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Preface

Aim of this book

This book originated as lecture notes for a course in regression and multilevel mod-
eling, offered by the statistics department at Columbia University and attended
by graduate students and postdoctoral researchers in social sciences (political sci-
ence, economics, psychology, education, business, social work, and public health)
and statistics. The prerequisite is statistics up to and including an introduction to
multiple regression.

Advanced mathematics is not assumed—it is important to understand the linear
model in regression, but it is not necessary to follow the matrix algebra in the
derivation of least squares computations. It is useful to be familiar with exponents
and logarithms, especially when working with generalized linear models.

After completing Part 1 of this book, you should be able to fit classical linear and
generalized linear regression models—and do more with these models than simply
look at their coefficients and their statistical significance. Applied goals include
causal inference, prediction, comparison, and data description. After completing
Part 2, you should be able to fit regression models for multilevel data. Part 3
takes you from data collection, through model understanding (looking at a table of
estimated coefficients is usually not enough), to model checking and missing data.
The appendixes include some reference materials on key tips, statistical graphics,
and software for model fitting.

What you should be able to do after reading this book and working through the
examples

This text is structured through models and examples, with the intention that after
each chapter you should have certain skills in fitting, understanding, and displaying
models:
e Part 1A: Fit, understand, and graph classical regressions and generalized linear
models.
— Chapter 3: Fit linear regressions and be able to interpret and display estimated
coeflicients.
— Chapter 4: Build linear regression models by transforming and combining
variables.
— Chapter 5: Fit, understand, and display logistic regression models for binary
data.
— Chapter 6: Fit, understand, and display generalized linear models, including
Poisson regression with overdispersion and ordered logit and probit models.

Part 1B: Use regression to learn about quantities of substantive interest (not
just regression coefficients).

— Chapter 7: Simulate probability models and uncertainty about inferences and
predictions.
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— Chapter 8: Check model fits using fake-data simulation and predictive simu-
lation.

— Chapter 9: Understand assumptions underlying causal inference. Set up re-
gressions for causal inference and understand the challenges that arise.

— Chapter 10: Understand the assumptions underlying propensity score match-
ing, instrumental variables, and other techniques to perform causal inference
when simple regression is not enough. Be able to use these when appropriate.

e Part 2A: Understand and graph multilevel models.
— Chapter 11: Understand multilevel data structures and models as generaliza-
tions of classical regression.

— Chapter 12: Understand and graph simple varying-intercept regressions and
interpret as partial-pooling estimates.

— Chapter 13: Understand and graph multilevel linear models with varying in-
tercepts and slopes, non-nested structures, and other complications.

— Chapter 14: Understand and graph multilevel logistic models.
— Chapter 15: Understand and graph multilevel overdispersed Poisson, ordered
logit and probit, and other generalized linear models.
e Part 2B: Fit multilevel models using the software packages R and Bugs.
— Chapter 16: Fit varying-intercept regressions and understand the basics of
Bugs. Check your programming using fake-data simulation.
— Chapter 17: Use Bugs to fit various models from Part 2A.

— Chapter 18: Understand Bayesian inference as a generalization of least squares
and maximum likelihood. Use the Gibbs sampler to fit multilevel models.

— Chapter 19: Use redundant parameterizations to speed the convergence of the
Gibbs sampler.
e Part 3:

— Chapter 20: Perform sample size and power calculations for classical and hier-
archical models: standard-error formulas for basic calculations and fake-data
simulation for harder problems.

— Chapter 21: Calculate and understand contrasts, explained variance, partial
pooling coefficients, and other summaries of fitted multilevel models.

— Chapter 22: Use the ideas of analysis of variance to summarize fitted multilevel
models; use multilevel models to perform analysis of variance.

— Chapter 23: Use multilevel models in causal inference.
— Chapter 24: Check the fit of models using predictive simulation.

— Chapter 25: Use regression to impute missing data in multivariate datasets.

In summary, you should be able to fit, graph, and understand classical and mul-
tilevel linear and generalized linear models and to use these model fits to make
predictions and inferences about quantities of interest, including causal treatment
effects.
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Data for the examples and homework assignments and other resources for
teaching and learning

The website www.stat.columbia.edu/~gelman/arm/ contains datasets used in the
examples and homework problems of the book, as well as sample computer code.
The website also includes some tips for teaching regression and multilevel modeling
through class participation rather than lecturing. We plan to update these tips
based on feedback from instructors and students; please send your comments and
suggestions to gelman@stat.columbia.edu.

Outline of a course

When teaching a course based on this book, we recommend starting with a self-
contained review of linear regression, logistic regression, and generalized linear mod-
els, focusing not on the mathematics but on understanding these methods and im-
plementing them in a reasonable way. This is also a convenient way to introduce the
statistical language R, which we use throughout for modeling, computation, and
graphics. One thing that will probably be new to the reader is the use of random
simulations to summarize inferences and predictions.

We then introduce multilevel models in the simplest case of nested linear models,
fitting in the Bayesian modeling language Bugs and examining the results in R.
Key concepts covered at this point are partial pooling, variance components, prior
distributions, identifiability, and the interpretation of regression coefficients at dif-
ferent levels of the hierarchy. We follow with non-nested models, multilevel logistic
regression, and other multilevel generalized linear models.

Next we detail the steps of fitting models in Bugs and give practical tips for repa-
rameterizing a model to make it converge faster and additional tips on debugging.
We also present a brief review of Bayesian inference and computation. Once the
student is able to fit multilevel models, we move in the final weeks of the class to
the final part of the book, which covers more advanced issues in data collection,
model understanding, and model checking.

As we show throughout, multilevel modeling fits into a view of statistics that
unifies substantive modeling with accurate data fitting, and graphical methods are
crucial both for seeing unanticipated features in the data and for understanding the
implications of fitted models.
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CHAPTER 1

Why?

1.1 What is multilevel regression modeling?

Consider an educational study with data from students in many schools, predicting
in each school the students’ grades y on a standardized test given their scores on
a pre-test  and other information. A separate regression model can be fit within
each school, and the parameters from these schools can themselves be modeled
as depending on school characteristics (such as the socioeconomic status of the
school’s neighborhood, whether the school is public or private, and so on). The
student-level regression and the school-level regression here are the two levels of a
multilevel model.

In this example, a multilevel model can be expressed in (at least) three equivalent
ways as a student-level regression:

e A model in which the coefficients vary by school (thus, instead of a model such
as y = a+ Bz +error, we have y = a; + ;2 + error, where the subscripts j index
schools),

e A model with more than one variance component (student-level and school-level
variation),

e A regression with many predictors, including an indicator variable for each school
in the data.

More generally, we consider a multilevel model to be a regression (a linear or gen-
eralized linear model) in which the parameters—the regression coefficients—are
given a probability model. This second-level model has parameters of its own—the
hyperparameters of the model—which are also estimated from data.

The two key parts of a multilevel model are varying coefficients, and a model for
those varying coefficients (which can itself include group-level predictors). Classi-
cal regression can sometimes accommodate varying coefficients by using indicator
variables. The feature that distinguishes multilevel models from classical regression
is in the modeling of the variation between groups.

Models for regression coefficients

To give a preview of our notation, we write the regression equations for two multi-
level models. To keep notation simple, we assume just one student-level predictor
z (for example, a pre-test score) and one school-level predictor u (for example,
average parents’ incomes).

Varying-intercept model. First we write the model in which the regressions have
the same slope in each of the schools, and only the intercepts vary. We use the
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notation i for individual students and j[i] for the school j containing student 7:!
Yi = «jjg+0Bv; +e€, forstudentsi=1,...,n
a; = a+buj+mn;, forschoolsj=1,...,J. (1.1)

Here, z; and u; represent predictors at the student and school levels, respectively,
and ¢; and 7); are independent error terms at each of the two levels. The model can
be written in several other equivalent ways, as we discuss in Section 12.5.

The number of “data points” J (here, schools) in the higher-level regression is
typically much less than n, the sample size of the lower-level model (for students
in this example).

Varying-intercept, varying-slope model. More complicated is the model where in-
tercepts and slopes both can vary by school:

Yi = [+ BT + €, forstudentsi=1,...,n
aj = ao+bou; +n;1, forschoolsj=1,...,J
B; = a1 +biuj+mnj2, forschoolsj=1,...,J.

Compared to model (1.1), this has twice as many vectors of varying coefficients
(o, B), twice as many vectors of second-level coefficients (a,b), and potentially cor-
related second-level errors 11, n72. We will be able to handle these complications.

Labels

“Multilevel” or “hierarchical.” Multilevel models are also called hierarchical, for
two different reasons: first, from the structure of the data (for example, students
clustered within schools); and second, from the model itself, which has its own hier-
archy, with the parameters of the within-school regressions at the bottom, controlled
by the hyperparameters of the upper-level model.

Later we shall consider non-nested models—for example, individual observations
that are nested within states and years. Neither “state” nor “year” is above the other
in a hierarchical sense. In this sort of example, we can consider individuals, states,
and years to be three different levels without the requirement of a full ordering
or hierarchy. More complex structures, such as three-level nesting (for example,
students within schools within school districts) are also easy to handle within the
general multilevel framework.

Why we avoid the term “random effects.” Multilevel models are often known as
random-effects or mixed-effects models. The regression coefficients that are being
modeled are called random effects, in the sense that they are considered random
outcomes of a process identified with the model that is predicting them. In contrast,
fized effects correspond either to parameters that do not vary (for example, fitting
the same regresslon line for each of the schools) or to parameters that vary but
are not modeled themselves (for example, fitting a least squares regression model
with various predictors, including indicators for the schools). A mized-effects model
includes both fixed and random effects; for example, in model (1.1), the varying
intercepts a; have a group-level model, but § is fixed and does not vary by group.

1 The model can also be written as Yij = aj + Bxi; + €5, where y;; is the measurement from
student ¢ in school j. We prefer using the single sequence 7 to index all students (and j[i] to label
schools) because this fits in better with our multilevel modeling framework with data and models
at the individual and group levels. The data are y; because they can exist without reference to
the groupings, and we prefer to include information about the groupings as numerical data—
that is, the index variable j[i]—rather than through reordering the data through subscripting.
We discuss the structure of the data and models further in Chapter 11.
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Fixed effects can be viewed as special cases of random effects, in which the higher-
level variance (in model (1.1), this would be o2) is set to 0 or co. Hence, in our
framework, all regression parameters are “random,” and the term “multilevel” is
all-encompassing. As we discuss on page 245, we find the terms “fixed,” “random,”
and “mixed” effects to be confusing and often misleading, and so we avoid their
use.

1.2 Some examples from our own research

Multilevel modeling can be applied to just about any problem. Just to give a feel
of the ways it can be used, we give here a few examples from our applied work.

Combining information for local decisions: home radon measurement and
remediation

Radon is a carcinogen—a naturally occurring radioactive gas whose decay products
are also radioactive—known to cause lung cancer in high concentrations and esti-
mated to cause several thousand lung cancer deaths per year in the United States.
The distribution of radon levels in U.S. homes varies greatly, with some houses hav-
ing dangerously high concentrations. In order to identify the areas with high radon
exposures, the Environmental Protection Agency coordinated radon measurements
in a random sample of more than 80,000 houses throughout the country.

To simplify the problem somewhat, our goal in analyzing these data was to
estimate the distribution of radon levels in each of the approximately 3000 counties
in the United States, so that homeowners could make decisions about measuring or
remediating the radon in their houses based on the best available knowledge of local
conditions. For the purpose of this analysis, the data were structured hierarchically:
houses within counties. If we were to analyze multiple measurements within houses,
there would be a three-level hierarchy of measurements, houses, and counties.

In performing the analysis, we had an important predictor—the floor on which
the measurement was taken, either basement or first floor; radon comes from un-
derground and can enter more easily when a house is built into the ground. We
also had an important county-level predictor—a measurement of soil uranium that
was available at the county level. We fit a model of the form (1.1), where y; is the
logarithm of the radon measurement in house i, x is the floor of the measurement
(that is, 0 for basement and 1 for first floor), and w is the uranium measurement at
the county level. The errors ¢; in the first line of (1.1) represent “within-county vari-
ation,” which in this case includes measurement error, natural variation in radon
levels within a house over time, and variation between houses (beyond what is ex-
plained by the floor of measurement). The errors n; in the second line represent
variation between counties, beyond what is explained by the county-level uranium
predictor.

The hierarchical model allows us to fit a regression model to the individual mea-
surements while accounting for systematic unexplained variation among the 3000
counties. We return to this example in Chapter 12.

It is of practical interest to politicians and theoretical interest to political scientists
that the outcomes of elections can be forecast with reasonable accuracy given in-
formation available months ahead of time. To understand this better, we set up a
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model to forecast presidential elections. Our predicted outcomes were the Demo-
cratic Party’s share of the two-party vote in each state in each of the 11 elections
from 1948 through 1988, yielding 511 data points (the analysis excluded states
that were won by third parties), and we had various predictors, including the per-
formance of the Democrats in the previous election, measures of state-level and
national economic trends, and national opinion polls up to two months before the
election.

We set up our forecasting model two months before the 1992 presidential election
and used it to make predictions for the 50 states. Predictions obtained using classical
regression are reasonable, but when the model is evaluated historically (fitting to all
but one election and then using the model to predict that election, then repeating
this for the different past elections), the associated predictive intervals turn out to
be too narrow: that is, the predictions are not as accurate as claimed by the model.
Fewer than 50% of the predictions fall in the 50% predictive intervals, and fewer
than 95% are inside the 95% intervals. The problem is that the 511 original data
points are structured, and the state-level errors are correlated. It is overly optimistic
to say that we have 511 independent data points.

Instead, we model

yi = Bo+ X1+ Xiefo + -+ + X B + Mepa) + Oppig e + €05 fori=1,...,n, (1.2)

where t[i] is a indicator for time (election year), and r[i] is an indicator for the region
of the country (Northeast, Midwest, South, or West), and n = 511 is the number
of state-years used to fit the model. For each election year, 7; is a nationwide error
and the 0, ’s are four independent regional errors.

The error terms must then be given distributions. As usual, the default is the
normal distribution, which for this model we express as

N~ N(O,Uf,)7 fort=1,...,11
6rt ~ N(0,02), forr=1,...,4;t=1,...,11

s

& ~ N(0,0%), fori=1,...,511. (1.3)

In the multilevel model, all the parameters 3, o, 05, 0 are estimated from the data.
We can then make a prediction by simulating the election outcome in the 50
states in the next election year, t = 12:

yi = B+ X1+ Xiefo + -+ + Xiw Bk + 2 + 67‘[1;]4,12 + €, fori =n+1,...,n+50.

To define the predictive distribution of these 50 outcomes, we need the point pre-
dictors X;08 = o + X101 + Xi2B2 + - -+ + X Br and the state-level errors € as
before, but we also need a new national error 7;2 and four new regional errors 4,12,
which we simulate from the distributions (1.3). The variation from these gives a
more realistic statement of prediction uncertainties.

Small-area estimation: state-level opinions from national polls

In a micro-level version of election forecasting, it is possible to predict the political
opinions of individual voters given demographic information and where they live.
Here the data sources are opinion polls rather than elections.

For example, we analyzed the data from seven CBS News polls from the 10
days immediately preceding the 1988 U.S. presidential election. For each survey
respondent 4, we label y; = 1 if he or she preferred George Bush (the Republican
candidate), 0 if he or she preferred Michael Dukakis (the Democrat). We excluded
respondents who preferred others or had no opinion, leaving a sample size n of
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about 6000. We then fit the model,
Pr(yi=1) = 1ogit*1(Xiﬁ)7
where X included 85 predictors:
e A constant term
e An indicator for “female”
e An indicator for “black”
e An indicator for “female and black”
e 4 indicators for age categories (18-29, 30-44, 45-64, and 65+)

e 4 indicators for education categories (less than high school, high school, some
college, college graduate)

e 16 indicators for age x education

e 51 indicators for states (including the District of Columbia)

e 5 indicators for regions (Northeast, Midwest, South, West, and D.C.)

e The Republican share of the vote for president in the state in the previous
election.

In classical regression, it would be unwise to fit this many predictors because the
estimates will be unreliable, especially for small states. In addition, it would be
necessary to leave predictors out of each batch of indicators (the 4 age categories,
the 4 education categories, the 16 age x education interactions, the 51 states, and
the 5 regions) to avoid collinearity.

With a multilevel model, the coefficients for each batch of indicators are fit to a
probability distribution, and it is possible to include all the predictors in the model.
We return to this example in Section 14.1.

Social science modeling: police stops by ethnic group with variation across
precincts

There have been complaints in New York City and elsewhere that the police harass
members of ethnic minority groups. In 1999 the New York State Attorney General’s
Office instigated a study of the New York City police department’s “stop and frisk”
policy: the lawful practice of “temporarily detaining, questioning, and, at times,
searching civilians on the street.” The police have a policy of keeping records on
every stop and frisk, and this information was collated for all stops (about 175,000 in
total) over a 15-month period in 1998-1999. We analyzed these data to see to what
extent different ethnic groups were stopped by the police. We focused on blacks
(African Americans), hispanics (Latinos), and whites (European Americans). We
excluded others (about 4% of the stops) because of sensitivity to ambiguities in
classifications. The ethnic categories were as recorded by the police making the
stops.

It was found that blacks and hispanics represented 50% and 33% of the stops,
respectively, despite constituting only 26% and 24%, respectively, of the population
of the city. An arguably more relevant baseline comparison, however, is to the num-
ber of crimes committed by members of each ethnic group. Data on actual crimes
are not available, of course, so as a proxy we used the number of arrests within New
York City in 1997 as recorded by the Division of Criminal Justice Services (DCJS)
of New York State. We used these numbers to represent the frequency of crimes
that the police might suspect were committed by members of each group. When
compared in that way, the ratio of stops to previous DCJS arrests was 1.24 for
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whites, 1.53 for blacks, and 1.72 for hispanics—the minority groups still appeared
to be stopped disproportionately often.

These ratios are suspect too, however, because they average over the whole city.
Suppose the police make more stops in high-crime areas but treat the different
ethnic groups equally within any locality. Then the citywide ratios could show
strong differences between ethnic groups even if stops are entirely determined by
location rather than ethnicity. In order to separate these two kinds of predictors, we
performed a multilevel analysis using the city’s 75 precincts. For each ethnic group
e =1,2,3 and precinct p = 1,...,75, we model the number of stops y., using an
overdispersed Poisson regression. The exponentiated coefficients from this model
represent relative rates of stops compared to arrests for the different ethnic groups,
after controlling for precinct. We return to this example in Section 15.1.

1.3 Motivations for multilevel modeling

Multilevel models can be used for a variety of inferential goals including causal
inference, prediction, and descriptive modeling.

Learning about treatment effects that vary

One of the basic goals of regression analysis is estimating treatment effects—how
does y change when some z is varied, with all other inputs held constant? In many
applications, it is not an overall effect of x that is of interest, but how this effect
varies in the population. In classical statistics we can study this variation using
interactions: for example, a particular educational innovation may be more effective
for girls than for boys, or more effective for students who expressed more interest
in school in a pre-test measurement.

Multilevel models also allow us to study effects that vary by group, for example
an intervention that is more effective in some schools than others (perhaps because
of unmeasured school-level factors such as teacher morale). In classical regression,
estimates of varying effects can be noisy, especially when there are few observations
per group; multilevel modeling allows us to estimate these interactions to the extent
supported by the data.

Using all the data to perform inferences for groups with small sample size

A related problem arises when we are trying to estimate some group-level quan-
tity, perhaps a local treatment effect or maybe simply a group-level average (as in
the small-area estimation example on page 4). Classical estimation just using the
local information can be essentially useless if the sample size is small in the group.
At the other extreme, a classical regression ignoring group indicators can be mis-
leading in ignoring group-level variation. Multilevel modeling allows the estimation
of group averages and group-level effects, compromising between the overly noisy
within-group estimate and the oversimplified regression estimate that ignores group
indicators.

Prediction

Regression models are commonly used for predicting outcomes for new cases. But
what if the data vary by group? Then we can make predictions for new units in
existing groups or in new groups. The latter is difficult to do in classical regression:
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if a model ignores group effects, it will tend to understate the error in predictions
for new groups. But a classical regression that includes group effects does not have
any automatic way of getting predictions for a new group.

A natural attack on the problem is a two-stage regression, first including group
indicators and then fitting a regression of estimated group effects on group-level
predictors. One can then forecast for a new group, with the group effect predicted
from the group-level model, and then the observations predicted from the unit-level
model. However, if sample sizes are small in some groups, it can be difficult or even
impossible to fit such a two-stage model classically, and fully accounting for the
uncertainty at both levels leads directly to a multilevel model.

Analysis of structured data

Some datasets are collected with an inherent multilevel structure, for example, stu-
dents within schools, patients within hospitals, or data from cluster sampling. Sta-
tistical theory—whether sampling-theory or Bayesian—says that inference should
include the factors used in the design of data collection. As we shall see, multi-
level modeling is a direct way to include indicators for clusters at all levels of a
design, without being overwhelmed with the problems of overfitting that arise from
applying least squares or maximum likelihood to problems with large numbers of
parameters.

More efficient inference for regression parameters

Data often arrive with multilevel structure (students within schools and grades,
laboratory assays on plates, elections in districts within states, and so forth). Even
simple cross-sectional data (for example, a random sample survey of 1000 Amer-
icans) can typically be placed within a larger multilevel context (for example, an
annual series of such surveys). The traditional alternatives to multilevel modeling
are complete pooling, in which differences between groups are ignored, and no pool-
ing, in which data from different sources are analyzed separately. As we shall discuss
in detail throughout the book, both these approaches have problems: no pooling
ignores information and can give unacceptably variable inferences, and complete
pooling suppresses variation that can be important or even the main goal of a
study. The extreme alternatives can in fact be useful as preliminary estimates, but
ultimately we prefer the partial pooling that comes out of a multilevel analysis.

Including predictors at two different levels

In the radon example described in Section 1.2, we have outcome measurements at
the individual level and predictors at the individual and county levels. How can this
information be put together? One possibility is simply to run a classical regression
with predictors at both levels. But this does not correct for differences between
counties beyond what is included in the predictors. Another approach would be to
augment this model with indicators (dummy variables) for the counties. But in a
classical regression it is not possible to include county-level indicators as well along
with county-level predictors—the predictors would become collinear (see the end of
Section 4.5 for a discussion of collinearity and nonidentifiability in this context).
Another approach is to fit the model with county indicators but without the
county-level predictors, and then to fit a second model. This is possible but limited
because it relies on the classical regression estimates of the coefficients for those
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county-level indicators—and if the data are sparse within counties, these estimates
won’t be very good. Another possibility in the classical framework would be to fit
separate models in each group, but this is not possible unless the sample size is large
in each group. The multilevel model provides a coherent model that simultaneously
incorporates both individual- and group-level models.

Getting the right standard error: accurately accounting for uncertainty in
prediction and estimation

Another motivation for multilevel modeling is for predictions, for example, when
forecasting state-by-state outcomes of U.S. presidential elections, as described in
Section 1.2. To get an accurate measure of predictive uncertainty, one must account
for correlation of the outcome between states in a given election year. Multilevel
modeling is a convenient way to do this.

For certain kinds of predictions, multilevel models are essential. For example,
consider a model of test scores for students within schools. In classical regression,
school-level variability might be modeled by including an indicator variable for each
school. In this framework though, it is impossible to make a prediction for a new
student in a new school, because there would not be an indicator for this new
school in the model. This prediction problem is handled seamlessly using multilevel
models.

1.4 Distinctive features of this book

The topics and methods covered in this book overlap with many other textbooks on
regression, multilevel modeling, and applied statistics. We differ from most other
books in these areas in the following ways:

o We present methods and software that allow the reader to fit complicated, linear
or nonlinear, nested or non-nested models. We emphasize the use of the statistical
software packages R and Bugs and provide code for many examples as well as
methods such as redundant parameterization that speed computation and lead
to new modeling ideas.

o We include a wide range of examples, almost all from our own applied research.
The statistical methods are thus motivated in the best way, as successful practical
tools.

Most books define regression in terms of matrix operations. We avoid much of
this matrix algebra for the simple reason that it is now done automatically by
computers. We are more interested in understanding the “forward,” or predic-
tive, matrix multiplication X3 than the more complicated inferential formula
(XtX)~1X1ty. The latter computation and its generalizations are important but
can be done out of sight of the user. For details of the underlying matrix algebra,
we refer readers to the regression textbooks listed in Section 3.8.

e We try as much as possible to display regression results graphically rather than
through tables. Here we apply ideas such as those presented in the books by
Ramsey and Schafer (2001) for classical regression and Kreft and De Leeuw
(1998) for multilevel models. We consider graphical display of model estimates
to be not just a useful teaching method but also a necessary tool in applied
research.

Statistical texts commonly recommend graphical displays for model diagnostics.
These can be very useful, and we refer readers to texts such as Cook and Weisberg
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(1999) for more on this topic—but here we are emphasizing graphical displays
of the fitted models themselves. It is our experience that, even when a model
fits data well, we have difficulty understanding it if all we do is look at tables of
regression coefficients.

e We consider multilevel modeling as generally applicable to structured data,
not limited to clustered data, panel data, or nested designs. For example, in
a random-digit-dialed survey of the United States, one can, and should, use
multilevel models if one is interested in estimating differences among states or
demographic subgroups—even if no multilevel structure is in the survey design.

Ultimately, you have to learn these methods by doing it yourself, and this chapter
is intended to make things easier by recounting stories about how we learned this
by doing it ourselves. But we warn you ahead of time that we include more of our
successes than our failures.

Costs and benefits of our approach

Doing statistics as described in this book is not easy. The difficulties are not math-
ematical but rather conceptual and computational. For classical regressions and
generalized linear models, the actual fitting is easy (as illustrated in Part 1), but
programming effort is still required to graph the results relevantly and to simulate
predictions and replicated data. When we move to multilevel modeling, the fitting
itself gets much more complicated (see Part 2B), and displaying and checking the
models require correspondingly more work. Our emphasis on R and Bugs means
that an initial effort is required simply to learn and use the software. Also, compared
to usual treatments of multilevel models, we describe a wider variety of modeling
options for the researcher so that more decisions will need to be made.

A simpler alternative is to use classical regression and generalized linear modeling
where possible—this can be done in R or, essentially equivalently, in Stata, SAS,
SPSS, and various other software—and then, when multilevel modeling is really
needed, to use functions that adapt classical regression to handle simple multilevel
models. Such functions, which can be run with only a little more effort than simple
regression fitting, exist in many standard statistical packages.

Compared to these easier-to-use programs, our approach has several advantages:
e We can fit a greater variety of models. The modular structure of Bugs allows us

to add complexity where needed to fit data and study patterns of interest.

e By working with simulations (rather than simply point estimates of parameters),
we can directly capture inferential uncertainty and propagate it into predictions
(as discussed in Chapter 7 and applied throughout the book). We can directly
obtain inference for quantities other than regression coefficients and variance
parameters.

e R gives us flexibility to display inferences and data flexibly.
We recognize, however, that other software and approaches may be useful too,

either as starting points or to check results. Section C.4 describes briefly how to fit
multilevel models in several other popular statistical software packages.

1.5 Computing

We perform computer analyses using the freely available software R and Bugs.
Appendix C gives instructions on obtaining and using these programs. Here we
outline how these programs fit into our overall strategy for data analysis.
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Our general approach to statistical computing

In any statistical analysis, we like to be able to directly manipulate the data, model,
and inferences. We just about never know the right thing to do ahead of time, so
we have to spend much of our effort examining and cleaning the data, fitting many
different models, summarizing the inferences from the models in different ways, and
then going back and figuring how to expand the model to allow new data to be
included in the analysis.

It is important, then, to be able to select subsets of the data, to graph whatever
aspect of the data might be of interest, and to be able to compute numerical sum-
maries and fit simple models easily. All this can be done within R—you will have
to put some initial effort into learning the language, but it will pay off later.

You will almost always need to try many different models for any problem: not
just different subsets of predictor variables as in linear regression, and not just minor
changes such as fitting a logit or probit model, but entirely different formulations of
the model—different ways of relating observed inputs to outcomes. This is especially
true when using new and unfamiliar tools such as multilevel models. In Bugs, we
can easily alter the internal structure of the models we are fitting, in a way that
cannot easily be done with other statistical software.

Finally, our analyses are almost never simply summarized by a set of parameter
estimates and standard errors. As we illustrate throughout, we need to look carefully
at our inferences to see if they make sense and to understand the operation of
the model, and we usually need to postprocess the parameter estimates to get
predictions or generalizations to new settings. These inference manipulations are
similar to data manipulations, and we do them in R to have maximum flexibility.

Model fitting in Part 1

Part 1 of this book uses the R software for three general tasks: (1) fitting classical
linear and generalized linear models, (2) graphing data and estimated models, and
(3) using simulation to propagate uncertainty in inferences and predictions (see
Sections 7.1-7.2 for more on this).

Model fitting in Parts 2 and 3

When we move to multilevel modeling, we begin by fitting directly in R; however, for
more complicated models we move to Bugs, which has a general language for writing
statistical models. We call Bugs from R and continue to use R for preprocessing of
data, graphical display of data and inferences, and simulation-based prediction and
model checking.

R and S

Our favorite all-around statistics software is R, which is a free open-source version
of S, a program developed in the 1970s and 1980s at Bell Laboratories. S is also
available commercially as S-Plus. We shall refer to R throughout, but other versions
of S generally do the same things.

R is excellent for graphics, classical statistical modeling (most relevant here are
the Im() and glm() functions for linear and generalized linear models), and various
nonparametric methods. As we discuss in Part 2, the lmer () function provides
quick fits in R for many multilevel models. Other packages such as MCMCpack exist
to fit specific classes of models in R, and other such programs are in development.
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Beyond the specific models that can be fit by these packages, R is fully pro-
grammable and can thus fit any model, if enough programming is done. It is pos-
sible to link R to Fortran or C to write faster programs. R also can choke on large
datasets (which is one reason we automatically “thin” large Bugs outputs before
reading into R; see Section 16.9).

Bugs

Bugs (an acronym for Bayesian Inference using Gibbs Sampling) is a program de-
veloped by statisticians at the Medical Research Council in Cambridge, England.
As of this writing, the most powerful versions available are WinBugs 1.4 and Open-
Bugs. In this book, when we say “Bugs,” we are referring to WinBugs 1.4; however,
the code should also work (perhaps with some modification) under OpenBugs or
future implementations.

The Bugs modeling language has a modular form that allows the user to put
together all sorts of Bayesian models, including most of the multilevel models cur-
rently fit in social science applications. The two volumes of online examples in Bugs
give some indication of the possibilities—in fact, it is common practice to write a
Bugs script by starting with an example with similar features and then altering it
step by step to fit the particular problem at hand.

The key advantage of Bugs is its generality in setting up models; its main disad-
vantage is that it is slow and can get stuck with large datasets. These problems can
be somewhat reduced in practice by randomly sampling from the full data to create
a smaller dataset for preliminary modeling and debugging, saving the full data until
you are clear on what model you want to fit. (This is simply a computational trick
and should not be confused with cross-validation, a statistical method in which a
procedure is applied to a subset of the data and then checked using the rest of
the data.) Bugs does not always use the most efficient simulation algorithms, and
currently its most powerful version runs only in Windows, which in practice reduces
the ability to implement long computations in time-share with other processes.

When fitting complicated models, we set up the data in R, fit models in Bugs,
then go back to R for further statistical analysis using the fitted models.

Some models cannot be fit in Bugs. For these we illustrate in Section 15.3 a
new R package under development called Umacs (universal Markov chain sampler).
Umacs is less automatic than Bugs and requires more knowledge of the algebra of
Bayesian inference.

Other software

Some statistical software has been designed specifically for fitting multilevel mod-
els, notably MLWin and HLM. It is also possible to fit some multilevel models in
R, Stata, SAS, and other general-purpose statistical software, but without the flex-
ibility of modeling in Bugs. The models allowed by these programs are less general
than available in Bugs; however, they are generally faster and can handle larger
datasets. We discuss these packages further in Section C.4.

Data and code for examples

Data and computer code for the examples and exercises in the book can be down-
loaded at the website www.stat.columbia.edu/~gelman/arm/, which also includes
other supporting materials for this book.






CHAPTER 2

Concepts and methods from basic
probability and statistics

Simple methods from introductory statistics have three important roles in regres-
sion and multilevel modeling. First, simple probability distributions are the build-
ing blocks for elaborate models. Second, multilevel models are generalizations of
classical complete-pooling and no-pooling estimates, and so it is important to un-
derstand where these classical estimates come from. Third, it is often useful in
practice to construct quick confidence intervals and hypothesis tests for small parts
of a problem—Dbefore fitting an elaborate model, or in understanding the output
from such a model.
This chapter provides a quick review of some of these methods.

2.1 Probability distributions

A probability distribution corresponds to an urn with a potentially infinite number
of balls inside. When a ball is drawn at random, the “random variable” is what is
written on this ball.

Areas of application of probability distributions include:

e Distributions of data (for example, heights of men, heights of women, heights of
adults), for which we use the notation y;, i =1,...,n.

o Distributions of parameter values, for which we use the notation §;, j =1,...,J,
or other Greek letters such as a, 3,~. We shall see many of these with the mul-
tilevel models in Part 2 of the book. For now, consider a regression model (for
example, predicting students’ grades from pre-test scores) fit separately in each
of several schools. The coefficients of the separate regressions can be modeled as
following a distribution, which can be estimated from data.

e Distributions of error terms, which we write as ¢;, ¢ = 1,...,n—or, for group-
level errors, n;, j=1,...,J.

A “distribution” is how we describe a set of objects that are not identified, or when
the identification gives no information. For example, the heights of a set of unnamed
persons have a distribution, as contrasted with the heights of a particular set of
your friends.

The basic way that distributions are used in statistical modeling is to start by
fitting a distribution to data y, then get predictors X and model y given X with
errors e. Further information in X can change the distribution of the €’s (typically,
by reducing their variance). Distributions are often thought of as data summaries,
but in the regression context they are more commonly applied to €’s.

Normal distribution; means and variances

The Central Limit Theorem of probability states that the sum of many small inde-
pendent random variables will be a random variable with an approximate normal

13
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Figure 2.1 (a) Heights of women (which approzimately follow a normal distribution, as
predicted from the Central Limit Theorem), and (b) heights of all adults in the United
States (which have the form of a mizture of two normal distributions, one for each sex).

distribution. If we write this summation of independent components as z = Z?:l Zi,
then the mean and variance of z are the sums of the means and variances of the
Z8: iz = D1y pe, and o, = /37 | 02, We write this as z ~ N(p,,02).

The Central Limit Theorem holds in practice—that is, .- | z; actually follows
an approximate normal distribution—if the individual ai ’s are small compared to
the total variance o2.

For example, the heights of women in the United States follow an approximate
normal distribution. The Central Limit Theorem applies here because height is
affected by many small additive factors. In contrast, the distribution of heights
of all adults in the United States is not so close to normality. The Central Limit
Theorem does not apply here because there is a single large factor—sex—that
represents much of the total variation. See Figure 2.1.

Linear transformations. Linearly transformed normal distributions are still nor-
mal. For example, if y are men’s heights in inches (with mean 69.1 and standard
deviation 2.9), then 2.54y are their heights in centimeters (with mean 2.54 - 69 = 175
and standard deviation 2.54 - 2.9 = 7.4).

For an example of a slightly more complicated calculation, suppose we take inde-
pendent samples of 100 men and 100 women and compute the difference between
the average heights of the men and the average heights of the women. This dif-
ference will be normally distributed with mean 69.1 — 63.7 = 5.4 and standard

deviation 4/2.92/100 + 2.72/100 = 0.4 (see Exercise 2.4).

Means and variances of sums of correlated random variables. If x and y are ran-
dom variables with means p., ,y, standard deviations o,,0,, and correlation p,

then z + y has mean i, + p1,, and standard deviation /02 + 05 + 2po.0,. More
generally, the weighted sum ax + by has mean aji, + by, and its standard deviation

is \/azog +b202 + 2abpo,oy,. From this we can derive, for example, that z—y has

mean p, — (1, and standard deviation /o2 + 05 —2p0,0y.

Estimated regression coefficients. Estimated regression coefficients are themselves
linear combinations of data (formally, the estimate (X‘X)~' X'y is a linear com-
bination of the data values y), and so the Central Limit Theorem again applies,
in this case implying that, for large samples, estimated regression coefficients are
approximately normally distributed. Similar arguments apply to estimates from lo-
gistic regression and other generalized linear models, and for maximum likelihood
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Figure 2.2 Weights of men (which approzimately follow a lognormal distribution, as pre-
dicted from the Central Limit Theorem from combining several small multiplicative fac-
tors), plotted on the logarithmic and original scales.

estimation in general (see Section 18.1), for well-behaved models with large sample
sizes.

Multivariate normal distribution

More generally, a random vector z = (21, ..., 2x) with a K-dimensional multivari-
ate normal distribution with a vector mean p and a covariance matrix ¥ is written
as z ~ N(p, X). The diagonal elements of 3 are the variances of the K individual
random variables zj; thus, we can write z; ~ N(pug, Zgx). The off-diagonal elements
of 3 are the covariances between different elements of z, defined so that the cor-
relation between z; and zy, is Xji/+/X;;Xkk. The multivariate normal distribution
sometimes arises when modeling data, but in this book we encounter it in models
for vectors of regression coefficients.

Approximate normal distribution of regression coefficients and other parameter es-
timates. The least squares estimate of a vector of linear regression coefficients 3
is # = (X'X)"1X'y (see Section 3.4), which, when viewed as a function of data
y (considering the predictors X as constants), is a linear combination of the data.
Using the Central Limit Theorem, it can be shown that the distribution of B will
be approximately multivariate normal if the sample size is large. We describe in
Chapter 7 how we use this distribution to summarize uncertainty in regression
inferences.

Lognormal distribution

It is often helpful to model all-positive random variables on the logarithmic scale.
For example, the logarithms of men’s weights (in pounds) have an approximate
normal distribution with mean 5.13 and standard deviation 0.17. Figure 2.2 shows
the distributions of log weights and weights among men in the United States. The
exponential of the mean and standard deviations of log weights are called the geo-
metric mean and geometric standard deviation of the weights; in this example, they
are 169 pounds and 1.18, respectively. When working with this lognormal distri-
bution, we sometimes want to compute the mean and standard deviation on the
original scale; these are exp(u + %02) and exp(p + %(rz) exp(a?) — 1, respectively.
For the men’s weights example, these come to 171 pounds and 29 pounds.
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Binomial distribution

If you take 20 shots in basketball, and each has 0.3 probability of succeeding, and
if these shots are independent of each other (that is, success in one shot does not
increase or decrease the probability of success in any other shot), then the number of
shots that succeed is said to have a binomial distribution with n = 20 and p = 0.3,
for which we use the notation y ~ Binomial(n,p). As can be seen even in this
simple example, the binomial model is typically only an approximation with real
data, where in multiple trials, the probability p of success can vary, and for which
outcomes can be correlated. Nonetheless, the binomial model is a useful starting
point for modeling such data. And in some settings—most notably, independent
sampling with Yes/No responses—the binomial model generally is appropriate, or
very close to appropriate.

Poisson distribution

The Poisson distribution is used for count data such as the number of cases of
cancer in a county, or the number of hits to a website during a particular hour, or
the number of persons named Michael whom you know:

e If a county has a population of 100,000, and the average rate of a particular
cancer is 45.2 per million persons per year, then the number of cancers in this
county could be modeled as Poisson with expectation 4.52.

o If hits are coming at random, with an average rate of 380 per hour, then the num-
ber of hits in any particular hour could be modeled as Poisson with expectation
380.

e If you know approximately 1000 persons, and 1% of all persons in the population
are named Michael, and you are as likely to know Michaels as anyone else, then
the number of Michaels you know could be modeled as Poisson with expectation
10.

As with the binomial distribution, the Poisson model is almost always an ideal-
ization, with the first example ignoring systematic differences among counties, the
second ignoring clustering or burstiness of the hits, and the third ignoring fac-
tors such as sex and age that distinguish Michaels, on average, from the general
population.

Again, however, the Poisson distribution is a starting point—as long as its fit
to data is checked. The model can be expanded to account for “overdispersion” in
data, as we discuss in the context of Figure 2.5 on page 21.

2.2 Statistical inference
Sampling and measurement error models

Statistical inference is used to learn from incomplete or imperfect data. There are
two standard paradigms for inference:

e In the sampling model, we are interested in learning some characteristics of a
population (for example, the mean and standard deviation of the heights of all
women in the United States), which we must estimate from a sample, or subset,
of that population.

e In the measurement error model, we are interested in learning aspects of some
underlying pattern or law (for example, the parameters a and b in the model
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y = a+ bz), but the data are measured with error (most simply, y = a + bz + ¢,
although one can also consider models with measurement error in ).

These two paradigms are different: the sampling model makes no reference to mea-
surements, and the measurement model can apply even when complete data are
observed. In practice, however, we often combine the two approaches when creating
a statistical model.

For example, consider a regression model predicting students’ grades from pre-
test scores and other background variables. There is typically a sampling aspect to
such a study, which is performed on some set of students with the goal of general-
izing to a larger population. The model also includes measurement error, at least
implicitly, because a student’s test score is only an imperfect measure of his or her
abilities.

This book follows the usual approach of setting up regression models in the
measurement-error framework (y = a + bz + €), with the sampling interpretation
implicit in that the errors €;, ..., €, can be considered as a random sample from a
distribution (for example, N(0,0?)) that represents a hypothetical “superpopula-
tion.” We consider these issues in more detail in Chapter 21; at this point, we raise
this issue only to clarify the connection between probability distributions (which
are typically modeled as draws from an urn, or distribution, as described at the
beginning of Section 2.1) and the measurement error models used in regression.

Parameters and estimation

The goal of statistical inference for the sorts of parametric models that we use is to
estimate underlying parameters and summarize our uncertainty in these estimates.
We discuss inference more formally in Chapter 18; here it is enough to say that we
typically understand a fitted model by plugging in estimates of its parameters, and
then we consider the uncertainty in the parameter estimates when assessing how
much we actually have learned from a given dataset.

Standard errors

The standard error is the standard deviation of the parameter estimate and gives
us a sense of our uncertainty about a parameter and can be used in constructing
confidence intervals, as we discuss in the next section. When estimating the mean of
an infinite population, given a simple random sample of size n, the standard error
is o/+y/n, where o is the standard deviation of the measurements in the population.

Standard errors for proportions

Consider a survey of size n with y Yes responses and n—y No responses. The
estimated proportion of the population who would answer Yes to this survey is
p = y/n, and the standard error of this estimate is \/p(1 — p)/n. This estimate and
standard error are usually reasonable unless y =0 or n—y =0, in which case the
resulting standard error estimate of zero is misleading.!

L A reasonable quick correction when y or n—y is near zero is to use the estimate p = (y+1)/(n+2)

with standard error \/p(1 — p)/n; see Agresti and Coull (1998).
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2.3 Classical confidence intervals
Confidence intervals from the normal and t distributions

The usual 95% confidence interval for large samples based on the normal distri-
bution is an estimate +2 standard errors. Also from the normal distribution, an
estimate 1 standard error is a 68% interval, and an estimate + 2/3 of a standard
error is a 50% interval. A 50% interval is particularly easy to interpret since the
true value should be as likely to be inside as outside the interval. A 95% interval
is about three times as wide as a 50% interval. The ¢ distribution can be used to
correct for uncertainty in the estimation of the standard error.

Continuous data. For example, suppose an object is weighed five times, with mea-
surements y = 35, 34, 38, 35, 37, which have an average value of 35.8 and a standard
deviation of 1.6. In R, we can create the 50% and 95% ¢ intervals (based on 4
degrees of freedom) as follows:

n <- length(y)

estimate <- mean(y)

se <- sd(y)/sqrt(n)

int.50 <- estimate + qt(c(.25,.75),n-1)*se
int.95 <- estimate + qt(c(.025,.975),n-1)*se

Proportions. Confidence intervals for proportions come directly from the standard-
error formula. For example, if 700 persons in a random sample support the death
penalty and 300 oppose it, then a 95% interval for the proportion of supporters in
the population is simply [0.7 £+ 2,/0.7 - 0.3/1000] = [0.67,0.73] or, in R,

estimate <- y/n
se <- sqrt (estimate*(l-estimate)/n)
int.95 <- estimate + gnorm(c(.025,.975))*se

Discrete data. For nonbinary discrete data, we can simply use the continuous
formula for the standard error. For example, consider a hypothetical survey that
asks 1000 randomly selected adults how many dogs they own, and suppose 600 have
no dog, 300 have 1 dog, 50 have 2 dogs, 30 have 3 dogs, and 20 have 4 dogs. What
is a 95% confidence interval for the average number of dogs in the population? If
the data are not already specified in a file, we can quickly code the data vector R:

y <- rep (c(0,1,2,3,4), c(600,300,50,30,20))

We can then continue by computing the mean, standard deviation, and standard
error, as shown with continuous data above.

Comparisons, visual and numerical

Confidence intervals can often be compared visually, as in Figure 2.3, which displays
68% confidence intervals for the proportion of American adults supporting the death
penalty (among those with an opinion on the question), from a series of Gallup polls.
For an example of a formal comparison, consider a change in the estimated support
for the death penalty from 80% =+ 1.4% to 74% =+ 1.3%. The estimated difference is
6%, with a standard error of 1/(1.4%)? + (1.3%)? = 1.9%.

Linear transformations

To get confidence intervals for a linear transformed parameter, simply transform the
intervals. For example, in the example on page 18, the 95% interval for the number
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Figure 2.3 Illustration of visual comparison of confidence intervals. Graph displays the
proportion of respondents supporting the death penalty (estimates +1 standard error—that
is, 68% confidence intervals—under the simplifying assumption that each poll was a simple
random sample of size 1000), from Gallup polls over time.

of dogs per person is [0.52,0.62]. Suppose this (hypothetical) random sample were
taken in a city of 1 million adults. The confidence interval for the total number of
pet dogs in the city is then [520,000, 620,000].

Weighted averages

Confidence intervals for other derived quantities can be determined by appropriately
combining the separate means and variances. For example, suppose that separate
surveys conducted in France, Germany, Italy, and other countries yield estimates
of 55% £ 2%, 61% + 3%, 38% + 3%, ..., for some opinion question. The estimated
proportion for all adults in the European Union is 1\1]\{; 55% + %61% + 1\],\3 38% +

.-+, where Ny, N3, N3, ... are the total number of adults in France, Germany, Italy,
, and Nyt is the total number in the European Union. The standard error of

: : : N N. N:
this weighted average is \/( s 2%0)? + (23%)2 + (F23%)2 4 -
Given N, p, se—the vectors of population sizes, estimated proportions of Yes

responses, and standard errors—we can compute the weighted average and its 95%
confidence interval in R:

w.avg <- sum(N*p)/sum(N)
se.w.avg <- sqrt (sum ((N¥se/sum(N))~2))
int.95 <- w.avg + c(-2,2)*se.w.avg

Using simulation to compute confidence intervals for ratios, logarithms, odds
ratios, logits, and other functions of estimated parameters

For quantities more complicated than linear transformations, sums, and averages,
we can compute standard errors and approximate confidence intervals using simu-
lation. Section 7.2 discusses this in detail; here we illustrate with a quick example.

Consider a survey of 1100 persons, of whom 700 support the death penalty, 300
oppose, and 100 express no opinion. An estimate of the proportion in the population
who support the death penalty, among those with an opinion, is 0.7, with a 95%
confidence interval is [0.67,0.73] (see page 18).

R code
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Now suppose these 1000 respondents include 500 men and 500 women, and sup-
pose that the death penalty was supported by 75% of the men in the sample and
only 65% of the women. We would like to estimate the ratio of support for the
death penalty among men to that among women. The estimate is easily seen to be
0.75/0.65 = 1.15—men support it 15% more than women—but computing the stan-
dard error is more challenging. The most direct approach, which we recommend,
uses simulation.

In R we create 10,000 simulation draws of the inference for men and for women,
compute the ratio for each draw, and then determine a 95% interval based on the
central 95% of these simulations:

n.men <- 500
p.hat.men <- 0.75
se.men <- sqrt (p.hat.men*(l-p.hat.men)/n.men)

n.women <- 500
p.hat.women <- 0.65
se.women <- sqrt (p.hat.women*(1-p.hat.women)/n.women)

n.sims <- 10000

p.men <- rnorm (n.sims, p.hat.men, se.men)
p.women <- rnorm (n.sims, p.hat.women, se.women)
ratio <- p.men/p.women

int.95 <- quantile (ratio, c(.025,.975))

which yields a 95% interval of [1.06, 1.25].

2.4 Classical hypothesis testing

The possible outcomes of a hypothesis test are “reject” or “not reject.” It is never
possible to “accept” a statistical hypothesis, only to find that the data are not
sufficient to reject it.

Comparisons of parameters to fized values and each other: interpreting confidence
intervals as hypothesis tests

The hypothesis that a parameter equals zero (or any other fixed value) is directly
tested by fitting the model that includes the parameter in question and examining
its 95% interval. If the interval excludes zero (or the specified fixed value), then the
hypothesis is rejected at the 5% level.

Testing whether two parameters are equal is equivalent to testing whether their
difference equals zero. We do this by including both parameters in the model and
then examining the 95% interval for their difference. As with inference for a single
parameter, the confidence interval is commonly of more interest than the hypothesis
test. For example, if support for the death penalty has decreased by 6% + 2.1%,
then the magnitude of this estimated difference is probably as important as that
the change is statistically significantly different from zero.

The hypothesis of whether a parameter is positive is directly assessed via its
confidence interval. If both ends of the 95% confidence interval exceed zero, then
we are at least 95% sure (under the assumptions of the model) that the parameter
is positive. Testing whether one parameter is greater than the other is equivalent
to examining the confidence interval for their difference and testing for whether it
is entirely positive.
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Figure 2.4 Number of stops by the New York City police for each month over a 15-month
period, for three different precincts (chosen to show different patterns in the data).
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Figure 2.5 Histograms of monthly counts of stops for the three precincts displayed in 2.4,
with fitted Poisson distributions overlain. The data are much more variable than the fitted
distributions, indicating overdispersion that is mild in precinct A and huge in precincts B

and C.

Testing for the existence of a variance component

We illustrate with the example of overdispersion in the binomial or Poisson model.
For example, the police stop-and-frisk study (see Sections 1.2, 6.2, and 15.1) includes
data from a 15-month period. We can examine the data within each precinct to see
if the month-to-month variation is greater than would be expected by chance.

Figure 2.4 shows the number of police stops by month, in each of three differ-
ent precincts. If the data in any precinct really came from a Poisson distribution,
we would expect the variance among the counts, var}3;y;, to be approximately
equal to their mean, avgl®,;y;. The ratio of variance/mean is thus a measure of
dispersion, with var/mean = 1 indicating that the Poisson model is appropriate,
and var/mean > 1 indicating overdispersion (and var/mean < 1 indicating under-
dispersion, but in practice this is much less common). In this example, all three
precincts are overdispersed, with variance/mean ratios well over 1.

To give a sense of what this overdispersion implies, Figure 2.5 plots histograms
of the monthly counts in each precinct, with the best-fitting Poisson distributions
superimposed. The observed counts are much more variable than the model in each
case.

Underdispersion

Count data with variance less than the mean would indicate underdispersion, but
this is rare in actual data. In the police example, underdispersion could possibly
result from a “quota” policy in which officers are encouraged to make approximately
the same number of stops each month. Figure 2.6 illustrates with hypothetical data
in which the number of stops is constrained to be close to 50 each month. In this
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Figure 2.6 (a) Time series and (b) histogram of number of stops by month for a hy-
pothetical precinct with underdispersed counts. The theoretical Poisson distribution (with
parameter set to the mean of the data) is overlain on the histogram.

particular dataset, the mean is 49 and the variance is 34, and the underdispersion
is clear in the histogram.

Multiple hypothesis testing and why we do not worry about it

A concern is sometimes expressed that if you test a large number of hypotheses, then
you're bound to reject some. For example, with 100 different hypothesis tests, you
would expect about 5 to be statistically significant at the 5% level—even if all the
hypotheses were true. This concern is sometimes allayed by multiple comparisons
procedures, which adjust significance levels to account for the multiplicity of tests.

From our data analysis perspective, however, we are not concerned about multiple
comparisons. For one thing, we almost never expect any of our “point null hypothe-
ses” (that is, hypotheses that a parameter equals zero, or that two parameters are
equal) to be true, and so we are not particularly worried about the possibility of
rejecting them too often. If we examine 100 parameters or comparisons, we expect
about half the 50% intervals and about 5% of the 95% intervals to exclude the true
values. There is no need to correct for the multiplicity of tests if we accept that
they will be mistaken on occasion.

2.5 Problems with statistical significance

A common statistical error is to summarize comparisons by statistical significance
and to draw a sharp distinction between significant and nonsignificant results. The
approach of summarizing by statistical significance has two pitfalls, one that is
obvious and one that is less well known.

First, statistical significance does not equal practical significance. For example,
if the estimated predictive effect of height on earnings were $10 per inch with a
standard error of $2, this would be statistically but not practically significant. Con-
versely, an estimate of $10,000 per inch with a standard error of $10,000 would not
be statistically significant, but it has the possibility of being practically significant
(and also the possibility of being zero; that is what “not statistically significant”
means).

The second problem is that changes in statistical significance are not themselves
significant. By this, we are not merely making the commonplace observation that
any particular threshold is arbitrary—for example, only a small change is required
to move an estimate from a 5.1% significance level to 4.9%, thus moving it into
statistical significance. Rather, we are pointing out that even large changes in sig-
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nificance levels can correspond to small, nonsignificant changes in the underlying
variables.

For example, consider two independent studies with effect estimates and standard
errors of 25 + 10 and 10 & 10. The first study is statistically significant at the 1%
level, and the second is not at all significant at 1 standard error away from zero.
Thus it would be tempting to conclude that there is a large difference between the
two studies. In fact, however, the difference is not even close to being statistically
significant: the estimated difference is 15, with a standard error of v/102 + 102 = 14.

Section 21.8 gives a practical example of the pitfalls of using statistical signifi-
cance to classify studies, along with a discussion of how these comparisons can be
better summarized using a multilevel model.

2.6 55,000 residents desperately need your help!

We illustrate the application of basic statistical methods with a story. One day
a couple of years ago, we received a fax, entitled HELP'7 from a member of a
residential organization:

Last week we had an election for the Board of Directors. Many residents believe,
as I do, that the election was rigged and what was supposed to be votes being cast
by 5,553 of the 15,372 voting households is instead a fixed vote with fixed percentages
being assigned to each and every candidate making it impossible to participate in an
honest election.

The unofficial election results I have faxed along with this letter represent the tallies.
Tallies were given after 600 were counted. Then again at 1200, 2444, 3444, 4444, and
final count at 5553.

After close inspection we believe that there was nothing random about the count
and tallies each time and that specific unnatural percentages or rigged percentages
were being assigned to each and every candidate.

Are we crazy? In a community this diverse and large, can candidates running on
separate and opposite slates as well as independents receive similar vote percentage
increases tally after tally, plus or minus three or four percent? Does this appear random
to you? What do you think? HELP!

