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Preface

This book is used in a course instructed by Yuan Yao at Peking University, part
of which is based on a similar course led by Amit Singer at Princeton University.

If knowledge comes from the impressions made upon us by natural
objects, it is impossible to procure knowledge without the use of
objects which impress the mind. –John Dewey

It is important to understand what you CAN DO before you learn to
measure how WELL you seem to have DONE it. –John W. Tukey
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CHAPTER 1

Multidimensional Scaling and Principal
Component Analysis

1. Classical MDS

Multidimensional Scaling (MDS) roots in psychology [YH41] which aims to
recover Euclidean coordinates given pairwise distance metrics or dissimilarities.
It is equivalent to PCA when pairwise distances are Euclidean. In the core of
theoretical foundation of MDS lies the notion of positive definite functions [Sch37,
Sch38a, Sch38b] (or see the survey [Bav11]) which has been the foundation
of the kernel method in statistics [Wah90] and modern machine learning society
(http://www.kernel-machines.org/).

In this section we study classical MDS, or metric Multidimensional scaling
problem. The problem of classical MDS or isometric Euclidean embedding: given
pairwise distances between data points, can we find a system of Euclidean coordi-
nates for those points whose pairwise distances meet given constraints?

Consider a forward problem: given a set of points x1, x2, ..., xn ∈ Rp, let

X = [x1, x2, ..., xn]p×n.

The distance between point xi and xj satisfies

d2
ij = ‖xi − xj‖2 = (xi − xj)T (xi − xj) = xi

Txi + xj
Txj − 2xi

Txj .

Now we are considering the inverse problem: given dij , find a {xi} satisfying the
relations above. Clearly the solutions are not unique as any Euclidean transform
on {xi} gives another solution. General ideas of classic (metric) MDS is:

(1) transform squared distance matrix D = [d2
ij ] to an inner product form;

(2) compute the eigen-decomposition for this inner product form.

Below we shall see how to do this given D.
Let K be the inner product matrix

K = XTX,

with k = diag(Kii) ∈ Rn. So

D = (d2
ij) = k · 1T + 1 · kT − 2K.

where 1 = (1, 1, ..., 1)T ∈ Rn.
Define the mean and the centered data

µ̂n =
1

n

n∑
i=1

xi =
1

n
·X · 1,

x̃i = xi − µ̂n = xi −
1

n
·X · 1,

3

http://www.kernel-machines.org/


4 1. MULTIDIMENSIONAL SCALING AND PRINCIPAL COMPONENT ANALYSIS

or

X̃ = X − 1

n
X · 1 · 1T .

Thus,

K̃ , X̃T X̃

= (X − 1

n
X · 1 · 1T )

T

(X − 1

n
X · 1 · 1T )

= K − 1

n
K · 1 · 1T − 1

n
1 · 1T ·K +

1

n2
· 1 · 1T ·K · 1 · 1T .

Let

B = −1

2
H ·D ·HT

where H = I − 1
n · 1 · 1T . H is called as a centering matrix.

So

B = −1

2
H · (k · 1T + 1 · kT − 2K) ·HT

Since k · 1T · HT = k · 1(I − 1
n · 1 · 1T ) = k · 1 − k(1T ·1

n ) · 1 = 0, we have

H · k 1 ·HT = H · 1 · kT ·HT = 0.
Therefore,

B = H ·K ·HT = (I − 1

n
· 1 · 1T ) ·K · (I − 1

n
· 1 · 1T )

= K − 1

n
· 1 · 1 ·K − 1

n
·K · 1 · 1T +

1

n2
· 1(1T ·K1) · 1T

= K̃.

That is,

B = −1

2
H ·D ·HT = X̃T X̃.

Note that often we define the covariance matrix

Σ̂n ,
1

n− 1

n∑
i=1

(xi − µ̂n)(xi − µ̂n)T =
1

n− 1
X̃X̃T .

Above we have shown that given a squared distance matrix D = (d2
ij), we can

convert it to an inner product matrix by B = −1

2
HDHT . Eigen-decomposition

applied to B will give rise the Euclidean coordinates centered at the origin.
In practice, one often chooses top k nonzero eigenvectors ofB for a k-dimensional

Euclidean embedding of data.

Hence X̃k gives k-dimensional Euclidean coordinations for the n points.
In Matlab, the command for computing MDS is ”cmdscale”, short for Clas-

sical Multidimensional Scaling. For non-metric MDS, you may choose ”mdscale”.
Figure 1 shows an example of MDS.

2. Theory of MDS (Young/Househölder/Schoenberg’1938)

Definition (Positive Semi-definite). SupposeAn×n is a real symmetric matrix,then:
A is p.s.d.(positive semi-definite)(A � 0) ⇐⇒ ∀v ∈ Rn, vTAv ≥ 0 ⇐⇒ A = Y TY

Property. Suppose An×n, Bn×n are real symmetric matrix, A � 0, B � 0. Then
we have:
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Algorithm 1: Classical MDS Algorithm

Input: A squared distance matrix Dn×n with Dij = d2ij .

Output: Euclidean k-dimensional coordinates X̃k ∈ Rk×n of data.

1 Compute B = −1

2
H ·D ·HT , where H is a centering matrix.

2 Compute Eigenvalue decomposition B = UΛUT with Λ = diag(λ1, . . . , λn) where
λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0;

3 Choose top k nonzero eigenvalues and corresponding eigenvectors, X̃k = UkΛk
1
2

where
Uk = [u1, . . . , uk], uk ∈ Rn,

Λk = diag(λ1, . . . , λk)

with λ1 ≥ λ2 ≥ . . . ≥ λk > 0.

(a)

(b) (c)

Figure 1. MDS of nine cities in USA. (a) Pairwise distances be-

tween 9 cities; (b) Eigenvalues of B = −1

2
H · D · HT ; (c) MDS

embedding with top-2 eigenvectors.

(1) A+B � 0;
(2) A ◦B � 0;

where A ◦B is called Hadamard product and (A ◦B)i,j := Ai,j ×Bi,j .
Definition (Conditionally Negative Definite). Let An×n be a real symmetric ma-
trix. A is c.n.d.(conditionally negative definite) ⇐⇒ ∀v ∈ Rn, such that 1T v =∑n
i=1 vi = 0, there holds vTAv ≤ 0

Lemma 2.1 (Young/Househölder-Schoenberg ’1938). For any signed probability
measure α (α ∈ Rn,∑n

i=1 αi = 1),

Bα = −1

2
HαCH

T
α � 0 ⇐⇒ C is c.n.d.
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where Hα is Householder centering matrix: Hα = I− 1 · αT .

Proof. ⇐ We are to show if C is c.n.d., then Bα ≥ 0. Taking an
arbitrary x ∈ Rn,

xTBαx = −1

2
xTHαCH

T
α x = −1

2
(HT

α x)TC(HT
α x).

Now we are going to show that y = HT
α x satisfies 1T y = 0. In fact,

1T ·HT
α x = 1T · (I− α · 1T )x = (1− 1T · α)1T · x = 0

as 1T · α = 1 for signed probability measure α. Therefore,

xTBαx = −1

2
(HT

α x)TC(HT
α x) ≥ 0,

as C is c.n.d.
⇒ Now it remains to show if Bα ≥ 0 then C is c.n.d. For ∀x ∈ Rn satisfying

1T · x = 0, we have

HT
α x = (I− α · 1T )x = x− α · 1Tx = x

Thus,

xTCx = (HT
α x)TC(HT

α x) = xTHαCH
T
α x = −2xTBαx ≤ 0,

as desired.
This completes the proof. �

Theorem 2.2 (Classical MDS). Let Dn×n a real symmetric matrix. C = D− 1

2
d ·

1T − 1

2
1 · dT , d = diag(D). Then:

(1) Bα = − 1
2HαDH

T
α = − 1

2HαCH
T
α for ∀α signed probability measrue;

(2) Ci,j = Bi,i(α) +Bj,j(α)− 2Bi,j(α)
(3) D c.n.d. ⇐⇒ C c.n.d.
(4) C c.n.d. ⇒ C is a square distance matrix (i.e. ∃Y n×k s.t. Ci,j =∑k

m=1(yi,m − yj,m)2)

Proof. (1) HαDH
T
α −HαCH

T
α = Hα(D − C)HT

α = Hα( 1
2d · 1T + 1

21 ·
dT )HT

α .
Since Hα · 1 = 0, we have

HαDH
T
α −HαCH

T
α = 0

(2) Bα = − 1
2HαCH

T
α = − 1

2 (I − 1 · αT )C(I − α · 1T ) = − 1
2C + 1

21 · αTC +
1
2Cα · 1T − 1

21 · αTCα · 1T , so we have:

Bi,j(α) = −1

2
Ci,j +

1

2
ci +

1

2
cj −

1

2
c

where ci = (αTC)i, c = αTCα. This implies

Bi,i(α) +Bj,j(α)− 2Bi,j(α) = −1

2
Cii −

1

2
Cjj + Cij = Cij ,

where the last step is due to Ci,i = 0.
(3) According to Lemma 2.1 and the first part of Theorem 2.2: C c.n.d.
⇐⇒ B p.s.d ⇐⇒ D c.n.d.



2. THEORY OF MDS (YOUNG/HOUSEHÖLDER/SCHOENBERG’1938) 7

(4) According to Lemma 2.1 and the second part of Theorem 2.2:
C c.n.d. ⇐⇒ B p.s.d ⇐⇒ ∃Y s.t. Bα = Y TY ⇐⇒ Bi,j(α) =∑
k Yi,kYj,k ⇒ Ci,j =

∑
k(Yi,k − Yj,k)2

This completes the proof. �

Sometimes, we may want to transform a square distance matrix to another
square distance matrix. The following theorem tells us the form of all the transfor-
mations between squared distance matrices.

Theorem 2.3 (Schoenberg Transform). Given D a squared distance matrix, Ci,j =
Φ(Di,j). Then

C is a squared distance matrix ⇐⇒ Φ is a Schoenberg Transform.

A Schoenberg Transform Φ is a transform from R+ to R+, which takes d to

Φ(d) =

∫ ∞
0

1− exp (−λd)

λ
g(λ)dλ,

where g(λ) is some nonnegative measure on [0,∞) s.t∫ ∞
0

g(λ)

λ
dλ <∞.

Examples of Schoeberg transforms include

• φ0(d) = d with g0(λ) = δ(λ);

• φ1(d) =
1− exp(−ad)

a
with g1(λ) = δ(λ− a) (a > 0);

• φ2(d) = ln(1 + d/a) with g2(λ) = exp(−aλ);

• φ3(d) =
d

a(a+ d)
with g3(λ) = λ exp(−aλ);

• φ4(d) = dp (p ∈ (0, 1)) with g4(λ) =
p

Γ(1− p)λ
−p (see more in [Bav11]).

The first one gives the identity transform and the last one implies that for a distance
function,

√
d is also a distance function but d2 is not. To see this, take three

points on a line x = 0, y = 1, z = 2 where d(x, y) = d(y, z) = 1, then for p > 1
dp(x, z) = 2p > dp(x, y) + dp(y, z) = 2 which violates the triangle inequality. In
fact, dp (p ∈ (0, 1)) is Euclidean distance function immediately implies the following
triangle inequality

dp(0, x+ y) ≤ dp(0, x) + dp(0, y).

Note that Schoenberg transform satisfies φ(0) = 0,

φ′(d) =

∫ ∞
0

exp(−λd)g(λ)dλ ≥ 0,

φ′′(d) = −
∫ ∞

0

exp(−λd)λg(λ)dλ ≤ 0,

and so on. In other words, φ is a completely monotonic function defined by
(−1)nφ(n)(x) ≥ 0, with additional constraint φ(0) = 0. Schoenberg showed in
1938 that a function φ is completely monotone on [0,∞) if and only if φ(d2) is
positive definite and radial on Rs for all s.
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3. Hilbert Space Embedding and Reproducing Kernels

Schoenberg [Sch38b] shows that Euclidean embedding of finite points can be
characterized completely by positive definite functions, which paves a way toward
Hilbert space embedding. Later Aronzajn [Aro50] developed Reproducing Kernel
Hilbert spaces based on positive definite functions which eventually leads to the
kernel methods in statistics and machine learning [Vap98, BTA04, CST03].

Theorem 3.1 (Schoenberg 38). A separable space M with a metric function d(x, y)
can be isometrically imbedded in a Hilbert space H, if and only if the family of

functions e−λd
2

are positive definite for all λ > 0 (in fact we just need it for a
sequence of λi whose accumulate point is 0).

Here a symmetric function k(x, y) = k(y, x) is called positive definite if for all
finite xi, xj , ∑

i,j

cicjk(xi, xj) ≥ 0, ∀ci, cj

with equality = holds iff ci = cj = 0. In other words the function k restricted on
{(xi, xj) : i, j = 1, . . . , n} is a positive definite matrix.

Combined this with Schoenberg transform, one shows that if d(x, y) is an Eu-

clidean distance matrix, then e−λΦ(d)2 is positive definite for all λ > 0. Note that for

homogeneous function e−λΦ(tx) = e−λt
kΦ(x), it suffices to check positive definiteness

for λ = 1.
Symmetric positive definite functions k(x, y) are often called reproducing ker-

nels [Aro50]. In fact the functions spanned by kx(·) = k(x, ·) for x ∈ X made
up of a Hilbert space, where we can associate an inner product induced from

〈kx, ky〉 = k(x, y). The radial basis function e−λd
2

= e−λ‖x‖
2

is often called Gauss-
ian kernel or heat kernel in literature and has been widely used in machine learning.

On the other hand, every Hilbert spaceH of functions on X with bounded evalu-
ation functional can be regarded as a reproducing kernel Hilbert space [Wah90]. By
Riesz representation, for every x ∈ X there exists Ex ∈ H such that f(x) = 〈f,Ex〉.
By boundedness of evaluation functional, |f(x)| ≤ ‖f‖H‖Ex‖, one can define a re-
producing kernel k(x, y) = 〈Ex, Ey〉 which is bounded, symmetric and positive def-
inite. It is called ‘reproducing’ because we can reproduce the function value using
f(x) = 〈f, kx〉 where kx(·) := k(x, ·) as a function in H. Such an universal prop-
erty makes RKHS a unified tool to study Hilbert function spaces in nonparametric
statistics, including Sobolev spaces consisting of splines [Wah90].

4. Linear Dimensionality Reduction

We have seen that given a set of paired distances dij , how to find an Eu-
clidean embedding xi ∈ Rp such that ‖xi − xj‖ = dij . However the dimension-
ality of such an embedding p can be very large. For example, any n + 1 points
can be isometrically embedded into Rn∞ using (di1, di2, . . . , din) and l∞-metric:
d∞(xj , xk) = maxi=1,...,n |dij − djk| = dik due to triangle inequality. Moreover,

via the heat kernel e−λt
2

they can be embedded into Hilbert spaces of infinite
dimensions.

Therefore dimensionality reduction is desired when p is large, at the best preser-
vation of pairwise distances.
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Given a set of points xi ∈ Rp (i = 1, 2, · · · , n); form a data Matrix Xp×n =
[X1, X2 · · ·Xn]T , when p is large, especially in some cases larger than n, we want to
find k-dimensional projection with which pairwise distances of the data point are
preserved as well as possible. That is to say, if we know the original pairwise distance
dij = ‖Xi −Xj‖ or data distances with some disturbance d̃ij = ‖Xi −Xj‖+ ε, we
want to find Yi ∈ Rk s.t.:

(1) min
Yi∈Rk

∑
i,j

(‖Yi − Yj‖2 − d2
ij)

2

take the derivative w.r.t Yi ∈ Rk:∑
i,j

(‖Yi‖2 + ‖Yj‖2 − 2Y Ti Yj − d2
ij)(Yi − Yj) = 0

which implies
∑
i Yi =

∑
j Yj . For simplicity set

∑
i Yi = 0, i.e.putting the origin

as data center.
Use a linear transformation to move the sample mean to be the origin of the

coordinates, i.e. define a matrix Bij = − 1
2HDH where D = (d2

ij), H = I − 1
n11T ,

then, the minimization (1) is equivalent to find Yi ∈ Rk:

min
Y ∈Rk×n

‖Y TY −B‖2F

then the row vectors of matrix Y are the eigenvectors corresponding to k largest

eigenvalues of B = X̃T X̃, or equivalently the top k right singular vectors of X̃ =
USV T .

We have seen in the first section that the covariance matrix of data Σ̂n =
1

n−1X̃X̃
T = 1

nUS
2UT , passing through the singular vector decomposition (SVD)

of X̃ = USV T . Taking top k left singular vectors as the embedding coordinates
is often called Principal Component Analysis (PCA). In PCA, given (centralized)

Euclidean coordinate X̃, ususally one gets the inner product matrix as covariance

matrix Σ̂n = 1
n−1X̃ · X̃T which is a p× p positive semi-definite matrix, then the top

k eigenvectors of Σ̂n give rise to a k-dimensional embedding of data, as principal
components. So both MDS and PCA are unified in SVD of centralized data matrix.

The following introduces PCA from another point of view as best k-dimensional
affine space approximation of data.

5. Principal Component Analysis

Principal component analysis (PCA), invented by Pearson (1901) and Hotelling
(1933), is perhaps the most ubiquitous method for dimensionality reduction with
high dimensional Euclidean data, under various names in science and engineering
such as Karhunen-Loève Transform, Empirical Orthogonal Functions, and Principal
Orthogonal Decomposition, etc. In the following we will introduce PCA from its
sampled version.

Let X = [X1|X2| · · · |Xn] ∈ Rp×n. Now we are going to look for a k-dimensional
affine space in Rp to best approximate these n examples. Assume that such an affine
space can be parameterized by µ + Uβ such that U = [u1, . . . , uk] consists of k-
columns of an orthonormal basis of the affine space. Then the best approximation
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in terms of Euclidean distance is given by the following optimization problem.

(2) min
β,µ,U

I :=

n∑
i=1

‖Xi − (µ+ Uβi)‖2

where U ∈ Rp×k, UTU = Ip, and
∑n
i=1 βi = 0 (nonzero sum of βi can be repre-

sented by µ). Taking the first order optimality conditions,

∂I

∂µ
= −2

n∑
i=1

(Xi − µ− Uβi) = 0⇒ µ̂n =
1

n

n∑
i=1

Xi

∂I

∂βi
= (xi − µ− Uβi)TU = 0⇒ βi = UT (Xi − µ)

Plug in the expression of µ̂n and βi

I =

n∑
i=1

‖Xi − µ̂n − UUT (Xi − µ̂n)‖2

=

n∑
i=1

‖Xi − µ̂n − Pk(Xi − µ̂n)‖2

=

n∑
i=1

‖Yi − Pk(yi)‖2, Yi := Xi − µ̂n

where Pk = UUT is a projection operator satisfying the idempotent property P 2
k =

Pk.
Denote Y = [Y1|Y2| · · · |Yn] ∈ Rp×n, whence the original problem turns into

min
U

n∑
i=1

‖Yi − Pk(Yi)‖2 = min trace[(Y − PkY )T (Y − PkY )]

= min trace[Y T (I − Pk)(I − Pk)Y ]

= min trace[Y Y T (I − Pk)2]

= min trace[Y Y T (I − Pk)]

= min[trace(Y Y T )− trace(Y Y TUUT )]

= min[trace(Y Y T )− trace(UTY Y TU)].

Above we use cyclic property of trace and idempotent property of projection.
Since Y does not depend on U , the problem above is equivalent to

(3) max
UUT=Ik

V ar(UTY ) = max
UUT=Ik

1

n
trace(UTY Y TU) = max

UUT=Ik
trace(UT Σ̂nU)

where Σ̂n = 1
nY Y

T = 1
n (X − µ̂n1T )(X − µ̂n1T )T is the sample variance. Assume

that the sample covariance matrix, which is positive semi-definite, has the eigen-

value decomposition Σ̂n = Û Λ̂ÛT , where ÛT Û = I, Λ = diag(λ̂1, . . . , λ̂n), and

λ̂1 ≥ . . . ≥ λ̂n ≥ 0. Then

max
UUT=Ik

trace(UT Σ̂nU) =

k∑
i=1

λ̂i
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In fact when k = 1, the maximal covariance is given by the largest eigenvalue along
the direction of its associated eigenvector,

max
‖u‖=1

uT Σ̂nu =: λ̂1.

Restricted on the orthogonal subspace u ⊥ û1 will lead to

max
‖u‖=1,uT û1=0

uT Σ̂nu =: λ̂2,

and so on.
Here we conclude that the k-affine space can be discovered by eigenvector de-

composition of Σ̂n. The sample principal components are defined as column vectors
of Q̂ = ÛTY , where the j-th observation has its projection on the k-th component
as q̂k(j) = ûTk yj = ûTk (xi − µ̂n). Therefore, PCA takes the eigenvector decompo-

sition of Σ̂n = Û Λ̂ÛT and studies the projection of centered data points on top k
eigenvectors as the principle components. This is equivalent to the singular value
decomposition (SVD) of X = [x1, . . . , xn]T ∈ Rn×p in the following sense,

Y = X − 1

n
11TX = Ũ S̃Ṽ T , 1 = (1, . . . , 1)T ∈ Rn

where top right singular vectors of centered data matrix Y gives the same principle
components. From linear algebra, k-principal components thus gives the best rank-
k approximation of centered data matrix Y .

Given a PCA, the following quantities are often used to measure the variances

• total variance:

trace(Σ̂n) =

p∑
i=1

λ̂i;

• percentage of variance explained by top-k principal components:

k∑
i=1

λ̂i/trace(Σ̂n);

• generalized variance as total volume:

det(Σ̂n) =

p∏
i=1

λ̂i.

Example. Take the dataset of hand written digit “3”, X̂ ∈ R658×256 contains
658 images, each of which is of 16-by-16 grayscale image as hand written digit 3.
Figure 2 shows a random selection of 9 images, the sorted singular values divided
by total sum of singular values, and an approximation of x1 by top 3 principle
components: x1 = µ̂n − 2.5184ṽ1 − 0.6385ṽ2 + 2.0223ṽ3.

6. Dual Roles of MDS vs. PCA in SVD

Consider the data matrix

X = [x1, . . . , xn]T ∈ Rn×p.
Let the centered data admits a singular vector decomposition (SVD),

X̃ = X − 1

n
11TX = Ũ S̃Ṽ T , 1 = (1, . . . , 1)T ∈ Rn.
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(a) (b)

≈ - 2.52 - 0.64 + 2.02
(c)

Figure 2. (a) random 9 images. (b) percentage of singular values
over total sum. (c) approximation of the first image by top 3
principle components (singular vectors).

We have seen that both MDS and PCA can be obtained from such a SVD of
centered data matrix.

• MDS embedding is given by top k left singular vectors YMDS
k = ŨkS̃k

1/2 ∈
Rn×k;

• PCA embedding is given by top k right singular vectors Y PCAk = ṼkS̃k
1/2 ∈

Rn×k.

Altogether ŨkS̃kṼ
T
k gives best rank-k approximation of X̃ in any unitary invariant

norms.



CHAPTER 2

Random Projections and Almost Isometry

1. Introduction

For this class, we introduce Random Projection method which may reduce the
dimensionality of n points in Rp to k = O(c(ε) log n) at the cost of a uniform met-
ric distortion of at most ε > 0, with high probability. The theoretical basis of this
method was given as a lemma by Johnson and Lindenstrauss [JL84] in the study
of a Lipschitz extension problem. The result has a widespread application in math-
ematics and computer science. The main application of Johnson-Lindenstrauss
Lemma in computer science is high dimensional data compression via random pro-
jections [Ach03]. In 2001, Sanjoy Dasgupta and Anupam Gupta [DG03a], gave
a simple proof of this theorem using elementary probabilistic techniques in a four-
page paper. Below we are going to present a brief proof of Johnson-Lindenstrauss
Lemma based on the work of Sanjoy Dasgupta, Anupam Gupta [DG03a], and
Dimitris Achlioptas [Ach03].

Recall the problem of MDS: given a set of points xi ∈ Rp (i = 1, 2, · · · , n);
form a data Matrix Xp×n = [X1, X2 · · ·Xn]T , when p is large, especially in some
cases larger than n, we want to find k-dimensional projection with which pairwise
distances of the data point are preserved as well as possible. That is to say, if we
know the original pairwise distance dij = ‖Xi −Xj‖ or data distances with some

disturbance d̃ij = ‖Xi −Xj‖+ εij , we want to find Yi ∈ Rk s.t.:

(4) min
∑
i,j

(‖Yi − Yj‖2 − d2
ij)

2

take the derivative w.r.t Yi ∈ Rk:∑
i,j

(‖Yi‖2 + ‖Yj‖2 − 2Y Ti Yj − d2
ij)(Yi − Yj) = 0

which implies
∑
i Yi =

∑
j Yj . For simplicity set

∑
i Yi = 0, i.e.putting the origin

as data center.
Use a linear transformation to move the sample mean to be the origin of the

coordinates, i.e. define a matrix K = − 1
2HDH where D = (d2

ij), H = I − 1
n11T ,

then, the minimization (4) is equivalent to find Yi ∈ Rk:

(5) min
Y ∈Rk×n

‖Y TY −K‖2F

then the row vectors of matrix Y are the eigenvectors (singular vectors) correspond-
ing to k largest eigenvalues (singular values) of B.

The main features of MDS are the following.

• MDS looks for Euclidean embedding of data whose total or average metric
distortion are minimized.

13
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• MDS embedding basis is adaptive to the data, namely as a function of
data via eigen-decomposition.

Note that distortion measure here amounts to a certain distance between the set
of projected points and the original set of points B. Under the Frobenius norm the
distortion equals the sum of the squared lengths of these vectors. It is clear that
such vectors captures a significant global property, but it does not offer any local
guarantees. Chances are that some points deviate greatly from the original if we
only consider the total metric distortion minimization.

What if we want a uniform control on metric distortion at every data pair, say

(1− ε)dij ≤ ‖Yi − Yj‖ ≤ (1 + ε)dij?

Such an embedding is an almost isometry or a Lipschitz mapping from metric space
X to Euclidean space Y. If X is an Euclidean space (or more generally Hilbert
space), Johnson-Lindenstrauss Lemma tells us that one can take Y as a subspace
of X of dimension k = O(c(ε) log n) via random projections to obtain an almost
isometry with high probability. As a contrast to MDS, the main features of this
approach are the following.

• Almost isometry is achieved with a uniform metric distortion bound (Lip-
schitz bound), with high probability, rather than average metric distortion
control;

• The mapping is universal, rather than being adaptive to the data.

2. The Johnson-Lindenstrauss Lemma

Theorem 2.1 (Johnson-Lindenstrauss Lemma). For any 0 < ε < 1 and any integer
n, let k be a positive integer such that

k ≥ (4 + 2α)(ε2/2− ε3/3)−1 lnn, α > 0.

Then for any set V of n points in Rd, there is a map f : Rd → Rk such that for all
u, v ∈ V
(6) (1− ε) ‖ u− v ‖2≤‖ f(u)− f(v) ‖2≤ (1 + ε) ‖ u− v ‖2

Such a f in fact can be found in randomized polynomial time. In fact, inequalities
(6) holds with probability at least 1− 1/nα.

Remark. We have following facts.

(1) The embedding dimension k = O(c(ε) log n) which is independent to am-
bient dimension d and logarithmic to the number of samples n. The
independence to d in fact suggests that the Lemma can be generalized to
the Hilbert spaces of infinite dimension.

(2) How to construct the map f? In fact we can use random projections:

Y n×k = Xn×dRd×k

where the following random matrices R can cater our needs.
• R = [r1, · · · , rk] ri ∈ Sd−1 ri = (ai1, · · · , aid)/ ‖ ai ‖ aik ∼ N(0, 1)

• R = A/
√
k Aij ∼ N(0, 1)

• R = A/
√
k Aij =

{
1 p = 1/2

−1 p = 1/2
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• R = A/
√
k/3 Aij =


1 p = 1/6

0 p = 2/3

−1 p = 1/6
The proof below actually takes the first form of R as an illustration.

Now we are going to prove Johnson-Lindenstrauss Lemma using a random
projection to k-subspace in Rd. Notice that the distributions of the following two
events are identical:

unit vector was randomly projected to k-subspace

⇐⇒ random vector on Sd−1 fixed top-k coordinates.

Based on this observation, we change our target from random k-dimensional pro-
jection to random vector on sphere Sd−1.

If xi ∼ N(0, 1), (i = 1, · · · , d), X = (x1, · · · , xd), then Y = X/‖x‖ ∈ Sd−1 is
uniformly distributed. Fixing top-k coordinates, we get z = (x1, · · · , xk, 0, · · · , 0)T /‖x‖ ∈
Rd. Let L = ‖Z‖2 and µ = E[L] = k/d.

The following lemma is crucial to reach the main theorem.

Lemma 2.2. let any k < d then we have
(a) if β < 1 then

Prob[L ≤ βµ] ≤ βk/2
(

1− (1− β)k

d− k

)d−k/2
≤ exp

(
k

2
(1− β + lnβ)

)
(b) if β > 1 then

Prob[L ≥ βµ] ≤ βk/2
(

1 +
(1− β)k

d− k

)d−k/2
≤ exp

(
k

2
(1− β + lnβ)

)
Here µ = k/d.

We first show how to use this lemma to prove the main theorem – Johnson-
Lindenstrauss lemma.

Proof of Johnson-Lindenstrauss Lemma. If d ≤ k,the theorem is trivial.
Otherwise take a random k-dimensional subspace S, and let v′i be the projection
of point vi ∈ V into S, then setting L = ‖v′i − v′j‖2 and µ = (k/d)‖vi − vj‖2 and
applying Lemma 2(a), we get that

Prob[L ≤ (1− ε)µ] ≤ exp(
k

2
(1− (1− ε) + ln(1− ε)))

≤ exp(
k

2
(ε− (ε+

ε2

2
))),

by ln(1− x) ≤ −x− x2/2 for 0 ≤ x < 1

= exp(−kε
2

4
)

≤ exp(−(2 + α) lnn), for k ≥ 4(1 + α/2)(ε2/2)−1 lnn

=
1

n2+α
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Prob[L ≥ (1 + ε)µ] ≤ exp(
k

2
(1− (1 + ε) + ln(1 + ε)))

≤ exp(
k

2
(−ε+ (ε− ε2

2
+
ε3

3
))),

by ln(1 + x) ≤ x− x2/2 + x3/3 for x ≥ 0

= exp(−k
2

(ε2/2− ε3/3)),

≤ exp(−(2 + α) lnn), for k ≥ 4(1 + α/2)(ε2/2− ε3/3)−1 lnn

=
1

n2+α

Now set the map f(x) =

√
d

k
x′ =

√
d

k
(x1, . . . , xk, 0, . . . , 0). By the above

calculations, for some fixed pair i, j, the probability that the distortion

‖f(vi)− f(vj)‖2
‖vi − vj‖2

does not lie in the range [(1− ε), (1 + ε)] is at most 2
n(2+α) . Using the trivial union

bound with C2
n pairs, the chance that some pair of points suffers a large distortion

is at most:

C2
n

2

n(2+α)
=

1

nα

(
1− 1

n

)
≤ 1

nα
.

Hence f has the desired properties with probability at least 1− 1

nα
. This gives us

a randomized polynomial time algorithm. �

Now, it remains to Lemma 3.6.

Proof of Lemma 3.6.

Prob(L ≤ βµ) =Prob(

k∑
i=1

(x2
i ) ≤ βµ(

d∑
i=1

(x2
i )))

=Prob(βµ

d∑
i=1

(x2
i )−

k∑
i=1

(x2
i ) ≤ 0)

=Prob[exp(tβµ

d∑
i=1

(x2
i )− t

k∑
i=1

(x2
i )) ≤ 1] (t > 0)

≤E[exp(tβµ

d∑
i=1

(x2
i )− t

k∑
i=1

(x2
i ))] (by Markov′s inequality)

=Πk
i=1E exp(t(βµ− 1)x2

i )Π
d
i=k+1Eexp(t(βµ)x2

i )

=(E exp(t(βµ− 1)x2))k(E exp(tβµ2))d−k

=(1− 2t(βµ− 1))−k/2(1− 2tβµ)−(d−k)/2

We use the fact that if X ∼ N(0, 1),then E[esX
2

] =
1√

(1− 2s)
, for −∞ < s < 1/2.
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Now we will refer to last expression as g(t). The last line of derivation gives
us the additional constraints that tβµ ≤ 1/2 and t(βµ− 1) ≤ 1/2, and so we have
0 < t < 1/(2βµ). Now to minimize g(t), which is equivalent to maximize

h(t) = 1/g(t) = (1− 2t(βµ− 1))k/2(1− 2tβµ)(d−k)/2

in the interval 0 < t < 1/(2βµ). Setting the derivative h′(t) = 0, we get the
maximum is achieved at

t0 =
1− β

2β(d− βk)

Hence we have

h(t0) = (
d− k
d− kβ )(d−k)/2(1/β)k/2

And this is exactly what we need.
The proof of Lemma 3.6 (b) is almost exactly the same as that of Lemma 3.6

(a). �

2.1. Conclusion. As we can see, this proof of Lemma is both simple (using
just some elementary probabilistic techniques) and elegant. And you may find
in the field of machine learning, stochastic method always turns out to be really
powerful. The random projection method we approaching today can be used in
many fields especially huge dimensions of data is concerned. For one example, in
the term document, you may find it really useful for compared with the number
of words in the dictionary, the words included in a document is typically sparse
(with a few thousands of words) while the dictionary is hugh. Random projections
often provide us a useful tool to compress such data without losing much pairwise
distance information.

3. Example: MDS in Human Genome Diversity Project

Now consider a SNPs (Single Nucleid Polymorphisms) dataset in Human Genome
Diversity Project (HGDP, http://www.cephb.fr/en/hgdp_panel.php) which con-
sists of a data matrix of n-by-p for n = 1064 individuals around the world and
p = 644258 SNPs. Each entry in the matrix has 0, 1, 2, and 9, representing “AA”,
“AC”, “CC”, and “missing value”, respectively. After removing 21 rows with all
missing values, we are left with a matrix X of size 1043× 644258.

Consider the projection of 1043 persons on the MDS (PCA) coordinates. Let
H = I − 1

n11T be the centering matrix. Then define

K = HXXTH = UΛUT

which is a positive semi-define matrix as centered Gram matrix whose eigenvalue
decomposition is given by UΛUT . Taking the first two eigenvectors

√
λiui (i =

1, . . . , 2) as the projections of n individuals, Figure 1 gives the projection plot.
It is interesting to note that the point cloud data exhibits a continuous trend of
human migration in history: origins from Africa, then migrates to the Middle East,
followed by one branch to Europe and another branch to Asia, finally spreading
into America and Oceania.

One computational concern is that the high dimensionality caused by p =
644, 258, which is much larger than the number of samples n = 1043. However
random projections introduced above will provide us an efficient way to compute
MDS (PCA) principal components with an almost isometry.

http://www.cephb.fr/en/hgdp_panel.php


18 2. RANDOM PROJECTIONS AND ALMOST ISOMETRY

We randomly select (without replacement) {ni, i = 1, . . . , k} from 1, . . . , p with
equal probability. Let R ∈ Rk×p is a Bernoulli random matrix satisfying:

Rij =

{
1/k j = ni,

0 otherwise.

Now define

K̃ = H(XRT )(RXT )H

whose eigenvectors leads to new principal components of MDS. In the middle and
right, Figure 1 plots the such approximate MDS principal components with k =
5, 000, and k = 100, 000, respectively. These plots are qualitatively equivalent to
the original one.

Figure 1. (Left) Projection of 1043 individuals on the top 2 MDS
principal components. (Middle) MDS computed from 5,000 ran-
dom projections. (Right) MDS computed from 100,000 random
projections. Pictures are due to Qing Wang.

4. Random Projections and Compressed Sensing

There are wide applications of random projections in high dimensional data
processing, e.g. [Vem04]. Here we particularly choose a special one, the com-
pressed (or compressive) sensing (CS) where we will use the Johnson-Lindenstrauss
Lemma to prove the Restricted Isometry Property (RIP), a crucial result in CS. A
reference can be found at [BDDW08].

Compressive sensing can be traced back to 1950s in signal processing in geog-
raphy. Its modern version appeared in LASSO [Tib96] and BPDN [CDS98], and
achieved a highly noticeable status by [CT05, CRT06, CT06]. For a comprehen-
sive literature on this topic, readers may refer to http://dsp.rice.edu/cs.

The basic problem of compressive sensing can be expressed by the following
under-determined linear algebra problem. Assume that a signal x∗ ∈ Rp is sparse
with respect to some basis (measurement matrix) Φ ∈ Rn×p where n < p, given
measurement b = Φx∗ ∈ Rn, how can one recover x∗ by solving the linear equation
system

(7) Φx = b?

As n < p, it is an under-determined problem, whence without further constraint,
the problem does not have an unique solution. To overcome this issue, one popular

http://dsp.rice.edu/cs
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assumption is that the signal x∗ is sparse, namely the number of nonzero compo-
nents ‖x∗‖0 := #{x∗i 6= 0 : 1 ≤ i ≤ p} is small compared to the total dimensionality
p. Figure 2 gives an illustration of such sparse linear equation problem.

Figure 2. Illustration of Compressive Sensing (CS). Φ is a rect-
angular matrix with more columns than rows. The dark elements
represent nonzero elements while the light ones are zeroes. The
signal vector x∗, although high dimensional, is sparse.

With such a sparse assumption, we would like to find the sparsest solution
satisfying the measurement equation.

(P0) min ‖x‖0(8)

s.t. Φx = b.

This is an NP-hard combinatorial optimization problem. A convex relaxation of
(8) is called Basis Pursuit [CDS98],

(P1) min ‖x‖1 :=
∑
|xi|(9)

s.t. Φx = b.

This is a linear programming problem. Figure 3 shows different projections of a
sparse vector x∗ under l0, l1 and l2, from which one can see in some cases the
convex relaxation (9) does recover the sparse signal solution in (8). Now a natural
problem arises, under what conditions the linear programming problem (P1) has
the solution exactly solves (P0), i.e. exactly recovers the sparse signal x∗?

Figure 3. Comparison between different projections. Left: pro-
jection of x∗ under ‖ · ‖0; middle: projection under ‖ · ‖1 which
favors sparse solution; right: projection under Euclidean distance.

To understand the equivalence between (P0) and (P1), one asks the question
when the true signal x∗ is the unique solution of P0 and P1. In such cases, P1 is
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equivalent to P0. For the uniqueness of P1, one turns to the duality of Linear Pro-
gramming via the Karush-Kuhn-Tucker (KKT) conditions. Take the Lagrangian of
(P1),

L(x;λ) = ‖x‖1 + λT (Φx− b), λ ∈ Rn.
Assume the support of x∗ as T ⊆ {1, . . . , p}, i.e. T = {1 ≤ i ≤ p : xi 6= 0}, and
denote its complement by T c. x∗ is an optimal solution of P1 if

0 ∈ ∂L(x∗, λ)

which implies that sign(x∗T ) = ΦTTλ and |ΦTT cλ| ≤ 1. How to ensure that there are
no other solutions than x∗? The following condition is used in [CT05] and other
related works.

Lemma 4.1. Assume that ΦT is of full rank. If there exists λ ∈ Rn such that:

(1) For each i ∈ T ,

(10) ΦTi λ = sign(x∗i );

(2) For each i ∈ T c,
(11) |ΦTi λ| < 1.

Then P1 has a unique solution x∗.

These two conditions just ensure a special dual variable λ exists, under which
any optimal solution of P1 must have the same support T as x∗ (strictly comple-
mentary condition in (2)). Since ΦT is of full rank, then P1 must have a unique
solution x∗. In this case solving P1 is equivalent to P0. If these conditions fail,
then there exists a problem instance (Φ, b) such that P1 has a solution different to
x∗. In this sense, these conditions are necessary and sufficient for the equivalence
between P1 and P0.

