environment and programming
environment etc. In the language research area, this problem appears as mixing extending
definitions and declarations in languages. Meta-features have tended to be included into
programming languages that increase the complexity of programming and affect the
efficiency of the implementation.

 The word software refers to a larger entity than a program. Software, such as a control
system, application system, or utility tool, refers to systems developed for users. In software
development, people pay attention to building abstract computation systems for specific
domains and abstract models. For program, they concern on suitable algorithms, data
structures, and their implementations. Research on software concentrates on usefulness,
flexibility, reliability and robustness of the models (and final systems), while research on
programs focuses on correctness and efficiency.

 Software systems are in fact abstract machines for dealing with problems of certain kinds.
A software system implements a new level of computation facilitie s. Consequently, it forms
a new face between computer and users as a “garment ” draped over the original computer
system. Problem-solving models for specific problems can be constructed on it.

 Programming language systems (compiling systems) are the earliest successful
software. High-level languages are abstract models of programming. The development of
language systems makes computer “understand” high-level languages and provides better
programming environments. They are very important in the progress of programming science.
In the case of computational sciences and compiling systems, the differences between

 11

software development and programming are obvious. They are similar to the differences
between building a lab and doing experiments in the lab (in experimental sciences), or
creating an axiom system and proving theorems in it (in theoretical sciences).

 It is the time to develop separated software science apart from programming to some
extent. In this way, we can concentrate on the nature of software in itself and the laws of
software development. The general approach of computational sciences is also good for
software science, which may lead to some approaches in which the software development
could be treat as what was done in programming [7].

 The framework introduced in this paper is only a first step toward the goal. In this work,
we analyzed the theories and techniques about typing, formal semantics, program
transformation, data abstraction, software reuse, partial implementation and so forth. Many
of our ideas are affected by Polya, VDM, CIP and Ada. We also have some discussion of a
mathematical model of Garment [6] and built an abstract model for programming languages.
The model is used to describe the semantics of language inheritance, shielding, and extension,
and to show the inherent connections between languages in a language family.

 Our further researches will concentrate on properties of the kernel language and the
semantics of language transformation. Another interesting direction would be uniformity of
language extension.

Acknowledgments

 The authors wish to thank Prof. Wu Yunzeng, Prof. Xu Zhuoqun and Prof. Qu Wanling for
their support and their valuable interaction about the research work of MOSAT. We are
especially thankful to Prof. David Gries and Prof. Dines Bj∅rner for taking a great interest in
this paper and suggesting many improvements in its exposition. Finally, we have benefited
greatly from Chen Guang, Song Jin, Cong Xinri and Chen Zhongmin’s partly implementation of
Garden and the development cases.

References

[1] Zhang Naixiao, Xu Zhuoqun and Qu Wanling. On Model-Oriented Transformational
Software Development Methodology. (in Chinese) Theoretical Computer Science, edited by
Wu Wenjun, vol.2 (1994), 54-64.

[2] Zhang Naixiao. Notation of Program Transformation in Programming Languages - on
Transformational Language. (in Chinese) Chinese Journal of Software 4, 5 (1993), 17-23.

 12

[3] Zhang Naixiao. Analysis and Design of Program Transformation Process. (in Chinese)
Chinese Journal of Computers 17, 6 (1994), 473-476.

[4] Zhang Naixiao. The Trinary-tree Representation of Knowledge and the Implementation
of Inference Procedure. (in Chinese) Chinese Journal of Computers 13, 1 (1993) 32-41.

[5] Qu Wanling and Zhang Naixiao. Simulation of Developing a Telephone Exchange System
by Transformational Method. (in Chinese) Computer Research and Development 32,
7(1995), 11-16.

[6] Zheng Hongjun and Zhang Naixiao. An Abstract Model for Programming Languages.
Proc. of CICS’95, 69-75.

[7] John E. Hopcroft et al. Computer Science - Achievements and Opportunities.
Society for Industrial and Applied Math, 1989.

[8] David Gries and DennisVolpano. The Transform - A new language construct. Tech. Rpt.
CS Dept. Cornell Univ. 1989.

[9] Dennis Volpano and David Gries. Type Definition in Polya. Tech. Rpt. CS Dept.
Cornell Univ, TR 90-1085, 1990.

[10] Luca Cardelli and Peter Wegner. On Understanding Types, Data Abstraction and
Polymorphism. ACM Computing Surveys 17, 4 (1985), 471-522.

[11] Cliff B. Jones. Systematic Software Development Using VDM. PHI LTD, 1990.
[12] Scott Danforth and Chris Tomlinson. Type Theories and Object-Oriented Programming.

ACM Computing Surveys 20, 1 (1987), 29-70.
[13] Helmut.A.Partsch. Specification and Transformation of Programming. Springer-Verlag,

1990.
[14] Jan F.Prins. Partial Implementations in Program Derivation. Ph.D. Dissertation, CS

Dept. Cornell Univ. TR 87-854, 1987.
[15] Charles W.Krueger. Software Reuse. ACM Computing Surveys 24, 2 (1992), 131-183.
[16] Donald Knuth. Structured Programming with Goto Statement. ACM Computing Surveys

6, 4 (1974), 261-301.