Figure 2.7 shows a subset of the data. These vote tallies were deemed suspicious
because the proportion of the votes received by each candidate barely changed
throughout the tallying. For example, Clotelia Smith’s vote share never went below
34.6% or above 36.6%. How can we HELP these people and test their hypothesis?

We start by plotting the data: for each candidate, the proportion of vote received
after 600, 1200, ...votes; see Figure 2.8. These graphs are difficult to interpret,
however, since the data points are not in any sense independent: the vote at any time
point includes all the votes that came before. We handle this problem by subtraction
to obtain the number of votes for each candidate in the intervals between the vote
tallies: the first 600 votes, the next 600, the next 1244, then next 1000, then next
1000, and the final 1109, with the total representing all 5553 votes.

Figure 2.9 displays the results. Even after taking differences, these graphs are
fairly stable—but how does this variation compare to what would be expected if
votes were actually coming in at random? We formulate this as a hypothesis test
and carry it out in five steps:

1. The null hypothesis is that the voters are coming to the polls at random. The fax
writer believed the data contradicted the null hypothesis; this is what we want
to check.

2. The test statistic is some summary of the data used to check the hypothesis.
Because the concern was that the votes were unexpectedly stable as the count
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Clotelia Smith 208 416 867 1259 1610 2020
Earl Coppin 55 106 215 313 401 505
Clarissa Montes 133 250 505 716 902 1129

Figure 2.7 Subset of results from the cooperative board election, with votes for each can-
didate (names altered for anonymity) tallied after 600, 1200, 2444, 3444, 4444, and 5553
votes. These data were viewed as suspicious because the proportion of votes for each can-
didate barely changed as the vote counting went on. (There were 27 candidates in total,
and each voter was allowed to choose 6 candidates.)
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Figure 2.8 Proportion of votes received by each candidate in the cooperative board election,
after each stage of counting: 600, 1200, 2444, ..., 5553 votes. There were 27 candidates
in total; for brevity we display just the leading 8 vote-getters here. The vote proportions
appear to be extremely stable over time; this might be misleading, however, since the vote
at any time point includes all the previous vote tallies. See Figure 2.9.

proceeded, we define a test statistic to summarize that variability. For each
candidate i, we label y;1,...,%;6 to be the numbers of votes received by the
candidates in each of the six recorded stages of the count. (For example, from
Figure 2.7, the values of y;1,¥:2, . . ., yis for Earl Coppin are 55,51,...,104.) We
then compute p;; = yir/ne for t = 1,...,6, the proportion of the votes received
by candidate i at each stage. The test statistic for candidate 7 is then the sample
standard deviation of these six values p;1, ..., pis,

6
T; = sdy_1pit,
a measure of the variation in his or her votes over time.

3. The theoretical distribution of the test statistic if the null hypothesis were true.
Under the null hypothesis, the six subsets of the election are simply six different
random samples of the voters, with a proportion 7; who would vote for candidate
1. From the binomial distribution, the proportion p;; then has a mean of m; and
a variance of 7; (1 —m;)/n.. On average, the variance of the six p;’s will equal the
average of the six theoretical variances, and so the variance of the p;;’s—whose
square root is our test statistic—should equal, on average, the theoretical value
avg®_ m;i(1 — m;)/n;. The probabilities 7; are not known, so we follow standard
practice and insert the empirical probabilities, p;, so that the expected value of
the test statistic, for each candidate 4, is

T =\ Jpu(1 — po)aved, (1/ne).

4. Comparing the test statistic to its theoretical distribution. Figure 2.10 plots the
observed and theoretical values of the test statistic for each of the 27 candidates,
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Figure 2.9 Proportion of votes received by each of the 8 leading candidates in the cooper-
ative board election, at each disjoint stage of voting: the first 600 votes, the next 600, the
next 1244, then next 1000, then next 1000, and the final 1109, with the total representing
all 5553 votes. The plots here and in Figure 2.8 have been put on a common scale which
allows easy comparison of candidates, although at the cost of making it difficult to see
details in the individual time series.
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Figure 2.10 The open circles show, for each of the 27 candidates in the cooperative board
election, the standard deviation of the proportions of the vote received by the candidate
in the first 600, next 600, next 1244, ..., and the final 1109 votes, plotted versus the
total number of votes received by the candidate. The solid dots show the expected standard
deviation of the separate vote proportions for each candidate, based on the binomial model
that would be appropriate if voters were coming to the polls at random. The actual standard
deviations appear consistent with the theoretical model.

as a function of the total number of votes received by the candidate. The theo-
retical values follow a simple curve (which makes sense, since the total number
of votes determines the empirical probabilities p;, which determine T;heory ), and
the actual values appear to fit the theory fairly well, with some above and some
below.

5. Summary comparisons using x> tests. We can also express the hypothesis tests
numerically. Under the null hypothesis, the probability of a candidate receiving
votes is independent of the time of each vote, and thus the 2 x 6 table of votes
including or excluding each candidate would be consistent with the model of
independence. (See Figure 2.10 for an example.) We can then compute for each
candidate a x? statistic, Zle Zf;l(observedﬁ — expectedﬁ)2/expec‘cedjt7 and
compare to a x? distribution with (6—1) x (2—1) = 5 degrees of freedom.
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Unlike the usual application of x? testing, in this case we are looking for un-
expectedly low values of the x? statistic (and thus p-values close to 1), which
would indicate vote proportions that have suspiciously little variation over time.
In fact, however, the x? tests for the 27 candidates show no suspicious patterns:
the p-values range from 0 to 1, with about 10% below 0.1, about 10% above 0.9,
and no extreme p-values at either end.

Another approach would be to perform a x2 test on the entire 27 x 6 table of
votes over time (that is, the table whose first row is the top row of the left table
on Figure 2.7, then continues with the data from Earl Coppin, Clarissa Montes,
and so forth). This test is somewhat suspect since it ignores that the votes
come in batches (each voter can choose up to 6 candidates) but is a convenient
summary test. The value of the x? statistic is 115, which, when compared to a
x? distribution with (27 — 1) x (6 — 1) = 130 degrees of freedom, has a p-value
of 0.83—indicating slightly less variation than expected, but not statistically
significant. That is, if the null hypothesis were true, we would not be particularly
surprised to see a x? statistic of 115.

We thus conclude that the intermediate vote tallies are consistent with random
voting. As we explained to the writer of the fax, opinion polls of 1000 people are
typically accurate to within 2%, and so, if voters really are arriving at random, it
makes sense that batches of 1000 votes are highly stable. This does not rule out the
possibility of fraud, but it shows that this aspect of the voting is consistent with
the null hypothesis.

2.7 Bibliographic note

De Veaux, Velleman, and Bock (2006) is a good introductory statistics textbook,
and Ramsey and Schafer (2001) and Snedecor and Cochran (1989) are also good
sources for classical statistical methods. A quick summary of probability distribu-
tions appears in appendix A of Gelman et al. (2003).

Agresti and Coull (1998) consider the effectiveness of various quick methods of in-
ference for binomial proportions. Gilovich, Vallone, and Tversky (1985) discuss the
applicability of the binomial model to basketball shooting, along with psychological
difficulties in interpreting binomial data.

See Browner and Newman (1987), Krantz (1999), and Gelman and Stern (2006)
for further discussion and references on the problems with statistical significance.

The data on heights and weights of Americans come from Brainard and Burmas-
ter (1992). The voting example in Section 2.6 comes from Gelman (2004c).

2.8 Exercises

The data for the assignments in this and other chapters are at
www.stat.columbia.edu/~gelman/arm/examples/. See Appendix C for further
details.

1. A test is graded from 0 to 50, with an average score of 35 and a standard deviation
of 10. For comparison to other tests, it would be convenient to rescale to a mean
of 100 and standard deviation of 15.

(a) How can the scores be linearly transformed to have this new mean and stan-
dard deviation?

(b) There is another linear transformation that also rescales the scores to have
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mean 100 and standard deviation 15. What is it, and why would you not want
to use it for this purpose?

2. The following are the proportions of girl births in Vienna for each month in 1908
and 1909 (out of an average of 3900 births per month):

ATTT 4875 4859 .4754 4874 .4864 4813 4787 .4895 .4797 .4876 .4859
4857 4907 .5010 .4903 .4860 .4911 .4871 .4725 .4822 .4870 .4823 .4973

The data are in the folder girls. von Mises (1957) used these proportions to
claim that the sex ratios were less variable than would be expected by chance.

(a) Compute the standard deviation of these proportions and compare to the
standard deviation that would be expected if the sexes of babies were inde-
pendently decided with a constant probability over the 24-month period.

(b) The actual and theoretical standard deviations from (a) differ, of course. Is
this difference statistically significant? (Hint: under the randomness model,
the actual variance should have a distribution with expected value equal to
the theoretical variance, and proportional to a x? with 23 degrees of freedom.)

3. Demonstration of the Central Limit Theorem: let © = 1 + - -+ + 220, the sum
of 20 independent Uniform(0,1) random variables. In R, create 1000 simulations
of x and plot their histogram. On the histogram, overlay a graph of the normal
density function. Comment on any differences between the histogram and the
curve.

4. Distribution of averages and differences: the heights of men in the United States
are approximately normally distributed with mean 69.1 inches and standard de-
viation 2.9 inches. The heights of women are approximately normally distributed
with mean 63.7 inches and standard deviation 2.7 inches. Let x be the average
height of 100 randomly sampled men, and y be the average height of 100 ran-
domly sampled women. In R, create 1000 simulations of z — y and plot their
histogram. Using the simulations, compute the mean and standard deviation of
the distribution of x — y and compare to their exact values.

5. Correlated random variables: suppose that the heights of husbands and wives
have a correlation of 0.3. Let z and y be the heights of a married couple chosen
at random. What are the mean and standard deviation of the average height,
(x+y)/2?






Part 1A: Single-level regression

We start with an overview of classical linear regression and generalized linear mod-
els, focusing on practical issues of fitting, understanding, and graphical display. We
also use this as an opportunity to introduce the statistical package R.






CHAPTER 3

Linear regression: the basics

Linear regression is a method that summarizes how the average values of a numerical
outcome variable vary over subpopulations defined by linear functions of predictors.
Introductory statistics and regression texts often focus on how regression can be
used to represent relationships between variables, rather than as a comparison of
average outcomes. By focusing on regression as a comparison of averages, we are
being explicit about its limitations for defining these relationships causally, an issue
to which we return in Chapter 9. Regression can be used to predict an outcome
given a linear function of these predictors, and regression coefficients can be thought
of as comparisons across predicted values or as comparisons among averages in the
data.

3.1 One predictor

We begin by understanding the coefficients without worrying about issues of esti-
mation and uncertainty. We shall fit a series of regressions predicting cognitive test
scores of three- and four-year-old children given characteristics of their mothers, us-
ing data from a survey of adult American women and their children (a subsample
from the National Longitudinal Survey of Youth).

For a binary predictor, the regression coefficient is the difference between the
averages of the two groups

We start by modeling the children’s test scores given an indicator for whether the
mother graduated from high school (coded as 1) or not (coded as 0). The fitted
model is

kid.score = 78 + 12 - mom.hs + error, (3.1)

but for now we focus on the deterministic part,
kid.score = 78 + 12 - mom.hs, (3.2)

where kid.score denotes either predicted or expected test score given the mom.hs
predictor.

This model summarizes the difference in average test scores between the chil-
dren of mothers who completed high school and those with mothers who did not.
Figure 3.1 displays how the regression line runs through the mean of each subpop-
ulation.

The intercept, 78, is the average (or predicted) score for children whose mothers
did not complete high school. To see this algebraically, consider that to obtain
predicted scores for these children we would just plug 0 into this equation. To
obtain average test scores for children (or the predicted score for a single child)
whose mothers were high school graduates, we would just plug 1 into this equation
to obtain 78 +12-1 = 91.

The difference between these two subpopulation means is equal to the coefficient

31
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Figure 3.1 Child’s test score plotted versus an indicator for whether mother completed
high school. Superimposed is the regression line, which runs through the average of each
subpopulation defined by maternal education level. The indicator variable for high school
completion has been jittered; that is, a random number has been added to each value so
that the points do not lie on top of each other.

on mom.hs. This coefficient tells us that children of mothers who have completed
high school score 12 points higher on average than children of mothers who have
not completed high school.

Regression with a continuous predictor

If we regress instead on a continuous predictor, mother’s score on an IQ test, the
fitted model is
kid.score = 26 + 0.6 - mom.iq + error, (3.3)

and is shown in Figure 3.2. We can think of the points on the line either as predicted
test scores for children at each of several maternal IQ levels, or average test scores
for subpopulations defined by these scores.

If we compare average child test scores for subpopulations that differ in maternal
1Q by 1 point, we expect to see that the group with higher maternal I1Q achieves 0.6
points more on average. Perhaps a more interesting comparison would be between
groups of children whose mothers’ IQ differed by 10 points—these children would
be expected to have scores that differed by 6 points on average.

To understand the constant term in the regression we must consider a case with
zero values of all the other predictors. In this example, the intercept of 26 reflects
the predicted test scores for children whose mothers have IQ scores of zero. This is
not the most helpful quantity—we don’t observe any women with zero 1Q. We will
discuss a simple transformation in the next section that gives the intercept a more
useful interpretation.

3.2 Multiple predictors

Regression coefficients are more complicated to interpret with multiple predictors
because the interpretation for any given coeflicient is, in part, contingent on the
other variables in the model. Typical advice is to interpret each coefficient “with
all the other predictors held constant.” We illustrate with an example, followed by
an elaboration in which the simple interpretation of regression coefficients does not
work.

For instance, consider a linear regression predicting child test scores from mater-
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Figure 3.2 Child’s test score plotted versus maternal IQ) with regression line superimposed.
Each point on the line can be conceived of either as a predicted child test score for children
with mothers who have the corresponding IQ), or as the average score for a subpopulation
of children with mothers with that I1(Q).
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Figure 3.3 Child’s test score plotted versus maternal 1Q. Light dots represent children
whose mothers graduated from high school and dark dots represent children whose mothers
did not graduate from high school. Superimposed are the regression lines from the regression
of child’s test score on maternal IQ and maternal high school indicator (the darker line for
children whose mothers did not complete high school, the lighter line for children whose
mothers did complete high school).

nal education and maternal 1Q. The fitted model is
kid.score = 26 + 6 - mom.hs + 0.6 - mom.iq + error, (3.4)

and is displayed in Figure 3.3. This model forces the slope of the regression of
child’s test score on mother’s IQ score to be the same for each maternal education
subgroup. The next section considers models in which the slopes of the two lines
differ. First, however, we interpret the coefficients in model (3.4):

1. The intercept. If a child had a mother with an IQ of 0 and who did not complete
high school (thus, mom.hs = 0), then we would predict this child’s test score to
be 26. This is not a useful prediction, since no mothers have IQs of 0.

2. The coefficient of maternal high school completion. Comparing children whose
mothers have the same IQ, but who differed in whether they completed high
school, the model predicts an expected difference of 6 in their test scores.

3. The coefficient of maternal IQ). Comparing children with the same value of
mom.hs, but whose mothers differ by 1 point in IQ, we would expect to see
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a difference of 0.6 points in the child’s test score (equivalently, a difference of 10
in mothers’ IQs corresponds to a difference of 6 points for their children).

It’s not always possible to change one predictor while holding all others constant

We interpret the regression slopes as comparisons of individuals that differ in one
predictor while being at the same levels of the other predictors. In some settings,
one can also imagine manipulating the predictors to change some or hold others
constant—but such an interpretation is not necessary. This becomes clearer when
we consider situations in which it is logically impossible to change the value of
one predictor while keeping the value of another constant. For example, if a model
includes both IQ and IQ? as predictors, it does not make sense to consider changes in
1Q with IQ? held constant. Or, as we discuss in the next section, if a model includes
mom.hs, mom.IQ, and their interaction, mom.hs *mom.IQ, it is not meaningful to
consider any of these three with the other two held constant.

Counterfactual and predictive interpretations

In the more general context of multiple linear regression, it pays to be more ex-
plicit about how we interpret coefficients in general. We distinguish between two
interpretations of regression coefficients.

e The predictive interpretation considers how the outcome variable differs, on aver-
age, when comparing two groups of units that differ by 1 in the relevant predictor
while being identical in all the other predictors. Under the linear model, the co-
efficient is the expected difference in y between these two units. This is the sort
of interpretation we have described thus far.

The counterfactual interpretation is expressed in terms of changes within indi-
viduals, rather than comparisons between individuals. Here, the coefficient is the
expected change in y caused by adding 1 to the relevant predictor, while leaving
all the other predictors in the model unchanged. For example, “changing mater-
nal IQ from 100 to 101 would lead to an expected increase of 0.6 in child’s test
score.” This sort of interpretation arises in causal inference.

Most introductory statistics and regression texts warn against the latter interpre-
tation but then allow for similar interpretations such as “a change of 10 in maternal
1Q is associated with a change of 6 points in child’s score.” Thus, the counterfac-
tual interpretation is probably more familiar to you—and is sometimes easier to
understand. However, as we discuss in detail in Chapter 9, the counterfactual in-
terpretation can be inappropriate without making some strong assumptions.

3.3 Interactions

In model (3.4), the slope of the regression of child’s test score on mother’s IQ was
forced to be equal across subgroups defined by mother’s high school completion,
but inspection of the data in Figure 3.3 suggests that the slopes differ substantially.
A remedy for this is to include an interaction between mom.hs and mom.iq—that is,
a new predictor which is defined as the product of these two variables. This allows
the slope to vary across subgroups. The fitted model is

kid.score = —11 + 51 - mom.hs + 1.1 - mom.iq — 0.5 - mom.hs - mom.iq + error

and is displayed in Figure 3.4a, where we see the separate regression lines for each
subgroup defined by maternal education.
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Figure 3.4 (a) Regression lines of child’s test score on mother’s 1Q with different symbols
for children of mothers who completed high school (light circles) and those whose mothers
did not complete high school (dark dots). The interaction allows for a different slope in
each group, with light and dark lines corresponding to the light and dark points. (b) Same
plot but with horizontal axis extended to zero to reveal the intercepts of the lines.

Figure 3.4b shows the regression line and uncertainty on a scale with the x-axis
extended to zero to display the intercepts—the points on the y-axis where the lines
cross zero. This highlights the fact that not only is the value meaningless in terms
of its interpretation, it is also so far out of the range of our data as to be highly
unreliable as a subpopulation estimate.

Care must be taken in interpreting the coefficients in this model. We derive mean-
ing from the coefficients (or, sometimes, functions of the coefficients) by examining
average or predicted test scores within and across specific subgroups. Some coeffi-
cients are interpretable only for certain subgroups.

1. The intercept represents the predicted test scores for children whose mothers did
not complete high school and had IQs of 0—mnot a meaningful scenario. (As we
discuss in Sections 4.1-4.2, intercepts can be more interpretable if input variables
are centered before including them as regression predictors.)

2. The coefficient of mom.hs can be conceived as the difference between the pre-
dicted test scores for children whose mothers did not complete high school and
had IQs of 0, and children whose mothers did complete high school and had 1Qs
of 0. You can see this by just plugging in the appropriate numbers and comparing
the equations. Since it is implausible to imagine mothers with IQs of zero, this
coefficient is not easily interpretable.

3. The coefficient of mom.iq can be thought of as the comparison of mean test
scores across children whose mothers did not complete high school, but whose
mothers differ by 1 point in IQ. This is the slope of the dark line in Figure 3.4.

4. The coefficient on the interaction term represents the difference in the slope for
mom. iq, comparing children with mothers who did and did not complete high
school: that is, the difference between the slopes of the light and dark lines in
Figure 3.4.

An equivalent way to understand the model is to look at the separate regression
lines for children of mothers who completed high school and those whose mothers
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Example of an interaction
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Figure 3.5 Illustration of interactions between smoking and home radon level on the life-
time probability of lung cancer in men. The effects of radon are much more severe for
smokers. The lines are estimated based on case-control studies; see Lin et al. (1999) for
references.

did not:
no hs: kid.score = —11+51-0+ 1.1 - mom.iq — 0.5-0 - mom.iq
= —11+1.1 -mom.q
hs: kid.score = —11+451-1+1.1-mom.iq—0.5-1- mom.iq

= 40+ 0.6 - mom.iq.

The estimated slopes of 1.1 for children whose mothers did not complete high school
and 0.6 for children of mothers who did are directly interpretable. The intercepts
still suffer from the problem of only being interpretable at mothers’ IQs of 0.

When should we look for interactions?

Interactions can be important. In practice, inputs that have large main effects
also tend to have large interactions with other inputs (however, small main effects
do not preclude the possibility of large interactions). For example, smoking has a
huge effect on cancer. In epidemiologial studies of other carcinogens, it is crucial to
adjust for smoking both as a main effect and as an interaction. Figure 3.5 illustrates
with the example of home radon exposure: high levels of radon are associated with
greater likelihood of cancer—but this difference is much greater for smokers than
for nonsmokers.

Including interactions is a way to allow a model to be fit differently to different
subsets of data. These two approaches are related, as we discuss later in the context
of multilevel models.

Interpreting regression coefficients in the presence of interactions

Models with interactions can often be more easily interpreted if we first pre-process
the data by centering each input variable about its mean or some other convenient
reference point. We discuss this in Section 4.2 in the context of linear transforma-
tions.
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3.4 Statistical inference

When illustrating specific examples, it helps to use descriptive variable names. In
order to discuss more general theory and data manipulations, however, we shall
adopt generic mathematical notation. This section introduces this notation and
discusses the stochastic aspect of the model as well.

Units, outcome, predictors, and inputs

We refer to the individual data points as units—thus, the answer to the question,
“What is the unit of analysis?” will be something like “persons” or “schools” or
“congressional elections,” not something like “pounds” or “miles.” Multilevel mod-
els feature more than one set of units (for example, both persons and schools), as
we discuss later on.

We refer to the X-variables in the regression as predictors or “predictor vari-
ables,” and y as the outcome or “outcome variable.” We do not use the terms
“dependent” and “independent” variables, because we reserve those terms for their
use in describing properties of probability distributions.

Finally, we use the term inputs for the information on the units that goes into
the X-variables. Inputs are not the same as predictors. For example, consider the
model that includes the interaction of maternal education and maternal IQ:

kid.score = 58 + 16 - mom.hs + 0.5 - mom.iq — 0.2 - mom.hs - mom.iq + error.

This regression has four predictors—maternal high school, maternal I1Q, maternal
high school x 1Q, and the constant term—Dbut only two inputs, maternal education
and 1Q.

Regression in vector-matrixz notation

We follow the usual notation and label the outcome for the i** individual as y; and
the deterministic prediction as X;5 = 1 X1 + - - - + Br Xik, indexing the persons in
the dataasi = 1,...,n = 1378. In our most recent example, y; is the i*" child’s test
score, and there are k = 4 predictors in the vector X; (the i* row of the matrix X):
X1, a constant term that is defined to equal 1 for all persons; X2, the mother’s
high school completion status (coded as 0 or 1); X;3, the mother’s test score; and
X4, the interaction between mother’s test score and high school completion status.
The vector 3 of coefficients has length k = 4 as well. The errors from the model
are labeled as ¢; and assumed to follow a normal distribution with mean 0 and
standard deviation o, which we write as N(0,02). The parameter o represents the
variability with which the outcomes deviate from their predictions based on the
model. We use the notation ¢ for unobserved data to be predicted from the model,
given predictors X ; see Figure 3.6.

Two ways of writing the model
The classical linear regression model can then be written mathematically as
yi = XiB+e
= Xa+- o+ X +e, fori=1,...,n,

where the errors ¢; have independent normal distributions with mean 0 and standard
deviation o.
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Figure 3.6 Notation for regression modeling. The model is fit to the observed outcomes
y given predictors X. As described in the text, the model can then be applied to predict
unobserved outcomes § (indicated by small question marks), given predictors on new data
X.

An equivalent representation is
yi ~ N(X;8,0%), fori=1,...,n,
where X is an n by k matrix with i** row X;, or, using multivariate notation,
y ~N(XB,0°T),
where y is a vector of length n, X is a n X k matrix of predictors, § is a column

vector of length k, and I is the n x n identity matrix. Fitting the model (in any of
its forms) using least squares yields estimates § and 6.

Fitting and summarizing regressions in R

We can fit regressions using the 1Im() function in R. We illustrate with the model
including mother’s high school completion and IQ as predictors, for simplicity not
adding the interaction for now. We shall label this model as fit.3 as it is the third
model fit in this chapter:

fit.3 <- 1m (kid.score ~ mom.hs + mom.iq)
display (fit.3)

(The spaces in the R code are not necessary, but we include them to make the code
more readable.) The result is

Im(formula = kid.score ~ mom.hs + mom.iq)
coef.est coef.se

(Intercept) 25.7 5.9

mom.hs 5.9 2.2
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mom.iq 0.6 0.1
n =434, k = 3
residual sd = 18.1, R-Squared = 0.21

The display () function was written by us (see Section C.2 for details) to give a
clean printout focusing on the most pertinent pieces of information: the coefficients
and their standard errors, the sample size, number of predictors, residual standard
deviation, and R2.

In contrast, the default R option,

print (fit.3)

displays too little information, giving only the coefficient estimates with no standard
errors and no information on the residual standard deviations:

Call:
Im(formula = kid.score

mom.hs + mom.iq)

Coefficients:
(Intercept) mom.hs mom.iq
25.73154 5.95012 0.56391

Another option in R is the summary () function:
summary (fit.3)

but this produces a mass of barely digestible information displayed to many decimal
places:

Call:
Im(formula = formula("kid.score

mom.hs + mom.iq"))

Residuals:
Min 1Q Median 3Q Max
-52.873 -12.663 2.404 11.356 49.545

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 25.73154 5.87521 4.380 1.49e-05 *x*x

mom.hs 5.95012 2.21181  2.690 0.00742 *x
mom.iq 0.56391 0.06057 9.309 < 2e-16 *xx*
Signif. codes: 0 ‘*x¥*x’ 0.001 ‘%%’ 0.01 ‘%’ 0.05 ‘.’ 0.1 ¢ ’ 1

Residual standard error: 18.14 on 431 degrees of freedom
Multiple R-Squared: 0.2141, Adjusted R-squared: 0.2105
F-statistic: 58.72 on 2 and 431 DF, p-value: < 2.2e-16

We prefer our display () function, which consisely presents the most relevant in-
formation from the model fit.

Least squares estimate of the vector of regression coefficients, (3

For the model y = X + ¢, the least squares estimate is the [;' that minimizes the
sum of squared errors, > i, (y; — X,;BA)Z, for the given data X,y. Intuitively, the
least squares criterion seems useful because, if we are trying to predict an outcome
using other variables, we want to do so in such a way as to minimize the error of
our prediction.

R code

R code

R code

R output
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Figure 3.7 Distribution representing uncertainty in an estimated regression coefficient. The
range of this distribution corresponds to the possible values of B that are consistent with
the data. When using this as an uncertainty distribution, we assign an approzimate 68%
chance that 3 will lie within 1 standard error of the point estimate, B, and an approximate
95% chance that 8 will lie within 2 standard errors. Assuming the regression model is
correct, it should happen only about 5% of the time that the estimate, ﬁ, falls more than 2
standard errors away from the true (3.

The least squares estimate is also the maximum likelihood estimate if the errors
¢; are independent with equal variance and normally distributed (see Section 18.1).
In any case, the least squares estimate can be expressed in matrix notation as
8= (XtX)~1X1ty. In practice, the computation is performed using various efficient
matrix decompositions without ever fully computing X*X or inverting it. For our
purposes, it is merely useful to realize that ﬁ is a linear function of the outcomes y.

Standard errors: uncertainty in the coefficient estimates

The estimates B come with standard errors, as displayed in the regression output.
The standard errors represent estimation uncertainty. We can roughly say that
coefficient estimates within 2 standard errors of B are consistent with the data.
Figure 3.7 shows the normal distribution that approximately represents the range
of possible values of 3. For example, in the model on page 38, the coefficient of
mom.hs has an estimate B of 5.9 and a standard error of 2.2; thus the data are
roughly consistent with values of § in the range [5.9 £ 2 -2.2] = [1.5,10.3]. More
precisely, one can account for the uncertainty in the standard errors themselves by
using the t distribution with degrees of freedom set to the number of data points
minus the number of estimated coefficients, but the normal approximation works
fine when the degrees of freedom are more than 30 or so.

The uncertainty in the coefficient estimates will also be correlated (except in
the special case of studies with balanced designs). All this information is encoded
in the estimated covariance matrix V362, where V3 = (X'X)~!. The diagonal
elements of Vgé'z are the estimation variances of the individual components of 3, and
the off-diagonal elements represent covariances of estimation. Thus, for example,

\/Vp116 is the standard error of ,C;’l, \/Vpo2 6 is the standard error of ,C:Ig, and

Vs 12/v/Va11Va22 is the correlation of the estimates (1, f2.

We do not usually look at this covariance matrix; rather, we summarize inferences
using the coefficient estimates and standard errors, and we use the covariance matrix
for predictive simulations, as described in Section 7.2.

Residuals, r;

The residuals, r; = y; — Xi,[?, are the differences between the data and the fitted
values. As a byproduct of the least squares estimation of 3, the residuals r; will be
uncorrelated with all the predictors in the model. If the model includes a constant
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Figure 3.8 Two hypothetical datasets with the same regression line, y = a+bx, but different
values of the residual standard deviation, o. The left plot shows actual data from a survey
of adults; the right plot shows data with random noise added to y.

term, then the residuals must be uncorrelated with a constant, which means they
must have mean 0. This is a byproduct of how the model is estimated; it is not a
regression assumption. We shall discuss later in the chapter how residuals can be
used to diagnose problems with the model.

Residual standard deviation 6 and explained variance R?

The residual standard deviation, & = /> ., r?/(n — k), summarizes the scale
of the residuals. For example, in the test scores example, 6 = 18, which tells us
that the linear model can predict children’s test scores to about an accuracy of 18
points. Said another way, we can think of this standard deviation as a measure of
the average distance each observation falls from its prediction from the model.

The fit of the model can be summarized by & (the smaller the residual variance,
the better the fit) and by R2, the fraction of variance “explained” by the model.
The “unexplained” variance is 62, and if we label s, as the standard deviation
of the data, then R? = 1 — &%/ 312/. In the test scores regression, R? is a perhaps
disappointing 22%. (However, in a deeper sense, it is presumably a good thing
that this regression has a low R?>—that is, that a child’s achievement cannot be
accurately predicted given only these maternal characteristics.)

The quantity n—k, the number of data points minus the number of estimated
coefficients, is called the degrees of freedom for estimating the residual errors. In
classical regression, k must be less than n—otherwise, the data could be fit perfectly,
and it would not be possible to estimate the regression errors at all.

Difficulties in interpreting residual standard deviation and explained variance

As we make clear throughout the book, we are generally more interested in the
“deterministic” part of the model, y = X 3, than in the variation, e. However, when
we do look at the residual standard deviation, &, we are typically interested in it for
its own sake—as a measure of the unexplained variation in the data—or because of
its relevance to the precision of inferences about the regression coefficients 3. (As
discussed already, standard errors for 3 are proportional to o.) Figure 3.8 illustrates
two regressions with the same deterministic model, y = a 4 bz, but different values
of 0.

Interpreting the proportion of explained variance, R?, can be tricky because its
numerator and denominator can be changed in different ways. Figure 3.9 illustrates
with an example where the regression model is identical, but R? decreases because
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Figure 3.9 Two hypothetical datasets with the same regression line, y = a+bx and residual
standard deviation, o, but different values of the explained variance, R*. The left plot shows
actual data; the right plot shows data restricted to heights between 65 and 70 inches.

the model is estimated on a subset of the data. (Going from the left to right plots
in Figure 3.9, the residual standard deviation ¢ is unchanged but the standard
deviation of the raw data, s,, decreases when we restrict to this subset; thus, R? =
1-62/ *513 declines.) Even though R? is much lower in the right plot, the model fits
the data just as well as in the plot on the left.

Statistical significance

Roughly speaking, if a coefficient estimate is more than 2 standard errors away
from zero, then it is called statistically significant. When an estimate is statistically
significant, we are fairly sure that the sign (+ or —) of the estimate is stable, and
not just an artifact of small sample size.

People sometimes think that if a coefficient estimate is not significant, then it
should be excluded from the model. We disagree. It is fine to have nonsignificant
coefficients in a model, as long as they make sense. We discuss this further in Section
4.6.

Uncertainty in the residual standard deviation

Under the model, the estimated residual variance, 52, has a sampling distribution
centered at the true value, o2, and proportional to a 2 distribution with n—k
degrees of freedom. We make use of this uncertainty in our predictive simulations,
as described in Section 7.2.

3.5 Graphical displays of data and fitted model
Displaying a regression line as a function of one input variable

We displayed some aspects of our test scores model using plots of the data in Figures
3.1-3.3.
We can make a plot such as Figure 3.2 as follows:

fit.2 <- Im (kid.score ~ mom.iq)
plot (mom.iq, kid.score, xlab="Mother IQ score", ylab="Child test score")
curve (coef(fit.2)[1] + coef(fit.2) [2]*x, add=TRUE)

The function plot() creates the scatterplot of observations, and curve superim-
poses the regression line using the saved coefficients from the 1m() call (as extracted
using the coef () function). The expression within curve () can also be written us-
ing matrix notation in R:
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curve (cbind(1,x) %*J, coef(fit.2), add=TRUE) R code

Displaying two fitted regression lines

Model with no interaction. For the model with two inputs, we can create a graph
with two sets of points and two regression lines, as in Figure 3.3:

fit.3 <- 1lm (kid.score ~ mom.hs + mom.iq) R code

colors <- ifelse (mom.hs==1, "black", "gray")

plot (mom.iq, kid.score, xlab="Mother IQ score", ylab="Child test score",
col=colors, pch=20)

curve (cbind (1, 1, x) %*% coef(fit.3), add=TRUE, col="black")

curve (cbind (1, 0, x) %*% coef(fit.3), add=TRUE, col="gray")

Setting pch=20 tells the plot () function to display the data using small dots, and
the col option sets the colors of the points, which we have assigned to black or
gray according to the value of mom.hs.! Finally, the calls to curve () superimpose
the regression lines for the two groups defined by maternal high school completion.

Model with interaction. We can set up the same sort of plot for the model with
interactions, with the only difference being that the two lines have different slopes:

fit.4 <- 1m (kid.score ~ mom.hs + mom.iq + mom.hs:mom.iq) R code

colors <- ifelse (mom.hs==1, "black", "gray")

plot (mom.iq, kid.score, xlab="Mother IQ score", ylab="Child test score",
col=colors, pch=20)

curve (cbind (1, 1, x, 1*x) %x), coef(fit.4), add=TRUE, col="black")

curve (cbind (1, 0, x, 0*x) %% coef(fit.4), add=TRUE, col="gray")

The result is shown in Figure 3.4.

Displaying uncertainty in the fitted regression

As discussed in Section 7.2, we can use the sim() function in R to create simulations
that represent our uncertainty in the estimated regression coefficients. Here we
briefly describe how to use these simulations to display this inferential uncertainty.
For simplicity we return to a model with just one predictor:

fit.2 <- 1m (kid.score ~ mom.iq) R code
yielding
coef.est coef.se R output
(Intercept) 25.8 5.9
mom.iq 0.6 0.1

n =434, k = 2
residual sd = 18.3, R-Squared = 0.2

The following code creates Figure 3.10, which shows the fitted regression line
along with several simulations representing uncertainty about the line:

1 An alternative sequence of commands is
plot (mom.iq, kid.score, xlab="Mother IQ score", ylab="Child test score", type="n")
points (mom.iq[mom.hs==1], kid.score[mom.hs==1], pch=20, col="black")
points (mom.iq[mom.hs==0], kid.score[mom.hs==0], pch=20, col="gray")
Here, plot(), called with the type="n" option, sets up the axes but without plotting the
points. Then each call to points() superimposes the observations for each group (defined by
maternal high school completion) separately—each using a different symbol.
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Figure 3.10 Data and regression of child’s test score on maternal 1Q, with the solid line
showing the fitted regression model and light lines indicating uncertainty in the fitted re-
gression.

fit.2.sim <- sim (fit.2)

plot (mom.iq, kid.score, xlab="Mother IQ score", ylab="Child test score")

for (i in 1:10){

curve (fit.2.sim$betali,1] + fit.2.sim$betali,2]*x, add=TRUE,col="gray")

}

curve (coef(fit.2)[1] + coef(fit.2)[2]*x, add=TRUE, col="black")
The for (i in i:10) loop allows us to display 10 different simulations.? Figure
3.10 also illustrates the uncertainty we have about predictions from our model.
This uncertainty increases with greater departures from the mean of the predictor
variable.

Displaying using one plot for each input variable

Now consider the regression model with the indicator for maternal high school
completion included:

fit.3 <- 1lm (kid.score ~ mom.hs + mom.iq)

We display this model in Figure 3.11 as two plots, one for each of the two input
variables with the other held at its average value:

beta.hat <- coef (fit.3)
beta.sim <- sim (fit.3)$beta
par (mfrow=c(1,2))

plot (mom.iq, kid.score, xlab="Mother IQ score", ylab="Child test score")
for (i in 1:10){
curve (cbind (1, mean(mom.hs), x) %* beta.sim[i,], lwd=.5,
col="gray", add=TRUE)
¥
curve (cbind (1, mean(mom.hs), x) %*% beta.hat, col="black", add=TRUE)

plot (mom.hs, kid.score, xlab="Mother completed high school",

N

Another way to code this loop in R is to use the apply() function, for example,

Oneline <- function (beta) {curve (beta[1l+beta[2]*x, add=TRUE, col="gray")}

apply (fit.2.sim$beta, 1, Oneline)

Using apply () in this way is cleaner for experienced R users; the looped form as shown in the
text is possibly easier for R novices to understand.
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Figure 3.11 Data and regression of child’s test score on maternal IQ and high school com-
pletion, shown as a function of each of the two input variables (with light lines indicating
uncertainty in the regressions). Values for high school completion have been jittered to
make the points more distinct.

ylab="Child test score")
for (i in 1:10){
curve (cbind (1, x, mean(mom.iq)) %*% beta.sim[i,], lwd=.5,
col="gray", add=TRUE)
}
curve (cbind (1, x, mean(mom.iq)) %*% beta.hat, col="black", add=TRUE)

3.6 Assumptions and diagnostics

We now turn to the assumptions of the regression model, along with diagnostics
that can be used to assess whether some of these assumptions are reasonable. Some
of the most important assumptions, however, rely on the researcher’s knowledge of
the subject area and may not be directly testable from the available data alone.

Assumptions of the regression model

We list the assumptions of the regression model in decreasing order of importance.

1. Validity. Most importantly, the data you are analyzing should map to the re-
search question you are trying to answer. This sounds obvious but is often over-
looked or ignored because it can be inconvenient. Optimally, this means that
the outcome measure should accurately reflect the phenomenon of interest, the
model should include all relevant predictors, and the model should generalize to
the cases to which it will be applied.

For example, with regard to the outcome variable, a model of earnings will not
necessarily tell you about patterns of total assets. A model of test scores will not
necessarily tell you about child intelligence or cognitive development.

Choosing inputs to a regression is often the most challenging step in the analysis.
We are generally encouraged to include all “relevant” predictors, but in practice it
can be difficult to determine which are necessary and how to interpret coefficients
with large standard errors. Chapter 9 discusses the choice of inputs for regressions
used in causal inference.

A sample that is representative of all mothers and children may not be the most
appropriate for making inferences about mothers and children who participate
in the Temporary Assistance for Needy Families program. However, a carefully
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selected subsample may reflect the distribution of this population well. Similarly,
results regarding diet and exercise obtained from a study performed on patients
at risk for heart disease may not be generally applicable to generally healthy
individuals. In this case assumptions would have to be made about how results
for the at-risk population might relate to those for the healthy population.

Data used in empirical research rarely meet all (if any) of these criteria precisely.
However, keeping these goals in mind can help you be precise about the types of
questions you can and cannot answer reliably.

. Additivity and linearity. The most important mathematical assumption of the

regression model is that its deterministic component is a linear function of the
separate predictors: y = fi1x1 + faza + - - -.

If additivity is violated, it might make sense to transform the data (for example, if
y = abc, then log y = log a + log b + log ¢) or to add interactions. If linearity is
violated, perhaps a predictor should be put in as 1/z or log(z) instead of simply
linearly. Or a more complicated relationship could be expressed by including
both = and 22 as predictors.

For example, it is common to include both age and age? as regression predictors.
In medical and public health examples, this allows a health measure to decline
with higher ages, with the rate of decline becoming steeper as age increases. In
political examples, including both age and age? allows the possibility of increas-
ing slopes with age and also U-shaped patterns if, for example, the young and
old favor taxes more than the middle-aged.

In such analyses we usually prefer to include age as a categorical predictor, as
discussed in Section 4.5. Another option is to use a nonlinear function such as
a spline or other generalized additive model. In any case, the goal is to add
predictors so that the linear and additive model is a reasonable approximation.

. Independence of errors. The simple regression model assumes that the errors

from the prediction line are independent. We will return to this issue in detail
when discussing multilevel models.

. Equal variance of errors. If the variance of the regression errors are unequal,

estimation is more efficiently performed using weighted least squares, where each
point is weighted inversely proportional to its variance (see Section 18.4). In most
cases, however, this issue is minor. Unequal variance does not affect the most
important aspect of a regression model, which is the form of the predictor X 3.

. Normality of errors. The regression assumption that is generally least important

is that the errors are normally distributed. In fact, for the purpose of estimat-
ing the regression line (as compared to predicting individual data points), the
assumption of normality is barely important at all. Thus, in contrast to many
regression textbooks, we do not recommend diagnostics of the normality of re-
gression residuals.

If the distribution of residuals is of interest, perhaps because of predictive goals,
this should be distinguished from the distribution of the data, y. For example,
consider a regression on a single discrete predictor, x, which takes on the values
0, 1, and 2, with one-third of the population in each category. Suppose the
true regression line is y = 0.2 + 0.5z with normally distributed errors with
standard deviation 0.1. Then a graph of the data y will show three fairly sharp
modes centered at 0.2, 0.7, and 1.2. Other examples of such mixture distributions
arise in economics, when including both employed and unemployed people, or
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Figure 3.12 Residual plot for child test score data when regressed on maternal 1Q, with
dotted lines showing +1 standard-deviation bounds. The residuals show no striking pat-
terns.

the study of elections, when comparing districts with incumbent legislators of
different parties.

Further assumptions are necessary if a regression coefficient is to be given a causal
interpretation, as we discuss in Chapters 9 and 10.

Plotting residuals to reveal aspects of the data not captured by the model

A good way to diagnose violations of some of the assumptions just considered
(importantly, linearity) is to plot the residuals r; versus fitted values XZ-B or simply
individual predictors z;; Figure 3.12 illustrates for the test scores example where
child’s test score is regressed simply on mother’s IQQ. The plot looks fine; there do
not appear to be any strong patterns. In other settings, residual plots can reveal
systematic problems with model fit, as is illustrated, for example, in Chapter 6.

3.7 Prediction and validation

Sometimes the goal of our model is to make predictions using new data. In the case
of predictions of future time points, these data may eventually become available,
allowing the researcher to see how well the model works for this purpose. Sometimes
out-of-sample predictions are made for the explicit purpose of model checking, as
we illustrate next.

Prediction

From model (3.4) on page 33, we would predict that a child of a mother who
graduated from high school and with IQ of 100 would achieve a test score of 26 +
6-140.6-100 = 92. If this equation represented the true model, rather than an
estimated model, then we could use & = 18 as an estimate of the standard error for
our prediction. Actually, the estimated error standard deviation is slightly higher
than &, because of uncertainty in the estimate of the regression parameters—a
complication that gives rise to those special prediction standard errors seen in most
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Figure 3.13 Plots assessing how well the model fit to older children works in making pre-
dictions for younger children. The first panel compares predictions for younger children
from a model against their actual values. The second panel compares residuals from these
predictions against the predicted values.

regression texts.> In R we can create a data frame for the new data and then use
the predict () function. For example, the following code gives a point prediction
and 95% predictive interval:

x.new <- data.frame (mom.hs=1, mom.ig=100)
predict (fit.3, x.new, interval="prediction", level=0.95)

More generally, we can propagate predictive uncertainty using simulation, as ex-
plained in Section 7.2.

We use the notation y; for the outcome measured on a new data point and X;
for the vector of predictors (in this example, X; = (1,1,100)). The predicted value
from the model is X'i[;, with a predictive standard error slightly higher than &.
The normal distribution then implies that approximately 50% of the actual values
should be within £0.675 of the predictions, 68% should be within +4, and 95%
within +26.

We can similarly predict a vector of 7 new outcomes, g, given a i X k matrix of
predictors, X; see Figure 3.13.

External validation

The most fundamental way to test a model, in any scientific context, is to use it to
make predictions and then compare to actual data.

Figure 3.13 illustrates with the test score data model, which was fit to data
collected from 1986 and 1994 for children who were born before 1987. We apply the
model to predict the outcomes of children born in 1987 or later (data collected from
1990 to 1998). This is not an ideal example for prediction because we would not
necessarily expect the model for the older children to be appropriate for the younger
children, even though tests for all children were taken at age 3 or 4. However, we
can use it to demonstrate the methods for computing and evaluating predictions.
We look at point predictions here and simulation-based predictions in Section 7.2.

The new data, g, are the outcomes for the 336 new children predicted from

3 For example, in linear regression with one predictor, the “forecast standard error” around the
prediction from a new data point with predictor value Z is

. . 1 (@ —7)?
Gforecast = 0|1 + —+ =5~
n iy (T — )
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mom.iq and mom.hs, using the model fit using the data from the older children.
The first panel of Figure 3.13 plots actual values g; versus predicted values X,
and the second panel plots residuals versus predicted values with dotted lines at +6
(approximate 68% error bounds; see Section 2.3). The error plot shows no obvious
problems with applying the older-child model to the younger children, though from
the scale we detect that the predictions have wide variability.

Even if we had detected clear problems with these predictions, this would not
mean necessarily that there is anything wrong with the model as fit to the original
dataset. However, we would need to understand it further before generalizing to
other children.

3.8 Bibliographic note

Linear regression has been used for centuries in applications in the social and phys-
ical sciences; see Stigler (1986). Many introductory statistics texts have good dis-
cussions of simple linear regression, for example Moore and McCabe (1998) and De
Veaux et al. (2006). Fox (2002) teaches R in the context of applied regression. In
addition, the R website links to various useful free literature.

Carlin and Forbes (2004) provide an excellent introduction to the concepts of
linear modeling and regression, and Pardoe (2006) is an introductory text focus-
ing on business examples. For fuller treatments, Neter et al. (1996) and Weisberg
provide accessible introductions to regression, and Ramsey and Schafer (2001) is a
good complement, with a focus on issues such as model understanding, graphical
display, and experimental design. Woolridge (2001) presents regression modeling
from an econometric perspective. The R? summary of explained variance is ana-
lyzed by Wherry (1931); see also King (1986) for examples of common mistakes in
reasoning with regression and Section 21.9 for more advanced references on R? and
other methods for summarizing fitted models. Berk (2004) discusses the various
assumptions implicit in regression analysis.

For more on children’s test scores and maternal employment, see Hill et al. (2005).
See Appendix B and Murrell (2005) for more on how to make the sorts of graphs
shown in this chapter and throughout the book. The technique of jittering (used in
Figure 3.1 and elsewhere in this book) comes from Chambers et al. (1983).

3.9 Exercises

1. The folder pyth contains outcome y and inputs z1, zy for 40 data points, with a
further 20 points with the inputs but no observed outcome. Save the file to your
working directory and read it into R using the read.table() function.

(a) Use R to fit a linear regression model predicting y from x1, z2, using the first
40 data points in the file. Summarize the inferences and check the fit of your
model.

(b) Display the estimated model graphically as in Figure 3.2.
(c) Make a residual plot for this model. Do the assumptions appear to be met?

(d) Make predictions for the remaining 20 data points in the file. How confident
do you feel about these predictions?

After doing this exercise, take a look at Gelman and Nolan (2002, section 9.4)
to see where these data came from.

2. Suppose that, for a certain population, we can predict log earnings from log
height as follows:
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e A person who is 66 inches tall is predicted to have earnings of $30,000.

e Every increase of 1% in height corresponds to a predicted increase of 0.8% in
earnings.

e The earnings of approximately 95% of people fall within a factor of 1.1 of
predicted values.

(a) Give the equation of the regression line and the residual standard deviation
of the regression.

(b) Suppose the standard deviation of log heights is 5% in this population. What,
then, is the R? of the regression model described here?

3. In this exercise you will simulate two variables that are statistically independent
of each other to see what happens when we run a regression of one on the other.

(a) First generate 1000 data points from a normal distribution with mean 0 and
standard deviation 1 by typing varl <- rnorm(1000,0,1) in R. Generate
another variable in the same way (call it var2). Run a regression of one
variable on the other. Is the slope coefficient statistically significant?

(b) Now run a simulation repeating this process 100 times. This can be done
using a loop. From each simulation, save the z-score (the estimated coefficient
of var1 divided by its standard error). If the absolute value of the z-score
exceeds 2, the estimate is statistically significant. Here is code to perform the
simulation:*

R code z.scores <- rep (NA, 100)
for (k in 1:100) {
varl <- rnorm (1000,0,1)
var2 <- rnorm (1000,0,1)
fit <- 1Im (var2 ~ varl)
z.scores[k] <- coef(fit)[2]/se.coef(fit) [2]
¥

How many of these 100 z-scores are statistically significant?

4. The child.iq folder contains a subset of the children and mother data discussed
earlier in the chapter. You have access to children’s test scores at age 3, mother’s
education, and the mother’s age at the time she gave birth for a sample of 400
children. The data are a Stata file which you can read into R by saving in your
working directory and then typing the following:

R code library ("foreign")
ig.data <- read.dta ("child.iq.dta")

(a) Fit a regression of child test scores on mother’s age, display the data and
fitted model, check assumptions, and interpret the slope coefficient. When do
you recommend mothers should give birth? What are you assuming in making
these recommendations?

—
=3
=

Repeat this for a regression that further includes mother’s education, inter-
preting both slope coefficients in this model. Have your conclusions about the
timing of birth changed?

4 We have initialized the vector of z-scores with missing values (NAs). Another approach is to
start with z.scores <- numeric(length=100), which would initialize with a vector of zeroes.
In general, however, we prefer to initialize with NAs, because then when there is a bug in the
code, it sometimes shows up as NAs in the final results, alerting us to the problem.
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(¢) Now create an indicator variable reflecting whether the mother has completed

=

high school or not. Consider interactions between the high school completion
and mother’s age in family. Also, create a plot that shows the separate regres-
sion lines for each high school completion status group.

Finally, fit a regression of child test scores on mother’s age and education level
for the first 200 children and use this model to predict test scores for the next
200. Graphically display comparisons of the predicted and actual scores for
the final 200 children.

5. The folder beauty contains data from Hamermesh and Parker (2005) on student
evaluations of instructors’ beauty and teaching quality for several courses at the
University of Texas. The teaching evaluations were conducted at the end of the
semester, and the beauty judgments were made later, by six students who had
not attended the classes and were not aware of the course evaluations.

(a) Run a regression using beauty (the variable btystdave) to predict course

=

evaluations (courseevaluation), controlling for various other inputs. Dis-
play the fitted model graphically, and explaining the meaning of each of the
coefficients, along with the residual standard deviation. Plot the residuals
versus fitted values.

Fit some other models, including beauty and also other input variables. Con-
sider at least one model with interactions. For each model, state what the
predictors are, and what the inputs are (see Section 2.1), and explain the
meaning of each of its coefficients.

See also Felton, Mitchell, and Stinson (2003) for more on this topic.






CHAPTER 4

Linear regression: before and after fitting
the model

It is not always appropriate to fit a classical linear regression model using data
in their raw form. As we discuss in Sections 4.1 and 4.4, linear and logarithmic
transformations can sometimes help in the interpretation of the model. Nonlinear
transformations of the data are sometimes necessary to more closely satisfy additiv-
ity and linearity assumptions, which in turn should improve the fit and predictive
power of the model. Section 4.5 presents some other univariate transformations that
are occasionally useful. We have already discussed interactions in Section 3.3, and
in Section 4.6 we consider other techniques for combining input variables.

4.1 Linear transformations

Linear transformations do not affect the fit of a classical regression model, and they
do not affect predictions: the changes in the inputs and the coefficients cancel in
forming the predicted value X 3.' However, well-chosen linear transformation can
improve interpretability of coefficients and make a fitted model easier to understand.
We saw in Chapter 3 how linear transformations can help with the interpretation
of the intercept; this section provides examples involving the interpretation of the
other coefficients in the model.

Scaling of predictors and regression coefficients. The regression coefficient 3; rep-
resents the average difference in y comparing units that differ by 1 unit on the j**
predictor and are otherwise identical. In some cases, though, a difference of 1 unit
on the z-scale is not the most relevant comparison. Consider, for example, a model
fit to data we downloaded from a survey of adult Americans in 1994 that predicts
their earnings (in dollars) given their height (in inches) and sex (coded as 1 for men
and 2 for women):

earnings = —61000 + 1300 - height + error, (4.1)

with a residual standard deviation of 19000. (A linear model is not really appropri-
ate for these data, as we shall discuss soon, but we’ll stick with the simple example
for introducing the concept of linear transformations.)

Figure 4.1 shows the regression line and uncertainty on a scale with the z-axis
extended to zero to display the intercept—the point on the y-axis where the line
crosses zero. The estimated intercept of —61000 has little meaning since it corre-
sponds to the predicted earnings for a person of zero height.

Now consider the following alternative forms of the model:

earnings = —61000+ 51 - height (in millimeters) + error
earnings = —61000 + 81000000 - height (in miles) + error.

How important is height? While $51 does not seem to matter very much, $81,000,000

I In contrast, in a multilevel model, linear transformations can change the fit of a model and its
predictions, as we explain in Section 13.6.
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Fitted linear model x-axis extended to 0

0go

Figure 4.1 Regression of earnings on height, earnings = —61000 + 1300 - height, with solid
line showing the fitted regression model and light lines indicating uncertainty in the fitted
regression. In the plot on the right, the x-scale is extended to zero to reveal the intercept
of the regression line.

is a lot. Yet, both these equations reflect the same underlying information. To
understand these coefficients better, we need some sense of the variation in height
in the population to which we plan to apply the model. One approach is to consider
the standard deviation of heights in the data, which is 3.8 inches (or 97 millimeters,
or 0.000061 miles). The expected difference in earnings corresponding to a 3.8-inch
difference in height is $1300-3.8 = $51-97 = $81000000-0.000061 = $4900, which is
reasonably large but much smaller than the residual standard deviation of $19000
unexplained by the regression.

Standardization using z-scores

Another way to scale the coefficients is to standardize the predictor by subtract-
ing the mean and dividing by the standard deviation to yield a “z-score.” In this
example, height would be replaced by z.height = (height — 66.9)/3.8, and the
coefficient for z.height will be 4900. Then coefficients are interpreted in units of
standard deviations with respect to the corresponding predictor just as they were,
after the fact, in the previous example. In addition, standardizing predictors using
z-scores will change our interpretation of the intercept to the mean of y when all
predictor values are at their mean values.

We actually prefer to divide by 2 standard deviations to allow inferences to be
more consistent with those for binary inputs, as we discuss in Section 4.2.