Various sufficient conditions have been proposed in literature to meet the KKT
conditions above. For example, these includes the mutual incoherence by Donoho-
Huo (1999) [DH01], Elad-Bruckstein (2001) [EB01] and the Exact Recovery Con-
dition by Tropp [Tro04] or Irrepresentative condition (IRR) by Zhao-Yu [ZY06]
(see also [MY09]). The former condition essentially requires Φ to be a nearly
orthogonal matrix,

µ(Φ) = max
i6=j
|φTi φj |,

where Φ = [φ1, . . . , φp] and ‖φi‖2 = 1, under which [DH01] shows that as long as
sparsity of x∗ satisfies

‖x∗‖0 = |T | <
1 + 1

µ(Φ)

2
which is later improved by [EB01] to be

‖x∗‖0 = |T | <
√

2− 1
2

µ(Φ)
,

then P1 recovers x∗. The latter assumes that the dual variable λ lies in the column
space of AT , i.e. λ = ΦTα. Then we solve λ explicitly in equation (10) and plugs
in the solution to the inequality (11)

‖ΦTT cΦT (ΦTTΦT )−1sign(x∗|T )‖∞ < 1

or simply
‖ΦTT cΦT (ΦTTΦT )−1‖∞ < 1.
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If for every k-sparse signal x∗ with support T , conditions above are satisfied, then
P1 recovers x∗.

The most popular condition is proposed by [CRT06], called Restricted Isom-
etry Property (RIP).

Definition. Define the isometry constant δk of a matrix Φ to be the smallest
nonnegative number such that

(1− δk)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δk)‖x‖22
holds for all k-sparse vectors x ∈ Rp. A vector x is called k-sparse if it has at most
k nonzero elements.

[AC09] shows that incoherence conditions implies RIP, whence RIP is a weaker
condition. Under RIP condition, uniqueness of P0 and P1 can be guaranteed for all
k-sparse signals, often called uniform exact recovery [Can08].

Theorem 4.2. The following holds for all k-sparse x∗ satisfying Φx∗ = b.

(1) If δ2k < 1, then problem P0 has a unique solution x∗;

(2) If δ2k <
√

2− 1, then the solution of P1 (9) has a unique solution x∗, i.e.
recovers the original sparse signal x∗.

The first condition is nothing but every 2k-columns of Φ are linearly dependent.
To see the first condition, assume by contradiction that there is another k-sparse
solution of P0, x′. Then by Φy = 0 and y = x∗−x′ is 2k-sparse. If y 6= 0, it violates
δ2k < 1 such that 0 = ‖Φy‖ ≥ (1 − δ2k)‖y‖ > 0. Hence one must have y = 0, i.e.
x∗ = x′ which proves the uniqueness of P0. The first condition is also necessary for
the uniqueness of P0’s solutions. In fact, if δ2k = 1, this implies that there is a 2k-
subset 2T such that columns of Φ2T are linearly dependent, i.e. Φ2T z = 0 for some
2k-vector z. One can define x1 to collect first k nonzero elements of z with zero
otherwise, and x2 to collect the second half nonzero entries of z but zero otherwise.
Hence Φ2T (x1 + x2) = 0 ⇒ ΦT1

x1 = 0 = ΦT2
x2 with T1 and T2 consisting the

first and second k columns of Φ2T respectively, which violates the uniqueness of P0

solutions. The proof of the second condition can be found in [Can08].
When measurement noise exists, e.g. b = Φx+e with bound ‖e‖2, the following

Basis Pursuit De-Noising (BPDN) [CDS98] or LASSO [Tib96] are used instead

(BPDN) min ‖x‖1(12)

s.t. ‖Φx− b‖2 ≤ ε.

(13) (LASSO) min
x∈Rp

‖Φx− b‖2 + λ‖x‖1

For bounded ‖e‖∞, the following formulation is used in network analysis [JYLG12]

min ‖x‖1(14)

s.t. ‖Φx− b‖∞ ≤ ε

RIP conditions also lead to upper bounds between solutions above and the
true sparse signal x∗. For example, in the case of BPDN the follwoing result holds
[Can08].
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Theorem 4.3. Suppose that ‖e‖2 ≤ ε. If δ2k <
√

2− 1, then

‖x̂− x∗‖2 ≤ C1k
−1/2σ1

k(x∗) + C2ε,

where x̂ is the solution of BPDN and

σ1
k(x∗) = min

supp(y)≤k
‖x∗ − y‖1

is the best k-term approximation error in l1 of x∗.

How to find matrices satisfying RIP? Equipped with Johnson-Lindenstrauss
Lemma, one can construct such matrices by random projections with high proba-
bility [BDDW08].

Recall that in the Johnson-Lindenstrauss Lemma, a random matrix Φ ∈ Rn×p
with each element is i.i.d. according to some distribution satisfying certain bounded
moment conditions, e.g. Φij ∼ N (0, 1). The key step to establish Johnson-
Lindenstrauss Lemma is the following fact

(15) Pr
(
‖Φx‖22 − ‖x‖22 ≥ ε‖x‖22

)
≤ 2e−nc0(ε).

With this one can establish a bound on the action of Φ on k-sparse x by an union
bound via covering numbers of k-sparse signals.

Lemma 4.4. Let Φ ∈ Rn×p be a random matrix satisfying the concentration
inequality (15). Then for any δ ∈ (0, 1) and any set all T with |T | = k < n, the
following holds

(16) (1− δ)‖x‖2 ≤ ‖Φx‖2 ≤ (1 + δ)‖x‖2
for all x whose support is contained in T , with probability at least

(17) 1− 2

(
12

δ

)2

e−c0(δ/2)n.

Proof. It suffices to prove the results when ‖x‖2 = 1 as Φ is linear. Let
XT := {x : supp(x) = T, ‖x‖2 = 1}. We first choose QT , a δ/4-cover of XT , such
that for every x ∈ XT there exists q ∈ QT satisfying ‖q − x‖2 ≤ δ/4. Since XT

has dimension at most k, it is well-known from covering numbers that the capacity
#(QT ) ≤ (12/δ)k. Now we are going to apply the union bound of (15) to the set QT
with ε = δ/2. For each q ∈ QT , with probability at most 2e−c0(δ/2)n, |Φq‖22−‖q‖22 ≥
δ/2‖q‖22. Hence for all q ∈ QT , the same bound holds with probability at most

2#(QT )e−c0(δ/2)n = 2

(
12

δ

)2

e−c0(δ/2)n.

Now we define α to be the smallest constant such that

‖Φx‖2 ≤ (1 + α)‖x‖2, for all x ∈ XT .

We can show that α ≤ δ with the same probability. For this, pick up a q ∈ QT
such that ‖q − x‖2 ≤ δ/4, whence by the triangle inequality

‖Φx‖2 ≤ ‖Φq‖2 + ‖Φ(x− q)‖2 ≤ 1 + δ/2 + (1 + α)δ/4.

This implies that α ≤ δ/2 + (1 +α)δ/4, whence α ≤ 3δ/4/(1− δ/4) ≤ δ. This gives
the upper bound. The lower bound also follows this since

‖Φx‖2 ≥ ‖Φq‖2 − ‖Φ(x− q)‖2 ≥ 1− δ/2− (1 + δ)δ/4 ≥ 1− δ,
which completes the proof. �
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With this lemma, note that there are at most
(
p
k

)
subspaces of k-sparse, an

union bound leads to the following result for RIP.

Theorem 4.5. Let Φ ∈ Rn×p be a random matrix satisfying the concentration
inequality (15) and δ ∈ (0, 1). There exists c1, c2 > 0 such that if

k ≤ c1
n

log(p/k)

the following RIP holds

(1− δk)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δk)‖x‖22
with probability at least 1− 2e−c2n.

Proof. For each of k-sparse signal (XT ), RIP fails with probability at most

2

(
12

δ

)2

e−c0(δ/2)n.

There are
(
p
k

)
≤ (ep/k)k such subspaces. Hence, RIP fails with probability at most

2
(ep
k

)k (12

δ

)2

e−c0(δ/2)n = 2e−c0(δ/2)n+k[log(ep/k)+log(12/δ)].

Thus for a fixed c1 > 0, whenever k ≤ c1n/ log(p/k), the exponent above will
be ≤ −c2n provided that c2 ≤ c0(δ/2)− c1(1 + (1 + log(12/δ))/ log(p/k). c2 can be
always chosen to be > 0 if c1 > 0 is small enough. This leads to the results. �

Another use of random projections (random matrices) can be found in Robust
Principal Component Analysis (RPCA) in the next chapter.





CHAPTER 3

High Dimensional Statistics: Mean and
Covariance in Noise

In this very first lecture, we talk about data representation as vectors, matrices
(esp. graphs, networks), and tensors, etc. Data are mappings of real world based
on sensory measurements, whence the real world puts constraints on the variations
of data. Data science is the study of laws in real world which shapes the data.

We start the first topic on sample mean and variance in high dimensional
Euclidean spaces Rp, as the maximal likelihood estimators based on multivariate
Gaussian assumption. Principle Component Analysis (PCA) is the projection of
high dimensional data on its top singular vectors. In classical statistics with the
Law of Large Numbers, for fixed p when sample size n→∞, we know such sample
mean and variance will converge, so as to PCA. Although sample mean µ̂n and
sample covariance Σ̂n are the most commonly used statistics in multivariate data
analysis, they may suffer some problems in high dimensional settings, e.g. for large
p and small n scenario. In 1956, Stein [Ste56] shows that the sample mean is
not the best estimator in terms of the mean square error, for p > 2; moreover
in 2006, Jonestone [Joh06] shows by random matrix theory that PCA might be
overwhelmed by random noise for fixed ratio p/n when n → ∞. Among other
works, these two pieces of excellent works inspired a long pursuit toward modern
high dimensional statistics with a large unexplored field ahead.

1. Maximum Likelihood Estimation

Consider the statistical model f(X|θ) as a conditional probability function
on Rp with parameter space θ ∈ Θ. Let X1, ..., Xn ∈ Rp are independently and
identically distributed (i.i.d.) sampled according to f(X|θ0) on Rp for some θ0 ∈ Θ.
The likelihood function is defined as the probability of observing the given data as
a function of θ,

L(θ) =

n∏
i=1

f(Xi|θ),

and a maximum likelihood estimator is defined as

θ̂MLE
n ∈ arg max

θ∈Θ
L(θ) = arg max

θ∈Θ

n∏
i=1

f(Xi|θ)

which is equivalent to

arg max
θ∈Θ

1

n

n∑
i=1

log f(Xi|θ).

Under some regularity conditions, the maximum likelihood estimator θ̂MLE
n has the

following nice limiting properties:

25
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A. (Consistency) θ̂MLE
n → θ0, in probability and almost surely.

B. (Asymptotic Normality)
√
n(θ̂MLE

n − θ0) → N (0, I−1
0 ) in distribution,

where I0 is the Fisher Information matrix

I(θ0) := E[(
∂

∂θ
log f(X|θ0))2] = −E[

∂2

∂θ2
log f(X|θ0)].

C. (Asymptotic Efficiency) limn→∞ cov(θ̂MLE
n ) = I−1(θ0). Hence θ̂MLE

n is
the Uniformly Minimum-Variance Unbiased Estimator, i.e. the estimator
with the least variance among the class of unbiased estimators, for any

unbiased estimator θ̂n, limn→∞ var(θ̂MLE
n ) ≤ limn→∞ var(θ̂MLE

n ).

However in finite sample case, there are better estimators than MLEs, which include
some bias in further reduction of variance.

1.1. Example: Multivariate Normal Distribution. For example, con-
sider the normal distribution N (µ,Σ),

f(X|µ,Σ) =
1√

(2π)p|Σ|
exp

[
−1

2
(X − µ)TΣ−1(X − µ)

]
,

where |Σ| is the determinant of covariance matrix Σ.
To get the MLE of normal distribution, we need to

max
µ,Σ

P (X1, ..., Xn|µ,Σ) = max
µ,Σ

n∏
i=1

1√
2π|Σ|

exp[−(Xi − µ)TΣ−1(Xi − µ)]

It is equivalent to maximize the log-likelihood

I = logP (X1, ..., Xn|µ,Σ) = −1

2

n∑
i=1

(Xi − µ)TΣ−1(Xi − µ)− n

2
log |Σ|+ C

Let µ∗ is the MLE of µ, we have

0 =
∂I

∂µ∗
= −

n∑
i=1

Σ−1(Xi − µ∗)

⇒ µ∗ =
1

n

n∑
i=1

Xi = µ̂n

To get the estimation of Σ, we need to maximize

I(Σ) = trace(I) = −1

2
trace

n∑
i=1

(Xi − µ)TΣ−1(Xi − µ)− n

2
trace log |Σ|+ C

−1

2
trace

n∑
i=1

(Xi − µ)TΣ−1(Xi − µ) = −1

2

n∑
i=1

trace[Σ−1(Xi − µ)(Xi − µ)T ]

= −1

2
(traceΣ−1Σ̂n)(n− 1)

= −n− 1

2
trace(Σ−1Σ̂

1
2
n Σ̂

1
2
n )

= −n− 1

2
trace(Σ̂

1
2
nΣ−1Σ̂

1
2
n )

= −n− 1

2
trace(S)
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where

Σ̂n =
1

n− 1

n∑
i=1

(Xi − µ̂n)(Xi − µ̂n)T ,

S = Σ̂
1
2
nΣ−1Σ̂

1
2
n is symmetric and positive definite. Above we repeatedly use cyclic

property of trace:

• trace(AB) = trace(BA), or more generally
• (invariance under cyclic permutation group) trace(ABCD) = trace(BCDA) =

trace(CDAB) = trace(DABC).

Then we have

Σ = Σ̂
− 1

2
n S−1Σ̂

− 1
2

n

−n
2

log |Σ| = n

2
log |S|+ n

2
log |Σ̂n| = f(Σ̂n)

Therefore,

max I(Σ)⇔ min
n− 1

2
trace(S)− n

2
log |S|+ Const(Σ̂n, 1)

Suppose S = UΛU is the eigenvalue decomposition of S, Λ = diag(λi)

J =
n− 1

2

p∑
i=1

λi −
n

2

p∑
i=1

log(λi) + Const

∂J

∂λi
=
n− 1

2
− n

2

1

λi
⇒ λi =

n

n− 1

S =
n

n− 1
Ip

This gives the MLE solution

Σ∗ =
n− 1

n
Σ̂n =

1

n

n∑
i=1

(Xi − µ̂n)(Xi − µ̂n)T ,

which differs to Σ̂n only in that the denominator (n − 1) is replaced by n. In
covariance matrix, (n − 1) is used because for a single sample n = 1, there is no
variance at all.

Fixed p, when n→∞, MLE satisfies µ̂n → µ and Σ̂n → Σ. However as we can
see in the following classes, they are not the best estimators when the dimension of
the data p gets large, with finite sample n.

2. Bias-Variance Decomposition of Mean Square Error

Consider multivariate Gaussian model: let X1, . . . , Xn ∼ N (µ,Σ), Xi ∈ Rp(i =
1 . . . n), then the maximum likelihood estimators (MLE) of the parameters (µ and
Σ) are as follows:

µ̂MLE
n =

1

n

n∑
i=1

Xi, Σ̂MLE
n =

1

n

n∑
i=1

(Xi − µ̂n)(Xi − µ̂n)T .

For simplicity, take a coordinate transform (PCA) Yi = UTXi where Σ = UΛUT

is an eigen-decomposition. Assume that Λ = σ2Ip and n = 1, then it suffices to
consider Y ∼ N (µ, σ2Ip) in the sequel. In this case µ̂MLE = Y .
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To measure the performance of an estimator µ̂n, one may look at the following
so-called risk,

R(µ̂n, µ) = EL(µ̂n, µ)

where the loss function takes the square loss here

L(µ̂n, µ) = ‖µ̂n − µ‖2.
The mean square error (MSE) to measure the risk enjoys the following bias-

variance decomposition, from the Pythagorean theorem.

R(µ̂n, µ) = E‖µ̂n − E[µ̂n] + E[µ̂n]− µ‖2
= E‖µ̂n − E[µ̂n]‖2 + ‖E[µ̂n]− µ‖2
=: V ar(µ̂n) +Bias(µ̂n)2

Example 1. For the simple case Yi ∼ N (µ, σ2Ip) (i = 1, . . . , n), the MLE estimator
satisfies

Bias(µ̂MLE
n ) = 0

and

V ar(µ̂MLE
n ) =

p

n
σ2

In particular for n = 1, V ar(µ̂MLE) = σ2p for µ̂MLE = Y .

Example 2. MSE of Linear Estimators. Consider Y ∼ N (µ, σ2Ip) and linear
estimator µ̂C = CY . Then we have

Bias(µ̂C) = ‖(I − C)µ‖2

and

V ar(µ̂C) = E[(CY−Cµ)T (CY−Cµ)] = E[trace((Y−µ)TCTC(Y−µ))] = σ2trace(CTC).

In applications, one often consider the diagonal linear estimators C = diag(ci), e.g.
in Ridge regression

min
µ

1

2
‖Y −Xβ‖2 +

λ

2
‖β‖2.

For diagonal linear estimators, the risk

R(µ̂C , µ) = σ2

p∑
i=1

c2i +

p∑
i=1

(1− ci)2µ2
i .

In this case, it is simple to find minimax risk over the hyper-rectangular model class
|µi| ≤ τi,

inf
ci

sup
|µi|≤τi

R(µ̂C , µ) =

p∑
i=1

σ2τ2
i

σ2 + τ2
i

.

From here one can see that for those sparse model classes such that #{i : τi =
O(σ)} = k � p, it is possible to get smaller risk using linear estimators than MLE.

In general, is it possible to introduce some biased estimators which significantly
reduces the variance such that the total risk is smaller than MLE uniformly for all
µ? This is the notion of inadmissibility introduced by Charles Stein in 1956 and he
find the answer is YES by presenting the James-Stein estimators, as the shrinkage
of sample means.
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3. Stein’s Phenomenon and Shrinkage of Sample Mean

Definition (Inadmissible). An estimator µ̂n of the parameter µ is called inadmis-
sible on Rp with respect to the squared risk if there exists another estimator µ∗n
such that

E‖µ∗n − µ‖2 ≤ E‖µ̂n − µ‖2 for all µ ∈ Rp,
and there exist µ0 ∈ Rp such that

E‖µ∗n − µ0‖2 < E‖µ̂n − µ0‖2.
In this case, we also call that µ∗n dominates µ̂n . Otherwise, the estimator µ̂n is
called admissible.

The notion of inadmissibility or dominance introduces a partial order on the
set of estimators where admissible estimators are local optima in this partial order.

Stein (1956) [Ste56] found that if p ≥ 3, then the MLE estimator µ̂n is inad-
missible. This property is known as Stein’s phenomenon . This phenomenon can
be described like:

For p ≥ 3, there exists µ̂ such that ∀µ,

R(µ̂, µ) < R(µ̂MLE, µ)

which makes MLE inadmissible.
A typical choice is the James-Stein estimator given by James-Stein (1961),

µ̃JSn =

(
1− σ2(p− 2)

‖µ̂MLE
n ‖

)
µ̂MLE
n , σ = ε.

Theorem 3.1. Suppose Y ∼ Np(µ, I). Then µ̂MLE = Y . R(µ̂, µ) = Eµ‖µ̂ − µ‖2,
and define

µ̂JS =

(
1− p− 2

‖Y ‖2
)
Y

then

R(µ̂JS, µ) < R(µ̂MLE, µ)

We’ll prove a useful lemma first.

3.1. Stein’s Unbiased Risk Estimates (SURE). Discussions below are all
under the assumption that Y ∼ Np(µ, I).

Lemma 3.2. (Stein’s Unbiased Risk Estimates (SURE)) Suppose µ̂ = Y + g(Y ),
g satisfies 1

(1) g is weakly differentiable.
(2)

∑p
i=1

∫
|∂igi(x)|dx <∞

then

(18) R(µ̂, µ) = Eµ(p+ 2∇T g(Y ) + ‖g(Y )‖2)

where ∇T g(Y ) :=
∑p
i=1

∂
∂yi

gi(Y ).

1cf. p38, Prop 2.4 [GE]
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Examples of g(x): For James-Stein estimator

g(x) = −p− 2

‖Y ‖2Y

and for soft-thresholding, each component

gi(x) =

 −λ xi > λ
−xi |xi| ≤ λ
λ xi < −λ

Both of them are weakly differentiable. But Hard-Thresholding:

gi(x) =

{
0 |xi| > λ
−xi |xi| ≤ λ

which is not weakly differentiable!

Proof. Let φ(y) be the density function of standard Normal distribution
Np(0, I).

R(µ̂, µ) = Eµ‖Y + g(Y )− µ‖2

= Eµ
(
p+ 2(Y − µ)T g(Y ) + ‖g(Y )‖2

)
Eµ(Y − µ)T g(Y ) =

p∑
i=1

∫ ∞
−∞

(yi − µi)gi(Y )φ(Y − µ)dY

=

p∑
i=1

∫ ∞
−∞
−gi(Y )

∂

∂yi
φ(Y − µ)dY, derivative of Gaussian function

=

p∑
i=1

∫ ∞
−∞

∂

∂yi
gi(Y )φ(Y − µ)dY, Integration by parts

= Eµ∇T g(Y )

�

Thus, we define

(19) U(Y ) := p+ 2∇T g(Y ) + ‖g(Y )‖2

for convenience, and R(µ̂, µ) = EµU(Y ).
This lemma is in fact called the Stein’s lemma in Tsybakov’s book [Tsy09]

(page 157∼158).

3.2. Risk of Linear Estimator.

µ̂C(Y ) = Cy

g(Y ) = (C − I)Y

∇T g(Y ) = −
∑
i

∂

∂yi
((C − I)Y ) = trace(C)− p

U(Y ) = p+ 2∇T g(Y ) + ‖g(Y )‖2
= p+ 2(trace(C)− p) + ‖(I − C)Y ‖2
= −p+ 2trace(C) + ‖(I − C)Y ‖2
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In applications, C = C(λ) often depends on some regularization parameter λ (e.g.
ridge regression). So one could find optimal λ∗ by minimizing the MSE over λ.
Suppose Y ∼ N (µ, σ2I),

R(µ̂C , µ) = ‖(I − C(λ))Y ‖2 − pσ2 + 2σ2trace(C(λ)).

3.3. Risk of James-Stein Estimator. Recall

g(Y ) = −p− 2

‖Y ‖2Y

U(Y ) = p+ 2∇T g(Y ) + ‖g(Y )‖2

‖g(Y )‖2 =
(p− 2)2

‖Y ‖2

∇T g(Y ) = −
∑
i

∂

∂yi

(
p− 2

‖Y ‖2Y
)

= − (p− 2)2

‖Y ‖2

we have

R(µ̂JS, µ) = EU(Y ) = p− Eµ
(p− 2)2

‖Y ‖2 < p = R(µ̂MLE, µ)

when p ≥ 3.

Problem. What’s wrong when p = 1? Does SURE still hold?

Remark. Indeed, we have the following theorem

Theorem 3.3 (Lemma 2.8 in Johnstone’s book (GE)). Y ∼ N(µ, I), ∀µ̂ = CY , µ̂
is admissable iff

(1) C is symmetric.
(2) 0 ≤ ρi(C) ≤ 1 (eigenvalue).
(3) ρi(C) = 1 for at most two i.

To find an upper bound of the risk of James-Stein estimator, notice that ‖Y ‖2 ∼
χ2(‖µ‖2, p) and 2

χ2(‖µ‖2, p) d
= χ2(0, p+ 2N), N ∼ Poisson

(‖µ‖2
2

)
we have

Eµ
(

1

‖Y ‖2
)

= EEµ
[

1

‖Y ‖2
∣∣∣N]

= E
1

p+ 2N − 2

≥ 1

p+ 2EN − 2
(Jensen’s Inequality)

=
1

p+ ‖µ‖2 − 2

that is

2This is a homework.
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Proposition 3.4 (Upper bound of MSE for the James-Stein Estimator). Y ∼
N (µ, Ip),

R(µ̂JS, µ) ≤ p− (p− 2)2

p− 2 + ‖µ‖2 = 2 +
(p− 2)‖µ‖2
p− 2 + ‖µ‖2

0 2 4 6 8 10

0
2

4
6

8
10

12

||u||

R

JS
MLE

3.4. Risk of Soft-thresholding. Using Stein’s unbiased risk estimate, we
have soft-thresholding in the form of

µ̂(x) = x+ g(x).
∂

∂i
gi(x) = −I(|xi| ≤ λ)

We then have

Eµ‖µ̂λ − µ‖2 = Eµ

(
p− 2

p∑
i=1

I(|xi| ≤ λ) +

p∑
i=1

x2
i ∧ λ2

)

≤ 1 + (2 log p+ 1)

p∑
i=1

µ2
i ∧ 1 if we take λ =

√
2 log p

By using the inequality
1

2
a ∧ b ≤ ab

a+ b
≤ a ∧ b

we can compare the risk of soft-thresholding and James-Stein estimator as

1 + (2 log p+ 1)

p∑
i=1

(µ2
i ∧ 1) Q 2 + c

((
p∑
i=1

µ2
i

)
∧ p
)

c ∈ (1/2, 1)
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In LHS, the risk for each µi is bounded by 1 so if µ is sparse (s = #{i : µi 6= 0})
but large in magnitudes (s.t. ‖µ‖22 ≥ p), we may expect LHS = O(s log p) < O(p) =
RHS. 3

In addition to L1 penalty in LASSO, there are also other penalty functions like

• λ‖β‖0 This leads to hard -thresholding when X = I. Solving this problem
is normally NP-hard.

• λ‖β‖p , 0 < p < 1. Non-convex, also NP-hard.
• λ∑ ρ(βi). such that

(1) ρ′(0) singular (for sparsity in variable selection)
(2) ρ′(∞) = 0 (for unbiasedness in parameter estimation)

Such ρ must be non-convex essentially (Jianqing Fan and Runze Li, 2001).

3.5. How to Optimize the Constants in James-Stein Estimator? Now,
let us look for a function g such that the risk of the estimator µ̃n(Y ) = (1−g(Y ))Y
is smaller than the MLE of Y ∼ N (µ, ε2Ip). We have

E‖µ̃n − µ‖2 =

p∑
i=1

E[((1− g(y))yi − µi)2]

=

p∑
i=1

{E[(yi − µi)2] + 2E[(µi − yi)g(y)yi]

+ E[y2
i g(y)2]}.

Suppose now that the function g is such that the assumptions of Stein’s Lemma 3.5
hold (page 157∼158 in Tsybakov’s book [Tsy09]), i.e. weakly differentiable.

Lemma 3.5 (Stein’s lemma). Suppose that a function f : Rp → R satisfies:

(i) f(u1, . . . , up) is absolutely continuous in each coordinate ui for almost all
values (with respect to the Lebesgue measure on Rp−1) of other coordinates
(uj , j 6= i)

(ii)

E
∣∣∣∣∂f(y)

∂yi

∣∣∣∣ <∞, i = 1, . . . , p.

then

E[(µi − yi)f(y)] = −ε2E
[
∂f

∂yi
(y)

]
, i = 1, . . . , p.

With Stein’s Lemma, therefore

E[(µi − yi)(1− g(y))yi] = −ε2E
[
g(y) + yi

∂g

∂yi
(y)

]
,

with
E[(yi − µi)2] = ε2 = σ2,

we have

E[(µ̃n,i − µi)]2 = ε2 − 2ε2E
[
g(y) + yi

∂g

∂yi
(y)

]
+ E[y2

i g(y)2].

Summing over i gives

E‖µ̃n − µ‖2 = pε2 + E[W (y)] = E‖µ̂n − µ‖2 + E[W (y)]

3also cf. p43 [GE]
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with

W (y) = −2pε2g(y) + 2ε2

p∑
i=1

yi
∂g

∂yi
(y) + ‖y‖2g(y)2.

The risk of µ̃n is smaller than that of µ̂n if we choose g such that

E[W (y)] < 0.

In order to satisfy this inequality, we can search for g among the functions of
the form

g(y) =
b

a+ ‖y‖2
with an appropriately chosen constants a ≥ 0, b > 0. Therefore, W (y) can be
written as

W (y) = −2pε2 b

a+ ‖y‖2 + 2ε2

p∑
i=1

2by2
i

(a+ ‖y‖2)2
+

b2‖y‖2
(a+ ‖y‖2)2

=
1

a+ ‖y‖2
(
−2pbε2 +

4bε2‖y‖2
a+ ‖y‖2 +

b2‖y‖2
(a+ ‖y‖2)2

)
≤ 1

a+ ‖y‖2 (−2pbε2 + 4bε2 + b2) ‖y‖2 ≤ a+ ‖y‖2 for a ≥ 0

=
Q(b)

a+ ‖y‖2 , Q(b) = b2 − 2pbε2 + 4bε2.

The minimizer in b of quadratic function Q(b) is equal to

bopt = ε2(p− 2),

where the minimum of W (y) satisfies

Wmin(y) ≤ − b2opt
a+ ‖y‖2 = −ε

4(p− 2)2

a+ ‖y‖2 < 0.

Note that when b ∈ (b1, b2), i.e. between the two roots of Q(b)

b1 = 0, b2 = 2ε2(p− 2)

we have W (y) < 0, which may lead to other estimators having smaller mean square
errors than MLE estimator.

When a = 0, the function g and the estimator µ̃n = (1 − g(y))y associated to
this choice of g are given by

g(y) =
ε2(p− 2)

‖y‖2 ,

and

µ̃n =

(
1− ε2(p− 2)

‖y‖2
)
y =: µ̃JS ,

respectively. µ̃JS is called James-Stein estimator. If dimension p ≥ 3 and the
norm ‖y‖2 is sufficiently large, multiplication of y by g(y) shrinks the value of y to
0. This is called the Stein shrinkage . If b = bopt, then

Wmin(y) = −ε
4(p− 2)2

‖y‖2 .
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Lemma 3.6. Let p ≥ 3. Then, for all µ ∈ Rp,

0 < E
(

1

‖y‖2
)
<∞.

The proof of Lemma 3.6 can be found on Tsybakov’s book [Tsy09] (page
158∼159). For the function W , Lemma 3.6 implies −∞ < E[W (y)] < 0, provided
that p ≥ 3. Therefore, if p ≥ 3, the risk of the estimator µ̃n satisfies

E‖µ̃n − µ‖2 = pε2 − E
(
ε4(p− 2)2

‖y‖2
)
< E‖µ̂n − µ‖2

for all µ ∈ Rp.
Besides James-Stein estimator, there are other estimators having smaller mean

square errors than MLE m̂un.

• Stein estimator : a = 0, b = ε2p,

µ̃S :=

(
1− ε2p

‖y‖2
)
y

• James-Stein estimator : c ∈ (0, 2(p− 2))

µ̃cJS :=

(
1− ε2c

‖y‖2
)
y

• Positive part James-Stein estimator :

µ̃JS+ :=

(
1− ε2(p− 2)

‖y‖2
)

+

y

• Positive part Stein estimator :

µ̃S+ :=

(
1− ε2p

‖y‖2
)

+

y

where (x)+ = min(0, x). Denote the mean square error by MSE(µ̃) = E‖µ̃− µ‖2,
then we have

MSE(µ̃JS+) < MSE(µ̃JS) < MSE(µ̂n), MSE(µ̃S+) < MSE(µ̃S) < MSE(µ̂n).

See Efron’s Book, Chap 1, Table 1.1.
Another dimension of variation is Shrinkage toward any vector rather than the

origin.

µ̃µ0 = µ0 +

(
1− ε2c

‖y‖2
)

(y − µ0), c ∈ (0, 2(p− 2)).

In particular, one may choose µ0 = ȳ where ȳ =
∑p
i=1 yi/p.

3.6. Discussion. Stein’s phenomenon firstly shows that in high dimensional
estimation, shrinkage may lead to better performance than MLE, the sample mean.
This opens a new era for modern high dimensional statistics. In fact discussions
above study independent random variables in p-dimensional space, concentration of
measure tells us some priori knowledge about the estimator distribution – samples
are concentrating around certain point. Shrinkage toward such point may naturally
lead to better performance.

However, after Stein’s phenomenon firstly proposed in 1956, for many years
researchers have not found the expected revolution in practice. Mostly because
Stein’s type estimators are too complicated in real applications and very small
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gain can be achieved in many cases. Researchers struggle to show real application
examples where one can benefit greatly from Stein’s estimators. For example, Efron-
Morris (1974) showed three examples that JS-estimator significantly improves the
multivariate estimation. On other other hand, deeper understanding on Shrinkage-
type estimators has been pursued from various aspects in statistics.

The situation changes dramatically when LASSO-type estimators by Tibshi-
rani, also called Basis Pursuit by Donoho et al. are studied around 1996. This
brings sparsity and L1-regularization into the central theme of high dimensional
statistics and leads to a new type of shrinkage estimator, thresholding. For exam-
ple,

min
µ̃
I = min

µ̃

1

2
‖µ̃− µ‖2 + λ‖µ̃‖1

Subgradients of I over µ̃ leads to

0 ∈ ∂µ̃jI = (µ̃j − µj) + λsign(µ̃j)⇒ µ̃j = sign(µj)(|µj | − λ)+

where the set-valued map sign(x) = 1 if x > 0, sign(x) = −1 if x < 0, and
sign(x) = [−1, 1] if x = 0, is the subgradient of absolute function |x|. Under this
new framework shrinkage estimators achieves a new peak with an ubiquitous spread
in data analysis with high dimensionality.

4. Random Matrix Theory and Phase Transitions in PCA

In PCA, one often looks at the eigenvalue plot in an decreasing order as per-
centage or variations. A large gap in the eigenvalue drops may indicate those top
eigenvectors reflect major variation directions, where those small eigenvalues in-
dicate directions due to noise which will vanish when n → ∞. Is this true in
all situations? The answer is yes in classical setting p << n. Unfortunately, in
high dimensional statistics even with fixed ratio p/n = γ, top eigenvectors of sam-
ple covariance matrices might not reflect the subspace of signals. In the following
we consider one particularly simple example: rank-1 signal (spike) model, where
random matrix theory will tell us when PCA fails to capture the signal subspace.

First of all, let’s introduce some basic results in random matrix theory which
will be used later.

4.1. Marčenko-Pastur Law of Sample Covariance Matrix. Let X ∈
Rp∗n, Xi ∼ N (0, Ip).

When p fixed and n→∞, the classical Law of Large Numbers tells us

(20) Σ̂n =
1

n
XX ′ → Ip.

Such a random matrix Σ̂n is called Wishart matrix.
But when p

n → γ 6= 0, the distribution of the eigenvalues of Σ̂n follows [BS10]
(Chapter 3), if γ ≤ 1,

(21) µMP (t) =

{
0 t /∈ [a, b]√

(b−t)(t−a)

2πγt dt t ∈ [a, b]

and has an additional point mass 1 − 1/γ at the origin if γ > 1. Note that a =
(1 − √γ)2, b = (1 +

√
γ)2. Figure 1 illustrates the MP-distribution by MATLAB

simulations whose codes can be found below.
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(a) (b)

Figure 1. (a) Marčenko-Pastur distribution with γ = 2. (b)
Marčenko-Pastur distribution with γ = 0.5.

%Wishart matrix

% S = 1/n*X*X.’, X is p-by-n, X ij i.i.d N(0,1),

% ESD S converge to M.P. with parameter y = p/n

y = 2;

a = (1-sqrt(y))^2;

b = (1+sqrt(y))^2;

f MP = @(t) sqrt(max(b-t, 0).*max(t-a, 0) )./(2*pi*y*t); %MP Distribution

%non-zero eigenvalue part

n = 400;

p = n*y;

X = randn(p,n);

S = 1/n*(X*X.’);

evals = sort( eig(S), ’descend’);

nbin = 100;

[nout, xout] = hist(evals, nbin);

hx = xout(2) - xout(1); % step size, used to compute frequency below

x1 = evals(end) -1;

x2 = evals(1) + 1; % two end points

xx = x1+hx/2: hx: x2;

fre = f MP(xx)*hx;

figure,

h = bar(xout, nout/p);

set(h, ’BarWidth’, 1, ’FaceColor’, ’w’, ’EdgeColor’, ’b’);

hold on;

plot(xx, fre, ’--r’);
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if y > 1 % there are (1-1/y)*p zero eigenvalues

axis([-1 x2+1 0 max(fre)*2]);

end

In the following, we are going to show that if dimension is relatively large
compared to sample size, i.e. p/n → γ > 0, PCA may fail to identify signals
from noise even the signal lies in a low-dimensional subspace. In fact, there is a
phase transition for signal identifiability by PCA: below a threshold of signal-noise
ratio, PCA will fail with high probability and above that threshold of signal-noise
ratio, PCA will approximate the signal subspace with high probability. This will
be illustrated by the following simplest rank-1 model.

4.2. Phase Transitions of PCA in Rank-1 Model. Consider the following
rank-1 signal-noise model

Y = X + ε,

where signal lies in an one-dimensional subspace X = αu with α ∼ N (0, σ2
X) and

noise ε ∼ N (0, σ2
εIp) is i.i.d. Gaussian. For multi-rank models, please see [KN08].

Therefore Y ∼ N (0,Σ) where

Σ = σ2
Xuu

′ + σ2
εIp.

The whole question in the remaining part of this section is to ask, can we recover
signal direction u from principal component analysis on noisy measurements Y ?

Define the signal-noise ratio SNR = R =
σ2
X

σ2
ε

, where for simplicity σ2
ε = 1. We

aim to show how SNR affect the result of PCA when p is large. A fundamental
result by Johnstone in 2006 [Joh06], or see [NBG10], shows that the primary
(largest) eigenvalue of sample covariance matrix satisfies

(22) λmax(Σ̂n)→
{

(1 +
√
γ)2 = b, σ2

X ≤
√
γ

(1 + σ2
X)(1 + γ

σ2
X

), σ2
X >

√
γ

which implies that if signal energy is small, top eigenvalue of sample covariance
matrix never pops up from random matrix ones; only if the signal energy is beyond
the phase transition threshold

√
γ, top eigenvalue can be separated from random

matrix eigenvalues. However, even in the latter case it is a biased estimation.
Moreover, the primary eigenvector associated with the largest eigenvalue (prin-

cipal component) converges to

(23) |〈u, vmax〉|2 →

0 σ2
X ≤

√
γ

1− γ

σ4
X

1+ γ

σ2
X

, σ2
X >

√
γ

which means the same phase transition phenomenon: if signal is of low energy,
PCA will tell us nothing about the true signal and the estimated top eigenvector is
orthogonal to the true direction u; if the signal is of high energy, PCA will return a
biased estimation which lies in a cone whose angle with the true signal is no more
than

1− γ
σ4
X

1 + γ
σ2
X

.

Below we are going to show such results.
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4.3. Stieltjes Transform. The following Stieltjes Transformation of MP-
density will be useful in the next part. Define the Stieltjes Transformation of
MP-density µMP to be

(24) s(z) :=

∫
R

1

t− z dµ
MP (t), z ∈ C

If z ∈ R, the transformation is called Hilbert Transformation. Further details can
be found in Terry Tao’s textbook, Topics on Random Matrix Theory [Tao11], Sec.
2.4.3 (the end of page 169) for the definition of Stieltjes transform of a density
p(t)dt on R.

In [BS10], Lemma 3.11 on page 52 gives the following characterization of s(z)
(note that the book contains a typo that 4yσ4 in numerator should be replaced by
4yzσ2):

(25) s(z) =
(1− γ)− z +

√
(z − 1− γ)2 − 4γz

2γz
,

which is the largest root of the quadratic equation,

(26) γzs(z)2 + (z − (1− γ))s(z) + 1 = 0⇐⇒ z +
1

s(z)
=

1

1 + γs(z)
.