Standardization using reasonable scales

It is often useful to keep inputs on familiar scales such as inches, dollars, or years,
but making convenient rescalings to aid in the interpretability of coefficients. For
example, we might work with income/$10000 or age/10.

For another example, in some surveys, party identification is on a 1-7 scale, from
strong Republican to strong Democrat. The rescaled variable (PID — 4)/2, equals
—1 for Republicans, 0 for moderates, and +1 for Democrats, and so the coefficient
on this variable is directly interpretable.
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4.2 Centering and standardizing, especially for models with
interactions

Figure 4.1b illustrates the difficulty of interpreting the intercept term in a regres-

sion in a setting where it does not make sense to consider predictors set to zero.

More generally, similar challenges arise in interpreting coefficients in models with

interactions, as we saw in Section 3.3 with the following model:

Im(formula = kid.score ~ mom.hs + mom.iq + mom.hs:mom.iq)
coef.est coef.se

(Intercept) -11.5 13.8
mom.hs 51.3 15.3
mom.iq 1.1 0.2
mom.hs:mom.iq -0.5 0.2

n =434, k =4
residual sd = 18.0, R-Squared = 0.23

The coefficient on mom.hs is 51.3—does this mean that children with mothers
who graduated from high school do, on average, 51.3 points better on their tests?
No. The model includes an interaction, and 51.3 is the predicted difference for kids
that differ in mom.hs, among those with mom.iq = 0. Since mom.iq is never even
close to zero (see Figure 3.4 on page 35), the comparison at zero, and thus the
coefficient of 51.3, is essentially meaningless.

Similarly, the coefficient of 1.1 for “main effect” of mom.iq is the slope for this
variable, among those children for whom mom.hs = 0. This is less of a stretch (since
mom. hs actually does equal zero for many of the cases in the data; see Figure 3.1
on page 32) but still can be somewhat misleading since mom.hs = 0 is at the edge
of the data.

Centering by subtracting the mean of the data

We can simplify the interpretation of the regression model by first subtracting the
mean of each input variable:

c.mom.hs <- mom.hs - mean(mom.hs)
c.mom.iq <- mom.iq - mean(mom.iq)

The resulting regression is easier to interpret, with each main effect corresponding

to a predictive difference with the other input at its average value:

Im(formula = kid.score ~ c.mom.hs + c.mom.iq + c.mom.hs:c.mom.iq)
coef.est coef.se

(Intercept) 87.6 0.9
c.mom.hs 2.8 2.4
c.mom.iq 0.6 0.1
c.mom.hs:c.mom.iq -0.5 0.2

n =434, k =4
residual sd = 18.0, R-Squared = 0.23

The residual standard deviation and R? do not change—linear transformation of the
predictors does not affect the fit of a classical regression model—and the coefficient
and standard error of the interaction do not change, but the main effects and the
intercept move a lot and are now interpretable based on comparison to the mean
of the data.
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Using a conventional centering point

Another option is to center based on an understandable reference point, for example,
the midpoint of the range for mom.hs and the population average IQ:

c2.mom.hs <- mom.hs - 0.5
c2.mom.iq <- mom.iq - 100

In this parameterization, the coefficient of c2.mom.hs is the average predictive
difference between a child with mom.hs = 1 and mom.hs = 0, for those children with
mom.iq = 100. Similarly, the coefficient of c2.mom.1iq corresponds to a comparison
for the case mom.hs = 0.5, which includes no actual data but represents a midpoint
of the range.

Im(formula = kid.score c2.mom.hs + c2.mom.iq + c2.mom.hs:c2.mom.iq)
coef.est coef.se

(Intercept) 86.8 1.2
c2.mom.hs 2.8 2.4
c2.mom.iq 0.7 0.1
c2.mom.hs:c2.mom.iq -0.5 0.2

n =434, k = 4
residual sd = 18.0, R-Squared = 0.23

Once again, the residual standard deviation, R?, and coefficient for the interaction
have not changed. The intercept and main effect have changed very little, because
the points 0.5 and 100 happen to be close to the mean of mom.hs and mom.iq in
the data.

Standardizing by subtracting the mean and dividing by 2 standard deviations

Centering helped us interpret the main effects in the regression, but it still leaves
us with a scaling problem. The coefficient of mom.hs is much larger than that of
mom.iq, but this is misleading, considering that we are comparing the complete
change in one variable (mother completed high school or not) to a mere 1-point
change in mother’s I1Q, which is not much at all (see Figure 3.4 on page 35).

A natural step is to scale the predictors by dividing by 2 standard deviations—we
shall explain shortly why we use 2 rather than 1—so that a 1-unit change in the
rescaled predictor corresponds to a change from 1 standard deviation below the
mean, to 1 standard deviation above. Here are the rescaled predictors in the child
testing example:

z.mom.hs <- (mom.hs - mean(mom.hs))/(2*sd(mom.hs))
z.mom.iq <- (mom.iq - mean(mom.iq))/(2*sd(mom.iq))

We can now interpret all the coefficients on a roughly common scale (except for the
intercept, which now corresponds to the average predicted outcome with all inputs
at their mean):

Im(formula = kid.score ~ z.mom.hs + z.mom.iq + z.mom.hs:z.mom.iq)
coef.est coef.se

(Intercept) 87.6 0.9
z.mom.hs 2.3 2.0
z.mom.iq 17.7 1.8
z.mom.hs:z.mom.iq -11.9 4.0

n =434, k =4
residual sd = 18.0, R-Squared = 0.23
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Why scale by 2 standard deviations?

We divide by 2 standard deviations rather than 1 to maintain coherence when con-
sidering binary input variables. To see this, consider the simplest binary x variable
which takes on the values 0 and 1, each with probability 0.5. The standard devia-
tion of x is then v/0.5 - 0.5 = 0.5, and so the standardized variable, (x — py)/(204),
takes on the values +0.5, and its coefficient reflects comparisons between 2 = 0 and
x = 1. In contrast, if we had divided by 1 standard deviation, the rescaled variable
takes on the values +1, and its coefficient corresponds to half the difference between
the two possible values of x. This identity is close to precise for binary inputs even
when the frequencies are not exactly equal, since \/p(1 —p) ~ 0.5 when p is not
too far from 0.5.

In a complicated regression with many predictors, it can make sense to leave
binary inputs as is, and linearly transform continuous inputs, possibly by scaling
using the standard deviation. In this case, dividing by 2 standard deviations en-
sures a rough comparability in the coefficients. In our children’s testing example,
the predictive difference corresponding to 2 standard deviations of mother’s I1Q) is
clearly much higher than the comparison of mothers with and without a high school
education.

Multiplying each regression coefficient by 2 standard deviations of its predictor

For models with no interactions, a procedure that is equivalent to centering and
rescaling is to leave the regression predictors as is, and then create rescaled regres-
sion coefficients by multiplying each [ by two times the standard deviation of its
corresponding x. This gives a sense of the importance of each variable, controlling
for all the others in the linear model. As noted, scaling by 2 (rather than 1) standard
deviations allows these scaled coefficients to be comparable to unscaled coefficients
for binary predictors.

4.3 Correlation and “regression to the mean”

Consider a regression with a single predictor (in addition to the constant term);
thus, y = a+bx+error. If both x and y are standardized—that is, if they are defined
as x <- (x-mean(x))/sd(x) and y <- (y-mean(y))/sd(y)—then the regression
intercept is zero and the slope is simply the correlation between x and y. Thus, the
slope of a regression of two standardized variables must always be between —1 and
1, or, to put it another way, if a regression slope is more than 1 or less than —1,
the variance of y must exceed that of z. In general, the slope of a regression with
one predictor is b = poy/0,, where p is the correlation between the two variables
and o, and o, are the standard deviations of x and y.

The principal components line and the regression line

Some of the confusing aspects of regression can be understood in the simple case of
standardized variables. Figure 4.2 shows a simulated-data example of standardized
variables with correlation (and thus regression slope) 0.5. The left plot shows the
principal component line, which goes closest through the cloud of points, in the
sense of minimizing the sum of squared Euclidean distances between the points and
the line. The principal component line in this case is simply y = .

The right plot in Figure 4.2 shows the regression line, which minimizes the sum
of the squares of the vertical distances between the points and the line—it is the
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Figure 4.2 Data simulated from a bivariate normal distribution with correlation 0.5. The
regression line, which represents the best prediction of y given x, has half the slope of the
principal component line, which goes closest through the cloud of points.

familiar least squares line, y = a + Er with a, b chosen to minimize S (yi—(a+
13952))2 In this case, @ = 0 and b = 0.5; the regression line thus has slope 0.5.

When given this sort of scatterplot (without any lines superimposed) and asked to
draw the regression line of y on z, students tend to draw the principal component
line shown in Figure 4.2a. However, for the goal of predicting y from z, or for
estimating the average of y for any given value of z, the regression line is in fact
better—even if it does not appear so at first.

The superiority of the regression line for estimating the average of y given x can
be seen from a careful study of Figure 4.2. For example, consider the points at
the extreme left of either graph. They all lie above the principal components line
but are roughly half below and half above the regression line. Thus, the principal
component line underpredicts y for low values of . Similarly, a careful study of the
right side of each graph shows that the principal component line overpredicts y for
high values of z. In contrast, the regression line again gives unbiased predictions,
in the sense of going through the average value of y given x.

Regression to the mean

Recall that when z and y are standardized (that is, placed on a common scale,
as in Figure 4.2), the regression line always has slope less than 1. Thus, when x
is 1 standard deviations above the mean, the predicted value of y is somewhere
between 0 and 1 standard deviations above the mean. This phenomenon in linear
models—that y is predicted to be closer to the mean (in standard-deviation units)
than x—is called regression to the mean and occurs in many vivid contexts.

For example, if a woman is 10 inches taller than the average for her sex, and the
correlation of mothers” and (adult) sons’ heights is 0.5, then her son’s predicted
height is 5 inches taller than the average for men. He is expected to be taller than
average, but not so much taller—thus a “regression” (in the nonstatistical sense)
to the average.

A similar calculation can be performed for any pair of variables that are not
perfectly correlated. For example, let z; and y; be the number of games won by
baseball team 4 in two successive seasons. They will not be correlated 100%; thus,
we would expect the teams that did the best in season 1 (that is, with highest
values of x) to do not as well in season 2 (that is, with values of y that are closer
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to the average for all the teams). Similarly, we would expect a team with a poor
record in season 1 to improve in season 2.

A naive interpretation of regression to the mean is that heights, or baseball
records, or other variable phenomena necessarily become more and more “average”
over time. This view is mistaken because it ignores the error in the regression
predicting y from z. For any data point z;, the point prediction for its y; will be
regressed toward the mean, but the actual y; that is observed will not be exactly
where it is predicted. Some points end up falling closer to the mean and some fall
further. This can be seen in Figure 4.2b.

4.4 Logarithmic transformations

When additivity and linearity (see Section 3.6) are not reasonable assumptions, a
nonlinear transformation can sometimes remedy the situation. It commonly makes
sense to take the logarithm of outcomes that are all-positive. For outcome variables,
this becomes clear when we think about making predictions on the original scale.
The regression model imposes no constraints that would force these predictions to
be positive as well. However, if we take the logarithm of the variable, run the model,
make predictions on the log scale, and then transform back (by exponentiating),
the resulting predictions are necessarily positive because for any real a, exp(a) > 0.

Perhaps more importantly, a linear model on the logarithmic scale corresponds
to a multiplicative model on the original scale. Consider the linear regression model

logy; = by + b1 X5 +b02Xio + -+ ¢

Exponentiating both sides yields
EboJrPan+1)2Xi2+"'+€z

Yi
Xi Xi
= By-B{"-By?---E;
where By = €%, By = e, By = e%2, ... are exponentiated regression coefficients
(and thus are positive), and E; = e is the exponentiated error term (also pos-
itive). On the scale of the original data y;, the predictors X;1, Xi2,... come in

multiplicatively.

Height and earnings example

We illustrate logarithmic regression by considering models predicting earnings from
height. Expression (4.1) on page 53 shows a linear regression of earnings on height.
However, it really makes more sense to model earnings on the logarithmic scale
(our model here excludes those people who reported zero earnings). We can fit a
regression to log earnings and then take the exponential to get predictions on the
original scale.

Direct interpretation of small coefficients on the log scale. We take the logarithm
of earnings and regress on height,

log.earn <- log (earn)
earn.logmodel.1 <- Im (log.earn ~ height)
display (earn.logmodel.l)

yielding the following estimate:

Im(formula = log.earn ~ height)
coef.est coef.se
(Intercept) 5.74 0.45

R code
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Log regression plotted on log scale :ILog regression plotted on original scale
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Figure 4.3 Plot of regression of earnings on height, with solid line showing the fitted log
regression model, log(earnings) = 5.78 + 0.06 - height, plotted on the logarithmic and un-
transformed scales. Compare to the linear model (Figure 4.1a).
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Figure 4.4 Interpretation of exponentiated coefficients in a logarithmic regression model
as relative difference (curved upper line), and the approzimation exp(z) = 1+ x, which is
valid for small coefficients x (straight line).

height 0.06 0.01
n = 1192, k = 2
residual sd = 0.89, R-Squared = 0.06

The estimated coefficient 3; = 0.06 implies that a difference of 1 inch in height
corresponds to an expected positive difference of 0.06 in log(earnings), so that
earnings are multiplied by exp(0.06). But exp(0.06) ~ 1.06 (more precisely, it is
1.062). Thus, a difference of 1 in the predictor corresponds to an expected positive
difference of about 6% in the outcome variable. Similarly, if 8; were —0.06, then
a positive difference of 1 inch of height would correspond to an expected negative
difference of about 6% in earnings.

This correspondence does grow weaker as the magnitude of the coefficient in-
creases. Figure 4.4 displays the deterioration of the correspondence as the coefficient
size increases. The plot is restricted to coefficients in the range (—1,1) because, on
the log scale, regression coefficients are typically (though not always) less than 1.
A coefficient of 1 on the log scale implies that a change of one unit in the predictor
is associated with a change of exp(1) = 2.7 in the outcome, and if predictors are
parameterized in a reasonable way, it is unusual to see effects of this magnitude.

Why we use natural log rather than log-base-10

We prefer natural logs (that is, logarithms base e) because, as described above,
coefficients on the natural-log scale are directly interpretable as approximate pro-
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portional differences: with a coefficient of 0.06, a difference of 1 in  corresponds to
an approximate 6% difference in y, and so forth.?

Another approach is to take logarithms base 10, which we write as log;,. The
connection between the two different scales is that log;,(z) = log(z)/log(10) =
log(z)/2.30. The advantage of log;, is that the predicted values themselves are easier
to interpret; for example, when considering the earnings regressions, log;,(10,000) =
4 and log;((100,000) = 5, and with some experience we can also quickly read off
intermediate values—for example, if log,,(earnings) = 4.5, then earnings ~ 30,000.

The disadvantage of log, is that the resulting coefficients are harder to interpret.
For example, if we define

log10.earn <- logl0O (earn)

the regression on height looks like

Im(formula = loglO.earn ~ height)
coef.est coef.se
(Intercept) 2.493 0.197
height 0.026 0.003
n = 1187, k = 2
residual sd = 0.388, R-Squared = 0.06

The coefficient of 0.026 tells us that a difference of 1 inch in height corresponds
to a difference of 0.026 in log,,(earnings); that is, a multiplicative difference of
100026 = 1.062. This is the same 6% change as before, but it cannot be seen by
simply looking at the coefficient as could be done on the natural-log scale.

Building a regression model on the log scale

Adding another predictor. Each inch of height corresponds to a 6% increase in
earnings—that seems like a lot! But men are mostly taller than women and also tend
to have higher earnings. Perhaps the 6% predictive difference can be “explained” by
differences between the sexes. Do taller people earn more, on average, than shorter
people of the same sex? We can answer this question by including sex into the
regression model—in this case, a predictor called male that equals 1 for men and 0
for women:

Im(formula = log.earn ~ height + male)
coef.est coef.se

(Intercept) 8.15 0.60
height 0.02 0.01
male 0.42 0.07

n = 1192, k = 3
residual sd = 0.88, R-Squared = 0.09

After controlling for sex, an inch of height corresponds to estimated predictive
difference of 2%: under this model, two persons of the same sex but differing by 1
inch in height will differ, on average, by 2% in earnings. The predictive comparison
of sex, however, is huge: comparing a man and a woman of the same height, the
man’s earnings are exp(0.42) = 1.52 times the woman’s; that is, 52% more. (We
cannot simply convert the 0.42 to 42% because this coefficient is not so close to
zero; see Figure 4.4.)

2 Natural log is sometimes written as “In” or “log,” but we simply write “log” since this is our
default.
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Naming inputs. Incidentally, we named this new input variable male so that it
could be immediately interpreted. Had we named it sex, for example, we would
always have to go back to the coding to check whether 0 and 1 referred to men and
women, or vice versa.?

Checking statistical significance. The difference between the sexes is huge and well
known, but the height comparison is interesting too—a 2% difference, for earnings
of $50,000, comes to a nontrivial $1000 per inch. To judge statistical significance,
we can check to see if the estimated coefficient is more than 2 standard errors from
zero. In this case, with an estimate of 0.02 and standard error of 0.01, we would
need to display to three decimal places to be sure (using the digits option in the
display() function):
Im(formula = log.earn ~ height + male)
coef.est coef.se
(Intercept) 8.153  0.603
height 0.021 0.009
male 0.423 0.072
n = 1192, k = 3
residual sd = 0.88, R-Squared = 0.09
The coefficient for height indeed is statistically significant. Another way to check
significance is to directly compute the 95% confidence interval based on the infer-
ential simulations, as we discuss in Section 7.2.

Residual standard deviation and R%. Finally, the regression model has a residual
standard deviation of 0.88, implying that approximately 68% of log earnings will
be within 0.88 of the predicted value. On the original scale, approximately 68% of
earnings will be within a factor of exp(0.88) = 2.4 of the prediction. For example,
a 70-inch person has predicted earnings of 8.153 4+ 0.021 - 70 = 9.623, with a predic-
tive standard deviation of approximately 0.88. Thus, there is an approximate 68%
chance that this person has log earnings in the range [9.623 £ 0.88] = [8.74,10.50],
which corresponds to earnings in the range [exp(8.74), exp(10.50)] = [6000, 36000].
This very wide range tells us that the regression model does not predict earnings
well—it is not very impressive to have a prediction that can be wrong by a factor of
2.4—and this is also reflected in the R?, which is only 0.09, indicating that only 9%
of the variance in the data is explained by the regression model. This low R? man-
ifests itself graphically in Figure 4.3, where the range of the regression predictions
is clearly much narrower than the range of the data.

Including an interaction. We now consider a model with an interaction between
height and sex, so that the predictive comparison for height can differ for men and
women:

earn.logmodel.3 <- 1lm (log.earn ~ height + male + height:male)
which yields

coef.est coef.se
(Intercept) 8.388 0.844
height 0.017 0.013
male -0.079 1.258
height:male 0.007 0.019
n = 1192, k = 4
residual sd = 0.88, R-Squared = 0.09

3 Another approach would be to consider sex variable as a factor with two named levels, male and
female; see page 68. Our point here is that, if the variable is coded numerically, it is convenient
to give it the name male corresponding to the coding of 1.
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That is,
log(earnings) = 8.4 4 0.017 - height — 0.079 - male + 0.007 - height - male. ~ (4.2)

We shall interpret each of the four coefficients in this model.

The intercept is the predicted log earnings if height and male both equal zero.
Because heights are never close to zero, the intercept has no direct interpretation.

The coefficient for height is the predicted difference in log earnings correspond-
ing to a l-inch difference in height, if male equals zero. Thus, the estimated
predictive difference per inch of height is 1.7% for women. The estimate is less
than 2 standard errors from zero, indicating that the data are consistent with a
zero or negative predictive difference also.

The coefficient for male is the predicted difference in log earnings between women
and men, if height equals 0. Heights are never close to zero, and so the coefficient
for male has no direct interpretation in this model. (We have already encountered
this problem; for example, consider the difference between the intercepts of the
two lines in Figure 3.4b on page 35.)

The coefficient for height:male is the difference in slopes of the lines predict-
ing log earnings on height, comparing men to women. Thus, an inch of height
corresponds to 0.7% more of an increase in earnings among men than among
women, and the estimated predictive difference per inch of height among men is
1.7% + 0.7% = 2.4%.

The interaction coefficient is not statistically significant, but it is plausible that the
correlation between height and earnings is stronger for men and women, and so we
keep it in the model, following general principles we discuss more fully in Section
4.6.

Linear transformation to make coefficients more interpretable. We can make the
parameters in the interaction model clearer to interpret by rescaling the height
predictor to have a mean of 0 and standard deviation 1:

z.height <- (height - mean(height))/sd(height)

For these data, mean(height) and sd(height) are 66.9 inches and 3.8 inches,
respectively. Fitting the model to z.height, male, and their interaction yields

Im(formula = log.earn ~ z.height + male + z.height:male)
coef.est coef.se

(Intercept) 9.53 0.05

z.height 0.07 0.05

male 0.42 0.07

z.height:male 0.03 0.07
n = 1192, k = 4

residual sd = 0.88, R-Squared = 0.09

We can now interpret all four of the coefficients:

The intercept is the predicted log earnings if z.height and male both equal zero.
Thus, a 66.9-inch tall woman is predicted to have log earnings of 9.53, and thus
earnings of exp(9.53) = 14000.

The coefficient for z.height is the predicted difference in log earnings corre-
sponding to a 1 standard-deviation difference in height, if male equals zero.
Thus, the estimated predictive difference for a 3.8-inch increase in height is 7%
for women.

R code

R output
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e The coefficient for male is the predicted difference in log earnings between women
and men, if z.height equals 0. Thus, a 66.9-inch man is predicted to have log
earnings that are 0.42 higher than that of a 66.9-inch woman. This corresponds to
a ratio of exp(0.42) = 1.52, so the man is predicted to have 52% higher earnings
than the woman.

e The coefficient for z.height:male is the difference in slopes between the pre-
dictive differences for height among women and men. Thus, a 3.8-inch difference
of height corresponds to 3% more of an increase in earnings for men than for
women, and the estimated predictive comparison among men is 7% + 3% = 10%.

One might also consider centering the predictor for sex, but here it is easy enough
to interpret male = 0, which corresponds to the baseline category (in this case,
woren).

Further difficulties in interpretation

For a glimpse into yet another difficulty in interpreting regression coefficients, con-
sider the simpler log earnings regression without the interaction term. The predic-
tive interpretation of the height coefficient is simple enough: comparing two adults
of the same sex, the taller person will be expected to earn 2% more per inch of
height (see the model on page 61). This seems to be a reasonable comparison.

For the coefficient for sex, we would say: comparing two adults of the same height
but different sex, the man will be expected to earn 52% more. But is this a relevant
comparison? For example, if we are comparing a 66-inch woman to a 66-inch man,
then we are comparing a tall woman to a short man. So, in some sense, they do not
differ only in sex. Perhaps a more reasonable comparison would be of an “average
woman” to an “average man.”

The ultimate solution to this sort of problem must depend on why the model is
being fit in the first place. For now we shall focus on the technical issues of fitting
reasonable models to data. We return to issues of interpretation in Chapters 9 and
10.

Log-log model: transforming the input and outcome variables

If the log transformation is applied to an input variable as well as the outcome,
the coefficient can be interpreted as the expected proportional change in y per
proportional change in x. For example:

Im(formula = log.earn ~ log.height + male)
coef.est coef.se

(Intercept) 3.62 2.60
log.height 1.41 0.62
male 0.42 0.07

n = 1192, k = 3
residual sd = 0.88, R-Squared = 0.09

For each 1% difference in height, the predicted difference in earnings is 1.41%. The
other input, male, is categorical so it does not make sense to take its logarithm.

In economics, the coefficient in a log-log model is sometimes called an “elasticity”;
see Exercise 4.6 for an example.
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Taking logarithms even when not necessary

If a variable has a narrow dynamic range (that is, if the ratio between the high
and low values is close to 1), then it will not make much of a difference in fit if
the regression is on the logarithmic or the original scale. For example, the standard
deviation of log.height in our survey data is 0.06, meaning that heights in the
data vary by only approximately a factor of 6%.

In such a situation, it might seem to make sense to stay on the original scale for
reasons of simplicity. However, the logarithmic transformation can make sense even
here, because coefficients are often more easily understood on the log scale. The
choice of scale comes down to interpretability: whether it is easier to understand the
model as proportional increase in earnings per inch, or per proportional increase in
height.

For an input with a larger amount of relative variation (for example, heights of
children, or weights of animals), it would make sense to work with its logarithm
immediately, both as an aid in interpretation and likely an improvement in fit too.

4.5 Other transformations
Square root transformations

The square root is sometimes useful for compressing high values more mildly than
is done by the logarithm. Consider again our height and earnings example.

Fitting a linear model to the raw, untransformed scale seemed inappropriate.
Expressed in a different way than before, we would expect the differences between
people earning nothing versus those earning $10,000 to be far greater than the
differences between people earning, say, $80,000 versus $90,000. But under the
linear model, these are all equal increments (as in model (4.1)), where an extra
inch is worth $1300 more in earnings at all levels.

On the other hand, the log transformation seems too severe with these data.
With logarithms, the differences between populations earning $5000 versus $10,000
is equivalent to the differences between those earning $40,000 versus those earning
$80,000. On the square root scale, however, the differences between the 0 earnings
and $10,000 earnings groups are about the same as comparisons between $10,000
and $40,000 or between $40,000 and $90,000. (These move from 0 to 100, 200, and
300 on the square root scale.) See Chapter 25 for more on this example.

Unfortunately, models on the square root scale lack the clean interpretation of the
original-scale and log-transformed models. For one thing, large negative predictions
on this scale get squared and become large positive values on the original scale,
thus introducing a nonmonotonicity in the model. We are more likely to use the
square root model for prediction than with models whose coefficients we want to
understand.

Idiosyncratic transformations

Sometimes it is useful to develop transformations tailored for specific problems.
For example, with the original height-earnings data it would have not been possible
to simply take the logarithm of earnings as many observations had zero values.
Instead, a model can be constructed in two steps: (1) model the probability that
earnings exceed zero (for example, using a logistic regression; see Chapter 5); (2)
fit a linear regression, conditional on earnings being positive, which is what we did



66 LINEAR REGRESSION: BEFORE AND AFTER FITTING THE MODEL

[}

D!_\!_\ﬂ!_\

00 0o _m oo o
gooooooao

Figure 4.5 Histogram of handedness scores of a sample of students. Scores range from —1
(completely left-handed) to +1 (completely right-handed) and are based on the responses
to ten questions such as “Which hand do you write with?” and “Which hand do you use
to hold a spoon?” The continuous range of responses shows the limitations of treating
handedness as a dichotomous variable. From Gelman and Nolan (2002).

in the example above. One could also model total income, but economists are often
interested in modeling earnings alone.

In any case, plots and simulation should definitely be used to summarize infer-
ences, since the coefficients of the two parts of the model combine nonlinearly in
their joint prediction of earnings. We discuss this sort of model further in Sections
6.7 and 7.4.

What sort of transformed scale would be appropriate for a variable such as “as-
sets” that can be negative, positive, or zero? One possibility is a discrete coding
that compresses the high range, for example, 0 for assets in the range [—$100, $100],
1 for assets between $100 and $1000, 2 for assets between $1000 and $10,000, and so
forth, and —1 for assets between —$100 and —$10,000, and so forth. Such a mapping
could be expressed more fully as a continuous transformation, but for explanatory
purposes it can be convenient to use a discrete scale.

Using continuous rather than discrete predictors

Many variables that appear binary or discrete can usefully be viewed as continuous.
For example, rather than define “handedness” as —1 for left-handers and +1 for
right-handers, one can use a standard ten-question handedness scale that gives an
essentially continuous scale from —1 to 1 (see Figure 4.5).

We avoid discretizing continuous variables (except as a way of simplifying a
complicated transformation, as described previously, or to model nonlinearity, as
described later). A common mistake is to take a numerical measure and replace it
with a binary “pass/fail” score. For example, suppose we tried to predict election
winners, rather than continuous votes. Such a model would not work well, as it
would discard much of the information in the data (for example, the distinction be-
tween a candidate receiving 51% or 65% of the vote). The model would be “wasting
its effort” in the hopeless task of predicting the winner in very close cases. Even
if our only goal is to predict the winners, we are better off predicting continuous
vote shares and then transforming them into predictions about winners, as in our
example with congressional elections in Section 7.3.

Using discrete rather than continuous predictors

In some cases, however, it is appropriate to discretize a continuous variable if a
simple monotonic or quadratic relation does not seem appropriate. For example, in
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modeling political preferences, it can make sense to include age with four indicator
variables: 1829, 29-44, 45-64, and 65+, to allow for different sorts of generational
patterns. Furthermore, variables that assign numbers to categories that are ordered
but for which the gaps between neighboring categories are not always equivalent
are often good candidates for discretization.

As an example, Chapter 3 described models for children’s test scores given in-
formation about their mothers. Another input variable that can be used in these
models is maternal employment, which is defined on a four-point ordered scale:

e mom.work = 1: mother did not work in first three years of child’s life
e mom.work = 2: mother worked in second or third year of child’s life
e mom.work = 3: mother worked part-time in first year of child’s life

e mom.work = 4: mother worked full-time in first year of child’s life.

Fitting a simple model using discrete predictors yields

Im(formula = kid.score ~ as.factor(mom.work), data = kid.iq) R output
coef.est coef.se

(Intercept) 82.0 2.3

as.factor (mom.work) 2 3.8 3.1

as.factor (mom.work)3 11.5 3.6

as.factor (mom.work)4 5.2 2.7

n =434, k = 4
residual sd = 20.2, R-Squared = 0.02

This parameterization of the model allows for different averages for the children
of mothers corresponding to each category of maternal employment. The “baseline”
category (mom.work = 1) corresponds to children whose mothers do not go back to
work at all in the first three years after the child is born; the average test score for
these children is estimated by the intercept, 82.0. The average test scores for the
children in the other categories is found by adding the corresponding coefficient to
this baseline average. This parameterization allows us to see that the children of
mothers who work part-time in the first year after the child is born achieve the
highest average test scores, 82.0 + 11.5. These families also tend to be the most
advantaged in terms of many other sociodemographic characteristics as well, so a
causal interpretation is not warranted.

Index and indicator variables

Indez variables divide a population into categories. For example:
e male = 1 for males and 0 for females
e age = 1 for ages 18-29, 2 for ages 3044, 3 for ages 45-64, 4 for ages 65+
e state =1 for Alabama, ..., 50 for Wyoming
e county indexes for the 3082 counties in the United States.
Indicator variables are 0/1 predictors based on index variables. For example:
e sex.1 =1 for females and 0 otherwise
sex.2 = 1 for males and 0 otherwise
e age.l =1 for ages 18-29 and 0 otherwise
age.2 = 1 for ages 3044 and 0 otherwise
age.3 =1 for ages 45-64 and 0 otherwise
age.4 =1 for ages 65+ and 0 otherwise
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e 50 indicators for state
e 3082 indicators for county.

As demonstrated in the previous section, including these variables as regression
predictors allows for different means for the populations corresponding to each of
the categories delineated by the variable.

When to use index or indicator variables. When an input has only two levels, we
prefer to code it with a single variable and name it appropriately; for example, as
discussed earlier with the earnings example, the name male is more descriptive than
sex.1 and sex.2.

R also allows variables to be included as factors with named levels; for example,
sex would have the levels male and female. In this book, however, we restrict
ourselves to numerically defined variables, which is convenient for mathematical
notation and also when setting up models in Bugs.

When an input has multiple levels, we prefer to create an index variable (thus,
for example, age, which can take on the levels 1, 2, 3, 4), which can then be given
indicators if necessary. As discussed in Chapter 11, multilevel modeling offers a
general approach to such categorical predictors.

Identifiability

A model is said to be nonidentifiable if it contains parameters that cannot be
estimated uniquely—or, to put it another way, that have standard errors of infinity.
The offending parameters are called nonidentified. The most familiar and important
example of nonidentifiability arises from collinearity of regression predictors. A set
of predictors is collinear if there is a linear combination of them that equals 0 for
all the data.

If an index variable takes on J values, then there are J associated indicator
variables. A classical regression can include only J—1 of any set of indicators—if
all J were included, they would be collinear with the constant term. (You could
include a full set of J by excluding the constant term, but then the same problem
would arise if you wanted to include a new set of indicators. For example, you could
not include both of the sex categories and all four of the age categories. It is simpler
just to keep the constant term and all but one of each set of indicators.)

For each index variable, the indicator that is excluded from the regression is
known as the default, reference, or baseline condition because it is the implied
category if all the J—1 indicators are set to zero. The default in R is to set the first
level of a factor as the reference condition; other options include using the last level
as baseline, selecting the baseline, and constraining the coefficients to sum to zero.
There is some discussion in the regression literature on how best to set reference
conditions, but we will not worry about it, because in multilevel models we can
include all J indicator variables at once.

In practice, you will know that a regression is nonidentified because your com-
puter program will give an error or return “NA” for a coefficient estimate (or it will
be dropped by the program from the analysis and nothing will be reported except
that it has been removed).

4.6 Building regression models for prediction

A model must be created before it can be fit and checked, and yet we put “model
building” near the end of this chapter. Why? It is best to have a theoretical model
laid out before any data analyses begin. But in practical data analysis it is usually
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easiest to start with a simple model and then build in additional complexity, taking
care to check for problems along the way.

There are typically many reasonable ways in which a model can be constructed.
Models may differ depending on the inferential goals or the way the data were
collected. Key choices include how the input variables should be combined in cre-
ating predictors, and which predictors should be included in the model. In classical
regression, these are huge issues, because if you include too many predictors in a
model, the parameter estimates become so variable as to be useless. Some of these
issues are less important in multilevel regression but they certainly do not disappear
completely.

This section focuses on the problem of building models for prediction. Build-
ing models that can yield causal inferences is a related but separate topic that is
addressed in Chapters 9 and 10.

General principles

Our general principles for building regression models for prediction are as follows:

1. Include all input variables that, for substantive reasons, might be expected to
be important in predicting the outcome.

2. It is not always necessary to include these inputs as separate predictors—for
example, sometimes several inputs can be averaged or summed to create a “total
score” that can be used as a single predictor in the model.

3. For inputs that have large effects, consider including their interactions as well.

4. We suggest the following strategy for decisions regarding whether to exclude a
variable from a prediction model based on expected sign and statistical signifi-
cance (typically measured at the 5% level; that is, a coefficient is “statistically
significant” if its estimate is more than 2 standard errors from zero):

(a) If a predictor is not statistically significant and has the expected sign, it is
generally fine to keep it in. It may not help predictions dramatically but is
also probably not hurting them.

(b) If a predictor is not statistically significant and does not have the expected
sign (for example, incumbency having a negative effect on vote share), consider
removing it from the model (that is, setting its coefficient to zero).

(c) If a predictor is statistically significant and does not have the expected sign,
then think hard if it makes sense. (For example, perhaps this is a country such
as India in which incumbents are generally unpopular; see Linden, 2006.) Try
to gather data on potential lurking variables and include them in the analysis.

(d) If a predictor is statistically significant and has the expected sign, then by all
means keep it in the model.

These strategies do not completely solve our problems but they help keep us from
making mistakes such as discarding important information. They are predicated on
having thought hard about these relationships before fitting the model. It’s always
easier to justify a coefficient’s sign after the fact than to think hard ahead of time
about what we expect. On the other hand, an explanation that is determined after
running the model can still be valid. We should be able to adjust our theories in
light of new information.
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Ezxample: predicting the yields of mesquite bushes

We illustrate some ideas of model checking with a real-data example that is nonethe-
less somewhat artificial in being presented in isolation from its applied context.
Partly because this example is not a “success story” and our results are inconclu-
sive, it represents the sort of analysis a student might perform in exploring a new
dataset.

Data were collected in order to develop a method of estimating the total produc-
tion (biomass) of mesquite leaves using easily measured parameters of the plant, be-
fore actual harvesting takes place. Two separate sets of measurements were taken,
one on a group of 26 mesquite bushes and the other on a different group of 20
mesquite bushes measured at a different time of year. All the data were obtained in
the same geographical location (ranch), but neither constituted a strictly random
sample.

The outcome variable is the total weight (in grams) of photosynthetic material
as derived from actual harvesting of the bush. The input variables are:

diam1: diameter of the canopy (the leafy area of the bush)
in meters, measured along the longer axis of the bush
diam2: canopy diameter measured along the shorter axis

canopy.height:  height of the canopy
total.height: total height of the bush
density: plant unit density (# of primary stems per plant unit)
group: group of measurements (0 for the first group,
1 for the second group)

It is reasonable to predict the leaf weight using some sort of regression model.
Many formulations are possible. The simplest approach is to regress weight on all
of the predictors, yielding the estimates:

Im(formula = weight ~ diaml + diam2 + canopy.height + total.height +
density + group, data = mesquite)
coef.est coef.se

(Intercept) =729 147
diaml 190 113
diam2 371 124
canopy.height 356 210
total.height -102 186
density 131 34
group -363 100

n =146, k=7

residual sd 269, R-Squared = 0.85

To get a sense of the importance of each predictor, it is useful to know the range
of each variable:

min 925 median q75 max IQR
diaml 0.8 1.4 2.0 2.5 5.2 1.1
diam2 0.4 1.0 1.5 1.9 4.0 0.9
canopy.height 0.5 0.9 1.1 1.3 2.5 0.4
total.height 0.6 1.2 1.5 1.7 3.0 0.5
density 1.0 1.0 1.0 2.0 9.0 1.0
group 0.0 0.0 0.0 1.0 1.0 1.0
weight 60 220 360 690 4050 470

“IQR” in the last column refers to the interquartile range—the difference between
the 75" and 25" percentile points of each variable.
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But perhaps it is more reasonable to fit on the logarithmic scale, so that effects
are multiplicative rather than additive:

Ilm(formula = log(weight) ~ log(diaml) + log(diam2) + log(canopy.height) +
log(total.height) + log(density) + group, data = mesquite)
coef.est coef.se IQR of predictor

(Intercept) 5.35 0.17 -
log(diaml) 0.39 0.28 0.6
log(diam2) 1.15 0.21 0.6
log(canopy.height) 0.37 0.28 0.4
log(total.height) 0.39 0.31 0.4
log(density) 0.11 0.12 0.3
group -0.58 0.13 1.0
n = 46, k

7

residual sd = 0.33, R-Squared = 0.89

Instead of, “each meter difference in canopy height is associated with an addi-
tional 356 grams of leaf weight,” we have, “a difference of 2% in canopy height
is associated with an (approximate) positive difference of 0.372% in leaf weight”
(evaluated at the same levels of all other variables across comparisons).

So far we have been throwing all the predictors directly into the model. A more
“minimalist” approach is to try to come up with a simple model that makes sense.
Thinking geometrically, we can predict leaf weight from the volume of the leaf
canopy, which we shall roughly approximate as

canopy.volume = diaml - diam?2 - canopy.height.

This model is an oversimplification: the leaves are mostly on the surface of a bush,
not in its interior, and so some measure of surface area is perhaps more appropriate.
We shall return to this point shortly.

It still makes sense to work on the logarithmic scale:

Im(formula = log(weight) ~ log(canopy.volume))
coef.est coef.se
(Intercept) 5.17 0.08
log(canopy.volume) 0.72 0.05
n =46, k =2
residual sd = 0.41, R-Squared = 0.80

Thus, leaf weight is approximately proportional to canopy.volume to the 0.72
power. It is perhaps surprising that this power is not closer to 1. The usual expla-
nation for this is that there is variation in canopy.volume that is unrelated to the
weight of the leaves, and this tends to attenuate the regression coefficient—that is,
to decrease its absolute value from the “natural” value of 1 to something lower.
Similarly, regressions of “after” versus “before” typically have slopes of less than
1. (For another example, Section 7.3 has an example of forecasting congressional
elections in which the vote in the previous election has a coefficient of only 0.58.)

The regression with only canopy.volume is satisfyingly simple, with an impres-
sive R-squared of 80%. However, the predictions are still much worse than the model
with all the predictors. Perhaps we should go back and put in the other predictors.
We shall define:

canopy.area = diaml - diam2

canopy.shape = diaml/diam2.

The set (canopy.volume, canopy.area, canopy.shape) is then just a different param-
eterization of the three canopy dimensions. Including them all in the model yields:

R output

R output
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Im(formula = log(weight) ~ log(canopy.volume) + log(canopy.area) +
log(canopy.shape) + log(total.height) + log(density) + group)
coef.est coef.se

(Intercept) 5.35 0.17
log(canopy.volume) 0.37 0.28
log(canopy.area) 0.40 0.29
log(canopy.shape) -0.38 0.23
log(total.height) 0.39 0.31
log(density) 0.11 0.12
group -0.58 0.13
n = 46, k

7

residual sd 0.33, R-Squared = 0.89

This fit is identical to that of the earlier log-scale model (just a linear transfor-

mation of the predictors), but to us these coeflicient estimates are more directly
interpretable:

Canopy volume and area are both positively associated with weight. Neither is
statistically significant, but we keep them in because they both make sense: (1)
a larger-volume canopy should have more leaves, and (2) conditional on volume,
a canopy with larger cross-sectional area should have more exposure to the sun.

The negative coefficient of canopy.shape implies that bushes that are more
circular in cross section have more leaf weight (after controlling for volume and
area). It is not clear whether we should “believe” this. The coefficient is not
statistically significant; we could keep this predictor in the model or leave it out.

Total height is positively associated with weight, which could make sense if the
bushes are planted close together—taller bushes get more sun. The coefficient is
not statistically significant, but it seems to make sense to “believe” it and leave
it in.

It is not clear how to interpret the coefficient for density. Since it is not statis-
tically significant, maybe we can exclude it.

For whatever reason, the coefficient for group is large and statistically significant,
so we must keep it in. It would be a good idea to learn how the two groups differ
so that a more relevant measurement could be included for which group is a
PIroxy.

This leaves us with a model such as

Im(formula = log(weight) ~ log(canopy.volume) + log(canopy.area) +

group)
coef.est coef.se
(Intercept) 5.22 0.09
log(canopy.volume) 0.61 0.19
log(canopy.area) 0.29 0.24
group -0.53 0.12
n = 46, k

4

residual sd 0.34, R-Squared = 0.87

or

Im(formula = log(weight) ~ log(canopy.volume) + log(canopy.area) +
log(canopy.shape) + log(total.height) + group)
coef.est coef.se
(Intercept) 5.31 0.16
log(canopy.volume) 0.38 0.28
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log(canopy.area) 0.41 0.29
log(canopy.shape) -0.32 0.22
log(total.height) 0.42 0.31
group -0.54 0.12

n =46, k =6

residual sd 0.33, R-Squared = 0.88

‘We want to include both volume and area in the model, since for geometrical reasons
we expect both to be positively predictive of leaf volume. It would also make sense
to look at some residual plots to look for any patterns in the data beyond what has
been fitted by the model.

Finally, it would seem like a good idea to include interactions of group with
the other predictors. Unfortunately, with only 46 data points, it turns out to be
impossible to estimate these interactions accurately: none of them are statistically
significant.

To conclude this example: we have had some success in transforming the outcome
and input variables to obtain a reasonable predictive model. However, we do not
have any clean way of choosing among the models (or combining them). We also
do not have any easy way of choosing between the linear and log-transformation
models, or bridging the gap between them. For this problem, the log model seems
to make much more sense, but we would also like a data-based reason to prefer it,
if it is indeed preferable.

4.7 Fitting a series of regressions

It is common to fit a regression model repeatedly, either for different datasets or to
subsets of an existing dataset. For example, one could estimate the relation between
height and earnings using surveys from several years, or from several countries, or
within different regions or states within the United States.

As discussed in Part 2 of this book, multilevel modeling is a way to estimate
a regression repeatedly, partially pooling information from the different fits. Here
we consider the more informal procedure of estimating the regression separately—
with no pooling between years or groups—and then displaying all these estimates
together, which can be considered as an informal precursor to multilevel modeling.*

Predicting party identification

Political scientists have long been interested in party identification and its changes
over time. We illustrate here with a series of cross-sectional regressions modeling
party identification given political ideology and demographic variables.

‘We use the National Election Study, which asks about party identification on a 1-
7 scale (1 =strong Democrat, 2 =Democrat, 3 =weak Democrat, 4 =independent,

, 7= strong Republican), which we treat as a continuous variable. We include
the following predictors: political ideology (1 = strong liberal, 2 =liberal, ..., 7=
strong conservative), ethnicity (0=white, 1=Dblack, 0.5 =other), age (as categories:
18-29, 3044, 45-64, and 65+ years, with the lowest age category as a baseline),
education (1 = no high school, 2 = high school graduate, 3 = some college, 4 =

4 The method of repeated modeling, followed by time-series plots of estimates, is sometimes called
the “secret weapon” because it is so easy and powerful but yet is rarely used as a data-analytic
tool. We suspect that one reason for its rarity of use is that, once one acknowledges the time-
series structure of a dataset, it is natural to want to take the next step and model that directly.
In practice, however, there is a broad range of problems for which a cross-sectional analysis is
informative, and for which a time-series display is appropriate to give a sense of trends.
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Figure 4.6 Estimated coefficients (and 50% intervals) for the regression of party identifi-
cation on political ideology, ethnicity, and other predictors, as fit separately to poll data
from each presidential election campaign from 1976 through 2000. The plots are on differ-
ent scales, with the input variables ordered roughly in declining order of the magnitudes
of their coefficients. The set of plots illustrates the display of inferences from a series of
TEGressions.

college graduate), sex (0=male, 1 =female), and income (1=0-16"" percentile, 2=
17-337 percentile, 3 =34-67" percentile, 4=68-95" percentile, 5=96-100"" per-
centile).

Figure 4.6 shows the estimated coefficients tracked over time. Ideology and ethnic-
ity are the most important,® and they remain fairly stable over time. The predictive
differences for age and sex change fairly dramatically during the thirty-year period.

4.8 Bibliographic note

For additional reading on transformations, see Atkinson (1985), Mosteller and
Tukey (1977), Box and Cox (1964), and Carroll and Ruppert (1981). Bring (1994)
has a thoroough discussion on standardizing regression coefficients; see also Blalock
(1961) and Greenland, Schlessman, and Criqui (1986). Harrell (2001) discusses
strategies for regression modeling.

For more on the earnings and height example, see Persico, Postlewaite, and Sil-
verman (2004) and Gelman and Nolan (2002). For more on the handedness example,
see Gelman and Nolan (2002, sections 2.5 and 3.3.2). The historical background of
regression to the mean is covered by Stigler (1986), and its connections to multilevel
modeling are discussed by Stigler (1983).

The mesquite bushes example in Section 4.6 comes from an exam problem from
the 1980s; we have not been able to track down the original data. For more on the
ideology example in Section 4.7, see Bafumi (2005).

4.9 Exercises
1. Logarithmic transformation and regression: consider the following regression:

log(weight) = —3.5 4 2.0 log(height) + error,

5 Ideology is on a seven-point scale, so that its coefficients must be multiplied by 4 to get the
expected change when comparing a liberal (ideology=2) to a conservative (ideology=6).
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3.

with errors that have standard deviation 0.25. Weights are in pounds and heights
are in inches.

(a) Fill in the blanks: approximately 68% of the persons will have weights within
a factor of __ and __ of their predicted values from the regression.

(b) Draw the regression line and scatterplot of log(weight) versus log(height) that
make sense and are consistent with the fitted model. Be sure to label the axes
of your graph.

. The folder earnings has data from the Work, Family, and Well-Being Survey

(Ross, 1990). Pull out the data on earnings, sex, height, and weight.

(a) In R, check the dataset and clean any unusually coded data.

(b) Fit a linear regression model predicting earnings from height. What transfor-
mation should you perform in order to interpret the intercept from this model
as average earnings for people with average height?

(c) Fit some regression models with the goal of predicting earnings from some
combination of sex, height, and weight. Be sure to try various transformations
and interactions that might make sense. Choose your preferred model and
justify.

(d) Interpret all model coefficients.

Plotting linear and nonlinear regressions: we downloaded data with weight (in
pounds) and age (in years) from a random sample of American adults. We first
created new variables: age10 = age/10 and age10.sq = (age/10)2, and indicators
agel8.29, age30.44, age45.64, and age65up for four age categories. We then
fit some regressions, with the following results:

Im(formula = weight ~ agel0)
coef.est coef.se
(Intercept) 161.0 7.3
agel0 2.6 1.6
n = 2009, k = 2
residual sd = 119.7, R-Squared = 0.00
Im(formula = weight ~ agelO + agel0.sq)
coef.est coef.se

(Intercept) 96.2 19.3

agel0 33.6 8.7

agel0.sq -3.2 0.9
n = 2009, k = 3

residual sd = 119.3, R-Squared = 0.01

Im(formula = weight ~ age30.44 + age45.64 + age65up)
coef.est coef.se

(Intercept) 157.2 5.4
age30.44TRUE 19.1 7.0
age45.64TRUE 27.2 7.6
age65upTRUE 8.5 8.7

n = 2009, k = 4
residual sd = 119.4, R-Squared = 0.01

(a) On a graph of weights versus age (that is, weight on y-axis, age on z-axis),
draw the fitted regression line from the first model.
(b) On the same graph, draw the fitted regression line from the second model.

R output
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(¢) On another graph with the same axes and scale, draw the fitted regression
line from the third model. (It will be discontinuous.)

4. Logarithmic transformations: the folder pollution contains mortality rates and
various environmental factors from 60 U.S. metropolitan areas (see McDonald
and Schwing, 1973). For this exercise we shall model mortality rate given nitric
oxides, sulfur dioxide, and hydrocarbons as inputs. This model is an extreme
oversimplification as it combines all sources of mortality and does not adjust for
crucial factors such as age and smoking. We use it to illustrate log transforma-
tions in regression.

(a) Create a scatterplot of mortality rate versus level of nitric oxides. Do you
think linear regression will fit these data well? Fit the regression and evaluate
a residual plot from the regression.

(b) Find an appropriate transformation that will result in data more appropriate
for linear regression. Fit a regression to the transformed data and evaluate
the new residual plot.

(c) Interpret the slope coefficient from the model you chose in (b).

(d) Now fit a model predicting mortality rate using levels of nitric oxides, sulfur
dioxide, and hydrocarbons as inputs. Use appropriate transformations when
helpful. Plot the fitted regression model and interpret the coefficients.

(e) Cross-validate: fit the model you chose above to the first half of the data and
then predict for the second half. (You used all the data to construct the model
in (d), so this is not really cross-validation, but it gives a sense of how the
steps of cross-validation can be implemented.)

5. Special-purpose transformations: for a study of congressional elections, you would
like a measure of the relative amount of money raised by each of the two major-
party candidates in each district. Suppose that you know the amount of money
raised by each candidate; label these dollar values D; and R;. You would like to
combine these into a single variable that can be included as an input variable
into a model predicting vote share for the Democrats.

(a) Discuss the advantages and disadvantages of the following measures:

e The simple difference, D; — R;

e The ratio, D;/R;

e The difference on the logarithmic scale, log D; — log R;
e The relative proportion, D;/(D; + R;).

(b) Propose an idiosyncratic transformation (as in the example on page 65) and
discuss the advantages and disadvantages of using it as a regression input.

6. An economist runs a regression examining the relations between the average price
of cigarettes, P, and the quantity purchased, @), across a large sample of counties
in the United States, assuming the following functional form, log @ = a+log P.
Suppose the estimate for 3 is 0.3. Interpret this coefficient.

7. Sequence of regressions: find a regression problem that is of interest to you and
can be performed repeatedly (for example, data from several years, or for several
countries). Perform a separate analysis for each year, or country, and display the
estimates in a plot as in Figure 4.6 on page 74.

8. Return to the teaching evaluations data from Exercise 3.5. Fit regression models
predicting evaluations given many of the inputs in the dataset. Consider interac-
tions, combinations of predictors, and transformations, as appropriate. Consider
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several models, discuss in detail the final model that you choose, and also explain
why you chose it rather than the others you had considered.






CHAPTER 5

Logistic regression

Logistic regression is the standard way to model binary outcomes (that is, data
y; that take on the values 0 or 1). Section 5.1 introduces logistic regression in a
simple example with one predictor, then for most of the rest of the chapter we work
through an extended example with multiple predictors and interactions.

5.1 Logistic regression with a single predictor
Exzample: modeling political preference given income

Conservative parties generally receive more support among voters with higher in-
comes. We illustrate classical logistic regression with a simple analysis of this pat-
tern from the National Election Study in 1992. For each respondent 7 in this poll,
we label y; = 1 if he or she preferred George Bush (the Republican candidate for
president) or 0 if he or she preferred Bill Clinton (the Democratic candidate), for
now excluding respondents who preferred Ross Perot or other candidates, or had
no opinion. We predict preferences given the respondent’s income level, which is
characterized on a five-point scale.!

The data are shown as (jittered) dots in Figure 5.1, along with the fitted logistic
regression line, a curve that is constrained to lie between 0 and 1. We interpret the
line as the probability that y = 1 given z—in mathematical notation, Pr(y = 1|z).

We fit and display the logistic regression using the following R function calls:

fit.1 <- glm (vote
display (fit.1)

income, family=binomial(link="logit"))

to yield
coef.est coef.se
(Intercept) -1.40 0.19
income 0.33 0.06

n = 1179, k = 2
residual deviance = 1556.9, null deviance = 1591.2 (difference = 34.3)

The fitted model is Pr(y; = 1) = logit™' (—1.40 4 0.33 - income). We shall define
this model mathematically and then return to discuss its interpretation.

The logistic regression model

It would not make sense to fit the continuous linear regression model, X 3 + error,
to data y that take on the values 0 and 1. Instead, we model the probability that
y=1,

Pr(y; = 1) = logit™ (X;/), (5.1)
under the assumption that the outcomes y; are independent given these probabili-
ties. We refer to X3 as the linear predictor.

1 See Section 4.7 for details on the income categories and other variables measured in this survey.
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Figure 5.1 Logistic regression estimating the probability of supporting George Bush in the
1992 presidential election, as a function of discretized income level. Survey data are indi-
cateddhy jittered dots. In this example little is revegted by these jittered points, but we want
to emphasize here that the data and fitted model cagn be put on a common scale. (a) Fitted
logistg regression: the thick line indicates the curye in the range of the data; the thinner
lines at the end show how the logistic curve approaches 0 and 1 in the limits. (b) In the
range of the data, the solid line shows the best-fit logistic regression, and the light lines
show%ncertainty in the fit. =
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Figure 5.2 (a) Inverse-logit function logit™" (x): the transformation from linear predictors
to probabilities that is used in logistic regression. (b) An example of the predicted probabili-
ties from a logistic regression model: y = logit ' (—1.40 +0.33z). The shape of the curve is
the same, but its location and scale have changed; compare the x-azxes on the two graphs.
For each curve, the dotted line shows where the predicted probability is 0.5: in graph (a),
this is at logit(0.5) = 0; in graph (b), the halfway point is where —1.40 4+ 0.33xz = 0, which
is © = 1.40/0.33 = 4.2.

The slope of the curve at the halfway point is the logistic regression coefficient divided by
4, thus 1/4 fory = logit ' (z) and 0.33/4 for y = logit *(—1.40 +0.33z). The slope of the
logistic regression curve is steepest at this halfway point.

The function logit™ (z) = % transforms continuous values to the range (0, 1),
which is necessary, since probabilities must be between 0 and 1. This is illustrated
for the election example in Figure 5.1 and more theoretically in Figure 5.2.

Equivalently, model (5.1) can be written
Pr(y; = 1)
logit(p;)

bi

where logit(z) = log(z/(1—z)) is a function mapping the range (0,1) to the range
(—00,00). We prefer to work with logit™! because it is natural to focus on the
mapping from the linear predictor to the probabilities, rather than the reverse.
However, you will need to understand formulation (5.2) to follow the literature and
also when fitting logistic models in Bugs.
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The inverse-logistic function is curved, and so the expected difference in y corre-
sponding to a fixed difference in x is not a constant. As can be seen in Figure 5.2,
the steepest change occurs at the middle of the curve. For example:

e logit(0.5) = 0, and logit(0.6) = 0.4. Here, adding 0.4 on the logit scale corre-
sponds to a change from 50% to 60% on the probability scale.

e logit(0.9) = 2.2, and logit(0.93) = 2.6. Here, adding 0.4 on the logit scale corre-
sponds to a change from 90% to 93% on the probability scale.

Similarly, adding 0.4 at the low end of the scale moves a probability from 7% to
10%. In general, any particular change on the logit scale is compressed at the ends
of the probability scale, which is needed to keep probabilities bounded between 0
and 1.

5.2 Interpreting the logistic regression coefficients

Coefficients in logistic regression can be challenging to interpret because of the
nonlinearity just noted. We shall try to generalize the procedure for understanding
coefficients one at a time, as was done for linear regression in Chapter 3. We illus-
trate with the model, Pr(Bush support) = logit™!(—1.40 + 0.33 - income). Figure
5.1 shows the story, but we would also like numerical summaries. We present some
simple approaches here and return in Section 5.7 to more comprehensive numerical
summaries.

Evaluation at and near the mean of the data

The curve of the logistic function requires us to choose where to evaluate changes,
if we want to interpret on the probability scale. The mean of the input variables in
the data is often a useful starting point.

e As with linear regression, the intercept can only be interpreted assuming zero val-
ues for the other predictors. When zero is not interesting or not even in the model
(as in the voting example, where income is on a 1-5 scale), the intercept must be
evaluated at some other point. For example, we can evaluate Pr(Bush support)
at the central income category and get logit_1(71.40 +0.33-3) = 0.40.

Or we can evaluate Pr(Bush support) at the mean of respondents’ incomes:
logit™*(—1.40 4+ 0.33 - Z); in R we code this as?

invlogit (-1.40 + 0.33+mean(income))
or, more generally,

invlogit (coef(fit.1)[1] + coef(fit.1)[2]*mean(income))

For this dataset, = 3.1, yielding Pr(Bush support) = 0.40 at this central point.

o A difference of 1 in income (on this 1-5 scale) corresponds to a positive difference
of 0.33 in the logit probability of supporting Bush. There are two convenient ways
to summarize this directly in terms of probabilities.

— We can evaluate how the probability differs with a unit difference in = near
the central value. Since = 3.1 in this example, we can evaluate the logistic
regression function at x = 3 and x = 2; the difference in Pr(y = 1) correspond-
ing to adding 1 to z is logit ™' (—1.40+0.33-3) —logit ™! (—1.40+0.33-2) = 0.08.

2 We are using a function we have written, invlogit <- function (x) {1/(1+exp(-x))}.

R code

R code
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A difference of 1 in income category corresponds to a positive difference of
8% in the probability of supporting Bush.

— Rather than consider a discrete change in x, we can compute the derivative of
the logistic curve at the central value, in this case £ = 3.1. Differentiating the
function logit™" (a + Bx) with respect to z yields Be®t#7 /(1 4+ e®tF)2 The
value of the linear predictor at the central value of z = 3.1 is —1.40+0.33-3.1 =
—0.39, and the slope of the curve—the “change” in Pr(y=1) per small unit
of “change” in z—at this point is 0.33¢7939/(1 + ¢7°3%)2 = 0.13.

— For this example, the difference on the probability scale is the same value
of 0.13 (to one decimal place); this is typical but in some cases where a unit
difference is large, the differencing and the derivative can give slightly different
answers. They will always be the same sign, however.

The “divide by 4 rule”

The logistic curve is steepest at its center, at which point o + Sz = 0 so that
logit ™ (a+ Bx) = 0.5 (see Figure 5.2). The slope of the curve—the derivative of the
logistic function—is maximized at this point and attains the value 3e®/(1 + %)% =
B/4. Thus, 3/4 is the maximum difference in Pr(y = 1) corresponding to a unit
difference in x.

As a rule of convenience, we can take logistic regression coefficients (other than
the constant term) and divide them by 4 to get an upper bound of the predictive
difference corresponding to a unit difference in x. This upper bound is a reasonable
approximation near the midpoint of the logistic curve, where probabilities are close
to 0.5.

For example, in the model Pr(Bush support) = logit™'(—1.40 + 0.33 - income),
we can divide 0.33/4 to get 0.08: a difference of 1 in income category corresponds
to no more than an 8% positive difference in the probability of supporting Bush.
Because the data in this case actually lie near the 50% point (see Figure 5.1), this
“divide by 4” approximation turns out to be close to 0.13, the derivative evaluated
at the central point of the data.

Interpretation of coefficients as odds ratios

Another way to interpret logistic regression coefficients is in terms of odds ratios.
If two outcomes have the probabilities (p,1—p), then p/(1 — p) is called the odds.
An odds of 1 is equivalent to a probability of 0.5—that is, equally likely outcomes.
Odds of 0.5 or 2.0 represent probabilities of (1/3,2/3). The ratio of two odds—
thus, (p1/(1 — p1))/(p2/(1 — pa))—is called an odds ratio. Thus, an odds ratio of
2 corresponds to a change from p = 0.33 to p = 0.5, or a change from p = 0.5 to
p = 0.67.

An advantage of working with odds ratios (instead of probabilities) is that it
is possible to keep scaling up odds ratios indefinitely without running into the
boundary points of 0 and 1. For example, going from an odds of 2 to an odds of
4 increases the probability from 2/3 to 4/5; doubling the odds again increases the
probability to 8/9, and so forth.

Exponentiated logistic regression coeflicients can be interpreted as odds ratios.
For simplicity, we illustrate with a model with one predictor, so that

Pry=110\ _, . .
«(Fry=o) oo )
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Figure 5.3 Distribution representing uncertainty in an estimated regression coefficient (re-
peated from page 40). The range of this distribution corresponds to the possible values of 3
that are consistent with the data. When using this as an uncertainty distribution, we assign
an approzimate 68% chance that B will lie within 1 standard error of the point estimate,
/3‘, and an approzimate 95% chance that 3 will lie within 2 standard errors. Assuming the
regression model is correct, it should happen only about 5% of the time that the estimate,
8, falls more than 2 standard errors away from the true (3.

Adding 1 to z (that is, changing z to z+1 in (5.3)) has the effect of adding 3 to both
sides of the equation. Exponentiating both sides, the odds are then multiplied by e”.
For example, if 8 = 0.2, then a unit difference in = corresponds to a multiplicative
change of €*2 = 1.22 in the odds (for example, changing the odds from 1 to 1.22,
or changing p from 0.5 to 0.55).

We find that the concept of odds can be somewhat difficult to understand, and
odds ratios are even more obscure. Therefore we prefer to interpret coefficients on
the original scale of the data when possible.for example, saying that adding 0.2 on
the logit scale corresponds to a change in probability from logit™!(0) to

Inference

Coefficient estimates and standard errors. The coeflicients in classical logistic re-
gression are estimated using maximum likelihood, a procedure that can often work
well for models with few predictors fit to reasonably large samples (but see Section
5.8 for a potential problem).

As with the linear model, the standard errors represent estimation uncertainty.
We can roughly say that coefficient estimates within 2 standard errors of 5 are con-
sistent with the data. Figure 5.3 shows the normal distribution that approximately
represents the range of possible values of 3. For the voting example, the coefficient
of income has an estimate B of 0.33 and a standard error of 0.06; thus the data are
roughly consistent with values of 8 in the range [0.33 & 2 - 0.06] = [0.21, 0.45].

Statistical significance. As with linear regression, a coefficient is considered “sta-
tistically significant” if it is at least 2 standard errors away from zero. In the voting
example, the coefficient of income is statistically significant and positive, meaning
that we can be fairly certain that, in the population represented by this survey, posi-
tive differences in income generally correspond to positive (not negative) differences
in the probability of supporting Bush for president.

Also as with linear regression, we usually do not try to interpret the statistical
significance of the intercept. The sign of an intercept is not generally of any interest,
and so it is usually meaningless to compare it to zero or worry about whether it is
statistically significantly different from zero.

Finally, when considering multiple inputs, we follow the same principles as with
linear regression when deciding when and how to include and combine inputs in a
model, as discussed in Section 4.6.
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Figure 5.4 Coefficient of income (on a 1-5 scale) with 1 standard-error bounds in logistic
regressions predicting Republican preference for president, as estimated separately from
surveys in the second half of the twentieth century. The pattern of richer voters supporting
Republicans has increased since 1970. The data used in the estimate for 1992 appear in
Figure 5.1.

Predictions. Logistic regression predictions are probabilistic, so for each unob-
served future data point g;, there is a predictive probability,

pi = Pr(f; = 1) = logit (X, ),

rather than a point prediction. For example, for a voter not in the survey with
income level 5 (recall the 5-point scale in Figure 5.1), the predicted probability of
supporting Bush is Pr(g; = 1) = logit™'(—1.40 4+ 0.33 - 5) = 0.55. We do not say
that our prediction for the outcome is 0.55, since the outcome g;—support for Bush
or not—itself will be 0 or 1.

Fitting and displaying the model in R

After fitting the logistic regression using the glm function (see page 79), we can
graph the data and fitted line (see Figure 5.1a) as follows:

plot (income, vote)
curve (invlogit (coef(fit.1)[1] + coef(fit.1)[2]*x), add=TRUE)

(The R code we actually use to make the figure has more steps so as to display
axis labels, jitter the points, adjust line thickness, and so forth.) Figure 5.1b has
dotted lines representing uncertainty in the coefficients; we display these by adding
the following to the plotting commands:

sim.1 <- sim (fit.1)
for (j in 1:10){
curve (invlogit (sim.1$betalj,1] + sim.1$betalj,2]*x),
col="gray", lwd=.5, add=TRUE)}

We demonstrate further use of the sim function in Chapter 7.

Displaying the results of several logistic regressions

We can display estimates from a series of logistic regressions in a single graph, just
as was done in Section 4.7 for linear regression coefficients. Figure 5.4 illustrates
with the estimate +1 standard error for the coefficient for income on presidential
preference, fit to National Election Studies pre-election polls from 1952 through
2000. Higher income has consistently been predictive of Republican support, but
the connection has become stronger over the years.
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Figure 5.5 The probability density function of the logistic distribution, which is used for
the error term in the latent-data formulation (5.4) of logistic regression. The logistic curve
in Figure 5.2a is the cumulative distribution function of this density. The mazimum of
the density is 0.25, which corresponds to the mazimum slope of 0.25 in the inverse-logit
function of Figure 5.2a.

Latent variable formulation of logit
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Figure 5.6 The probability density function of the latent variable z; in model (5.4) if the
linear predictor, X;(3, has the value —1.07. The shaded area indicates the probability that
zi > 0, so that y; = 1 in the logistic regression.

5.3 Latent-data formulation

We can interpret logistic regression directly—as a nonlinear model for the proba-
bility of a “success” or “yes” response given some predictors—and also indirectly,
using what are called unobserved or latent variables. In this formulation, each dis-
crete outcome y; is associated with a continuous, unobserved outcome z;, defined

as follows:
Yoo = 10 ifu<o0
zZ; = X»Lﬂ + €5, (54)

with independent errors ¢; that have the logistic probability distribution. The lo-
gistic distribution is shown in Figure 5.5 and is defined so that

Pr(e; < x) = logit™'(z) for all z.

Thus, Pr(y; = 1) = Pr(z; > 0) = Pr(e; > —X;3) = logit ' (X;8), and so models
(5.1) and (5.4) are equivalent.

Figure 5.6 illustrates for an observation ¢ with income level z; = 1 (that is, a
person in the lowest income category), whose linear predictor, X;3, thus has the
value —1.40 4+ 0.33 - 1 = —1.07. The curve illustrates the distribution of the latent
variable z;, and the shaded area corresponds to the probability that z; > 0, so that
y; = 1. In this example, Pr(y; = 1) = logit™*(—1.07) = 0.26.
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Interpretation of the latent variables

Latent variables are a computational trick but they can also be interpreted sub-
stantively. For example, in the pre-election survey, y; = 1 for Bush supporters and
0 for Clinton supporters. The unobserved continuous z; can be interpreted as the
respondent’s “utility” or preference for Bush, compared to Clinton: the sign of the
utility tells us which candidate is preferred, and its magnitude reveals the strength
of the preference.

Only the sign of z;, not its magnitude, can be determined directly from binary
data. However, we can learn more about the z;’s given the logistic regression pre-
dictors. In addition, in some settings direct information is available about the z;’s;
for example, a survey can ask “feeling thermometer” questions such as, “Rate your
feelings about George Bush on a 1-10 scale, with 1 being the most negative and 10
being the most positive.”

Nonidentifiability of the latent variance parameter

The logistic probability density function in Figure 5.5 appears bell-shaped, much
like the normal density that is used for errors in linear regression. In fact, the logistic
distribution is very close to the normal distribution with mean 0 and standard
deviation 1.6—an identity that we discuss further on page 118 in the context of
“probit regression.” For now, we merely note that the logistic model (5.4) for the
latent variable z is closely approximated by the normal regression model,

2= X+ e, e ~N(0,02), (5.5)

with ¢ = 1.6. This then raises the question, why not estimate o?

We cannot estimate the parameter o in model (5.5) because it is not identified
when considered jointly with the regression parameter 8. If all the elements of 3
are multiplied by a positive constant and o is also multiplied by that constant, then
the model does not change. For example, suppose we fit the model

2z = —1.40 4 0.33z; 4+ €;, € ~ N(0,1.6%).
This is equivalent to the model
zi = —14.04+3.3x; + €, € ~ N(O, 162)7

or

—140 + 33z; + €;, € ~ N(0,160?).

As we move from each of these models to the next, z is multiplied by 10, but
the sign of z does not change. Thus all the models have the same implications for
the observed data y: for each model, Pr(y; = 1) = logit™*(—1.40 4 0.33z;) (only
approximate because the logistic distribution is not exactly normal).

Thus, model (5.5) has an essential indeterminacy when fit to binary data, and it
is standard to resolve this by setting the variance parameter o to a fixed value, for
example 1.6, which is essentially equivalent to the unit logistic distribution.

Zi

5.4 Building a logistic regression model: wells in Bangladesh

We illustrate the steps of building, understanding, and checking the fit of a logistic
regression model using an example from economics (or perhaps it is psychology, or
public health): modeling the decisions of households in Bangladesh about whether
to change their source of drinking water.
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Figure 5.7 Wells in an area of Araihazar upazila, Bangladesh. Light and dark dots rep-
resent wells with arsenic greater than and less than the safety standard of 0.5 (in units
of hundreds of micrograms per liter). (The wells are located where people live. The empty
areas between the wells are mostly cropland.) Safe and unsafe wells are intermingled in
most of the area, which suggests that users of unsafe wells can switch to nearby safe wells.

Background

Many of the wells used for drinking water in Bangladesh and other South Asian
countries are contaminated with natural arsenic, affecting an estimated 100 million
people. Arsenic is a cumulative poison, and exposure increases the risk of cancer
and other diseases, with risks estimated to be proportional to exposure.

Any locality can include wells with a range of arsenic levels, as can be seen from
the map in Figure 5.7 of all the wells in a collection of villages in a small area of
Bangladesh. The bad news is that even if your neighbor’s well is safe, it does not
mean that yours is safe. However, the corresponding good news is that, if your well
has a high arsenic level, you can probably find a safe well nearby to get your water
from—if you are willing to walk the distance and your neighbor is willing to share.
(The amount of water needed for drinking is low enough that adding users to a
well would not exhaust its capacity, and the surface water in this area is subject to
contamination by microbes, hence the desire to use water from deep wells.)

In the area shown in Figure 5.7, a research team from the United States and
Bangladesh measured all the wells and labeled them with their arsenic level as well
as a characterization as “safe” (below 0.5 in units of hundreds of micrograms per
liter, the Bangladesh standard for arsenic in drinking water) or “unsafe” (above 0.5).
People with unsafe wells were encouraged to switch to nearby private or community
wells or to new wells of their own construction.

A few years later, the researchers returned to find out who had switched wells.
We shall perform a logistic regression analysis to understand the factors predictive
of well switching among the users of unsafe wells. In the notation of the previous
section, our outcome variable is

~_ [ 1 if household i switched to a new well
Yi 0 if household i continued using its own well.
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Figure 5.8 Histogram of distance to the mearest safe well, for each of the unsafe wells in
the Araihazar dataset (see Figure 5.7).

We consider the following inputs:

A constant term
The distance (in meters) to the closest known safe well

The arsenic level of respondent’s well

e Whether any members of the household are active in community organizations

The education level of the head of household.

We shall first fit the model just using distance to nearest well and then put in
arsenic concentration, organizational membership, and education.

Logistic regression with just one predictor

We fit the logistic regression in R:

fit.1 <- glm (switch ~ dist, family=binomial(link="logit"))

Displaying this yields

glm(formula = switch ~ dist, family=binomial(link="logit"))
coef.est coef.se
(Intercept) 0.6060 0.0603
dist -0.0062 0.0010
n = 3020, k = 2

residual deviance = 4076.2, null deviance = 4118.1 (difference

=41.9)

The coefficient for dist is —0.0062, which seems low, but this is misleading since
distance is measured in meters, so this coefficient corresponds to the difference
between, say, a house that is 90 meters away from the nearest safe well and a house

th

to

at is 91 meters away.

Figure 5.8 shows the distribution of dist in the data. It seems more reasonable

rescale distance in 100-meter units:

dist100 <- dist/100

and refitting the logistic regression yields

glm(formula = switch ~ dist100, family=binomial(link="logit"))
coef.est coef.se
(Intercept) 0.61 0.06
dist100 -0.62 0.10
n = 3020, k = 2

residual deviance = 4076.2, null deviance = 4118.1 (difference = 41.9)
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Figure 5.9 Graphical expression of the fitted logistic regression, Pr(switching wells) =

logit™'(0.61 — 0.62 - dist100), with (jittered) data overlain. The predictor dist100 is

dist/100: distance to the nearest safe well in 100-meter units.

Graphing the fitted model

In preparing to plot the data, we first create a function to jitter the binary outcome
while keeping the points between 0 and 1:

jitter.binary <- function(a, jitt=.05){
ifelse (a==0, runif (length(a), O, jitt), runif (length(a), 1-jitt, 1))
}

We can then graph the data and fitted model:3

switch.jitter <- jitter.binary (switch)
plot (dist, switch.jitter)
curve (invlogit (coef(fit.1)[1] + coef(fit.1)[2]*x), add=TRUE)

The result is displayed in Figure 5.9. The probability of switching is about 60% for
people who live near a safe well, declining to about 20% for people who live more
than 300 meters from any safe well. This makes sense: the probability of switching
is higher for people who live closer to a safe well.

Interpreting the logistic regression coefficients

We can interpret the coefficient estimates using evaluations of the inverse-logit
function and its derivative, as in the example of Section 5.1. Our model here is

Pr(switch) = logit™'(0.61 — 0.62 - dist100).

1. The constant term can be interpreted when dist100 = 0, in which case the
probability of switching is logit71(0.61) = 0.65. Thus, the model estimates a
65% probability of switching if you live right next to an existing safe well.

2. We can evaluate the predictive difference with respect to dist100 by computing
the derivative at the average value of dist100 in the dataset, which is 0.48 (that
is, 48 meters; see Figure 5.8). The value of the linear predictor here is 0.61 —0.62-
0.48 = 0.31, and so the slope of the curve at this point is —0.62e%-3/(1+¢%-31)2 =
—0.15. Thus, adding 1 to dist100—that is, adding 100 meters to the distance
to the nearest safe well—corresponds to a negative difference in the probability
of switching of about 15%.

Another display option, which would more clearly show the differences between households that
did and did not switch, would be to overlay separate histograms of dist for the switchers and
nonswitchers.
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Figure 5.10 Histogram of arsenic levels in unsafe wells (those exceeding 0.5) in the mea-
sured area of Araihazar, Bangladesh (see Figure 5.7).

3. More quickly, the “divide by 4 rule” gives us —0.62/4 = —0.15. This comes out
the same, to two decimal places, as was calculated using the derivative because
the curve passes through the 50% point right in the middle of the data (see
Figure 5.9).

In addition to interpreting its magnitude, we can look at the statistical signifi-
cance of the coefficient for distance. The slope is estimated well, with a standard
error of only 0.10, which is tiny compared to the coefficient estimate of —0.62. The
approximate 95% interval is [—0.82, —0.42], which is clearly statistically significantly
different from zero.

Adding a second input variable

We now extend the well-switching example by adding the arsenic level of the existing
well as a regression input. At the levels present in the Bangladesh drinking water,
the health risks from arsenic are roughly proportional to exposure, and so we would
expect switching to be more likely from wells with high arsenic levels. Figure 5.10
shows the arsenic levels of the unsafe wells before switching.

fit.3 <- glm (switch ~ dist100 + arsenic, family=binomial(link="logit"))
which, when displayed, yields

coef.est coef.se

(Intercept) 0.00 0.08
dist100 -0.90 0.10
arsenic 0.46 0.04

n = 3020, k = 3
residual deviance = 3930.7, null deviance = 4118.1 (difference = 187.4)

Thus, comparing two wells with the same arsenic level, every 100 meters in distance
to the nearest safe well corresponds to a negative difference of 0.90 in the logit prob-
ability of switching. Similarly, a difference of 1 in arsenic concentration corresponds
to a 0.46 positive difference in the logit probability of switching. Both coefficients
are statistically significant, each being more than 2 standard errors away from zero.
And both their signs make sense: switching is easier if there is a nearby safe well,
and if a household’s existing well has a high arsenic level, there should be more
motivation to switch.

For a quick interpretation, we divide the coefficients by 4: thus, 100 meters more
in distance corresponds to an approximately 22% lower probability of switching,
and 1 unit more in arsenic concentration corresponds to an approximately 11%
positive difference in switching probability.

Comparing these two coefficients, it would at first seem that distance is a more
important factor than arsenic level in determining the probability of switching.
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Figure 5.11 Fitted logistic regression of probability of switching from an unsafe well as a
function of two variables, plotted (a) as a function of distance to nearest safe well and (b)
as a function of arsenic level of existing well. For each plot, the other input variable is
held constant at different representative values.

Such a statement is misleading, however, because in our data dist100 shows less
variation than arsenic: the standard deviation of distances to the nearest well is
0.38 (in units of 100 meters), whereas arsenic levels have a standard deviation of 1.10
on the scale used here. Thus, the logistic regression coefficients corresponding to 1-
standard-deviation differences are —0.90-0.38 = —0.34 for distance and 0.46-1.10 =
0.51 for arsenic level. Dividing by 4 yields the quick summary estimate of a 1-
standard-deviation difference in distance or arsenic level corresponding to an 8%
negative difference or a 13% positive difference, respectively, in Pr(switch).

Comparing the coefficient estimates when adding a predictor

The coefficient for dist100 changes from —0.62 in the original model to 0.90 when
arsenic level is added to the model. This change occurs because wells that are far
from the nearest safe well are also likely to be particularly high in arsenic.

Graphing the fitted model with two predictors

The most natural way to graph the regression of y on two predictors might be as
a three-dimensional surface, with the vertical axis showing Pr(y = 1) as a function
of predictors plotted on the two horizontal axes.

However, we find such graphs hard to read, so instead we make separate plots as
a function of each of the two variables; see Figure 5.11. As with the lines in Figure
3.4, we can plot the focus input variable on the z-axis and use multiple lines to
show the fit for different values of the other input. To produce Figure 5.11a, we
first plot the (jittered) data points, forcing zero to be included in the z-range of
the plot because it is a natural baseline comparison for distance:

plot (dist, switch.jitter, xlim=c(0,max(dist)))
We next add the fitted curves:

curve (invlogit (cbind (1, x/100, .5) %*% coef(fit.3)), add=TRUE)
curve (invlogit (cbind (1, x/100, 1.0) %*J% coef(fit.3)), add=TRUE)

We need to divide by 100 here because the plot is in the scale of meters but the
model is defined in terms of dist100 = dist/100.

The object created by cbind(1,x/100, .5) is an n X 3 matrix constructed from
a column of 1’s, the vector x (used internally by the curve function), and a vector
of .5’. In constructing the matrix, R automatically expands the scalars 1 and
.5 to the length of the vector x. For the two lines, we pick arsenic levels of 0.5
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and 1.0 because 0.5 is the minimum value of arsenic concentration (since we are
only studying users of unsafe wells), and a difference of 0.5 represents a reasonable
comparison, given the distribution of arsenic levels in the data (see Figure 5.10).

Similar commands are used to make Figure 5.11b, showing the probability of

switching as a function of arsenic concentration with distance held constant:

plot (arsenic, switch.jitter, xlim=c(0,max(arsenic)))

curve (invlogit (cbind (1, 0, x) %x% coef(fit.3)), add=TRUE)
curve (invlogit (cbind (1,.5, x) %*% coef(fit.3)), add=TRUE)

5.5 Logistic regression with interactions

We continue our modeling by adding the interaction between the two inputs:

fit.4 <- glm (switch ~ dist100 + arsenic + dist100:arsenic,
family=binomial (1ink="logit"))
display (fit.4)

which yields

coef.est coef.se

(Intercept) -0.15 0.12
dist100 -0.58 0.21
arsenic 0.56 0.07

dist100:arsenic -0.18 0.10
n = 3020, k = 4
residual deviance = 3927.6, null deviance = 4118.1 (difference = 190.5)

To understand the numbers in the table, we use the following tricks:

Evaluating predictions and interactions at the mean of the data, which have
average values of 0.48 for dist100 and 1.66 for arsenic (that is, a mean distance
of 48 meters to the nearest safe well, and a mean arsenic level of 1.66 among the
unsafe wells).

Dividing by 4 to get approximate predictive differences on the probability scale.

We now interpret each regression coefficient in turn.

Constant term: logit71(70.15) = 0.47 is the estimated probability of switching,
if the distance to the nearest safe well is 0 and the arsenic level of the current
well is 0. This is an impossible condition (since arsenic levels all exceed 0.5 in
our set of unsafe wells), so we do not try to interpret the constant term. Instead,
we can evaluate the prediction at the average values of dist100 = 0.48 and
arsenic = 1.66, where the probability of switching is 10git71(70.15 — 0.58 -
0.48 4 0.56 - 1.66 — 0.18 - 0.48 - 1.66) = 0.59.

Coefficient for distance: this corresponds to comparing two wells that differ by
1 in dist100, if the arsenic level is 0 for both wells. Once again, we should not
try to interpret this.

Instead, we can look at the average value, arsenic = 1.66, where distance has a
coefficient of —0.58 — 0.18 - 1.66 = —0.88 on the logit scale. To quickly interpret
this on the probability scale, we divide by 4: —0.88/4 = —0.22. Thus, at the
mean level of arsenic in the data, each 100 meters of distance corresponds to an
approximate 22% negative difference in probability of switching.

Coefficient for arsenic: this corresponds to comparing two wells that differ by 1
in arsenic, if the distance to the nearest safe well is 0 for both.

Instead, we evaluate the comparison at the average value for distance, dist100 =
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0.48, where arsenic has a coefficient of 0.56 —0.18-0.48 = 0.47 on the logit scale.
To quickly interpret this on the probability scale, we divide by 4: 0.47/4 = 0.12.
Thus, at the mean level of distance in the data, each additional unit of arsenic
corresponds to an approximate 12% positive difference in probability of switching.

Coefficient for the interaction term: this can be interpreted in two ways. Looking
from one direction, for each additional unit of arsenic, the value —0.18 is added to
the coefficient for distance. We have already seen that the coefficient for distance
is —0.88 at the average level of arsenic, and so we can understand the interaction
as saying that the importance of distance as a predictor increases for households
with higher existing arsenic levels.

Looking at it the other way, for each additional 100 meters of distance to the
nearest well, the value —0.18 is added to the coefficient for arsenic. We have
already seen that the coefficient for distance is 0.47 at the average distance to
nearest safe well, and so we can understand the interaction as saying that the
importance of arsenic as a predictor decreases for households that are farther
from existing safe wells.

Centering the input variables

As discussed earlier in the context of linear regression, before fitting interactions it
makes sense to center the input variables so that we can more easily interpret the
coefficients. The centered inputs are:

c.dist100 <- dist100 - mean(dist100)
c.arsenic <- arsenic - mean(arsenic)

We do not fully standardize these—that is, we do not scale by their standard
deviations—because it is convenient to be able to consider known differences on the
original scales of the data (100-meter distances and arsenic-concentration units).

Refitting the interaction model using the centered inputs

We can refit the model using the centered input variables, which will make the
coefficients much easier to interpret:

fit.5 <- glm (switch ~ c.dist100 + c.arsenic + c.dist100:c.arsenic,
family=binomial (1ink="logit"))

We center the inputs, not the predictors. Hence, we do not center the interaction
(dist100*arsenic); rather, we include the interaction of the two centered input
variables. Displaying fit.5 yields

coef.est coef.se

(Intercept) 0.35 0.04
c.dist100 -0.88 0.10
c.arsenic 0.47 0.04
c.dist100:c.arsenic -0.18 0.10

n = 3020, k = 4
residual deviance = 3927.6, null deviance = 4118.1 (difference = 190.5)

Interpreting the inferences on this new scale:

e Constant term: logit™'(0.35) = 0.59 is the estimated probability of switching, if
c.dist100 = c.arsenic = 0, that is, if distance to nearest safe well and arsenic
level are at their averages in the data. (We obtained this same calculation, but
with more effort, with our earlier model with uncentered inputs.)
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Figure 5.12 Fitted logistic regression of probability of switching from an unsafe well as a
function of distance to nearest safe well and arsenic level of existing well, for the model
with interactions. Compare to the no-interaction model in Figure 5.11.

e Coefficient for distance: this is the coefficient for distance (on the logit scale) if
arsenic level is at its average value. To quickly interpret this on the probability
scale, we divide by 4: —0.88/4 = —0.22. Thus, at the mean level of arsenic in the
data, each 100 meters of distance corresponds to an approximate 22% negative
difference in probability of switching.

e Cocfficient for arsenic: this is the coefficient for arsenic level if distance to nearest
safe well is at its average value. To quickly interpret this on the probability
scale, we divide by 4: 0.47/4 = 0.12. Thus, at the mean level of distance in the
data, each additional unit of arsenic corresponds to an approximate 12% positive
difference in probability of switching.

Coefficient for the interaction term: this is unchanged by centering and has the
same interpretation as before.

The predictions for new observations are unchanged. The linear centering of the
predictors changes the interpretations of the coefficients but does not change the
underlying model.

Statistical significance of the interaction

As can be seen from the regression table on the previous page, c.dist100:c.arsenic
has an estimated coefficient of —0.18 with a standard error of 0.10. The estimate

is not quite 2 standard errors away from zero and so is not quite statistically sig-

nificant. However, the negative sign makes sense—it is plausible that arsenic level

becomes a less important predictor for households that are farther from the nearest

safe well, and the magnitude of the association is also plausible. So we keep the

interaction in, following our general rules for regression coefficients and statistical

significance, as given in Section 4.6.

Graphing the model with interactions

The clearest way to visualize the interaction model is to plot the regression curves
as a function for each picture. The result is shown in Figure 5.12, the first graph of
which we make in R as follows (with similar commands for the other graph):

plot (dist, switch.jitter, xlim=c(0,max(dist)))
curve (invlogit (cbind(1,x/100, .5, .5%x/100) %*% coef(fit.4)), add=TRUE)
curve (invlogit (cbind(1,%/100,1.0,1.0%x/100) %*% coef(fit.4)), add=TRUE)

As Figure 5.12 makes clear, the interaction is not large in the range of most of the
data. The largest pattern that shows up is in Figure 5.12a, where the two lines
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intersect at around 300 meters. This graph shows evidence that the differences in
switching associated with differences in arsenic level are large if you are close to
a safe well, but with a diminishing effect if you are far from any safe well. This
interaction makes some sense; however, there is some uncertainty in the size of the
interaction (from the earlier regression table, an estimate of —0.18 with a standard
error of 0.10), and as Figure 5.12a shows, there are only a few data points in the
area where the interaction makes much of a difference.

The interaction also appears in Figure 5.12b, this time in a plot of probability of
switching as a function of arsenic concentration, at two different levels of distance.

Adding social predictors

Are well users more likely to switch if they have community connections or more
education? To see, we add two inputs:

e assoc = 1 if a household member is in any community organization

e educ = years of education of the well user.

We actually work with educ4d = educ/4, for the usual reasons of making its
regression coefficient more interpretable—it now represents the predictive difference
of adding four years of education.*

glm(formula = switch ~ c.dist100 + c.arsenic + c.dist100:c.arsenic +
assoc + educ4, family=binomial(link="logit"))
coef.est coef.se

(Intercept) 0.20 0.07
c.dist100 -0.88 0.11
c.arsenic 0.48 0.04
c.dist100:c.arsenic -0.16 0.10
assoc -0.12 0.08
educ4d 0.17 0.04

n = 3020, k = 6
residual deviance = 3905.4, null deviance = 4118.1 (difference = 212.7)

For households with unsafe wells, belonging to a community association surpris-
ingly is not predictive of switching, after controlling for the other factors in the
model. However, persons with higher education are more likely to switch: the crude
estimated difference is 0.17/4 = 0.04, or a 4% positive difference in switching prob-
ability when comparing households that differ by 4 years of education.’

The coefficient for education makes sense and is statistically significant, so we
keep it in the model. The coefficient for association does not make sense and is not
statistically significant, so we remove it. (See Section 4.6 for a fuller discussion of
including or excluding regression predictors.) We are left with

glm(formula = switch ~ c.dist100 + c.arsenic + c.dist100:c.arsenic +
educ4, family = binomial(link = "logit"))
coef.est coef.se
(Intercept) 0.15 0.06

4 The levels of education among the 3000 respondents varied from 0 to 17 years, with nearly a
third having zero. We repeated our analysis with a discrete recoding of the education variable
(0 = 0 years, 1 = 1-8 years, 2 = 9-12 years, 3 = 12+ years), and our results were essentially
unchanged.

5 Throughout this example, we have referred to “coefficients” and “differences,” rather than to
“effects” and “changes,” because the observational nature of the data makes it difficult to
directly interpret the regression model causally. We continue causal inference more carefully in
Chapter 9, briefly discussing the arsenic problem at the end of Section 9.8.
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c.dist100 -0.87 0.11
c.arsenic 0.48 0.04
c.dist100:c.arsenic -0.16 0.10
educ4 0.17 0.04

n = 3020, k =5
residual deviance = 3907.9, null deviance = 4118.1 (difference = 210.2)

Adding further interactions

When inputs have large main effects, it is our general practice to include their
interactions as well. We first create a centered education variable:

c.educ4d <- educ4 - mean(educ4d)

and then fit a new model interacting it with distance to nearest safe well and arsenic
level of the existing well:

th

glm(formula=switch”c.dist100 + c.arsenic + c.educ4 + c.dist100:c.arsenic +
c.dist100:c.educ4 + c.arsenic:c.educ4, family=binomial(link="logit"))
coef.est coef.se

(Intercept) 0.36 0.04
c.dist100 -0.90 0.11
c.arsenic 0.49 0.04
c.educ4 0.18 0.04
c.dist100:c.arsenic -0.12 0.10
c.dist100:c.educd 0.32 0.11
c.arsenic:c.educd 0.07 0.04

n = 3020, k =7

residual deviance = 3891.7, null deviance = 4118.1 (difference = 226.4)
We can interpret these new interactions by understanding how education modifies
e predictive difference corresponding to distance and arsenic.

Interaction of distance and education: a difference of 4 years of education corre-
sponds to a difference of 0.32 in the coefficient for dist100. As we have already
seen, dist100 has a negative coefficient on average; thus positive changes in
education reduce distance’s negative association. This makes sense: people with
more education probably have other resources so that walking an extra distance
to get water is not such a burden.

Interaction of arsenic and education: a difference of 4 years of education corre-
sponds to a difference of 0.07 in the coefficient for arsenic. As we have already
seen, arsenic has a positive coefficient on average; thus increasing education
increases arsenic’s positive association. This makes sense: people with more edu-
cation could be more informed about the risks of arsenic and thus more sensitive
to increasing arsenic levels (or, conversely, less in a hurry to switch from wells
with arsenic levels that are relatively low).

As before, centering allows us to interpret the main effects as coefficients when

other inputs are held at their average values in the data.

Standardizing predictors

We should think seriously about standardizing all predictors as a default option
when fitting models with interactions. The struggles with dist100 and educ4 in

th
th

is example suggest that standardization—Dby subtracting the mean from each of
e continuous input variables and dividing by 2 standard deviations, as suggested

near the end of Section 4.2—might be the simplest approach.
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Figure 5.13 (a) Residual plot and (b) binned residual plot for the well-switching model
shown on page 96. The strong patterns in the raw residual plot arise from the discreteness
of the data and inspire us to use the binned residual plot instead. The bins are not equally
spaced; rather, each bin has an equal number of data points. The light lines in the binned
residual plot indicate theoretical 95% error bounds.

5.6 Evaluating, checking, and comparing fitted logistic regressions
Residuals and binned residuals

We can define residuals for logistic regression, as with linear regression, as observed
minus expected values:

E(yi|X;) = yi — logit™" (X, ).

The data y; are discrete and so are the residuals. For example, if logit™* (X;8) = 0.7,
then residual; = —0.7 or +-0.3, depending on whether y; = 0 or 1. As a result, plots
of raw residuals from logistic regression are generally not useful. For example, Figure
5.13a plots residuals versus fitted values for the well-switching regression.

Instead, we plot binned residuals by dividing the data into categories (bins) based
on their fitted values, and then plotting the average residual versus the average fitted
value for each bin. The result appears in Figure 5.13b; here we divided the data into
40 bins of equal size.® The dotted lines (computed as 21/p(1 — p)/n, where n is the
number of points per bin, 3020/40 = 75 in this case) indicate +2 standard-error
bounds, within which one would expect about 95% of the binned residuals to fall,
if the model were actually true. One of the 40 binned residuals in Figure 5.13b falls
outside the bounds, which is not a surprise, and no dramatic pattern appears.

residual; = y; —

Plotting binned residuals versus inputs of interest

We can also look at residuals in a more structured way by binning and plotting them
with respect to individual input variables or combinations of inputs. For example,
in the well-switching example, Figure 5.14a displays the average residual in each
bin as defined by distance to the nearest safe well, and Figure 5.14b shows average
residuals, binned by arsenic levels.

This latter plot shows a disturbing pattern, with an extreme negative residual
in the first three bins: people with wells in the lowest bin (which turns out to
correspond to arsenic levels between 0.51 and 0.53) are about 20% less likely to

6 There is typically some arbitrariness in choosing the number of bins: we want each bin to contain
enough points so that the averaged residuals are not too noisy, but it helps to have many bins
so as to see more local patterns in the residuals. For this example, 40 bins seemed to give
sufficient resolution, while still having enough points per bin. Another approach would be to
apply a nonparametric smoothing procedure such as lowess (Cleveland, 1979) to the residuals.
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Figure 5.14 Plots of residuals for the well-switching model, binned and plotted versus (a)
distance to nearest well and (b) arsenic level. The dotted lines in the binned residual plot
indicate theoretical 95% error bounds that would be appropriate if the model were true.
The second plot shows a problem with the model in the lowest bins of arsenic levels.

switch than is predicted by the model: the average predicted probability of switching
for these users is 49%, but actually only 32% of them switched. There is also a slight
pattern in the residuals as a whole, with positive residuals (on average) in the middle
of the range of arsenic and negative residuals at the high end.

Considering a log transformation

To experienced regression modelers, a rising and then falling pattern of residuals
such as in Figure 5.14b is a signal to consider taking the logarithm of the predictor
on the x axis—in this case, arsenic level. Another option would be to add a quadratic
term to the regression; however, since arsenic is an all-positive variable, it makes
sense to consider its logarithm. We do not, however, model distance on the log
scale, since the residual plot, as shown in Figure 5.13a, indicates a good fit of the
linear model.

We define

log.arsenic <- log(arsenic)
c.log.arsenic <- log.arsenic - mean (log.arsenic)

and then fit the same model as before, using log.arsenic in place of arsenic:

glm(formula = switch ~ c.dist100 + c.log.arsenic + c.educ4 +
c.dist100:c.log.arsenic + c.dist100:c.educ4 + c.log.arsenic:c.educ4,
family = binomial(link = "logit"))

coef.est coef.se

(Intercept) 0.35 0.04
c.dist100 -0.98 0.11
c.log.arsenic 0.90 0.07
c.educ4 0.18 0.04
c.dist100:c.log.arsenic -0.16 0.19
c.dist100:c.educ4 0.34 0.11
c.log.arsenic:c.educ4 0.06 0.07

n = 3020, k =7
residual deviance = 3863.1, null deviance = 4118.1 (difference = 255)

This is qualitatively similar to the model on the original scale: the interactions have

the same sign as before, and the signs of the main effects are also unchanged.
Figure 5.15a shows the predicted probability of switching as a function of arsenic

level. Compared to the model in which arsenic was included as a linear predictor
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Figure 5.15 (a) Probability of switching as a function of arsenic level (at two different
values of dist and with education held constant at its average value), for the model that
includes arsenic on the logarithmic scale. Compared to Figure 5.11b (the corresponding
plot with arsenic level included as a linear predictor), the model looks similar, but with a
steeper slope at the low end of the curve and a more gradual slope at the high end.

(b) Average residuals for this model, binned by arsenic level. Compared to Figure 5.14b, the
residual plot still shows problems at the lowest arsenic levels but otherwise looks cleaner.

(see Figure 5.11b on page 91), the curves are compressed at the left and stretched
out at the right.

Figure 5.15b displays the residuals for the log model, again binned by arsenic
level. Compared to the earlier model, the residuals look better but there is still a
problem at the very low end. Users of wells with arsenic levels just above 0.50 are
less likely to switch than predicted by the model. At this point, we do not know
if this can be explained psychologically (measurements just over the threshold do
not seem so bad), through measurement error (perhaps some of the wells we have
recorded as 0.51 or 0.52 were measured before or after and found to have arsenic
levels below 0.5), or for some other reason.

Error rate and comparison to the null model

The error rate is defined as the proportion of cases for which the determinis-
tic prediction—guessing y; = 1 if logit *(X;8) > 0.5 and guessing y; = 0 if
logit ™! (X;8) < 0.5—is wrong. In R, we could write:

error.rate <- mean ((predicted>0.5 & y==0) | (predicted<.5 & y==1))

The error rate should always be less than 1/2 (otherwise we could simply set all
the 3’s to 0 and get a better-fitting model), but in many cases we would expect it to
be much lower. We can compare it to the error rate of the null model, which is simply
to assign the same probability to each y;. This is simply logistic regression with only
a constant term, and the estimated probability will simply be the proportion of 1’s
in the data, or p = Y. | y;/n (recalling that each y; = 0 or 1). The error rate of
the null model is then p or 1—p, whichever is lower.

For example, in the well-switching example, the null model has an error rate
of 42% (58% of the respondents are switchers and 42% are not, thus the model
with no predictors gives each person a 58% chance of switching, which corresponds
to a point prediction of switching for each person, and that guess will be wrong
42% of the time). Our final logistic regression model (as calculated in R as shown)
has an error rate of 36%. The model correctly predicts the behavior of 64% of the
respondents.

R code
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The error rate is not a perfect summary of model misfit, because it does not
distinguish between predictions of 0.6 and 0.9, for example. But, as with R? for the
linear model, it is easy to interpret and is often helpful in understanding the model
fit. An error rate equal to the null rate is terrible, and the best possible error rate
is zero. Thus, the well-switching model is not particularly impressive with an error
rate of 38%, a mere 4% better than simply guessing that all people will switch.

This low error rate does not mean the model is useless—as the plots showed, the
fitted model is highly predictive of the probability of switching. But most of the
data are close to the mean level of the inputs (distances of less than 100 meters to
the nearest safe well, and arsenic levels between 0.5 and 1.0), and so for most of
the data, the simple mean prediction, Pr(switch)=0.58, works well. The model is
informative near the extremes, but relatively few data points are out there and so
the overall predictive accuracy of the model is not high.

Deviance

For logistic regressions and other discrete-data models, it does not quite make

sense to calculate residual standard deviation and R?, for pretty much the same

reason that the models are not simply fit by least squares—the squared error is

not the mathematically optimal measure of model error. Instead, it is standard to

use deviance, a statistical summary of model fit, defined for logistic regression and

other generalized linear models to be an analogy to residual standard deviation.
For now, you should know the following properties of deviance:

e Deviance is a measure of error; lower deviance means better fit to data.

e If a predictor that is simply random noise is added to a model, we expect deviance
to decrease by 1, on average.

e When an informative predictor is added to a model, we expect deviance to de-
crease by more than 1. When k predictors are added to a model, we expect
deviance to decrease by more than k.

For classical (non-multilevel) models, the deviance is defined as —2 times the loga-
rithm of the likelihood function (up to an arbitrary additive constant, since we are
always comparing deviances, never evaluating them on their own).

For example, in the first model fit to the well-switching example, the display
on page 88 reports that the “null deviance” is 4118.1 and the “residual deviance”
is 4076.2. The null deviance corresponds to the null model, with just the constant
term. Thus, by adding dist as a predictor in the model, the deviance has decreased
by 41.9. This is much more than the expected decrease of 1 if the predictor were
noise, so it has clearly improved the fit.

The next fitted model uses dist100 = dist/100 as a predictor instead. The de-
viance stays at 4076.2, because linear transformations have no effect on predictions
in classical regression models. (We shall see, however, that linear transformations
can make a difference in multilevel models.)

We then add the arsenic predictor, and the deviance decreases to 3930.7, a
drop of 145.5—once again, much more than the expected decrease of 1 if the new
predictor were noise, so it has clearly improved the fit.

The following model including the interaction between dist and arsenic has a
residual deviance of 3927.6, a decrease of 3.1 from the previous model, only a bit
more than the expected decrease of 1 if the new predictor were noise. This decrease
in deviance is not statistically significant (we can see this because the coefficient
for the added predictor is less than 2 standard errors from zero) but, as discussed
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in Section 5.5, we keep the interaction in the model because it makes sense in the
applied context.

Adding the social predictors assoc and educ to the regression decreases the de-
viance to 3905.4, implying better prediction than all the previous models. Removing
assoc increases the deviance only a small amount, to 3907.9. Adding interactions
of education with distance and arsenic level reduces the deviance by quite a bit
more, to 3891.7.

Transforming arsenic on to the log scale—that is, removing arsenic from the
model and replacing it with log.arsenic, takes the deviance down to 3863.1, an-
other large improvement.

For multilevel models, deviance is generalized to the deviance information crite-
rion (DIC), as described in Section 24.3.

5.7 Average predictive comparisons on the probability scale

As illustrated, for example, by Figure 5.11 on page 91, logistic regressions are
nonlinear on the probability scale—that is, a specified difference in one of the z
variables does not correspond to a constant difference in Pr(y =1). As a result,
logistic regression coefficients cannot directly be interpreted on the scale of the
data. Logistic regressions are inherently more difficult than linear regressions to
interpret.

Graphs such as Figure 5.11 are useful, but for models with many predictors, or
where graphing is inconvenient, it is helpful to have a summary, comparable to
the linear regression coefficient, which gives the expected, or average, difference in
Pr(y=1) corresponding to a unit difference in each of the input variables.

Ezample: well switching in Bangladesh

For a model with nonlinearity or interactions, or both, this average predictive com-
parison depends on the values of the input variables, as we shall illustrate with the
well-switching example. To keep the presentation clean at this point, we shall work
with a simple no-interaction model,

fit.10 <- glm (switch ~ dist100 + arsenic + educ4,
family=binomial (1ink="logit"))

which yields

coef.est coef.se

(Intercept) -0.21 0.09
dist100 -0.90 0.10
arsenic 0.47 0.04
educ4d 0.17 0.04

n = 3020, k = 4
residual deviance = 3910.4, null deviance = 4118.1 (difference = 207.7)

giving the probability of switching as a function of distance to the nearest well (in
100-meter units), arsenic level, and education (in 4-year units).

Average predictive difference in probability of switching, comparing households that
are next to, or 100 meters from, the nearest safe well. Let us compare two house-
holds—one with dist100 = 0 and one with dist100 = 1-—but identical in the
other input variables, arsenic and educ4. The predictive difference in probability
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of switching between these two households is

§(arsenic, educ4) = logit ™" (—0.21 — 0.90 - 1 + 0.47 - arsenic 4 0.17 - educ4) —
logit™*(—0.21 — 0.90 - 0 4 0.47 - arsenic + 0.17 - educd). (5.6)

We write § as a function of arsenic and educ4 to emphasize that it depends on
the levels of these other variables.
We average the predictive differences over the n households in the data to obtain:

1 n
average predictive difference: = ” Z d(arsenic;, educd;). (5.7)
i=1

In R:

b <- coef (fit.10)

hi <-1

lo <- 0

delta <- invlogit (b[1] + b[2]*hi + b[3]*arsenic + b[4]*educd) -
invlogit (b[1] + b[2]*1lo + b[3]*arsenic + b[4]*educ4d)

print (mean(delta))

The result is —0.20, implying that, on average in the data, households that are
100 meters from the nearest safe well are 20% less likely to switch, compared to
househoulds that are right next to the nearest safe well, at the same arsenic and
education levels.

Average predictive difference in probability of switching, comparing households with
ezisting arsenic levels of 0.5 and 1.0. We can similarly compute the predictive
difference, and average predictive difference, comparing households at two different
arsenic levels, assuming equality in distance to nearest safe well and education
levels. We choose arsenic = 0.5 and 1.0 as comparison points because 0.5 is the
lowest unsafe level, 1.0 is twice that, and this comparison captures much of the
range of the data (see Figure 5.10 on page 90). Here is the computation:

hi <- 1.0

lo <- 0.5

delta <- invlogit (b[1] + b[2]*dist100 + b[3]*hi + b[4]*educd) -
invlogit (b[1] + b[2]*dist100 + b[3]*lo + b[4]*educ4d)

print (mean(delta))

The result is 0.06—so this comparison corresponds to a 6% difference in probability
of switching.

Average predictive difference in probability of switching, comparing householders
with 0 and 12 years of education. Similarly, we can compute an average predictive
difference of the probability of switching for householders with 0 compared to 12
years of education (that is, comparing educ4 = 0 to educd = 3):

hi <- 3

lo <- 0

delta <- invlogit (b[1]+b[2]*dist100+b[3]*arsenic+b[4]*hi) -
invlogit (b[1]+b[2]*dist100+b[3]*arsenic+b[4]*1l0)

print (mean(delta))

which comes to 0.12.
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Average predictive comparisons in the presence of interactions

We can perform similar calculations for models with interactions. For example,
consider the average predictive difference, comparing dist = 0 to dist = 100, for
the model that includes a distance x arsenic interaction:

fit.11 <- glm (switch ~ dist100 + arsenic + educ4 + dist100:arsenic,
family=binomial (link="logit"))

which, when displayed, yields

coef.est coef.se

(Intercept) -0.35 0.13
dist100 -0.60 0.21
arsenic 0.56 0.07
educ4 0.17 0.04
dist100:arsenic -0.16 0.10

n = 3020, k = 5
residual deviance = 3907.9, null deviance = 4118.1 (difference = 210.2)

Here is the R code for computing the average predictive difference comparing
distl =1 todist1 =0:

b <- coef (fit.11)

hi <-1

lo <- 0

delta <- invlogit (b[1] + b[2]*hi + b[3]*arsenic + b[4]*educd +
b[5]*hi*arsenic) -

invlogit (b[1] + b[2]*lo + b[3]*arsenic + b[4]*educd +

b[5]*lo*arsenic)

print (mean(delta))

which comes to —0.19.

General notation for predictive comparisons

Considering each input one at a time, we use the notation u for the input of interest
and v for the vector of all other inputs. Suppose we are considering comparisons
of u = u® to u = u® with all other inputs held constant (for example, we have
considered the comparison of households that are 0 meters or 100 meters from
the nearest safe well). The predictive difference in probabilities between two cases,
differing only in u, is

(™, w0, 8) = Pr(y=1[u™, v, 8) - Pry=1{u"?,v,8),  (58)

where the vertical bar in these expressions is read “conditional on” (for example,
the probability that y = 1 given w®) 4 and B).

The average predictive difference then averages over the n points in the dataset
used to fit the logistic regression:

. 1@ .
A(u<hl)7 u(lo)) = - § 5(u(hl)7 u(10)7vi7 6)7 (59)
n
i=1

where v; represents the vector of other inputs (in our example, arsenic and education
levels) for data point i. These expressions generalize formulas (5.6) and (5.7).

For models with interactions, the predictive difference formula (5.8) must be
computed carefully, with awareness of where each input enters into the regression
model. The distinction between input variables (in this case, distance, arsenic, and
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Figure 5.16 Example of data for which a logistic regression model is nonidentifiable. The
outcome y equals O for all data below x = 2 and 1 for all data above x = 2, hence the
best-fit logistic regression line is y = logit~"(co(x — 2)), which has an infinite slope at
T =2.

education) and predictors (constant term, distance, arsenic, education, and distance
x arsenic) is crucial. We discuss average predictive comparisons further in Section
21.4.

5.8 Identifiability and separation

There are two reasons that a logistic regression can be nonidentified (that is, have
parameters that cannot be estimated from the available data and model, as dis-
cussed in Section 4.5 in the context of linear regression):

1. As with linear regression, if predictors are collinear, then estimation of the linear
predictor, X3, does not allow separate estimation of the individual parameters
(. We can handle this kind of nonidentifiability in the same way that we would
proceed for linear regression, as described in Section 4.5.

2. A completely separate identifiability problem, called separation, can arise from
the discreteness of the data.

e If a predictor x; is completely aligned with the outcome, so that y = 1 for all
the cases where x; exceeds some threshold 7', and y = 0 for all cases where
x; < T, then the best estimate for the coefficient 3; is co. Figure 5.16 shows
an example. Exercise 5.11 gives an example with a binary predictor.

Conversely, if y = 1 for all cases where 2; < T, and y = 0 for all cases where
x; > T, then 8; will be —o0.

More generally, this problem will occur if any linear combination of predictors
is perfectly aligned with the outcome. For example, suppose that 7x; +z2—3z3
is completely positively aligned with the data, with y = 1 if and only if
this linear combination of predictors exceeds some threshold. Then the linear
combination 703 + 2 — 3035 will be estimated at oo, which will cause at least
one of the three coefficients (31, 32, 3 to be estimated at oo or —oo.