From the equation (25), one can take derivative of z on both side to obtain s′(z)
in terms of s and z. Using s(z) one can compute the following basic integrals.

Lemma 4.1. (1) ∫ b

a

t

λ− tµ
MP (t)dt = −λs(λ)− 1;

(2) ∫ b

a

t2

(λ− t)2
µMP (t)dt = λ2s′(λ) + 2λs(λ) + 1

Proof. For convenience, define

(27) T (λ) :=

∫ b

a

t

λ− tµ
MP (t)dt.

Note that

(28) 1 + T (λ) = 1 +

∫ b

a

t

λ− tµ
MP (t)dt =

∫ b

a

λ− t+ t

λ− t µMP (t)dt = −λs(λ)

which give the first result.

4.4. Characterization of Phase Transitions with RMT. First of all, we
give an overview of this part. Following the rank-1 model, consider random vectors
{Yi}ni=1 ∼ N (0,Σ), where Σ = σ2

xuu
T +σ2

εIp and ‖u‖2 = 1. This covariance matrix
Σ thus has a structure that low-rank plus sparse matrix. Define the Signal-Noise-

Ratio (SNR) R =
σ2
x

σ2
ε
. Without of generality,we assume σ2

ε = 1.

The sample covariance matrix of Y is Σ̂n = 1
n

∑n
i=1 YiY

t
i = 1

nY Y
T where

Y = [Y1, . . . , Yn] ∈ Rp×n. Suppose one of its eigenvalue is λ and the corresponding

unit eigenvector is v̂, so Σ̂nv̂ = λv̂.
After that, we relate the λ to the MP distribution by the trick:

(29) Yi = Σ
1
2Zi → Zi ∼ N(0, Ip),where Σ

1
2 = σ2

xuu
T + σ2

εIp = RuuT + Ip
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Then Sn = 1
n

∑n
i=1 ZiZ

T
i is a Wishart random matrix whose eigenvalues follow the

MP distribution.
Notice that Σ̂n = Σ

1
2SnΣ

1
2 and (λ, v̂) is eigenvalue-eigenvector pair of matrix

Σ̂n. Therefore

(30) Σ
1
2SnΣ

1
2 v̂ = λv̂ ⇒ SnΣ(Σ−

1
2 v̂) = λ(Σ−

1
2 v̂)

In other words, λ and Σ−
1
2 v̂ are the eigenvalue and eigenvector of matrix SnΣ.

Suppose cΣ−
1
2 v̂ = v where the constant c makes v a unit eigenvector and thus

satisfies,

(31) c2 = cv̂T v̂ = vTΣv = vT (σ2
xuu

T + σ2
ε)v = σ2

x(uT v)2 + σ2
ε) = R(uT v)2 + 1.

With the aid of Stieltjes transform, we can calculate the largest eigenvalue of
matrix Σ̂n and the properties of the corresponding eigenvector v̂.

In fact, the eigenvalue λ satisfies

(32) 1 = σ2
X ·

1

p

p∑
i=1

λi
λ− σ2

ελi
∼ σ2

X ·
∫ b

a

t

λ− σ2
εt
dµMP (t),

and the inner product of u and v satisfies

|uT v|2(33)

= {σ4
x

∫ b

a

t2

(λ− σ2
ε)2

dµMP (t)}−1

= {σ
4
x

4γ
(−4λ+ (a+ b) + 2(

√
(λ− a)(λ− b)) +

λ(2λ− (a+ b))√
(λ− a)(λ− b)

)}−1

=
1− γ

R2

1 + γ + 2γ
R

where R = SNR =
σ2
x

σ2
ε

= σ2
x,γ =

√
p
n . We can compute the inner product of u and

v̂ which we are really interested in from the above equation:

|uT v̂|2 = (
1

c
uTΣ

1
2 v)2 =

1

c2
((Σ

1
2u)T v)2 =

1

c2
(((RuuT + Ip)

1
2u)T v)2 =

1

c2
((
√

(1 +R)u)T v)2

=
(1 +R)(uT v)2

R(uT v)2 + 1
=

1 +R− γ
R −

γ
R2

1 +R+ γ + γ
R

=
1− γ

R2

1 + γ
R

Now we are going to present the details.
First of all, from

(34) SnΣv = λv,

we obtain the following by plugging in the expression of Σ

(35) Sn(σ2
Xuu

′ + σ2
εIp)v = λv

Rearrange the term with u to one side, we got

(36) (λIp − σ2
εSn)v = σ2

XSnuu
′v

Assuming that λIp − σ2
εSn is invertable, then multiple its reversion at both sides

of the equality, we get,

(37) v = σ2
X · (λIp − σ2

εSn)−1 · Snu(u′v).
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4.4.1. Primary Eigenvalue. Multiply (37) by u′ at both side,

(38) u′v = σ2
X · u′(λIp − σ2

εSn)−1Snu · (u′v)

that is, if u′v 6= 0,

(39) 1 = σ2
X · u′(λIp − σ2

εSn)−1Snu

For SVD Sn = WΛW ′, where Λ is diagonal, W ·W ′ = W ′ ·W = Ip, W =
[W1,W2, · · · ,Wn] ∈ Rp×p, α = [α1, α2, · · · , αn] ∈ Rp×1, in which Wi is the corre-
sponding eigenvector, then u =

∑p
i=1 αiWi = W · α, then, α = W ′u, and,

(40) 1 = σ2
X ·u′[W (λIp−σ2

εΛ)−1W ′][WΛW ′]u = σ2
X ·(u′W )(λIp−σ2

εΛ)−1Λ(W ′u)

Replace W ′u = α, then,

(41) 1 = σ2
X ·

p∑
i=1

λi
λ− σ2

ελi
α2
i

where
∑p
i=1 α

2
i = 1. Since W is a random orthogonal basis on a sphere, αi will

concentrate on its mean αi = 1√
q . According to the fact that p is large enough(∼

∞), due to Law of Large Numbers(LLN) and λ ∼ µMP (λi can be thought sampled
from the µMP ), the equation (12) can be thought of as the Expected Value (Monte-
Carlo Integration), then equation (12) can be written as,

(42) 1 = σ2
X ·

1

p

p∑
i=1

λi
λ− σ2

ελi
∼ σ2

X ·
∫ b

a

t

λ− σ2
εt
dµMP (t)

For convenience, assume without loss of generosity that σ2
ε = 1, that is the

noise volatility is 1. Now we unveil the story of the ratio γ, do the integration in
equation (13), we got,

(43) 1 = σ2
X ·
∫ b

a

t

λ− t

√
(b− t)(t− a)

2πγt
dt =

σ2
X

4γ
[2λ− (a+ b)− 2

√
|(λ− a)(b− λ)|]

where the last step can be computed via Stieltjes transform introduced above.
From the definition of T (λ), we have

(44)

∫ b

a

t2

(λ− t)2
µMP (t)dt = −T (λ)− λT ′(λ).

Combined with the first result, we reach the second one. �

If we suppose σ2
ε = 1 as in the script. Then R = σ2

X . Note that when R ≥
√

p
n ,

λ ≥ b. Solve the equation:

∵ 1 =
σ2
X

4γ
[2λ− (a+ b)− 2

√
(λ− a)(λ− b)

∴ λ = σ2
X +

γ

σ2
X

+ 1 + γ = (1 + σ2
X)(1 +

γ

σ2
X

)

Loose this assumption. Then all the equations above is true, except that all the λ
will be replaced by λ

σ2
ε

and λ0 by SNR. Then we get:

λ = (1 + SNR)(1 +
γ

SNR
)σ2
ε

Here we observe the following phase transitions for primary eigenvalue:
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• If λ ∈ [a, b], then Σ̂n has eigenvalue λ within supp(µMP ), so it is undis-
tinguishable from the noise Sn.

• If λ ≥ b, PCA will pick up the top eigenvalue as non-noise. So λ = b is the
phase transition where PCA works to pop up correct eigenvalue. Then
plug in λ = b in equation (14), we get,

(45) 1 = σ2
X ·

1

4γ
[2b− (a+ b)] =

σ2
X√
γ
⇔ σ2

X =

√
p

n

So, in order to make PCA works, we need to let SNR ≥
√

p
n .

We know that if PCA works good and noise doesn’t dominate the effect, the inner-
product |u′v̂| should be close to 1. On the other hand, from RMT we know that if
the top eigenvalue λ is merged in the M. P. distribution, then the top eigenvector
computed is purely random and |u′v̂| = 0, which means that from v̂ we can know
nothing about the signal u.

4.4.2. Primary Eigenvector. We now study the phase transition of top-eigenvector.
It is convenient to study |u′v|2 first and then translate back to |u′v̂|2. Using

the equation (37),

(46)
1 = |v′v| = σ4

X ·v′uu′Sn(λIp−σ2
εSn)−2Snuu

′v = σ4
X ·(|v′u|)[u′Sn(λIp−σ2

εSn)−2Snu](|u′v|)

(47) |u′v|−2 = σ4
X [u′Sn(λIp − σ2

εSn)−2Snu]

Using the same trick as the equation (39),

(48) |u′v|−2 = σ4
X [u′Sn(λIp − σ2

εSn)−2Snu] ∼ σ4
X ·
∫ b

a

t2

(λ− σ2
εt)

2
dµMP (t)

and assume that λ > b, from Stieltjes transform introduced later one can compute
the integral as
(49)

|u′v|−2 = σ4
X ·
∫ b

a

t2

(λ− σ2
εt)

2
dµMP (t) =

σ4
X

4γ
(−4λ+(a+b)+2

√
(λ− a)(λ− b)+ λ(2λ− (a+ b))√

(λ− a)(λ− b)
from which it can be computed that (using λ = (1 + R)(1 + γ

R ) obtained above,

where R = SNR =
σ2
X

σ2
ε

)

|u′v|2 =
1− γ

R2

1 + γ + 2γ
R

.

Using the relation

u′v̂ = u′
(

1

c
Σ1/2v

)
=

√
1 +R

c
(u′v)

where the second equality uses Σ1/2u =
√

1 +Ru, and with the formula for c2

above, we can compute

(u′v̂)2 =
1 +R

1 +R(u′v)2
(u′v)2

in terms of R. Note that this number holds under the condition that R >
√
γ.
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4.5. Further Comments. When log(p)
n → 0, we need to add more restric-

tions on Σ̂n in order to estimate it faithfully. There are typically three kinds of
restrictions.

• Σ sparse
• Σ−1 sparse, also called–Precision Matrix
• banded structures (e.g. Toeplitz) on Σ or Σ−1

Recent developments can be found by Bickel, Tony Cai, Tsybakov, Wainwright et
al.

For spectral study on random kernel matrices, see El Karoui, Tiefeng Jiang,
Xiuyuan Cheng, and Amit Singer et al.





CHAPTER 4

Generalized PCA/MDS via SDP Relaxations

1. Introduction of SDP with a Comparison to LP

Here we will give a short note on Semidefinite Programming (SDP) formula-
tion of Robust PCA, Sparse PCA, MDS with uncertainty, and Maximal Variance
Unfolding, etc. First of all, we give a short introduction to SDP based on a parallel
comparison with LP.

Semi-definite programming (SDP) involves linear objective functions and linear
(in)equalities constraint with respect to variables as positive semi-definite matri-
ces. SDP is a generalization of linear programming (LP) by replacing nonnegative
variables with positive semi-definite matrices. We will give a brief introduction of
SDP through a comparison with LP.

LP (Linear Programming): for x ∈ Rn and c ∈ Rn,

min cTx(50)

s.t. Ax = b

x ≥ 0

This is the primal linear programming problem.
In SDP, the inner product between vectors cTx in LP will change to Hadamard

inner product (denoted by •) between matrices.
SDP (Semi-definite Programming): for X,C ∈ Rn×n

min C •X =
∑
i,j

cijXij(51)

s.t. Ai •X = bi, for i = 1, · · · ,m
X � 0

Linear programming has a dual problem via the Lagrangian. The Lagrangian
of the primal problem is

max
µ≥0,y

min
x
Lx;y,µ = cTx+ yT (b−Ax)− µTx

which implies that

∂L

∂x
= c−AT y − µ = 0

⇐⇒ c−AT y = µ ≥ 0

=⇒ max
µ≥0,y

L = −yT b

which leads to the following dual problem.

45
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LD (Dual Linear Programming):

min bT y(52)

s.t. µ = c−AT y ≥ 0

In a similar manner, for SDP’s dual form, we have the following.
SDD (Dual Semi-definite Programming):

max −bT y(53)

s.t. S = C −
m∑
i=1

Aiyi � 0 =: C −AT ⊗ y

where

A =

 A1

...
Am


and

y =

 y1

...
ym


1.1. Duality of SDP. Define the feasible set of primal and dual problems are

Fp = {X � 0;Ai •X = bi} and Fd = {(y, S) : S = C −∑i yiAi � 0}, respectively.
Similar to linear programming, semi-definite programming also has properties of
week and strong duality. The week duality says that the primal value is always an
upper bound of dual value. The strong duality says that the existence of an interior
point ensures the vanishing duality gap between primal value and dual value, as
well as the complementary conditions. In this case, to check the optimality of a
primal variable, it suffices to find a dual variable which meets the complementary
condition with the primal. This is often called the witness method.

For more reference on duality of SDP, see e.g. [Ali95].

Theorem 1.1 (Weak Duality of SDP). If Fp 6= ∅,Fd 6= ∅, We have C •X ≥ bT y,
for ∀X ∈ Fp and ∀(y, S) ∈ Fd.

Theorem 1.2 (Strong Duality SDP). Assume the following hold,

(1) Fp 6= ∅,Fd 6= ∅;
(2) At least one feasible set has an interior.

Then X∗ is optimal iff

(1) X∗ ∈ Fp
(2) ∃(y∗, S∗) ∈ Fd

s.t. C •X∗ = bT y∗ or X∗S∗ = 0 (note: in matrix product)

In other words, the existence of an interior solution implies the complementary
condition of optimal solutions. Under the complementary condition, we have

rank(X∗) + rank(S∗) ≤ n
for every optimal primal X∗ and dual S∗.
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2. Robust PCA

Let X ∈ Rp×n be a data matrix. Classical PCA tries to find

min ‖X − L‖(54)

s.t. rank(L) ≤ k
where the norm here is matrix-norm or Frobenius norm. SVD provides a solution
with L =

∑
i≤k σiuiv

T
i where X =

∑
i σiuiv

T
i (σ1 ≥ σ2 ≥ . . .). In other words,

classical PCA looks for decomposition

X = L+ E

where the error matrix E has small matrix/Frobenius norm. However, it is well-
known that classical PCA is sensitive to outliers which are sparse and lie far from
the major population.

Figure 1. Classical PCA is sensitive to outliers

Robust PCA looks for the following decomposition instead

X = L+ S

where

• L is a low rank matrix;
• S is a sparse matrix.

Example. Let X = [x1, . . . , xp]
T ∼ N (0,Σ) be multivariate Gaussian random

variables. The following characterization [CPW12] holds

xi and xj are conditionally independent given other variables

⇔ (Σ−1)ij = 0

We denote it by xi ⊥ xj |xk(k 6∈ {i, j}). Let G = (V,E) be a undirected graph
where V represent p random variables and (i, j) ∈ E ⇔ xi ⊥ xj |xk(k 6∈ {i, j}). G
is called a (Gaussian) graphical model of X.

Divide the random variables into observed and hidden (a few) variables X =
(Xo, Xh)T (in semi-supervised learning, unlabeled and labeled, respectively) and

Σ =

[
Σoo Σoh
Σho Σhh

]
and Q = Σ−1 =

[
Qoo Qoh
Qho Qhh

]
The following Schur Complement equation holds for covariance matrix of observed
variables

Σ−1
oo = Qoo +QohQ

−1
hhQho.

Note that
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• Observable variables are often conditional independent given hidden vari-
ables, so Qoo is expected to be sparse;

• Hidden variables are of small number, so QohQ
−1
hhQho is of low-rank.

In semi-supervised learning, the labeled points are of small number, and the unla-
beled points should be as much conditional independent as possible to each other
given labeled points. This implies that the labels should be placed on those most
“influential” points.

Figure 2. Surveilliance video as low rank plus sparse matrices:
Left = low rank (middle) + sparse (right) [CLMW09]

Example (Surveilliance Video Decomposition). Figure 2 gives an example of low
rank vs. sparse decomposition in surveilliance video. On the left column, surveil-
liance video of a movie theatre records a great amount of images with the same
background and the various walking customers. If we vectorize these images (each
image as a vector) to form a matrix, the background image leads to a rank-1 part
and the occasional walking customers contribute to the sparse part.

More examples can be found at [CLMW09, CSPW11, CPW12].
In Robust PCA the purpose is to solve

min ‖X − L‖0(55)

s.t. rank(L) ≤ k
where ‖A‖0 = #{Aij 6= 0}. However both the objective function and the constraint
are non-convex, whence it is NP-hard to solve in general.

The simplest convexification leads to a Semi-definite relaxation:

‖S‖0 := #{Sij 6= 0} ⇒ ‖S‖1
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rank(L) := #{σi(L) 6= 0} ⇒ ‖L‖∗ =
∑
i

σi(L),

where ‖L‖∗ is called the nuclear norm of L, which has a semi-definite representation

‖L‖∗ = min
1

2
(trace(W1) + trace(W2))

s.t.

[
W1 L
LT W2

]
� 0.

With these, the relaxed Robust PCA problem can be solved by the following
semi-definite programming (SDP).

min
1

2
(trace(W1) + trace(W2)) + λ‖S‖1(56)

s.t. Lij + Sij = Xij , (i, j) ∈ E[
W1 L
LT W2

]
� 0

The following Matlab codes realized the SDP algorithm above by CVX (http:
//cvxr.com/cvx).
% Construct a random 20-by-20 Gaussian matrix and construct a rank-1

% matrix using its top-1 singular vectors
R = randn(20,20);
[U,S,V] = svds(R,3);
A = U(:,1)*V(:,1)’;

% Construct a 90% uniformly sparse matrix
E0 = rand(20);
E = 1*abs(E0>0.9);

X = A + E;

% Choose the regularization parameter
lambda = 0.25;

% Solve the SDP by calling cvx toolbox
if exist(’cvx setup.m’,’file’),

cd /matlab tools/cvx/
cvx setup

end

cvx begin
variable L(20,20);
variable S(20,20);
variable W1(20,20);
variable W2(20,20);
variable Y(40,40) symmetric;
Y == semidefinite(40);
minimize(.5*trace(W1)+0.5*trace(W2)+lambda*sum(sum(abs(S))));
subject to

L + S >= X-1e-5;

http://cvxr.com/cvx
http://cvxr.com/cvx
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L + S <= X + 1e-5;
Y == [W1, L’;L W2];

cvx end

% The difference between sparse solution S and E
disp(’$\—S-E\— \infty$:’)
norm(S-E,’inf’)

% The difference between the low rank solution L and A
disp(’\—A-L\—’)
norm(A-L)

Typically CVX only solves SDP problem of small sizes (say matrices of size less
than 100). Specific matlab tools have been developed to solve large scale RPCA,
which can be found at http://perception.csl.uiuc.edu/matrix-rank/.

3. Probabilistic Exact Recovery Conditions for RPCA

A fundamental question about Robust PCA is: given X = L0 + S0 with low-
rank L and sparse S, under what conditions that one can recover X by solving SDP
in (56)?

It is necessary to assume that

• the low-rank matrix L0 can not be sparse;
• the sparse matrix S0 can not be of low-rank.

The first assumption is called incoherence condition. Assume that L0 ∈ Rn×n =
UΣV T and r = rank(L0).

Incoherence condition [CR09]: there exists a µ ≥ 1 such that for all ei =
(0, . . . , 0, 1, 0, . . . , 0)T ,

‖UT ei‖2 ≤
µr

n
, ‖V T ei‖2 ≤

µr

n
,

and

|UV T |2ij ≤
µr

n2
.

These conditions, roughly speaking, ensure that the singular vectors are not
sparse, i.e. well-spread over all coordinates and won’t concentrate on some coor-
dinates. The incoherence condition holds if |Uij |2 ∨ |Vij |2 ≤ µ/n. In fact, if U
represent random projections to r-dimensional subspaces with r ≥ log n, we have
maxi ‖UT ei‖2 � r/n.

To meet the second condition, we simply assume that the sparsity pattern of
S0 is uniformly random.

Theorem 3.1. Assume the following holds,

(1) L0 is n-by-n with rank(L0) ≤ ρrnµ−1(log n)−2,
(2) S0 is uniformly sparse of cardinality m ≤ ρsn2.

Then with probability 1 − O(n−10), (56) with λ = 1/
√
n is exact, i.e. its solution

L̂ = L0 and Ŝ = S0.

Note that if L0 is a rectangular matrix of n1 × n2, the same holds with λ =
1/
√

(maxn1, n2). The result can be generalized to 1−O(n−β) for β > 0. Extensions

http://perception.csl.uiuc.edu/matrix-rank/
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and improvements of these results to incomplete measurements can be found in
[CT10, Gro11] etc., which solves the following SDP problem.

min ‖L‖∗ + λ‖S‖1(57)

s.t. Lij + Sij = Xij , (i, j) ∈ Ωobs.

Theorem 3.2. Assume the following holds,

(1) L0 is n-by-n with rank(L0) ≤ ρrnµ−1(log n)−2,
(2) Ωobs is a uniform random set of size m = 0.1n2,
(3) each observed entry is corrupted with probability τ ≤ τs.

Then with probability 1−O(n−10), (56) with λ = 1/
√

0.1n is exact, i.e. its solution

L̂ = L0. The same conclusion holds for rectangular matrices with λ = 1/
√

max dim.

All these results hold irrespective to the magnitudes of L0 and S0.
When there are no sparse perturbation in optimization problem (57), the prob-

lem becomes the classical Matrix Completion problem with uniformly random sam-
pling:

min ‖L‖∗(58)

s.t. Lij = L0
ij , (i, j) ∈ Ωobs.

Assumed the same condition as before,[CT10] gives the following result: solu-
tion to SDP (58) is exact with probability at least 1−n−10 if m ≥ µnr loga n where
a ≤ 6, which can be improved by [Gro11] to be near-optimal

m ≥ µnr log2 n.

Another theory based on geometry can be found in [CSPW11, CRPW12].

3.1. Phase Transitions. Take L0 = UV T as a product of n× r i.i.d. N (0, 1)
random matrices. Figure 3 shows the phase transitions of successful recovery prob-
ability over sparsity ratio ρs = m/n2 and low rank ratio r/n. White color indicates
the probability equals to 1 and black color corresponds to the probability being 0.
A sharp phase transition curve can be seen in the pictures. (a) and (b) respectively
use random signs and coherent signs in sparse perturbation, where (c) is purely ma-
trix completion with no perturbation. Increasing successful recovery can be seen
from (a) to (c).

4. Sparse PCA

Sparse PCA is firstly proposed by [ZHT06] which tries to locate sparse prin-
cipal components, which also has a SDP relaxation.

Recall that classical PCA is to solve

max xTΣx

s.t. ‖x‖2 = 1

which gives the maximal variation direction of covariance matrix Σ.
Note that xTΣx = trace(Σ(xxT )). Classical PCA can thus be written as

max trace(ΣX)

s.t. trace(X) = 1

X � 0
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Figure 3. Phase Transitions in Probability of Successful Recovery

The optimal solution gives a rank-1 X along the first principal component. A
recursive application of the algorithm may lead to top k principal components.
That is, one first to find a rank-1 approximation of Σ and extract it from Σ0 = Σ
to get Σ1 = Σ−X, then pursue the rank-1 approximation of Σ1, and so on.

Now we are looking for sparse principal components, i.e. #{Xij 6= 0} are small.
Using 1-norm convexification, we have the following SDP formulation [dGJL07]
for Sparse PCA

max trace(ΣX)− λ‖X‖1
s.t. trace(X) = 1

X � 0

The following Matlab codes realized the SDP algorithm above by CVX (http:
//cvxr.com/cvx).
% Construct a 10-by-20 Gaussian random matrix and form a 20-by-20 correlation

% (inner product) matrix R
X0 = randn(10,20);
R = X0’*X0;

d = 20;
e = ones(d,1);

% Call CVX to solve the SPCA given R
if exist(’cvx setup.m’,’file’),

cd /matlab tools/cvx/
cvx setup

end

lambda = 0.5;
k = 10;

cvx begin

http://cvxr.com/cvx
http://cvxr.com/cvx
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variable X(d,d) symmetric;
X == semidefinite(d);
minimize(-trace(R*X)+lambda*(e’*abs(X)*e));
subject to

trace(X)==1;
cvx end

5. MDS with Uncertainty

In this lecture, we introduce Semi-Definite Programming (SDP) approach to
solve some generalized Multi-dimensional Scaling (MDS) problems with uncer-
tainty. Recall that in classical MDS, given pairwise distances dij = ‖xi − xj‖2
among a set of points xi ∈ Rp ( i = 1, 2, · · · , n) whose coordinates are unknown,
our purpose is to find yi ∈ Rk(k ≤ p) such that

(59) min

n∑
i,j=1

(
‖yi − yj‖2 − dij

)2
.

In classical MDS (Section 1 in Chapter 1) an eigen-decomposition approach is
pursued to find a solution when all pairwise distances dij ’s are known and noise-
free. In case that dij ’s are not from pairwise distances, we often use gradient
descend method to solve it. However there is no guarantee that gradient descent
will converge to the global optimal solution. In this section we will introduce
a method based on convex relaxation, in particular the semi-definite relaxation,
which will guarantee us to find optimal solutions in the following scenarios.

• Noisy perturbations: dij → d̃ij = dij + εij
• Incomplete measurments: only partial pairwise distance measurements

are available on an edge set of graph, i.e. G = (V,E) and dij is given
when (i, j) ∈ E (e.g. xi and xj in a neighborhood).

• Anchors: sometimes we may fixed the locations of some points called
anchors, e.g. in sensor network localization (SNL) problem.

In other words, we are looking for MDS on graphs with partial and noisy informa-
tion.

5.1. SD Relaxation of MDS. Like PCA, classical MDS has a semi-definite
relaxation. In the following we shall introduce how the constraint

(60) ‖yi − yj‖2 = dij ,

can be relaxed into linear matrix inequality system with positive semidefinite vari-
ables.

Denote Y = [y1, · · · , yn]k×n where yi ∈ Rk, and

ei = (0, 0, · · · , 1, 0, · · · , 0) ∈ Rn.
Then we have

‖yi − yj‖2 = (yi − yj)T (yi − yj) = (ei − ej)TY TY (ei − ej)
Set X = Y TY , which is symmetric and positive semi-definite. Then

‖Yi − Yj‖2 = (ei − ej)(ei − ej)T •X.
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So

‖Yi − Yj‖2 = d2
ij ⇔ (ei − ej)(ei − ej)T •X = d2

ij

which is linear with respect to X.
Now we relax the constrain X = Y TY to

X � Y TY ⇐⇒ X − Y TY � 0.

Through Schur Complement Lemma we know

X − Y TY � 0⇐⇒
[

I Y
Y T X

]
� 0

We may define a new variable

Z ∈ Sk+n, Z =

[
Ik Y
Y T X

]
which gives the following result.

Lemma 5.1. The quadratic constraint

‖yi − yj‖2 = d2
ij , (i, j) ∈ E

has a semi-definite relaxation:
Z1:k,1:k = I
(0; ei − ej)(0; ei − ej)T • Z = d2

ij , (i, j) ∈ E
Z =

[
Ik Y
Y T X

]
� 0.

where • denotes the Hadamard inner product, i.e. A •B :=
∑n
i,j=1AijBij .

Note that the constraint with equalities of d2
ij can be replaced by inequalities

such as ≤ d2
ij(1 + ε) (or ≥ d2

ij(1 − ε)). This is a system of linear matrix (in)-
equalities with positive semidefinite variable Z. Therefore, the problem becomes a
typical semidefinite programming.

Given such a SD relaxation, we can easily generalize classical MDS to the sce-
narios in the introduction. For example, consider the generalized MDS with anchors
which is often called sensor network localization problem in literature [BLT+06].
Given anchors ak (k = 1, . . . , s) with known coordinates, find xi such that

• ‖xi − xj‖2 = d2
ij where (i, j) ∈ Ex and xi are unknown locations

• ‖ak − xj‖2 = d̂kj
2

where (k, j) ∈ Ea and ak are known locations

We can exploit the following SD relaxation:

• (0; ei − ej)(0; ei − ej)T • Z = dij for (i, j) ∈ Ex,

• (ai; ej)(ai; ej)
T • Z = d̂ij for (i, j) ∈ Ea,

both of which are linear with respect to Z.
Recall that every SDP problem has a dual problem (SDD). The SDD associated

with the primal problem above is

(61) min I • V +
∑
i,j∈Ex

wijdij +
∑
i,j∈Ea

ŵij d̂ij

s.t.

S =

(
V 0
0 0

)
+
∑
i,j∈Ex

wijAij +
∑
i,j∈Ea

ŵijÂij � 0
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where

Aij = (0; ei − ej)(0; ei − ej)T

Âij = (ai; ej)(ai; ej)
T .

The variables wij is the stress matrix on edge between unknown points i and j and
ŵij is the stress matrix on edge between anchor i and unknown point j. Note that
the dual is always feasible, as V = 0, yij = 0 for all (i, j) ∈ Ex and wij = 0 for all
(i, j) ∈ Ea is a feasible solution.

There are many matlab toolboxes for SDP, e.g. CVX, SEDUMI, and recent
toolboxes SNLSDP (http://www.math.nus.edu.sg/~mattohkc/SNLSDP.html) and
DISCO (http://www.math.nus.edu.sg/~mattohkc/disco.html) by Toh et. al.,
adapted to MDS with uncertainty.

A crucial theoretical question is to ask, when X = Y TY holds such that SDP
embedding Y gives the same answer as the classical MDS? Before looking for an-
swers to this question, we first present an application example of SDP embedding.

5.2. Protein 3D Structure Reconstruction. Here we show an example of
using SDP to find 3-D coordinates of a protein molecule based on noisy pairwise
distances for atoms in ε-neighbors. We use matlab package SNLSDP by Kim-
Chuan Toh, Pratik Biswas, and Yinyu Ye, downladable at http://www.math.nus.
edu.sg/~mattohkc/SNLSDP.html.
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Refinement: RMSD = 5.33e−01

nf = 0.1,  λ = 1.0e+00

(a) (b)

Figure 4. (a) 3D Protein structure of PDB-1GM2, edges are
chemical bonds between atoms. (b) Recovery of 3D coordinates
from SNLSDP with 5Å-neighbor graph and multiplicative noise at
0.1 level. Red point: estimated position of unknown atom. Green
circle: actual position of unknown atom. Blue line: deviation from
estimation to the actual position.

After installation, Figure 4 shows the results of the following codes.
>> startup

>> testSNLsolver

number of anchors = 0

number of sensors = 166

box scale = 20.00

radius = 5.00

multiplicative noise, noise factor = 1.00e-01

http://www.math.nus.edu.sg/~mattohkc/SNLSDP.html
http://www.math.nus.edu.sg/~mattohkc/disco.html
http://www.math.nus.edu.sg/~mattohkc/SNLSDP.html
http://www.math.nus.edu.sg/~mattohkc/SNLSDP.html
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-------------------------------------------------------

estimate sensor positions by SDP

-------------------------------------------------------

num of constraints = 2552,

Please wait:

solving SDP by the SDPT3 software package

sdpobj = -3.341e+03, time = 34.2s

RMSD = 7.19e-01

-------------------------------------------------------

refine positions by steepest descent

-------------------------------------------------------

objstart = 4.2408e+02, objend = 2.7245e+02

number of iterations = 689, time = 0.9s

RMSD = 5.33e-01

-------------------------------------------------------

(noise factor)^2 = -20.0dB,

mean square error (MSE) in estimated positions = -5.0dB

-------------------------------------------------------

6. Exact Reconstruction and Universal Rigidity

Now we are going to answer the fundamental question, when the SDP relaxation
exactly reconstruct the coordinates up to a rigid transformation. We will provide
two theories, one from the optimality rank properties of SDP, and the other from
a geometric criterion, universal rigidity.

Recall that for a standard SDP with X,C ∈ Rn×n

min C •X =
∑
i,j

cijXij(62)

s.t. Ai •X = bi, for i = 1, · · · ,m
X � 0

whose SDD is

max −bT y(63)

s.t. S = C −
m∑
i=1

Aiyi � 0.

Such SDP has the following rank properties [Ali95]:

A. maximal rank solutions X∗ or S∗ exist;
B. minimal rank solutions X∗ or S∗ exist;
C. if complementary condition X∗S∗ = 0 holds, then rank(X∗)+rank(S∗) ≤

n with equality holds iff strictly complementary condition holds, whence
rank(S∗) ≥ n− k ⇒ rank(X∗) ≤ k.

Strong duality of SDP tells us that an interior point feasible solution in primal
or dual problem will ensure the complementary condition and the zero duality gap.
Now we assume that dij = ‖xi−xj‖ precisely for some unknown xi ∈ Rk. Then the
primal problem is feasible with Z = (Id;Y )T (Id;Y ). Therefore the complementary
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condition holds and the duality gap is zero. In this case, assume that Z∗ is a primal
feasible solution of SDP embedding and S∗ is an optimal dual solution, then

(1) rank(Z∗) + rank(S∗) ≤ k + n and rank(Z∗) ≥ k, whence rank(S∗) ≤ n;
(2) rank(Z∗) = k ⇐⇒ X = Y TY .

It follows that if an optimal dual S∗ has rank n, then every primal solution Z∗ has
rank k, which ensures X = Y TY . Therefore it suffices to find a maximal rank dual
solution S∗ whose rank is n.

Above we have optimality rank condition from SDP. Now we introduce a geo-
metric criterion based on universal rigidity.

Definition (Universal Rigidity (UR) or Unique Localization (UL)). ∃!yi ∈ Rk ↪→
Rl where l ≥ k s.t. d2

ij = ‖yi − yj‖2, d̂ij
2

= ‖ak − yj‖2.

It simply says that there is no nontrivial extension of yi ∈ Rk in Rl satisfying

d2
ij = ‖yi − yj‖2 and d̂ij

2
= ‖(ak; 0)− yj‖2. The following is a short history about

universal rigidity.
[Schoenberg 1938] G is complete =⇒ UR
[So-Ye 2007] G is incomplete =⇒ UR ⇐⇒ SDP has maximal rank solution

rank(Z∗) = k.

Theorem 6.1. [SY07] The following statements are equivalent.

(1) The graph is universally rigid or has a unique localization in Rk.
(2) The max-rank feasible solution of the SDP relaxation has rank k;
(3) The solution matrix has X = Y TY or trace(X − Y TY ) = 0.

Moreover, the localization of a UR instance can be computed approximately in a
time polynomial in n, k, and the accuracy log(1/ε).

In fact, the max-rank solution of SDP embedding is unique. There are many
open problems in characterizing UR conditions, see Ye’s survey at ICCM’2010.

In practice, we often meet problems with noisy measurements αd2
ij ≥ d̃2

ij ≤
βd2

ij . If we relax the constraint ‖yi − yj‖2 = d2
ij or equivalently Ai • X = bi to

inequalities, however we can achieve arbitrary small rank solution. To see this,
assume that

AiX = bi 7→ αbi ≤ AiX ≤ βbi i = 1, . . . ,m,where β ≥ 1, α ∈ (0, 1)

then So, Ye, and Zhang (2008) [SYZ08] show the following result.

Theorem 6.2. For every d ≥ 1, there is a SDP solution X̂ � 0 with rank

rank(X̂) ≤ d, if the following holds,

β =


1 +

18 ln 2m

d
1 ≤ d ≤ 18 ln 2m

1 +

√
18 ln 2m

d
d ≥ 18 ln 2m

α =


1

e(2m)2/d
1 ≤ d ≤ 4 ln 2m

max

{
1

e(2m)2/d
, 1−

√
4 ln 2m

d

}
d ≥ 4 ln 2m

Note that α, β are independent to n.
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7. Maximal Variance Unfolding

Here we give a special case of SDP embedding, Maximal Variance Unfolding
(MVU) [WS06]. In this case we choose graph G = (V,E) as k-nearest neighbor
graph. As a contrast to the SDP embedding above, we did not pursue a semi-
definite relaxation X � Y TY , but instead define it as a positive semi-definite
kernel K = Y TY and maximize the trace of K.

Consider a set of points xi (i = 1, . . . , n) whose pairwise distance dij is known
if xj lies in k-nearest neighbors of xi. In other words, consider a k-nearest neighbor
graph G = (V,E) with V = {xi : i = 1, . . . , n} and (i, j) ∈ E if j is a member of
k-nearest neighbors of i.

Our purpose is to find coordinates yi ∈ Rk for i = 1, 2, . . . , n s.t.

d2
ij = ‖yi − yj‖2

wherever (i, j) ∈ E and
∑
i yi = 0.

Set Kij = 〈yi, yj〉. Then K is symmetric and positive semidefinite, which
satisfies

Kii +Kjj − 2Kij = d2
ij .

There are possibly many solutions for such K, and we look for a particular one
with maximal trace which characterizes the maximal variance.

max trace(K) =

n∑
i=1

λi(K)(64)

s.t. Kii +Kjj − 2Kij = d2
ij ,∑

j

Kij = 0,

K � 0

Again it is a SDP. The final embedding is obtained by using eigenvector decompo-
sition of K = Y TY .

However we note here that maximization of trace is not a provably good ap-
proach to “unfold” a manifold. Sometimes, there are better ways than MVU, e.g.
if original data lie on a plane then maximization of the diagonal distance between
two neighboring triangles will unfold and force it to be a plane. This is a special
case of the general k+1-lateration graphs [SY07]. From here we see that there are
other linear objective functions better than trace for the purpose of “unfolding” a
manifold.



CHAPTER 5

Nonlinear Dimensionality Reduction

1. Introduction

In the past month we talked about two topics: one is the sample mean and
sample covariance matrix (PCA) in high dimensional spaces. We have learned that
when dimension p is large and sample size n is relatively small, in contrast to the
traditional statistics where p is fixed and n→∞, both sample mean and PCA may
have problems. In particular, Stein’s phenomenon shows that in high dimensional
space with independent Gaussian distributions, the sample mean is worse than a
shrinkage estimator; moreover, random matrix theory sheds light on that in high
dimensional space with sample size in a fixed ratio of dimension, the sample co-
variance matrix and PCA may not reflect the signal faithfully. These phenomena
start a new philosophy in high dimensional data analysis that to overcome the curse
of dimensionality, additional constraints has to be put that data never distribute
in every corner in high dimensional spaces. Sparsity is a common assumption in
modern high dimensional statistics. For example, data variation may only depend
on a small number of variables; independence of Gaussian random fields leads to
sparse covariance matrix; and the assumption of conditional independence can also
lead to sparse inverse covariance matrix. In particular, an assumption that data
concentrate around a low dimensional manifold in high dimensional spaces, leads
to manifold learning or nonlinear dimensionality reduction, e.g. ISOMAP, LLE,
and Diffusion Maps etc. This assumption often finds example in computer vision,
graphics, and image processing.