One way to handle separation is using a Bayesian or penalized-likelihood ap-
proach (implemented for R in the brlr package) that provides a small amount
of information on all the regression coefficients, including those that are not
identified from the data alone. (See Chapter 18 for more on Bayesian inference.)
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5.9 Bibliographic note

According to Cramer (2003, chapter 9), logistic regression was introduced for bi-
nary data in the mid-twentieth century and has become increasingly popular as
computational improvements have allowed it to become a routine data-analytic
tool.

For more on income and voting in presidential elections, see Gelman, Shor, et al.
(2005). The example of drinking water in Bangladesh is described further by van
Geen et al. (2003) and Gelman, Trevisani, et al. (2004).

Binned residual plots and related tools for checking the fit of logistic regressions
are discussed by Landwehr, Pregibon, and Shoemaker (1984), Gelman, Goegebeur,
et al. (2000), Pardoe and Cook (2002), and Pardoe (2004).

Deviance is discussed by McCullagh and Nelder (1989); related ideas include the
Akaike (1973) information criterion (AIC), C}, (Mallows, 1973), and the deviance
information criterion (DIC; Spiegelhalter et al., 2002). See also Fox (2002) for an
applied overview and Gelman et al. (2003, sections 6.7-6.8) for a Bayesian perspec-
tive.

Nonidentifiability of logistic regression and separation in discrete data are dis-
cussed by Albert and Anderson (1984), Lesaffre and Albert (1989), Heinze and
Schemper (2003), as well as in the book by Agresti (2002). Zorn (2005) proposes a
Bayesian resolution, following Firth (1993).

5.10 Exercises

1. The folder nes contains the survey data of presidential preference and income for
the 1992 election analyzed in Section 5.1, along with other variables including
sex, ethnicity, education, party identification, and political ideology.

(a) Fit a logistic regression predicting support for Bush given all these inputs.
Consider how to include these as regression predictors and also consider pos-
sible interactions.

(b) Evaluate and compare the different models you have fit. Consider coefficient
estimates and standard errors, residual plots, and deviances.

(c¢) For your chosen model, discuss and compare the importance of each input
variable in the prediction.

2. Without using a computer, sketch the following logistic regression lines:

(a) Pr(y =1) = logit ()
(b) Pr(y =1) = logit~ (2 + z)
(¢) Pr(y = 1) = logit™!(2x)
(d) Pr(y = 1) = logit™}(2 + 22)

(e) Pr(y = 1) = logit ™ (—2z)
3. You are interested in how well the combined earnings of the parents in a child’s
family predicts high school graduation. You are told that the probability a child
graduates from high school is 27% for children whose parents earn no income and
is 88% for children whose parents earn $60,000. Determine the logistic regression

model that is consistent with this information. (For simplicity you may want to
assume that income is measured in units of $10,000).

4. Perform a logistic regression for a problem of interest to you. This can be from
a research project, a previous class, or data you download. Choose one variable
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of interest to be the outcome, which will take on the values 0 and 1 (since you
are doing logistic regression).

(a) Analyze the data in R. Use the display() function to summarize the results.

(b) Fit several different versions of your model. Try including different predictors,
interactions, and transformations of the inputs.

(¢) Choose one particular formulation of the model and do the following:

i. Describe how each input affects Pr(y = 1) in the fitted model. You must
consider the estimated coefficient, the range of the input values, and the
nonlinear inverse-logit function.

ii. What is the error rate of the fitted model? What is the error rate of the
null model?

iii. Look at the deviance of the fitted and null models. Does the improvement
in fit seem to be real?
iv. Use the model to make predictions for some test cases of interest.

5. In a class of 50 students, a logistic regression is performed of course grade (pass
or fail) on midterm exam score (continuous values with mean 60 and standard
deviation 15). The fitted model is Pr(pass) = logit ™' (—24 + 0.4z).

(a) Graph the fitted model. Also on this graph put a scatterplot of hypothetical
data consistent with the information given.

(b) Suppose the midterm scores were transformed to have a mean of 0 and stan-
dard deviation of 1. What would be the equation of the logistic regression
using these transformed scores as a predictor?

(c) Create a new predictor that is pure noise (for example, in R you can create
newpred <- rnorm (n,0,1)). Add it to your model. How much does the
deviance decrease?

6. Latent-data formulation of the logistic model: take the model Pr(y = 1) =
logit_l(l + 221 + 3z2) and consider a person for whom x; =1 and zy = 0.5.
Sketch the distribution of the latent data for this person. Figure out the proba-
bility that y=1 for the person and shade the corresponding area on your graph.

7. Limitations of logistic regression: consider a dataset with n = 20 points, a single
predictor = that takes on the values 1,...,20, and binary data y. Construct data
values y1,...,y20 that are inconsistent with any logistic regression on z. Fit a
logistic regression to these data, plot the data and fitted curve, and explain why
you can say that the model does not fit the data.

8. Building a logistic regression model: the folder rodents contains data on rodents
in a sample of New York City apartments.

(a) Build a logistic regression model to predict the presence of rodents (the vari-
able rodent2 in the dataset) given indicators for the ethnic groups (race).
Combine categories as appropriate. Discuss the estimated coefficients in the
model.

(b) Add to your model some other potentially relevant predictors describing the
apartment, building, and community district. Build your model using the
general principles explained in Section 4.6. Discuss the coefficients for the
ethnicity indicators in your model.

9. Graphing logistic regressions: the well-switching data described in Section 5.4
are in the folder arsenic.
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(a)
(b)

Fit a logistic regression for the probability of switching using log (distance to
nearest safe well) as a predictor.

Make a graph similar to Figure 5.9 displaying Pr(switch) as a function of
distance to nearest safe well, along with the data.

Make a residual plot and binned residual plot as in Figure 5.13.

Compute the error rate of the fitted model and compare to the error rate of
the null model.

Create indicator variables corresponding to dist < 100, 100 < dist < 200,
and dist > 200. Fit a logistic regression for Pr(switch) using these indicators.
With this new model, repeat the computations and graphs for part (a) of this
exercise.

10. Model building and comparison: continue with the well-switching data described
in the previous exercise.

(a)

Fit a logistic regression for the probability of switching using, as predictors,
distance, log(arsenic), and their interaction. Interpret the estimated coeffi-
cients and their standard errors.

Make graphs as in Figure 5.12 to show the relation between probability of
switching, distance, and arsenic level.

Following the procedure described in Section 5.7, compute the average pre-
dictive differences corresponding to:

i. A comparison of dist = 0 to dist = 100, with arsenic held constant.

ii. A comparison of dist = 100 to dist = 200, with arsenic held constant.
iii. A comparison of arsenic = 0.5 to arsenic = 1.0, with dist held constant.
iv. A comparison of arsenic = 1.0 to arsenic = 2.0, with dist held constant.

Discuss these results.

11. Identifiability: the folder nes has data from the National Election Studies that
were used in Section 5.1 to model vote preferences given income. When we try
to fit a similar model using ethnicity as a predictor, we run into a problem. Here
are fits from 1960, 1964, 1968, and 1972:

glm(formula = vote ~ female + black + income,
family=binomial(link="logit"), subset=(year==1960))
coef.est coef.se

(Intercept) -0.14 0.23
female 0.24 0.14
black -1.03 0.36
income 0.03 0.06

glm(formula = vote ~ female + black + income,
family=binomial(link="logit"), subset=(year==1964))
coef.est coef.se

(Intercept) -1.15 0.22
female -0.09 0.14
black -16.83  420.40
income 0.19 0.06

glm(formula = vote ~ female + black + income,
family=binomial(link="logit"), subset=(year==1968))
coef.est coef.se
(Intercept) 0.47 0.24

R output
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female -0.01 0.15
black -3.64 0.59
income -0.03 0.07

glm(formula = vote ~ female + black + income,
family=binomial (link="logit"), subset=(year==1972))
coef.est coef.se

(Intercept) 0.67 0.18
female -0.25 0.12
black -2.63 0.27
income 0.09 0.05

What happened with the coefficient of black in 19647 Take a look at the data
and figure out where this extreme estimate came from. What can be done to fit
the model in 19647



CHAPTER 6

Generalized linear models

6.1 Introduction

Generalized linear modeling is a framework for statistical analysis that includes
linear and logistic regression as special cases. Linear regression directly predicts
continuous data y from a linear predictor X3 = By + X161 + - - - + Xy Bk. Logistic
regression predicts Pr(y = 1) for binary data from a linear predictor with an inverse-
logit transformation. A generalized linear model involves:

1. A data vector y = (y1,...,Yn)

2. Predictors X and coefficients 3, forming a linear predictor X3

3. A link function g, yielding a vector of transformed data § = g~'(X3) that are
used to model the data

4. A data distribution, p(y|g)

5. Possibly other parameters, such as variances, overdispersions, and cutpoints,
involved in the predictors, link function, and data distribution.

The options in a generalized linear model are the transformation g and the data

distribution p.

o In linear regression, the transformation is the identity (that is, g(u) = u) and
the data distribution is normal, with standard deviation o estimated from data.

o In logistic regression, the transformation is the inverse-logit, g~ (u) = logit ™" (u)
(see Figure 5.2a on page 80) and the data distribution is defined by the proba-
bility for binary data: Pr(y=1) = ¢.

This chapter discusses several other classes of generalized linear model, which we

list here for convenience:

e The Poisson model (Section 6.2) is used for count data; that is, where each
data point y; can equal 0, 1, 2, .... The usual transformation g used here is the
logarithmic, so that g(u) = exp(u) transforms a continuous linear predictor X;3
to a positive g;. The data distribution is Poisson.

It is usually a good idea to add a parameter to this model to capture overdis-
persion, that is, variation in the data beyond what would be predicted from the
Poisson distribution alone.

The logistic-binomial model (Section 6.3) is used in settings where each data
point y; represents the number of successes in some number n; of tries. (This n;,
the number of tries for data point ¢, is not the same as n, the number of data
points.) In this model, the transformation g is the inverse-logit and the data
distribution is binomial.

As with Poisson regression, the binomial model is typically improved by the
inclusion of an overdispersion parameter.

e The probit model (Section 6.4) is the same as logistic regression but with the
logit function replaced by the normal cumulative distribution, or equivalently
with the normal distribution instead of the logistic in the latent-data errors.
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e Multinomial logit and probit models (Section 6.5) are extensions of logistic and
probit regressions for categorical data with more than two options, for example
survey responses such as Strongly Agree, Agree, Indifferent, Disagree, Strongly
Disagree. These models use the logit or probit transformation and the multi-
nomial distribution and require additional parameters to model the multiple
possibilities of the data.

Multinomial models are further classified as ordered (for example, Strongly Agree,
..., Strongly Disagree) or unordered (for example, Vanilla, Chocolate, Straw-
berry, Other).

e Robustregression models (Section 6.6) replace the usual normal or logistic models
by other distributions! (usually the so-called Student-¢ family of models) that
allow occasional extreme values.

This chapter briefly goes through many of these models, with an example of
overdispersed Poisson regression in Section 6.2 and an ordered logistic example in
Section 6.5. Finally, in Section 6.8 we discuss the connections between generalized
linear models and behavioral models of choice that are used in psychology and eco-
nomics, using as an example the logistic regression for well switching in Bangladesh.
The chapter is not intended to be a comprehensive overview of generalized linear
models; rather, we want to give a sense of the variety of regression models that can
be appropriate for different data structures that we have seen in applications.

Fitting generalized linear models in R

Because of the variety of options involved, generalized linear modeling can be more
complicated than fitting linear and logistic regressions. The starting point in R is
the glm() function, which we have already used extensively for logistic regression
in Chapter 5 and is a generalization of the linear-modeling function 1m(). We can
use glm() directly to fit logistic-binomial, probit, and Poisson regressions, among
others, and to correct for overdispersion where appropriate. Ordered logit and probit
regressions can be fit using the polr () function, unordered probit models can be
fit using the mnp package, and ¢ models can be fit using the hett package in R. (See
Appendix C for information on these and other R packages.) Beyond this, most of
these models and various generalizations can be fit in Bugs, as we discuss in Part
2B of this book in the context of multilevel modeling.

6.2 Poisson regression, exposure, and overdispersion

The Poisson distribution is used to model variation in count data (that is, data
that can equal 0,1,2,...). After a brief introduction, we illustrate in detail with the
example of New York City police stops that we introduced in Section 1.2.

Traffic accidents

In the Poisson model, each unit ¢ corresponds to a setting (typically a spatial
location or a time interval) in which y; events are observed. For example, i could

1 In the statistical literature, generalized linear models have been defined using exponential-family
models, a particular class of data distributions that excludes, for example, the ¢ distribution. For
our purposes, however, we use the term “generalized linear model” to apply to any model with
a linear predictor, link function, and data distribution, not restricting to exponential-family
models.
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index street intersections in a city and y; could be the number of traffic accidents
at intersection ¢ in a given year.

As with linear and logistic regression, the variation in y can be explained with
linear predictors X . In the traffic accidents example, these predictors could include:
a constant term, a measure of the average speed of traffic near the intersection, and
an indicator for whether the intersection has a traffic signal. The basic Poisson
regression model has the form

y; ~ Poisson(6;). (6.1)

The parameter 6; must be positive, so it makes sense to fit a linear regression on
the logarithmic scale:
6; = exp(X,0). (6.2)

Interpreting Poisson regression coefficients

The coefficients 3 can be exponentiated and treated as multiplicative effects. For
example, suppose the traffic accident model is

y; ~ Poisson(exp(2.8 + 0.012X;; — 0.20X;2)),

where X;; is average speed (in miles per hour, or mph) on the nearby streets and

X5 = 1 if the intersection has a traffic signal or 0 otherwise. We can then interpret

each coefficient as follows:

e The constant term gives the intercept of the regression, that is, the prediction if
Xi1 = 0 and X;2 = 0. Since this is not possible (no street will have an average
speed of 0), we will not try to interpret the constant term.

e The coefficient of X;; is the expected difference in y (on the logarithmic scale) for

each additional mph of traffic speed. Thus, the expected multiplicative increase
0012 = 1,012, or a 1.2% positive difference in the rate of traffic accidents per
mph. Since traffic speeds vary by tens of mph, it would actually make sense to
define X;; as speed in tens of mph, in which case its coefficient would be 0.12,
corresponding to a 12% increase (more precisely, %12 = 1.127: a 12.7% increase)
in accident rate per ten mph.

is e

e The coefficient of X;o tells us that the predictive difference of having a traffic
signal can be found be multiplying the accident rate by exp(—0.20) = 0.82
yielding a reduction of 18%.

As with regression models in general, each coefficient is interpreted as a comparison

in which one predictor differs by one unit while all the other predictors remain at

the same level, which is not necessarily the most appropriate assumption when
extending the model to new settings. For example, installing traffic signals in all
the intersections in the city would not necessarily be expected to reduce accidents

by 18%.

Poisson regression with an exposure input

In most applications of Poisson regression, the counts can be interpreted relative
to some baseline or “exposure,” for example, the number of vehicles that travel
through the intersection. In the general Poisson regression model, we think of y; as
the number of cases in a process with rate 6; and exposure u;.

y; ~ Poisson(u;6;), (6.3)
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where, as before, 0; = exp(X;3). The logarithm of the exposure, log(u;), is called
the offset in generalized linear model terminology.

The regression coefficients [ summarize the associations between the predictors
and 0; (in our example, the rate of traffic accidents per vehicle).
Including log(exposure) as a predictor in the Poisson regression. Putting the log-
arithm of the exposure into the model as an offset, as in model (6.3), is equivalent
to including it as a regression predictor, but with its coefficient fixed to the value
1. Another option is to include it as a predictor and let its coefficient be estimated
from the data. In some settings, this makes sense in that it can allow the data to
be fit better; in other settings, it is simpler to just keep it as an offset so that the
estimated rate 6 has a more direct interpretation.

Differences between the binomial and Poisson models

The Poisson model is similar to the binomial model for count data (see Section 6.3)

but is applied in slightly different situations:

e If each data point y; can be interpreted as the number of “successes” out of n;
trials, then it is standard to use the binomial/logistic model (as described in
Section 6.3) or its overdispersed generalization.

e If each data point y; does not have a natural limit—it is not based on a number of
independent trials—then it is standard to use the Poisson/logarithmic regression
model (as described here) or its overdispersed generalization.

Ezxample: police stops by ethnic group
For the analysis of police stops:
e The units ¢ are precincts and ethnic groups (i = 1,...,n =3 x 75).

e The outcome y; is the number of stops of members of that ethnic group in that
precinct.

e The exposure u; is the number of arrests by people of that ethnic group in that
precinct in the previous year as recorded by the Department of Criminal Justice
Services (DCIJS).

e The inputs are the precinct and ethnicity indexes.

e The predictors are a constant, 74 precinct indicators (for example, precincts 2—
75, with precinct 1 as the baseline), and 2 ethnicity indicators (for example, for
hispanics and whites, with blacks as the baseline).

We illustrate model fitting in three steps. First, we fit a model with the offset
and a constant term alone:

glm(formula = stops ~ 1, family=poisson, offset=log(arrests))
coef.est coef.se
(Intercept) -3.4 0.0
n =22, k=1
residual deviance = 44877, null deviance = 44877 (difference = 0)

Next, we add ethnicity indicators:

glm(formula = stops ~ factor(eth), family=poisson,
offset=log(arrests))
coef.est coef.se
(Intercept) -3.30 0.00
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factor(eth)2 0.06 0.01
factor(eth)3 -0.18 0.01
n =225, k=3
residual deviance = 44133, null deviance = 44877 (difference = 744.1)

The two ethnicity coefficients are highly statistically significant, and the deviance
has decreased by 744, much more than the 2 that would be expected if ethnicity had
no explanatory power in the model. Compared to the baseline category 1 (blacks),
we see that category 2 (hispanics) has 6% more stops, and category 3 (whites) has
18% fewer stops, in proportion to DCJS arrest rates.

Now we add the 75 precincts:

glm(formula = stops ~ factor(eth) + factor(precinct), family=poisson,
offset=log(arrests))
coef.est coef.se

(Intercept) -4.03 0.05
factor(eth)2 0.00 0.01
factor(eth)3 -0.42 0.01
factor(precinct)2 -0.06 0.07
factor (precinct)3 0.54 0.06
factor (precinct)75 1.41 0.08

n =225, k=77
residual deviance = 2828.6, null deviance = 44877 (difference = 42048.4)
overdispersion parameter = 18.2

The decrease in the deviance, from 44,000 to 2800, is huge—much larger than the
decrease of 74 that would be expected if the precinct factor were random noise. After
controlling for precincts, the ethnicity coefficients have changed a bit—blacks and
hispanics (categories 1 and 2) have approximately the same rate of being stopped,
and whites (category 3) have about a 42% lower chance than minorities of being
stopped—all in comparison to the DCJS arrest rates, which are used as a baseline.?

Thus, controlling for precinct actually increases the difference between whites
and minorities in the rate of stops. We explore this issue further in Section 15.1.

We can also look at the precinct coefficients in the regression—for example,
the stop rates (per DCJS arrest) after controlling for ethnicity, are approximately
6% lower in precinct 2, exp(0.54) = 1.72 times as high in precinct 3, ..., and
exp(1.41) = 4.09 times as high in precinct 75, as compared to the baseline precinct
1.

The exposure input

In this example, stops by police are compared to the number of arrests in the
previous year, so that the coefficient for the “hispanic” or “white” indicator will be
greater than 1 if the people in that group are stopped disproportionately to their
rates of arrest, as compared to blacks. Similarly, the coefficients for the indicators
for precincts 2-75 will exceed 1 for those precincts where stops are more frequent
than in precinct 1, as compared to their arrest rates in the previous year.

In Section 15.1 we shall consider another possible analysis that uses population,
rather than previous year’s arrests, as the exposure.

2 More precisely, the exponentiated coefficient for whites is exp(—0.42) = 0.66, so their chance
of being stopped is actually 34% lower—the approximation exp(—3) &~ 1—/3 is accurate only
when £ is close to 0.

R output



114 GENERALIZED LINEAR MODELS

nopoooood 2 nooooonooooom-BAn
B o -
= =
=)
0o
o =)
= =
= 0 i
o2 = -
5 of
=)
[=] Bo
= i
; .
0 m o0 o0 ob oo 0 o 00 o0 o0 ob
00ooonoo 00oooonoo

Figure 6.1 Testing for overdispersion in a Poisson regression model: (a) residuals versus
predicted values, (b) standardized residuals versus predicted values. As expected from the
model, the variance of the residuals increases as predicted values increase. The standardized
residuals should have mean 0 and standard deviation 1 (hence the lines at £2 indicating
approzimate 95% error bounds). The variance of the standardized residuals is much greater
than 1, indicating a large amount of overdispersion.

Owverdispersion

Poisson regressions do not supply an independent variance parameter o, and as a
result can be overdispersed and usually are, a point we considered briefly on page
21 and pursue further here in a regression context. Under the Poisson distribution
the variance equals the mean—that is, the standard deviation equals the square
root of the mean. In the model (6.3), E(y;) = u;0; and sd(y;) = vu;0;. We define
the standardized residuals:

L = ViU
sd(9)

Yi — uil;

(6.4)

where 6; = X% If the Poisson model is true, then the z;’s should be approxi-
mately independent (not exactly independent, since the same estimate [3 is used
in computing all of them), each with mean 0 and standard deviation 1. If there is
overdispersion, however, we would expect the z;’s to be larger, in absolute value,
reflecting the extra variation beyond what is predicted under the Poisson model.
We can test for overdispersion in classical Poisson regression by computing the
sum of squares of the n standardized residuals, E?:l ziz, and comparing this to the
sz—k distribution, which is what we would expect under the model (using n—k
rather than n degrees of freedom to account for the estimation of k regression
coeflicients). The bef i, distribution has average value n—k, and so the ratio,

. N 1 o
estimated overdispersion = pr— z; z7, (6.5)
p

is a summary of the overdispersion in the data compared to the fitted model.

For example, the classical Poisson regression for the police stops has n = 225
data points and k = 77 linear predictors. Figure 6.1 plots the residuals y; — ¢; and
standardized residuals z; = (y; — 9:)/sd(9:), as a function of predicted values from
the Poisson regression model. As expected from the Poisson model, the variance of
the residuals increases as the predicted values increase, and the variance of the stan-
dardized residuals is approximately constant. However, the standardized residuals
have a variance much greater than 1, indicating serious overdispersion.
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To program the overdispersion test in R:

yhat <- predict (glm.police, type="response")

z <- (stops-yhat)/sqrt(yhat)

cat ("overdispersion ratio is ", sum(z"2)/(n-k), "\n")

cat ("p-value of overdispersion test is ", pchisq (sum(z"2), n-k), "\n")
The sum of squared standardized residuals is ;" ; 22 = 2700, compared to an ex-
pected value of n—k = 148. The estimated overdispersion factor is 2700/148 = 18.2,
and the p-value is 1, indicating that the probability is essentially zero that a random
variable from a 2,4 distribution would be as large as 2700. In summary, the police
stops data are overdispersed by a factor of 18, which is huge—even an overdispersion
factor of 2 would be considered large—and also statistically significant.

Adjusting inferences for overdispersion

In this example, the basic correction for overdispersion is to multiply all regression
standard errors by v/18.2 = 4.3. Luckily, it turns out that our main inferences are
not seriously affected. The parameter of primary interest is cs—the log of the rate of
stops for whites compared to blacks—which is estimated at —0.4240.01 before (see
the regression display on page 113) and now becomes —0.42 & 0.04. Transforming
back to the original scale, whites are stopped at an estimated 66% of the rate of
blacks, with an approximate 50% interval of e~0-42£(2/3)0.04 — [0 64, 0.67] and an
approximate 95% interval of e~0-42%2:0-04 —[0.61,0.71].

Fitting the overdispersed-Poisson or negative-binomial model
More simply, we can fit an overdispersed model using the quasipoisson family:

glm(formula = stops ~ factor(eth) + factor(precinct), family=quasipoisson,
offset=log(arrests))
coef.est coef.se

(Intercept) -4.03 0.21
factor(eth)2 0.00 0.03
factor(eth)3 -0.42 0.04
factor (precinct)?2 -0.06 0.30
factor(precinct)3 0.54 0.24
factor(precinct)75 1.41 0.33

n =225, k=77
residual deviance = 2828.6, null deviance = 44877 (difference = 42048.4)
overdispersion parameter = 18.2

We write this model as
y; ~ overdispersed Poisson (u; exp(X;5), w),

where w is the overdispersion parameter (estimated at 18.2 in this case). Strictly
speaking, “overdispersed Poisson” is not a single model but rather describes any
count-data model for which the variance of the data is w times the mean, reducing
to the Poisson if w = 1.

A specific model commonly used in this scenario is the so-called negative-binomial
distribution:

y; ~ Negative-binomial (mean = u; exp(X;/3), overdispersion = w).

Unfortunately, the negative-binomial distribution is conventionally expressed not
based on its mean and overdispersion but rather in terms of parameters a and b,

R code
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where the mean of the distribution is a/b and the overdispersion is 1 + 1/b. One
must check the parameterization when fitting such models, and it can be helpful to
double-check by simulating datasets from the fitted model and checking that they
look like the actual data (see Section 8.3).

We return to the police stops example, correcting for overdispersion using a
multilevel model, in Section 15.1.

6.3 Logistic-binomial model

Chapter 5 discussed logistic regression for binary (Yes/No or 0/1) data. The logistic
model can also be used for count data, using the binomial distribution (see page
16) to model the number of “successess” out of a specified number of possibilities,
with the probability of success being fit to a logistic regression.

The binomial model for count data, applied to death sentences

We illustrate binomial logistic regression in the context of a study of the proportion
of death penalty verdicts that were overturned, in each of 34 states in the 23 years,
1973-1995. The units of this analysis are the 34 x 23 = 784 state-years (actually, we
only have n = 450 state-years in our analysis, since different states have restarted
the death penalty at different times since 1973). For each state-year i, we label n;
as the number of death sentences in that state in that year and y; as the number of
these verdicts that were later overturned by higher courts. Our model has the form

yi ~ Binomial(n;,p;)
pi = logit™ (X;0), (6.6)
where X is a matrix of predictors. To start, we use

e A constant term
e 33 indicators for states

e A time trend for years (that is, a variable that equals 1 for 1973, 2 for 1974, 3
for 1975, and so on).

This model could also be written as

yst ~ Binomial(nst, pst)
pst = logit™ (u+ o, + Bt),

with subscripts s for state and ¢ for time (that is, year—1972). We prefer the form
(6.6) because of its greater generality. But it is useful to be able to go back and
forth between the two formulations.

QOverdispersion

When logistic regression is applied to count data, it is possible—in fact, usual—for
the data to have more variation than is explained by the model. This overdisper-
sion problem arises because the logistic regression model does not have a variance
parameter o.

More specifically, if data y have a binomial distribution with parameters n and
p, then the mean of y is np and the standard deviation of y is y/np(1 —p). As in
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model (6.4), we define the standardized residual for each data point i as

L o= Yz Ui
’ sd(gs)
_ Yi — NiDi (6.7)

Vil = i)

where p; = logit_l(Xi[}). If the binomial model is true, then the z;’s should be
approximately independent, each with mean 0 and standard deviation 1.

As with the Poisson model, we can then compute the estimated overdispersion
-5, 22 (see model (6.5) on page 114) and formally test for overdispersion by
comparing Z;;l 22 to a x2_, distribution. (The n here represents the number of
data points and is unrelated to the notation n; in models (6.6) and (6.7) referring
to the number of cases in state-year i.)

In practice, overdispersion happens almost all the time that logistic regression
(or Poisson regression, as discussed in Section 6.2) is applied to count data. In the
more general family of distributions known as overdispersed models, the standard
deviation can have the form /wnp(l — p), where w > 1 is known as the overdis-
persion parameter. The overdispersed model reduces to binomial logistic regression
when w = 1.

Adjusting inferences for overdispersion

As with Poisson regression, a simple correction for overdispersion is to multiply the
standard errors of all the coefficient estimates by the square root of the estimated
overdispersion (6.5). Without this adjustment, the confidence intervals would be
too narrow, and inferences would be overconfident.

Overdispersed binomial regressions can be fit in R using the glm() function
with the quasibinomial (link="logit") family. A corresponding distribution is
the beta-binomial.

Binary-data model as a special case of the count-data model

Logistic regression for binary data as in Chapter 5 is a special case of the binomial
form (6.6) with n; = 1 for all i. Overdispersion at the level of the individual
data points cannot occur in the binary model, which is why we did not introduce
overdispersed models in Chapter 5.

Count-data model as a special case of the binary-data model

Conversely, the binomial model (6.6) can be expressed in the binary-data form (5.1)
by considering each of the n; cases as a separate data point. The sample size of
this expanded regression is ), n;, and the data points are 0’s and 1’s: each unit ¢
corresponds to y; ones and n;—y; zeroes. Finally, the X matrix is expanded to have
Zi n; rows, where the i*" row of the original X matrix becomes n; identical rows in
the expanded matrix. In this parameterization, overdispersion could be included in
a multilevel model by creating an index variable for the original measurements (in
the death penalty example, taking on the values 1,. .., 450) and including a varying
coefficient or error term at this level.
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Figure 6.2 Normal density function with mean 0 and standard deviation 1.6. For most
practical purposes, this is indistinguishable from the logistic density (Figure 5.5 on page
85). Thus we can interpret coefficients in probit models as logistic regression coefficients
divided by 1.6.

6.4 Probit regression: normally distributed latent data

The probit model is the same as the logit, except it replaces the logistic by the
normal distribution (see Figure 5.5). We can write the model directly as

Pr(y; = 1) = ®(Xif9),

where ® is the normal cumulative distribution function. In the latent-data formu-

lation,
{1 >0
Yoo = 10 ifz<o0
zi = Xif+te
e ~ N(0,1), (6.8)

that is, a normal distribution for the latent errors with mean 0 and standard devi-
ation 1.

More generally, the model can have an error variance, so that the last line of
(6.8) is replaced by

i ~ N(0,05?),

but then o is nonidentified, because the model is unchanged if we multiply o by
some constant ¢ and then multiply the vector § by ¢ also. Hence we need some
restriction on the parameters, and the standard approach is to fix o = 1 as in (6.8).

Probit or logit?

As is shown in Figure 6.2 (compare to Figure 5.5 on page 85), the probit model

is close to the logit with the residual standard deviation of € set to 1 rather than
1.6. As a result, coefficients in a probit regression are typically close to logistic
regression coefficients divided by 1.6. For example, here is the probit version of the
logistic regression model on page 88 for well switching:

glm(formula = switch ~ dist100, family=binomial(link="probit"))
coef.est coef.se
(Intercept) 0.38 0.04
dist100 -0.39 0.06
n = 3020, k = 2
residual deviance = 4076.3, null deviance = 4118.1 (difference = 41.8)
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For the examples we have seen, the choice of logit or probit model is a matter of
taste or convenience, for example, in interpreting the latent normal errors of probit
models. When we see probit regression coeflicients, we can simply multiply them
by 1.6 to obtain the equivalent logistic coefficients. For example, the model we have
just fit, Pr(y = 1) = ®(0.38 — 0.39z), is essentially equivalent to the logistic model
Pr(y = 1) = logit™(1.6(0.38 — 0.39z)) = logit~*(0.61 — 0.62x)), which indeed is
the logit model estimated on page 88.

6.5 Multinomial regression
Ordered and unordered categorical outcomes

Logistic and probit regression can be extended to multiple categories, which can
be ordered or unordered. Examples of ordered categorical outcomes include Demo-
crat, Independent, Republican; Yes, Maybe, No; Always, Frequently, Often, Rarely,
Never. Examples of unordered categorical outcomes include Liberal, Labor, Con-
servative; Football, Basketball, Baseball, Hockey; Train, Bus, Automobile, Walk;
White, Black, Hispanic, Asian, Other. We discuss ordered categories first, includ-
ing an extended example, and then briefly discuss regression models for unordered
categorical variables.

The ordered multinomial logit model

Consider a categorical outcome y that can take on the values 1,2,...,K. The
ordered logistic model can be written in two equivalent ways. First we express it as
a series of logistic regressions:

Pr(y>1) = logit ' (X2)
Pr(y>2) = logit ™ (XA — ¢2)
Pr(y>3) = logit (XA —c3)

Pr(y > K—1) logit™ (X8 — cx_1). (6.9)

The parameters cj (which are called thresholds or cutpoints, for reasons which we
shall explain shortly) are constrained to increase: 0 = ¢; < ¢o < -+ < cx—1, because
the probabilities in (6.9) are strictly decreasing (assuming that all K outcomes have
nonzero probabilities of occurring). Since ¢; is defined to be 0, the model with K
categories has K —2 free parameters ¢ in addition to §. This makes sense since
K =2 for the usual logistic regression, for which only [ needs to be estimated.

The cutpoints cg,...,cx—1 can be estimated using maximum likelihood, simul-
taneously with the coefficients 3. For some datasets, however, the parameters can
be nonidentified, as with logistic regression for binary data (see Section 5.8).

The expressions in (6.9) can be subtracted to get the probabilities of individual
outcomes:

o
=
=
Il
=~
=
Il

Pr(y > k—1) — Pr(y > k)
logit ™ (X8 — ¢r_1) — logit (X8 — ¢x).



120 GENERALIZED LINEAR MODELS

O0p=-00 op=00 op=00
o 1 -00 -0 0 i -00 -0 i
00 BOe 00 BOe 00 Be

Figure 6.3 Illustration of cutpoints in an ordered categorical logistic model. In this ezample,
there are K = 4 categories and the cutpoints are c1 = 0, ca = 0.8, c3 = 1.8. The three graphs
illustrate the distribution of the latent outcome z corresponding to three different values of
the linear predictor, X (3. For each, the cutpoints show where the outcome y will equal 1,
2, 3, or 4.

Latent variable interpretation with cutpoints

The ordered categorical model is easiest to understand by generalizing the latent
variable formulation (5.4) to K categories:

1 if 2; <0
2 if z; € (07 Cz)
- 3 lf ZL € (c2,c3)
K-1 if zZ; € (CK,27CK,1)
K if z; > cx 1
% = Xif+e, (6.10)

with independent errors ¢; that have the logistic distribution, as in (5.4).

Figure 6.3 illustrates the latent variable model and shows how the distance be-
tween any two adjacent cutpoints ci_1, ¢ affects the probability that y = k. We
can also see that if the linear predictor X3 is high enough, y will almost certainly
take on the highest possible value, and if X/ is low enough, y will almost certainly
equal the lowest possible value.

Example: storable votes

We illustrate ordered categorical data analysis with a study from experimental
economics, on the topic of “storable votes.” This example is somewhat complicated,
and illustrates both the use and potential limitations of the ordered logistic model.
In the experiment under study, college students were recruited to play a series of
voting games. In each game, a set of k players vote on two issues, with the twist
being that each player is given a total of 4 votes. On the first issue, a player has
the choice of casting 1, 2, or 3 votes, with the remaining votes cast on the second
issue. The winning side of each issue is decided by majority vote, at which point
the players on the winning side each get positive payoffs, which are drawn from a
uniform distribution on the interval [1,100].

To increase their expected payoffs, players should follow a strategy of casting more
votes for issues where their potential payoffs are higher. The way this experiment is
conducted, the players are told the distribution of possible payoffs, and they are told
their potential payoff for each issue just before the vote. Thus, in making the choice
of how many votes to cast in the first issue, each player knows his or her potential
payoff for that vote only. Then, the players are told their potential payoffs for the
second vote, but no choice is involved at this point since they will automatically
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Figure 6.4 Data from some example individuals in the storable votes study. Vertical lines
show estimated cutpoints, and curves show expected responses as estimated using ordered
logistic regressions. The two left graphs show data that fit the model reasonably well; the
others fit the model in some ways but not perfectly.

spend all their remaining votes. Players’ strategies can thus be summarized as their
choices of initial votes, y = 1, 2, or 3, given their potential payoff, .

Figure 6.4 graphs the responses from six of the hundred or so students in the
experiment, with these six chosen to represent several different patterns of data.
We were not surprised to see that responses were generally monotonic—that is,
students tend to spend more votes when their potential payoff is higher—but it
was interesting to see the variety of approximately monotonic strategies that were
chosen.

As is apparent in Figure 6.4, most individuals’ behaviors can be summarized by
three parameters—the cutpoint between votes of 1 and 2, the cutpoint between 2
and 3, and the fuzziness of these divisions. The two cutpoints characterize the chosen
monotone strategy, and the sharpness of the divisions indicates the consistency with
which the strategy is followed.

Three parameterizations of the ordered logistic model. It is convenient to model
the responses using an ordered logit, using a parameterization slightly different
from that of model (6.10) to match up with our understanding of the monotone
strategies. The model is

1 if z; < Cls

Yi = 2 if z; € (c15,¢25)
3 ifz; > o5
2z~ logistic(z;, 0?). (6.11)

In this model, the cutpoints c¢; 5 and co 5 are on the 1-100 scale of the data x, and
the scale o of the errors e corresponds to the fuzziness of the cutpoints.

This model has the same number of parameters as the conventional parameter-
ization (6.10)—two regression coefficients have disappeared, while one additional
free cutpoint and an error variance have been added. Here is model (6.10) with
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K = 3 categories and one predictor z,

1 ifz <0
i = 2 if z; € (0,¢2)
3 if z; > ¢
zi = o+ pr+e, (6.12)

with independent errors ¢; ~ logistic(0, 1).
Yet another version of the model keeps the two distinct cutpoints but removes
the constant term, «; thus,

1 ifz < C12

yi = 2 if z; € (0,c93)
3 ifz > Co|3
zi = Px+e, (6.13)

with independent errors e; ~ logistic(0, 1).
The three models are in fact equivalent, with z;/3 in (6.13) and (z; — a)/8 in
(6.12) corresponding to z; in (6.11) and the parameters matching up as follows:

Model (6.11) Model (6.12) Model (6.13)

c1s —a/B —c1)2/8
25 (c2—a)/B —ca3/8
o 1/8 1/8

We prefer parameterization (6.11) because we can directly interpret ¢1.5 and co 5
as thresholds on the scale of the input x, and o corresponds to the gradualness
of the transitions from 1’s to 2’s and from 2’s to 3’s. It is sometimes convenient,
however, to fit the model using the standard parameterizations (6.12) and (6.13),
and so it is helpful to be able to go back and forth between the models.

Fitting the model in R.  We can fit ordered logit (or probit) models using the polr
(“proportional odds logistic regression”) function, which is part of the MASS package
in R. We illustrate with data from one of the persons in the storable votes study:

polr (factor(y) ~ x)

which yields

Coefficients:
X
0.07911799

Intercepts:
112 213
1.956285 4.049963

From the output we can see this has fitted a model of the form (6.13), with
estimates 8 = 0.079, ¢1j2 = 1.96 and &3 = 4.05. Transforming to model (6.11) using
the table of the three models, we get ¢1.5 = 1.96/0.079 = 24.8, é25 = 4.03/0.079 =
51.3, and 6 = 1/0.079 = 12.7.

Displaying the fitted model. Figure 6.4 shows the cutpoints c; 5, c2.5 and expected
votes E(y) as a function of x, as estimated from the data from each of several
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students. From the model (6.11), the expected votes can be written as

E(ylz) = 1-Pr(y=1|z)+2 -Pr(y=2Jz)+ 3 -Pr(y = 3|z)

1 (1 — logit™" (L - C“”)) +
ag
+2- (logiF1 (—l — C1'5> — logitf1 <—£ — CM)) +
o o

+3-logit ™! <w> , (6.14)
(o

where logit ' (z) = ¢ /(1+¢) is the logistic curve displayed in Figure 5.2a on page
80. Expression (6.14) looks complicated but is easy to program as a function in R:

expected <- function (x, c1.5, c2.5, sigma){
pl.5 <- invlogit ((x-cl.5)/sigma)
p2.5 <- invlogit ((x-c2.5)/sigma)
return ((1*(1-p1.5) + 2*(pl.5-p2.5) + 3*p2.5))
}

The data, cutpoints, and curves in Figure 6.4 can then be plotted as follows:

plot (x, y, x1im=c(0,100), ylim=c(1,3), xlab="Value", ylab="Vote")
lines (rep (c1.5, 2), c(1,2))

lines (rep (c2.5, 2), c(2,3))

curve (expected (x, c1.5, c2.5, sigma), add=TRUE)

Having displayed these estimates for individuals, the next step is to study the dis-
tribution of the parameters in the population, to understand the range of strategies
applied by the students. In this context, the data have a multilevel structure—30
observations for each of several students—and we pursue this example further in
Section 15.2 in the chapter on multilevel generalized linear models.

Alternative approaches to modeling ordered categorical data

Ordered categorical data can be modeled in several ways, including:
e Ordered logit model with K —1 cutpoint parameters, as we have just illustrated.
e The same model in probit form.

e Simple linear regression (possibly preceded by a simple transformation of the
outcome values). This can be a good idea if the number of categories is large
and if they can be considered equally spaced. This presupposes that a reasonable
range of the categories is actually used. For example, if ratings are on a 1 to 10
scale, but in practice always equal 9 or 10, then a linear model probably will not
work well.

e Separate logistic regressions—that is, a logistic regression model for y = 1 versus
y=2,...,K; then, if y > 2, a logistic regression for y = 2 versus y = 3,..., K;
and so on up to a model, if y > K —1 for y = K—1 versus y = K. Or this can be
set up using the probit model. Separate logistic (or probit) regressions have the
advantage of more flexibility in fitting data but the disadvantage of losing the
simple latent-variable interpretation of the cutpoint model we have described.

e Finally, robit regression, which we discuss in Section 6.6, is a competitor to
logistic regression that accounts for occasional aberrant data such as the outlier
in the upper-right plot of Figure 6.4.

R code

R code
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Figure 6.5 Hypothetical data to be fitted using logistic regression: (a) a dataset with an
“outlier” (the unexpected y = 1 value near the upper left); (b) data simulated from a
logistic regression model, with no outliers. In each plot, the dotted and solid lines show
the fitted logit and robit regressions, respectively. In each case, the robit line is steeper—
especially for the contaminated data—because it effectively downweights the influence of
points that do not appear to fit the model.

Unordered categorical regression

As discussed at the beginning of Section 6.5, it is sometimes appropriate to model
discrete outcomes as unordered. An example that arose in our research was the well-
switching problem. As described in Section 5.4, households with unsafe wells had
the option to switch to safer wells. But the actual alternatives are more complicated
and can be summarized as: (0) do nothing, (1) switch to an existing private well,
(2) switch to an existing community well, (3) install a new well yourself. If these are
coded as 0, 1, 2, 3, then we can model Pr(y > 1),Pr(y > 2|y > 1), Pr(y = 3|y > 2).
Although the four options could be considered to be ordered in some way, it does not
make sense to apply the ordered multinomial logit or probit model, since different
factors likely influence the three different decisions. Rather, it makes more sense to
fit separate logit (or probit) models to each of the three components of the decision:
(a) do you switch or do nothing? (b) if you switch, do you switch to an existing
well or build a new well yourself? (c) if you switch to an existing well, is it a private
or community well? More about this important category of model can be found in
the references at the end of this chapter.

6.6 Robust regression using the ¢ model
The t distribution instead of the normal

When a regression model can have occasional very large errors, it is generally more
appropriate to use a Student-t rather than normal distribution for the errors. The
basic form of the regression is unchanged—y = X3 + e—but with a different dis-
tribution for the €’s and thus a slightly different method for estimating 3 (see the
discussion of maximum likelihood estimation in Chapter 18) and a different dis-
tribution for predictions. Regressions estimated using the ¢ model are said to be
robust in that the coefficient estimates are less influenced by individual outlying
data points. Regressions with ¢ errors can be fit using the t1m() function in the
hett package in R.

Robit instead of logit or probit

Logistic regression (and the essentially equivalent probit regression) are flexible
and convenient for modeling binary data, but they can run into problems with
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outliers. Outliers are usually thought of as extreme observations, but in the context
of discrete data, an “outlier” is more of an unexpected observation. Figure 6.5a
illustrates, with data simulated from a logistic regression, with an extreme point
switched from 0 to 1. In the context of the logistic model, an observation of y =
1 for this value of z would be extremely unlikely, but in real data this sort of
“misclassification” can definitely occur. Hence this graph represents the sort of
data to which we might fit a logistic regression, even though this model is not
exactly appropriate.

For another illustration of a logistic regression with an aberrant data point, see
the upper-right plot in Figure 6.4. That is an example with three outcomes; for
simplicity, we restrict our attention here to binary outcomes.

Logistic regression can be conveniently “robustified” by generalizing the latent-
data formulation (5.4):

o 1 ifz>0
Yi = 10 ifx<0
zi = Xif+e,

to give the latent errors € a t distribution:

—9
i ~ty <0, Y ) (6.15)

v

with the degrees-of-freedom parameter v > 2 estimated from the data and the ¢
distribution scaled so that its standard deviation equals 1.

The ¢t model for the ¢;’s allows the occasional unexpected prediction—a positive
value of z for a highly negative value of the linear predictor X, or vice versa.
Figure 6.5a illustrates with the simulated “contaminated” dataset: the solid line
shows Pr(y = 1) as a function of the z for the fitted robit regression, and it is
quite a bit steeper than the fitted logistic model. The ¢ distribution effectively
downweights the discordant data point so that the model better fits the main part
of the data.

Figure 6.5b shows what happens with data that actually come from a logistic
model: here, the robit model is close to the logit, which makes sense since it does
not find discrepancies.

Mathematically, the robit model can be considered as a generalization of probit
and an approximate generalization of logit. Probit corresponds to the degrees of
freedom v = oo, and logit is very close to the robit model with v = 7.

6.7 Building more complex generalized linear models

The models we have considered so far can handle many regression problems in
practice. For continuous data we start with linear regression with normal errors,
consider appropriate transformations and interactions as discussed in Chapter 4,
and switch to a t error model for data with occasional large errors. For binary data
we use logit, probit, or perhaps robit, again transforming input variables and con-
sidering residual plots as discussed in Chapter 5. For count data, the starting points
are the overdispersed binomial and Poisson distributions, and for discrete outcomes
with more than two categories we can fit ordered or unordered multinomial logit
or probit regression. Here we briefly describe some situations where it is helpful to
consider other models.
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Mized discrete/continuous data

Earnings is an example of an outcome variable with both discrete and continuous
aspects. In our earnings and height regressions in Chapter 4, we preprocessed the
data by removing all respondents with zero earnings. In general, however, it can
be appropriate to model a variable such as earnings in two steps: first a logistic
regression for Pr(y > 0), then a linear regression on log(y), conditional on y > 0.
Predictions for such a model then must be done in two steps, most conveniently
using simulation (see Chapter 7).

When modeling an outcome in several steps, programming effort is sometimes
required to convert inferences on to the original scale of the data. For example, in a
two-step model for predicting earnings given height and sex, we first use a logistic
regression to predict whether earnings are positive:

earn.pos <- ifelse (earnings>0, 1, 0)
fit.la <- glm (earn.pos ~ height + male, family=binomial(link="logit"))

yielding the fit

coef.est coef.se

(Intercept) -3.85 2.07
height 0.08 0.03
male 1.70 0.32

n = 1374, k = 3
residual deviance = 988.3, null deviance = 1093.2 (difference = 104.9)

We then fit a linear regression to the logarithms of positive earnings:

log.earn <- log(earnings)
fit.1b <- Im (log.earn ~ height + male, subset = earnings>0)

yielding the fit

coef.est coef.se

(Intercept) 8.12 0.60
height 0.02 0.01
male 0.42 0.07

n = 1187, k = 3
residual sd = 0.88, R-Squared = 0.09

Thus, for example, a 66-inch-tall woman has a probability logi‘c_1 (—3.85+0.08 -
66 +1.70-0) = 0.81, or an 81% chance, of having positive earnings. If her earnings
are positive, their predicted value is exp(8.124-0.02-:66+0.42-0) = 12600. Combining
these gives a mixture of a spike at 0 and a lognormal distribution, which is most
easily manipulated using simulations, as we discuss in Sections 7.4 and 25.4.

Latent-data models. Another way to model mixed data is through latent data, for
example positing an “underlying” income level z;—the income that person ¢ would
have if he or she were employed—that is observed only if y; > 0. Tobit regression
is one such model that is popular in econometrics.

Cockroaches and the zero-inflated Poisson model

The binomial and Poisson models, and their overdispersed generalizations, all can
be expressed in terms of an underlying continuous probability or rate of occurrence
of an event. Sometimes, however, the underlying rate itself has discrete aspects.
For example, in a study of cockroach infestation in city apartments, each apart-
ment 7 was set up with traps for several days. We label u; as the number of trap-days
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and y; as the number of cockroaches trapped. With a goal of predicting cockroach
infestation given predictors X (including income and ethnicity of the apartment
dwellers, indicators for neighborhood, and measures of quality of the apartment),
we would start with the model

y; ~ overdispersed Poisson (u;eX?, w). (6.16)

It is possible, however, for the data to have more zeroes (that is, apartments ¢
with cockroach counts y; = 0) than predicted by this model.®> A natural explanation
is that some apartments have truly a zero (or very near-zero) rate of cockroaches,
whereas others simply have zero counts from the discreteness of the data. The
zero-inflated model places (6.16) into a mixture model:

[ =0,ifS5;=0
Vil ~ overdispersed Poisson (u;e*X%, w), if S; = 1.

Here, S; is an indicator of whether apartment i has any cockroaches at all, and it
could be modeled using logistic regression:

Pr(S; = 1) = logit™(X;7),

where v is a new set of regression coefficients for this part of the model. Estimating
this two-stage model is not simple—the S;’s are not observed and so one cannot
directly estimate 7; and we do not know which zero observations correspond to
S; = 0 and which correspond to outcomes of the Poisson distribution, so we cannot
directly estimate (. Some R functions have been written to fit such models and
they can also be fit using Bugs.

Other models

The basic choices of linear, logistic, and Poisson models, along with mixtures of
these models and their overdispersed, robust, and multinomial generalizations, can
handle many regression problems. However, other distributional forms have been
used for specific sorts of data; these include exponential, gamma, and Weibull mod-
els for waiting-time data, and hazard models for survival data. More generally,
nonparametric models including generalized additive models, neural networks, and
many others have been developed for going beyond the generalized linear modeling
framework by allowing data-fitted nonlinear relations between inputs and the data.

6.8 Constructive choice models

So far we have considered regression modeling as a descriptive tool for studying how
an outcome can be predicted given some input variables. A completely different
approach, sometimes applicable to choice data such as in the examples in Chapters
5 and 6 on logistic regression and generalized linear models, is to model the decisions
as a balancing of goals or utilities.

We demonstrate this idea using the example of well switching in Bangladesh
(see Section 5.4). How can we understand the relation between distance, arsenic
level, and the decision to switch? It makes sense that people with higher arsenic
levels would be more likely to switch, but what coefficient values should we expect?
Should the relation be on the log or linear scale? The actual health risk is believed

3 In our actual example, the overdispersed Poisson model did a reasonable job predicting the
number of zeroes; see page 161. But in other similar datasets the zero-inflated model can both
make sense and fit data well, hence our presentation here.
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to be linear in arsenic concentration; does that mean that a logarithmic model
is inappropriate? Such questions can be addressed using a model for individual
decisions.

To set up a choice model, we must specify a value function, which represents the
strength of preference for one decision over the other—in this case, the preference
for switching as compared to not switching. The value function is scaled so that zero
represents indifference, positive values correspond to a preference for switching, and
negative values result in not switching. This model is thus similar to the latent-data
interpretation of logistic regression (see page 85); and in fact that model is a special
case, as we shall see here.

Logistic or probit regression as a choice model in one dimension

There are simple one-dimensional choice models that reduce to probit or logit re-
gression with a single predictor, as we illustrate with the model of switching given
distance to nearest well. From page 88, the logistic regression is

glm(formula = switch ~ dist100, family=binomial(link="logit"))
coef.est coef.se
(Intercept) 0.61 0.06
dist100 -0.62 0.10
n = 3020, k = 2
residual deviance = 4076.2, null deviance = 4118.1 (difference = 41.9)

Now let us think about it from first principles as a decision problem. For house-
hold i, define

e a; = the benefit of switching from an unsafe to a safe well
® b; + c;xz; = the cost of switching to a new well a distance x; away.

We are assuming a utility theory in which the benefit (in reduced risk of disease) can
be expressed on the same scale as the cost (the inconvenience of no longer using
one’s own well, plus the additional effort—proportional to distance—required to
carry the water).

Logit model. Under the utility model, household 7 will switch if a; > b; + ¢;x;.

However, we do not have direct measurements of the a;’s, b;’s, and ¢;’s. All we can
learn from the data is the probability of switching as a function of z;; that is,

Pr(switch) = Pr(y; = 1) = Pr(a; > b; + cizy), (6.17)

treating a;, b;, ¢; as random variables whose distribution is determined by the (un-
known) values of these parameters in the population.
Expression (6.17) can be written as

b
Pr(y; =1)=Pr (al : >xi> ,
Ci

a re-expression that is useful in that it puts all the random variables in the same
place and reveals that the population relation between y and = depends on the
distribution of (@ — b)/c in the population.

For convenience, label d; = (a; — b;)/c¢;: the net benefit of switching to a neigh-
boring well, divided by the cost per distance traveled to a new well. If d; has a
logistic distribution in the population, and if d is independent of z, then Pr(y = 1)
will have the form of a logistic regression on z, as we shall show here.

If d; has a logistic distribution with center p and scale o, then d; = p + o¢;,



CONSTRUCTIVE CHOICE MODELS 129

Logistic population distribution for d o Logistic Pr(d>x) as a function of x
= o
o o AN
o o \
o B
=
s}
[}
]
=] ]
a
AN
o = —
uc] -0 0 0 0 = -0 ] 0
0 0

Figure 6.6 (a) Hypothesized logistic distribution of d; = (a; — bs)/ci in the population and
(b) corresponding logistic regression curve of the probability of switching given distance.
These both correspond to the model, Pr(y; = 1) = Pr(d; > x;) = logit™*(0.61—0.62z). The
dark part of the curve in (b) corresponds to the range of x (distance in 100-meter units)
in the well-switching data; see Figure 5.9 on page 89.
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Figure 6.7 (a) Hypothesized normal distribution of di = (a; — bi)/c; with mean 0.98 and
standard deviation 2.6 and (b) corresponding probit regression curve of the probability of
switching given distance. These both correspond to the model, Pr(y; = 1) = Pr(d; > x;) =
$(0.38 — 0.39z). Compare to Figure 6.6.

where €; has the unit logistic density; see Figure 5.2 on page 80. Then

di — ; —
Pr <_u - l_u>
o o
logit_1 (Li r> = logit_1 (H — lx) ,
o c o

which is simply a logistic regression with coefficients p/o and —1/0. We can then fit
the logistic regression and solve for p and ¢. For example, the well-switching model,
Pr(y = 1) = logit™(0.61 — 0.62z), corresponds to /o = 0.61 and —1/0 = —0.62;
thus 0 =1/0.62 = 1.6 and p = 0.61/0.62 = 0.98. Figure 6.6 shows the distribution
of d, along with the curve of Pr(d > z) as a function of z.

Pr(switch) = Pr(d; > z)

Probit model. A similar model is obtained by starting with a normal distribution
for the utility parameter: d ~ N(u,02). In this case,

d’i — o
pr (s o)
o o
(7)o (-5)
= 0 —o (2 Z4),
o o o
which is simply a probit regression. The model Pr(y = 1) = ©(0.38 — 0.39z)
corresponds to p/o = 0.38 and —1/0 = —0.39; thus ¢ = 1/0.39 = 2.6 and

Pr(switch) = Pr(d; > z)
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Figure 6.8 Decision options for well switching given arsenic level of current well and
distance to the nearest safe well, based on the decision rule: switch if a; - (As);, > b; + cx;.