All the work introduced in this chapter can be regarded as generalized PCA/MDS
on nearest neighbor graphs, which has roots in manifold learning concept. Two
pieces of milestone works, ISOMAP [TdSL00] and Locally Linear Embedding
(LLE) [RL00], are firstly published in science 2000, which opens a new field called
nonlinear dimensionality reduction, or manifold learning in high dimensional data
analysis. Here is the development of manifold learning method:

PCA −→ LLE −→


Laplacian Eigen Map

Diffusion Map
Hessian LLE

Local Tangent Space Alignment

MDS −→ ISOMAP

To understand the motivation of such a novel methodology, let’s take a brief
review on PCA/MDS. Given a set of data xi ∈ Rp (i = 1, . . . , n) or merely pairwise
distances d(xi, xj), PCA/MDS essentially looks for an affine space which best cap-
ture the variation of data distribution, see Figure 1(a). However, this scheme will
not work in the scenario that data are actually distributed on a highly nonlinear
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60 5. NONLINEAR DIMENSIONALITY REDUCTION

curved surface, i.e. manifolds, see the example of Swiss Roll in Figure 1(b). Can we
extend PCA/MDS in certain sense to capture intrinsic coordinate systems which
charts the manifold?

(a) (b)

Figure 1. (a) Find an affine space to approximate data variation
in PCA/MDS. (b) Swiss Roll data distributed on a nonlinear 2-D
submanifold in Euclidean space R3. Our purpose is to capture an
intrinsic coordinate system describing the submanifold.

ISOMAP and LLE, as extensions from MDS and local PCA, respectively, leads
to a series of attempts to address this problem.

All the current techniques in manifold learning, as extensions of PCA and
MDS, are often called as Spectral Kernel Embedding. The common theme of these
techniques can be described in Figure 2. The basic problem is: given a set of
data points {x1, x2, ..., xn ∈ Rp}, how to find out y1, y2, ..., yn ∈ Rd, where d � p,
such that some geometric structures (local or global) among data points are best
preserved.

Figure 2. The generative model for manifold learning. Y is the
hidden parameter space (like rotation angle of faces below), f is
a measure process which maps Y into a sub-manifold in a high
dimensional ambient space, X = f(Y ) ⊂ Rp. All of our purpose is
to recover this hidden parameter space Y given samples {xi ∈ Rp :
i = 1, . . . , n}.

All the manifold learning techniques can be summarized in the following meta-
algorithm, which explains precisely the name of spectral kernel embedding. All the
methods can be called certain eigenmaps associated with some positive semi-definite
kernels.

1. Construct a data graph G = (V,E), where V = {xi : i = 1, ..., n}.
e.g.1. ε-neighborhood, i ∼ j ⇔ d(xi, xj) 6 ε, which leads to an undirected

graph;
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e.g.2. k-nearest neighbor, (i, j) ∈ E ⇔ j ∈ Nk(i), which leads to a directed
graph.

2. Construct a positive semi-definite matrix K (kernel).

3. Eigen-decomposition K = UΛUT , then Yd = UdΛ
1
2

d , where choose d eigen-
vectors (top or bottom) Ud.

Example 3 (PCA). G is complete, K = Σ̂n is a covariance matrix.

Example 4 (MDS). G is complete, K = − 1
2HDH

T , where Dij = d2(xi, xj).

Example 5 (ISOMAP). G is incomplete.

Dij =

{
d(xi, xj) if (i, j) ∈ E,
d̂g(xi, xj) if (i, j) 6∈ E.

where d̂g is a graph shorted path. Then

K = −1

2
HDHT .

Note that K is positive semi-definite if and only if D is a squared distance matrix.

Example 6 (LLE). G is incomplete. K = (I −W )T (I −W ), where

Wn×n
ij =

{
wij j ∈ N (i),

0 other’s.

and wij solves the following optimization problem

min∑
j wij=1

‖Xi −
∑

j∈N (i)

wijX̄j‖2, X̄j = Xj −Xi.

After obtaining W , compute the global embedding d-by-n embedding matrix Y =
[Y1, . . . , Yn],

min
Y

n∑
i=1

‖Yi −
n∑
j=1

WijYj‖2 = trace((I −W )Y TY (I −W )T ).

This is equivalent to find smallest eigenvectors of K = (I −W )T (I −W ).

2. ISOMAP

ISOMAP is an extension of MDS, where pairwise euclidean distances between
data points are replaced by geodesic distances, computed by graph shortest path
distances.

(1) Construct a neighborhood graph G = (V,E, dij) such that
V = {xi : i = 1, . . . , n}
E = {(i, j) : if j is a neighbor of i, i.e. j ∈ Ni}, e.g. k-nearest

neighbors, ε-neighbors
dij = d(xi, xj), e.g. Euclidean distance when xi ∈ Rp

(2) Compute graph shortest path distances
dij = minP=(xi,...,xj)(‖xi − xt1‖+ . . .+ ‖xtk−1

− xj‖), is the length
of a graph shortest path connecting i and j

Dijkstra’s algorithm (O(kn2 log n)) and Floyd’s Algorithm (O(n3))
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(3) classical MDS with D = (d2
ij)

construct a symmetric (positive semi-definite if D is a squared dis-
tance) B = −0.5HDHT where H = I − 11T /n (or H = I − 1aT for any
aT1 = 1).

Find eigenvector decomposition of B = UΛUT and choose top d
eigenvectors as embedding coordinates in Rd, i.e. Yd = [y1, . . . , yd] =

[U1, . . . , Ud]Λ
1/2
d ∈ Rn×d

Algorithm 2: ISOMAP Algorithm

Input: A weighted undirected graph G = (V,E, d) such that
1 V = {xi : i = 1, . . . , n}
2 E = {(i, j) : if j is a neighbor of i, i.e. j ∈ Ni}, e.g. k-nearest neighbors,
ε-neighbors

3 dij = d(xi, xj), e.g. Euclidean distance when xi ∈ Rp

Output: Euclidean k-dimensional coordinates Y = [yi] ∈ Rk×n of data.
4 Step 1 : Compute graph shortest path distances

dij = min
P=(xi,...,xj)

(‖xi − xt1‖+ . . .+ ‖xtk−1 − xj‖),

which is the length of a graph shortest path connecting i and j;

5 Step 2 : Compute K = −1

2
H ·D ·HT (D := [d2ij ]), where H is the Househölder

centering matrix;
6 Step 3 : Compute Eigenvalue decomposition K = UΛUT with

Λ = diag(λ1, . . . , λn) where λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0;
7 Step 4 : Choose top k nonzero eigenvalues and corresponding eigenvectors,

X̃k = UkΛk
1
2 where

Uk = [u1, . . . , uk], uk ∈ Rn,

Λk = diag(λ1, . . . , λk)

with λ1 ≥ λ2 ≥ . . . ≥ λk > 0.

The basic feature of ISOMAP can be described as: we find a low dimensional
embedding of data such that points nearby are mapped nearby and points far away
are mapped far away. In other words, we have global control on the data distance
and the method is thus a global method. The major shortcoming of ISOMAP
lies in its computational complexity, characterized by a full matrix eigenvector
decomposition.

2.1. ISOMAP Example. Now we give an example of ISOMAP with matlab
codes.
% load 33-face data

load ../data/face.mat Y

X = reshape(Y,[size(Y,1)*size(Y,2) size(Y,3)]);

p = size(X,1);

n = size(X,2);

D = pdist(X’);

DD = squareform(D);

% ISOMAP embedding with 5-nearest neighbors

[Y iso,R iso,E iso]=isomapII(DD,’k’,5);
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(a) (b)

Figure 3. (a) Residual Variance plot for ISOMAP. (b) 2-D
ISOMAP embedding, where the first coordinate follows the order
of rotation angles of the face.

% Scatter plot of top 2-D embeddings

y=Y iso.coords{2};
scatter(y(1,:),y(2,:))

2.2. Convergence of ISOMAP. Under dense-sample and regularity condi-
tions on manifolds, ISOMAP is proved to show convergence to preserve geodesic
distances on manifolds. The key is to approximate geodesic distance on manifold
by a sequence of short Euclidean distance hops.

Consider arbitrary two points on manifold x, y ∈M . Define

dM (x, y) = inf
γ
{length(γ)}

dG(x, y) = min
P

(‖x0 − x1‖+ . . .+ ‖xt−1 − xt‖)

dS(x, y) = min
P

(dM (x0, x1) + . . .+ dM (xt−1, xt))

where γ varies over the set of smooth arcs connecting x to y in M and P varies
over all paths along the edges of G starting at x0 = x and ending at xt = y. We
are going to show dM ≈ dG with the bridge dS .

It is easy to see the following upper bounds by dS :

(65) dM (x, y) ≤ dS(x, y)

(66) dG(x, y) ≤ dS(x, y)

where the first upper bound is due to triangle inequality for the metric dM and the
second upper bound is due to that Euclidean distances ‖xi−xi+1‖ are smaller than
arc-length dM (xi, xi+1).

To see other directions, one has to impose additional conditions on sample
density and regularity of manifolds.

Lemma 2.1 (Sufficient Sampling). Let G = (V,E) where V = {xi : i = 1, . . . , n} ⊆
M is a ε-net of manifold M , i.e.for every x ∈ M there exists xi ∈ V such that
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dM (x, xi) < ε, and {i, j} ∈ E if dM (xi, xj) ≤ αε (α ≥ 4). Then for any pair
x, y ∈ V ,

dS(x, y) ≤ max(α− 1,
α

α− 2
)dM (x, y).

Proof. Let γ be a shortest path connecting x and y on M whose length is
l. If l ≤ (α − 2)ε, then there is an edge connecting x and y whence dS(x, y) =
dM (x, y). Otherwise split γ into pieces such that l = l0 + tl1 where l1 = (α − 2)ε
and ε ≤ l0 < (α − 2)ε. This divides arc γ into a sequence of points γ0 = x, γ1,. . .,
γt+1 = y such that dM (x, γ1) = l0 and dM (γi, γi+1) = l1 (i ≥ 1). There exists a
sequence of x0 = x, x1, . . . , xt+1 = y such that dM (xi, γi) ≤ ε and

dM (xi, xi+1) ≤ dM (xi, γi) + dM (γi, γi+1) + dM (γi+1, xi+1)

≤ ε+ l1 + ε

= αε

= l1α/(α− 2)

whence (xi, xi+1) ∈ E. Similarly dM (x, x1) ≤ dM (x, γ1) + dM (γ1, x1) ≤ (α− 1)ε ≤
l0(α− 1).

dS(x, y) ≤
t−1∑
i=0

dM (xi, xi+1)

≤ lmax

(
α

α− 2
, α− 1

)
Setting α = 4 gives rise to dS(x, y) ≤ 3dM (x, y). �

The other lower bound dS(x, y) ≤ cdG(x, y) requires that for every two points
xi and xj , Euclidean distance ‖xi − xj‖ ≤ cdM (xi, xj). This imposes a regularity
on manifold M , whose curvature has to be bounded. We omit this part here and
leave the interested readers to the reference by Bernstein, de Silva, Langford, and
Tenenbaum 2000, as a supporting information to the ISOMAP paper.

3. Locally Linear Embedding (LLE)

In applications points nearby should be mapped nearby, while points far away
should impose no constraint. This is because in applications when points are close
enough, they are similar, while points are far, there is no faithful information to
measure how far they are. This motivates another type of algorithm, locally linear
embedding. This is a local method as it involves local PCA and sparse eigenvector
decomposition.

(1) Construct a neighborhood graph G = (V,E,W ) such that
V = {xi : i = 1, . . . , n}
E = {(i, j) : if j is a neighbor of i, i.e. j ∈ Ni}, e.g. k-nearest

neighbors, ε-neighbors
Wij = d(xi, xj) in Euclidean distance

(2) Local fitting:
Pick up a point xi and its neighbors Ni
Compute the local fitting weights

min∑
j∈Ni

wij=1
‖xi −

∑
j∈Ni

wij(xj − xi)‖2.



3. LOCALLY LINEAR EMBEDDING (LLE) 65

This can be done by Lagrange multiplier method, i.e. solving

min
wij

1

2
‖xi −

∑
j∈Ni

wij(xj − xi)‖2 + λ(1−
∑
j∈Ni

wij).

Let wi = [wij1 , . . . wijk ]T ∈ Rk, X̄i = [xj1 −xi, . . . , xjk −xi], and the local

Gram (covariance) matrix C
(i)
jk = 〈xj − xi, xk − xi〉, whence the weights

are
wi = C†i (X̄T

i xi + λ1),

where the Lagrange multiplier equals to

λ =
1

1TC†i 1

(
1− 1TC†i X̄

T
i xi

)
,

and C†i is a Moore-Penrose (pseudo) inverse of Ci. Note that Ci is often
ill-conditioned and to find its Moore-Penrose inverse one can use regular-
ization method (Ci + µI)−1 for some µ > 0.

(3) Global alignment
Define a n-by-n weight matrix W :

Wij =

{
wij , j ∈ Ni
0, otherwise

Compute the global embedding d-by-n embedding matrix Y ,

min
Y

∑
i

‖yi −
n∑
j=1

Wijyj‖2 = trace(Y (I −W )T (I −W )Y T )

In other words, construct a positive semi-definite matrix B = (I −
W )T (I−W ) and find d+1 smallest eigenvectors of B, v0, v1, . . . , vd associ-
ated smallest eigenvalues λ0, . . . , λd. Drop the smallest eigenvector which
is the constant vector explaining the degree of freedom as translation and
set Y = [v1/

√
(λ1), . . . , vd/

√
λd]

T .

The benefits of LLE are:

• Neighbor graph: k-nearest neighbors is of O(kn)
• W is sparse: kn/n2 = k/n non-zeroes
• B = (I −W )T (I −W ) is guaranteed to be positive semi-definite

However, unlike ISOMAP, it is not clear if LLE constructed above converges
under certain conditions. This has to be left to some variations of basic LLE above,
Hessian LLE and LTSA to finish the convergence conditions.

Table 1. Comparisons between ISOMAP and LLE.

ISOMAP LLE
MDS on geodesic distance matrix local PCA + eigen-decomposition

global approach local approach
no for nonconvex manifolds with holes ok with nonconvex manifolds with holes

Extensions:
landmark (Nystrom)
conformal
isometric, etc.

Extensions:
Hessian
Laplacian
LTSA etc.
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4. Laplacian LLE (Eigenmap)

Consider the graph Laplacian with heat kernels [BN01, BN03]. Define a
weight matrix W = (wij) ∈ Rn×n by

wij =

{
e−
‖xi−xj‖

2

t j ∈ N (i),

0 otherwise.

Let D = diag(
∑
j∈Ni wij) be the diagonal matrix with weighted degree as diagonal

elements.
Define the unnormalized graph Laplacian by

L = D −W,
and the normalized graph Laplacian by

L = D−
1
2 (D −W )D−

1
2 .

Note that eigenvectors of L are also generalized eigenvectors of L up to a scaling
matrix. This can be seen in the following reasoning.

Lφ = λφ

⇔ D−
1
2 (D −W )D−

1
2φ = λφ

⇔ Lv = (D −W )v = λDv, v = D−
1
2φ

Generalized eigenvectors v of L are also right eigenvectors of row Markov matrix
P = D−1W . (∵ Pv = λv ⇔ D−1Wv = λv ⇔ (I − D−1W )v = (1 − λ)v ∴
(D −W )v = (1− λ)Dv).

Depending on the meaning of eigenvectors above, we can always choose bot-
tom d+ 1 eigenvectors, and dropped the smallest eigenvector (the constant vector
associated with eigenvalue 0) and use the remaining d vectors to construct a d
dimensional embedding of data.

4.1. Convergence of Laplacian Eigenmap. Why choose Laplacian? Con-
sider a linear chain graph,

(df)(i) = fi+1 − fi = [(z − 1)f ](i)

d2f = (z − 1)2f = (z2 − 2z + 1)f → fi+1 − 2fi + fi−1

On graphs, d2f = (D −W )f = Lf

fTLf =
∑
i≥j

wij(fi − fj)2 ≥ 0 ∼
∫
‖∇Mf‖2 =

∫
(trace(fTHf))2

where H = [∂2/∂i∂j ] ∈ Rd×d is the Hessian matrix.
Some rigorous results about convergence of Laplacian eigenmaps are given

in [BN08]. Assume that M is a compact manifold with vol(M) = 1. Let the
Laplacian-Beltrami operator

∆M : C(M) → L2(M)

f 7→ − ÷ (∇f)
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Consider the following operator

L̂t,n : C(M) → C(M)

f 7→ 1

t(4πt)k/2

(∑
i

e−
‖y−xi‖

4t f(y)−
∑
i

e
‖y−xi‖

2

4t f(xi)

)
where (L̂t,nf)(y) is a function on M, and

Lt : L2(M) → L2(M)

f 7→ 1

t(4πt)k/2

(∫
M
e−
‖y−x‖

4t f(y)dx−
∫
M
e
‖y−x‖2

4t f(x)dx

)
.

Then [BN08] shows that when those operators have no repeated eigenvalues,

the spectrum of L̂t,n converges to Lt as n → ∞ (variance), where the latter con-
verges to that of ∆M with a suitable choice of t → ∞ (bias). The following gives
a summary.

Theorem 4.1 (Belkin-Niyogi). Assume that all the eigenvalues in consideration

are of multiplicity one. For small enough t, let λ̂tn,i be the i-th eigenvalue of L̂t,n
and v̂tn,i be the corresponding eigenfunction. Let λi and vi be the corresponding
eigenvalue and eigenfunction of ∆M. Then there exists a sequence tn → 0 such
that

lim
n→∞

λ̂tnn,i = λi

lim
n→∞

‖v̂tnn,i − vi‖ = 0

where the limits are taken in probability.

From above one can see that Laplacian LLE minimizes trace of Hessian. Is
that what you desire? Why not the original Hessian?

5. Hessian LLE

Laplacian Eigenmap looks for coordinate curves

min

∫
‖∇Mf‖2, ‖f‖ = 1

while Hessian Eigenmap looks for

min

∫
‖Hf‖2, ‖f‖ = 1

Donoho and Grimes (2003) [DG03b] replaces the graph Laplacian, or the trace
of Hessian matrix, by the whole Hessian. This is because the kernel of Hessian,{

f(y1, . . . , yd) :
∂2f

∂yi∂yj
= 0

}
must be constant function or linear functions in yi (i = 1, . . . , d). Therefore this
kernel space is a linear subspace of dimension d+1. Minimizing Hessian will exactly
leads to a basis with constant function and d independent coordinate functions.

1. G is incomplete, often k-nearest neighbor graph.
2. Local SVD on neighborhood of xi, for xij ∈ N (xi),

X̃(i) = [xi1 − µi, ..., xik − µi]p×k = Ũ (i)Σ̃(Ṽ (i))T ,
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where µi =
∑k
j=1 xij = 1

kXi1, Ũ (i) = [Ũ
(i)
1 , ..., Ũ

(i)
k ] is an approximate tangent

space at xi.
3. Hessian estimation, assumed d-dimension: define

M = [1, Ṽ1, ..., Ṽk, Ṽ1Ṽ2, ..., Ṽd−1Ṽd] ∈ Rk×(1+d+(d2))

where ṼiṼj = [ṼikṼjk]T ∈ Rk denotes the elementwise product (Hadamard product)

between vector Ṽi and Ṽj .
Now we perform a Gram-Schmidt Orthogonalization procedure on M , get

M̃ = [1, v̂1, ..., v̂k, ŵ1, ŵ2, ..., ŵ(d2)−1] ∈ Rk×(1+d+(d2))

Define Hessian by

[H(i)]T = [last

(
d

2

)
columns of M̃ ]k×(d2)

as the first d + 1 columns of M̃ consists an orthonormal basis for the kernel of
Hessian.

Define a selection matrix S(i) ∈ Rn×k which selects those data in N (xi), i.e.

[x1, .., xn]S(i) = [xi1 , ..., xik ]

Then the kernel matrix is defined to be

K =

n∑
i=1

S(i)H(i)TH(i)S(i)T ∈ Rn×n

Find smallest d + 1 eigenvectors of K and drop the smallest eigenvector, the re-
maining d eigenvectors will give rise to a d dimensional embedding of data points.

5.1. Convergence of Hessian LLE. There are two assumptions for the con-
vergence of ISOMAP:

• Isometry: the geodesic distance between two points on manifolds equals
to the Euclidean distances between intrinsic parameters.

• Convexity: the parameter space is a convex subset in Rd.
Therefore, if the manifold contains a hole, ISOMAP will not faithfully recover
the intrinsic coordinates. Hessian LLE above is provable to find local orthogonal
coordinates for manifold reconstruction, even in nonconvex case. Figure [?] gives
an example.

Donoho and Grimes [DG03b] relaxes the conditions above into the following
ones.

• Local Isometry: in a small enough neighborhood of each point, geodesic
distances between two points on manifolds are identical to Euclidean dis-
tances between parameter points.

• Connecteness: the parameter space is an open connected subset in Rd.
Based on the relaxed conditions above, they prove the following result.

Theorem 5.1. Supper M = ψ(Θ) where Θ is an open connected subset of Rd,
and ψ is a locally isometric embedding of Θ into Rn. Then the Hessian H(f) has a
d+ 1 dimensional nullspace, consisting of the constant function and d-dimensional
space of functions spanned by the original isometric coordinates.
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Algorithm 3: Hessian LLE Algorithm

Input: A weighted undirected graph G = (V,E, d) such that
1 V = {xi ∈ Rp : i = 1, . . . , n}
2 E = {(i, j) : if j is a neighbor of i, i.e. j ∈ Ni}, e.g. k-nearest neighbors

Output: Euclidean k-dimensional coordinates Y = [yi] ∈ Rk×n of data.
3 Step 1 : Compute local PCA on neighborhood of xi, for,

X̃(i) = [xi1 − µi, ..., xik − µi]
p×k = Ũ (i)Σ̃(Ṽ (i))T , xij ∈ N (xi),

where µi =
∑k

j=1 xij = 1
k
Xi1, Ũ (i) = [Ũ

(i)
1 , ..., Ũ

(i)
k ] is an approximate tangent

space at xi;
4 Step 2 : Hessian estimation, assumed d-dimension: define

M = [1, Ṽ1, ..., Ṽk, Ṽ1Ṽ2, ..., Ṽd−1Ṽd] ∈ Rk×(1+d+(d2))

where ṼiṼj = [ṼikṼjk]T ∈ Rk denotes the elementwise product (Hadamard

product) between vector Ṽi and Ṽj . Now we perform a Gram-Schmidt
Orthogonalization procedure on M , get

M̃ = [1, v̂1, ..., v̂k, ŵ1, ŵ2, ..., ŵ(d2)−1
] ∈ Rk×(1+d+(d2))

Define Hessian by

[H(i)]T = [last

(
d

2

)
columns of M̃ ]

k×(d2)

as the first d+ 1 columns of M̃ consists an orthonormal basis for the kernel of
Hessian.

5 Step 3 : Define

K =

n∑
i=1

S(i)H(i)TH(i)S(i)T ∈ Rn×n, [x1, .., xn]S(i) = [xi1 , ..., xik ],

find smallest d+ 1 eigenvectors of K and drop the smallest eigenvector, the
remaining d eigenvectors will give rise to a d-embedding.

Under this theorem, the original isometric coordinates can be recovered, up to
a rigid motion, by identifying a suitable basis for the null space of H(f).

6. Local Tangent Space Alignment (LTSA)

A shortcoming of Hessian LLE is the nonlinear construction of Hessian which
requires Hadamard products between tangent vectors. This is prone to noise.
Zhenyue Zhang and Hongyuan Zha (2002) [ZZ02] suggest the following procedure
which does not involve nonlinear Hessian but still leave an orthogonal basis for
tangent space as bottom eigenvectors. In contrast to Hessian LLE’s minimization
of projections on pairwise products between tangent vectors, LTSA minimizes the
projection on the normal space.

LTSA looks for the following coordinates,

min
Y

∑
i∼j
‖yi − UiUTj yj‖2

where Ui is a local PCA basis for tangent space at point xi ∈ Rp.
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Figure 4. Comparisons of Hessian LLE on Swiss roll against
ISOMAP and LLE. Hessian better recovers the intrinsic coordi-
nates as the rectangular hole is the least distorted.

Figure 5. Local tangent space approximation.

Note that Connection Laplacian looks for:

min
Y

∑
i∼j
‖yi −Oijyj‖2, Oij = arg min

O
‖Ui −OijUj‖2

where Ui is a local PCA basis for tangent space at point xi ∈ Rp.
1. G is incomplete, taken to be k-nn graph here.
2. Local SVD on neighborhood of xi, xij ∈ N (xi),

X̃(i) = [xi1 − µi, ..., xik − µi]p×k = Ũ (i)Σ̃(Ṽ (i))T ,

where µi =
∑k
j=1 xij = 1

kXi1, Ũ (i) = [Ũ
(i)
1 , ..., Ũ

(i)
k ] is an approximate tangent

space at xi. Define

Gi = [1/
√
k, Ṽ1

(i)
, ..., Ṽd

(i)
]k×(d+1)

3. Alignment (kernel) matrix

Kn×n = Φ =

n∑
i=1

SiWiW
T
i S

T
i
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where weight matrix

W k×k
i = I −GiGTi

selection matrix Sn×ki : [xi1 , ..., xik ] = [x1, ..., xn]Sn×ki

Similarly as above, choose bottom d + 1 eigenvectors, and dropped smallest
which gives embedding matrix Y (n×d).

As the Hessian LLE, LTSA may recover the global coordinates under certain
conditions where [ZZ09] presents some analysis on this.

Algorithm 4: LTSA Algorithm

Input: A weighted undirected graph G = (V,E, d) such that
1 V = {xi ∈ Rp : i = 1, . . . , n}
2 E = {(i, j) : if j is a neighbor of i, i.e. j ∈ Ni}, e.g. k-nearest neighbors

Output: Euclidean k-dimensional coordinates Y = [yi] ∈ Rk×n of data.
3 Step 1 : Compute local PCA on neighborhood of xi, xij ∈ N (xi),

X̃(i) = [xi1 − µi, ..., xik − µi]
p×k = Ũ (i)Σ̃(Ṽ (i))T ,

where µi =
∑k

j=1 xij = 1
k
Xi1, Ũ (i) = [Ũ

(i)
1 , ..., Ũ

(i)
k ] is an approximate tangent

space at xi. Define

Gi = [1/
√
k, Ṽ1

(i)
, ..., Ṽd

(i)
]k×(d+1);

4 Step 2 : Alignment (kernel) matrix

Kn×n =

n∑
i=1

SiWiW
T
i S

T
i , W k×k

i = I −GiG
T
i ,

where selection matrix Sn×k
i : [xi1 , ..., xik ] = [x1, ..., xn]Sn×k

i ;
5 Step 3 : Find smallest d+ 1 eigenvectors of K and drop the smallest eigenvector,

the remaining d eigenvectors will give rise to a d-embedding.

7. Diffusion Map

Recall xi ∈ Rd, i = 1, 2, · · · , n,

Wij = exp

(
−d(xi, xj)

2

t

)
,

W is a symmetrical n× n matrix.
Let di =

∑n
j=1Wij and

D = diag(di), P = D−1W

and

S = D−1/2WD−1/2 = I − L, L = D−1/2(D −W )D−1/2.

Then

1) S is symmetrical, has n orthogonal eigenvectors V = [v1, v2, · · · , vn],

S = V ΛV T , Λ = diag(λi)
T ∈ Rn−1, V TV = I.

Here we assume that 1 = λ0 ≥ λ1 ≥ λ2 . . . ≥ λn−1 due to positivity of W .
2) Φ = D−1/2V = [φ1, φ2, · · · , φn] are right eigenvectors of P , PΦ = ΦΛ.
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3) Ψ = D1/2V = [ψ1, ψ2, · · · , ψn] are left eigenvectors of P , ΨTP = ΛΨT .
Note that φ0 = 1 ∈ Rn and ψ0(i) = di/

∑
i d

2
i . Thus ψ0 is the same

eigenvector as the stationary distribution π(i) = di/
∑
i di (πT 1 = 1) up

to a scaling factor.

Φ and Ψ are bi-orthogonal basis, i.e. φTi Dψj = δij or simply ΦTDΨ = I.
Define diffusion map [CLL+05]

Φt(xi) = [λt1φ1(i), · · · , λtn−1φn−1(i)], t > 0.

7.1. General Diffusion Maps and Convergence. In [CLL+05] a general
class of diffusion maps are defined which involves a normalized weight matrix,

(67) Wα,t
ij =

Wij

pαi · pαj
, pi :=

∑
k

exp

(
−d(xi, xk)2

t

)
where α = 0 recovers the definition above. With this family, one can define Dα =
diag(

∑
jW

α,t
ij ) and the row Markov matrix

(68) Pα,t,n = D−1
α Wα,

whose right eigenvectors Φα lead to a family of diffusion maps parameterized by α.
Such a definition suggests the following integral operators as diffusion operators.

Assume that q(x) is a density on M.

• Let kt(x, y) = h(‖x−y‖2/t) where h is a radial basis function, e.g. h(z) =
exp(−z).

• Define

qt(x) =

∫
M
kt(x, y)q(y)dy

and form the new kernel

k
(α)
t (x, y) =

kt(x, y)

qαt (x)qαt (y)
.

• Let

d
(α)
t (x) =

∫
M
k

(α)
t (x, y)q(y)dy

and define the transition kernel of a Markov chain by

pt,α(x, y) =
k

(α)
t (x, y)

d
(α)
t (x)

.

Then the Markov chain can be defined as the operator

Pt,αf(x) =

∫
M
pt,α(x, y)f(y)q(y)dy.

• Define the infinitesimal generator of the Markov chain

Lt,α =
I − Pt,α

t
.

For this, Lafon et al.[CL06] shows the following pointwise convergence results.

Theorem 7.1. Let M ∈ Rp be a compact smooth submanifold, q(x) be a proba-
bility density on M, and ∆M be the Laplacian-Beltrami operator on M.

(69) lim
t→0

Lt,α =
∆M(fq1−α)

q1−α − ∆M(q1−α))

q1−α .
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This suggests that

• for α = 1, it converges to the Laplacian-Beltrami operator limt→0 Lt,1 =
∆M;

• for α = 1/2, it converges to a Schrödinger operator whose conjugation
leads to a forward Fokker-Planck equation;

• for α = 0, it is the normalized graph Laplacian.

A central question in diffusion maps is:

Why we choose right eigenvectors φi in diffusion map?

To answer this we will introduce the concept of lumpability in finite Markov chains
on graphs.

8. Connection Laplacian and Vector Diffusion Maps

to be finished...

9. Comparisons

According to the comparative studies by Todd Wittman, LTSA has the best
overall performance in current manifold learning techniques. Try yourself his code,
mani.m, and enjoy your new discoveries!

Figure 6. Comparisons of Manifold Learning Techniques on Swiss Roll





CHAPTER 6

Random Walk on Graphs

We have talked about Diffusion Map as a model of Random walk or Markov
Chain on data graph. Among other methods of Manifold Learning, the distinct
feature of Diffusion Map lies in that it combines both geometry and stochastic
process. In the next few sections, we will talk about general theory of random
walks or finite Markov chains on graphs which are related to data analysis. From
this one can learn the origin of many ideas in diffusion maps.

Random Walk on Graphs.

• Perron-Frobenius Vector and Google’s PageRank: this is about Perron-
Frobenius theory for nonnegative matrices, which leads to the character-
ization of nonnegative primary eigenvectors, such as stationary distribu-
tions of Markov chains; application examples include Google’s PageRank.

• Fiedler Vector, Cheeger’s Inequality, and Spectral Bipartition: this is
about the second eigenvector in a Markov chain, mostly reduced from
graph Laplacians (Fiedler theory, Cheeger’s Inequality), which is the ba-
sis for spectral partition.

• Lumpability/Metastability, piecewise constant right eigenvector, and Mul-
tiple spectral clustering (“MNcut” by Maila-Shi, 2001): this is about
when to use multiple eigenvectors, whose relationship with lumpability
or metastability of Markov chains, widely used in diffusion map, image
segmentation, etc.

• Mean first passage time, commute time distance: the origins of diffusion
distances.

Today we shall discuss the first part.

1. Introduction to Perron-Frobenius Theory and PageRank

Given An×n, we define A > 0, positive matrix, iff Aij > 0 ∀i, j, and A ≥ 0,
nonnegative matrix, iff Aij ≥ 0 ∀i, j.
Note that this definition is different from positive definite:
A � 0⇔ A is positive-definite ⇔ xTAx > 0 ∀x 6= 0
A � 0⇔ A is semi-positive-definite ⇔ xTAx ≥ 0 ∀x 6= 0

Theorem 1.1 (Perron Theorem for Positive Matrix). Assume that A > 0, i.e.a
positive matrix. Then
1) ∃λ∗ > 0, ν∗ > 0, ‖ν∗‖2 = 1, s.t. Aν∗ = λ∗ν∗, ν∗ is a right eigenvector
(∃λ∗ > 0, ω > 0, ‖ω‖2 = 1, s.t. (ωT )A = λ∗ωT , left eigenvector)
2) ∀ other eigenvalue λ of A, |λ| < λ∗

3) ν∗ is unique up to rescaling or λ∗ is simple

75
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4) Collatz-Wielandt Formula

λ∗ = max
x≥0,x 6=0

min
xi 6=0

[Ax]i
xi

= min
x>0

max
[Ax]i
xi

.

Such eigenvectors will be called Perron vectors. This result can be extended to
nonnegative matrices.

Theorem 1.2 (Nonnegative Matrix, Perron). Assume that A ≥ 0, i.e.nonnegative.
Then
1’) ∃λ∗ > 0, ν∗ ≥ 0, ‖ν∗‖2 = 1, s.t. Aν∗ = λ∗ν∗ (similar to left eigenvector)
2’) ∀ other eigenvalue λ of A, |λ| ≤ λ∗
3’) ν∗ is NOT unique
4) Collatz-Wielandt Formula

λ∗ = max
x≥0,x 6=0

min
xi 6=0

[Ax]i
xi

= min
x>0

max
[Ax]i
xi

Notice the changes in 1’), 2’), and 3’). Perron vectors are nonnegative rather
than positive. In the nonnegative situation what we lose is the uniqueness in λ∗

(2’)and ν∗ (3’). The next question is: can we add more conditions such that the
loss can be remedied? Now recall the concept of irreducible and primitive matrices
introduced before.

Irreducibility exactly describes the case that the induced graph from A is con-
nected, i.e.every pair of nodes are connected by a path of arbitrary length. However
primitivity strengths this condition to k-connected, i.e.every pair of nodes are con-
nected by a path of length k.

Definition (Irreducible). The following definitions are equivalent:
1) For any 1 ≤ i, j ≤ n, there is an integer k ∈ Z, s.t. Akij > 0; ⇔
2) Graph G = (V,E) (V = {1, . . . , n} and {i, j} ∈ E iff Aij > 0) is (path-)
connected, i.e.∀{i, j} ∈ E, there is a path (x0, x1, . . . , xt) ∈ V n+1 where i = x0 and
xt = j, connecting i and j.

Definition (Primitive). The following characterizations hold:
1) There is an integer k ∈ Z, such that ∀i, j, Akij > 0; ⇔
2) Any node pair {i, j} ∈ E are connected with a path of length no more than k;
⇔
3) A has unique λ∗ = max |λ|; ⇐
4) A is irreducible and Aii > 0, for some i,

Note that condition 4) is sufficient for primitivity but not necessary; all the first
three conditions are necessary and sufficient for primitivity. Irreducible matrices
imply an unique primary eigenvector, but not unique primary eigenvalue.

When A is a primitive matrix, Ak becomes a positive matrix for some k, then we
can recover 1), 2) and 3) for positivity and uniqueness. This leads to the following
Perron-Frobenius theorem.

Theorem 1.3 (Nonnegative Matrix, Perron-Frobenius). Assume that A ≥ 0 and
A is primitive. Then
1) ∃λ∗ > 0, ν∗ > 0, ‖ν∗‖2 = 1, s.t. Aν∗ = λ∗ν∗ (right eigenvector)
and ∃ω > 0, ‖ω‖2 = 1, s.t. (ωT )A = λ∗ωT (left eigenvector)
2) ∀ other eigenvalue λ of A, |λ| < λ∗
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3) ν∗ is unique
4) Collatz-Wielandt Formula

λ∗ = max
x>0

min
[Ax]i
xi

= min
x>0

max
[Ax]i
xi

Such eigenvectors and eigenvalue will be called as Perron-Frobenius or primary
eigenvectors/eigenvalue.

Example (Markov Chain). Given a graph G = (V,E), consider a random walk
on G with transition probability Pij = Prob(xt+1 = j|xt = i) ≥ 0. Thus P is a

row-stochastic or row-Markov matrix i.e. P · −→1 =
−→
1 where

−→
1 ∈ Rn is the vector

with all elements being 1. From Perron theorem for nonnegative matrices, we know

ν∗ =
−→
1 > 0 is a right Perron eigenvector of P

λ∗ = 1 is a Perron eigenvalue and all other eigenvalues |λ| ≤ 1 = λ∗

∃ left PF-eigenvector π such that πTP = πT where π ≥ 0, 1Tπ = 1; such π is
called an invariant/equilibrium distribution
P is irreducible (G is connected) ⇒ π unique
P is primitive (G connected by paths of length ≤ k) ⇒ |λ| = 1 unique

⇔ lim
t→∞

πT0 P
k → πT ∀π0 ≥ 0, 1Tπ0 = 1

This means when we take powers of P , i.e.P k, all rows of P k will converge to the
stationary distribution πT . Such a convergence only holds when P is primitive. If
P is not primitive, e.g. P = [0, 1; 1, 0] (whose eigenvalues are 1 and −1), P k always
oscillates and never converges.

What’s the rate of the convergence? Let

γ = max{|λ2|, · · · , |λn|}, λ1 = 1

and πt = (PT )tπ0, roughly speaking we have

‖πt − π‖1 ∼ O(e−γt).

This type of rates will be seen in various mixing time estimations.

A famous application of Markov chain in modern data analysis is Google’s
PageRank [BP98], although Google’s current search engine only exploits that as
one factor among many others. But you can still install Google Toolbar on your
browser and inspect the PageRank scores of webpages. For more details about
PageRank, readers may refer to Langville and Meyer’s book [LM06].

Example (Pagerank). Consider a directed weighted graph G = (V,E,W ) whose
weight matrix decodes the webpage link structure:

wij =

{
#{link : i 7→ j}, (i, j) ∈ E
0, otherwise

Define an out-degree vector doi =
∑n
j=1 wij , which measures the number of out-links

from i. A diagonal matrix D = diag(di) and a row Markov matrix P1 = D−1W ,
assumed for simplicity that all nodes have non-empty out-degree. This P1 accounts
for a random walk according to the link structure of webpages. One would expect
that stationary distributions of such random walks will disclose the importance of
webpages: the more visits, the more important. However Perron-Frobenius above
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tells us that to obtain a unique stationary distribution, we need a primitive Markov
matrix. For this purpose, Google’s PageRank does the following trick.

Let Pα = αP1 + (1−α)E, where E = 1
n1 · 1T is a random surfer model, i.e.one

can jump to any other webpage uniformly. So in the model Pα, a browser will play
a dice: he will jump according to link structure with probability α or randomly
surf with probability 1− α. With 1 > α > 0, the existence of random surfer model
makes P a positive matrix, whence ∃!πs.t.PTα π = π (means ’there exists a unique
π’). Google choose α = 0.85 and in this case π gives PageRank scores.

Now you probably can figure out how to cheat PageRank. If there are many
cross links between a small set of nodes (for example, Wikipedia), those nodes must
appear to be high in PageRank. This phenomenon actually has been exploited by
spam webpages, and even scholar citations. After learning the nature of PageRank,
we should be aware of such mis-behaviors.

Finally we discussed a bit on Kleinberg’s HITS algorithm [Kle99], which is
based on singular value decomposition (SVD) of link matrix W . Above we have
defined the out-degree do. Similarly we can define in-degree dik =

∑
j wjk. High out-

degree webpages can be regarded as hubs, as they provide more links to others. On
the other hand, high in-degree webpages are regarded as authorities, as they were
cited by others intensively. Basically in/out-degrees can be used to rank webpages,
which gives relative ranking as authorities/hubs. It turns out Kleinberg’s HITS
algorithm gives pretty similar results to in/out-degree ranking.

Definition (HITS-authority). This use primary right singular vector ofW as scores
to give the ranking. To understand this, define La = WTW . Primary right singular
vector ofW is just a primary eigenvector of nonnegative symmetric matrix La. Since
La(i, j) =

∑
kWkiWkj , thus it counts the number of references which cites both

i and j, i.e.
∑
k #{i ← k → j}. The higher value of La(i, j) the more references

received on the pair of nodes. Therefore Perron vector tend to rank the webpages
according to authority.

Definition (HITS-hub). This use primary left singular vector of W as scores to
give the ranking. Define Lh = WWT , whence primary left singular vector of
W is just a primary eigenvector of nonnegative symmetric matrix Lh. Similarly
Lh(i, j) =

∑
kWikWjk, which counts the number of links from both i and j, hitting

the same target, i.e.
∑
k #{i→ k ← j}. Therefore the Perron vector Lh gives hub-

ranking.

The last example is about Economic Growth model where the Debreu intro-
duced nonnegative matrix into its study. Similar applications include population
growth and exchange market, etc.

Example (Economic Growth/Population/Exchange Market). Consider a market
consisting n sectors (or families, currencies) where Aij represents for each unit
investment on sector j, how much the outcome in sector i. The nonnegative con-
straint Aij ≥ 0 requires that i and j are not mutually inhibitor, which means that
investment in sector j does not decrease products in sector i. We study the dynam-
ics xt+1 = Axt and its long term behavior as t→∞ which describes the economic
growth.

Moreover in exchange market, an additional requirement is put as Aij = 1/Aji,
which is called reciprocal matrix. Such matrices are also used for preference aggre-
gation in decision theory by Saaty.
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From Perron-Frobenius theory we get: ∃λ∗ > 0 ∃ν∗ ≥ 0 Aν∗ = λ∗ν∗ and
∃ω∗ ≥ 0 ATω∗ = λ∗ω∗.
When A is primitive, (Ak > 0, i.e.investment in one sector will increase the product
in another sector in no more than k industrial periods), we have for all other
eigenvalues λ, |λ| < λ∗ and ω∗, ν∗ are unique. In this case one can check that the
long term economic growth is governed by

At → (λ∗)tν∗ω∗T

where
1) for all i, (xt)i

(xt−1)i
→ λ∗

2) distribution of resources → ν∗/
∑
i ν
∗
i , so the distribution is actually not bal-

anced
3) ω∗i gives the relative value of investment on sector i in long term

1.1. Proof of Perron Theorem for Positive Matrices. A complete proof
can be found in Meyer’s book [Mey00], Chapter 8. Our proof below is based on
optimization view, which is related to the Collatz-Wielandt Formula.

Assume that A > 0. Consider the following optimization problem:

max δ

s.t. Ax ≥ δx
x ≥ 0

x 6= 0

Without loss of generality, assume that 1Tx = 1. Let y = Ax and consider the
growth factor yi

xi
, for xi 6= 0. Our purpose above is to maximize the minimal

growth factor δ (yi/xi ≥ δ).
Let λ∗ be optimal value with ν∗ ≥ 0, 1T ν∗ = 1, and Aν∗ ≥ λ∗ν∗. Our

purpose is to show
1) Aν∗ = λ∗ν∗

2) ν∗ > 0
3) ν∗ and λ∗ are unique.
4) For other eigenvalue λ (λz = Az when z 6= 0), |λ| < λ∗.

Sketchy Proof of Perron Theorem. 1) If Aν∗ 6= λ∗ν∗, then for some i,
[Aν∗]i > λ∗ν∗i . Below we will find an increase of λ∗, which is thus not optimal.
Define ν̃ = ν∗ + εei with ε > 0 and ei denotes the vector which is one on the ith

component and zero otherwise.
For those j 6= i,

(Aν̃)j = (Aν∗)j + ε(Aei)j = λ∗ν∗j + εAji > λ∗ν∗j = λ∗ν̃j

where the last inequality is due to A > 0.
For those j = i,

(Aν̃)i = (Aν∗)i + ε(Aei)i > λ∗ν∗i + εAii.

Since λ∗ν̃i = λ∗ν∗i + ελ∗, we have

(Aν̃)i − (λ∗ν̃)i + ε(Aii − λ∗) = (Aν∗)i − (λ∗ν∗i )− ε(λ∗ −Aii) > 0,

where the last inequality holds for small enough ε > 0. That means, for some small
ε > 0, (Aν̃) > λ∗ν̃. Thus λ∗ is not optimal, which leads to a contradiction.
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2) Assume on the contrary, for some k, ν∗k = 0, then (Aν∗)k = λ∗ν∗k = 0. But
A > 0, ν∗ ≥ 0 and ν∗ 6= 0, so there ∃i, ν∗i > 0, which implies that Aν∗ > 0.
That contradicts to the previous conclusion. So ν∗ > 0, which followed by λ∗ > 0
(otherwise Aν∗ > 0 = λ∗ν∗ = Aν∗).

3) We are going to show that for every ν ≥ 0, Aν = µν ⇒ µ = λ∗. Following the
same reasoning above, A must have a left Perron vector ω∗ > 0, s.t. ATω∗ = λ∗ω∗.
Then λ∗(ω∗T ν) = ω∗TAν = µ(ω∗T ν). Since ω∗T ν > 0 (ω∗ > 0, ν ≥ 0), there
must be λ∗ = µ, i.e. λ∗ is unique, and ν∗ is unique.

4) For any other eigenvalue Az = λz, A|z| ≥ |Az| = |λ||z|, so |λ| ≤ λ∗. Then
we prove that |λ| < λ∗. Before proceeding, we need the following lemma.

Lemma 1.4. Az = λz, |λ| = λ∗, z 6= 0 ⇒ A|z| = λ∗|z|. λ∗ = maxi |λi(A)|
Proof of Lemma. Since |λ| = λ∗,

A|z| = |A||z| ≥ |Az| = |λ||z| = λ∗|z|
Assume that ∃k, 1

λ∗A|zk| > |zk|. Denote Y = 1
λ∗A|z| − |z| ≥ 0, then Yk > 0.

Using that A > 0, x ≥ 0, x 6= 0,⇒ Ax > 0, we can get

⇒ 1

λ∗
AY > 0,

1

λ∗
A|z| > 0

⇒ ∃ε > 0,
A

λ∗
Y > ε

A

λ∗
|z|

⇒ ĀY > εĀ|z|, Ā =
A

λ∗

⇒ Ā2|z| − Ā|z| > εĀ|z|

⇒ Ā2

1 + ε
|z| > Ā|z|

⇒ B =
Ā

1 + ε
, 0 = lim

m→∞
BmĀ|z| ≥ Ā|z|

⇒ Ā|z| = 0 ⇒ |z| = 0 ⇒ Y = 0 ⇒ Ā|z| = λ∗|z|
�

Equipped with this lemma, assume that we have Az = λz (z 6= 0) with |λ| = λ∗,
then

A|z| = λ∗|z| = |λ||z| = |Az| ⇒ |
∑
j

āijzj | =
∑
j

āij |zj |, Ā =
A

λ∗

which implies that zj has the same sign, i.e.zj ≥ 0 or zj ≤ 0 (∀j). In both cases |z|
(z 6= 0) is a nonnegative eigenvector A|z| = λ|z| which implies λ = λ∗ by 3). �

1.2. Perron-Frobenius theory for Nonnegative Tensors. Some researchers,
e.g. Liqun Qi (Polytechnic University of Hong Kong), Lek-Heng Lim (U Chicago)
and Kung-Ching Chang (PKU) et al. recently generalize Perron-Frobenius theory
to nonnegative tensors, which may open a field toward PageRank for hypergraphs
and array or tensor data. For example, A(i, j, k) is a 3-tensor of dimension n,
representing for each object 1 ≤ i ≤ n, which object of j and k are closer to i.

A tensor of order-m and dimension-n means an array of nm real numbers:

A = (ai1,...,im), 1 ≤ i1, . . . , im ≤ n
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An n-vector ν = (ν1, . . . , νn)T is called an eigenvector, if

Aν[m−1] = λνm−1

for some λ ∈ R, where

Aν[m−1] :=

n∑
i2,...,im=1

aki2...imνi2 · · · νim , νm−1 := (νm−1
1 , . . . , νm−1

n )T .

Chang-Pearson-Zhang [2008] extends Perron-Frobenius theorem to show the exis-
tence of λ∗ > 0 and ν∗ > 0 when A > 0 is irreducible.

λ∗ = max
x>0

min
i

[Ax[m−1]]i

xm−1
i

= min
x>0

max
i

[Ax[m−1]]i

xm−1
i

.

2. Introduction to Fiedler Theory and Cheeger Inequality

In this class, we introduced the random walk on graphs. The last lecture
shows Perron-Frobenius theory to the analysis of primary eigenvectors which is the
stationary distribution. In this lecture we will study the second eigenvector. To
analyze the properties of the graph, we construct two matrices: one is (unnormal-
ized) graph Laplacian and the other is normalized graph Laplacian. In the first
part, we introduce Fiedler Theory for the unnormalized graph Laplacian, which
shows the second eigenvector can be used to bipartite the graph into two connected
components. In the second part, we study the eigenvalues and eigenvectors of nor-
malized Laplacian matrix to show its relations with random walks or Markov chains
on graphs. In the third part, we will introduce the Cheeger Inequality for second
eigenvector of normalized Laplacian, which leads to an approximate algorithm for
Normalized graph cut (NCut) problem, an NP-hard problem itself.

2.1. Unnormalized Graph Laplacian and Fiedler Theory. Let G =
(V,E) be an undirected, unweighted simple1 graph. Although the edges here are
unweighted, the theory below still holds when weight is added. We can get a similar
conclusion with the weighted adjacency matrix. However the extension to directed
graphs will lead to different pictures.

We use i ∼ j to denote that node i ∈ V is a neighbor of node j ∈ V .

Definition (Adjacency Matrix).

Aij =

{
1 i ∼ j
0 otherwise

.

Remark. We can use the weight of edge i ∼ j to define Aij if the graph is weighted.
That indicates Aij ∈ R+. We can also extend Aij to R which involves both positive
and negative weights, like correlation graphs. But the theory below can not be
applied to such weights being positive and negative.

The degree of node i is defined as follows.

di =

n∑
j=1

Aij .

1Simple graph means for every pair of nodes there are at most one edge associated with it;
and there is no self loop on each node.
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Define a diagonal matrix D = diag(di). Now let’s come to the definition of Lapla-
cian Matrix L.

Definition (Graph Laplacian).

Lij =

 di i = j,
−1 i ∼ j
0 otherwise

This matrix is often called unnormalized graph Laplacian in literature, to dis-
tinguish it from the normalized graph Laplacian below. In fact, L = D −A.

Example. V = {1, 2, 3, 4}, E = {{1, 2}, {2, 3}, {3, 4}}. This is a linear chain with
four nodes.

L =


1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1

 .

Example. A complete graph of n nodes, Kn. V = {1, 2, 3...n}, every two points
are connected, as the figure above with n = 5.

L =


n− 1 −1 −1 ... −1
−1 n− 1 −1 ... −1
−1 ... −1 n− 1 −1
−1 ... −1 −1 n− 1

 .

From the definition, we can see that L is symmetric, so all its eigenvalues will
be real and there is an orthonormal eigenvector system. Moreover L is positive
semi-definite (p.s.d.). This is due to the fact that

vTLv =
∑
i

∑
j:j∼i

vi(vi − vj) =
∑
i

div2
i −

∑
j:j∼i

vivj


=

∑
i∼j

(vi − vj)2 ≥ 0, ∀v ∈ Rn.
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In fact, L admits the decomposition L = BBT where B ∈ R|V |×|E| is called inci-
dence matrix (or boundary map in algebraic topology) here, for any 1 ≤ j < k ≤ n,

B(i, {j, k}) =

 1, i = j,
−1, i = k,
0, otherwise

These two statements imply the eigenvalues of L can’t be negative. That is to say
λ(L) ≥ 0.

Theorem 2.1 (Fiedler theory). Let L has n eigenvectors

Lvi = λivi, vi 6= 0, i = 0, . . . , n− 1

where 0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1. For the second smallest eigenvector v1, define

N− = {i : v1(i) < 0},
N+ = {i : v1(i) > 0},
N0 = V −N− −N+.

We have the following results.

(1) #{i, λi = 0} = #{connected components of G};
(2) If G is connected, then both N− and N+ are connected. N− ∪ N0 and

N+ ∪N0 might be disconnected if N0 6= ∅.
This theorem tells us that the second smallest eigenvalue can be used to tell us

if the graph is connected, i.e.G is connected iff λ1 6= 0, i.e.

λ1 = 0⇔ there are at least two connected components.
λ1 > 0⇔ the graph is connected.

Moreover, the second smallest eigenvector can be used to bipartite the graph into
two connected components by takingN− andN+ whenN0 is empty. For this reason,
we often call the second smallest eigenvalue λ1 as the algebraic connectivity. More
materials can be found in Jim Demmel’s Lecture notes on Fiedler Theory at UC
Berkeley: why we use unnormalized Laplacian eigenvectors for spectral partition
(http://www.cs.berkeley.edu/~demmel/cs267/lecture20/lecture20.html).

We can calculate eigenvalues by using Rayleigh Quotient. This gives a sketch
proof of the first part of the theory.

Proof of Part I. Let (λ, v) be a pair of eigenvalue-eigenvector, i.e.Lv = λv.
Since L1 = 0, so the constant vector 1 ∈ Rn is always the eigenvector associated
with λ0 = 0. In general,

λ =
vTLv

vT v
=

∑
i∼j

(vi − vj)2∑
i

vi2
.

Note that

0 = λ1 ⇔ vi = vj (j is path connected with i).

Therefore v is a piecewise constant function on connected components of G. If
G has k components, then there are k independent piecewise constant vectors in
the span of characteristic functions on those components, which can be used as
eigenvectors of L. In this way, we proved the first part of the theory. �

http://www.cs.berkeley.edu/~demmel/cs267/lecture20/lecture20.html
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2.2. Normalized graph Laplacian and Cheeger’s Inequality.

Definition (Normalized Graph Laplacian).

Lij =


1 i = j,

− 1√
didj

i ∼ j,
0 otherwise.

In fact L = D−1/2(D −A)D−1/2 = D−1/2LD−1/2 = I −D−1/2(D −A)D−1/2.
From this one can see the relations between eigenvectors of normalized L and un-
normalized L. For eigenvectors Lv = λv, we have

(I −D−1/2LD−1/2)v = λv ⇔ Lu = λDu, u = D−1/2v,

whence eigenvectors of L, v after rescaling by D−1/2v, become generalized eigen-
vectors of L.

We can also use the Rayleigh Quotient to calculate the eigenvalues of L.

vTLv
vT v

=
vTD−

1
2 (D −A)D−

1
2 v

vv

=
uTLu

uTDu

=

∑
i∼j

(ui − uj)2∑
j

uj2dj
.

Similarly we get the relations between eigenvalue and the connected components of
the graph.

#{λi(L) = 0} = #{connected components of G}.
Next we show that eigenvectors of L are related to random walks on graphs.

This will show you why we choose this matrix to analysis the graph.
We can construct a random walk on G whose transition matrix is defined by

Pij ∼
Aij∑
j

Aij
=

1

di
.

By easy calculation, we see the result below.

P = D−1A = D−1/2(I − L)D1/2.

Hence P is similar to I−L. So their eigenvalues satisfy λi(P ) = 1−λi(L). Consider
the right eigenvector φ and left eigenvector ψ of P .

uTP = λu,

Pv = λv.

Due to the similarity between P and L,

uTP = λuT ⇔ uTD−1/2(I − L)D1/2 = λuT .

Let ū = D−1/2u, we will get:

ūT (I − L) = λūT

⇔ Lū = (1− λ)ū.
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You can see ū is the eigenvector of L, and we can get left eigenvectors of P
from ū by multiply it with D1/2 on the left side. Similarly for the right eigenvectors
v = D−1/2ū.

If we choose u0 = πi ∼ di∑
di

, then:

ū0(i) ∼
√
di,

ūTk ūl = δkl,

uTkDvl = δkl,

πiPij = πjPji ∼ Aij = Aji,

where the last identity says the Markov chain is time-reversible.
All the conclusions above show that the normalized graph Laplacian L keeps

some connectivity measure of unnormalized graph Laplacian L. Furthermore, L is
more related with random walks on graph, through which eigenvectors of P are easy
to check and calculate. That’s why we choose this matrix to analysis the graph.

Now we are ready to introduce the Cheeger’s inequality with normalized graph
Laplacian.

Let G be a graph, G = (V,E) and S is a subset of V whose complement is
S̄ = V − S. We define V ol(S), CUT (S) and NCUT (S) as below.

V ol(S) =
∑
i∈S

di.

CUT (S) =
∑

i∈S,j∈S̄

Aij .

NCUT (S) =
CUT (S)

min(V ol(S), V ol(S̄))
.

NCUT (S) is called normalized-cut. We define the Cheeger constant

hG = min
S
NCUT (S).

Finding minimal normalized graph cut is NP-hard. It is often defined that

Cheeger ratio (expander): hS :=
CUT (S)

V ol(S)

and

Cheeger constant: hG := min
S

max {hS , hS̄} .
Cheeger Inequality says the second smallest eigenvalue provides both upper and

lower bounds on the minimal normalized graph cut. Its proof gives us a constructive
polynomial algorithm to achieve such bounds.

Theorem 2.2 (Cheeger Inequality). For every undirected graph G,

h2
G

2
≤ λ1(L) ≤ 2hG.

Proof. (1) Upper bound:
Assume the following function f realizes the optimal normalized graph cut,

f(i) =

{
1

V ol(S) i ∈ S,
−1

V ol(S̄)
i ∈ S̄,
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By using the Rayleigh Quotient, we get

λ1 = inf
g⊥D1/2e

gTLg
gT g

≤
∑
i∼j(fi − fj)2∑

f2
i di

=
( 1
V ol(S) + 1

V ol(S̄)
)2CUT (S)

V ol(S) 1
V ol(S)2 + V ol(S̄) 1

V ol(S̄)2

=(
1

V ol(S)
+

1

V ol(S̄)
)CUT (S)

≤ 2CUT (S)

min(V ol(S), V ol(S̄))
=: 2hG.

which gives the upper bound.
(2) Lower bound: the proof of lower bound actually gives a constructive algo-

rithm to compute an approximate optimal cut as follows.
Let v be the second eigenvector, i.e. Lv = λ1v, and f = D−1/2v. Then we

reorder node set V such that f1 ≤ f2 ≤ ... ≤ fn). Denote V− = {i; vi < 0}, V+ =
{i; vi ≥ vr}. Without Loss of generality, we can assume∑

i∈V−

dv ≥
∑
i∈V+

dv

Define new functions f+ to be the magnitudes of f on V+.

f+
i =

{
fi i ∈ V+,
0 otherwise,

Now consider a series of particular subsets of V ,

Si = {v1, v2, ...vi},

and define

Ṽ ol(S) = min(V ol(S), V ol(S̄)).

αG = min
i
NCUT (Si).

Clearly finding the optimal value α just requires comparison over n − 1 NCUT
values.

Below we shall show that

h2
G

2
≤ α2

G

2
≤ λ1.

First, we have Lf = λ1Df , so we must have

(70)
∑
j:j∼i

fi(fi − fj) = λ1dif
2
i .

From this we will get the following results,
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λ1 =

∑
i∈V+

fi
∑
j:j∼i(fi − fj)∑

i∈V+
dif2

i

,

=

∑
i∼j i,j∈V+

(fi − fj)2 +
∑
i∈V+

fi
∑
j∼i j∈V−(fi − fj)∑

i∈V+
dif2

i

, (fi − fj)2 = fi(fi − fj) + fj(fj − fi)

>

∑
i∼j i,j∈V+

(fi − fj)2 +
∑
i∈V+

fi
∑
j∼i j∈V−(fi)∑

i∈V+
dif2

i

,

=

∑
i∼j(f

+
i − f+

j )2∑
i∈V dif

+
i

2 ,

=
(
∑
i∼j(f

+
i − f+

j )2)(
∑
i∼j(f

+
i + f+

j )2)

(
∑
i∈V f

+
i

2
di)(

∑
i∼j(f

+
i + f+

j )2)

≥
(
∑
i∼j f

+
i

2 − f+
j

2
)2

(
∑
i∈V f

+
i

2
di)(

∑
i∼j(f

+
i + f+

j )2)
, Cauchy-Schwartz Inequality

≥
(
∑
i∼j f

+
i

2 − f+
j

2
)2

2(
∑
i∈V f

+
i

2
di)2

,

where the second last step is due to the Cauchy-Schwartz inequality |〈x, y〉|2 ≤
〈x, x〉 · 〈y, y〉, and the last step is due to

∑
i∼j∈V (f+

i + f+
j )2 =

∑
i∼j∈V (f+

i

2
+

f+
j

2
+ 2f+

i f
+
j ) ≤ 2

∑
i∼j∈V (f+

i

2
+ f+

j

2
) ≤ 2

∑
i∈V f

+
i

2
di. Continued from the last

inequality,

λ1 ≥
(
∑
i∼j f

+
i

2 − f+
j

2
)2

2(
∑
i∈V f

+
i

2
di)2

,

≥ (
∑
i∈V (f+

i

2 − f+
i−1

2
)CUT (Si−1))2

2(
∑
i∈V f

+
i

2
di)2

, since f1 ≤ f2 ≤ . . . ≤ fn

≥ (
∑
i∈V (f+

i

2 − f+
i−1

2
)αGṼ ol(Si−1))2

2(
∑
i∈V f

+
i

2
di)2

=
α2
G

2
· (
∑
i∈V f

+
i

2
(Ṽ ol(Si−1)− Ṽ ol(Si)))2

(
∑
i∈V f

+
i

2
di)2

,

=
α2
G

2

(
∑
i∈V f

+
i

2
di)

2

(
∑
i∈V f

+
i

2
di)2

=
α2
G

2
.

where the last inequality is due to the assumption V ol(V−) ≥ V ol(V+), whence

Ṽ ol(Si) = V ol(S̄i) for i ∈ V+.
This completes the proof. �

Fan Chung gives a short proof of the lower bound in Simons Institute workshop,
2014.
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Short Proof. The proof is based on the fact that

hG = inf
f 6=0

sup
c∈R

∑
x∼y |f(x)− f(y)|∑
x |f(x)− c|dx

where the supreme over c is reached at c∗ = median(f(x) : x ∈ V ).

λ1 = R(f) = sup
c

∑
x∼y(f(x)− f(y))2∑
x(f(x)− c)2dx

,

≥
∑
x∼y(g(x)− g(y))2∑

x g(x)2dx
, g(x) = f(x)− c

=
(
∑
x∼y(g(x)− g(y))2)(

∑
x∼y(g(x) + g(y))2)

(
∑
x∈V g

2(x)dx)((
∑
x∼y(g(x) + g(y))2)

≥
(
∑
x∼y |g2(x)− g2(y)|)2

(
∑
x∈V g

2(x)dx)((
∑
x∼y(g(x) + g(y))2)

, Cauchy-Schwartz Inequality

≥
(
∑
x∼y |g2(x)− g2(y)|)2

2(
∑
x∈V g

2(x)dx)2
, (g(x) + g(y))2 ≤ 2(g2(x) + g2(y))

≥ h2
G

2
.

�

3. *Laplacians and the Cheeger inequality for directed graphs

The following section is mainly contained in [Chu05], which described the
following results:

(1) Define Laplacians on directed graphs.
(2) Define Cheeger constants on directed graphs.
(3) Give an example of the singularity of Cheeger constant on directed graph.
(4) Use the eigenvalue of Lapacian and the Cheeger constant to estimate the

convergence rate of random walk on a directed graph.

Another good reference is [LZ10].

3.1. Definition of Laplacians on directed graphs. On a finite and strong
connected directed graph G = (V,E) (A directed graph is strong connected if there
is a path between any pair of vertices), a weight is a function

w : E → R≥0

The in-degree and out-degree of a vertex are defined as

din : V → R≥0

dini =
∑
j∈V wji

dout : V → R≥0

douti =
∑
j∈V wij

Note that dini may be different from douti .
A random walk on the weighted G is a Markov chain with transition probability

Pij =
wij
douti

.
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Since G is strong connected, P is irreducible, and consequently there is a unique
stationary distribution φ. (And the distribution of the Markov chain will converge
to it if and only if P is aperiodic.)

Example (undirected graph).

φ(x) =
dx∑
y dy

.

Example (Eulerian graph). If dinx = doutx for every vertex x, then φ(x) =
doutx∑
y d

out
y
.

This is because doutx is an unchanged measure with∑
x

doutx Pxy =
∑
x

wxy = diny = douty .

Example (exponentially small stationary dist.). G is a directed graph with n+ 1
vertices formed by the union of a directed circle v0 → v1 → · · · → vn and edges
vi → v0 for i = 1, 2, · · · , n. The weight on any edge is 1. Checking from vn to
v0 with the prerequisite of stationary distribution that the inward probability flow
equals to the outward probability flow, we can see that

φ(v0) = 2nφ(vn), i.e.φ(vn) = 2−nφ(v0).

This exponentially small stationary distribution cannot occur in undirected
graph cases for then

φ(i) =
di∑
j dj
≥ 1

n(n− 1)
.

However, the stationary dist. can be no smaller than exponential, because we
have

Theorem 3.1. If G is a strong connected directed graph with w ≡ 1, and doutx ≤
k,∀x, then max{φ(x) : x ∈ V } ≤ kD min{φ(y) : y ∈ V }, where D is the diameter
of G.

It can be easily proved using induction on the path connecting x and y.
Now we give a definition on those balanced weights.

Definition (circulation).
F : E → R≥0

If F satisfies ∑
u,u→v

F (u, v) =
∑

w,v→w
F (v, w),∀v,

then F is called a circulation.

Note. A circulation is a flow with no source or sink.

Example. For a directed graph, Fφ(u, v) = φ(u)P (u, v) is a circulation, for∑
u,u→v

Fφ(u, v) = φ(v) =
∑

w,v→w
Fφ(v, w).

Definition (Rayleigh quotient). For a directed graph G with transition probability
matrix P and stationary distribution φ, the Rayleigh quotient for any f : V → C
is defined as

R(f) =

∑
u→v | f(u)− f(v) |2 φ(u)P (u, v)∑

v | f(v) |2 φ(v)
.
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Note. Compare with the undirected graph condition where

R(f) =

∑
u∼v | f(u)− f(v) |2 wuv∑

v | f(v) |2 d(v)
.

If we look on every undirected edge (u, v) as two directed edges u→ v, v → u,
then we get a Eulerian directed graph. So φ(u) ∼ doutu and doutu P (u, v) = wuv, as
a result R(f)(directed) = 2R(f)(undirected). The factor 2 is the result of looking
on every edge as two edges.

The next step is to extend the definition of Laplacian to directed graphs. First
we give a review on Lapalcian on undirected graphs. On an undirected graph,
adjacent matrix is

Aij =

{
1, i ∼ j;
0, i 6∼ j.

D = diag(d(i)),

L = D−1/2(D −A)D−1/2.

On a directed graph, however, there are two degrees on a vertex which are
generally inequivalent. Notice that on an undirected graph, stationary distribution
φ(i) ∼ d(i), so D = cΦ, where c is a constant and Φ = diag(φ(i)).

L = I −D−1/2AD−1/2

= I −D1/2PD−1/2

= I − c1/2Φ1/2Pc−1/2Φ−1/2

= I − Φ1/2PΦ−1/2

Extending and symmetrizing it, we define Laplacian on a directed graph

Definition (Laplacian).

L = I − 1

2
(Φ1/2PΦ−1/2 + Φ−1/2P ∗Φ1/2).

Suppose the eigenvalues of L are 0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1. Like the undirected
case, we can calculate λ1 with the Rayleigh quotient.

Theorem 3.2.

λ1 = inf∑
f(x)φ(x)=0

R(f)

2
.

Before proving that, we need

Lemma 3.3.

R(f) = 2
gLg∗
‖ g ‖2 , where g = fΦ1/2.
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Proof.

R(f) =

∑
u→v | f(u)− f(v) |2 φ(u)P (u, v)∑

v | f(v) |2 φ(v)

=

∑
u→v | f(u) |2 φ(u)P (u, v) +

∑
v | f(v) |2 φ(v)−∑u→v(f(u)f(v) + f(u)f(v))φ(u)P (u, v)

fΦf∗

=

∑
u | f(u) |2 φ(u) +

∑
v | f(v) |2 φ(v)− (f∗ΦPf + fΦPf∗

fΦf∗

= 2− f(P ∗Φ + ΦP )f∗

fΦf∗

= 2− (gΦ−1/2)(P ∗Φ + ΦP )(Φ−1/2g∗)

(gΦ−1/2)Φ(Φ−1/2g∗)

= 2− g(Φ−1/2P ∗Φ1/2 + Φ1/2PΦ−1/2)g∗

gg∗

= 2 · gLg
∗

‖ g ‖2
�

Proof of Theorem 3.2. With Lemma 3.3 and L(φ(x)1/2)n×1 = 0, we have

λ1 = inf∑
g(x)φ(x)1/2=0

R(f)

2

= inf∑
f(x)φ(x)=0

R(f)

2
.

�

Note.

λ1 = inf
f,
∑
f(x)φ(x)=0

R(f)

2

= inf
f,
∑
f(x)φ(x)=0

∑
u→v | f(u)− f(v) |2 φ(u)P (u, v)

2
∑
v | f(v) |2 φ(v)

= inf
f,
∑
f(x)φ(x)=0

sup
c

∑
u→v | f(u)− f(v) |2 φ(u)P (u, v)

2
∑
v | f(v)− c |2 φ(v)

Theorem 3.4. Suppose the eigenvalues of P are ρ0, · · · , ρn−1 with ρ0 = 1, then

λ1 ≤ min
i 6=0

(1−Reρi).

3.2. Definition of Cheeger constants on directed graphs. We have a
circulation Fφ(u, v) = φ(u)P (u, v). Define

F (∂S) =
∑

u∈S,v 6∈S

F (u, v), F (v) =
∑
u,u→v

F (u, v) =
∑

w,v→w
F (v, w), F (S) =

∑
v∈S

F (v),

then F (∂S) = F (∂S̄).

Definition (Cheeger constant). The Cheeger constant of a graph G is defined as

h(G) = inf
S⊂V

F (∂S)

min
(
F (S), F (S̄)

)
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Note. Compare with the undirected graph condition where

hG = inf
S⊂V

| ∂S |
min

(
| S |, | S̄ |

) .
Similarly, we have

hG(undirected) = inf
S⊂V

| ∂S |
min

(
| S |, | S̄ |

)
= inf

S⊂V

∑
u∈S,v∈S̄ wuv

min
(∑

u∈S d(u),
∑
u∈S̄ d(u)

)
hG(directed) = inf

S⊂V

∑
u∈S,v∈S̄ φ(u)P (u, v)

min
(∑

u∈S φ(u),
∑
u∈S̄ φ(u)

)
= inf

S⊂V

F (∂S)

min
(
F (S), F (S̄)

) .
Theorem 3.5. For every directed graph G,

h2(G)

2
≤ λ1 ≤ 2h(G).

The proof is similar to the undirected case using Rayleigh quotient and Theorem
3.2.

3.3. An example of the singularity of Cheeger constant on a directed
graph. We have already given an example of a directed graph with n+ 1 vertices
and stationary distribution φ satisfying φ(vn) = 2−nφ(v0). Now we make a copy
of this graph and denote the new n+ 1 vertices u0, . . . , un. Joining the two graphs
together by two edges vn → un and un → vn, we get a bigger directed graph.
Let S = (v0, · · · , vn), we have h(G) ∼ 2−n. In comparison, h(G) ≥ 2

n(n−1) for

undirected graph.

3.4. Estimate the convergence rate of random walks on directed
graphs. Define the distance of P after s steps and φ as

∆(s) = max
y∈V

(∑
x∈V

(P s(y, x)− φ(x))2

φ(x)

)1/2

.

Modify the random walk into a lazy random walk P̃ = I+P
2 , so that it is aperiodic.

Theorem 3.6.

∆(t)2 ≤ C(1− λ1

2
)t.

3.5. Random Walks on Digraphs, The Generalized Digraph Lapla-
cian, and The Degree of Asymmetry. In this paper the following have been
discussed:

(1) Define an asymmetric Laplacian L̃ on directed graph;

(2) Use L̃ to estimate the hitting time and commute time of the corresponding
Markov chain;

(3) Introduce a metric to measure the asymmetry of L̃ and use this measure
to give a tighter bound on the Markov chain mixing rate and a bound on
the Cheeger constant.
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Let P be the transition matrix of Markov chain, and π = (π1, . . . , πn)T (column
vector) denote its stationary distribution (which is unique if the Markov chain is ir-
reducible, or if the directed graph is strongly connected). Let Π = diag{π1, . . . , πn},
then we define the normalized Laplacian L̃ on directed graph:

(71) L̃ = I −Π
1
2PΠ−

1
2

3.5.1. Hitting time, commute time and fundamental matrix. We establish the
relations between L̃ and the hitting time and commute time of random walk on
directed graph through the fundamental matrix Z = [zij ], which is defined as:

(72) zij =

∞∑
t=0

(ptij − πj), 1 ≤ i, j ≤ n

or alternatively as an infinite sum of matrix series:

(73) Z =

∞∑
t=0

(P t − 1πT )

With the fundamental matrix, the hitting time and commute time can be ex-
pressed as follows:

(74) Hij =
zjj − zij

πj

(75) Cij = Hij +Hji =
zjj − zij

πj
+
zii − zji
πi

Using (73), we can write the fundamental matrix Z in a more explicit form.
Notice that

(76) (P − 1πT )(P − 1πT ) = P 2 − 1πTP − P1πT + 1πT1πT = P 2 − 1πT

We use the fact that 1 and π are the right and left eigenvector of the transition
matrix P with eigenvalue 1, and that πT1 = 1 since π is a distribution. Then

(77) Z + 1πT =

∞∑
t=0

(P − 1πT )t = (I − P + 1πT )−1

3.5.2. Green’s function and Laplacian for directed graph. If we treat the di-
rected graph Laplacian L̃ as an asymmetric operator on a directed graph G, then
we can define the Green’s Function G̃ (without boundary condition) for directed
graph. The entries of G satisfy the conditions:

(78) (G̃L̃)ij = δij −
√
πiπj

or in the matrix form

(79) G̃L̃ = I − π 1
2π

1
2
T

The central theorem in the second paper associate the Green’s Function G̃, the
fundamental matrix Z and the normalize directed graph Laplacian L̃:

Theorem 3.7. Let Z̃ = Π
1
2ZΠ−

1
2 and L̃† denote the Moore-Penrose pseudo-

inverse L̃, then

(80) G̃ = Z̃ = L̃†
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3.6. measure of asymmetric and its relation to Cheeger constant and
mixing rate. To measure the asymmetry in directed graph, we write the L̃ into
the sum of a symmetric part and a skew-symmetric part:

(81) L̃ =
1

2
(L̃+ L̃T ) +

1

2
(L̃ − L̃T )

1
2 (L̃ + L̃T ) = L is the symmetrized Laplacian introduced in the first paper. Let

∆ = 1
2 (L̃− L̃T ), the ∆ captures the difference between L̃ and its transpose. Let σi,

λi and δi(1 ≤ i ≤ n) denotes the i-th singular value of L, L, ∆ in ascending order

(σ1 = λ1 = δ1 = 0). Then the relation L̃ = L+ ∆ implies

(82) λi ≤ σi ≤ λi + δn

Therefore δn = ‖∆‖2 is used to measure the degree of asymmetry in the directed
graph.

The following two theorems are application of this measure.

Theorem 3.8. The second singular of L̃ has bounds :

(83)
h(G)2

2
≤ σ2 ≤ (1 +

δn
λ2

) · 2h(G)

where h(G) is the Cheeger constant of graph G

Theorem 3.9. For a aperiodic Markov chain P ,

(84) δ2
n ≤ max{‖P̃ f‖

2

‖f‖2 : f ⊥ π 1
2 } ≤ (1− λ2)2 + 2δnλn + δ2

n

where P̃ = Π
1
2PΠ−

1
2

4. Lumpability of Markov Chain

Let P be the transition matrix of a Markov chain on graph G = (V,E) with
V = {1, 2, · · · , n}, i.e. Pij = Pr{xt = j : xt−1 = i}. Assume that V admits a
partition Ω:

V = ∪ki=1Ωi, Ωi ∩ Ωj = ∅, i 6= j.

Ω = {Ωs : s = 1, · · · , k}.
Observe a sequence{x0, x1, · · · , xt} sampled from the Markov chain with initial
distribution π0.

Definition (Lumpability, Kemeny-Snell 1976). P is lumpable with respect to parti-
tion Ω if the sequence {yt} is Markovian. In other words, the transition probabilities
do not depend on the choice of initial distribution π0 and history, i.e.
(85)
Probπ0

{xt ∈ Ωkt : xt−1 ∈ Ωkt−1
, · · · , x0 ∈ Ωk0} = Prob{xt ∈ Ωkt : xt−1 ∈ Ωkt−1

}.
Relabel xt 7→ yt ∈ {1, · · · , k} by

yt =

k∑
s=1

sXΩs(xt).

Thus we obtain a sequence (yt) which is a coarse-grained representation of original
sequence. The lumpability condition above can be rewritten as

(86) Probπ0
{yt = kt : yt−1 = kt−1, · · · , y0 = k0} = Prob{yt = kt : yt−1 = kt−1}.
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Theorem 4.1. I. (Kemeny-Snell 1976) P is lumpable with respect to parti-

tion Ω ⇔ ∀Ωs,Ωt ∈ Ω, ∀i, j ∈ Ωs, P̂iΩt = P̂jΩt , where P̂iΩt =
∑
j∈Ωt

Pij .

Figure 1. Lumpability condition P̂iΩt = P̂jΩt

II. (Meila-Shi 2001) P is lumpable with respect to partition Ω and P̂ (p̂st =∑
i∈Ωs,j∈Ωt

pij) is nonsingular⇔ P has k independent piecewise constant

right eigenvectors in span{χΩs : s = 1, · · · , k}, χ is the characteristic
function.

Figure 2. A linear chain of 2n nodes with a random walk.

Example. Consider a linear chain with 2n nodes (Figure 2) whose adjacency ma-
trix and degree matrix are given by

A =


0 1
1 0 1

. . .
. . .

. . .

1 0 1
1 0

 , D = diag{1, 2, · · · , 2, 1}

So the transition matrix is P = D−1A which is illustrated in Figure 2. The spectrum
of P includes two eigenvalues of magnitude 1, i.e.λ0 = 1 and λn−1 = −1. Although
P is not a primitive matrix here, it is lumpable. Let Ω1 = {odd nodes}, Ω2 = {even
nodes}. We can check that I and II are satisfied.

To see I, note that for any two even nodes, say i = 2 and j = 4, P̂iΩ2
= P̂jΩ2

= 1
as their neighbors are all odd nodes, whence I is satisfied. To see II, note that φ0

(associated with λ0 = 1) is a constant vector while φ1 (associated with λn−1 = −1)
is constant on even nodes and odd nodes respectively. Figure 3 shows the lumpable
states when n = 4 in the left.
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Note that lumpable states might not be optimal bi-partitions in NCUT =
Cut(S)/min(vol(S), vol(S̄)). In this example, the optimal bi-partition by Ncut is
given by S = {1, . . . , n}, shown in the right of Figure 3. In fact the second largest
eigenvalue λ1 = 0.9010 with eigenvector

v1 = [0.4714, 0.4247, 0.2939, 0.1049,−0.1049,−0.2939,−0.4247,−0.4714],

give the optimal bi-partition.