# = 0.38/0.39 = 0.98. Figure 6.7 shows this model, which is nearly identical to
the logistic model shown in Figure 6.6.

Choice models, discrete data regressions, and latent data

Logistic regression and generalized linear models are usually set up as methods
for estimating the probabilities of different outcomes y given predictors z. A fitted
model represents an entire population, with the “error” in the model coming in
through probabilities that are not simply 0 or 1 (hence, the gap between data
points and fitted curves in graphs such as Figure 5.9 on page 89).

In contrast, choice models are defined at the level of the individual, as we can see
in the well-switching example, where each household ¢ has, along with its own data
X, yi, its own parameters a;, b;, ¢; that determine its utility function and thus its
decision of whether to switch.

Logistic or probit regression as a choice model in multiple dimensions

We can extend the well-switching model to multiple dimensions by considering the

arsenic level of the current well as a factor in the decision.

® a; - (As), = the benefit of switching from an unsafe well with arsenic level As;
to a safe well. (It makes sense for the benefit to be proportional to the current
arsenic level, because risk is believed to be essentially proportional to cumulative
exposure to arsenic.)

e b, + c;x; = the cost of switching to a new well a distance x; away.

Household 4 should then switch if a; - (As), > b; + cxy—the decision thus depends

on the household’s arsenic level (As);, its distance x; to the nearest well, and its

utility parameters a;, b;, ¢;.

Figure 6.8 shows the decision space for an individual household, depending on
its arsenic level and distance to the nearest safe well. Given a;, b;, ¢;, the decision
under this model is deterministic. However, a;, b;, ¢; are not directly observable—all
we see are the decisions (y; = 0 or 1) for households, given their arsenic levels As;
and distances z; to the nearest safe well.

Certain distributions of (a,b,¢) in the population reduce to the fitted logistic
regression, for example, if a; and ¢; are constants and b; /a; has a logistic distribution
that is independent of (As); and z;. More generally, choice models reduce to logistic
regressions if the factors come in additively, with coefficients that do not vary in
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the population, and if there is a fixed cost (b; in this example) that has a logistic
distribution in the population.

Other distributions of (a, b, ¢) are possible. The corresponding models can be fit,
treating these utility parameters as latent data. There is no easy way of fitting
such models using glm() in R (except for the special cases that reduce to logit and
probit), but they can be fit in Bugs (see Exercise 17.7).

Insights from decision models

A choice model can give us some insight even if we do not formally fit it. For
example, in fitting logistic regressions, we found that distance worked well as a
linear predictor, whereas arsenic level fit better on the logarithmic scale. A simple
utility analysis would suggest that both these factors should come in linearly, and
the transformation for arsenic suggests that people are (incorrectly) perceiving the
risks on a logarithmic scale—seeing the difference between 4 to 8, say, as no worse
than the difference between 1 and 2. (In addition, our residual plot showed the
complication that people seem to underestimate risks from arsenic levels very close
to 0.5. And behind this is the simplifying assumption that all wells with arsenic
levels below 0.5 are “safe.”)

We can also use the utility model to interpret the coefficient for education in the
model—more educated people are more likely to switch, indicating that their costs
of switching are lower, or their perceived benefits from reducing arsenic exposure are
higher. Interactions correspond to dependence among the latent utility parameters
in population.

The model could also be elaborated to consider the full range of individual op-
tions, which include doing nothing, switching to an existing private well, switching
to an existing community well, or digging a new private well. The decision depends
on the cost of walking, perception of health risks, financial resources, and future
plans.

6.9 Bibliographic note

The concept of generalized linear model was introduced by Nelder and Wedder-
burn (1972) and developed further, with many examples, by McCullagh and Nelder
(1989). Dobson (2001) is an accessible introductory text. For more on overdisper-
sion, see Anderson (1988) and Liang and McCullagh (1993). Fienberg (1977) and
Agresti (2002) are other useful references.

The death penalty example comes from Gelman, Liebman, et al. (2004). Models
for traffic accidents are discussed by Chapman (1973) and Hauer, Ng, and Lovell
(1988). For more on the New York City police example, see Spitzer (1999) and
Gelman, Fagan, and Kiss (2005).

Maddala (1983) presents discrete-data regressions and choice models from an
econometric perspective, and McCullagh (1980) considers general forms for latent-
parameter models for ordered data. Amemiya (1981) discusses the factor of 1.6 for
converting from logit to probit coefficients.

Walker and Duncan (1967) introduce the ordered logistic regression model, and
Imai and van Dyk (2003) discuss the models underlying multinomial logit and probit
regression. The storable votes example comes from Casella, Gelman, and Palfrey
(2006). See Agresti (2002) and Imai and van Dyk (2003) for more on categorical
regression models, ordered and unordered.

Robust regression using the ¢ distribution is discussed by Zellner (1976) and



132 GENERALIZED LINEAR MODELS

Lange, Little, and Taylor (1989), and the robit model is introduced by Liu (2004).
See Stigler (1977) and Mosteller and Tukey (1977) for further discussions of ro-
bust inference from an applied perspective. Wiens (1999) and Newton et al. (2001)
discuss the gamma and lognormal models for positive continuous data. For general-
ized additive models and other nonparametric methods, see Hastie and Tibshirani
(1990) and Hastie, Tibshirani, and Friedman (2002).

Connections between logit/probit regressions and choice models have been stud-
ied in psychology, economics, and political science; some important references are
Thurstone (1927a, b), Wallis and Friedman (1942), Mosteller (1951), Bradley and
Terry (1952), and McFadden (1973). Tobit models are named after Tobin (1958)
and are covered in econometrics texts such as Woolridge (2001).

6.10 Exercises

1. Poisson regression: the folder risky.behavior contains data from a random-
ized trial targeting couples at high risk of HIV infection. The intervention pro-
vided counseling sessions regarding practices that could reduce their likelihood
of contracting HIV. Couples were randomized either to a control group, a group
in which just the woman participated, or a group in which both members of
the couple participated. One of the outcomes examined after three months was
“number of unprotected sex acts.”

(a) Model this outcome as a function of treatment assignment using a Poisson
regression. Does the model fit well? Is there evidence of overdispersion?

(b) Next extend the model to include pre-treatment measures of the outcome and
the additional pre-treatment variables included in the dataset. Does the model
fit well? Is there evidence of overdispersion?

(c¢) Fit an overdispersed Poisson model. What do you conclude regarding effec-
tiveness of the intervention?

d) These data include responses from both men and women from the partici-
p p
pating couples. Does this give you any concern with regard to our modeling
assumptions?

2. Multinomial logit: using the individual-level survey data from the 2000 National
Election Study (data in folder nes), predict party identification (which is on a
five-point scale) using ideology and demographics with an ordered multinomial
logit model.

(a) Summarize the parameter estimates numerically and also graphically.
(b) Explain the results from the fitted model.
(¢) Use a binned residual plot to assess the fit of the model.

3. Comparing logit and probit: take one of the data examples from Chapter 5.
Fit these data using both logit and probit model. Check that the results are
essentially the same (after scaling by factor of 1.6; see Figure 6.2 on page 118).

4. Comparing logit and probit: construct a dataset where the logit and probit mod-
els give different estimates.

5. Tobit model for mixed discrete/continuous data: experimental data from the
National Supported Work example are available in the folder lalonde. Use the
treatment indicator and pre-treatment variables to predict post-treatment (1978)
earnings using a tobit model. Interpret the model coefficients.
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6.

7

8.

10.

11.

Robust linear regression using the ¢t model: The folder congress has the votes
for the Democratic and Republican candidates in each U.S. congressional district
in 1988, along with the parties’ vote proportions in 1986 and an indicator for
whether the incumbent was running for reelection in 1988. For your analysis,
just use the elections that were contested by both parties in both years.

(a) Fit a linear regression (with the usual normal-distribution model for the er-
rors) predicting 1988 Democratic vote share from the other variables and
assess model fit.

(b) Fit a t-regression model predicting 1988 Democratic vote share from the other
variables and assess model fit; to fit this model in R you can use the t1lm()
function in the hett package. (See the end of Section C.2 for instructions on
loading R packages.)

(¢) Which model do you prefer?

. Robust regression for binary data using the robit model: Use the same data as

the previous example with the goal instead of predicting for each district whether
it was won by the Democratic or Republican candidate.

(a) Fit a standard logistic or probit regression and assess model fit.
(b) Fit a robit regression and assess model fit.
(¢) Which model do you prefer?

Logistic regression and choice models: using the individual-level survey data from
the election example described in Section 4.7 (data available in the folder nes),
fit a logistic regression model for the choice of supporting Democrats or Repub-
licans. Then interpret the output from this regression in terms of a utility/choice
model.

. Multinomial logistic regression and choice models: repeat the previous exercise

but now with three options: Democrat, no opinion, Republican. That is, fit an
ordered logit model and then express it as a utility/choice model.

Spatial voting models: suppose that competing political candidates A and B have
positions that can be located spatially in a one-dimensional space (that is, on
a line). Suppose that voters have “ideal points” with regard to these positions
that are normally distributed in this space, defined so that voters will prefer
candidates whose positions are closest to their ideal points. Further suppose
that voters’ ideal points can be modeled as a linear regression given inputs such
as party identification, ideology, and demographics.

(a) Write this model in terms of utilities.
(b) Express the probability that a voter supports candidate S as a probit regres-
sion on the voter-level inputs.
See Erikson and Romero (1990) and Clinton, Jackman, and Rivers (2004) for
more on these models.

Multinomial choice models: Pardoe and Simonton (2006) fit a discrete choice
model to predict winners of the Academy Awards. Their data are in the folder
academy.awards.

(a) Fit your own model to these data.
(b) Display the fitted model on a plot that also shows the data.
(c) Make a plot displaying the uncertainty in inferences from the fitted model.






Part 1B: Working with regression
inferences

We now discuss how to go beyond simply looking at regression coefficients, first by
using simulation to summarize and propagate inferential uncertainty, and then by
considering how regression can be used for causal inference.






CHAPTER 7

Simulation of probability models and
statistical inferences

Whenever we represent inferences for a parameter using a point estimate and stan-
dard error, we are performing a data reduction. If the estimate is normally dis-
tributed, this summary discards no information because the normal distribution is
completely defined by its mean and variance. But in other cases it can be useful
to represent the uncertainty in the parameter estimation by a set of random sim-
ulations that represent possible values of the parameter vector (with more likely
values being more likely to appear in the simulation). By simulation, then, we
mean summarizing inferences by random numbers rather than by point estimates
and standard errors.

7.1 Simulation of probability models

In this section we introduce simulation for two simple probability models. The
rest of the chapter discusses how to use simulations to summarize and understand
regressions and generalize linear models, and the next chapter applies simulation to
model checking and validation. Simulation is important in itself and also prepares
for multilevel models, which we fit using simulation-based inference, as described
in Part 2B.

A simple example of discrete predictive simulation

How many girls in 400 births? The probability that a baby is a girl or boy is
48.8% or 51.2%, respectively. Suppose that 400 babies are born in a hospital in a
given year. How many will be girls?

We can simulate the 400 births using the binomial distribution:

n.girls <- rbinom (1, 400, .488)
print (n.girls)

which shows us what could happen in 400 births. To get a sense of the distribution
of what could happen, we simulate the process 1000 times (after first creating the
vector n.girls to store the simulations):

n.sims <- 1000
n.girls <- rep (NA, n.sims)
for (s in 1:n.sims){
n.girls[s] <- rbinom (1, 400, .488)}
hist (n.girls)

which yields the histogram in Figure 7.1 representing the probability distribution
for the number of girl births. The 1000 simulations capture the uncertainty.

! In this example, we performed all the simulations in a loop. It would also be possible to simulate
1000 draws from the binomial distribution directly:
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Figure 7.1 Histogram of 1000 simulated values for the number of girls born in a hospital
out of 400 babies, as simulated from the binomial probability distribution with probability
0.488.

Accounting for twins. 'We can complicate the model in various ways. For example,
there is a 1/125 chance that a birth event results in fraternal twins, of which each
has an approximate 49.5% chance of being a girl, and a 1/300 chance of identical
twins, which have an approximate 49.5% chance of being girls. We can simulate 400
birth events as follows:

birth.type <- sample (c("fraternal twin","identical twin","single birth"),

size=400, replace=TRUE, prob=c(1/125, 1/300, 1 - 1/125 - 1/300))
girls <- rep (NA, 400)
for (i in 1:400){
if (birth.type[il=="single birth"){
girls[i] <- rbinom (1, 1, .488)}
else if (birth.typel[i]l=="identical twin"){
girls[i] <- 2*rbinom (1, 1, .495)}
else if (birth.typelil=="fraternal twin"){
girls[i] <- rbinom (1, 2, .495)}
}

n.girls <- sum (girls)

Here, girls is a vector of length 400, of 0’s, 1’s, and 2’s (mostly 0’s and 1’s) rep-
resenting the number of girls in each birth event.? To approximate the distribution
of the number of girls in 400 births, we put the simulation in a loop and repeat it
1000 times:

n.girls <- rep (NA, n.sims)
for (s in 1:n.sims){
birth.type <-sample(c("fraternal twin","identical twin","single birth"),
size=400, replace=TRUE, prob=c(1/125, 1/300, 1 - 1/125 - 1/300))
girls <- rep (NA, 400)
for (i in 1:400){
if (birth.type[il=="single birth"){
girls[i] <- rbinom (1, 1, .488)}
else if (birth.typel[il=="identical twin"){
girls[i] <- 2*rbinom (1, 1, .495)}
else if (birth.typel[il=="fraternal twin"){
girls[i] <- rbinom (1, 2, .495)}

n.girls <- rbinom (n.sims, 400, .488)
In other settings one can write the simulation as a function and perform the looping implicitly
using the replicate() function in R, as we illustrate on page 139.

2 Again, this calculation could also be performed without looping using vector operations in R:
girls <- ifelse (birth.type=="single birth", rbinom (400, 1, .488), ifelse (

birth.type="identical twins", 2*rbinom (400, 1, .495), rbinom (400, 2, .495)))

‘We have used looping in the main text to emphasize the parallel calculation for the 400 birth
events, but the vectorized computation is faster and can be more convenient when part of a
larger computation.
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}

n.girls[s] <- sum (girls)

}

This nested looping is characteristic of simulations of complex data structures and
can also be implemented using custom R functions and the replicate() function,
as we discuss shortly.

A simple example of continuous predictive simulation

Similarly, we can program R to simulate continuous random variables. For example,
52% of adults in the United States are women and 48% are men. The heights of the
men are approximately normally distributed with mean 69.1 inches and standard
deviation 2.9 inches; women with mean 63.7 and standard deviation 2.7.

Suppose we select 10 adults at random. What can we say about their average
height?

sex <- rbinom (10, 1, .52)

height <- ifelse (sex==0, rnorm (10, 69.1, 2.9), rnorm (10, 64.5, 2.7))
avg.height <- mean (height)

print (avg.height)

To simulate the distribution of avg.height, we loop the simulation 1000 times:

n.sims <- 1000

avg.height <- rep (NA, n.sims)

for (s in 1:n.sims){
sex <- rbinom (10, 1, .52)
height <- ifelse (sex==0, rnorm (10, 69.1, 2.9), rnorm (10, 64.5, 2.7))
avg.height[s] <- mean (height)

}

hist (avg.height, main="Average height of 10 adults")

What about the maximum height of the 10 people? To determine this, just add the
following line within the loop:

max.height[s] <- max (height)
and before the loop, initialize max.height:
max.height <- rep (NA, n.sims)

Then, after the loop, make a histogram of max.height.

Simulation in R using custom-made functions

The coding for simulations becomes cleaner if we express the steps for a single
simulation as a function in R. We illustrate with the simulation of average heights.
First, the function:

Height.sim <- function (n.adults){
sex <- rbinom (n.adults, 1, .52)
height <- ifelse (sex==0, rnorm (10, 69.5, 2.9), rnorm (10, 64.5, 2.7))
return (mean(height))

}

(For simplicity we have “hard-coded” the proportion of women and the mean and
standard deviation of men’s and women’s heights, but more generally these could
be supplied as arguments to the function.)

We then use the replicate() function to call Height.sim() 1000 times:
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avg.height <- replicate (1000, Height.sim (n.adults=10))
hist (avg.height)

See Section 20.5 for a more elaborate example of the use of functions in R, in a
fake-data simulation to perform a power calculation.

7.2 Summarizing linear regressions using simulation: an informal
Bayesian approach

In a regression setting, we can use simulation to capture both predictive uncertainty
(the error term in the regression model) and inferential uncertainty (the standard
errors of the coefficients and uncertainty about the residual error). We first discuss
the simplest case of simulating prediction errors, then consider inferential uncer-
tainty and the combination of both sources of variation.

Simulation to represent predictive uncertainty

We illustrate predictive uncertainty with the problem of predicting the earnings of
a 68-inch-tall man, using model (4.2) on page 63.
Obtaining the point and interval predictions automatically. The predictive esti-

mate and confidence interval can easily be accessed using the regression software
in R:

x.new <- data.frame (height=68, male=1)
pred.interval <- predict (earn.logmodel.3, x.new, interval="prediction",
level=.95)

and then exponentiating to get the predictions on the original (unlogged) scale of
earnings:

exp (pred.interval)

Constructing the predictive interval using simulation. We now discuss how to ob-
tain predictive intervals “manually” using simulations derived from the fitted re-
gression model. In this example it would be easier to simply use the predict()
function as just shown; however, simulation is a general tool that we will be able to
apply in more complicated predictive settings, as we illustrate later in this chapter
and the next.

e The point estimate for log earnings is 8.4+0.017-68—0.079-14-0.007-68-1 = 9.95,
with a standard deviation of 0.88. To put these on the original (unlogged) scale,
we exponentiate to yield a geometric mean of %% = 21000 and a geometric
standard deviation of %% = 2.4.

Then, for example, the 68% predictive interval is [21000/2.4, 21000 - 2.4] =
[8800, 50000], and the 95% interval is [21000/2.42, 21000 - 2.42] = [3600, 121000]
The simulation prediction is a set of random numbers whose logarithms have

mean 9.95 and standard deviation 0.88. For example, in R, we can summarize
the predictive distribution using the following command:

pred <- exp (rnorm (1000, 9.95, .88))

which tells R to draw 1000 random numbers from a normal distribution with
mean 9.95 and variance 0.88, and then exponentiate these values.
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Figure 7.2 Histogram of 1000 simulated values from the predictive distribution of the earn-
ings of a 68-inch-tall man from a fitted regression model, on the logarithmic and original
scales.

We can display the simulations as a histogram (see Figure 7.2) and also compute
various numerical summaries, for example,

e mean: mean(pred)

e median: quantile(pred, .5)

e 50% interval: quantile(pred,c(.25,.75))

e 95% interval: quantile(pred,c(.025,.975))

(These calculations ignore uncertainty in the regression parameters and thus are
only approximate; we describe a more complete computational procedure later in
this section.)

Why do we need simulation for predictive inferences?

For many purposes, point estimates, standard errors, and the intervals obtained
from the predict () function in R are sufficient because the Central Limit Theorem
ensures that for all but the smallest sample sizes and for reasonably well-behaved
error distributions, coefficient estimates are approximately normally distributed
(see page 14). Accounting for the uncertainty in the standard-error estimates, the
t-distribution with n—k degrees of freedom (where k is the number of predictors in
the model) is a reliable approximation for the appropriate uncertainty distribution
for the coefficients. Analytic procedures can also be used to get uncertainty for linear
combinations of parameters and predictions. (An example of a linear combination
of predictions is to use one of the models in Chapter 3 to predict the average test
score of a group of 100 children whose mothers’ educations and IQs are known.)

For more general predictions, however, the easiest and most reliable way to com-
pute uncertainties is by simulation. For example, suppose we have a 68-inch-tall
woman and a 68-inch-tall man, and we would like to use model (4.2) to predict the
difference of their earnings. As a point estimate, we can use the difference of the
point predictions: exp(8.4 4+ 0.017-68 — 0.079 -1+ 0.007 - 68 - 1) — exp(8.4 4 0.017 -
68 —0.079 - 0+ 0.007 - 68 - 0) = 6900. The simplest way to get a standard error or
uncertainty interval for this prediction is to use simulation:

pred.man <- exp (rnorm (1000, 8.4 + .017%68 - .079%1 + .007%68%1, .88))
pred.woman <- exp (rnorm (1000, 8.4 + .017*68 - .079%0 + .007%68%0, .88))
pred.diff <- pred.man - pred.woman

pred.ratio <- pred.man/pred.woman

We can summarize the distribution of this difference using a histogram or numer-
ical summaries such as mean(pred.diff), quantile(pred.ratio,c(.25,.75)),
and so forth.

More generally, simulation is valuable because it can be used to summarize any
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function of estimated and predicted values. This is important partly for practical
purposes in summarizing predictions and also because it allows us to fit complicated
models in which the ultimate objects of interest are more complicated than a set
of regression coefficients or linear combination of coefficients. Simulation will also
be crucial when working with nonlinear models such as logistic regression.

Simulation to represent uncertainty in regression coefficients

The usual summary of a fitted regression gives standard errors along with esti-
mates for each coefficient, and these give a sense of the uncertainty in estimation
(see Figure 3.7 on page 40). When going beyond inferences for individual coeffi-
cients, however, it is helpful to summarize inferences by simulation, which gives us
complete flexibility in propagating uncertainty about combinations of parameters
and predictions.

For classical linear regressions and generalized linear models, we implement these
simulations using the sim() function in R. For example, if we do

n.sims <- 1000

fit.1 <- Im (log.earn ~ height + male + height:male)

sim.1 <- sim (fit.1, n.sims)
then sim.1$beta is a matrix with 1000 rows and 4 columns (representing 1000
independent simulations of the vector (5o, 81, B2, 33)), and sim.1$sigma is a vector
of length 1000 (representing the estimation uncertainty in the residual standard-
deviation parameter o).

We can check that these simulations are equivalent to the regression computa-
tions, for example by the following commands in R, which print the mean, standard
deviation, and 95% interval for the coeflicient for height in the fitted model:

height.coef <- sim.1$betal,2]

mean (height.coef)

sd (height.coef)

quantile (height.coef, c(.025,.975))

For a more interesting example, consider the question: In this interaction model,
what can be said about the coefficient of height among men? We cannot directly
answer this question using the regression output: the slope for men is a sum of
the height and height:male coefficients, and there is no simple way to compute
its standard error given the information in the regression table. The most direct
approach is to compute the 95% interval directly from the inferential simulations:

height.for.men.coef <- sim.1$betal[,2] + sim.1$betal,4]
quantile (height.for.men.coef, c(.025,.975))

The result is [—0.003,0.049], that is, [—0.3%,4.9%)]. Statistical significance is not
the object of the analysis—our conclusions should not be greatly changed if, for
example, the 95% interval instead were [0.1%, 5.3%]—but it is important to have a
sense of the uncertainty of estimates, and it is convenient to be able to do this using
the inferential simulations. The powers of inferential simulations are demonstrated
more effectively when combined with prediction, as illustrated in Section 7.3.

Details of the simulation procedure

To get n.sims simulation draws (for example, 1000 is typically more than enough;
see Chapter 17), we apply the following procedure based on Bayesian inference (see
Chapter 18).
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1. Use classical regression of n data points on k predictors to compute the vector ﬁ
of estimated parameters, the unscaled estimation covariance matrix V3, and the
residual variance 2.

2. Create n.sims random simulations of the coefficient vector 3 and the residual
standard deviation o. For each simulation draw:

(a) Simulate o = 6+/(n—k)/X, where X is a random draw from the x? distribu-
tion with n—k degrees of freedom.

(b) Given the random draw of o, simulate 8 from a multivariate normal distribu-
tion with mean 3 and variance matrix o2Vj.

These simulations are centered about the estimates B and ¢ with variation repre-
senting estimation uncertainty in the parameters. (For example, approximately
68% of the simulations of 3; will be within +1 standard error of Bl, approxi-
mately 95% will be within £2 standard errors, and so forth.)

These steps are performed automatically by our R function sim(), which pulls out
n, k,[3,Vg, 6 from the fitted linear model and then performs a loop over the ngims
simulations:

for (s in 1:n.sims){
sigma[s] <- sigma.hat*sqrt((n-k)/rchisq(1,n-k))
betals,] <- mvrnorm (1, beta.hat, V.beta*sigmal[s]~2)
}

The sim() function then returns the vector of simulations of o and the ngms X k
matrix of simulations of 3:

return (list (beta=beta, sigma=sigma))

The list items are given names so they can be accessed using these names from the
simulation object. The function works similarly for generalized linear models such
as logistic and Poisson regressions, adjusting for any overdispersion by using the
standard errors of the coefficient estimates, which are scaled for overdispersion if
that is included in the model.

Informal Bayesian inference

Bayesian inference refers to statistical procedures that model unknown parameters
(and also missing and latent data) as random variables. As described in more detail
in Section 18.3, Bayesian inference starts with a prior distribution on the unknown
parameters and updates this with the likelihood of the data, yielding a posterior
distribution which is used for inferences and predictions.

Part 2 of this book discusses how Bayesian inference is appropriate for multi-
level modeling—in which it is natural to fit probability distributions to batches
of parameters. For the classical models considered in Part 1, Bayesian inference is
simpler, typically starting with a “noninformative” or uniform prior distribution
on the unknown parameters. We will not explore the technical issues further here
except to note that the simulations presented here correspond to these noninfor-
mative prior distributions. It can also be helpful to think of these simulations as
representing configurations of parameters and predictions that are compatible with
the observed data—in the same sense that a classical confidence interval contains
a range of parameter values that are not contradicted by the data.
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Congressional elections in 1988

i

1]
Figure 7.3 Histogram of congressional election data from 1988. The spikes at the left and
right ends represent uncontested Republicans and Democrats, respectively.
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7.3 Simulation for nonlinear predictions: congressional elections

We illustrate nonlinear predictions in the context of a model of elections for the U.S.
Congress. We first construct a model to predict the 1988 election from the 1986
election. Then we apply the model to predict 1990 from 1988. (It is convenient,
when learning about a method, to predict outcomes that have already occurred, so
the predictions can be compared to reality.)

Background

The United States is divided into 435 congressional districts, and we define the
outcome y;, for i = 1,...,n = 435 to be the Democratic Party’s share of the two-
party vote (that is, excluding the votes for parties other than the Democrats and
the Republicans) in district ¢ in 1988. Figure 7.3 shows a histogram of the data y.

How can the variation in the data be understood? What information would be
relevant in predicting the outcome of a congressional election? First of all, it is useful
to know whether both parties are contesting the election; the spikes at the two ends
of the histogram reveal that many of the elections were uncontested. After that, it
would seem to make sense to use the outcome of the most recent previous election,
which was in 1988. In addition, we use the knowledge of whether the incumbent—the
current occupant of the congressional seat—is running for reelection.

Our regression model has the following predictors:

e A constant term
e The Democratic share of the two-party vote in district 7 in the previous election

e Incumbency: an indicator that equals +1 if district ¢ is currently (as of 1988)
occupied by a Democrat who is running for reelection, —1 if a Republican is
running for reelection, and 0 if the election is open—that is, if neither of the two
candidates is currently occupying the seat.

Because the incumbency predictor is categorical, we can display the data in a
single scatterplot using different symbols for Republican incumbents, Democratic
incumbents, and open seats; see Figure 7.4a.

We shall fit a linear regression. The data—mnumber of votes for each candidate—
are discrete, so it might at first seem appropriate to fit a generalized linear model
such as an overdispersed binomial. But the number of votes within each district is
large enough that the vote proportions are essentially continuous, so nothing would
be gained by attempting to model the discreteness in the data.
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Figure 7.4 (a) Congressional election data from 1986 and 1988. Crosses correspond to
elections with Republican incumbents running in 1988, dots correspond to Democratic
incumbents, and open circles correspond to open seats. The “incumbency” predictor in
the regression model equals 0 for the circles, +1 for the dots, and —1 for the crosses.
Uncontested election outcomes (at 0 and 1) have been jittered slightly. (b) Data for the
regression analysis, with uncontested 1988 elections removed and uncontested 1986 election
values replaced by 0.25 and 0.75. The y = x line is included as a comparison on both plots.

Data issues

Many of the elections were uncontested in 1988, so that y; = 0 or 1 exactly; for sim-
plicity, we exclude these from our analysis. Thus, we are predicting the 1988 results
given the outcome in the previous election and the knowledge of (a) whether the
incumbent is running for reelection, and (b) whether the election will be contested.
Primary elections are typically in September, and so it is reasonable to expect
to have this information about two months before the November general election.
We also exclude any elections that were won by third parties, yielding n = 343
congressional elections for our analysis.

In addition, many elections were uncontested in 1986, so the previous election
outcome Xo; is 0 or 1 exactly. It would be possible to simply include these in
the model as is; however, instead we impute the value 0.25 for uncontested Re-
publicans and 0.75 for uncontested Democrats, which are intended to represent
approximately the proportion of votes received by the Democratic candidate had
the election actually been contested. (More generally, we can impute random values
from the distribution of contested election outcomes preceding an uncontested race,
but for our purposes here the simple imputation is suficient.) The adjusted dataset
is displayed in Figure 7.4b.

Fitting the model

First we fit the regression model in R: we label the adjusted variables as vote.88,
vote.86, incumbency .88, subset them to include only the elections that were con-
tested in 1988, and fit a linear model:

£it.88 <- 1m (vote.88 ~ vote.86 + incumbency.88)
Displaying yields

coef.est coef.se
(Intercept) 0.20 0.02
vote.86 0.58 0.04
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sim o Bo P B2 g1 G2 - Uss oo Gazs o 1(§i > 0.5)
1 .065 .19 62 .067 .69 .57 --- NA ... .79 251
2 069 .25 .50 .097 75 63 --- NA ... .76 254
1000 067 .23 51 .089 .73 57 .- NA .. .69 251
median .068 .20 .58 .077 .73 65 --- NA ... 72 253
mean .067 20 .58 078 .73 65 --- NA ... 72 252.4
sd .003 .02 .04 .007r .07 .07 --- NA ... .07 3.1

Figure 7.5 Simulation results for the congressional election forecasting model. The pre-
dicted values §; correspond to the 1990 election. The NAs are for a district that was
uncontested in 1990, so it was not predicted by the regression model.

incumbency.88 0.08 0.01
n = 343, k = 3
residual sd = 0.067, R-Squared = 0.88

This model has serious problems, as can be seen, for example, by careful exami-
nation of the plot of residuals or even of the before-after plot in Figure 7.4b (for
example, the jump between the average y-values just below and just above x = 0.5
is not completely fit by the incumbency.88 predictor). Better models can be fit
to these data (see Exercise 9.13), but the simple regression fit here is sufficient to
demonstrate the principles of simulation-based predictive inference.

Simulation for inferences and predictions of new data points

The first five columns of Figure 7.5 show a set of simulation results for the param-
eters in the fitted model. We use these, along with the data from 1988 and incum-
bency information in 1990, to predict the district-by-district election outcome in

1990. We start by creating a new matrix of predictors, X:

n.tilde <- length (vote.88)
X.tilde <- cbind (rep(1l,n.tilde), vote.88, incumbency.90)

We then simulate ngj,s = 1000 predictive~ simulations of the vector of 7 new data
points with 7 X k matrix of predictors X. For each simulation, we compute the
predicted value X3 and add normal errors:

n.sims <- 1000
sim.88 <- sim (fit.88, n.sims)
y.tilde <- array (NA, c(n.sims, n.tilde))
for (s in 1:n.sims){
y.tilde[s,] <- rnorm (n.tilde, X.tilde %), sim.88$betals,],
sim.88$sigmals])}

This last matrix multiplication works because X.tilde is a n X 3 matrix and
sim.88%beta is a ngms X 3 matrix; thus the selected row, sim.88%betals,], is
a vector of length 3, and the product X.tilde%*%sim.88%betals,] is a vector of
length 7 that represents the vector of predicted values for that particular simulation
draw.
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Predictive simulation for a nonlinear function of new data

For the congressional elections example, we perform inference on the summary
measure Y., I(§; > 0.5)—the number of elections won by the Democrats in 1990,
by summing over the rows in the matrix:®

dems.tilde <- rowSums (y.tilde > .5)

The last column of Figure 7.5 shows the results. Each row shows the outcome of
a different random simulation.

The lower lines of the table in Figure 7.5 show the median, mean, and standard
deviation of each simulated outcome. The means and medians of the parameters o
and (3 are nearly identical to the point estimates (the differences are due to variation
because there are only 1000 simulation draws). The future election outcome in
each district has a predictive uncertainty of about 0.07, which makes sense since
the estimated standard deviation from the regression is & = 0.07. (The predictive
uncertainties are slightly higher than &, but by only a very small amount since the
number of data points in the original regression is large, and the z-values for the
predictions are all within the range of the original data.)

Finally, the entries in the lower-right corner of Figure 7.5 give a predictive mean
of 252.4 and standard error of 3.1 for the number of districts to be won by the
Democrats. This estimate and standard error could not simply be calculated from
the estimates and uncertainties for the individual districts. Simulation is the only
practical method of assessing the predictive uncertainty for this nonlinear function
of the predicted outcomes.

Incidentally, the actual number of seats won by the Democrats in 1990 was 262.
This is more than 3 standard deviations away from the mean, which suggests that
the model is not quite applicable to the 1990 election—this makes sense since it
does not allow for national partisan swings of the sort that happen from election
to election.

Implementation using functions

We could also compute these predictions by writing a custom R function:
Pred.88 <- function (X.pred, Ilm.fit){
n.pred <- dim(X.pred) [1]
5im.88 <- sim (Im.fit, 1)
y.pred <- rnorm (n.pred, X.pred %*% t(sim.88$beta), sim.88%sigma)
return (y.pred)
}
and then creating 1000 simulations using the replicate() function in R:
y.tilde <- replicate (1000, Pred.88 (X.tilde, fit.88))
To predict the total number of seats won by the Democrats, we can add a wrapper:
dems.tilde <- replicate (1000, Pred.88 (X.tilde, fit.88) > .5)

Computing using replicate () (or related functions such as apply () and sapply ())
results in faster and more compact R code which, depending on one’s programming
experience can appear either simpler or more mysterious than explicit looping. We
sometimes find it helpful to perform computations both ways when we are uncertain
about the programming.

3 We could also calculate this sum in a loop as
dems.tilde <- rep (NA, n.sims)
for (s in 1:n.sims){
dems.tilde[s] <- sum (y.tildels,] > .5)}
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Combining simulation and analytic calculations

In some settings it is helpful to supplement simulation-based inference with math-
ematical analysis. For example, in the election prediction model, suppose we want
to estimate the probability that the election in a particular district will be tied, or
within one vote of being exactly tied. (This calculation is relevant, for example, in
estimating the probability that an individual vote will be decisive, and comparing
these probabilities can be relevant for parties’ decisions for allocating campaign
resources. )

Cousider a district, i, with n; voters. For simplicity we suppose n; is even. This
district’s election will be tied if the future vote outcome, 7;, is exactly 0.5. We
have approximated the distribution of § as continuous—which is perfectly reason-
able given that the n;’s are in the tens or hundreds of thousands—and so a tie is
equivalent to g; being in the range [% - 27111,7 % + 2%”]

How can we compute this probability by simulation? The most direct way is to
perform many predictive simulations and count the proportion for which g; falls in
the range 0.5 £ 1/(2n;). Unfortunately, for realistic n;’s, this range is so tiny that
thousands or millions of simulations could be required to estimate this probability
accurately. (For example, it would not be very helpful to learn that 0 out of 1000
simulations fell within the interval.)

A better approach is to combine simulation and analytical results: first compute
1000 simulations of g, as shown, then for each district compute the proportion of
simulations that fall between 0.49 and 0.51, say, and divide by 0.02n; (that is, the
number of intervals of width 1/n; that fit between 0.49 and 0.51). Or compute the
proportion falling between 0.45 and 0.55, and divide by 0.1n;. For some districts,
the probability will still be estimated at zero after 1000 simulation draws, but in
this case the estimated zero is much more precise.

Estimated probabilities for extremely rare events can be computed in this ex-
ample using the fact that predictive distributions from a linear regression follow
the ¢ distribution with n—k& degrees of freedom. We can use 1000 simulations to
compute a predictive mean and standard deviation for each g;, then use tail prob-
abilities of the t340 distribution (in this example, n = 343 and k = 3) to compute
the probability of falling in the range 0.5 £+ 1/(2n;).

7.4 Predictive simulation for generalized linear models

As with linear regression, we simulate inference for generalized linear models in two
steps: first using sim() to obtain simulations for the coefficients, then simulating
predictions from the appropriate model, given the linear predictor.

Logistic regression

We illustrate for one of the models from Chapter 5 of the probability of switching
wells given the distance from the nearest safe well.

Simulating the uncertainty in the estimated coefficients. Figure 7.6a shows the
uncertainty in the regression coefficients, computed as follows:

sim.1 <- sim (fit.1, n.sims=1000)
plot (sim.1$betal,1], sim.1$betal,2], xlab=expression(betal0]),
ylab=expression(betal1]))

and Figure 7.6b shows the corresponding uncertainty in the logistic regression curve,
displayed as follows:
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Figure 7.6 (a) Uncertainty in the estimated coefficients Bo and 31 in the logistic regression,
Pr(switching wells) = logit (o — Bo - dist100). (b) Graphical expression of the best-fit
model, Pr(switching wells) = logit™'(0.61 — 0.62 - dist100), with (jittered) data overlain.
Light lines represent estimation uncertainty in the logistic regression coefficients, corre-
sponding to the distribution of B shown to the left. Compare to Figure 5.9 on page 89.

sim Bo B 1 Y2 o G0
1 0.68 —0.007 1 0 S 1
0.61 —0.005 0 0 cee 1
1000 0.69 —0.006 1 1 cee 1
mean 0.61 —-0.006 0.60 059 --- 0.52

Figure 7.7 Simulation results for ten hypothetical new households in the well-switching
example, predicting based only on distance to the nearest well. The inferences for (o, 1)
are displayed as a scatterplot in Figure 7.6a. The bottom row—the mean of the simulated
values of §; for each household i—gives the estimated probabilities of switching.

plot (dist, switch)
for (s in 1:20){
curve (invlogit (sim.1$betals,1] + sim.1$betals,2]*x), col="gray",
add=TRUE) }
curve (invlogit (fit.1$coef[1] + fit.1$coef[2]*x), add=TRUE)

Predictive simulation using the binomial distribution. Now suppose, for example,
that we would like to predict the switching behavior for 7 new households, given a
predictor matrix X (which will have 72 rows and, in this example, two columns, cor-
responding to the constant term and the distance to the nearest safe well). As with
linear regression, we can use simulation to account for the predictive uncertainty.
In this case, we use the binomial distribution to simulate the prediction errors:

n.tilde <- nrow (X.tilde)

y.tilde <- array (NA, c(n.sims, n.tilde))

for (s in 1:n.sims){
p-tilde <- invlogit (X.tilde %*J% sim.1$betals,])
y.tilde[s,] <- rbinom (n.tilde, 1, p.tilde)

}

Figure 7.7 shows an example set of n.sims = 1000 simulations corresponding to
n.tilde = 10 new households.

Predictive simulation using the latent logistic distribution. An alternative way to
simulate logistic regression predictions uses the latent-data formulation (see Section
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5.3). We obtain simulations for the latent data Z by adding independent errors € to
the linear predictor, and then convert to binary data by setting g; = 1 if Z; > 0 for
each new household i:

y.tilde <- array (NA, c(n.sims, n.tilde))

for (s in 1:n.sims){
epsilon.tilde <- logit (runif (n.tilde, 0, 1))
z.tilde <- X.tilde %*% t(sim.1$beta) + epsilon.tilde
y.tilde[s,] <- ifelse (z.tilde>0, 1, 0)

¥

Other generalized linear models

We can do similar computations with Poisson regression: inference just as before,
and predictive simulations using rpois().

For overdispersed Poisson regression, the function rnegbin() samples from the
negative binomial distribution. Another option is to sample first from the gamma,
then the Poisson. For overdispersed binomial, simulations from the beta-binomial
distribution can be obtained by drawing first from the beta distribution, then the
binomial.

Compound models

Simulation is the easiest way of summarizing inferences from more complex models.
For example, as discussed in Section 6.7, we can model earnings from height in two
steps:

Pr(earnings > 0) = logit ™ (—3.76 + 0.08 - height + 1.70 - male)
If earnings >0, then earnings = exp (8.15 + 0.02 - height + 0.42 - male + €),

with the error term e having a normal distribution with mean 0 and standard
deviation 0.88.

We can simulate the earnings of a randomly chosen 68-inch tall man. We first
show, for simplicity, the simulation ignoring uncertainty in the regression coeffi-
cients:

fit.la <- glm (earn.pos ~ height + male, family=binomial(link="logit"))
fit.1b <- 1m (log.earn ~ height + male, subset = earnings>0)
x.new <- ¢ (1, 68, 1) # constant term=1, height=68, male=1

n.sims <- 1000
prob.earn.pos <- invlogit (coef(fit.la) %*J, x.new)
earn.pos.sim <- rbinom (n.sims, 1, prob.earn.pos)
earn.sim <- ifelse (earn.pos.sim==0, O,
exp (rnorm (n.sims, coef(fit.1b) %*J x.new, sigma.hat(fit.1b))))

More generally, we can use the simulated values of the coefficient estimates:

sim.la <- sim (fit.la, n.sims)
sim.1b <- sim (fit.1b, n.sims)
for (s in 1:n.sims){
prob.earn.pos <- invlogit (sim.la$beta %*% x.new)
earn.pos.sim <- rbinom (n.sims, 1, prob.earn.pos)
earn.sim[s] <- ifelse (earn.pos.sim==0, 0
exp (rnorm (n.sims, sim.1b$beta %x), x.new, sim.1b$sigma)))
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Figure 7.8 Mean predicted earnings as a function of height and sex for the two-stage model
(logistic regression for the probability earnings being positive, followed by linear regression
for the logarithms of positive earnings), as computed using 100, 1000, or 10000 simulations.

Now suppose we want to understand this compound model by plotting the mean
predicted earnings as a function of height and sex. We can first put the computations
into a function:

Mean.earn <- function (height, male, sim.a, sim.b){ R code
x.new <- ¢ (1, height, male)
prob.earn.pos <- invlogit (sim.a$beta %*} x.new)
earn.pos.sim <- rbinom (n.sims, 1, prob.earn.pos)
earn.sim <- ifelse (earn.pos.sim==0, O,
exp (rnorm (n.sims, sim.b$beta %*) x.new, sim.b$sigma)))
return (mean(earn.sim))

}
and then evaluate the function in a loop using the sapply () function:*

heights <- seq (60, 75, 1) R code
mean.earn.female <- sapply (heights, Mean.earn, male=0, sim.la, sim.1Db)
mean.earn.male <- sapply (heights, Mean.earn, male=1, sim.la, sim.1b)

The plots of mean.earn.female and mean.earn.male versus heights appear in
Figure 7.8, for three different values of ngims. The general pattern is clear from 100
simulations, but more simulations are helpful to avoid being distracted by random
noise.

7.5 Bibliographic note

Random simulation for performing computations in probability and statistics was
one of the first applications of computers, dating back to the 1940s. As computing
power became more dispersed since the 1970s, simulation has been used increasingly
frequently for summarizing statistical inferences; Rubin (1980) is an early example.

Our simulation-based approach to computation is described in Gelman et al.
(2003), and a recent implementation in R appears in Kerman and Gelman (2006).
The congressional election analysis in Section 7.3 uses a simplified version of the
models of Gelman and King (1990, 1994a).

4 Alternatively, the looping could be programmed explicitly:

heights <- seq (60, 75, 1)

k <- length(heights)

mean.earn.female <- rep (NA, k)

mean.earn.male <- rep (NA, k)

for (i in 1:k) {
mean.earn.female[i] <- Mean.earn (heights[i]l, 0, sim.la, sim.1b)
mean.earn.male[i] <- Mean.earn (heights[i], 1, sim.la, sim.1b)

}
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7.6 Exercises

1. Discrete probability simulation: suppose that a basketball player has a 60%
chance of making a shot, and he keeps taking shots until he misses two in a
row. Also assume his shots are independent (so that each shot has 60% proba-
bility of success, no matter what happened before).

(a) Write an R function to simulate this process.

(b) Put the R function in a loop to simulate the process 1000 times. Use the
simulation to estimate the mean, standard deviation, and distribution of the
total number of shots that the player will take.

(¢) Using your simulations, make a scatterplot of the number of shots the player
will take and the proportion of shots that are successes.

2. Continuous probability simulation: the logarithms of weights (in pounds) of men
in the United States are approximately normally distributed with mean 5.13
and standard deviation 0.17; women with mean 4.96 and standard deviation
0.20. Suppose 10 adults selected at random step on an elevator with a capacity
of 1750 pounds. What is the probability that the elevator cable breaks?

3. Propagation of uncertainty: we use a highly idealized setting to illustrate the
use of simulations in combining uncertainties. Suppose a company changes its
technology for widget production, and a study estimates the cost savings at $5
per unit, but with a standard error of $4. Furthermore, a forecast estimates the
size of the market (that is, the number of widgets that will be sold) at 40,000,
with a standard error of 10,000. Assuming these two sources of uncertainty are
independent, use simulation to estimate the total amount of money saved by the
new product (that is, savings per unit, multiplied by size of the market).

4. Predictive simulation for linear regression: take one of the models from Exercise
3.5 or 4.8 that predicts course evaluations from beauty and other input variables.
You will do some simulations.

(a) Inmstructor A is a 50-year-old woman who is a native English speaker and
has a beauty score of —1. Instructor B is a 60-year-old man who is a native
English speaker and has a beauty score of —0.5. Simulate 1000 random draws
of the course evaluation rating of these two instructors. In your simulation,
account for the uncertainty in the regression parameters (that is, use the
sim() function) as well as the predictive uncertainty.

(b) Make a histogram of the difference between the course evaluations for A and
B. What is the probability that A will have a higher evaluation?

5. Predictive simulation for linear regression: using data of interest to you, fit a
linear regression model. Use the output from this model to simulate a predictive
distribution for observations with a particular combination of levels of all the
predictors in the regression.

6. Repeat the previous exercise using a logistic regression example.

7. Repeat the previous exercise using a Poisson regression example.

8. Inference for the ratio of parameters: a (hypothetical) study compares the costs
and effectiveness of two different medical treatments.

e In the first part of the study, the difference in costs between treatments A
and B is estimated at $600 per patient, with a standard error of $400, based
on a regression with 50 degrees of freedom.
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9.

10.

e In the second part of the study, the difference in effectiveness is estimated
at 3.0 (on some relevant measure), with a standard error of 1.0, based on a
regression with 100 degrees of freedom.

e For simplicity, assume that the data from the two parts of the study were
collected independently.

Inference is desired for the incremental cost-effectiveness ratio: the difference
between the average costs of the two treatments, divided by the difference be-
tween their average effectiveness. (This problem is discussed further by Heitjan,
Moskowitz, and Whang, 1999.)

(a) Create 1000 simulation draws of the cost difference and the effectiveness dif-
ference, and make a scatterplot of these draws.

(b) Use simulation to come up with an estimate, 50% interval, and 95% interval
for the incremental cost-effectiveness ratio.

(c) Repeat this problem, changing the standard error on the difference in effec-
tiveness to 2.0.

Summarizing inferences and predictions using simulation: Exercise 6.5 used a
Tobit model to fit a regression with an outcome that had mixed discrete and
continuous data. In this exercise you will revisit these data and build a two-
step model: (1) logistic regression for zero earnings versus positive earnings, and
(2) linear regression for level of earnings given earnings are positive. Compare
predictions that result from each of these models with each other.

How many simulation draws are needed: take the model from Exercise 3.5 that
predicts course evaluations from beauty and other input variables. Use display ()
to summarize the model fit. Focus on the estimate and standard error for the
coefficient of beauty.

(a) Use sim() with n.iter = 10000. Compute the mean and standard deviations
of the 1000 simulations of the coefficient of beauty, and check that these are
close to the output from display.

(b) Repeat with n.iter = 1000, n.iter = 100, and n.iter = 10. Do each of these
a few times in order to get a sense of the simulation variability.

(¢) How many simulations were needed to give a good approximation to the mean
and standard error for the coefficient of beauty?






CHAPTER 8

Simulation for checking statistical
procedures and model fits

This chapter describes a variety of ways in which probabilistic simulation can be
used to better understand statistical procedures in general, and the fit of models
to data in particular. In Sections 8.1-8.2, we discuss fake-data simulation, that is,
controlled experiments in which the parameters of a statistical model are set to fixed
“true” values, and then simulations are used to study the properties of statistical
methods. Sections 8.3-8.4 consider the related but different method of predictive
simulation, where a model is fit to data, then replicated datasets are simulated from
this estimated model, and then the replicated data are compared to the actual data.

The difference between these two general approaches is that, in fake-data simula-
tion, estimated parameters are compared to true parameters, to check that a statis-
tical method performs as advertised. In predictive simulation, replicated datasets
are compared to an actual dataset, to check the fit of a particular model.

8.1 Fake-data simulation

Simulation of fake data can be used to validate statistical algorithms and to check
the properties of estimation procedures. We illustrate with a simple regression
model, where we simulate fake data from the model, y = a + Bz + ¢, refit the
model to the simulated data, and check the coverage of the 68% and 95% intervals
for the coefficent 3.

First we set up the true values of the parameters—which we arbitrarily set to
a=14, 8 =23,0 =0.9—and set up the predictors, which we arbitrarily set to
(1,2,3,4,5):

a<-1.4
b <- 2.3
sigma <- 0.9
x <- 1:5

n <- length(x)

We then simulate a vector y of fake data and fit a regression model to these data.
The fitting makes no use of the true values of «, 3, and o.

y <- a + b*x + rnorm (n, O, sigma)
Im.1 <- 1Im (y ~ x)
display (1m.1)

Here is the regression output:

Im(formula = y ~ x)
coef.est coef.se
(Intercept) 0.92 1.09
X 2.62 0.33
n=5, k=2
residual sd = 1.04, R-Squared = 0.95
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Comparing the estimated coefficients to the true values 1.4 and 2.3, the fit seems
reasonable enough: the estimates are not exact but are within the margin of error.
We can perform this comparison more formally by extracting from the regression
object the estimate and standard error of 3 (the second coefficient in the model):

b.hat <- coef (1m.1)[2] # "b" is the 2nd coef in the model
b.se <- se.coef (1m.1)[2] # "b" is the 2nd coef in the model

and then checking whether the true (§ falls within the estimated 68% and 95%
confidence intervals obtained by taking the estimate +1 or +2 standard errors
(recall Figure 3.7 on page 40):

cover.68 <- abs (b - b.hat) < b.se # this will be TRUE or FALSE
cover.95 <- abs (b - b.hat) < 2xb.se # this will be TRUE or FALSE
cat (paste ("68% coverage: ", cover.68, "\n"))

cat (paste ("95% coverage: ", cover.95, "\n"))

So, the confidence intervals worked once, but do they have the correct coverage
probabilities? We can check by embedding the data simulation, model fitting, and
coverage checking in a loop and running 1000 times:!

n.fake <- 1000
cover.68 <- rep (NA, n.fake)
cover.95 <- rep (NA, n.fake)
for (s in 1:n.fake){
y <- a + b*x + rnorm (n, O, sigma)
Im.1 <= 1m (y ~ x)
b.hat <- coef (1m.1)[2]
b.se <- se.coef (1m.1)[2]
cover.68[s] <- abs (b - b.hat) < b.se
cover.95[s] <- abs (b - b.hat) < 2*b.se
¥
cat (paste ("68) coverage: ", mean(cover.68), "\n"))
cat (paste ("95% coverage: ", mean(cover.95), "\n"))

The following appears on the console:

68% coverage: 0.61
95}, coverage: 0.85

That is, mean(cover.68) = 0.61 and mean(cover.95) = 0.85. This does not seem
right: only 61% of the 68% intervals and 85% of the 95% intervals covered the true
parameter value!

Our problem is that the £1 and +2 standard-error intervals are appropriate for
the normal distribution, but with such a small sample size our inferences should
use the ¢ distribution, in this case with 3 degrees of freedom (5 data points, minus
2 coefficients estimated; see Section 3.4). We repeat our simulation but using 3
confidence intervals:

n.fake <- 1000
cover.68 <- rep (NA, n.fake)
cover.95 <- rep (NA, n.fake)
t.68 <- qt (.84, n-2)
£.95 <- qt (.975, n-2)
for (s in 1:n.fake){
y <- a + b*x + rnorm (n, 0, sigma)

1 This and other loops in this chapter could also be performed implicitly using the replicate()
function in R, as illustrated on pages 139 and 147.
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Figure 8.1 From a model predicting final exam grades from midterms: plots of regression
residuals versus predicted and versus observed values. The left plot looks reasonable but
the right plot shows strong patterns. How to understand these? An exploration using fake
data (see Figure 8.2) shows that, even if the model were correct, we would expect the right
plot to show strong patterns. The plot of residuals versus observed thus does not indicate
a problem with the model.

Im.1 <- 1m (y ~ x)
b.hat <- coef (Im.1)[2]
b.se <- se.coef (1m.1)[2]
cover.68[s] <- abs (b - b.hat) < t.68%b.se
cover.95[s] <- abs (b - b.hat) < t.95%b.se
}
cat (paste ("68), coverage
cat (paste ("95% coverage:

"\n"))
|I\nl|))

, mean(cover.68),
", mean(cover.95),

and now we obtain coverages of 67% and 96%, as predicted (within the expected
level of variation based on 1000 simulations; see Exercise 7.10).

8.2 Example: using fake-data simulation to understand residual plots

For another illustration of the power of fake data, we simulate from a regression
model to get insight into residual plots, in particular, to understand why we plot
residuals versus fitted values rather than versus observed values (see Section 3.6).

We illustrate with a simple model predicting final exam scores from midterms in
an introductory statistics class:

Im.1 <- 1m (final ~ midterm)

yielding
coef.est coef.se
(Intercept) 64.5 17.0
midterm 0.7 0.2

n =252, k=2
residual sd = 14.8, R-Squared = 0.18

We construct fitted values § = X B and residuals y—X B:

n <- length (final)
X <- cbind (rep(1,n), midterm)
predicted <- X %x}% coef (Im.1)

Figure 8.1 shows the residuals from this model, plotted in two different ways: (a)
residuals versus fitted values, and (b) residuals versus observed values. The first
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Figure 8.2 From fake data: plots of regression residuals versus predicted and versus ob-
served values. The data were simulated from the fitted family of regression models, and so
we know that the strong pattern in the right panel does not represent any sort of model
failure. This is an illustration of the use of fake data to evaluate diagnostic plots. Compare
to the corresponding plots of real data in Figure 8.1.

plot looks reasonable: the residuals are centered around zero for all fitted values.
But the second plot looks troubling.

It turns out that the first plot is what we should be looking at, and the second plot
is misleading. This can be understood using probability theory (from the regression
model, the errors € should be independent of the predictors x, not the data y) but
a perhaps more convincing demonstration uses fake data, as we now illustrate.