Figure 3. Left: two lumpable states; Right: optimal-bipartition
of Ncut.

Example. Uncoupled Markov chains are lumpable, e.g.

P0 =

 Ω1

Ω2

Ω3

 , P̂it = P̂jt = 0.

A markov chain P̃ = P0 + O(ε) is called nearly uncoupled Markov chain. Such
Markov chains can be approximately represented as uncoupled Markov chains
with metastable states, {Ωs}, where within metastable state transitions are fast
while cross metastable states transitions are slow. Such a separation of scale in
dynamics often appears in many phenomena in real lives, such as protein fold-
ing, your life transitions primary schools 7→ middle schools 7→ high schools 7→
college/university 7→ work unit, etc.

Before the proof of the theorem, we note that condition I is in fact equivalent
to

(87) V UPV = PV,

where U is a k-by-n matrix where each row is a uniform probability that

Uk×nis =
1

|Ωs|
χΩs(i), i ∈ V, s ∈ Ω,

and V is a n-by-k matrix where each column is a characteristic function on Ωs,

V n×ksj = χΩs(j).

With this we have P̂ = UPV and UV = I. Such a matrix representation will be
useful in the derivation of condition II. Now we give the proof of the main theorem.

Proof. I. “⇒” To see the necessity, P is lumpable w.r.t. partition Ω, then it
is necessary that

Probπ0
{x1 ∈ Ωt : x0 ∈ Ωs} = Probπ0

{y1 = t : y0 = s} = p̂st

which does not depend on π0. Now assume there are two different initial distribution

such that π
(1)
0 (i) = 1 and π

(2)
0 (j) = 1 for ∀i, j ∈ Ωs. Thus

p̂iΩt = Prob
π
(1)
0
{x1 ∈ Ωt : x0 ∈ Ωs} = p̂st = Prob

π
(2)
0
{x1 ∈ Ωt : x0 ∈ Ωs} = p̂jΩt .
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“⇐” To show the sufficiency, we are going to show that if the condition is satisfied,
then the probability

Probπ0
{yt = t : yt−1 = s, · · · , y0 = k0}

depends only on Ωs,Ωt ∈ Ω. Probability above can be written as Probπt−1
(yt = t)

where πt−1 is a distribution with support only on Ωs which depends on π0 and
history up to t − 1. But since Probi(yt = t) = p̂iΩt ≡ p̂st for all i ∈ Ωs, then
Probπt−1

(yt = t) =
∑
i∈Ωs

πt−1p̂iΩt = p̂st which only depends on Ωs and Ωt.
II.

“⇒”
Since P̂ is nonsingular, let {ψi, i = 1, · · · , k} are independent right eigenvectors

of P̂ , i.e., P̂ψi = λiψi. Define φi = V ψi, then φi are independent piecewise constant
vectors in span{χΩi , i = 1, · · · , k}. We have

Pφi = PV ψi = V UPV ψi = V P̂ψi = λiV ψi = λiφi,

i.e.φi are right eigenvectors of P .
“⇐”

Let {φi, i = 1, · · · , k} be k independent piecewise constant right eigenvectors
of P in span{XΩi , i = 1, · · · , k}. There must be k independent vectors ψi ∈ Rk
that satisfied φi = V ψi. Then

Pφi = λiφi ⇒ PV ψi = λiV ψi,

Multiplying V U to the left on both sides of the equation, we have

V UPV ψi = λiV UV ψi = λiV ψi = PV ψi, (UV = I),

which implies

(V UPV − PV )Ψ = 0, Ψ = [ψ1, . . . , ψk].

Since Ψ is nonsingular due to independence of ψi, whence we must have V UPV =
PV . �

5. Applications of Lumpability: MNcut and Optimal Reduction of
Complex Networks

If the random walk on a graph P has top k nearly piece-wise constant right
eigenvectors, then the Markov chain P is approximately lumpable. Some spectral
clustering algorithms are proposed in such settings.

5.1. MNcut. Meila-Shi (2001) calls the following algorithm as MNcut, stand-
ing for modified Ncut. Due to the theory above, perhaps we’d better to call it
multiple spectral clustering.

1) Find top k right eigenvectors PΦi = λiΦi, i = 1, · · · , k, λi = 1− o(ε).
2) Embedding Y n×k = [φ1, · · · , φk] → diffusion map when λi ≈ 1.
3) k-means (or other suitable clustering methods) on Y to k-clusters.

5.2. Optimal Reduction and Complex Network.
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5.2.1. Random Walk on Graph. Let G = G(S,E) denotes an undirected graph.
Here S has the meaning of ”states”. |S| = n � 1 . Let A = e(x, y) denotes its
adjacency matrix, that is,

e(x, y) =

{
1 x ∼ y
0 otherwise

Here x ∼ y means (x, y) ∈ E . Here, weights on different edges are the same 1.
They may be different in some cases.

Now we define a random walk on G . Let

p(x, y) =
e(x, y)

d(x)
where d(x) =

∑
y∈S

e(x, y)

We can check that P = p(x, y) is a stochastic matrix and (S, P ) is a Markov
chain. If G is connected, this Markov chain is irreducible and if G is not a tree,
the chain is even primitive. We assume G is connected from now on. If it is not,
we can focus on each of its connected component.So the Markov chain has unique
invariant distributionµ by irreducibility:

µ(x) =
d(x)∑

z∈S
d(z)

∀x ∈ S

A Markov chain defined as above is reversible. That is, detailed balance con-
dition is satisfied:

µ(x)p(x, y) = µ(y)p(y, x) ∀x, y ∈ S
Define an inner product on spaceL2

µ:

< f, g >µ=
∑
x∈S

∑
y∈S

f(x)g(x)µ(x) f, g ∈ L2
µ

L2
µ is a Hilbert space with this inner product. If we define an operator T on it:

Tf(x) =
∑
y∈S

p(x, y)f(y) = E[y|x]f(y)

We can check that T is a self adjoint operator on L2
µ:

< Tf(x), g(x) >µ =
∑
x∈S

Tf(x)g(x)µ(x)

=
∑
x∈S

∑
y∈S

p(x, y)f(y)g(x)µ(x) with detailed balance condition

=
∑
y∈S

∑
x∈S

p(y, x)f(y)g(x)µ(y)

=
∑
y∈S

f(y)Tg(y)µ(y)

= < f(x), T g(x) >µ

That means T is self-adjoint. So there is a set of orthonormal basis {φj(x)}n−1
j=0 and

a set of eigenvalue {λj}n−1
j=0 ⊂ [−1, 1], 1 = λ0 > λ1 > λ2 > · · · > λn−1, s.t.Probφj =

λjφj , j = 0, 1, . . . n− 1, and < φi, φj >µ= δij ,∀i, j = 0, 1, . . . n− 1.So φj(x) is right
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eigenvectors. The corresponding left eigenvectors are denoted by {ψj(x)}n−1
j=0 . One

can obtain that ψj(x) = φj(x)µ(x). In fact,because Tφj = λjφj ,

µ(x)
∑
y∈S

p(x, y)φj(y) = λjφj(x)µ(x) with detailed balance condition∑
y∈S

p(y, x)µ(y)φj(y) = λjφj(x)µ(x) that is

ψjProb(x) =
∑
y∈S

p(y, x)φ(y) = λj(x)ψ(x)

Generally, T has spectral decomposition

p(x, y) =

n−1∑
i=0

λiψi(x)φ(y) =

n−1∑
i=0

p(x, y)φi(x)φi(y)µ(x)

Since P is a stochastic matrix, we have λ0 = 1,the corresponding right eigen-
vector is φ0(x) ≡ 1,and left eigenvector is the invariant distribution ψ0(x) = µ(x)

5.2.2. Optimal Reduction. This section is by [ELVE08]. Suppose the number
of states n is very large. The scale of Markov chain is so big that we want a smaller
chain to present its behavior. That is, we want to decompose the state space S:

Let S =
⋃N
i=1 Si, s.t.N � n, Si

⋂
Sj = ∅,∀i 6= j, and define a transition probability

P̂ on it. We want the Markov chain ({Si}, P̂ ) has similar property as chain (S, P ).

We call {Si} coarse space. The first difficult we’re facing is whether ({Si}, P̂ )
really Markovian. We want

Pr(Xit+1
∈ Sit+1

|xit ∈ Sit , . . . X0 ∈ Si0) = Pr(Xit+1
∈ Sit+1

|xit ∈ Sit)
and this probability is independent of initial distribution. This property is so-called
lumpability, which you can refer Lecture 9. Unfortunately, lumpability is a strick
constraint that it seldom holds.

So we must modify our strategy of reduction. One choice is to do a optimization
with some norm on L2

µ. First, Let us introduce Hilbert-Schmidt norm on L2
µ.

Suppose F is an operator on L2
µ, and Ff(x) =

∑
y∈S

K(x, y)f(y)µ(y). Here K is

called a kernel function. If K is symmetric, F is self adjoint. In fact,

< Ff(x), g(x) >µ =
∑
x∈S

∑
y∈S

K(x, y)f(y)µ(y)g(x)µ(x)

=
∑
y∈S

∑
x∈S

K(y, x)f(y)µ(y)g(x)µ(x)

= < f(x), Fg(x) >µ

So F guarantee a spectral decomposition. Let {λj}n−1
j=0 denote its eigenvalue

and {φj(x)}n−1
j=0 denote its eigenvector, then k(x, y) can be represented as K(x, y) =

n−1∑
j=0

λjφj(x)φj(y). Hilbert-Schmidt norm of F is defined as follow:

‖F‖2HS = tr(F ∗F ) = tr(F 2) =

n−1∑
i=0

λ2
i
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One can check that ‖F‖2HS =
∑

x,y∈S
K2(x, y)µ(x)µ(y). In fact,

RHS =
∑
x,y∈S

n−1∑
j=0

λjφj(x)φj(y)

2

µ(x)µ(y)

=

n−1∑
j=0

n−1∑
k=0

λjλk
∑
x,y∈S

φj(x)φk(x)φj(y)φk(y)µ(x)µ(y)

=

n−1∑
j=0

λ2
j

the last equal sign dues do the orthogonality of eigenvectors. It is clear that if
L2
µ = L2, Hilbert-Schmidt norm is just Frobenius norm.

Now we can write our T as

Tf(x) =
∑
y∈S

p(x, y)f(y) =
∑
y∈S

p(x, y)

µ(y)
f(y)µ(y)

and take K(x, y) = p(x,y)
µ(y) . By detailed balance condition, K is symmetric. So

‖T‖2HS =
∑
x,y∈S

p2(x, y)

µ2(y)
µ(x)µ(y) =

∑
x,y∈S

µ(x)

µ(y)
p2(x, y)

We’ll rename ‖P‖HS to ‖P‖µ in the following paragraphs.
Now go back to our reduction problem. Suppose we have a coarse space {Si}Ni=1,

and a transition probability P̂ (k, l), k, l = 1, 2, . . . N on it. If we want to compare

({Si}, P̂ ) with (S, P ), we must ”lift” the coarse process to fine space. One nature
consideration is as follow: if x ∈ Sk, y ∈ Sl, first, we transit from x to Sl follow the
rule P̂ (k, l), and in Sl, we transit to y ”randomly”. To make ”randomly” rigorously,
one may choose the lifted transition probably as follow:

P̃ (x, y) =

N∑
k,l=1

1Sk(x)P̂ (k, l)1Sl(y)
1

|Sl|

One can check that this P̃ is a stochastic matrix, but it is not reversible. One
more convenient choice is transit ”randomly” by invariant distribution:

P̃ (x, y) =

N∑
k,l=1

1Sk(x)P̂ (k, l)1Sl(y)
µ(y)

µ̂(Sl)

where

µ̂(Sl) =
∑
z∈Sl

µ(z)

Then you can check this matrix is not only a stochastic matrix, but detailed
balance condition also hold provides P̂ on {Si} is reversible.

Now let us do some summary. Given a decomposition of state space S =⋃N
i=1 Si, and a transition probability P̂ on coarse space, we may obtain a lifted
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transition probability P̃ on fine space. Now we can compare ({Si}, P̂ ) and (S, P )

in a clear way: ‖P − P̃‖µ. So our optimization problem can be defined clearly:

E = min
S1...SN

min
P̂
‖P − P̂‖2µ

That is, given a partition of S, find the optimal P̂ to minimize ‖P − P̂‖2µ, and
find the optimal partition to minimize E.

5.2.3. Community structure of complex network. Given a partition S =
N∪
k=1

Sk,

the solution of optimization problem

min
p̂
‖p− p̂‖2µ

is

p̂∗kl =
1

µ̂(Sk)

∑
x∈Sk,y∈Sl

µ(x)p(x, y)

It is easy to show that {p̂∗kl} form a transition probability matrix with detailed
balance condition:

p̂∗kl ≥ 0∑
l

p̂∗kl =
1

µ̂(Sk)

∑
x∈Sk

µ(x)
∑
l

∑
y∈Sl

p(x, y)

=
1

µ̂(Sk)

∑
x∈Sk

µ(x) = 1

µ̂(Sk)p̂∗kl =
∑

x∈Sk,y∈Sl

µ(x)p(x, y)

=
∑

x∈Sk,y∈Sl

µ(y)p(y, x)

= µ̂(Sl)p̂
∗
lk

The last equality implies that µ̂ is the invariant distribution of the reduced Markov
chain. Thus we find the optimal transition probability in the coarse space. p̂∗ has
the following property

‖p− p∗‖2µ = ‖p‖2µ − ‖p̂∗‖2µ̂
However, the partition of the original graph is not given in advance, so we

need to minimize E∗ with respect to all possible partitions. This is a combinatorial
optimization problem, which is extremely difficult to find the exact solution. An
effective approach to obtain an approximate solution, which inherits ideas of K-
means clustering, is proposed as following: First we rewrite E∗ as

E∗ =
∑
x,y∈S

µ(x)

µ(y)
|p(x, y)−

N∑
k,l=1

1Sk(x)
p̂∗kl
µ̂(Sk)

1Sl(y)µ(y)|2

=

N∑
k,l=1

∑
x∈Sk,y∈Sl

µ(x)µ(y)

∣∣∣∣p(x, y)

µ(y)
− p̂∗kl
µ̂(Sk)

∣∣∣∣2

,
N∑
k=1

∑
x∈Sk

E∗(x, Sk)
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where

E∗(x, Sk) =

N∑
l=1

∑
y∈Sl

µ(x)µ(y)

∣∣∣∣p(x, y)

µ(y)
− p̂∗kl
µ̂(Sk)

∣∣∣∣2
Based on above expression, a variation of K-means is designed:

E step: Fix partition
N∪
k=1

Sk, compute p̂∗.

M step: Put x in S
(n+1)
k such that

E∗(x, Sk) = min
j
E∗(x, Sj)

5.2.4. Extensions: Fuzzy Partition. This part is in [LLE09, LL11]. It is un-
necessary to require that each vertex belong to a definite class. We introduce ρk(x)
as the probability of a vertex x belonging to class k, and we lift the Markov chain
in coarse space to fine space using the following transition probability

p̃(x, y) =

N∑
k,l=1

ρk(x)p̂klρl(y)
µ(y)

µ̂l

Now we solve
min
p̂
‖p− p̃‖2µ

to obtain a optimal reduction.
5.2.5. Model selection. Note the number of partition N should also not be

given in advance. But in strategies similar to K-means, the value of minimal E∗ is
monotone decreasing with N . This means larger N is always preferred.

A possible approach is to introduce another quantity which is monotone in-
creasing with N . We take K-means clustering for example. In K-means clustering,
only compactness is reflected. If another quantity indicates separation of centers of
each cluster, we can minimize the ratio of compactness and separation to find an
optimal N .

6. Mean First Passage Time

Consider a Markov chain P on graph G = (V,E). In this section we study the
mean first passage time between vertices, which exploits the unnormalized graph
Laplacian and will be useful for commute time map against diffusion map.

Definition.

(1) First passage time (or hitting time): τij := inf(t ≥ 0|xt = j, x0 = i);
(2) Mean First Passage Time: Tij = Eiτij ;
(3) τ+

ij := inf(t > 0|xt = j, x0 = i), where τ+
ii is also called first return time;

(4) T+
ij = Eiτ+

ij , where T+
ii is also called mean first return time.

Here Ei denotes the conditional expectation with fixed initial condition x0 = i.

Theorem 6.1. Assume that P is irreducible. Let L = D−W be the unnormalized
graph Laplacian with Moore-Penrose inverse L†, where D = diag(di) with di =∑
j:j iWij being the degree of node i. Then

(1) Mean First Passage Time is given by

Tii = 0,

Tij =
∑
k

L†ikdk − L
†
ijvol(G) + L†jjvol(G)−

∑
k

L†jkdk, i 6= j.



6. MEAN FIRST PASSAGE TIME 103

(2) Mean First Return Time is given by

T+
ii =

1

πi
, T+

ij = Tij .

Proof. Since P is irreducible, then the stationary distribution is unique, de-
noted by π. By definition, we have

(88) T+
ij = Pij · 1 +

∑
k 6=j

Pik(T+
kj + 1)

Let E = 1 · 1T where 1 ∈ Rn is a vector with all elements one, T+
d = diag(T+

ii ).
Then 127 becomes

(89) T+ = E + P (T+ − T+
d ).

For the unique stationary distribution π, πTP = P , whence we have

πTT+ = πT 1 · 1T + πTP (T+ − T+
d )

πTT+ = 1T + πTT+ − πTT+
d

1 = T+
d π

T+
ii =

1

πi

Before proceeding to solve equation (127), we first show its solution is unique.

Lemma 6.2. P is irreducible ⇒ T+ and T are both unique.

Proof. Assume S is also a solution of equation (128), then

(I − P )S = E − Pdiag(1/πi) = (I − P )T+

⇔ ((I − P )(T+ − S) = 0.

Therefore for irreducible P , S and T+ must satisfy{
diag(T+ − S) = 0

T+ − S = 1uT , ∀u

which implies T+ = S. T ’s uniqueness follows from T = T+ − T+
d . �

Now we continue with the proof of the main theorem. Since T = T+ − T+
d ,

then (127) becomes

T = E + PT − T+
d

(I − P )T = E − T+
d

(I −D−1W )T = F

(D −W )T = DF

LT = DF

where F = E − T+
d and L = D −W is the (unnormalized) graph Laplacian. Since

L is symmetric and irreducible, we have L =
∑n
k=1 µkνkν

T
k , where 0 = µ1 < µ2 ≤

· · · ≤ µn, ν1 = 1/||1||, νTk νl = δkl. Let L† =
∑n
k=2

1
µk
νkν

T
k , L† is called the pseudo-

inverse (or Moore-Penrose inverse) of L. We can test and verify L† satisfies the
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following four conditions 
L†LL† = L†

LL†L = L
(LL†)T = LL†

(L†L)T = L†L

From LT = D(E − T+
d ), multiplying both sides by L† leads to

T = L†DE − L†DT+
d + 1 · uT ,

as 1 · uT ∈ ker(L), whence

Tij =

n∑
k=1

L†ikdk − L
†
ijdj ·

1

πj
+ uj

ui = −
n∑
k=1

L†ikdk + L†iivol(G), j = i

Tij =
∑
k

L†ikdk − L
†
ijvol(G) + L†jjvol(G)−

∑
k

L†jkdk

Note that vol(G) =
∑
i di and πi = di/vol(G) for all i. �

As L† is a positive definite matrix, this leads to the following corollary.

Corollary 6.3.

(90) Tij + Tji = vol(G)(L†ii + L†jj − 2L†ij).

Therefore the average commute time between i and j leads to an Euclidean distance
metric

dc(xi, xj) :=
√
Tij + Tji

often called commute time distance.

7. Transition Path Theory

The transition path theory was originally introduced in the context of continuous-
time Markov process on continuous state space [EVE06] and discrete state space
[MSVE09], see [EVE10] for a review. Another description of discrete transition
path theory for molecular dynamics can be also found in [NSVE+09]. The follow-
ing material is adapted to the setting of discrete time Markov chain with transition
probability matrix P [?]. We assume reversibility in the following presentation,
which can be extended to non-reversible Markov chains.

Assume that an irreducible Markov Chain on graph G = (V,E) admits the

following decomposition P = D−1W =

(
Pll Plu
Pul Puu

)
. Here Vl = V0∪V1 denotes the

labeled vertices with source set V0 (e.g. reaction state in chemistry) and sink set V1

(e.g. product state in chemistry), and Vu is the unlabeled vertex set (intermediate
states). That is,

• V0 = {i ∈ Vl : fi = f(xi) = 0}
• V1 = {i ∈ Vl : fi = f(xi) = 1}
• V = V0 ∪ V1 ∪ Vu where Vl = V0 ∪ V1
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Given two sets V0 and V1 in the state space V , the transition path theory tells
how these transitions between the two sets happen (mechanism, rates, etc.). If we
view V0 as a reactant state and V1 as a product state, then one transition from V0

to V1 is a reaction event. The reactve trajectories are those part of the equilibrium
trajectory that the system is going from V0 to V1.

Let the hitting time of Vl be

τki = inf{t ≥ 0 : x(0) = i, x(t) ∈ Vk}, k = 0, 1.

The central object in transition path theory is the committor function. Its
value at i ∈ Vu gives the probability that a trajectory starting from i will hit the
set V1 first than V0, i.e., the success rate of the transition at i.

Proposition 7.1. For ∀i ∈ Vu, define the committor function

qi := Prob(τ1
i < τ0

i ) = Prob(trajectory starting from xi hit V1 before V0)

which satisfies the following Laplacian equation with Dirichlet boundary conditions

(Lq)(i) = [(I − P )q](i) = 0, i ∈ Vu
qi∈V0

= 0, qi∈V1
= 1.

The solution is
qu = (Du −Wuu)−1Wulql.

Proof. By definition,

qi = Prob(τ1
i < τ0

i ) =


1 xi ∈ V1

0 xi ∈ V0∑
j∈V Pijqj i ∈ Vu

This is because ∀i ∈ Vu,

qi = Pr(τiV1
< τiV0

)

=
∑
j

Pijqj

=
∑
j∈V1

Pijqj +
∑
j∈V0

Pijqj +
∑
j∈Vu

Pijqj

=
∑
j∈V1

Pij +
∑
j∈Vu

Pijqj

∴ qu = Pulql + Puuqu = D−1
u Wulql +D−1

u Wuuqu

multiply Du to both side and reorganize

(Du −Wuu)qu = Wulql

If Du −Wuu is reversible, we get

qu = (Du −Wuu)−1Wulql.

�
The committor function provides natural decomposition of the graph. If q(x)

is less than 0.5, i is more likely to reach V0 first than V1; so that {i | q(x) < 0.5}
gives the set of points that are more attached to set V0.

Once the committor function is given, the statistical properties of the reaction
trajectories between V0 and V1 can be quantified. We state several propositions
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characterizing transition mechanism from V0 to V1. The proof of them is an easy
adaptation of [EVE06, MSVE09] and will be omitted.

Proposition 7.2 (Probability distribution of reactive trajectories). The probabil-
ity distribution of reactive trajectories

(91) πR(x) = P(Xn = x, n ∈ R)

is given by

(92) πR(x) = π(x)q(x)(1− q(x)).

The distribution πR gives the equilibrium probability that a reactive trajec-
tory visits x. It provides information about the proportion of time the reactive
trajectories spend in state x along the way from V0 to V1.

Proposition 7.3 (Reactive current from V0 to V1). The reactive current from A
to B, defined by

(93) J(xy) = P(Xn = x,Xn+1 = y, {n, n+ 1} ⊂ R),

is given by

(94) J(xy) =

{
π(x)(1− q(x))Pxyq(y), x 6= y;

0, otherwise.

The reactive current J(xy) gives the average rate the reactive trajectories jump
from state x to y. From the reactive current, we may define the effective reactive
current on an edge and transition current through a node which characterizes the
importance of an edge and a node in the transition from A to B, respectively.

Definition. The effective current of an edge xy is defined as

(95) J+(xy) = max(J(xy)− J(yx), 0).

The transition current through a node x ∈ V is defined as

(96) T (x) =


∑
y∈V J

+(xy), x ∈ A∑
y∈V J

+(yx), x ∈ B∑
y∈V J

+(xy) =
∑
y∈V J

+(yx), x 6∈ A ∪B

In applications one often examines partial transition current through a node
connecting two communities V − = {x : q(x) < 0.5} and V + = {x : q(x) ≥ 0.5},
e.g.

∑
y∈V + J+(xy) for x ∈ V −, which shows relative importance of the node in

bridging communities.
The reaction rate ν, defined as the number of transitions from V0 to V1 hap-

pened in a unit time interval, can be obtained from adding up the probability
current flowing out of the reactant state. This is stated by the next proposition.

Proposition 7.4 (Reaction rate). The reaction rate is given by

(97) ν =
∑

x∈A,y∈V
J(xy) =

∑
x∈V,y∈B

J(xy).
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Finally, the committor functions also give information about the time propor-
tion that an equilibrium trajectory comes from A (the trajectory hits A last rather
than B).

Proposition 7.5. The proportion of time that the trajectory comes fromA (resp. from
B) is given by

(98) ρA =
∑
x∈V

π(x)q(x), ρB =
∑
x∈V

π(x)(1− q(x)).





CHAPTER 7

Diffusion Map

Finding meaningful low-dimensional structures hidden in high-dimensional ob-
servations is an fundamental task in high-dimensional statistics. The classical tech-
niques for dimensionality reduction, principal component analysis (PCA) and multi-
dimensional scaling (MDS), guaranteed to discover the true structure of data lying
on or near a linear subspace of the high-dimensional input space. PCA finds a
low-dimensional embedding of the data points that best preserves their variance as
measured in the high-dimensional input space. Classical MDS finds an embedding
that preserves the interpoint distances, equivalent to PCA when those distances
are Euclidean [TdL00]. However, these linear techniques cannot adequately han-
dle complex nonlinear data. Recently more emphasis is put on detecting non-linear
features in the data. For example, ISOMAP [TdL00] etc. extends MDS by in-
corporating the geodesic distances imposed by a weighted graph. It defines the
geodesic distance to be the sum of edge weights along the shortest path between
two nodes. The top n eigenvectors of the geodesic distance matrix are used to
represent the coordinates in the new n-dimensional Euclidean space. Nevertheless,
as mentioned in [EST09], in practice robust estimation of geodesic distance on
a manifold is an awkward problem that require rather restrictive assumptions on
the sampling. Moreover, since the MDS step in the ISOMAP algorithm intends to
preserve the geodesic distance between points, it provides a correct embedding if
submanifold is isometric to a convex open set of the subspace. If the submanifold is
not convex, then there exist a pair of points that can not be joined by a straight line
contained in the submanifold. Therefore,their geodesic distance can not be equal
to the Euclidean distance. Diffusion maps [CLL+05] leverages the relationship
between heat diffusion and a random walk (Markov Chain); an analogy is drawn
between the diffusion operator on a manifold and a Markov transition matrix op-
erating on functions defined on a weighted graph whose nodes were sampled from
the manifold. A diffusion map, which maps coordinates between data and diffusion
space, aims to re-organize data according to a new metric. In this class, we will
discuss this very metric-diffusion distance and it’s related properties.

1. Diffusion map and Diffusion Distance

Viewing the data points x1,x2,. . . ,xn as the nodes of a weighted undirected
graphG = (V,EW )(W = (Wij)), where the weightWij is a measure of the similarity
between xi and xj . There are many ways to define Wij , such as:

(1) Heat kernel. If xi and xj are connected, put:

(99) W ε
ij = e

−‖xi−xj‖
2

ε

109
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with some positive parameter ε ∈ R+
0 .

(2) Cosine Similarity

(100) Wij = cos(∠(xi, xj)) =
xi
‖xi‖

· xj
‖xj‖

(3) Kullback-Leibler divergence. Assume xi and xj are two nonvanishing
probability distribution, i.e.

∑
k x

k
i = 1 and xki > 0. Define Kullback-

Leibler divergence

D(KL)(xi||xj) =
∑
k

x
(k)
i log

x
(k)
i

x
(k)
j

and its symmetrization D̄ = D(KL)(xi||xj)+DKL(xj ||xi), which measure
a kind of ‘distance’ between distributions; Jensen-Shannon divergence as
the symmetrization of KL-divergence between one distribution and their
average,

D(JS)(xi, xj) = D(KL)(xi||(xi + xj)/2) +D(KL)(xj ||(xi + xj)/2)

A similarity kernel can be

(101) Wij = −D(KL)(xi||xj)

or

(102) Wij = −D(JS)(xi, xj)

The similarity functions are widely used in various applications. Sometimes
the matrix W is positive semi-definite (psd), that for any vector x ∈ Rn,

(103) xTWx ≥ 0.

PSD kernels includes heat kernels, cosine similarity kernels, and JS-divergence ker-
nels. But in many other cases (e.g. KL-divergence kernels), similarity kernels are
not necessarily PSD. For a PSD kernel, it can be understood as a generalized co-
variance function; otherwise, diffusions as random walks on similarity graphs will
be helpful to disclose their structures.

Define A := D−1W , where D = diag(
n∑
j=1

Wij) , diag(d1, d2, · · · , dn) for sym-

metric Wij = Wji ≥ 0. So

(104)

n∑
j=1

Aij = 1 ∀i ∈ {1, 2, · · ·, n} (Aij ≥ 0)

whence A is a row Markov matrix of the following discrete time Markov chain
{Xt}t∈N satisfying

(105) P (Xt+1 = xj | Xt = xi) = Aij .
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1.1. Spectral Properties of A. We may reach a spectral decomposition of
A with the aid of the following symmetric matrix S which is similar to A. Let

(106) S := D−
1
2WD−

1
2

which is symmetric and has an eigenvalue decomposition

(107) S = V ΛV T , where V V T = In,Λ = diag(λ1, λ2, · · ·, λn)

So

A = D−1W = D−1(D
1
2SD

1
2 ) = D−

1
2SD

1
2

which is similar to S, whence sharing the same eigenvalues as S. Moreover

(108) A = D−
1
2V ΛV TD

1
2 = ΦΛΨT

where Φ = D−
1
2V and Ψ = D

1
2V give right and left eigenvectors of A respectively,

AΦ = ΦΛ and ΨTA = ΛΨT , and satisfy ΨTΦ = In.
The Markov matrix A satisfies the following properties by Perron-Frobenius

Theory.

Proposition 1.1. (1) A has eigenvalues λ(A) ⊂ [−1, 1].
(2) A is irreducible, if and only if ∀(i, j) ∃t s.t. (At)ij > 0⇔ Graph G = (V,E)

is connected
(3) A is irreducible ⇒ λmax = 1
(4) A is primitive, if and only if ∃t > 0 s.t. ∀(i, j) (At)ij > 0 ⇔ Graph

G = (V,E) is path-t connected, i.e. any pair of nodes are connected by a
path of length no more than t

(5) A is irreducible and ∀i, Aii > 0 ⇒ A is primitive
(6) A is primitive ⇒ −1 6∈ λ(A)
(7) Wij is induced from the heat kernel, or any positive definite function
⇒ λ(A) ≥ 0

Proof. (1) assume λ and v are the eigenvalue and eigenvector of A, soAv =
λv. Find j0 s.t. |vj0 | ≥ |vj |,∀j 6= j0 where vj is the j-th entry of v. Then:

λvj0 = (Av)j0 =

n∑
j=1

Aj0jvj

So:

|λ||vj0 | = |
n∑
j=1

Aj0jvj | ≤
n∑
j=1

Aj0j |vj | ≤ |vj0 |.

(7) Let S = D−1/2WD−1/2. As W is positive semi-definite, so S has eigenvalues
λ(S) ≥ 0. Note that A = D−1/2SD1/2, i.e. similar to S, whence A shares the same
eigenvalues with S. �

Sort the eigenvalues 1 = λ1 ≥ λ2 ≥ . . . ≥ λn ≥ −1. Denote Φ = [φ1, . . . , φn]
and Ψ = [ψ1, . . . , ψn]. So the primary (first) right and left eigenvectors are

φ1 = 1,

ψ1 = π

as the stationary distribution of the Markov chain, respectively.
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1.2. Diffusion Map and Distance. Diffusion map of a point x is defined
as the weighted Euclidean embedding via right eigenvectors of Markov matrix A.
From the interpretation of the matrix A as a Markov transition probability matrix

(109) Aij = Pr{s(t+ 1) = xj |s(t) = xi}
it follows that

(110) Atij = Pr{s(t+ 1) = xj |s(0) = xi}
We refer to the i′th row of the matrix At, denoted Ati,∗, as the transition prob-

ability of a t-step random walk that starts at xi. We can express At using the
decomposition of A. Indeed, from

(111) A = ΦΛΨT

with ΨTΦ = I, we get

(112) At = ΦΛtΨT .

Written in a component-wise way, this is equivalent to

(113) Atij =

n∑
k=1

λtkφk(i)ψk(j).

Therefore Φ and Ψ are right and left eigenvectors of At, respectively.
Let the diffusion map Φt : V 7→ Rn at scale t be

(114) Φt(xi) :=


λt1φ1(i)
λt2φ2(i)

...
λtnφn(i)


The mapping of points onto the diffusion map space spanned the right eigenvectors
of the row Markov matrix has a well defined probabilistic meaning in terms of the
random walks. Lumpable Markov chains with Piece-wise constant right eigenvec-
tors thus help us understand the behavior of diffusion maps and distances in such
cases.

The diffusion distance is defined to be the Euclidean distances between embed-
ded points,

(115) dt(xi, xj) := ‖Φt(xi)− Φt(xj)‖Rn =

(
n∑
k=1

λ2t
k (φk(i)− φk(j))2

)1/2

.

The main intuition to define diffusion distance is to describe “perceptual dis-
tances” of points in the same and different clusters. For example Figure 1 shows
that points within the same cluster have small diffusion distances while in different
clusters have large diffusion distances. This is because the metastability phenom-
enon of random walk on graphs where each cluster represents a metastable state.
The main properties of diffusion distances are as follows.

• Diffusion distances reflect average path length connecting points via ran-
dom walks.

• Small t represents local random walk, where diffusion distances reflect
local geometric structure.

• Large t represents global random walk, where diffusion distances reflect
large scale cluster or connected components.



1. DIFFUSION MAP AND DIFFUSION DISTANCE 113

Figure 1. Diffusion Distances dt(A,B) >> dt(B,C) while graph
shortest path dgeod(A,B) ∼ dgeod(B,C).

1.3. Examples. Three examples about diffusion map:
EX1: two circles.
Suppose graph G : (V,E). Matrix W satisfies wij > 0, if and only if (i, j) ∈ E.

Choose k(x, y) = I‖x−y‖<δ. In this case,

A =

(
A1 0
0 A2

)
,

where A1 is a n1 × n1 matrix, A2 is a n2 × n2 matrix, n1 + n2 = n.
Notice that the eigenvalue λ0 = 1 of A is of multiplicity 2, the two eigenvectors

are φ0 = 1n and φ
′

0 = [c11Tn1, c21Tn2]T c1 6= c2.

Diffusion Map :

{
Φ1D
t (x1), · · · ,Φ1D

t (xn1) = c1
Φ1D
t (xn1+1), · · · ,Φ1D

t (xn) = c2

EX2: ring graph. ”single circle”
In this case, W is a circulant matrix

W =


1 1 0 0 · · · 1
1 1 1 0 · · · 0
0 1 1 1 · · · 0
...

...
...

... · · ·
...

1 0 0 0 · · · 1


The eigenvalue of W is λk = cos 2πk

n k = 0, 1, · · · , n2 and the corresponding eigen-

vector is (uk)j = ei
2π
n kj j = 1, · · · , n. So we can get Φ2D

t (xi) = (cos 2πkj
n , sin 2πkj

n )ct

EX3: order the face. Let

kε(x, y) = exp

(
−‖x− y‖

2

ε

)
,

W ε
ij = kε(xi, xj) and Aε = D−1W ε where D = diag(

∑
jW

ε
ij). Define a graph

Laplacian (recall that L = D−1A− I)

Lε :=
1

ε
(Aε − I)

ε→0−→ backward Kolmogorov operator
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Figure 2. Two circles

Figure 3. EX2 single circle

Figure 4. Order the face

Lεf =
1

2
4Mf −∇f · ∇V ⇒ Lεφ = λφ⇒

{
1
2φ
′′
(s)− φ′(s)V ′(s) = λφ(s)

φ
′
(0) = φ

′
(1) = 0

Where V (s) is the Gibbs free energy and p(s) = e−V (x) is the density of data points
along the curve. 4M is Laplace-Beltrami Operator. If p(x) = const, we can get

(116) V (s) = const⇒ φ
′′
(s) = 2λφ(s)⇒ φk(s) = cos(kπs), 2λk = −k2π2

On the other hand p(s) 6= const, one can show 1 that φ1(s) is monotonic for
arbitrary p(s). As a result, the faces can still be ordered by using φ1(s).

1.4. Properties of Diffusion Distance.

Lemma 1.2. The diffusion distance is equal to a `2 distance between the proba-
bility clouds Ati,∗ and Atj,∗ with weights 1/dl,i.e.,

(117) dt(xi, xj) = ‖Ati,∗ −Atj,∗‖`2(Rn,1/d)

1by changing to polar coordinate p(s)φ′(s) = r(s) cos θ(s), φ(s) = r(s) sin θ(s) ( the so-called
‘Prufer Transform’ ) and then try to show that φ′(s) is never zero on (0, 1).
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Proof.

‖Ati,∗ −Atj,∗‖
2

`2(Rn,1/d)
=

n∑
l=1

(Atil −Atjl)2 1

dl

=

n∑
l=1

[

n∑
k=1

λtkφk(i)ψk(l)− λtkφk(j)ψk(l)]2
1

dl

=

n∑
l=1

n∑
k,k′

λtk(φk(i)− φk(j))ψk(l)λtk′(φk′(i)− φk′(j))ψk′(l)
1

dl

=

n∑
k,k′

λtkλ
t
k′(φk(i)− φk(j))(φk′(i)− φk′(j))

n∑
l=1

ψk(l)ψk′(l)

dl

=

n∑
k,k′

λtkλ
t
k′(φk(i)− φk(j))(φk′(i)− φk′(j))δkk′

=

n∑
k=1

λ2t
k (φk(i)− φk(j))2

= d2
t (xi, xj)

�

In practice we usually do not use the mapping Φt but rather the truncate
diffusion map Φδt that makes use of fewer than n coordinates. Specifically, Φδt uses

only the eigenvectors for which the eigenvalues satisfy |λk|t > δ. When t is enough
large, we can use the truncated diffusion distance:

(118) dδt (xi, xj) = ‖Φδt (xi)− Φδt (xj)‖ = [
∑

k:|λk|t>δ

λ2t
k (φk(i)− φk(j))2]

1
2

as an approximation of the weighted `2 distance of the probability clouds. We now
derive a simple error bound for this approximation.

Lemma 1.3 (Truncated Diffusion Distance). The truncated diffusion distance sat-
isfies the following upper and lower bounds.

d2
t (xi, xj)−

2δ2

dmin
(1− δij) ≤ [dδt (xi, xj)]

2 ≤ d2
t (xi, xj),

where dmin = min1≤i≤n di with di =
∑
jWij .

Proof. Since, Φ = D−
1
2V , where V is an orthonormal matrix (V V T =

V TV = I), it follows that

(119) ΦΦT = D−
1
2V V TD−

1
2 = D−1

Therefore,

(120)

n∑
k=1

φk(i)φk(j) = (ΦΦT )ij =
δij
di

and

(121)

n∑
k=1

(φk(i)− φk(j))2 =
1

di
+

1

dj
− 2δij

di
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clearly,

(122)

n∑
k=1

(φk(i)− φk(j))2 ≤ 2

dmin
(1− δij), forall i, j = 1, 2, · · · , n

As a result,

[dδt (xi, xj)]
2 = d2

t (xi, xj)−
∑

k:|λk|t<δ

λ2t
k (φk(i)− φk(j))2

≥ d2
t (xi, xj)− δ2

∑
k:|λk|t<δ

(φk(i)− φk(j))2

≥ d2
t (xi, xj)− δ2

n∑
k=1

(φk(i)− φk(j))2

≥ d2
t (xi, xj)−

2δ2

dmin
(1− δij)

on the other hand, it is clear that

(123) [dδt (xi, xj)]
2 ≤ d2

t (xi, xj)

We conclude that

(124) d2
t (xi, xj)−

2δ2

dmin
(1− δij) ≤ [dδt (xi, xj)]

2 ≤ d2
t (xi, xj)

�

Therefore, for small δ the truncated diffusion distance provides a very good
approximation to the diffusion distance. Due to the fast decay of the eigenvalues,
the number of coordinates used for the truncated diffusion map is usually much
smaller than n, especially when t is large.

1.5. Is the diffusion distance really a distance? A distance function d :
X ×X → R must satisfy the following properties:

(1) Symmetry: d(x, y) = d(y, x)
(2) Non-negativity: d(x, y) ≥ 0
(3) Identity of indiscernibles: d(x, y) = 0⇔ x = y
(4) Triangle inequality: d(x, z) + d(z, y) ≥ d(x, y)

Since the diffusion map is an embedding into the Euclidean space Rn, the
diffusion distance inherits all the metric properties of Rn such as symmetry, non-
negativity and the triangle inequality. The only condition that is not immediately
implied is dt(x, y) = 0 ⇔ x = y. Clearly, xi = xj implies that dt(xi, xj) = 0. But
is it true that dt(xi, xj) = 0 implies xi = xj? Suppose dt(xi, xj) = 0, Then,

(125) 0 = d2
t (xi, xj) =

n∑
k=1

λ2t
k (φk(i)− φk(j))2

It follows that φk(i) = φk(j) for all k with λk 6= 0. But there is still the possibility
that φk(i) 6= φk(j) for k with λk = 0. We claim that this can happen only whenever
i and j have the exact same neighbors and proportional weights, that is:
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Proposition 1.4. The situation dt(xi, xj) = 0 with xi 6= xj occurs if and only if
node i and j have the exact same neighbors and proportional weights

Wik = αWjk, α > 0, for all k ∈ V.

Proof. (Necessity) If dt(xi, xj) = 0, then
n∑
k=1

λ2t
k (φk(i) − φk(j))2 = 0 and

φk(i) = φk(j) for k with λk 6= 0 This implies that dt′(xi, xj) = 0 for all t′, because

(126) dt′(xi, xj) =

n∑
k=1

λ2t′

k (φk(i)− φk(j)2 = 0.

In particular, for t′ = 1, we get d1(xi, xj) = 0. But

d1(xi, xj) = ‖Ai,∗ −Aj,∗‖`2(Rn,1/d),

and since ‖ · ‖`2(Rn,1/d) is a norm, we must have Ai,∗ = Aj,∗, which implies for each
k ∈ V ,

Wik

di
=
Wjk

dj
, ∀k ∈ V

whence Wik = αWjk where α = di/dj , as desired.

(Sufficiency) If Ai,∗ = Aj,∗, then 0 =
n∑
k=1

(Ai,k − Aj,k)2/dk = d2
1(xi, xj) ==

n∑
k=1

λ2
k(φk(i) − φk(j))2 and therefore φk(i) = φk(j) for k with λk 6= 0, from which

it follows that dt(xi, xj) = 0 for all t. �

Example 7. In a graph with three nodes V = {1, 2, 3} and two edges, say E =
{(1, 2), (2, 3)}, the diffusion distance between nodes 1 and 3 is 0. Here the transition
matrix is

A =

 0 1 0
1/2 0 1/2
0 1 0

 .

2. Commute Time Map and Distance

Diffusion distance depends on time scale parameter t which is hard to select in
applications. In this section we introduce another closely related distance, namely
commute time distance, derived from mean first passage time between points. For
such distances we do not need to choose the time scale t.

Definition.

(1) First passage time (or hitting time): τij := inf(t ≥ 0|xt = j, x0 = i);
(2) Mean First Passage Time: Tij = Eiτij ;
(3) τ+

ij := inf(t > 0|xt = j, x0 = i), where τ+
ii is also called first return time;

(4) T+
ij = Eiτ+

ij , where T+
ii is also called mean first return time.

Here Ei denotes the conditional expectation with fixed initial condition x0 = i.
All the below will show that the (average) commute time between xi and xj ,

i.e.Tij + Tji, in fact leads to an Euclidean distance metric which can be used for
embedding.

Theorem 2.1. dc(xi, xj) :=
√
Tij + Tji is an Euclidean distance metric, called

commute time distance.
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Proof. For simplicity, we will assume that P is irreducible such that the
stationary distribution is unique. We will give a constructive proof that Tij + Tji
is a squared distance of some Euclidean coordinates for xi and xj .

By definition, we have

(127) T+
ij = Pij · 1 +

∑
k 6=j

Pik(T+
kj + 1)

Let E = 1 · 1T where 1 ∈ Rn is a vector with all elements one, T+
d = diag(T+

ii ).
Then 127 becomes

(128) T+ = E + P (T+ − T+
d ).

For the unique stationary distribution π, πTP = P , whence we have

πTT+ = πT 1 · 1T + πTP (T+ − T+
d )

πTT+ = 1T + πTT+ − πTT+
d

1 = T+
d π

T+
ii =

1

πi

Before proceeding to solve equation (127), we first show its solution is unique.

Lemma 2.2. P is irreducible ⇒ T+ and T are both unique.

Proof. Assume S is also a solution of equation (128), then

(I − P )S = E − Pdiag(1/πi) = (I − P )T+

⇔ ((I − P )(T+ − S) = 0.

Therefore for irreducible P , S and T+ must satisfy{
diag(T+ − S) = 0

T+ − S = 1uT , ∀u
which implies T+ = S. T ’s uniqueness follows from T = T+ − T+

d . �

Now we continue with the proof of the main theorem. Since T = T+ − T+
d ,

then (127) becomes

T = E + PT − T+
d

(I − P )T = E − T+
d

(I −D−1W )T = F

(D −W )T = DF

LT = DF

where F = E − T+
d and L = D −W is the (unnormalized) graph Laplacian. Since

L is symmetric and irreducible, we have L =
∑n
k=1 µkνkν

T
k , where 0 = µ1 < µ2 ≤

· · · ≤ µn, ν1 = 1/||1||, νTk νl = δkl. Let L+ =
∑n
k=2

1
µk
νkν

T
k , L+ is called the pseudo-

inverse (or Moore-Penrose inverse) of L. We can test and verify L+ satisfies the
following four conditions 

L+LL+ = L+

LL+L = L
(LL+)T = LL+

(L+L)T = L+L
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From LT = D(E − T+
d ), multiplying both sides by L+ leads to

T = L+DE − L+DT+
d + 1 · uT ,

as 1 · uT ∈ ker(L), whence

Tij =

n∑
k=1

L+
ikdk − L+

ijdj ·
1

πj
+ uj

ui = −
n∑
k=1

L+
ikdk + L+

iivol(G), j = i

Tij =
∑
k

L+
ikdk − L+

ijvol(G) + L+
jjvol(G)−

∑
k

L+
jkdk

Note that vol(G) =
∑
i di and πi = di/vol(G) for all i.

Then

(129) Tij + Tji = vol(G)(L+
ii + L+

jj − 2L+
ij).

To see it is a squared Euclidean distance, we need the following lemma.

Lemma 2.3. If K is a symmetric and positive semidefinite matrix, then

K(x, x)+K(y, y)−2K(x, y) = d2(Φ(x),Φ(y)) = 〈Φ(x),Φ(x)〉+〈Φ(y),Φ(y)〉−2〈Φ(x),Φ(y)〉
where Φ = (φi : i = 1, . . . , n) are orthonormal eigenvectors with eigenvalues µi ≥ 0,
such that K(x, y) =

∑
i µiφi(x)φi(y).

Clearly L+ is a positive semidefinite matrix and we define the commute time
map by its eigenvectors,

Ψ(xi) =

(
1√
µ2
ν2(i), · · · , 1√

µn
νn(i)

)T
∈ Rn−1.

then L+
ii+L

+
jj−2L+

ij = ||Ψ(xi)−Ψ(xj))||2l2 , and we call dr(xi, xj) =
√
L+
ii + L+

jj − 2L+
ij

the resistance distance.
So we have dc(xi, xj) =

√
Tij + Tji =

√
vol(G)dr(xi, xj). �

Table 1. Comparisons between diffusion map and commute time
map. Here x ∼ y means that x and y are in the same cluster and
x � y for different clusters.

Diffusion Map Commute Time Map
P ’s right eigenvectors L+’s eigenvectors

scale parameters: t and ε scale: ε
∃t, s.t. x ∼ y, dt(x, y)→ 0 and x � y, dt(x, y)→∞ x ∼ y, dc(x, y) small and x � y, dc(x, y) large?

2.1. Comparisons between diffusion map and commute time map.
However, recently Radl, von Luxburg, and Hein give a negative answer for the last
desired property of dc(x, y) in geometric random graphs. Their result is as follows.
Let X ⊆ Rp be a compact set and let k : X × X → (0,+∞) be a symmetric
and continuous function. Suppose that (xi)i∈N is a sequence of data points drawn
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i.i.d. from X according to a density function p > 0 on X . Define Wij = k(xi, xj),
P = D−1W , and L = D −W . Then Radl et al. shows

lim
n→∞

ndr(xi, xj) =
1

d(xi)
+

1

d(xj)

where d(x) =
∫
X
k(x, y)dp(y) is a smoothed density at x, dr(xi, xj) =

dc(xi,xj)√
vol(G)

is the

resistance distance. This result shows that in this setting commute time distance
has no information about cluster information about point cloud data, instead it
simply reflects density information around the two points.

3. Diffusion Map: Convergence Theory

Diffusion distance depends on both the geometry and density of the dataset.
The key concepts in the analysis of these methods, that incorporates the density and
geometry of a dataset. This section we will prove the convergence of diffusion map
with heat kernels to its geometric limit, the eigenfunctions of Laplacian-Beltrami
operators.

This is left by previous lecture. W is positive definite if using Gaussian Kernel.
One can check that, when

Q(x) =

∫
R
e−ixξdµ(ξ),

for some positive finite Borel measure dµ on R, then the (symmetric/Hermitian)
integral kernel

k(x, y) = Q(x− y)

is positive definite, that is, for any function φ(x) on R,∫ ∫
φ̄(x)φ(y)k(x, y) ≥ 0.

Proof omitted. The reverse is also true, which is Bochner theorem. High dimen-
sional case is similar.

Take 1-dimensional as an example. Since the Gaussian distribution e−ξ
2/2dξ

is a positive finite Borel measure, and the Fourier transform of Gaussian kernel is

itself, we know that k(x, y) = e−|x−y|
2/2 is a positive definite integral kernel. The

matrix W as an discretized version of k(x, y) keeps the positive-definiteness (make
this rigorous? Hint: take φ(x) as a linear combination of n delta functions).

3.1. Main Result. In this lecture, we will study the bias and variance de-
composition for sample graph Laplacians and their asymptotic convergence to
Laplacian-Beltrami operators on manifolds.

Let M be a smooth manifold without boundary in Rp (e.g. a d-dimensional
sphere). Randomly draw a set of n data points, x1,..., xn ∈ M ⊂ Rp, according to
distribution p(x) in an independent and identically distributed (i.i.d.) way. We can
extract an n× n weight matrix Wij as follows:

Wij = k(xi, xj)

where k(x, y) is a symmetric k(x, y) = k(y, x) and positivity-preserving kernel
k(x, y) ≥ 0. As an example, it can be the heat kernel (or Gaussian kernel),
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kε(xi, xj) = exp

(
−||xi − xj ||

2

2ε

)
,

where || � ||2is the Euclidean distance in space Rp and ε is the bandwidth of the
kernel. Wij stands for similarity function between xi and xj . A diagonal matrix D
is defined with diagonal elements are the row sums of W :

Dii =

n∑
j=1

Wij .

Let’s consider a family of re-weighted similarity matrix, with superscript (α),

W (α) = D−αWD−α

and

D
(α)
ii =

n∑
j=1

W
(α)
ij .

Denote A(α) = (D(α))−1W , and we can verify that
∑n
j=1A

(α)
ij = 1, i.e.a row

Markov matrix. Now define L(α) = A(α) − I = (D(α))−1W (α) − I; and

Lε,α =
1

ε
(A(α)

ε − I)

when kε(x, y) is used in constructing W . In general, L(α) and Lε,α are both called

graph Laplacians. In particular L(0) is the unnormalized graph Laplacian in litera-
ture.

The target is to show that graph Laplacian Lε,α converges to continuous differ-
ential operators acting on smooth functions on M the manifold. The convergence
can be roughly understood as: we say a sequence of n-by-n matrix L(n) as n→∞
converges to a limiting operator L, if for L’s eigenfunction f(x) (a smooth function
on M) with eigenvalue λ, that is

Lf = λf,

the length-n vector f (n) = (f(xi)), (i = 1, · · · , n) is approximately an eigenvector
of L(n) with eigenvalue λ, that is

L(n)f (n) = λf (n) + o(1),

where o(1) goes to zero as n→∞.
Specifically, (the convergence is in the sense of multiplying a positive constant)

(I) Lε,0 = 1
ε (Aε − I) → 1

2 (∆M + 2∇pp · ∇) as ε → 0 and n → ∞. ∆M is

the Laplace-Beltrami operator of manifold M . At a point on M which
is d-dimensional, in local (orthogonal) geodesic coordinate s1, · · · , sd, the
Laplace-Beltrami operator has the same form as the laplace in calculus

∆Mf =

d∑
i=1

∂2

∂s2
i

f ;

∇ denotes the gradient of a function on M , and · denotes the inner product
on tangent spaces of M. Note that p = e−V , so ∇pp = −∇V .



122 7. DIFFUSION MAP

(Ignore this part if you don’t know stochastic process) Suppose we
have the following diffusion process

dXt = −∇V (Xt)dt+ σdW
(M)
t ,

where W
(M)
t is the Brownian motion on M , and σ is the volatility, say a

positive constant, then the backward Kolmogorov operator/Fokker-Plank
operator/infinitesimal generator of the process is

σ2

2
∆M −∇V · ∇,

so we say in (I) the limiting operator is the Fokker-Plank operator. Notice
that in Lafon ’06 paper they differ the case of α = 0 and α = 1/2, and
argue that only in the later case the limiting operator is the Fokker-Plank.
However the difference between α = 0 and α = 1/2 is a 1/2 factor in front
of −∇V , and that can be unified by changing the volatility σ to another
number. (Actually, according to Thm 2. on Page 15 of Lafon’06, one can
check that σ2 = 1

1−α .) So here we say for α = 0 the limiting operator is

also Fokker-Plank. (not talked in class, open to discussion...)

(II) Lε,1 = 1
ε (A

(1)
ε − I) → 1

2∆M as ε → 0 and n → ∞. Notice that this
case is of important application value: whatever the density p(x) is, the
Laplacian-Beltrami operator of M is approximated, so the geometry of
the manifold can be understood.

A special case is that samples xi are uniformly distributed on M, whence
∇p = 0. Then (I) and (II) are the same up to multiplying a positive constant, due
to that D’s diagonal entries are almost the same number and the re-weight does
not do anything.

Convergence results like these can be found in Coifman and Lafon [CL06],
Diffusion maps, Applied and Computational Harmonic Analysis.

We also refer [Sin06] From graph to manifold Laplacian: The convergence
rate, Applied and Computational Harmonic Analysis for a complete analysis of the
variance error, while the analysis of bias is very brief in this paper.

3.2. Proof. For a smooth function f(x) on M, let f = (fi) ∈ Rn as a vector
defined by fi = f(xi). At a given fixed point xi, we have the formula:

(Lf)i =
1

ε

(∑n
j=1Wijfj∑n
j=1Wij

− fi
)

=
1

ε

(
1
n

∑n
j=1Wijfj

1
n

∑n
j=1Wij

− fi
)

=
1

ε

(
1
n

∑
j 6=i kε(xi, xj).f(xj)

1
n

∑
j 6=i kε(xi, xj)

− f(xi) + f(xi)O(
1

nε
d
2

)

)
where in the last step the diagonal terms j = i are excluded from the sums resulting

in an O(n−1ε−
d
2 ) error. Later we will see that compared to the variance error, this

term is negligible.
We rewrite the Laplacian above as

(130) (Lf)i =
1

ε

(
F (xi)

G(xi)
− f(xi) + f(xi)O(

1

nε
d
2

)

)
where
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F (xi) =
1

n

∑
j 6=i

kε(xi, xj)f(xj), G(xi) =
1

n

∑
j 6=i

kε(xi,xj).

depends only on the other n− 1 data points than xi. In what follows we treat
xi as a fixed chosen point and write as x.

Bias-Variance Decomposition. The points xj , j 6= i are independent iden-
tically distributed (i.i.d), therefore every term in the summation of F (x) (G(x))
are i.i.d., and by the Law of Large Numbers (LLN) one should expect F (x) ≈
Ex1

[k(x, x1)f(x1)] =
∫
M k(x, y)f(y)p(y)dy (andG(x) ≈ Ek(x, x1) =

∫
M k(x, y)p(y)dy).

Recall that given a random variable x, and a sample estimator θ̂ (e.g. sample mean),
the bias-variance decomposition is given by

E‖x− θ̂‖2 = E‖x− Ex‖2 + E‖Ex− θ̂‖2.
If we use the same strategy here (though not exactly the same, since E[FG ] 6= E[F ]

E[G]

!), we can decompose Eqn. (130) as

(Lf)i =
1

ε

(
E[F ]

E[G]
− f(xi) + f(xi)O(

1

nε
d
2

)

)
+

1

ε

(
F (xi)

G(xi)
− E[F ]

E[G]

)
= bias+ variance.

In the below we shall show that for case (I) the estimates are
(131)

bias =
1

ε

(
E[F ]

E[G]
− f(x) + f(xi)O(

1

nε
d
2

)

)
=
m2

2
(∆Mf+2∇f ·∇p

p
)+O(ε)+O

(
n−1ε−

d
2

)
.

(132) variance =
1

ε

(
F (xi)

G(xi)
− E[F ]

E[G]

)
= O(n−

1
2 ε−

d
4−1),

whence

bias+ variance = O(ε, n−
1
2 ε−

d
4−1) = C1ε+ C2n

− 1
2 ε−

d
4−1.

As the bias is a monotone increasing function of ε while the variance is decreasing
w.r.t. ε, the optimal choice of ε is to balance the two terms by taking derivative

of the right hand side equal to zero (or equivalently setting ε ∼ n−
1
2 ε−

d
4−1) whose

solution gives the optimal rates

ε∗ ∼ n−1/(2+d/2).

[CL06] gives the bias and [HAvL05] contains the variance parts, which are further
improved by [Sin06] in both bias and variance.

3.3. The Bias Term. Now focus on E[F ]

E[F ] = E

 1

n

∑
j 6=i

kε(xi, xj)f(xj)

 =
n− 1

n

∫
M
kε(x, y)f(y)p(y)dy

n−1
n is close to 1 and is treated as 1.

(1) the case of one-dimensional and flat (which means the manifoldM is just
a real line, i.e.M = R)

Let f̃(y) = f(y)p(y), and kε(x, y) = 1√
ε
e−

(x−y)2
2ε , by change of variable

y = x+
√
εz,
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we have

� =

∫
R
f̃(x+

√
εz)e−

ε2

2 dz = m0f̃(x) +
1

2
m2f

′′(x)ε+O(ε2)

where m0 =
∫
R e
− ε22 dz, and m2 =

∫
R z

2e−
ε2

2 dz.
(2) 1 Dimensional & Not flat:

Divide the integral into 2 parts:

∫
m

kε(x, y)f̃(y)p(y)dy =

∫
||x−y||>c

√
ε

·+
∫
||x−y||<c

√
ε

·

First part = ◦

| ◦ | ≤ ||f̃ ||∞
1

ε
a
2
e−

ε2

2ε ,

due to ||x− y||2 > c
√
ε

c ∼ ln(
1

ε
).

so this item is tiny and can be ignored.
Locally, that is u ∼ √ε, we have the curve in a plane and has the

following parametrized equation

(x(u), y(u)) = (u, au2 + qu3 + · · · ),

then the chord length

1

ε
||x− y||2 =

1

ε
[u2 + (au2 + qu3 + ...)2] =

1

ε
[u2 + a2u4 + q5(u) + · · · ],

where we mark a2u4 + 2aqu5 + ... = q5(u). Next, change variable u√
ε

= z,

then with h(ξ) = e−
ξ
2

h(
||x− y||

ε
)2 = h(z2) + h′(z2)(ε2az4 + ε

3
2 q5 +O(ε2)),

also

f̃(s) = f̃(x) +
df̃

ds
(x)s+

1

2

d2f̃

ds2
(x)s2 + · · ·

and

s =

∫ u

0

√
1 + (2au+ 3quu2 + ...)2du+ · · ·

and

ds

du
= 1 + 2a2u2 + q2(u) +O(ε2), s = u+

2

3
a2u3 +O(ε2).
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Now come back to the integral∫
|x−y|<c

√
ε

1√
ε
h(
x− y
ε

)f̃(s)ds

≈
∫ +∞

−∞
[h(z2) + h′(z2)(ε2az4 + ε

3
2 q5] · [f̃(x) +

df̃

ds
(x)(
√
εz +

2

3
a2z2ε

3
2 )

+
1

2

d2f̃

ds2
(x)εz2] · [1 + 2a2 + ε3y3(z)]dz

=m0f̃(x) + ε
m2

2
(
d2f̃

ds2
(x) + a2f̃(x)) +O(ε2),

where theO(ε2) tails are omitted in middle steps, andm0 =
∫
h(z2)dz,m2 =∫

z2h(z2)dz, are positive constants. In what follows we normalize both of
them by m0, so only m2 appears as coefficient in the O(ε) term. Also the

fact that h(ξ) = e−
ξ
2 , and so h′(ξ) = − 1

2h(ξ), is used.
(3) For high dimension, M is of dimension d,

kε(x, y) =
1

ε
d
2

e−
|x−y|2

2ε ,

the corresponding result is (Lemma 8 in Appendix B of Lafon ’06 paper)

(133)

∫
M
kε(x, y)f̃(y)dy = f̃(x) + ε

m2

2
(∆Mf̃ + E(x)f̃(x)) +O(ε2),

where

E(x) =

d∑
i=1

ai(x)2 −
∑
i1 6=i2

ai1(x)ai2(x),

and ai(x) are the curvatures along coordinates si (i = 1, · · · , d) at point
x.

Now we study the limiting operator and the bias error:

EF
EG

=

∫
kε(x, y)f(y)p(y)dy∫
kε(x, y)p(y)dy

≈
f + εm2

2 (f ′′ + 2f ′ p
′

p + f p
2

p + Ef) +O(ε2)

1 + εm2

2 (p
′′

p + E) +O(ε2)

= f(x) + ε
m2

2
(f ′′ + 2f ′

p′

p
) + o(ε2),(134)

and as a result, for generally d-dim case,

1

ε

(
EF
EG
− f(x)

)
=
m2

2
(∆Mf + 2∇f · ∇p

p
) +O(ε).

Using the same method and use Eqn. (133), one can show that for case (II)
where α = 1, the limiting operator is exactly the Laplace-Beltrami operator and
the bias error is again O(ε) (homework).

AboutM with boundary: firstly the limiting differential operator bears Newmann/no-
flux boundary condition. Secondly, the convergence at a belt of width

√
ε near ∂M

is slower than the inner part of M, see more in Lafon’06 paper.
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3.4. Variance Term. Our purpose is to derive the large deviation bound for2

(135) Prob

(
F

G
− E[F ]

E[G]
≥ α

)
where F = F (xi) = 1

n

∑
j 6=i kε(xi, xj)f(xj) and G = G(xi) = 1

n

∑
j 6=i kε(x, xj).

With x1, x2, ..., xn as i.i.d random variables, F and G are sample means (up to a
scaling constant). Define a new random variable

Y = E[G]F − E[F ]G− αE[G](G− E[G])

which is of mean zero and Eqn. (135) can be rewritten as

Prob(Y ≥ αE[G]2).

For simplicity by Markov (Chebyshev) inequality3 ,

Prob(Y ≥ αE[G]2) ≤ E[Y 2]

α2E[G]4

and setting the right hand side to be δ ∈ (0, 1), then with probability at least 1− δ
the following holds

α ≤
√
E[Y 2]

E[G]2
√
δ
∼ O

(√
E[Y 2]

E[G]2

)
.

It remains to bound

E[Y 2] = (EG)2E(F 2)− 2(EG)(EF )E(FG) + (EF )2E(G2) + ...

+2α(EG)[(EF )E(G2)− (EG)E(FG)] + α2(EG)2(E(G2)− (EG)2).

So it suffices to give E(F ), E(G), E(FG), E(F 2), and E(G2). The former two are
given in bias and for the variance parts in latter three, let’s take one simple example
with E(G2).

Recall that x1, x2, ..., xn are distributed i.i.d according to density p(x), and

G(x) =
1

n

∑
j 6=i

kε(x, xj),

so

V ar(G) =
1

n2
(n− 1)

[∫
M
kε(x, y))2p(y)dy − (Ekε(x, y))2

]
.

Look at the simplest case of 1-dimension flat M for an illustrative example:∫
M

(kε(x, y))2p(y)dy =

∫
R

1√
ε
h2(z2)(p(x) + p′(x)(

√
εz +O(ε)))dz,

let M2 =
∫
R
h2(z2)dz∫

M

(kε(x, y))2p(y)dy = p(x) · 1√
ε
M2 +O(

√
ε).

Recall that Ekε(x, y) = O(1), we finally have

V ar(G) ∼ 1

n

[
p(x)M2√

ε
+O(1)

]
∼ 1

n
√
ε
.

2The opposite direction is omitted here.
3It means that Prob(X > α) ≤ E(X2)/α2. A Chernoff bound with exponential tail can be

found in Singer’06.
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Generally, for d-dimensional case, V ar(G) ∼ n−1ε−
d
2 . Similarly one can derive

estimates on V ar(F ).
Ignoring the joint effect of E(FG), one can somehow get a rough estimate

based on F/G = [E(F ) + O(
√
E(F 2))]/[E(G) + O(

√
E(G2))] where we applied

the Markov inequality on both the numerator and denominator. Combining those
estimates together, we have the following,

F

G
=

fp+ εm2

2 (∆(fp) + E[fp]) +O(ε2, n−
1
2 ε−

d
4 )

p+ εm2

2 (∆p+ E[p]) +O(ε2, n−
1
2 ε−

d
4 )

= f + ε
m2

2
(∆p+ E[p]) +O(ε2, n−

1
2 ε−

d
4 ),

here O(B1, B2) denotes the dominating one of the two bounds B1 and B2 in the
asymptotic limit. As a result, the error (bias + variance) of Lε,α (dividing another
ε) is of the order

(136) O(ε, n−
1
2 ε−

d
4−1).

In [Sin06] paper, the last term in the last line is improved to

(137) O(ε, n−
1
2 ε−

d
4−

1
2 ),

where the improvement is by carefully analyzing the large deviation bound of F
G

around EF
EG shown above, making use of the fact that F and G are correlated.

Technical details are not discussed here.
In conclusion, we need to choose ε to balance bias error and variance error to

be both small. For example, by setting the two bounds in Eqn. (137) to be of the
same order we have

ε ∼ n−1/2ε−1/2−d/4,

that is

ε ∼ n−1/(3+d/2),

so the total error is O(n−1/(3+d/2)).

4. *Vector Diffusion Map

In this class, we introduce the topic of vector Laplacian on graphs and vector
diffusion map.

The ideas for vector Laplacian on graphs and vector diffusion mapping are a
natural extension from graph Laplacian operator and diffusion mapping on graphs.
The reason why diffusion mapping is important is that previous dimension reduction
techniques, such as the PCA and MDS, ignore the intrinsic structure of the man-
ifold. By contrast, diffusion mapping derived from graph Laplacian is the optimal
embedding that preserves locality in a certain way. Moreover, diffusion mapping
gives rise to a kind of metic called diffusion distance. Manifold learning problems
involving vector bundle on graphs provide the demand for vector diffusion mapping.
And since vector diffusion mapping is an extension from diffusion mapping, their
properties and convergence behavior are similar.

The application of vector diffusion mapping is not restricted to manifold learn-
ing however. Due to its usage of optimal registration transformation, it is also a
valuable tool for problems in computer vision and computer graphics, for example,
optimal matching of 3D shapes.
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The organization of this lecture notes is as follows: We first review graph Lapla-
cian and diffusion mapping on graphs as the basis for vector diffusion mapping. We
then introduce three examples of vector bundles on graphs. After that, we come to
vector diffusion mapping. Finally, we introduce some conclusions about the con-
vergence of vector diffusion mapping.

4.1. graph Laplacian and diffusion mapping.

4.2. graph Laplacian. The goal of graph Laplacian is to discover the intrinsic
manifold structure given a set of data points in space. There are three steps of
constructing the graph Laplacian operator:

• construct the graph using either the ε−neighborhood way (for any data
point, connect it with all the points in its ε−neighborhood) or the k-
nearest neighbor way (connect it with its k-nearest neighbors);

• construct the the weight matrix. Here we can use the simple-minded
binary weight (0 or 1), or use the heat kernel weight. For undirected
graph, the weight matrix is symmetric;

• denote D as the diagonal matrix with D(i, i) = deg(i), deg(i) :=
∑
j wij .

The graph Laplacian operator is:

L = D −W
The graph Laplacian has the following properties:

• ∀f : V → R, fTLf =
∑

(i,j)∈E wij(fi − fj)2 ≥ 0

• G is connected ⇔ fTLf > 0,∀fT~1, where ~1 = (1, · · · , 1)T

• G has k-connected components ⇔ dim(ker(L))=k

(this property is compatible with the previous one, since L~1 = 0)
• Kirchhofff’s Matrix Tree theorem:

Consider a connected graph G and the binary weight matrix: wij ={
1, (i, j) ∈ E
0, otherwise

, denote the eigenvalues of L as 0 = λ1 < λ1 ≤ λ2 ≤

· · · ≤ λn, then #{T: T is a spanning tree of G}= 1
nλ2 · · ·λn

• Fieldler Theory, which will be introduced in later chapters.

We can have a further understanding of Graph Laplacian using the language
of exterior calculus on graph.

We give the following denotations:

V = {1, 2, · · · , |V |}. ~E is the oriented edge set that for (i, j) ∈ E and i < j,
〈i, j〉 is the positive orientation, and 〈j, i〉 is the negative orientation.

δ0 : RV → R~E is a coboundary map, such that

δ0 ◦ f(i, j) =

{
fi − fj , 〈i, j〉 ∈ ~E

0, otherwise

It is easy to see that δ0 ◦ f(i, j) = −δ0 ◦ f(j, i)

The inner product of operators on R~E is defined as:

〈u, v〉 =
∑
i,j

wijuijvij

u∗ := u diag(wij)
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where diag(wij) ∈ R
n(n−1)

2 ×n(n−1)
2 is the diagonal matrix that has wij on the diag-

onal position corresponding to 〈i, j〉.
u∗v = 〈u, v〉

Then,

L = D −W = δT0 diag(wij)δ0 = δ∗0δ0

We first look at the graph Laplacian operator. We solve the generalized eigen-
value problem:

Lf = λDf
denote the generalized eigenvalues as:

0 = λ1 ≤ λ2 ≤ · · · ≤ λn
and the corresponding generalized eigenvectors:

f1, · · · , fn
we have already obtained the m-dimensional Laplacian eigenmap:

xi → (f1(i), · · · , fm(i))

We now explains that this is the optimal embedding that preserves locality in the
sense that connected points stays as close as possible. Specifically speaking, for the
one-dimensional embedding, the problem is:

min
∑
i,j

(yi − yj)2wij = 2minyyTLy

yTLy = yTD− 1
2 (I −D− 1

2WD− 1
2 )D− 1

2 y

Since I − D− 1
2WD− 1

2 is symmetric, the object is minimized when D− 1
2 )D− 1

2 y is
the eigenvector for the second smallest eigenvalue(the first smallest eigenvalue is

0) of I − D− 1
2WD− 1

2 , which is the same with λ2, the second smallest generalized
eigenvalue of L.
Similarly, the m-dimensional optimal embedding is given by Y = (f1, · · · , fm).

In diffusion map, the weights are used to define a discrete random walk. The
transition probability in a single step from i to j is:

aij =
wij
deg(i)

Then the transition matrix A = D−1W .

A = D− 1
2 (D− 1

2WD− 1
2 )D 1

2

Therefore, A is similar to a symmetric matrix, and has n real eigenvalues µ1, · · · , µn
and the corresponding eigenvectors φ1, · · · , φn.

Aφi = µiφi

At is the transition matrix after t steps. Thus, we have:

Atφi = µtiφi

Define Λ as the diagonal matrix with Λ(i, i) = µi, Φ = [φ1, · · · , φn]. The diffusion
map is given by:

Φt := ΦΛt = [µt1φ1, · · · , µtnφn]
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4.3. the embedding given by diffusion map. Φt(i) denotes the ith row of
Φt.

〈Φt(i),Φ(j)〉 =

n∑
k=1

At(i, k)√
deg(k)

At(j, k)√
deg(k)

we can thus define a distance called diffusion distance

d2
DM,t(i, j) := 〈Φt(i),Φ(i)〉+〈Φt(j),Φ(j)〉−2〈Φt(i),Φ(j)〉 =

n∑
k=1

(At(i, k)−At(j, k))2

deg(k)

4.4. Examples of vector bundles on graph.

(1) Wind velocity field on globe:
To simplify the problem, we consider the two dimensional mesh on

the globe(the latitude and the longitude). Each node on the mesh has a

vector ~f which is the wind velocity at that place.
(2) Local linear regression:

The goal of local linear regression is to give an approximation of the
regression function at an arbitrary point in the variable space.

Given the data (yi, ~xi)
n
i=1 and an arbitrary point ~x,~x, ~x1, · · · , ~xn ∈ Rp,

we want to find ~β := (β0, β1, · · · , βp)T that minimize
∑n
i=1(yi − β0 −

β1xi1 − · · ·βpxip)2Kn(~xi, ~x). Here Kn(~xi, ~x) is a kernel function that
defines the weight for ~xi at the point ~x. For example, we can use the

Nadaraya-Watson kernel Kn(~xi, ~x) = e
||x−xi||

2

n .
For a graph G=(V,E), each point ~x ∈ V has a corresponding vector

~β(~x). We therefore get a vector bundle on the graph G(V,E).

Here ~β is kind of a gradient. In fact, if y and ~x has the relationship
y = f(~x), then β = (f(~x),∇f(~x))T .

(3) Social networks:
If we see users as vertices and the relationship bonds that connected

users as edges, then a social network naturally gives rise to a graph
G=(V,E). Each user has an attribute profile containing all kinds of per-
sonal information, and a certain kind of information can be described by

a vector ~f recording different aspects. Again, we get a vector bundle on
graph.

4.5. optimal registration transformation. Like in graph eigenmap, we ex-

pect the embedding ~f to be preserve locality to a certain extent, which means that
we expect the embedding of connected points to be sufficiently close. In the graph

Laplacian case, we use
∑
i∼j wij ||~fi − ~fj ||2. However, for vector bundle on graphs,

subtraction of vectors at different points may not be done directly due to the cur-
vature of the manifold. What makes sense should be the difference of vectors
compared with the tangent spaces at the certain points. Therefore, we borrow the
idea of parallel transport from differential geometry. Denote Oij as the parallel
transport operator from the tangent space at xj to the tangent space at xi. We
want to find out the embedding that minimizes∑

i∼j
wij ||~fi −Oij ~fj ||2
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we will later define the vector diffusion mapping, and using the similar argument
as in diffusion mapping, it is easy to see that vector diffusion mapping gives the
optimal embedding that preserves locality in this sense.

we now discuss how we get the approximation of parallel transport operator
given the data set.
The approximation of the tangent space at a certain point xi is given by local PCA.
Choose εi to be sufficiently small, and denote xi1 , · · · , xiNi as the data points in
the εi-neighborhood of xi. Define

Xi := [xi1 − xi, · · · , xiNi − xi]
Denote Di as the diagonal matrix with

Di(j, j) =

√
K(
||xij − xi||

εi
), j = 1, · · · , Ni

Bi := XiDi

Perform SVD on Bi:

Bi = UiΣiV
T
i

We use the first d columns of Ui (which are the left eigenvectors of the d largest
eigenvalues of Bi) to form an approximation of the tangent space at xi. That is,

Oi = [ui1 , · · · , uid ]

Then Oi is a numerical approximation to an orthonormal basis of the tangent space
at xi.

For connected points xi and xj , since they are sufficiently close to each other,
their tangent space should be close. Therefore, OiOij and Oj should also be close.
We there use the closest orthogonal matrix to OTi Oj as the approximation of the
parallel transport operator from xj to xi:

ρij := argminOorthogonol||O −OTi Oj ||HS
where ||A||2HS = Tr(AAT ) is the Hilbert-Schimidt norm.

4.6. Vector Laplacian. Given the weight matrix W = (wij), we denote

D :=

 deg(1)Ip
. . .

deg(n)Ip

 ∈ Rnp×np
where deg(i) =

∑
j wij as in graph Laplacian.

Define S as the block matrix with

Sij =

{
wijρij , i ∼ j
0, otherwise

The vector Laplacian is then defined as L = D − S
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Like Graph Laplacian, we introduce an orientation on E and a coboundary map

δ0 : (Rd)V → (Rd)~E

δ0 ◦ f(i, j) =

{
~fi − ρij ~fj , 〈i, j〉 ∈ ~E

0, otherwise
, where f = (~f1, · · · , ~fn)T

Inner product on (Rd)~E is defined as

〈u, v〉 =
∑
i,j

wiju
T
ijvij

u∗ := u diag(wij), u
∗v = 〈u, v〉

If we let ρij be orthogonal, ∀i, j, s.t.〈i, j〉 ∈ ~E, then, L = D−W = δT0 diag(wij)δ0 =
δ∗0δ0.

Analogous properties with Graph Laplacian:

• G has k connected components ⇔ dim ker(L) = kp
• generalized Matrix tree theorem.