For this example, we set the regression coefficients and residual standard error
to reasonable values given the model estimates, and then simulate fake data:

a <- 65
b <- 0.7
sigma <- 15

y.fake <- a + b*midterm + rnorm (n, 0, 15)

Next we fit the regression model to the fake data and compute fitted values and
residuals:
Im.fake <- Im (y.fake ~ midterm)

predicted.fake <- X %*} coef (lm.fake)
resid.fake <- y.fake - predicted.fake

(The predicted values could also be obtained in R using fitted(1m.fake); here we
explicitly multiply the predictors by the coefficients to emphasize the computations
used in creating the fake data.) Figure 8.2 shows the plots of resid.fake versus
predicted.fake and y.fake. These are the sorts of residual plots we would see if
the model were correct. This simulation shows why we prefer, as a diagnostic plot,
to view residuals versus predicted rather than observed values.

8.3 Simulating from the fitted model and comparing to actual data

So far we have considered several uses of simulation: exploring the implications of
hypothesized probability models (Section 7.1); exploring the implications of sta-
tistical models that were fit to data (Sections 7.2-7.4); studying the properties of
statistical procedures by comparing to known true values of parameters (Sections
8.1-8.2). Here we introduce yet another twist: simulating replicated data under the
fitted model (as with the predictions in Sections 7.2-7.4) and then comparing these
to the observed data (rather than comparing estimates to true parameter values as
in Section 8.1).
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Figure 8.3 Histogram of Sitmon Newcomb’s measurements for estimating the speed of light,
from Stigler (1977). The data represent the amount of time required for light to travel a
distance of 7442 meters and are recorded as deviations from 24,800 nanoseconds.

Exzample: comparing data to replications from a fitted normal distribution

The most fundamental way to check model fit is to display replicated datasets
and compare them to the actual data. Here we illustrate with a simple case, from
a famous historical dataset that did not fit the normal distribution. The goal of
this example is to demonstrate how the lack of fit can be seen using predictive
replications.

Figure 8.3 shows the data, a set of measurements taken by Simon Newcomb in
1882 as part of an experiment to estimate the speed of light. We (inappropriately)
fit a normal distribution to these data, which in the regression context can be done
by fitting a linear regression with no predictors:

light <- 1m (y ~ 1)

The next step is to simulate 1000 replications from the parameters in the fitted
model (in this case, simply the constant term 3y and the residual standard deviation
0):

n.sims <- 1000

sim.light <- sim (light, n.sims)
We can then use these simulations to create 1000 fake datasets of 66 observations
each:

n <- length (y)

y.rep <- array (NA, c(n.sims, n))

for (s in 1:n.sims){

y.repls,] <- rnorm (n, sim.light$betals], sim.light$sigmals])
}

Visual comparison of actual and replicated datasets. Figure 8.4 shows a plot of 20
of the replicated datasets, produced as follows:

par (mfrow=c(5,4))
for (s in 1:20){
hist (y.repls,])
}
The systematic differences between data and replications are clear. In more com-
plicated problems, more effort may be needed to effectively display the data and
replications for useful comparisons, but the same general idea holds.

Checking model fit using a numerical data summary. Data displays can suggest
more focused test statistics with which to check model fit, as we illustrate in Section
24.2. Here we demonstrate a simple example with the speed-of-light measurements.
The graphical check in Figures 8.3 and 8.4 shows that the data have some extremely
low values that do not appear in the replications. We can formalize this check by
defining a test statistic, T(y), equal to the minimum value of the data, and then
calculating T'(y™P) for each of the replicated datasets:
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Figure 8.4 Twenty replications, y**, of the speed-of-light data from the predictive distribu-
tion under the normal model; compare to observed data, y, in Figure 8.3. Fach histogram
displays the result of drawing 66 independent values y;°* from a common normal distribu-
tion with mean and standard deviation (u,c) estimated from the data.
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Figure 8.5 Smallest observation of Newcomb’s speed-of-light data (the vertical line at the
left of the graph), compared to the smallest observations from each of 20 posterior predictive
simulated datasets displayed in Figure 8.4.

Test <- function (y){
min (y)
}
test.rep <- rep (NA, n.sims)
for (s in 1:n.sims){
test.rep[s] <- Test (y.repls,])
}

We then plot a histogram of the minima of the replicated datasets, with a vertical
line indicating the minimum of the observed data:

hist (test.rep, xlim=range (Test(y), test.rep))
lines (rep (Test(y), 2), c(0,n))

Figure 8.5 shows the result: the smallest observations in each of the hypothetical
replications are all much larger than Newcomb’s smallest observation, which is
indicated by a vertical line on the graph. The normal model clearly does not capture
the variation that Newcomb observed. A revised model might use an asymmetric
contaminated normal distribution or a symmetric long-tailed distribution in place
of the normal measurement model.
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Ezample: zeroes in count data

For a more complicated example, we consider a study of the effect of integrated pest
management on reducing cockroach levels in urban apartments. In this experiment,
the treatment and control were applied to 160 and 104 apartments, respectively, and
the outcome measurement y; in each apartment ¢ was the number of roaches caught
in a set of traps. Different apartments had traps for different numbers of days, and
we label as u; the number of trap-days. The natural model for the roach counts
is then y; ~ Poisson(u; exp(X;3)), where X represents the regression predictors
(in this case, a pre-treatment roach level, a treatment indicator, and an indicator
for whether the apartment is in a “senior” building restricted to the elderly, and
the constant term). The logarithm of the exposure, log(u;), plays the role of the
“offset” in the Poisson regression (see model (6.3) on page 111).
We fit the model

glm.1 <- glm (y ~ roachl + treatment + senior, family=poisson,
offset=log(exposure2))

which yields

coef.est coef.se

(Intercept) -0.46 0.02
roachl 0.24 0.00
treatment -0.48 0.02
senior -0.40 0.03

n =264, k = 4
residual deviance = 11753.3, null deviance = 17354 (difference = 5600.7)

The treatment appears to be effective in reducing roach counts—we shall return
to this issue in a later chapter with a fuller exploration of this study. For now, we
are simply interested in evaluating the model as a description of the data, without
worrying about causal issues or the interpretation of the coefficients.

Comparing the data, y, to a replicated dataset, y*P. How well does this model fit
the data? We explore by simulating a replicated dataset y"P that might be seen if
the model were true and the study were performed again:

n <- length (y)

X <- cbind (rep(1,n), roachl, treatment, senior)
y.hat <- exposure2 * exp (X %% coef (glm.1))
y.rep <- rpois (n, y.hat)

‘We can compare the replicated data y™P to the original data y in various ways.
We illustrate with a simple test of the number of zeroes in the data:

print (mean (y==0))
print (mean (y.rep==0))

which reveals that 36% of the observed data points, but none of the replicated data
points, equal zero. This suggests a potential problem with the model: in reality,
many apartments have zero roaches, but this would not be happening if the model
were true, at least to judge from one simulation.

Comparing the data y to 1000 replicated datasets y™P. To perform this model
check more formally, we simulate 1000 replicated datasets y*P, which we store in
a matrix:
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n.sims <- 1000

sim.1 <- sim (glm.1, n.sims)

y.rep <- array (NA, c(n.sims, n))

for (s in 1:n.sims){
y.hat <- exposure2 * exp (X %*J), sim.1$betals,])
y.repls,] <- rpois (m, y.hat)

}

For each of these replications, we then compute a test statistic: the proportion of
zeroes in the (hypothetical) dataset:

Test <- function (y){
mean (y==0)
¥
test.rep <- rep (NA, n.sims)
for (s in 1:n.sims){
test.rep[k] <- Test (y.repls,])
¥

The 1000 values of test.rep vary from 0 to 0.008—all of which are much lower
than the observed test statistic of 0.36. Thus the Poisson regression model does not
replicate the frequency of zeroes in the data.

Checking the overdispersed model
We probably should have just started with an overdispersed Poisson regression:

glm.2 <- glm (y ~ roachl + treatment + senior, family=quasipoisson,
offset=log(exposure2))

which yields

glm(formula = y ~ roachl + treatment + senior, family = quasipoisson,
offset = log(exposure2))
coef.est coef.se

(Intercept) -0.46 0.17
roachl 0.24 0.03
treatment -0.48 0.20
senior -0.40 0.27

n =264, k =4
residual deviance = 11753.3, null deviance = 17354 (difference = 5600.7)
overdispersion parameter = 66.6

As discussed in Section 6.2, the coefficient estimates are the same as before but the
standard errors are much larger, reflecting the variation that is now being modeled.
Again, we can test the model by simulating 1000 replicated datasets:

n.sims <- 1000

sim.2 <- sim (glm.2, n.sims)

y.rep <- array (NA, c(n.sims, n))

for (s in 1:n.sims){
y.hat <- exposure2 * exp (X %*J), sim.2$betals,])
a <- y.hat/(overdisp-1) # Using R’s parameterization for
y.repls,] <- rnegbin (n, y.hat, a) # the negative-binomial distribution

}

and again computing the test statistic for each replication. This time, the proportion
of zeroes in the replicated datasets varies from 18% to 48%, with a 95% interval
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Figure 8.6 Time series of U.S. unemployment rates from 1947 to 2004. We fit a first-order
autoregression to these data and then simulated several datasets, shown in Figure 8.7, from
the fitted model.

of [0.22,0.40]. The observed 36% fits right in, which tells us that this aspect of the
data is reasonably fit by the model.

However, other aspects of the data might not be so well fit, as could be discovered
by looking at other test statistics. We discuss this in Chapter 24 in the context of
a more elaborate example.

8.4 Using predictive simulation to check the fit of a time-series model

Predictive simulation is more complicated in time-series models, which are typically
set up so that the distribution for each point depends on the earlier data. We
illustrate with a simple autoregressive model.

Fitting a first-order autoregression to the unemployment series

Figure 8.6 shows the time series of annual unemployment rates in the United States
from 1947 to 2004. We would like to see how well these data are fit by a first-order
autoregression, that is, a regression on last year’s unemployment rate. Such a model
is easy to set up and fit:?

n <- length (y)
y.lag <- ¢ (NA, y[1: (-1
lm.lag <- Im (y ~ y.lag)

yielding the following fit:

coef.est coef.se

(Intercept) 1.43 0.50
y.lag 0.75 0.09
n =257, k=

N

residual sd = 0.99, R-Squared = 0.57

This information is potentially informative but does not tell us whether the model
is a reasonable fit to the data. To examine fit, we will simulate replicated data from
the fitted model.

Stmulating replicated datasets
Using a point estimate of the fitted model. We first simulate replicated data in a
slightly simplified way, using the following point estimate from the fitted model:

2 Another option is to use some of the special time-series features in R, but it is simpler for us
here to just fit as an ordinary regression.
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Figure 8.7 Simulated replications of the unemployment series from the fitted autoregressive
model. The replications capture many of the features of the actual data in Figure 8.6 but
show slightly more short-term variation.

R code b.hat <- coef (1lm.lag) # vector of 2 regression coefs
s.hat <- sigma.hat (1lm.lag) # residual standard deviation

We start each of the simulated time series at the observed value y; (the actual
unemployment rate in 1947) and then use the model, step by step, to simulate each
year’s value from the last:

R output n.sims <- 100
y.rep <- array (NA, c(n.sims, n))
for (s in 1:n.sims){
y.repls,1] <- y[1]
for (t in 2:n){
prediction <- ¢ (1, y.repl[s,t-1]) %x% b.hat
y.repls,t] <- rnorm (1, prediction, s.hat)
}
¥

Including the uncertainty in the estimated parameters. It is slightly better to prop-
agate the estimation uncertainty by using simulations from the fitted model (as in
Section 7.2), and then using these draws of § and ¢ to simulate replicated datasets:

R code Im.lag.sim <- sim (lm.lag, n.sims) # simulations of beta and sigma
for (s in 1:n.sims){
y.repls,1] <- y[1]
for (t in 2:n){
prediction <- c¢ (1, y.repls,t-11) %% 1lm.lag.sim$betals,]
y.repls,t] <- rnorm (1, prediction, 1lm.lag.sim$sigmals])
¥
¥

Visual and numerical comparisons of replicated to actual data

Our first step in model checking is to plot some simulated datasets, which we do
in Figure 8.7, and compare them visually to the actual data in Figure 8.6. The
15 simulations show different patterns, with many of them capturing the broad
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features of the data—its range, lack of overall trend, and irregular rises and falls.
This autoregressive model clearly can represent many different sorts of time-series
patterns.

Looking carefully at Figure 8.7, we see one pattern in all these replicated data
that was not in the original data in 8.6, and that is a jaggedness, a level of short-
term ups and downs that contrasts to the smoother appearance of the actual time
series.

To quantify this discrepancy, we define a test statistic that is the frequency of
“switches” —the number of years in which an increase in unemployment is immedi-
ately followed by a decrease, or vice versa:

Test <- function (y){

n <- length (y)

y.lag <- ¢ (NA, y[1:(@-1D1)

y.lag2 <- ¢ (NA, NA, y[1:(n-2)1)

sum (sign(y-y.lag) !'= sign(y.lag-y.lag2), na.rm=TRUE)
}

As with the examples in the previous section, we compute this test for the data
and for the replicated datasets:

print (Test(y))
test.rep <- rep (NA, n.sims)
for (s in 1:n.sims){
test.rep[s] <- Test (y.repl[s,])
}

The actual unemployment series featured 23 switches. Of the 1000 replications, 97%
had more than 23 switches, implying that this aspect of the data was not captured
well by the model.

8.5 Bibliographic note

Fake-data simulation is commonly used to validate statistical models and proce-
dures. Two recent papers from a Bayesian perspective are Geweke (2004) and Cook,
Gelman, and Rubin (2006). The predictive approach to model checking is described
in detail in Gelman et al. (2003, chapter 6) and Gelman, Meng, and Stern (1996),
deriving from the ideas of Rubin (1984). Gelman (2004a) connects graphical model
checks to exploratory data analysis (Tukey, 1977). Examples of simulation-based
model checking appear throughout the statistical literature, especially for highly
structured models; see, for example, Bush and Mosteller (1955) and Ripley (1988).

8.6 Exercises

1. Fitting the wrong model: suppose you have 100 data points that arose from the
following model: y = 34 0.1z 4 0.5x9 4 error, with errors having a ¢ distribution
with mean 0, scale 5, and 4 degrees of freedom.We shall explore the implications
of fitting a standard linear regression to these data.

(a) Simulate data from this model. For simplicity, suppose the values of =1 are
simply the integers from 1 to 100, and that the values of x5 are random and
equally likely to be 0 or 1.2 Fit a linear regression (with normal errors) to these

3 In R, you can define x.1 <- 1:100, simulate x.2 using rbinom(), then create the linear predic-
tor, and finally simulate the random errors in y using the rt () function.

R code
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data and see if the 68% confidence intervals for the regression coefficients (for
each, the estimates +1 standard error) cover the true values.

(b) Put the above step in a loop and repeat 1000 times. Calculate the confidence
coverage for the 68% intervals for each of the three coefficients in the model.

(c¢) Repeat this simulation, but instead fit the model using ¢ errors (see Exercise
6.6).

2. Predictive checks: using data of interest to you, fit a model of interest.

(a) Simulate replicated datasets and visually compare to the actual data.

(b) Summarize the data by a numerical test statistic, and compare to the values
of the test statistic in the replicated datasets.

3. Using simulation to check the fit of a time-series model: find time-series data
and fit a first-order autoregression model to it. Then use predictive simulation
to check the fit of this model as in Section 8.4.

4. Model checking for count data: the folder risky.behavior contains data from
a study of behavior of couples at risk for HIV; see Exercise 6.1.

(a) Fit a Poisson regression model predicting number of unprotected sex acts from
baseline HIV status. Perform predictive simulation to generate 1000 datasets
and record both the percent of observations that are equal to 0 and the percent
that are greater than 10 (the third quartile in the observed data) for each.
Compare these values to the observed value in the original data.

(b) Repeat (a) using an overdispersed Poisson regression model.

(c¢) Repeat (b), also including ethnicity and baseline number of unprotected sex
acts as input variables.



CHAPTER 9

Causal inference using regression on the
treatment variable

9.1 Causal inference and predictive comparisons

So far, we have been interpreting regressions predictively: given the values of several
inputs, the fitted model allows us to predict y, considering the n data points as a
simple random sample from a hypothetical infinite “superpopulation” or probability
distribution. Then we can make comparisons across different combinations of values
for these inputs.

This chapter and the next consider causal inference, which concerns what would
happen to an outcome y as a result of a hypothesized “treatment” or intervention.
In a regression framework, the treatment can be written as a variable 7°:!

T 1 if unit 7 receives the “treatment”
71 0 if unit ¢ receives the “control,”

or, for a continuous treatment,
T; = level of the “treatment” assigned to unit i.

In the usual regression context, predictive inference relates to comparisons between
units, whereas causal inference addresses comparisons of different treatments if
applied to the same units. More generally, causal inference can be viewed as a
special case of prediction in which the goal is to predict what would have happened
under different treatment options. We shall discuss this theoretical framework more
thoroughly in Section 9.2. Causal interpretations of regression coefficients can only
be justified by relying on much stricter assumptions than are needed for predictive
inference.

To motivate the detailed study of regression models for causal effects, we present
two simple examples in which predictive comparisons do not yield appropriate
causal inferences.

Hypothetical example of zero causal effect but positive predictive comparison

Consider a hypothetical medical experiment in which 100 patients receive the treat-
ment and 100 receive the control condition. In this scenario, the causal effect rep-
resents a comparison between what would have happened to a given patient had
he or she received the treatment compared to what would have happened under
control. We first suppose that the treatment would have no effect on the health
status of any given patient, compared with what would have happened under the
control. That is, the causal effect of the treatment is zero.

However, let us further suppose that treated and control groups systematically
differ, with healthier patients receiving the treatment and sicker patients receiving

L We use a capital letter for the vector T (violating our usual rule of reserving capitals for
matrices) in order to emphasize the treatment as a key variable in causal analyses, and also to
avoid potential confusion with ¢, which we sometimes use for “time.”
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Figure 9.1 Hypothetical scenario of zero causal effect of treatment: for any value of pre-
vious health status, the distributions of potential outcomes are identical under control and
treatment. However, the predictive comparison between treatment and control could be
positive, if healthier patients receive the treatment and sicker patients receive the control
condition.
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Figure 9.2 Hypothetical scenario of positive causal effect of treatment: for any value of
previous health status, the distributions of potential outcomes are centered at higher values
for treatment than for control. However, the predictive comparison between treatment and
control could be zero, if sicker patients receive the treatment and healthier patients receive
the control condition. Compare to Figure 9.1.

the control. This scenario is illustrated in Figure 9.1, where the distribution of
outcome health status measurements is centered at the same place for the treatment
and control conditions within each previous health status category (reflecting the
lack of causal effect) but the heights of each distribution reflect the differential
proportions of the sample that fell in each condition. This scenario leads to a positive
predictive comparison between the treatment and control groups, even though the
causal effect is zero. This sort of discrepancy between the predictive comparison
and the causal effect is sometimes called self-selection bias, or simply selection bias,
because participants are selecting themselves into different treatments.

Hypothetical example of positive causal effect but zero positive predictive
comparison

Conversely, it is possible for a truly nonzero treatment effect to not show up in the
predictive comparison. Figure 9.2 illustrates. In this scenario, the treatment has a
positive effect for all patients, whatever their previous health status, as displayed
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by outcome distributions that for the treatment group are centered one point to
the right of the corresponding (same previous health status) distributions in the
control group. So, for any given unit, we would expect the outcome to be better
under treatment than control. However, suppose that this time, sicker patients are
given the treatment and healthier patients are assigned to the control condition,
as illustrated by the different heights of these distributions. It is then possible to
see equal average outcomes of patients in the two groups, with sick patients who
received the treatment canceling out healthy patients who received the control.

Previous health status plays an important role in both these scenarios because
it is related both to treatment assignment and future health status. If a causal
estimate is desired, simple comparisons of average outcomes across groups that
ignore this variable will be misleading because the effect of the treatment will
be “confounded” with the effect of previous health status. For this reason, such
predictors are sometimes called confounding covariates.

Adding regression predictors; “omitted” or “lurking” variables

The preceding theoretical examples illustrate how a simple predictive comparison is
not necessarily an appropriate estimate of a causal effect. In these simple examples,
however, there is a simple solution, which is to compare treated and control units
conditional on previous health status. Intuitively, the simplest way to do this is to
compare the averages of the current health status measurements across treatment
groups only within each previous health status category; we discuss this kind of
subclassification strategy in Section 10.2.

Another way to estimate the causal effect in this scenario is to regress the outcome
on two inputs: the treatment indicator and previous health status. If health status
is the only confounding covariate—that is, the only variable that predicts both the
treatment and the outcome—and if the regression model is properly specified, then
the coefficient of the treatment indicator corresponds to the average causal effect in
the sample. In this example a simple way to avoid possible misspecification would
be to discretize health status using indicator variables rather than including it as
a single continuous predictor.

In general, then, causal effects can be estimated using regression if the model
includes all confounding covariates (predictors that can affect treatment assignment
or the outcome) and if the model is correct. If the confounding covariates are all
observed (as in this example), then accurate estimation comes down to proper
modeling and the extent to which the model is forced to extrapolate beyond the
support of the data. If the confounding covariates are not observed (for example, if
we suspect that healthier patients received the treatment, but no accurate measure
of previous health status is included in the model), then they are “omitted” or
“lurking” variables that complicate the quest to estimate causal effects.

We consider these issues in more detail in the rest of this chapter and the next,
but first we will provide some intuition in the form of an algebraic formula.

Formula for omitted variable bias

We can quantify the bias incurred by excluding a confounding covariate in the
context where a simple linear regression model is appropriate and there is only one
confounding covariate. First define the “correct” specification as

yi = Po + B1Ti + Poxi + € 9.1)
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where T; is the treatment and x; is the covariate for unit 7.
If instead the confounding covariate, x;, is ignored, one can fit the model

yi =05+ 61T+ €
What is the relation between these models? To understand, it helps to define a
third regression,

zi=7+nTi+v

If we substitute this representation of x into the original, correct, equation, and
rearrange terms, we get

yi = Po + Bayo + (Br + Boyi)Ti + €0 + Pavi (9.2)
Equating the coefficients of T in (9.1) and (9.2) yields
Bl = B+ Bim

This correspondence helps demonstrate the definition of a confounding covariate. If
there is no association between the treatment and the purported confounder (that
is, y1 = 0) or if there is no association between the outcome and the confounder
(that is, B2 = 0) then the variable is not a confounder because there will be no bias
(B3 =0).

This formula is commonly presented in regression texts as a way of describing
the bias that can be incurred if a model is specified incorrectly. However, this term
has little meaning outside of a context in which one is attempting to make causal
inferences.

9.2 The fundamental problem of causal inference

We begin by considering the problem of estimating the causal effect of a treatment
compared to a control, for example in a medical experiment. Formally, the causal
effect of a treatment T on an outcome y for an observational or experimental unit
i can be defined by comparisons between the outcomes that would have occurred
under each of the different treatment possibilities. With a binary treatment 7" taking
on the value 0 (control) or 1 (treatment), we can define potential outcomes, y9 and
y+ for unit 7 as the outcomes that would be observed under control and treatment
conditions, respectively.?(These ideas can also be directly generalized to the case of
a treatment variable with multiple levels.)

The problem

For someone assigned to the treatment condition (that is, T; = 1), y} is observed
and y? is the unobserved counterfactual outcome—it represents what would have
happened to the individual if assigned to control. Conversely, for control units, y?
is observed and y; is counterfactual. In either case, a simple treatment effect for
unit ¢ can be defined as

treatment effect for unit i = 3} —

Figure 9.3 displays hypothetical data for an experiment with 100 units (and thus
200 potential outcomes). The top panel displays the data we would like to be able
to see in order to determine causal effects for each person in the dataset—that is,
it includes both potential outcomes for each person.

2 The word “counterfactual” is sometimes used here, but we follow Rubin (1990) and use the
term “potential outcome” because some of these potential data are actually observed.
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(Hypothetical) complete data:

Pre-treatment  Treatment Potential Treatment

inputs indicator  outcomes effect
Unit, i X; Ti v -
1 2 1 50 0 69 75 6
2 3 1 98 0 111 108 -3
3 2 2 80 1 92 102 10
4 3 1 98 1 112 111 —1
100 4 1 104 1 111 114 3

Observed data:

Pre-treatment  Treatment Potential Treatment

inputs indicator  outcomes effect
Unit, 4 X; T; vy oyl
1 2 1 50 0 69 ? ?
2 3 1 98 0 111 ? ?
3 2 2 80 1 7102 ?
4 3 1 98 1 ? 111 ?
100 4 1 104 1 ?7 114 ?

Figure 9.3 Illustration of the fundamental problem of causal inference. For each unit, we
have observed some pre-treatment inputs, and then the treatment (T; = 1) or control
(T: = 0) is applied. We can then observe only one of the potential outcomes, (y9,vyi). As
a result, we cannot observe the treatment effect, yt — y?, for any of the units.

The top table shows what the complete data might look like, if it were possible to observe
both potential outcomes on each unit. For each pair, the observed outcome is displayed in
boldface. The bottom table shows what would actually be observed.

The so-called fundamental problem of causal inference is that at most one of these
two potential outcomes, y9 and y}, can be observed for each unit i. The bottom
panel of Figure 9.3 displays the data that can actually be observed. The y} values
are “missing” for those in the control group and the y? values are “missing” for
those in the treatment group.

Ways of getting around the problem

We cannot observe both what happens to an individual after taking the treatment
(at a particular point in time) and what happens to that same individual after
not taking the treatment (at the same point in time). Thus we can never measure
a causal effect directly. In essence, then, we can think of causal inference as a
prediction of what would happen to unit ¢ if 7; = 0 or T; = 1. It is thus predictive
inference in the potential-outcome framework. Viewed this way, estimating causal
effects requires one or some combination of the following: close substitutes for the
potential outcomes, randomization, or statistical adjustment. We discuss the basic
strategies here and go into more detail in the remainder of this chapter and the
next.
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Close substitutes. One might object to the formulation of the fundamental problem
of causal inference by noting situations where it appears one can actually measure
both ¢ and y;} on the same unit. Consider, for example drinking tea one evening
and milk another evening, and then measuring the amount of sleep each time. A
careful consideration of this example reveals the implicit assumption that there are
no systematic differences between days that could also affect sleep. An additional
assumption is that applying the treatment on one day has no effect on the outcome
on another day.

More pristine examples can generally be found in the natural and physical sci-
ences. For instance, imagine dividing a piece of plastic into two parts and then
exposing each piece to a corrosive chemical. In this case, the hidden assumption is
that pieces are identical in how they would respond with and without treatment,
that is, 9 = ¢ and yi = y3.

As a third example, suppose you want to measure the effect of a new diet by
comparing your weight before the diet and your weight after. The hidden assump-
tion here is that the pre-treatment measure can act as a substitute for the potential
outcome under control, that is, y? = ;.

It is not unusual to see studies that attempt to make causal inferences by substi-
tuting values in this way. It is important to keep in mind the strong assumptions
often implicit in such strategies.

Randomization and experimentation. A different approach to causal inference is
the “statistical” idea of using the outcomes observed on a sample of units to learn
about the distribution of outcomes in the population.

The basic idea is that since we cannot compare treatment and control outcomes
for the same units, we try to compare them on similar units. Similarity can be
attained by using randomization to decide which units are assigned to the treat-
ment group and which units are assigned to the control group. We will discuss this
strategy in depth in the next section.

Statistical adjustment. For a variety of reasons, it is not always possible to achieve
close similarity between the treated and control groups in a causal study. In obser-
vational studies, units often end up treated or not based on characteristics that are
predictive of the outcome of interest (for example, men enter a job training program
because they have low earnings and future earnings is the outcome of interest). Ran-
domized experiments, however, can be impractical or unethical, and even in this
context imbalance can arise from small-sample variation or from unwillingness or
inability of subjects to follow the assigned treatment.

When treatment and control groups are not similar, modeling or other forms
of statistical adjustment can be used to fill in the gap. For instance, by fitting a
regression (or more complicated model), we may be able to estimate what would
have happened to the treated units had they received the control, and vice versa.
Alternately, one can attempt to divide the sample into subsets within which the
treatment/control allocation mimics an experimental allocation of subjects. We
discuss regression approaches in this chapter. We discuss imbalance and related
issues more thoroughly in Chapter 10 along with a description of ways to help
observational studies mimic randomized experiments.

9.3 Randomized experiments

We begin with the cleanest scenario, an experiment with units randomly assigned
to receive treatment and control, and with the units in the study considered as a
random sample from a population of interest. The random sampling and random
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treatment assignment allow us to estimate the average causal effect of the treatment
in the population, and regression modeling can be used to refine this estimate.

Average causal effects and randomized experiments

Although we cannot estimate individual-level causal effects (without making strong
assumptions, as discussed previously), we can design studies to estimate the popu-
lation average treatment effect:

average treatment effect = avg (y; — y?),

for the units 7 in a larger population. The cleanest way to estimate the population
average is through a randomized experiment in which each unit has a positive
chance of receiving each of the possible treatments.? If this is set up correctly, with
treatment assignment either entirely random or depending only on recorded data
that are appropriately modeled, the coefficient for 7" in a regression corresponds to
the causal effect of the treatment, among the population represented by the n units
in the study.

Considered more broadly, we can think of the control group as a group of units
that could just as well have ended up in the treatment group, they just happened
not to get the treatment. Therefore, on average, their outcomes represent what
would have happened to the treated units had they not been treated; similarly,
the treatment group outcomes represent what might have happened to the control
group had they been treated. Therefore the control group plays an essential role in
a causal analysis.

For example, if ng units are selected at random from the population and given
the control, and n; other units are randomly selected and given the treatment,
then the observed sample averages of y for the treated and control units can be
used to estimate the corresponding population quantities, avg(y®) and avg(y!),
with their difference estimating the average treatment effect (and with standard
error /sZ/no + s3/n1; see Section 2.3). This works because the y{’s for the control
group are a random sample of the values of y? in the entire population. Similarly,
the y}"s for the treatment group are a random sample of the yil’s in the population.

Equivalently, if we select ng + nq units at random from the population, and then
randomly assign ng of them to the control and n; to the treatment, we can think of
each of the sample groups as representing the corresponding population of control
or treated units. Therefore the control group mean can act as a counterfactual for
the treatment group (and vice versa).

What if the ng+mn units are selected nonrandomly from the population but then
the treatment is assigned at random within this sample? This is common practice,
for example, in experiments involving human subjects. Experiments in medicine,
for instance, are conducted on volunteers with specified medical conditions who
are willing to participate in such a study, and experiments in psychology are of-
ten conducted on university students taking introductory psychology courses. In
this case, causal inferences are still justified, but inferences no longer generalize to
the entire population. It is usual instead to consider the inference to be appropri-
ate to a hypothetical superpopulation from which the experimental subjects were
drawn. Further modeling is needed to generalize to any other population. A study

3 Ideally, each unit should have a nonzero probability of receiving each of the treatments, because
otherwise the appropriate counterfactual (potential) outcome cannot be estimated for units in
the corresponding subset of the population. In practice, if the probabilities are highly unequal,
the estimated population treatment effect will have a high standard error due to the difficulty
of reliably estimating such a rare event.
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Figure 9.4 Post-treatment test scores from an experiment measuring the effect of an ed-
ucational television program, The Electric Company, on children’s reading abilities. The
experiment was applied on a total of 192 classrooms in four grades. At the end of the
experiment, the average reading test score in each classroom was recorded.

in which causal inferences are merited for a specific sample or population is said to
have internal validity, and when those inferences can be generalized to a broader
population of interest the study is said to have external validity.

We illustrate with a simple binary treatment (that is, two treatment levels, or a
comparison of treatment to control) in an educational experiment. We then briefly
discuss more general categorical, continuous, and multivariate treatments.

Ezxample: showing children an educational television show

Figure 9.4 summarizes data from an educational experiment performed around 1970
on a set of elementary school classes. The treatment in this experiment was exposure
to a new educational television show called The Electric Company. In each of four
grades, the classes were randomized into treated and control groups. At the end of
the school year, students in all the classes were given a reading test, and the average
test score within each class was recorded. Unfortunately, we do not have data on
individual students, and so our entire analysis will be at the classroom level.
Figure 9.4 displays the distribution of average post-treatment test scores in the
control and treatment group for each grade. (The experimental treatment was ap-
plied to classes, not to schools, and so we treat the average test score in each class as
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a single measurement.) We break up the data by grade for convenience and because
it is reasonable to suppose that the effects of this show could vary by grade.

Analysis as a completely randomized experiment. The experiment was performed
in two cities (Fresno and Youngstown). For each city and grade, the experimenters
selected a small number of schools (10-20) and, within each school, they selected
the two poorest reading classes of that grade. For each pair, one of these classes
was randomly assigned to continue with its regular reading course and the other
was assigned to view the TV program.

This is called a paired comparisons design (which in turn is a special case of a
randomized block design, with exactly two units within each block). For simplicity,
however, we shall analyze the data here as if the treatment assignment had been
completely randomized within each grade. In a completely randomized experiment
on n units (in this case, classrooms), one can imagine the units mixed together in
a bag, completely mixed, and then separated into two groups. For example, the
units could be labeled from 1 to n, and then permuted at random, with the first ny
units receiving the treatment and the others receiving the control. Each unit has
the same probability of being in the treatment group and these probabilities are
independent of each other.

Again, for the rest of this chapter we pretend that the Electric Company ex-
periment was completely randomized within each grade. In Section 23.1 we return
to the example and present an analysis appropriate to the paired design that was
actually used.

Basic analysis of a completely randomized experiment

When treatments are assigned completely at random, we can think of the different
treatment groups (or the treatment and control groups) as a set of random samples
from a common population. The population average under each treatment, avg(y°)
and avg(y!), can then be estimated by the sample average, and the population
average difference between treatment and control, avg(y') — avg(y®)—that is, the
average causal effect—can be estimated by the difference in sample averages, g1 —o.

Equivalently, the average causal effect of the treatment corresponds to the coeffi-
cient @ in the regression, y; = a+ 0T; 4 error;. We can easily fit the four regressions
(one for each grade) in R:

for (k in 1:4) {
display (1lm (post.test

treatment, subset=(grade==k)))
}

The estimates and uncertainty intervals for the Electric Company experiment
are graphed in the left panel of Figure 9.5. The treatment appears to be generally
effective, perhaps more so in the low grades, but it is hard to be sure given the
large standard errors of estimation.

Controlling for pre-treatment predictors

In this study, a pre-test was given in each class at the beginning of the school year
(before the treatment was applied). In this case, the treatment effect can also be
estimated using a regression model: y; = a+0T; + z; +error; on the pre-treatment
predictor x.* Figure 9.6 illustrates for the Electric Company experiment. For each

4 We avoid the term confounding covariates when describing adjustment in the context of a ran-
domized experiment. Predictors are included in this context to increase precision. We expect

R code
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Figure 9.5 Estimates, 50%, and 95% intervals for the effect of the Electric Company tele-
vision show (see data in Figures 9.4 and 9.6) as estimated in two ways: first, from a
regression on treatment alone, and second, also controlling for pre-test data. In both cases,
the coefficient for treatment is the estimated causal effect. Including pre-test data as a
predictor increases the precision of the estimates.

Displaying these coefficients and intervals as a graph facilitates comparisons across grades
and across estimation strategies (controlling for pre-test or not). For instance, the plot
highlights how controlling for pre-test scores increases precision and reveals decreasing ef-
fects of the program for the higher grades, a pattern that would be more difficult to see in
a table of numbers.

Sample sizes are approzimately the same in each of the grades. The estimates for higher
grades have lower standard errors because the residual standard deviations of the regres-
sions are lower in these grades; see Figure 9.6.
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Figure 9.6 Pre-test/post-test data for the Electric Company experiment. Treated and con-
trol classes are indicated by circles and dots, respectively, and the solid and dotted lines
represent parallel regression lines fit to the treatment and control groups, respectively. The
solid lines are slightly higher than the dotted lines, indicating slightly positive estimated
treatment effects. Compare to Figure 9.4, which displays only the post-test data.

grade, the difference between the regression lines for the two groups represents the
treatment effect as a function of pre-test score. Since we have not included any
interaction in the model, this treatment effect is assumed constant over all levels of
the pre-test score.

For grades 2—4, the pre-test was the same as the post-test, and so it is no surprise
that all the classes improved whether treated or not (as can be seen from the plots).
For grade 1, the pre-test was a subset of the longer test, which explains why the
pre-test scores for grade 1 are so low. We can also see that the distribution of post-
test scores for each grade is similar to the next grade’s pre-test scores, which makes
sense.

In any case, for estimating causal effects (as defined in Section 9.2) we are in-
terested in the difference between treatment and control conditions, not in the
simple improvement from pre-test to post-test. The pre-post improvement is not a

them to be related to the outcome but not to the treatment assignment due to the randomiza-
tion. Therefore they are not confounding covariates.
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causal effect (except under the assumption, unreasonable in this case, that under
the control there would be no change from pre-post change).

In the regression

y; = a+ 0T; + Bx; + error; (9.3)
the coefficient for the treatment indicator still represents the average treatment
effect, but controlling for pre-test can improve the efficiency of the estimate. (More
generally, the regression can control for multiple pre-treatment predictors, in which
case the model has the form y; = o+ 0T; + X, + error;, or alternatively a can be
removed from the equation and considered as a constant term in the linear predictor
X3)

The estimates for the Electric Company study appear in the right panel of Figure
9.5. It is now clear that the treatment is effective, and it appears to be more effective
in the lower grades. A glance at Figure 9.6 suggests that in the higher grades there
is less room for improvement; hence this particular test might not be the most
effective for measuring the benefits of The Electric Company in grades 3 and 4.

It is only appropriate to control for pre-treatment predictors, or, more generally,
predictors that would not be affected by the treatment (such as race or age). This
point will be illustrated more concretely in Section 9.7.

Gain scores

An alternative way to specify a model that controls for pre-test measures is to use
these measures to transform the response variable. A simple approach is to subtract
the pre-test score, z;, from the outcome score, y;, thereby creating a “gain score,” g;.
Then this score can be regressed on the treatment indicator (and other predictors
if desired), g; = a + 0T; + error;. (In the simple case with no other predictors, the
regression estimate is simply 6= g7 — g©, the average difference of gain scores in
the treatment and control groups.)

In some cases the gain score can be more easily interpreted than the original
outcome variable y. Using gain scores is most effective if the pre-treatment score is
comparable to the post-treatment measure. For instance, in our Electric Company
example it would not make sense to create gain scores for the classes in grade 1
since their pre-test measure was based on only a subset of the full test.

One perspective on this model is that it makes an unnecessary assumption,
namely, that 5 = 1 in model (9.3). On the other hand, if this assumption is close to
being true then # may be estimated more precisely. One way to resolve this concern
about misspecification would simply be to include the pre-test score as a predictor
as well, g; = a + 0T; + yz; + error;. However, in this case, 6, the estimate of the
coefficient for T', is equivalent to the estimated coefficient from the original model,
yi = o+ 0T; + Bx; + error; (see Exercise 9.7).

More than two treatment levels, continuous treatments, and multiple treatment
factors

Going beyond a simple treatment-and-control setting, multiple treatment effects
can be defined relative to a baseline level. With random assignment, this simply
follows general principles of regression modeling.

If treatment levels are numerical, the treatment level can be considered as a con-
tinuous input variable. To conceptualize randomization with a continuous treatment
variable, think of choosing a random number that falls anywhere in the continuous
range. As with regression inputs in general, it can make sense to fit more compli-
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Figure 9.7 Pre-test/post-test data for the Electric Company experiment. Treated and con-
trol classes are indicated by circles and dots, respectively, and the solid and dotted lines
represent separate regression lines fit to the treatment and control groups, respectively.
For each grade, the difference between the solid and dotted lines represents the estimated
treatment effect as a function of pre-test score.

cated models if suggested by theory or supported by data. A linear model—which
estimates the average effect on y for each additional unit of T—is a natural starting
point, though it may need to be refined.

With several discrete treatments that are unordered (such as in a comparison of
three different sorts of psychotherapy), we can move to multilevel modeling, with the
group index indicating the treatment assigned to each unit, and a second-level model
on the group coefficients, or treatment effects. We shall illustrate such modeling in
Section 13.5 with an experiment from psychology. We shall focus more on multilevel
modeling as a tool for fitting data, but since the treatments in that example are
randomly assigned, their coefficients can be interpreted as causal effects.

Additionally, different combinations of multiple treatments can be administered
randomly. For instance, depressed individuals could be randomly assigned to receive
nothing, drugs, counseling sessions, or a combination of drugs and counseling ses-
sions. These combinations could be modeled as two treatments and their interaction
or as four distinct treatments.

The assumption of no interference between units

Our discussion so far regarding estimation of causal effects using experiments is
contingent upon another, often overlooked, assumption. We must assume also that
the treatment assignment for one individual (unit) in the experiment does not affect
the outcome for another. This has been incorporated into the “stable unit treat-
ment value assumption” (SUTVA). Otherwise, we would need to define a different
potential outcome for the " unit not just for each treatment received by that
unit but for each combination of treatment assignments received by every other
unit in the experiment. This would enormously complicate even the definition, let
alone the estimation, of individual causal effects. In settings such as agricultural
experiments where interference between units is to be expected, it can be modeled
directly, typically using spatial interactions.

9.4 Treatment interactions and poststratification
Interactions of treatment effect with pre-treatment inputs

Once we include pre-test in the model, it is natural to allow it to interact with
treatment effect. The treatment is then allowed to affect both the intercept and the
slope of the pre-test/post-test regression. Figure 9.7 shows the Electric Company
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data with separate regression lines estimated for the treatment and control groups.
As with Figure 9.6, for each grade the difference between the regression lines is the
estimated treatment effect as a function of pre-test score.

We illustrate in detail for grade 4. First, we fit the simple model including only
the treatment indicator:

Im(formula = post.test ~ treatment, subset=(grade==4))
coef.est coef.se

(Intercept) 110.4 1.3
treatment 3.7 1.8
n =42, k

2

residual sd 6.0, R-Squared = 0.09

The estimated treatment effect is 3.7 with a standard error of 1.8. We can improve
the efficiency of the estimator by controlling for the pre-test score:

Im(formula = post.test treatment + pre.test, subset=(grade==4))
coef.est coef.se

(Intercept) 42.0 4.3
treatment 1.7 0.7
pre.test 0.7 0.0

n =42, k=3

residual sd = 2.2, R-Squared = 0.88

The new estimated treatment effect is 1.7 with a standard error of 0.7. In this case,
controlling for the pre-test reduced the estimated effect. Under a clean randomiza-
tion, controlling for pre-treatment predictors in this way should reduce the standard
errors of the estimates.® (Figure 9.5 shows the estimates for the Electric Company
experiment in all four grades.)

Complicated arise when we include the interaction of treatment with pre-test:

Im(formula = post.test
subset=(grade==4))
coef.est coef.se

treatment + pre.test + treatment:pre.test,

(Intercept) 37.84 4.90
treatment 17.37 9.60
pre.test 0.70 0.05
treatment:pre.test -0.15 0.09

n =42, k = 4
residual sd = 2.1, R-Squared = 0.89

The estimated treatment effect is now 17 — 0.15z, which is difficult to interpret
without knowing the range of z. From Figure 9.7 we see that pre-test scores range
from approximately 80 to 120; in this range, the estimated treatment effect varies
from 17—0.15-80 = 5 for classes with pre-test scores of 80 to 17—0.15-120 = —1 for
classes with pre-test scores of 120. This range represents the variation in estimated
treatment effects as a function of pre-test score, not uncertainty in the estimated
treatment effect.

To get a sense of the uncertainty, we can plot the estimated treatment effect as
a function of z, overlaying random simulation draws to represent uncertainty:

5 Under a clean randomization, controlling for pre-treatment predictors in this way does not
change what we are estimating. If the randomization was less than pristine, however, the ad-
dition of predictors to the equation may help us control for unbalanced characteristics across
groups. Thus, this strategy has the potential to move us from estimating a noncausal estimand
(due to lack of randomization) to estimating a causal estimand by in essence “cleaning” the
randomization.
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Figure 9.8 Estimate and uncertainty for the effect of viewing The Electric Company (com-
pared to the control treatment) for fourth-graders. Compare to the data in the rightmost
plot in Figure 9.7. The dark line here—the estimated treatment effect as a function of pre-
test score—is the difference between the two regression lines in the grade 4 plot in Figure
9.7. The gray lines represent 20 random draws from the uncertainty distribution of the
treatment effect.

Im.4 <- 1lm (post.test
subset=(grade==4))
1m.4.sim <- sim (1m.4)

plot (0, 0, xlim=range (pre.test[grade==4]), ylim=c(-5,10),
xlab="pre-test", ylab="treatment effect",
main="treatment effect in grade 4")

abline (0, 0, lwd=.5, lty=2)

for (i in 1:20){
curve (1m.4.sim$betali,2] + 1m.4.sim$betali,4]*x, lwd=.5, col="gray",

add=TRUE) }
curve (coef(lm.4)[2] + coef(lm.4)[4]*x, lwd=.5, add=TRUE)

treatment + pre.test + treatment:pre.test,

This produces the graph shown in Figure 9.8.

Finally, we can estimate a mean treatment effect by averaging over the values of z
in the data. If we write the regression model as y; = a+ 01T; + Bx; + 02T z; + error;,
then the treatment effect is 61 +02z, and the summary treatment effect in the sample
is 57" | (61 + 02a;), averaging over the n fourth-grade classrooms in the data. We
can compute the average treatment effect as follows:

n.sims <- nrow(lm.4.sim$beta)
effect <- array (NA, c(n.sims, sum(grade==4)))
for (i in 1:n.sims){
effect[i,] <- 1m.4.sim$betali,2] + 1m.4.sim$betali,4]*pre.test[grade==4]
¥

avg.effect <- rowMeans (effect)

The rowMeans() function averages over the grade 4 classrooms, and the result
of this computation, avg.effect, is a vector of length n.sims representing the
uncertainty in the average treatment effect. We can summarize with the mean and
standard error:

print (c (mean(avg.effect), sd(avg.effect)))

The result is 1.8 with a standard deviation of 0.7—quite similar to the result from
the model controlling for pre-test but with no interactions. In general, for a linear
regression model, the estimate obtained by including the interaction, and then
averaging over the data, reduces to the estimate with no interaction. The motivation
for including the interaction is thus to get a better idea of how the treatment effect
varies with pre-treatment predictors, not simply to estimate an average effect.
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Poststratification

We have discussed how treatment effects interact with pre-treatment predictors
(that is, regression inputs). To estimate an average treatment effect, we can post-
stratify—that is, average over the population.’

For example, suppose we have treatment variable T" and pre-treatment control
variables z1, x2, and our regression predictors are x1, x2, T, and the interactions x1 7'
and x2T', so that the linear model is: y = By + f1x1 + Boze + BT + Bax1 T + Bsx2T +
error. The estimated treatment effect is then (5 + B4z1 + G522, and its average, in
a linear regression, is simply (B3 + Bap1 + Ospi2, where pq and pg are the averages
of 1 and z7 in the population. These population averages might be available from
another source, or else they can be estimated using the averages of z; and z3 in
the data at hand. Standard errors for summaries such as 83 + G411 + Bsp2 can be
determined analytically, but it is easier to simply compute them using simulations.

Modeling interactions is important when we care about differences in the treat-
ment effect for different groups, and poststratification then arises naturally if a
population average estimate is of interest.

9.5 Observational studies

In theory, the simplest solution to the fundamental problem of causal inference is,
as we have described, to randomly sample a different set of units for each treat-
ment group assignment from a common population, and then apply the appropriate
treatments to each group. An equivalent approach is to randomly assign the treat-
ment conditions among a selected set of units. Either of these approaches ensures
that, on average, the different treatment groups are balanced or, to put it another
way, that the 4° and 7' from the sample are estimating the average outcomes under
control and treatment for the same population.

In practice, however, we often work with observational data because, compared
to experiments, observational studies can be more practical to conduct and can
have more realism with regard to how the program or treatment is likely to be
“administered” in practice. As we have discussed, however, in observational studies
treatments are observed rather than assigned (for example, comparisons of smok-
ers to nonsmokers), and it is not at all reasonable to consider the observed data
under different treatments as random samples from a common population. In an
observational study, there can be systematic differences between groups of units
that receive different treatments—differences that are outside the control of the
experimenter—and they can affect the outcome, y. In this case we need to rely on
more data than just treatments and outcomes and implement a more complicated
analysis strategy that will rely upon stronger assumptions. The strategy discussed
in this chapter, however, is relatively simple and relies on controlling for confound-
ing covariates through linear regression. Some alternative approaches are described
in Chapter 10.

6 In survey sampling, stratification refers to the procedure of dividing the population into disjoint
subsets (strata), sampling separately within each stratum, and then combining the stratum
samples to get a population estimate. Poststratification is the analysis of an unstratified sample,
breaking the data into strata and reweighting as would have been done had the survey actually
been stratified. Stratification can adjust for potential differences between sample and population
using the survey design; poststratification makes such adjustments in the data analysis.
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Figure 9.9 Estimates, 50%, and 95% intervals for the effect of The Electric Company
as a supplement rather than a replacement, as estimated by a regression on the supple-
ment/replacement indicator also controlling for pre-test data. For each grade, the regres-
sion is performed only on the treated classes; this is an observational study embedded in
an experiment.

Electric Company example

Here we illustrate an observational study for which a simple regression analysis,
controlling for pre-treatment information, may yield reasonable causal inferences.

The educational experiment described in Section 9.3 actually had an embedded
observational study. Once the treatments had been assigned, the teacher for each
class assigned to the Electric Company treatment chose to either replace or sup-
plement the regular reading program with the Electric Company television show.
That is, all the classes in the treatment group watched the show, but some watched
it instead of the regular reading program and others got it in addition.”

The simplest starting point to analyzing these observational data (now limited to
the randomized treatment group) is to consider the choice between the two treat-
ment options— “replace” or “supplement”—to be randomly assigned conditional
on pre-test scores. This is a strong assumption but we use it simply as a starting
point. We can then estimate the treatment effect by regression, as with an actual
experiment. In the R code, we create a variable called supp that equals 0 for the
replacement form of the treatment, 1 for the supplement, and NA for the controls.
We then estimate the effect of the supplement, as compared to the replacement, for
each grade:

for (k in 1:4) {

ok <- (grade==k) & (!is.na(supp))
Im.supp <- 1lm (post.test ~ supp + pre.test, subset=ok)

}

The estimates are graphed in Figure 9.9. The uncertainties are high enough that
the comparison is inconclusive except in grade 2, but on the whole the pattern is
consistent with the reasonable hypothesis that supplementing is more effective than
replacing in the lower grades.

Assumption of ignorable treatment assignment

As opposed to making the same assumption as the completely randomized ex-
periment, the key assumption underlying the estimate is that, conditional on the
confounding covariates used in the analysis (here as inputs in the regression analy-
sis), the distribution of units across treatment conditions is, in essence, “random”

7 This procedural detail reveals that the treatment effect for the randomized experiment is actu-
ally more complicated than described earlier. As implemented, the experiment estimated the
effect of making the program available, either as a supplement or replacement for the current
curriculum.
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(in this case, pre-test score) with respect to the potential outcomes. To help with
the intuition here, one could envision units being randomly assigned to treatment
conditions conditional on the confounding covariates; however, of course, no actual
randomized assigment need take place.

Ignorability is often formalized by the conditional independence statement,

vyt LT[X.

This says that the distribution of the potential outcomes, (y°,y), is the same across
levels of the treatment variable, 7', once we condition on confounding covariates X.

This assumption is referred to as ignorability of the treatment assignment in the
statistics literature and selection on observables in econometrics. Said another way,
we would not necessarily expect any two classes to have had the same probability
of receiving the supplemental version of the treatment. However, we expect any
two classes at the same levels of the confounding covariates (that is, pre-treatment
variables; in our example, average pre-test score) to have had the same probability
of receiving the supplemental version of the treatment. A third way to think about
the ignorability assumption is that it requires that we control for all confounding
covariates, the pre-treatment variables that are associated with both the treatment
and the outcome.

If ignorability holds, then causal inferences can be made without modeling the
treatment assignment process—that is, we can ignore this aspect of the model as
long as analyses regarding the causal effects condition on the predictors needed to
satisfy ignorability. Randomized experiments represent a simple case of ignorabil-
ity. Completely randomized experiments need not condition on any pre-treatment
variables—this is why we can use a simple difference in means to estimate causal ef-
fects. Randomized experiments that block or match satisfy ignorability conditional
on the design variables used to block or match, and therefore these variables need
to be included when estimating causal effects.

In the Electric Company supplement/replacement example, an example of a non-
ignorable assignment mechanism would be if the teacher of each class chose the
treatment that he or she believed would be more effective for that particular class
based on unmeasured characteristics of the class that were related to their sub-
sequent test scores. Another nonignorable assignment mechanism would be if, for
example, supplementing was more likely to be chosen by more “motivated” teachers,
with teacher motivation also associated with the students’ future test scores.

For ignorability to hold, it is not necessary that the two treatments be equally
likely to be picked, but rather that the probability that a given treatment is picked
should be equal, conditional on our confounding covariates.® In an experiment, one
can control this at the design stage by using a random assignment mechanism.
In an observational study, the “treatment assignment” is not under the control of
the statistician, but one can aim for ignorability by conditioning in the analysis
stage on as much pre-treatment information in the regression model as possible.
For example, if teachers’ motivation might affect treatment assignment, it would
be advisable to have a pre-treatment measure of teacher motivation and include
this as an input in the regression model. This would increase the plausibility of
the ignorability assumption. Realistically, this may be a difficult characteristic to

8 As further clarification, consider two participants of a study for which ignorability holds. If we
define the probability of treatment participation as Pr(7 = 1|X), then this probability must be
equal for these two individuals. However, suppose there exists another variable, w, that is asso-
ciated with treatment participation (conditional on X) but not with the outcome (conditional
on X). We do not require that Pr(7T" = 1| X, W) be the same for these two participants.
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Figure 9.10 Hypothetical before/after data demonstrating the potential problems in using
linear regression for causal inference. The dark dots and line correspond to the children who
received the educational supplement; the lighter dots and line correspond to the children
who did not receive the supplement. The dashed lines are regression lines fit to the observed
data. The model shown in the right panel allows for an interaction between receiving the
supplement and pre-test scores.

measure, but other teacher characteristics such as years of experience and schooling
might act as partial proxies.

In general, one can never prove that the treatment assignment process in an
observational study is ignorable—it is always possible that the choice of treatment
depends on relevant information that has not been recorded. In an educational
study this information could be characteristics of the teacher or school that are
related both to treatment assignment and to post-treatment test scores. Thus,
if we interpret the estimates in Figure 9.9 as causal effects, we do so with the
understanding that we would prefer to have further pre-treatment information,
especially on the teachers, in order to be more confident in ignorability.

If we believe that treatment assignments depend on information not included in
the model, then we should choose a different analysis strategy. We discuss some
options at the end of the next chapter.