4.7. Vector diffusion mapping.

L = D − S = D(I −D−1S)

D−1S = D−
1
2SD−

1
2

Denote
S̃ := D−

1
2SD−

1
2

S̃ has nd real eigenvalues λ1, · · · , λnd and the corresponding eigenvectors v1, · · · , vnd.
Thinking of these vectors of length nd in blocks of d, we denote vk(i) as the ith
block of vk.
The spectral decompositions of S̃(i, j) and S̃2t(i, j) are given by:

S̃(i, j) =

nd∑
k=1

λkvk(i)vk(j)T

∴ S̃2t(i, j) =

nd∑
k=1

λ2t
k vk(i)vk(j)T

We use ||S̃2t(i, j)||2HS to measure the affinity between i and j. Thus,

||S̃2t(i, j)||2HS = Tr(S̃2t(i, j)S̃2t(i, j)T )

=
∑nd
k,l=1(λkλl)

2tTr(vk(i)vk(j)T vl(j)vl(i)
T )

=
∑nd
k,l=1(λkλl)

2tTr(vk(j)T vl(j)vl(i)
T vk(i))

=
∑nd
k,l=1(λkλl)

2t〈vk(j), vl(j)〉〈vk(i), vl(i)〉
The vector diffusion mapping is defined as:

Vt : i→ ((λkλl)
t〈vk(i), vl(i)〉)ndk,l=1

Like graph Laplacian, ||S̃2t(i, j)||2HS is actually an inner product:

||S̃2t(i, j)||2HS = 〈Vt(i), Vt(j)〉
This gives rise to a distance called vector diffusion distance:

d2
V DM,t = 〈Vt(i), Vt(i)〉+ 〈Vt(j), Vt(j)〉 − 2〈Vt(i), Vt(j)〉
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4.8. Normalized Vector Diffusion Mappings. An important kind of nor-
malized VDM is obtained as follows:
Take 0 ≤ α ≤ 1,

Wα := D−αWD−α
Sα := D−αSD−α

degα(i) :=

n∑
j=1

Wα(i, j)

We define Dα ∈ Rn×n as the diagonal matrix with

Dα(i, i) = degα(i)

and Dα ∈ Rnd×nd as the block diagonal matrix with

Dα(i, i) = degα(i)Id

We can then get the vector diffusion mapping Vα,t using Sα and Dα instead of S
and D.

4.9. Convergence of VDM. We first introduce some concepts.
Suppose M is a smooth manifold, and TM is a tensor bundle on M. When

the rank of TM is 0, it is the set of functions on M. When the rank of TM is 1, it
is the set of vector fields on M.

Theconnection Laplacian operator is:

∇2
X,Y T = −(∇X∇Y T −∇∇XY T )

where ∇XY is the covariant derivative of Y over X.
Intuitively, we can see the first item of the connection Laplacian operator as the sum
of the change of T over X and over Y, and the second item as the overlapped part
of the change of T over X and over Y. The remainder can be seen as an operator
that differentiates the vector fields in the direction of two orthogonal vector fields.

Now we introduce some results about convergence.
The normalized graph Laplacian converges to the Laplace-Beltrami operator:

(D−1W − I)f → c∆f

for sufficiently smooth f and some constant c.

For VDM, D−1
α Sα− I converges to the connection Laplacian operator [SW12]

plus some potential terms. When α = 1, D−1
1 S1 − I converges to exactly the

connection Laplacian operator:

(D−1
1 S1 − I)X → c∇2X





CHAPTER 8

Semi-supervised Learning

1. Introduction

Problem: x1, x2, ..., xl ∈ Vl are labled data, that is data with the value f(xi), f ∈
V → R observed. xl+1, xl+2, ..., xl+u ∈ Vu are unlabled. Our concern is how to fully
exploiting the information (like geometric structure in disbution) provided in the
labeled and unlabeled data to find the unobserved labels.

This kind of problem may occur in many situations, like ZIP Code recognition.
We may only have a part of digits labeled and our task is to label the unlabeled
ones.

2. Harmonic Extension of Functions on Graph

Suppose the whole graph is G = (V,E,W ), where V = Vl ∪ Vu and weight

matrix is partitioned into blocks W =

(
Wll Wlu

Wul Wuu

)
. As before, we define D =

diag(d1, d2, ..., dn) = diag(Dl, Du), di =
∑n
j=1Wij , L = D−W The goal is to find

fu = (fl+1, ..., fl+u)T such that

min fTLf

s.t. f(Vl) = fl

where f =

(
fl
fu

)
. Note that

fTLf = (fTl , f
T
u )L

(
fl
fu

)
= fTu Luufu + fTl Lllfl + 2fTu Lulfl

So we have:

∂fTLf

∂fu
= 0⇒ 2Luufu + 2Llufu = 0⇒ fu = −L−1

uuLulfl = (Du −Wuu)−1Wulfl

3. Explanation from Gaussian Markov Random Field

If we consider f : V → R are Gaussian random variables on graph nodes
whose inverse covariance matrix (precision matrix) is given by unnormalized graph
Laplacian L (sparse but singular), i.e. f ∼ N (0,Σ) where Σ−1 = L (interpreted as
a pseudo inverse). Then the conditional expectation of fu given fl is:

fu = ΣulΣ
−1
ll fl

where

Σ =

[
Σll Σlu
Σul Σuu

]
135
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Block matrix inversion formula tells us that when A and D are invertible,[
A B
C D

]
·
[
X Y
Z W

]
= I ⇒

[
X Y
Z W

]
=

[
S−1
D −A−1BS−1

A

−D−1CS−1
D S−1

A

]
[
X Y
Z W

]
·
[
A B
C D

]
= I ⇒

[
X Y
Z W

]
=

[
S−1
D −S−1

D BD−1

−S−1
A CA−1 S−1

A

]
where SA = D − CA−1B and SD = A− BD−1C are called Schur complements of
A and D, respectively. The matrix expressions for inverse are equivalent when the
matrix is invertible.

The graph Laplacian

L =

[
Dl −Wll Wlu

Wul Du −Wuu

]
is not invertible. Dl−Wll and Du−Wuu are both strictly diagonally dominant, i.e.
Dl(i, i) >

∑
j |Wll(i, j)|, whence they are invertible by Gershgorin Circle Theorem.

However their Schur complements SDu−Wuu and SDl−Wll
are still not invertible and

the block matrix inversion formula above can not be applied directly. To avoid this
issue, we define a regularized version of graph Laplacian

Lλ = L+ λI, λ > 0

and study its inverse Σλ = L−1
λ .

By the block matrix inversion formula, we can set Σ as its right inverse above,

Σλ =

[
S−1
λ+Du−Wuu

−(λ+Dl −Wll)
−1WluS

−1
λ+Dl−Wll

−(λ+Du −Wuu)−1WulS
−1
λ+Du−Wuu

S−1
λ+Dl−Wll

]
Therefore,

fu,λ = Σul,λΣ−1
ll,λfl = (λ+Du −Wuu)−1Wulfl,

whose limit however exits limλ→0 fu,λ = (Du −Wuu)−1Wulfl = fu. This implies
that fu can be regarded as the conditional mean given fl.

4. Explanation from Transition Path Theory

We can also view the problem as a random walk on graph. Constructing a

graph model with transition matrix P = D−1W =

(
Pll Plu
Pul Puu

)
. Assume that the

labeled data are binary (classification). That is, for xi ∈ Vl, f(xi) = 0 or 1. Denote

• V0 = {i ∈ Vl : fi = f(xi) = 0}
• V1 = {i ∈ Vl : fi = f(xi) = 1}
• V = V0 ∪ V1 ∪ Vu where Vl = V0 ∪ V1

With this random walk on graph P , fu can be interpreted as hitting time or
first passage time of V1.

Proposition 4.1. Define hitting time

τki = inf{t ≥ 0 : x(0) = i, x(t) ∈ Vk}, k = 0, 1

Then for ∀i ∈ Vu,

fi = Prob(τ1
i < τ0

i )

i.e.

fi = Prob(trajectory starting from xi hit V1 before V0)
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Note that the probability above also called committor function in Transition
Path Theory of Markov Chains.

Proof. Define the committor function,

q+
i = Prob(τ1

i < τ0
i ) =


1 xi ∈ V1

0 xi ∈ V0∑
j∈V Pijq

+
j i ∈ Vu

This is because ∀i ∈ Vu,

q+
i = Pr(τiV1 < τiV0)

=
∑
j

Pijq
+
j

=
∑
j∈V1

Pijq
+
j +

∑
j∈V0

Pijq
+
j +

∑
j∈Vu

Pijq
+
j

=
∑
j∈V1

Pij +
∑
j∈Vu

Pijq
+
j

∴ q+
u = Pulfl + Puuq

+
u = D−1

u Wulfl +D−1
u Wuuq

+
u

multiply Du to both side and reorganize:

(Du −Wuu)q+
u = Wulfl

If Du −Wuu is reversible, we get:

q+
u = (Du −Wuu)−1Wulfl = fu

i.e. fu is the committor function on Vu. �

The result coincides with we obtained through the view of gaussian markov
random field.

5. Well-posedness

One natural problem is: if we only have a fixed amount of labeled data, can
we recover labels of an infinite amount of unobserved data? This is called well-
posedness. [Nadler-Srebro 2009] gives the following result:

• If xi ∈ R1, the problem is well-posed.
• If xi ∈ Rd(d ≥ 3), the problem is ill-posed in which case Du − Wuu

becomes singular and f becomes a bump function (fu is almost always
zeros or ones except on some singular points).

Here we can give a brief explanation:

fTLf ∼
∫
‖∇f‖2

If we have Vl = {0, 1}, f(x0) = 0, f(x1) = 1 and let fε(x) =

{
‖x−x0‖22

ε2 ‖x− x0‖2 < ε

1 otherwise
.

From multivariable calculus, ∫
‖∇f‖2 = cεd−2.
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Since d ≥ 3, so ε→ 0⇒
∫
‖∇f‖2 → 0. So fε(x) (ε→ 0) converges to a bump func-

tion which is one almost everywhere except x0 whose value is 0. No generalization
ability is learned for such bump functions.

This means in high dimensional case, to obtain a smooth generalization, we
have to add constraints more than the norm of the first order derivatives. We
also have a theorem to illustrate what kind of constraint is enough for a good
generalization:

Theorem 5.1 (Sobolev embedding Theorem). f ∈ Ws,p(Rd) ⇐⇒ f has s’th
order weak derivative f (s) ∈ Lp,

s >
d

2
⇒Ws,2 ↪→ C(Rd).

So in Rd, to obtain a continuous function, one needs smoothness regularization∫
‖∇sf‖ with degree s > d/2. To implement this in discrete Laplacian setting, one

may consider iterative Laplacian Ls which might converge to high order smoothness
regularization.



CHAPTER 9

Beyond graphs: high dimensional
topological/geometric analysis

1. From Graph to Simplicial Complex

Definition (Simplicial Complex). An abstract simplicial complex is a collection Σ
of subsets of V which is closed under inclusion (or deletion), i.e. τ ∈ Σ and σ ⊆ τ ,
then σ ∈ Σ.

We have the following examples:

• Chess-board Complex
• Point cloud data:

Nerve complex
Cech, Rips, Witness complex
Mayer-Vietoris Blowup

• Term-document cooccurance complex
• Clique complex in pairwise comparison graphs
• Strategic complex in flow games

Example (Chess-board Complex). Let V be the positions on a Chess board. Σ
collects position subsets of V where one can place queens (rooks) without capturing
each other. It is easy to check the closedness under deletion: if σ ∈ Σ is a set of
“safe” positions, then any subset τ ⊆ σ is also a set of “safe” positions

Example (Nerve Complex). Define a cover of X, X = ∪αUα. V = {Uα} and
define Σ = {UI : ∩α∈IUI 6= ∅}.

• Closedness under deletion
• Can be applied to any topological space X
• In a metric space (X, d), if Uα = Bε(tα) := {x ∈ X : d(x − tα) ≤ ε}, we

have Cech complex Cε.
• Nerve Theorem: if every UI is contractible, thenX has the same homotopy

type as Σ.

• Cech complex is hard to compute, even in Euclidean space
• One can easily compute an upper bound for Cech complex

Construct a Cech subcomplex of 1-dimension, i.e. a graph with
edges connecting point pairs whose distance is no more than ε.

Find the clique complex, i.e. maximal complex whose 1-skeleton is
the graph above, where every k-clique is regarded as a k − 1 simplex

Example (Vietoris-Rips Complex). Let V = {xα ∈ X}. Define V Rε = {UI ⊆ V :
d(xα, xβ) ≤ ε, α, β ∈ I}.

• Rips is easier to compute than Cech

139
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even so, Rips is exponential to dimension generally
• However Vietoris-Rips CAN NOT preserve the homotopy type as Cech
• But there is still a hope to find a lower bound on homology –

Theorem 1.1 (“Sandwich”).

V Rε ⊆ Cε ⊆ V R2ε

• If a homology group “persists” through Rε → R2ε, then it must exists in
Cε; but not the vice versa.

• All above gives rise to a filtration of simplicial complex

∅ = Σ0 ⊆ Σ1 ⊆ Σ2 ⊆ . . .
• Functoriality of inclusion: there are homomorphisms between homology

groups
0→ H1 → H2 → . . .

• A persistent homology is the image of Hi in Hj with j > i.

Example (Strong Witness Complex). Let V = {tα ∈ X}. Define W s
ε = {UI ⊆ V :

∃x ∈ X,∀α ∈ I, d(x, tα) ≤ d(x, V ) + ε}.
Example (Week Witness Complex). Let V = {tα ∈ X}. Define Ww

ε = {UI ⊆ V :
∃x ∈ X,∀α ∈ I, d(x, tα) ≤ d(x, V−I) + ε}.

• V can be a set of landmarks, much smaller than X
• Monotonicity: W ∗ε ⊆W ∗ε′ if ε ≤ ε′
• But not easy to control homotopy types between W ∗ and X

Example (Term-Document Occurrence complex, Li & Kwong 2009). Left is a
term-document co-occurrence matrix; Right is a simplicial complex representation
of terms. Connectivity analysis captures more information than Latent Semantic
Index.

FIG. 3. (i) A simplicial family. (ii) Not a simplicial family.

FIG. 4. The simplexes generated by the rows of the matrix (8).

Example 3. Consider the following matrix

c1 c2 c3 c4 c5

r1 1 0 0 0 0
r2 1 1 1 0 0
r3 0 0 1 1 0
r4 0 0 1 1 0
r5 0 0 0 0 1
r6 0 0 0 0 1

(8)

with six rows r1, r2, . . . , r6 and five columns c1, c2, . . . , c5.
For row r1, the column c1 contains a “1” and the other
columns contain “0.” We associate with r1 a 0-simplex
σ0

(r1)
= (c1). In a similar way, we obtain the following

simplexes for the remaining rows:

σ2
(r2)

= (c1, c2, c3),

σ1
(r3)

= (c3, c4),

σ1
(r4)

= (c3, c4),

σ0
(r5)

= (c5),

σ0
(r6)

= (c5).

(9)

We draw the six simplexes in Figure 4, from which we
see clearly that they do form a simplicial family. However,

the simplexes σ0
(r5)

and σ0
(r6)

are “disconnected” from other
four members. The following definition is used to model this
kind of topological property. We have modified the original
definition of “connectiveness” in Q-analysis to cater for our
present application.

Definition 3. Let " be a simplicial family and d is the highest
dimension of the simplexes in ". Let 0 ≤ q ≤ d be an integer.
We call two simplexes σa and σb in " q-near if they have a
common q-face. We call σa and σb q-connected if there exists
a sequence

σ1, σ2, . . . , σj (10)

of distinct simplexes of ", such that σ1 = σa, σj = σb, and σi

is qi-near to σi+1 for all 1 ≤ i ≤ j − 1, 0 ≤ qi ≤ d an integer,
and q = min{qi}. We call Sequence 10 a q-chain Cab from
σa to σb and the number (j − 1) the length of Cab, denoted
by l(Cab). For all possible q-chains connecting σa to σb with
the same length L, we call the chain with the maximum value
of q = q* the maximal L-chain, denoted by C∗

ab(L). We say
that σa and σb are q*-connected if they are connected by a
maximal chain.

Note that if two simplexes are q-near, then they must be
connected and the length is equal to 1. If there is no chain
connecting two simplexes, then we set the length between
them to ∞. If two simplexes are q-connected, then they also
are (q − 1)-connected for (q − 1) ≥ 0.

Example 4. Referring to Figure 4 of Example 3, the sim-
plexes σ0

(r1)
and σ2

(r2)
are 0-near, σ1

(r3)
and σ1

(r4)
are 1-near, and

σ0
(r5)

and σ0
(r6)

are 0-near. Furthermore, σ0
(r1)

is 0-connected
to σ1

(r3)
and σ1

(r4)
via, respectively, the maximal 2-chains

σ0
(r1)

, σ2
(r2)

, σ1
(r3)

and σ0
(r1)

, σ2
(r2)

, σ1
(r4)

(i.e., q* = 0). However,
σ0

(r5)
and σ0

(r6)
are not connected to any of the other four

simplexes.
A further structure can be defined on a simplicial family,

as follows.

Definition 4. The relation “is q-connected to” on a simplicial
family ", denoted by rq, is an equivalence relation. Let "q

be the set of simplexes in " with dimension greater than
or equal to q, where q = 0, 1, . . . , dim". Then, rq partitions
"q into equivalence classes of q-connected simplexes. These
equivalence classes are called the q-connected components
of ". Let Qq denote the number of q-connected components
in ". The determination of the components and Qq for each
value of q is termed a Q-analysis of ".

Example 5. The result of Q-analysis for the simplicial family
in Example 3 is given in Table 2. Since the highest dimen-
sion of the simplexes is 2, the Q-analysis of the simplicial
family has three levels corresponding to q = 0,1 and 2. The
level q = 2 consists of those simplexes with dimension greater
than or equal to 2; hence, this level contains one simplex
σ2

(r2)
. Next, at the level q = 1, two more simplexes σ1

(r3)
and

σ1
(r4)

come in, which are 1-connected by a chain of length 1
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Figure 1. Term-Document Occurrence complex

Example (Flag Complex of Paired Comparison Graph, Jiang-Lim-Yao-Ye 2011[JLYY11]).
Let V be a set of alternatives to be compared and undirected pair (i, j) ∈ E if the
pair is comparable. A flag complex χG consists all cliques as simplices or faces (e.g.
3-cliques as 2-faces and k + 1-cliques as k-faces), also called clique complex of G.

Example (Strategic Simplicial Complex for Flow Games, Candogan-Menache-Ozdaglar–
Parrilo 2011 [CMOP11]). Strategic simplicial complex is the clique complex of
pairwise comparison graph G = (V,E) of strategic profiles, where V consists of all
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strategy profiles of players and a pair of strategy (x, x′) ∈ E is comparable if only
one player changes strategy from x to x′. Every finite game can be decomposed as
the direct sum of potential games and zero-sum games (harmonic games).

O F

O 3, 2 0, 0

F 0, 0 2, 3

(a) Battle of the sexes

O F

O 4, 2 0, 0

F 1, 0 2, 3

(b) Modified battle of
the sexes

It is easy to see that these two games have the same pairwise comparisons, which will lead to
identical equilibria for the two games: (O, O) and (F, F ). It is only the actual equilibrium payoffs
that would differ. In particular, in the equilibrium (O, O), the payoff of the row player is increased
by 1.

The usual solution concepts in games (e.g., Nash, mixed Nash, correlated equilibria) are defined
in terms of pairwise comparisons only. Games with identical pairwise comparisons share the same
equilibrium sets. Thus, we refer to games with identical pairwise comparisons as strategically
equivalent games.

By employing the notion of pairwise comparisons, we can concisely represent any strategic-form
game in terms of a flow in a graph. We recall this notion next. Let G = (N, L) be an undirected
graph, with set of nodes N and set of links L. An edge flow (or just flow) on this graph is a function
Y : N × N → R such that Y (p,q) = −Y (q,p) and Y (p,q) = 0 for (p,q) /∈ L [21, 2]. Note that
the flow conservation equations are not enforced under this general definition.

Given a game G, we define a graph where each node corresponds to a strategy profile, and
each edge connects two comparable strategy profiles. This undirected graph is referred to as the
game graph and is denoted by G(G) � (E, A), where E and A are the strategy profiles and pairs
of comparable strategy profiles defined above, respectively. Notice that, by definition, the graph
G(G) has the structure of a direct product of M cliques (one per player), with clique m having
hm vertices. The pairwise comparison function X : E × E → R defines a flow on G(G), as it
satisfies X(p,q) = −X(q,p) and X(p,q) = 0 for (p,q) /∈ A. This flow may thus serve as an
equivalent representation of any game (up to a “non-strategic” component). It follows directly
from the statements above that two games are strategically equivalent if and only if they have the
same flow representation and game graph.

Two examples of game graph representations are given below.

Example 2.2. Consider again the “battle of the sexes” game from Example 2.1. The game graph
has four vertices, corresponding to the direct product of two 2-cliques, and is presented in Figure 2.

(O, O) (O, F )

(F, O) (F, F )

3 2

2

3

Figure 2: Flows on the game graph corresponding to “battle of the sexes” (Example 2.2).

Example 2.3. Consider a three-player game, where each player can choose between two strategies
{a, b}. We represent the strategic interactions among the players by the directed graph in Figure
3a, where the payoff of player i is −1 if its strategy is identical to the strategy of its successor
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{a, b}. We represent the strategic interactions among the players by the directed graph in Figure
3a, where the payoff of player i is −1 if its strategy is identical to the strategy of its successor
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Figure 2. Illustration of Game Strategic Complex: Battle of Sex

2. Persistent Homology and Discrete Morse Theory

Recall that

Theorem 2.1 (“Sandwich”).

V Rε ⊆ Cε ⊆ V R2ε

• If a homology group “persists” through Rε → R2ε, then it must exists in
Cε; but not the vice versa.

• All above gives rise to a filtration of simplicial complex

∅ = Σ0 ⊆ Σ1 ⊆ Σ2 ⊆ . . .
• Functoriality of inclusion: there are homomorphisms between homology

groups
0→ H1 → H2 → . . .

• A persistent homology is the image of Hi in Hj with j > i.

Persistent Homology is firstly proposed by Edelsbrunner-Letscher-Zomorodian,
with an algebraic formulation by Zomorodian-Carlsson. The algorithm is equivalent
to Robin Forman’s discrete Morse theory.

to be continued...

3. Exterior Calculus on Complex and Combinatorial Hodge Theory

We are going to study functions on simplicial complex, l2(V d).
A basis of “forms”:

• l2(V ): ei (i ∈ V ), so f ∈ l2(V ) has a representation f =
∑
i∈V fiei, e.g.

global ranking score on V .
• l2(V 2): eij = −eji, f =

∑
(i,j) fijeij for f ∈ l2(V 2), e.g. paired compari-

son scores on V 2.
• l2(V 3): eijk = ejki = ekij = −ejik = −ekji = −eikj , f =

∑
ijk fijkeijk

• l2(V d+1): ei0,...,id is an alternating d-form

ei0,...,id = sign(σ)eσ(i0),...,σ(id),

where σ ∈ Sd is a permutation on {0, . . . , d}.
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Vector spaces of functions l2(V d+1) represented on such basis with an inner product
defined, are called d-forms (cochains).

Example. In the crowdsourcing ranking of world universities,
http://www.allourideas.org/worldcollege/,

V consists of world universities, E are university pairs in comparison, l2(V ) consists
of ranking scores of universities, l2(V 2) is made up of paired comparison data.

Discrete differential operators: k-dimensional coboundary maps δk : L2(V k)→
L2(V k+1) are defined as the alternating difference operator

(δku)(i0, . . . , ik+1) =

k+1∑
j=0

(−1)j+1u(i0, . . . , ij−1, ij+1, . . . , ik+1)

• δk plays the role of differentiation
• δk+1 ◦ δk = 0

So we have chain map

L2(V )
δ0−→ L2(V 2)

δ1−→ L2(V 3)→ . . . L2(V k)
δk−1−−−→ L2(V k+1)

δk−→ . . .

with δk ◦ δk−1 = 0.

Example (Gradient, Curl, and Divergence). We can define discrete gradient and
curl, as well as their adjoints

• (δ0v)(i, j) = vj − vi =: (grad v)(i, j)
• (δ1w)(i, j, k) = (±)(wij + wjk + wki) =: (curlw)(i, j, k), which measures

the total flow-sum along the loop i → j → k → i and (δ1w)(i, j, k) = 0
implies the paired comparison data is path-independent, which defines the
triangular transitivity subspace

• for each alternative i ∈ V , the combinatorial divergence

(divw)(i) := −(δT0 w)(i) :=
∑

wi∗

which measures the inflow-outflow sum at i and (δT0 w)(i) = 0 implies
alternative i is preference-neutral in all pairwise comparisons as a cyclic
ranking passing through alternatives.

Definition (Combinatorial Hodge Laplacian). Define the k-dimensional combina-
torial Laplacian, ∆k : L2(V k+1)→ L2(Ck+1) by

∆k = δk−1δ
T
k−1 + δTk δk, k > 0

• k = 0, ∆0 = δT0 δ0 is the well-known graph Laplacian
• k = 1,

∆1 = curl ◦ curl∗ − div ◦ grad

• Important Properties:
∆k positive semi-definite
ker(∆k) = ker(δTk−1) ∩ ker(δk): k-Harmonics, dimension equals to

k-th Betti number
Hodge Decomposition Theorem

Theorem 3.1 (Hodge Decomposition). The space of k-forms (cochains) Ck(K(G),R),
admits an orthogonal decomposition into three

Ck(K(G),R) = im(δk−1)⊕Hk ⊕ im(δTk )

http://www.allourideas.org/worldcollege/
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where

Hk = ker(δk−1) ∩ ker(δTk ) = ker(∆k).

• dim(Hk) = βk.

A simple understanding is possible via Dirac operator:

D = δ + δ∗ : ⊕kL2(V k)→ ⊕kL2(V k)

Hence D = D∗ is self-adjoint. Combine the chain map

L2(V )
δ0−→ L2(V 2)

δ1−→ L2(V 3)→ . . . L2(V k)
δk−1−−−→ L2(V k+1)

δk−→ . . .

into a big operator: Dirac operator.
Abstract Hodge Laplacian:

∆ = D2 = δδ∗ + δ∗δ,

since δ2 = 0.
By the Fundamental Theorem of Linear Algebra (Closed Range Theorem in

Banach Space),

⊕kL2(V k) = im(D)⊕ ker(D)

where

im(D) = im(δ)⊕ im(δ∗)

and ker(D) = ker(∆) is the space of harmonic forms.

4. Applications of Hodge Theory: Statistical Ranking

4.1. HodgeRank on Graphs. Let ∧ = {1, ...,m} be a set of participants and
V = {1, ..., n} be the set of videos to be ranked. Paired comparison data is collected
as a function on ∧ × V × V , which is skew-symmetric for each participant α, i.e.,
Y αij = −Y αji representing the degree that α prefers i to j. The simplest setting is
the binary choice, where

Y αij =

{
1 if α prefers i to j,
−1 otherwise.

In general, Y αij can be used to represent paired comparison grades, e.g., Y αij > 0
refers to the degree that α prefers i to j and the vice versa Y αji = −Y αij < 0 measures
the dispreference degree [JLYY11].

In this paper we shall focus on the binary choice, which is the simplest setting
and the data collected in this paper belongs to this case. However the theory can
be applied to the more general case with multiple choices above.

Such paired comparison data can be represented by a directed graph, or hyper-
graph, with n nodes, where each directed edge between i and j refers the preference
indicated by Y αij .

A nonnegative weight function ω : ∧ × V × V −→ [0,∞) is defined as,

(138) ωαij =

{
1 if α makes a comparison for {i, j},
0 otherwise.

It may reflect the confidence level that a participant compares {i, j} by taking
different values, and this is however not pursued in this paper.
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Our statistical rank aggregation problem is to look for some global ranking
score s : V → R such that

(139) min
s∈R|V |

∑
i,j,α

ωαij(si − sj − Y αij )2,

which is equivalent to the following weighted least square problem

(140) min
s∈R|V |

∑
i,j

ωij(si − sj − Ŷij)2,

where Ŷij = (
∑
α ω

α
ijY

α
ij )/(

∑
α ω

α
ij) and ωij =

∑
α ω

α
ij . For the principles behind

such a choice, readers may refer [JLYY11].
A graph structure arises naturally from ranking data as follows. Let G = (V,E)

be a paired ranking graph whose vertex set is V , the set of videos to be ranked, and
whose edge set is E, the set of video pairs which receive some comparisons, i.e.,

(141) E =

{
{i, j}ε

(
V
2

)
|
∑
α

ωαi,j > 0

}
.

A pairwise ranking is called complete if each participant α in ∧ gives a total
judgment of all videos in V ; otherwise it is called incomplete. It is called balanced if
the paired comparison graph is k -regular with equal weights ωij =

∑
α ω

α
ij ≡ c for

all {i, j} ∈ E; otherwise it is called imbalanced. A complete and balanced ranking
induces a complete graph with equal weights on all edges. The existing paired
comparison methods in VQA often assume complete and balanced data. However,
this is an unrealistic assumption for real world data, e.g. randomized experiments.
Moreover in crowdsourcing, raters and videos come in an unspecified way and it is
hard to control the test process with precise experimental designs. Nevertheless,
as to be shown below, it is efficient to utilize some random sampling design based
on random graph theory where for each participant a fraction of video pairs are
chosen randomly. The HodgeRank approach adopted in this paper enables us a
unified scheme which can deal with incomplete and imbalanced data emerged from
random sampling in paired comparisons.

The minimization problem (140) can be generalized to a family of linear models
in paired comparison methods [Dav88]. To see this, we first rewrite (140) in
another simpler form. Assume that for each edge as video pair {i, j}, the number
of comparisons is nij , among which aij participants have a preference on i over j
(aji carries the opposite meaning). So aij + aji = nij if no tie occurs. Therefore,
for each edge {i, j} ∈ E, we have a preference probability estimated from data
π̂ij = aij/nij . With this definition, the problem (140) can be rewritten as

(142) min
s∈R|V |

∑
{i,j}∈E

nij(si − sj − (2π̂ij − 1))2,

since Ŷij = (aij − aji)/nij = 2π̂ij − 1 due to Equation (138).
General linear models, which are firstly formulated by G. Noether [Noe60],

assume that the true preference probability can be fully decided by a linear scaling
function on V , i.e.,

(143) πij = Prob{i is preferred over j} = F (s∗i − s∗j ),
for some s∗ ∈ R|V |. F can be chosen as any symmetric cumulated distributed
function. When only an empirical preference probability π̂ij is observed, we can
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map it to a skew-symmetric function by the inverse of F ,

(144) Ŷij = F−1(π̂ij),

where Ŷij = −Ŷji. However, in this case, one can only expect that

(145) Ŷij = s∗i − s∗j + εij ,

where εij accounts for the noise. The case in (142) takes a linear F and is often
called a uniform model. Below we summarize some well known models which have
been studied extensively in [Dav88].

1. Uniform model:

(146) Ŷij = 2π̂ij − 1.

2. Bradley-Terry model:

(147) Ŷij = log
π̂ij

1− π̂ij
.

3. Thurstone-Mosteller model:

(148) Ŷij = F−1(π̂ij).

where F is essentially the Gauss error function

(149) F (x) =
1√
2π

∫ ∞
−x/[2σ2(1−ρ)]1/2

e−
1
2 t

2

dt.

Note that constants σ and ρ will only contribute to a rescaling of the solution of
(140).

4. Angular transform model:

(150) Ŷij = arcsin(2π̂ij − 1).

This model is created for the so called variance stabilization property: asymptot-
ically Ŷij has variance only depending on number of ratings on edge {i, j} or the
weight ωij , but not on the true probability pij .

Different models will give different Ŷij from the same observation π̂ij , followed
by the same weighted least square problem (140) for the solution. Therefore, a
deeper analysis of problem (140) will disclose more properties about the ranking
problem.

HodgeRank on graph G = (V,E) provides us such a tool, which characterizes
the solution and residue of (140), adaptive to topological structures of G. The

following theorem adapted from [JLYY11] describes a decomposition of Ŷ , which

can be visualized as edge flows on graph G with direction i→ j if Ŷij > 0 and vice
versa. Before the statement of the theorem, we first define the triangle set of G as
all the 3-cliques in G.

(151) T =

{
{i, j, k}ε

(
V
3

)
|{i, j}, {j, k}, {k, i}εE

}
.

Equipped with T , graph G becomes an abstract simplicial complex, the clique
complex χ(G) = (V,E, T ).

Theorem 1 [Hodge Decomposition of Paired Ranking] Let Ŷij be a

paired comparison flow on graph G = (V,E), i.e., Ŷij = −Ŷji for {i, j} ∈ E, and

Ŷij = 0 otherwise. There is a unique decomposition of Ŷ satisfying

(152) Ŷ = Ŷ g + Ŷ h + Ŷ c,
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Figure 3. Hodge decomposition (three orthogonal components)
of paired rankings [JLYY11].

where

(153) Ŷ gij = ŝi − ŝj , for some ŝ ∈ RV ,

(154) Ŷ hij + Ŷ hjk + Ŷ hki = 0, for each {i, j, k} ∈ T ,

(155)
∑
j∼i

ωij Ŷ
h
ij = 0, for each i ∈ V .

The decomposition above is orthogonal under the following inner product on R|E|,
〈u, v〉ω =

∑
{i,j}∈E ωijuijvij .

The following provides some remarks on the decomposition.
1. When G is connected, Ŷ gij is a rank two skew-symmetric matrix and gives a

linear score function ŝ ∈ RV up to translations. We thus call Ŷ g a gradient flow
since it is given by the difference (discrete gradient) of the score function ŝ on graph
nodes,

(156) Ŷ gij = (δ0ŝ)(i, j) := ŝi − ŝj ,
where δ0 : RV → RE is a finite difference operator (matrix) on G. ŝ can be chosen
as any least square solution of (140), where we often choose the minimal norm
solution,

(157) ŝ = ∆†0δ
∗
0 Ŷ ,

where δ∗0 = δT0 W (W = diag(ωij)), ∆0 = δ∗0 ·δ0 is the unnormalized graph Laplacian
defined by (∆0)ii =

∑
j∼i ωij and (∆0)ij = −ωij , and (·)† is the Moore-Penrose

(pseudo) inverse. On a complete and balanced graph, (157) is reduced to ŝi =
1

n−1

∑
j 6=i Ŷij , often called Borda Count as the earliest preference aggregation rule in

social choice [JLYY11]. For expander graphs like regular graphs, graph Laplacian
∆0 has small condition numbers and thus the global ranking is stable against noise
on data.

2. Ŷ h satisfies two conditions (154) and (155), which are called curl-free and
divergence-free conditions respectively. The former requires the triangular trace
of Ŷ to be zero, on every 3-clique in graph G; while the later requires the total
sum (inflow minus outflow) to be zero on each node of G. These two conditions
characterize a linear subspace which is called harmonic flows.

3. The residue Ŷ c actually satisfies (155) but not (154). In fact, it measures

the amount of intrinsic (local) inconsistancy in Ŷ characterized by the triangular
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trace. We often call this component curl flow. In particular, the following relative
curl,

(158) curlrijk =
|Ŷij + Ŷjk + Ŷki|
|Ŷij |+ |Ŷjk|+ |Ŷki|

=
|Ŷ cij + Ŷ cjk + Ŷ cki|
|Ŷij |+ |Ŷjk|+ |Ŷki|

∈ [0, 1],

can be used to characterize triangular intransitivity; curlrijk = 1 iff {i, j, k} contains

an intransitive triangle of Ŷ . Note that computing the percentage of curlrijk = 1
is equivalent to calculating the Transitivity Satisfaction Rate (TSR) in complete
graphs.

Figure 3 illustrates the Hodge decomposition for paired comparison flows and
Algorithm 5 shows how to compute global ranking and other components. The
readers may refer to [JLYY11] for the detail of theoretical development. Below we
just make a few comments on the application of HodgeRank in our setting.

Algorithm 5: Procedure of Hodge decomposition in Matlab Pseudocodes

Input: A paired comparison hypergraph G provide by assessors.

Output: Global score ŝ, gradient flow Ŷ g, curl flow Ŷ c, and harmonic flow Ŷ h.
1 Initialization :

2 Ŷ (a numEdge-vector consisting Ŷij defined),

3 W (a numEdge-vector consisting ωij).

4 Step 1 :

5 Compute δ0, δ1; // δ0 = gradient, δ1 = curl

6 δ∗0 = δT0 ∗ diag(W ); // the conjugate of δ0
7 40 = δ∗0 ∗ δ0; // Unnormalized Graph Laplacian

8 div = δ∗0 ∗ Ŷ ; // divergence operator

9 ŝ = lsqr(40, div); // global score

10 Step 2 :

11 Compute 1st projection on gradient flow: Ŷ g = δ0 ∗ ŝ;
12 Step 3 :

13 δ∗1 = δT1 ∗ diag(1./W );

14 41 = δ1 ∗ δ∗1 ;

15 curl = δ1 ∗ Ŷ ;

16 z = lsqr(41, curl);

17 Compute 3rd projection on curl flow: Ŷ c = δ∗1 ∗ z;
18 Step 4 :

19 Compute 2nd projection on harmonic flow: Ŷ h = Ŷ − Ŷ g − Ŷ c.

1. To find a global ranking ŝ in (157), the recent developments of Spielman-Teng
[ST04] and Koutis-Miller-Peng [KMP10] suggest fast (almost linear in |E|Poly(log |V |))
algorithms for this purpose.

2. Inconsistency of Ŷ has two parts: global inconsistency measured by harmonic
flow Ŷ h and local inconsistency measured by curls in Ŷ c. Due to the orthogonal
decomposition, ‖Ŷ h‖2ω/‖Ŷ ‖2ω and ‖Ŷ c‖2ω/‖Ŷ ‖2ω provide percentages of global and
local inconsistencies, respectively.

3. A nontrivial harmonic component Ŷ h 6= 0 implies the fixed tournament issue,
i.e., for any candidate i ∈ V , there is a paired comparison design by removing some
of the edges in G = (V,E) such that i is the overall winner.
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4. One can control the harmonic component by controlling the topology of
clique complex χ(G). In a loop-free clique complex χ(G) where β1 = 0, harmonic
component vanishes. In this case, there are no cycles which traverse all the nodes,
e.g., 1 � 2 � 3 � 4 � . . . � n � 1. All the inconsistency will be summarized in
those triangular cycles, e.g., i � j � k � i.

Theorem 2. The linear space of harmonic flows has the dimension equal to
β1, i.e., the number of independent loops in clique complex χ(G), which is called
the first order Betti number.

Fortunately, with the aid of some random sampling principles, it is not hard to
obtain graphs whose β1 are zero.

4.2. Random Graphs. In this section, we first describe two classical random
models: Erdös-Rényi random graph and random regular graph; then we investigate
the relation between them.

4.2.1. Erdös-Rényi Random Graph. Erdös-Rényi random graph G(n, p) starts
from n vertices and draws its edges independently according to a fixed probability
p. Such random graph model is chosen to meet the scenario that in crowdsourc-
ing ranking raters and videos come in an unspecified way. Among various models,
Erdös-Rényi random graph is the simplest one equivalent to I.I.D. sampling. There-
fore, such a model is to be systematically studied in the paper.

However, to exploit Erdös-Rényi random graph in crowdsourcing experimental
designs, one has to meet some conditions depending on our purpose:

1. The resultant graph should be connected, if we hope to derive global scores
for all videos in comparison;

2. The resultant graph should be loop-free in its clique complex, if we hope to
get rid of the global inconsistency in harmonic component.

The two conditions can be easily satisfied for large Erdös-Rényi random graph.
Theorem 3. Let G(n, p) be the set of Erdös-Rényi random graphs with n

nodes and edge appearance probability p. Then the following holds as n→∞,
1. [Erdös-Rényi 1959] [ER59] if p � logn/n, then G(n, p) is almost always

connected; and if p ≺ logn/n then G(n, p) is almost always disconnected;
2. [Kahle 2009] [Kah09, Kah13] if p = O(nα), with α < −1 or α > −1/2,

then the expected β1 of the clique complex χ(G(n, p)) is almost always equal to
zero, i.e., loop-free.

These theories imply that when p is large enough, Erdös-Rényi random graph
will meet the two conditions above with high probability. In particular, almost
linear O(n log n) edges suffice to derive a global ranking, and with O(n3/2) edges
harmonic-free condition is met.

Despite such an asymptotic theory for large random graphs, it remains a ques-
tion how to ensure that a given graph instance satisfies the two conditions? Fortu-
nately, the recent development in computational topology provides us such a tool,
persistent homology, which will be illustrated in Section ??.

5. Euler-Calculus

to be finished...
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Figure 4. Examples of k-regular graphs.
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