Judging the reasonableness of regression as a modeling approach, assuming
ignorability

Even if the ignorability assumption appears to be justified, this does not mean
that simple regression of our outcomes on confounding covariates and a treatment
indicator is necessarily the best modeling approach for estimating treatment effects.
There are two primary concerns related to the distributions of the confounding
covariates across the treatment groups: lack of complete overlap and lack of balance.
For instance, consider our initial hypothetical example of a medical treatment that
is supposed to affect subsequent health measures. What if there were no treatment
observations among the group of people whose pre-treatment health status was
highest? Arguably, we could not make any causal inferences about the effect of the
treatment on these people because we would have no empirical evidence regarding
the counterfactual state. Lack of overlap and balance forces stronger reliance on our
modeling than if covariate distributions were the same across treatment groups. We
provide a brief illustration in this chapter and discuss in greater depth in Chapter
10.

Suppose we are interested in the effect of a supplementary educational activity
(such as viewing The Electric Company) that was not randomly assigned. Suppose,
however, that only one predictor, pre-test score, is necessary to satisfy ignorability—
that is, there is only one confounding covariate. Suppose further, though, that those
individuals who participate in the supplementary activity tend to have higher pre-
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Figure 9.11 Hypothetical before/after data demonstrating the potential problems in using
linear regression for causal inference. The dark dots and line correspond to the children who
recetved the educational supplement; the lighter dots and line correspond to the children
who did not receive the supplement. The dashed lines are regression lines fit to the observed
data. Plots are restricted to observations in the region where there is overlap in terms of the
pre-treatment test score across treatment and control groups. The left panel shows only the
portion of the plot in Figure 9.10 where there is overlap. The right panel shows regression
lines fit only using observations in this overlapping region.

test scores, on average, than those who do not participate. One realization of this
hypothetical scenario is illustrated in Figure 9.10. The dark line represents the
true relation between pre-test scores (z-axis) and post-test scores (y-axis) for those
who receive the supplement. The lighter line represents the true relation between
pre-test scores and post-test scores for those who do not receive the supplement.
Estimated linear regression lines are superimposed for these data. The linear model
has problems fitting the true nonlinear regression relation—a problem that is com-
pounded by the lack of overlap of the two groups in the data. Because there are no
“control” children with high test scores and virtually no “treatment” children with
low test scores, these linear models, to create counterfactual predictions, are forced
to extrapolate over portions of the space where there are no data to support them.
These two problems combine to create, in this case, a substantial underestimate of
the true average treatment effect. Allowing for an interaction, as illustrated in the
right panel, does not solve the problem.

In the region of pre-test scores where there are observations from both treatment
groups, however, even the incorrectly specified linear regression lines do not provide
such a bad fit to the data. And no model extrapolation is required, so diagnosing
this lack of fit would be possible. This is demonstrated in the left panel of Figure
9.11 by restricting the plot from the left panel of Figure 9.10 to the area of overlap.
Furthermore, if the regression lines are fit only using this restricted sample they fit
quite well in this region, as is illustrated in the right panel of Figure 9.11. Some
of the strategies discussed in the next chapter use this idea of limiting analyses to
observations with the region of complete overlap.

Ezamining overlap in the Electric Company embedded observational study

For the Electric Company data we can use plots such as in Figure 9.10-9.11 to assess
the appropriateness of the modeling assumptions and the extent to which we are
relying on unsupported model extrapolations. For the most part, Figure 9.12 reveals
a reasonable amount of overlap in pre-test scores across treatment groups within
each grade. Grade 3, however, has some classrooms with average pre-test scores
that are lower than the bulk of the sample, all of which received the supplement. It
might be appropriate to decide that no counterfactual classrooms exist in our data
for these classrooms and thus the data cannot support causal inferences for these
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Figure 9.12 Pre-test/post-test data eramining the overlap in pre-test scores across treat-
ment groups as well as the extent to which models are being extrapolated to regions where
there is no support in the data. Classrooms that watched The Electric Company as a sup-
plement are represented by the dark points and regression line; classrooms that watched
The Electric Company as a replacement are represented by the lighter points and regression
line. No interactions were included when estimating the regression lines.

classrooms. The sample sizes for each grade make it difficult to come to any firm
conclusions one way or another, however.

Therefore, we must feel confident in the (probably relatively minor) degree of
model extrapolation relied upon by these estimates in order to trust a causal inter-
pretation.

9.6 Understanding causal inference in observational studies

4

Sometimes the term “observational study” refers to a situation in which a specific
intervention was offered nonrandomly to a population or in which a population was
exposed nonrandomly to a well-defined treatment. The primary characteristic that
distinguishes causal inference in these settings from causal inference in randomized
experiments is the inability to identify causal effects without making assumptions
such as ignorability. (Other sorts of assumptions will be discussed in the next
chapter.)

Often, however, observational studies refer more broadly to survey data settings
where no intervention has been performed. In these settings, there are other aspects
of the research design that need to be carefully considered as well. The first is the
mapping between the “treatment” variable in the data and a policy or intervention.
The second considers whether it is possible to separately identify the effects of
multiple treatment factors. When attempting causal inference using observational
data, it is helpful to formalize exactly what the experiment might have been that
would have generated the data, as we discuss next.

Defining a “treatment” variable

A causal effect needs to be defined with respect to a cause, or an intervention, on a
particular set of experimental units. We need to be able to conceive of each unit as
being able to experience each level of the treatment variable for which causal effects
will be defined for that unit. Thus, the “effect” of height on earnings is ill-defined
without reference to a treatment that could change one’s height. Otherwise what
does it mean to define a potential outcome for a person that would occur if he or
she had been shorter or taller?

More subtly, consider the effect of single-motherhood on children’s outcomes. We
might be able to envision several different kinds of interventions that could change
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a mother’s marital status either before or after birth: changes in tax laws, partici-
pation in a marriage encouragement program for unwed parents, new child support
enforcement policies, divorce laws, and so on. These potential “treatments” vary
in the timing of marriage relative to birth and even the strength of the marriages
that might result, and consequently might be expected to have different effects on
the children involved. Therefore, this conceptual mapping to a hypothetical inter-
vention can be important for choice of study design, analysis, and interpretation of
results.

Consider, for instance, a study that examines Korean children who were randomly
assigned to American families for adoption. This “natural experiment” allows for
fair comparisons across conditions such as being raised in one-parent versus two-
parent households. However, this is a different kind of treatment altogether than
considering whether a couple should get married. There is no attempt to compare
parents who are similar to each other; instead, it is the children who are similar on
average at the outset. The treatment in question then has to do with the child’s
placement in a family. This addresses an interesting although perhaps less policy-
relevant question (at least in terms of policies that affect incentives for marriage
formation or dissolution).

Multiple treatment factors

It is difficult to directly interpret more than one input variable causally in an
observational study. Suppose we have two variables, A and B, whose effects we
would like to estimate from a single observational study. To estimate causal effects,
we must consider implicit treatments—and to estimate both effects at once, we
would have to imagine a treatment that affects A while leaving B unchanged, and
a treatment that affects B while leaving A unchanged. In examples we have seen,
it is generally difficult to envision both these interventions: if A comes before B
in time or logical sequence, then we can estimate the effect of B controlling for
A but not the reverse (because of the problem with controlling for post-treatment
variables, which we discuss in greater detail in the next section).

More broadly, for many years a common practice when studying a social problem
(for example, poverty) was to compare people with different outcomes, throwing
many inputs into a regression to see which was the strongest predictor. As opposed
to the way we have tried to frame causal questions thus far in this chapter, as the
effect of causes, this is a strategy that searches for the causes of an effect. This is
an ill-defined notion that we will avoid for exactly the kind of reasons discussed in
this chapter.”

Thought experiment: what would be an ideal randomized experiment?

If you find yourself confused about what can be estimated and how the various
aspects of your study should be defined, a simple strategy is to try to formalize the
randomized experiment you would have liked to have done to answer your causal
question. A perfect mapping rarely exists between this experimental ideal and your
data so often you will be forced instead to figure out, given the data you have, what
randomized experiment could be thought to have generated such data.

9 Also, philosophically, looking for the most important cause of an outcome is a confusing framing
for a research question because one can always find an earlier cause that affected the “cause”
you determine to be the strongest from your data. This phenomenon is sometimes called the
“Infinite regress of causation.”



188 CAUSAL INFERENCE USING DIRECT REGRESSION

For instance, if you were interested in the effect of breastfeeding on children’s
cognitive outcomes, what randomized experiment would you want to perform as-
suming no practical, legal, or moral barriers existed? We could imagine randomizing
mothers to either breastfeed their children exclusively or bottle-feed them formula
exclusively. We would have to consider how to handle those who do not adhere
to their treatment assignment, such as mothers and children who are not able to
breastfeed, and children who are allergic to standard formula. Moreover, what if
we want to separately estimate the physiological effects of the breast milk from the
potential psychological implications (to both mother and child) of nursing at the
breast and the more extended physical contact that is often associated with breast-
feeding? In essence, then, we think that perhaps breastfeeding represents several
concurrent treatments. Perhaps we would want to create a third treatment group of
mothers who feed their babies with bottles of expressed breast milk. This exercise
of considering the randomized experiment helps to clarify what the true nature of
the intervention is that we are using our treatment variable to represent.

Just as in a randomized experiment, all causal inference requires a comparison of
at least two treatments (counting “control” as a treatment). For example, consider
a study of the effect on weight loss of a new diet. The treatment (following the
diet) may be clear but the control is not. Is it to try a different diet? To continue
eating “normally”? To exercise more? Different control conditions imply different
counterfactual states and thus induce different causal effects.

Finally, thinking about hypothetical randomized experiments can help with prob-
lems of trying to establish a causal link between two variables when neither has
temporal priority and when they may have been simultaneously determined. For
instance, consider a regression of crime rates in each of 50 states using a cross sec-
tion of data, where the goal is to determine the “effect” of the number of police
officers while controlling for the social, demographic, and economic features of each
state as well as characteristics of the state (such as the crime rate) that might af-
fect decisions to increase the size of the police force. The problem is that it may be
difficult (if not impossible) to disentangle the “effect” of the size of the police force
on crime from the “effect” of the crime rate on the size of the police force.

If one is interested in figuring out policies that can affect crime rates, it might be
more helpful to conceptualize both “number of police officers” and “crime rate” as
outcome variables. Then one could imagine different treatments (policies) that could
affect these outcomes. For example, the number of police officers could be affected
by a bond issue to raise money earmarked for hiring new police, or a change in the
retirement age, or a reallocation of resources within local and state government law
enforcement agencies. These different treatments could have different effects on the
crime rate.

9.7 Do not control for post-treatment variables

As illustrated in the examples of this chapter, we recommend controlling for pre-
treatment covariates when estimating causal effects in experiments and observa-
tional studies. However, it is generally not a good idea to control for variables
measured after the treatment. In this section and the next we explain why con-
trolling for a post-treatment variable messes up the estimate of total treatment
effect, and also the difficulty of using regression on “mediators” or “intermediate
outcomes” (variables measured post-treatment but generally prior to the primary
outcome of interest) to estimate so-called mediating effects.

Consider a hypothetical study of a treatment that incorporates a variety of social
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observed potential
unit, treatment, intermediate intermediate outcomes, final
7 T; outcome, z; z? zil outcome, y;
1 0 0.5 0.5 0.7 Y1

2 1 0.5 0.3 0.5 Y2

Figure 9.13 Hypothetical ezample illustrating the problems with regressions that control
on a continuous intermediate outcome. If we control for z when regressing y on T, we
will be essentially making comparisons between units such as 1 and 2 above, which differ
in T but are identical in z. The trouble is that such units are not, in fact, comparable,
as can be seen by looking at the potential outcomes, 2° and z* (which can never both be
observed, but which we can imagine for the purposes of understanding this comparison).
Unit 1, which received the control, has higher potential outcomes than unit 2, which received
the treatment. Matching on the observed z inherently leads to misleading comparisons as
measured by the potential outcomes, which are the more fundamental quantity.

The coefficient 0 in regression (9.6) thus in general represents an inappropriate comparison
of units that fundamentally differ. See Figure 9.14 for a similar example with a discrete
intermediate outcome.

services including high-quality child care and home visits by trained professionals.
We label y as the child’s 1Q score, z as the parenting quality, T as the randomly
assigned binary treatment, and x as a pre-treatment background variable (which
could in general be a vector). The goal here is to measure the effect of T on y, and
we shall explain why it is not a good idea to control for the intermediate outcome,
z, in making this estimate.
To keep things clean, we shall assume a linear regression for the intermediate
outcome:
z=0.3+40.2T + vz + error, (9.4)

with independent errors.!® We further suppose that the pre-treatment variable
has been standardized to have mean 0. Then, on average, we would see parenting
quality at 0.3 for the controls and 0.5 for the treated parents. Thus the causal effect
of the treatment on parenting quality is 0.2. An interaction of 7" and x could be
easily added and interpreted as well if it is desired to estimate systematic variation
of treatment effects.

Similarly, a model for y given 7" and z—excluding z—is straightforward, with the
coefficient of T" representing the total effect of the treatment on the child’s cognitive
outcome:

regression estimating the treatment effect: y = 07 + Bz + e. (9.5)

The difficulty comes if z is added to this model. Adding z as a predictor could
improve the model fit, explaining much of the variation in y:

regression including intermediate outcome: y = 6*T + 3"z + 6"z +€".  (9.6)

We add the asterisks here because adding a new predictor changes the interpretation
of each of the parameters. Unfortunately, the new coefficient * does not, in general,
estimate the effect of T

Figure 9.13 illustrates the problem with controlling for an intermediate outcome.

10 We use the notation ~ for the coefficient of = because we are saving (3 for the regression of y;
see model (9.5).
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The coefficient of T in regression (9.6) corresponds to a comparison of units that
are identical in x and z but differ in 7. The trouble is, they will then automatically
differ in their potential outcomes, z° and z!'. For example, consider two families,
one with z=0.5 but one with 7'=0 and one with 7'=1. Under the (simplifying)
assumption that the effect of T' is to increase z by exactly 0.2 (recall the assumed
model (9.4)), the first family has potential outcomes z° = 0.5,z1 = 0.7, and the
second family has potential outcomes 2% = 0.3, z! = 0.5. Thus, given two families
with the same intermediate outcome z, the one that received the treatment has lower
underlying parenting skills. Thus, in the regression of y on (z, T, z), the coefficient of
T represents a comparison of families that differ in their underlying characteristics.
This is an inevitable consequence of controlling for an intermediate outcome.

This reasoning suggests a strategy of estimating treatment effects conditional on
the potential outcomes—in this example, including both z° and z', along with 7" and
x, in the regression. The practical difficulty here (as usual) is that we observe at most
one potential outcome for each observation, and thus such a regression would require
imputation of z° or 2! for each case (perhaps, informally, by using pre-treatment
variables as proxies for z* and z!), and correspondingly strong assumptions.

9.8 Intermediate outcomes and causal paths

Randomized experimentation is often described as a “black box” approach to causal
inference. We see what goes into the box (treatments) and we see what comes out
(outcomes), and we can make inferences about the relation between these inputs
and outputs, without the ability to see what happens inside the box. This section
discusses what happens when we use standard techniques to try to ascertain the
role of post-treatment, or mediating variables, in the causal path between treatment
and outcomes. We present this material at the end of this chapter because the
discussion relies on concepts from the analysis of both randomized experiments
and observational studies.

Hypothetical example of a binary intermediate outcome

Continuing the hypothetical experiment on child care, suppose that the randomly
assigned treatment increases children’s 1Q points after three years by an average
of 10 points (compared to the outcome under usual care). We would additionally
like to know to what extent these positive results were the result of improved
parenting practices. This question is sometimes phrased as: “What is the ‘direct’
effect of the treatment, net the effect of parenting?” Does the experiment allow us
to evaluate this question? The short answer is no. At least not without making
further assumptions.

Yet it would not be unusual to see such a question addressed by simply running
a regression of the outcome on the randomized treatment variable along with a pre-
dictor representing (post-treatment) “parenting” added to the equation; recall that
this is often called a mediating variable or mediator. Implicitly, the coefficient on
the treatment variable then creates a comparison between those randomly assigned
to treatment and control, within subgroups defined by post-treatment parenting
practices. Let us consider what is estimated by such a regression.

For simplicity, assume these parenting practices are measured by a simple catego-
rization as “good” or “poor.” The simple comparison of the two groups can mislead,
because parents who demonstrate good practices after the treatment is applied are
likely to be different, on average, from the parents who would have been classified
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Parenting quality  Child’s IQ score
after assigned to  after assigned to  Proportion

Parenting potential control treat control  treat of sample
Poor parenting either way Poor Poor 60 70 0.1
Good parenting if treated Poor Good 65 80 0.7
Good parenting either way  Good Good 90 100 0.2

Figure 9.14 Hypothetical ezample illustrating the problems with regressions that control
on intermediate outcomes. The table shows, for three categories of parents, their poten-
tial parenting behaviors and the potential outcomes for their children under the control
and treatment conditions. The proportion of the sample falling into each category is also
provided. In actual data, we would not know which category was appropriate for each in-
dividual parent—it is the fundamental problem of causal inference that we can observe
at most one treatment condition for each person—but this theoretical setup is helpful for
understanding the properties of statistical estimates. See Figure 9.13 for a similar example
with a continuous intermediate outcome.

as having good parenting practices even in the absence of the treatment. There-
fore such comparisons, in essence, lose the advantages originally imparted by the
randomization and it becomes unclear what such estimates represent.

Regression controlling for intermediate outcomes cannot, in general, estimate
“mediating” effects

Some researchers who perform these analyses will claim that these models are still
useful because, if the estimate of the coefficient on the treatment variable goes to
zero after including the mediating variable, then we have learned that the entire
effect of the treatment acts through the mediating variable. Similarly, if the treat-
ment effect is cut in half, they might claim that half of the effect of the treatment
acts through better parenting practices or, equivalently, that the effect of treat-
ment net the effect of parenting is half the total value. This sort of conclusion is
not generally appropriate, however, as we illustrate with a hypothetical example.

Hypothetical scenario with direct and indirect effects. Figure 9.14 displays poten-
tial outcomes of the children of the three different kinds of parents in our sample:
those who will demonstrate poor parenting practices with or without the inter-
vention, those whose parenting will get better if they receive the intervention, and
those who will exhibit good parenting practices with or without the intervention.
We can think of these categories as reflecting parenting potential. For simplicity, we
have defined the model deterministically, with no individual variation within the
three categories of family.

Here the effect of the intervention is 10 IQ) points on children whose parents’
parenting practices were unaffected by the treatment. For those parents who would
improve their parenting due to the intervention, the children get a 15-point improve-
ment. In some sense, philosophically, it is difficult (some would say impossible) to
even define questions such as “what percentage of the treatment effect can be at-
tributed to improved parenting practices” since treatment effects (and fractions
attributable to various causes) can differ across people. How can we ever say for
those families that have good parenting, if treated, what portion of their treatment
effect can be attributed to differences in parenting practices as compared to the ef-
fects experienced by the families whose parenting practices would not change based
on their treatment assignment? If we assume, however, that the effect on children
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due to sources other than parenting practices stays constant over different types
of people (10 points), then we might say that, at least for those with the poten-
tial to have their parenting improved by the intervention, this improved parenting
accounts for about (15 — 10)/15 = 1/3 of the effect.

A regression controlling for the intermediate outcome does not generally work.
However, if one were to try to estimate this effect using a regression of the outcome
on the randomized treatment variable and observed parenting behavior, the coeffi-
cient on the treatment indicator will be —1.5, falsely implying that the treatment
has some sort of negative “direct effect” on IQ scores!

To see what is happening here, recall that this coefficient is based on comparisons
of treated and control groups within groups defined by observed parenting behavior.
Consider, for instance, the comparison between treated and control groups within
those observed to have poor parenting behavior. The group of parents who did
not receive the treatment and are observed to have poor parenting behavior is a
mixture of those who would have exhibited poor parenting either way and those
who exhibited poor parenting simply because they did not get the treatment. Those
in the treatment group who exhibited poor parenting are all those who would have
exhibited poor parenting either way. Those whose poor parenting is not changed
by the intervention have children with lower test scores on average—under either
treatment condition—than those whose parenting would have been affected by the
intervention.

The regression controlling for the intermediate outcome thus implicitly compares
unlike groups of people and underestimates the treatment effect, because the treat-
ment group in this comparison is made up of lower-performing children, on average.
A similar phenomenon occurs when we make comparisons across treatment groups
among those who exhibit good parenting. Those in the treatment group who demon-
strate good parenting are a mixture of two groups (good parenting if treated and
good parenting either way) whereas the control group is simply made up of the
parents with the highest-performing children (good parenting either way). This es-
timate does not reflect the effect of the intervention net the effect of parenting. It
does not estimate any causal effect. It is simply a mixture of some nonexperimental
comparisons.

This example is an oversimplification, but the basic principles hold in more com-
plicated settings. In short, randomization allows us to calculate causal effects of the
variable randomized, but not other variables unless a whole new set of assumptions
is made. Moreover, the benefits of the randomization for treatment effect estimation
are generally destroyed by including post-treatment variables. These assumptions
and the strategies that allow us to estimate the effects conditional on intermediate
outcomes in certain situations will be discussed at the end of Chapter 10.

What can be estimated: principal stratification

We noted earlier that questions such as “What proportion of the treatment effect
works through variable A?” are in some sense, inherently unanswerable. What can
we learn about the role of intermediate outcomes or mediating variables? As we
discussed in the context of Figure 9.14, treatment effects can vary depending on
the extent to which the mediating variable (in this example, parenting practices) is
affected by the treatment. The key theoretical step here is to divide the population
into categories based on their potential outcomes for the mediating variable—what
would happen under each of the two treatment conditions. In statistical parlance,
these categorizations are sometimes called principal strata. The problem is that
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the principal stratum labels are generally unobserved. It is theoretically possible to
statistically infer principal-stratum categories based on covariates, especially if the
treatment was randomized—because then at least we know that the distribution
of principal strata is the same across the randomized groups. In practice, how-
ever, this reduces to making the same kinds of assumptions as are made in typical
observational studies when ignorability is assumed.

Principal strata are important because they can define, even if only theoreti-
cally, the categories of people for whom the treatment effect can be estimated from
available data. For example, if treatment effects were nonzero only for the study par-
ticipants whose parenting practices had been changed, and if we could reasonably
exclude other causal pathways, even stronger conclusions could be drawn regard-
ing the role of this mediating variable. We discuss this scenario of instrumental
variables in greater detail in Section 10.5.

Intermediate outcomes in the context of observational studies

If trying to control directly for mediating variables is problematic in the context
of randomized experiments, it should come as no surprise that it generally is also
problematic for observational studies. The concern is nonignorability—systematic
differences between groups defined conditional on the post-treatment intermediate
outcome. In the example above if we could control for the true parenting potential
designations, the regression would yield the correct estimate for the treatment effect
if we are willing to assume constant effects across groups (or willing to posit a model
for how effects change across groups). One conceivably can obtain the same result
by controlling sufficiently for covariates that adequately proxy this information.

In observational studies, researchers often already know to control for many pre-
dictors. So it is possible that these predictors will mitigate some of the problems
we have discussed. On the other hand, studying intermediate outcomes in an ob-
servational study involves two ignorability problems to deal with rather than just
one, making it all the more challenging to obtain trustworthy results.

Well-switching ezample. As an example where the issues discussed in this and
the previous section come into play, consider one of the logistic regressions from
Chapter 5:

Pr(switch) = logit ™ (—0.21 — 0.90 - dist100 4 0.47 - arsenic + 0.17 - educ4)

predicting the probability that a household switches drinking-water wells as a func-
tion of distance to the nearest safe well, arsenic level of the current well, and edu-
cation of head of household.

This model can simply be considered as data description, but it is natural to
try to interpret it causally: being further from a safe well makes one less likely to
switch, having a higher arsenic level makes switching more likely, and having more
education makes one more likely to switch. Each of these coefficients is interpreted
with the other two inputs held constant—and this is what we want to do, in isolating
the “effects” (as crudely interpreted) of each variable. For example, households that
are farther from safe wells turn out to be more likely to have high arsenic levels, and
in studying the “effect” of distance, we would indeed like to compare households that
are otherwise similar, including in their arsenic level. This fits with a psychological
or decision-theoretic model in which these variables affect the perceived costs and
benefits of the switching decision (as outlined in Section 6.8).

However, in the well-switching example as in many regression problems, addi-
tional assumptions beyond the data are required to justify the convenient interpre-
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tation of multiple regression coefficients as causal effects—what would happen to y
if a particular input were changed, with all others held constant—and it is rarely
appropriate to give more than one coefficient such an interpretation, and then only
after careful consideration of ignorability. Similarly, we cannot learn about causal
pathways from observational data without strong assumptions.

For example, a careful estimate of the effect of a potential intervention (for exam-
ple, digging new, safe wells in close proximity to existing high-arsenic households)
should include, if not an actual experiment, a model of what would happen in the
particular households being affected, which returns us to the principles of observa-
tional studies discussed earlier in this chapter.

9.9 Bibliographic note

The fundamental problem of causal inference and the potential outcome notation
were introduced by Rubin (1974, 1978). Related earlier work includes Neyman
(1923) and Cox (1958). For other approaches to causal inference, see Pearl (2000)
along with many of the references in Section 10.8.

The stable unit treatment value assumption was defined by Rubin (1978); see
also Sobel (2006) for a more recent discussion in the context of a public policy in-
tervention and evaluation. Ainsley, Dyke, and Jenkyn (1995) and Besag and Higdon
(1999) discuss spatial models for interference between units in agricultural experi-
ments. Gelman (2004d) discusses treatment interactions in before/after studies.

Campbell and Stanley (1963) is an early presentation of causal inference in exper-
iments and observational studies from a social science perspective; see also Achen
(1986) and Shadish, Cook, and Campbell (2002). Rosenbaum (2002b) and Imbens
(2004) present overviews of inference for observational studies. Dawid (2000) offers
another perspective on the potential-outcome framework. Leamer (1978, 1983) ex-
plores the challenges of relying on regression models for answering causal questions.

Modeling strategies also exist that rely on ignorability but loosen the relatively
strict functional form imposed by linear regression. Examples include Hahn (1998),
Heckman, Ichimura and Todd (1998), Hirano, Imbens, and Ridder (2003), and Hill
and McCulloch (2006).

The example regarding the Korean babies up for adoption was inspired by Sac-
erdote (2004). The Electric Company experiment is described by Ball and Bogatz
(1972) and Ball et al. (1972).

Rosenbaum (1984) provides a good discussion of the dangers outlined in Section
9.8 involved in trying to control for post-treatment outcomes. Raudenbush and
Sampson (1999), Rubin (2000), and Rubin (2004) discuss direct and indirect effects
for multilevel designs. We do not attempt here to review the vast literature on
structural equation modeling; Kenny, Kashy, and Bolger (1998) is a good place to
start.

The term “principal stratification” was introduced by Frangakis and Rubin (2002);
examples of its application include Frangakis et al. (2003) and Barnard et al. (2003).
Similar ideas appear in Robins (1989, 1994).

9.10 Exercises

1. Suppose you are interested in the effect of the presence of vending machines in
schools on childhood obesity. What randomized experiment would you want to
do (in a perfect world) to evaluate this question?

2. Suppose you are interested in the effect of smoking on lung cancer. What ran-
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domized experiment could you plausibly perform (in the real world) to evaluate
this effect?

3. Suppose you are a consultant for a researcher who is interested in investigating
the effects of teacher quality on student test scores. Use the strategy of mapping
this question to a randomized experiment to help define the question more clearly.
Write a memo to the researcher asking for needed clarifications to this study
proposal.

4. The table below describes a hypothetical experiment on 2400 persons. Each row
of the table specifies a category of person, as defined by his or her pre-treatment
predictor x, treatment indicator T', and potential outcomes y°, y'. (For simplicity,
we assume unrealistically that all the people in this experiment fit into these eight
categories.)

Category — # persons in category « T y° y*
1 300 0 0 4 6
2 300 1 0 4 6
3 500 0 1 4 6
4 500 1 1 4 6
5 200 0O 0 10 12
6 200 1 0 10 12
7 200 0o 1 10 12
8 200 1 1 10 12

In making the table we are assuming omniscience, so that we know both 3° and
y* for all observations. But the (nonomniscient) investigator would only observe
@, T, and yT for each unit. (For example, a person in category 1 would have
x=0,T=0,y=4, and a person in category 3 would have x=0,7T=1,y=6.)

(a) What is the average treatment effect in this population of 2400 persons?

(b) Is it plausible to believe that these data came from a randomized experiment?
Defend your answer.

(¢) Another population quantity is the mean of y for those who received the
treatment minus the mean of y for those who did not. What is the relation
between this quantity and the average treatment effect?

(d) For these data, is it plausible to believe that treatment assignment is ignorable
given sex? Defend your answer.

5. For the hypothetical study in the previous exercise, figure out the estimate and
the standard error of the coeflicient of 7" in a regression of y on 7" and x.

6. You are consulting for a researcher who has performed a randomized trial where
the treatment was a series of 26 weekly therapy sessions, the control was no ther-
apy, and the outcome was self-report of emotional state one year later. However,
most people in the treatment group did not attend every therapy session. In fact
there was a good deal of variation in the number of therapy sessions actually
attended. The researcher is concerned that her results represent “watered down”
estimates because of this variation and suggests adding in another predictor to
the model: number of therapy sessions attended. What would you advise her?

7. Gain-score models: in the discussion of gain-score models in Section 9.3, we
noted that if we include the pre-treatment measure of the outcome in a gain
score model, the coefficient on the treatment indicator will be the same as if we
had just run a standard regression of the outcome on the treatment indicator
and the pre-treatment measure. Show why this is true.
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8. Assume that linear regression is appropriate for the regression of an outcome,
y, on treatment indicator, T', and a single confounding covariate, x. Sketch hy-
pothetical data (plotting y versus z, with treated and control units indicated
by circles and dots, respectively) and regression lines (for treatment and control
group) that represent each of the following situations:

(a) No treatment effect,
(b) Constant treatment effect,
(¢) Treatment effect increasing with x.

9. Consider a study with an outcome, y, a treatment indicator, T, and a single con-
founding covariate, x. Draw a scatterplot of treatment and control observations
that demonstrates each of the following:

(a) A scenario where the difference in means estimate would not capture the true
treatment effect but a regression of y on x and T would yield the correct
estimate.

(b) A scenario where a linear regression would yield the wrong estimate but a
nonlinear regression would yield the correct estimate.

10. The folder sesame contains data from an experiment in which a randomly se-
lected group of children was encouraged to watch the television program Sesame
Street and the randomly selected control group was not.

(a) The goal of the experiment was to estimate the effect on child cognitive devel-
opment of watching more Sesame Street. In the experiment, encouragement
but not actual watching was randomized. Briefly explain why you think this
was done. (Hint: think of practical as well as statistical reasons.)

—
=3
=

Suppose that the investigators instead had decided to test the effectiveness
of the program simply by examining how test scores changed from before the
intervention to after. What assumption would be required for this to be an
appropriate causal inference? Use data on just the control group from this
study to examine how realistic this assumption would have been.

11. Return to the Sesame Street example from the previous exercise.

(a) Did encouragement (the variable viewenc in the dataset) lead to an increase
in post-test scores for letters (postlet) and numbers (postnumb)? Fit an
appropriate model to answer this question.

(b) We are actually more interested in the effect of watching Sesame Street regu-
larly (regular) than in the effect of being encouraged to watch Sesame Street.
Fit an appropriate model to answer this question.

(¢) Comment on which of the two previous estimates can plausibly be interpreted
causally.

12. Messy randomization: the folder cows contains data from an agricultural exper-
iment that was conducted on 50 cows to estimate the effect of a feed additive on
six outcomes related to the amount of milk fat produced by each cow.

Four diets (treatments) were considered, corresponding to different levels of the
additive, and three variables were recorded before treatment assignment: lacta-
tion number (seasons of lactation), age, and initial weight of cow.

Cows were initially assigned to treatments completely at random, and then the
distributions of the three covariates were checked for balance across the treat-
ment groups; several randomizations were tried, and the one that produced the
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13.

14.

“best” balance with respect to the three covariates was chosen. The treatment
assignment is ignorable (because it depends only on fully observed covariates
and not on unrecorded variables such as the physical appearances of the cows
or the times at which the cows entered the study) but unknown (because the
decisions whether to rerandomize are not explained).

We shall consider different estimates of the effect of additive on the mean daily
milk fat produced.

(a) Consider the simple regression of mean daily milk fat on the level of additive.
Compute the estimated treatment effect and standard error, and explain why
this is not a completely appropriate analysis given the randomization used.

(b) Add more predictors to the model. Explain your choice of which variables to
include. Compare your estimated treatment effect to the result from (a).

(c) Repeat (b), this time considering additive level as a categorical predictor
with four letters. Make a plot showing the estimate (and standard error) of
the treatment effect at each level, and also showing the inference the model
fit in part (b).

The folder congress has election outcomes and incumbency for U.S. congres-
sional election races in the 1900s.

(a) Take data from a particular year, t, and estimate the effect of incumbency
by fitting a regression of v;;, the Democratic share of the two-party vote in
district ¢, on v; 4o (the outcome in the previous election, two years earlier), I;;
(the incumbency status in district 4 in election ¢, coded as 1 for Democratic
incumbents, 0 for open seats, —1 for Republican incumbents), and P;; (the
incumbent party, coded as 1 if the sitting congressmember is a Democrat and
—1 if he or she is a Republican). In your analysis, include only the districts
where the congressional election was contested in both years, and do not pick
a year ending in “2.” (District lines in the United States are redrawn every ten
years, and district election outcomes v;; and v; ;o are not comparable across
redistrictings, for example, from 1970 to 1972.)

(b) Plot the fitted model and the data, and discuss the political interpretation of
the estimated coefficients.

(c) What assumptions are needed for this regression to give a valid estimate of the
causal effect of incumbency? In answering this question, define clearly what
is meant by incumbency as a “treatment variable.”

See Erikson (1971), Gelman and King (1990), Cox and Katz (1996), Levitt and
Wolfram (1997), Ansolabehere, Snyder, and Stewart (2000), Ansolabehere and
Snyder (2002), and Gelman and Huang (2006) for further work and references
on this topic.

Causal inference based on data from individual choices: our lives involve trade-
offs between monetary cost and physical risk, in decisions ranging from how
large a car to drive, to choices of health care, to purchases of safety equipment.
Economists have estimated people’s implicit balancing of dollars and danger by
comparing different jobs that are comparable but with different risks, fitting re-
gression models predicting salary given the probability of death on the job. The
idea is that a riskier job should be compensated with a higher salary, with the
slope of the regression line corresponding to the “value of a statistical life.”

(a) Set up this problem as an individual choice model, as in Section 6.8. What
are an individual’s options, value function, and parameters?
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(b) Discuss the assumptions involved in assigning a causal interpretation to these
regression models.

See Dorman and Hagstrom (1998), Costa and Kahn (2002), and Viscusi and
Aldy (2002) for different perspectives of economists on assessing the value of a
life, and Lin et al. (1999) for a discussion in the context of the risks from radon
exposure.



CHAPTER 10

Causal inference using more advanced
models

Chapter 9 discussed situations in which it is dangerous to use a standard linear
regression of outcome on predictors and an indicator variable for estimating causal
effects: when there is imbalance or lack of complete overlap or when ignorability is
in doubt. This chapter discusses these issues in more detail and provides potential
solutions for each.

10.1 Imbalance and lack of complete overlap

In a study comparing two treatments (which we typically label “treatment” and
“control”), causal inferences are cleanest if the units receiving the treatment are
comparable to those receiving the control. Until Section 10.5, we shall restrict our-
selves to ignorable models, which means that we only need to consider observed
pre-treatment predictors when considering comparability.

For ignorable models, we consider two sorts of departures from comparability—
imbalance and lack of complete overlap. Imbalance occurs if the distributions of
relevant pre-treatment variables differ for the treatment and control groups. Lack
of complete overlap occurs if there are regions in the space of relevant pre-treatment
variables where there are treated units but no controls, or controls but no treated
units.

Imbalance and lack of complete overlap are issues for causal inference largely
because they force us to rely more heavily on model specification and less on direct
support from the data.

When treatment and control groups are unbalanced, the simple comparison of
group averages, §1 — o, is not, in general, a good estimate of the average treat-
ment effect. Instead, some analysis must be performed to adjust for pre-treatment
differences between the groups.

When treatment and control groups do not completely overlap, the data are in-
herently limited in what they can tell us about treatment effects in the regions of
nonoverlap. No amount of adjustment can create direct treatment/control compar-
isons, and one must either restrict inferences to the region of overlap, or rely on a
model to extrapolate outside this region.

Thus, lack of complete overlap is a more serious problem than imbalance. But
similar statistical methods are used in both scenarios, so we discuss these problems
together here.

Imbalance and model sensitivity

When attempting to make causal inferences by comparing two samples that differ in
terms of the “treatment” or causing variable of interest (participation in a program,
taking a drug, engaging in some activity) but that also differ in terms of confounding
covariates (predictors related both to the treatment and outcome), we can be misled

199
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Figure 10.1 Imbalance in distributions across treatment and control groups. (a) In the left
panel, the groups differ in their averages (dotted vertical lines) but cover the same range
of . (b) The right panel shows a more subtle form of imbalance, in which the groups have
the same average but differ in their distributions.

if we do not appropriately control for those confounders. The examples regarding
the effect of a treatment on health outcomes in Section 9.1 illustrated this point in
a simple setting.

Even when all the confounding covariates are measured (hence ignorability is sat-
isfied), however, it can be difficult to properly control for them if the distributions
of the predictors are not similar across groups. Broadly speaking, any differences
across groups can be referred to as lack of balance across groups. The terms “im-
balance” and “lack of balance” are commonly used as a shorthand for differences
in averages, but more broadly they can refer to more general differences in distri-
butions across groups. Figure 10.1 provides two examples of imbalance. In the first
case the groups have different means (dotted vertical lines) and different skews. In
the second case groups have the same mean but different skews. In both examples
the standard deviations are the same across groups though differences in standard
deviation might be another manifestation of imbalance.

Imbalance creates problems primarily because it forces us to rely more on the
correctness of our model than we would have to if the samples were balanced. To
see this, consider what happens when we try to make inferences about the effect of
a treatment variable, for instance a new reading program, on test score, y, while
controlling for a crucial confounding covariate, pre-test score, . Suppose that the
true treatment effect is 6 and the relations between the response variable, y, and the
sole confounding covariate, x, is quadratic, as indicated by the following regressions,
written out separately for the members of each treatment group:

treated: y; = o+ Bz + fox? + 0 + error;
controls: y; = o+ fix; + Bax? + error;

Averaging over each treatment group separately, solving the second equation for
Bo, plugging back into the first, and solving for 6 yields the estimate
0 =11 — o — P1(T1 — To) — fa(a? — 2), (10.1)
where g1 and gy denote the average of the outcome test scores in the treatment and
control groups respectively, Z; and T represent average pre-test scores for treat-
ment and control groups respectively, and 22 and 22 represent these averages for
squared pre-test scores. Ignoring x (that is, simply using the raw treatment/control
comparison g1 — o) is a poor estimate of the treatment effect: it will be off by the
amount 31(Z1 — Zo) + B2(2? — 23), which corresponds to systematic pre-treatment
differences between groups 0 and 1. The magnitude of this bias depends on how
different the distribution of x is across treatment and control groups (specifically
with regard to variance in this case) and how large 51 and (3, are. The closer the
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Figure 10.2 Lack of complete overlap in distributions across treatment and control groups.
Dashed lines indicate distributions for the control group; solid lines indicate distributions
for the treatment group. (a) Two distributions with no overlap; (b) two distributions with
partial overlap; (c) a scenario in which the range of one distribution is a subset of the
range of the other.

distributions of pre-test scores across treatment and control groups, the smaller this
bias will be.

Moreover, a linear model regression using z as a predictor would also yield the
wrong answer; it will be off by the amount 82 (22 — z2). The closer the distributions
of pre-test scores across treatment and control groups, however, the smaller (2% —z2)
will be, and the less worried we need to be about correctly specifying this model as
quadratic rather than linear.

Lack of complete overlap and model extrapolation

Overlap describes the extent to which the range of the data is the same across
treatment groups. There is complete overlap if this range is the same in the two
groups. Figure 10.1 illustrated treatment and control confounder distributions with
complete overlap.

As discussed briefly in the previous chapter, lack of complete overlap creates
problems because it means that there are treatment observations for which we have
no counterfactuals (that is, control observations with the same covariate distribu-
tion) and vice versa. A model fitted to data such as these is forced to extrapolate
beyond the support of the data. The illustrations in Figure 10.2 display several
scenarios that exhibit lack of complete overlap.

If these are distributions for an important confounding covariate, then areas
where there is no overlap represent observations about which we may not want
to make causal inferences. Observations in these areas have no empirical counter-
factuals. Thus, any inferences regarding these observations would have to rely on
modeling assumptions in place of direct support from the data. Adhering to this
structure would imply that in the setting of Figure 10.2a, it would be impossible
to make data-based causal inferences about any of the observations. Figure 10.2b
shows a scenario in which data-based inferences are only possible for the region of
overlap, which is underscored on the plot. In Figure 10.2c, causal inferences are
possible for the full treatment group but only for a subset of the control group
(again indicated by the underscored region).

Exzample: evaluating the effectiveness of high-quality child care

We illustrate with data collected regarding the development of nearly 4500 children
born in the 1980s. A subset of 290 of these children who were premature and with
low birth weight (between 1500 and 2500 grams) received special services in the
first few years of life, including high-quality child care (five full days a week) in the
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Figure 10.3 Imbalance in averages of confounding covariates across treatment groups.
Open circles represent differences in averages for the unmatched groups standardized by
the pooled within-group standard deviations for unmatched groups. Solid circles represent
differences in averages for matched groups standardized by the pooled within-group stan-
dard deviation for unmatched groups to facilitate comparisons. Negative birth weight is
defined as 2500 grams minus the child’s weight at birth.

second and third years of life as part of a formal intervention (the Infant Health and
Development Program). We want to evaluate the impact of this intervention on the
children’s subsequent cognitive outcomes by comparing the outcomes for children
in the intervention group to the outcomes in a comparison group of 4091 children
who did not participate in the program. The outcome of interest is test score at age
3; this test is similar to an IQ measure so we simplistically refer to these scores as
1Q scores from now on.

Missing data. Incomplete data arise in virtually all observational studies. For this
sample dataset, we imputed missing data once, using a model-based random impu-
tation (see Chapter 25 for a general discussion of this approach). We excluded the
most severely low-birth-weight children (those at or below 1500 grams) from the
sample because they are so different from the comparison sample. For these reasons,
results presented here do not exactly match the complete published analysis, which
multiply imputed the missing values.

Ezamining imbalance for several covariates

To illustrate the ways in which the treated and comparison groups differ, the open
circles in Figure 10.3 display the standardized differences in mean values (differences
in averages divided by the pooled within-group standard deviations for the treat-
ment and control groups) for a set of confounding covariates that we think predict
both program participation and subsequent test scores. Many of these differences
are large given that they are shown in standard-deviation units.

Setting up the plot to reveal systematic patterns of imbalance. In Figure 10.3, the
characteristics of this sample are organized by whether they pertain to the child
or to the mother. Additionally, continuous and binary predictors have been coded
when possible such that the larger values are typically associated with lower test
scores for children. For instance, “negative birth weight” is defined as the child’s
birth weight subtracted from 2500 grams, the cutoff for the official designation of
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Figure 10.4 Data from an intervention targeting low birth weight, premature children
(black dots), and data from a comparison group of children (gray dots). Test scores at
age 3 are plotted against birth weight. The solid line and dotted lines are regressions fit to
the black and gray points, respectively.

low birth weight. Therefore, high values of this predictor reflect children whom we
would expect to have lower test scores than children with lower values for negative
birth weight. Categorical variables have been broken out into indicators for each
category and organized so that the category associated with lowest test scores comes
first.

Displaying the confounders in this way and plotting standardized averages—
rather than displaying a table of numbers—facilitate comparisons across predictors
and methods (the dark points, to be described later, correspond to results obtained
from another strategy) and allow us to more clearly identify trends when they exist.
For instance, compared to the control group, the at-risk treatment group generally
has characteristics associated with lower test scores—such as low birth weight for
the child (coded as high “negative birth weight”), mother unmarried at birth, and
mother not a high school graduate.

Figure 10.4, which shows a scatterplot and regression lines of test scores on
birth weight, illustrates that, not only do the average birth weights differ in the
two groups (lack of balance), but there are many control observations (gray dots)
who have birth weights far out of the range of birth weights experienced in the
treatment population (black dots). This is an example of lack of complete overlap
in this predictor across groups. If birth weight is a confounding covariate that we
need to control for to achieve ignorability, Figure 10.4 demonstrates that if we
want to make inferences about the effect of the program on children with birth
weights above 2500 grams, we will have to rely on model extrapolations that may
be inappropriate.

Imbalance is not the same as lack of overlap

Figure 10.5 illustrates the distinction between balance and overlap. Imbalance does
not necessarily imply lack of complete overlap; conversely, lack of complete overlap
does not necessarily necessarily result in imbalance in the sense of different average
values in the two groups. Ultimately, lack of overlap is a more serious problem,
corresponding to a lack of data that limits the causal conclusions that can be made
without uncheckable modeling assumptions.

Figure 10.5a demonstrates complete overlap across groups in terms of mother’s
education. Each category includes observations in each treatment group. However,



204 CAUSAL INFERENCE USING MORE ADVANCED MODELS

]
]
[} [
== O O
o =]
= =
[} O
[
o J =
T 1 1 T 1T 1T _ T 1
oo 00 00 ooao
poooooooo poooDbDDDDDD

Figure 10.5 Comparisons of the treatment (black histogram bars) and control (gray his-
togram bars) groups for the child-intervention study, with respect to two of the pre-
treatment variables. There is lack of complete overlap for child age, but the averages are
similar across groups. In contrast, mother’s education shows complete overlap, but imbal-
ance exists in that the distributions differ for the two groups.

the percentages falling in each category (and the overall average, were we to code
these categories as 1-4) differ when comparing treatment and control groups—thus
there is clearly imbalance.

Figure 10.5b shows balance in mean values but without complete overlap. As
the histograms show, the averages of children’s ages differ little across treatment
groups, but the vast majority of control children have ages that are not represented
in the treatment group. Thus there is a lack of complete overlap across groups for
this variable. More specifically, there is complete overlap in terms of the treatment
observations, but not in terms of the control observations. If we believe age to be
a crucial confounding covariate, we probably would not want to make inferences
about the full set of controls in this sample.

10.2 Subclassification: effects and estimates for different
subpopulations

Assuming we are willing to trust the ignorability assumption, how can we assess
whether we are relying too strongly on modeling assumptions? And if we are un-
certain of our assumptions, how can we proceed cautiously? Section 9.5 illustrated
a check for overlap in one continuous predictor across treatment groups. In this
section we demonstrate a check that accommodates many predictors and discuss
options for more flexible modeling.

Subclassification

We saw in Chapter 3 that mother’s educational attainment is an important pre-
dictor of her child’s test scores. Education level also traditionally is associated
with participation in interventions such as this program for children with low birth
weights. Let us make the (unreasonable) assumption for the moment that this is the
only confounding covariate (that is, the only predictor associated with both par-
ticipation in this program and test scores). How would we want to estimate causal
effects? In this case a simple solution would be to estimate the difference in mean
test scores within each subclass defined by mother’s education. These averages as
well as the associated standard error and sample size in each subclass are displayed
in Figure 10.6. These point to positive effects for all participants, though not all
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Treatment effect Sample size
Mother’s education estimate £ s.e.  treated controls
Not a high school grad 9.3+1.3 126 1358
High school graduate 4.0+£18 82 1820
Some college 79+23 48 837
College graduate 4.6+2.1 34 366

Figure 10.6 Estimates + standard errors of the effect on children’s test scores of a child
care intervention, for each of four subclasses formed by mother’s educational attainment.
The study was of premature infants with low birth weight, most of whom were born to
mothers with low levels of education.

effects are statistically significant, with by far the largest effects for the children
whose mothers had not graduated from high school.

Recall that there is overlap on this variable across the treatment and control
groups as is evidenced by the sample sizes for treated and control observations
within each subclass in Figure 10.6. If there were a subclass with observations only
from one group, we would not be able to make inferences for this type of person.
Also, if there were a subclass with only a small number of observations in either
the treatment group or the control group, we would probably be wary of making
inferences for these children as well.

To get an estimate of the overall effect for those who participated in the program,
the subclass-specific estimates could be combined using a weighted average where
the weights are defined by the number of children in each subclass who participated
in the program:

9.3-1264+4.0-82+4+7.9-48 +4.6-34

Est. effect the treated = =7.0 10.2
st. effect on the treate 126782148734 , (10.2)
with a standard error of \/1'32'1262iﬁ-ggfggifsiféi-){f+2.12<342 —=0.9.

This analysis is similar to a regression with interactions between the treatment
and mother’s educational attainment. To calculate the average treatment effect for
program participants, we would have to poststratify—that is, estimate the treat-
ment effect separately for each category of mother’s education, and then average
these effects based on the distribution of mother’s education in the population.

This strategy has the advantage of imposing overlap and, moreover, forcing the
control sample to have roughly the same covariate distribution as the treated sam-
ple. This reduces reliance on the type of model extrapolations discussed previously.
Moreover, one can choose to avoid modeling altogether after subclassifying, and
simply can take a difference in averages across treatment and control groups to
perform inferences, therefore completely avoiding making assumptions about the
parametric relation between the response and the confounding covariates.

One drawback of subclassifying, however, is that when controlling for a continu-
ous variable, some information may be lost when discretizing the variable. A more
substantial drawback is that it is difficult to control for many variables at once.

Average treatment effects: whom do we average over?

Figure 10.6 demonstrated how treatment effects can vary over different subpopula-
tions. Why did we weight these subclass-specific estimates by the number of treated
children in each subclass rather than the total number of children in each subclass?
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For this application, we are interested in the effect of the intervention for the sort of
children who would have participated in it. Weighting using the number of treatment
children in each subclass forces the estimate implicitly to be representative of the
treatment children we observe. The effect we are trying to estimate is sometimes
called the effect of the treatment on the treated.

If we had weighted instead by the number of control children in each subclass,
we could estimate the effect of the treatment on the controls. However, this partic-
ular intervention was designed for the special needs of low-birth-weight, premature
children—not for typical children—and there is little interest in its effect on com-
parison children who would not have participated.

The effect of the intervention might vary, for instance, for children with different
initial birth weights, and since we know that the mix of children’s birth weights
differs in treatment and comparison groups, the average effects across these groups
could also differ. Moreover, we saw in Figure 10.4 that there are so many control
observations with no counterfactual observations in the treatment group with regard
to birth weight that these data are likely inappropriate for drawing inferences about
the control group either directly (the effect of the treatment on the controls) or as
part of an average effect across the entire sample.

Again, this is related to poststratification. We can think of the estimate of the
effect of the treatment on the treated as a poststratified version of the estimate of
the average causal effect. As the methods we discuss in this section rely on more
and more covariates, however, it can be more attractive to apply methods that more
directly estimate the effect of the treatment on the treated, as we discuss next.

10.3 Matching: subsetting the data to get overlapping and balanced
treatment and control groups

Matching refers to a variety of procedures that restrict and reorganize the original
sample in preparation for a statistical analysis. In the simplest form of matching,
one-to-one matching, the data points are divided into pairs—each containing one
treated and one control unit—with the two units matched into a pair being as
similar as possible on relevant pre-treatment variables. The number of units in the
two groups will not in general be equal—typically there are more controls than
treated units, as in Figure 10.5, for example—and so there will be some leftover
units unmatched. In settings with poor overlap, there can be unmatched units from
both groups, so that the matched pairs represent the region of data space where
the treatment and control groups overlap.

Once the matched units have been selected out of the larger dataset, they can be
analyzed by estimating a simple difference in average outcomes across treatment
groups or by using regression methods to estimate the effect of the treatment in
the area of overlap.

Matching and subclassification

Matching on one variable is similar to subclassification except that it handles con-
tinuous variables more precisely. For instance, a treatment observation might be
matched to control observations that had the closest age to their own as opposed
to being grouped into subclasses based on broader age categories. Thus, matching
has the same advantages of stratification in terms of creating balance and forcing
overlap, and may even be able to create slightly better balance. However, many
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matching methods discard observations even when they are within the range of
overlap, which is likely inefficient.

Matching has some advantages over subclassification when controlling for many
variables at once. Exact matching is difficult with many confounders, but “nearest-
neighbor” matching is often still possible. This strategy matches treatment units
to control units that are “similar” in terms of their confounders where the metric
for similarity can be defined in any variety of ways, one of the most popular be-
ing the Mahalanobis distance, which is defined in matrix notation as d(z(!), z(?)) =
(M —2@)tn=1(z(M —2?), where (1) and £ represent the vectors of predictors
for points 1 and 2, and ¥ is the covariance of the predictors in the dataset. Recently,
other algorithms have been introduced to accomplish this same task—finding sim-
ilar treatment and control observations—that rely on algorithms originally created
for genetic or data mining applications. Another matching approach, which we de-
scribe next, compares the input variables for treatment and control cases in order
to find an effective scale on which to match.

Propensity score matching

One way to simplify the issue of matching or subclassifying on many confounding
covariates at once is to create a one-number summary of all the covariates and
then use this to match or subclassify. We illustrate using a popular summary, the
propensity score, with our example of the intervention for children with low birth
weights. It seems implausible that mother’s education, for example, is the only
predictor we need to satisfy the ignorability assumption in our example. We would
like to control for as many predictors as possible to allow for the possibility that
any of them is a confounding covariate. We also want to maintain the beneficial
properties of matching. How can we match on many predictors at once?

Propensity score matching provides a solution to this problem. The propensity
score for the i*" individual is defined as the probability that he or she receives
the treatment given everything we observe before the treatment (that is, all the
confounding covariates for which we want to control). Propensity scores can be
estimated using standard models such as logistic regression, where the outcome
is the treatment indicator and the predictors are all the confounding covariates.
Then matches are found by choosing for each treatment observation the control
observation with the closest propensity score.

In our example we randomly ordered the treatment observations, and then each
time a control observation was chosen as a match for a given treatment observation
it could not be used again. More generally, methods have been developed for match-
ing multiple control units to a single treated unit, and vice versa; these ideas can be
effective, especially when there is overlap but poor balance (so that, for example,
some regions of predictor space contain many controls and few treated units, or the
reverse). From this perspective, matching can be thought of as a way of discarding
observations so that the remaining data show good balance and overlap.

The goal of propensity score matching is not to ensure that each pair of matched
observations is similar in terms of all their covariate values, but rather that the
matched groups are similar on average across all their covariate values. Thus, the
adequacy of the model used to estimate the propensity score can be evaluated by
examining the balance that results on average across the matched groups.
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Computation of propensity score matches

The first step in creating matches is to fit a model to predict who got the interven-
tion based on the set of predictors we think are necessary to achieve ignorability
(confounding covariates). A natural starting point would be a logistic regression,
something like

ps.fit.1 <- glm (treat ~ as.factor(educ) + as.factor(ethnic) + b.marr +
work.dur + prenatal + mom.age + sex + first + preterm + age +
dayskidh + bw + unemp.rt, data=cc2, family=binomial(link="logit"))

In our example, we evaluated several different model fits before settling on one that
provided balance that seemed adequate. In each case we evaluated the adequacy of
the model by evaluating the balance that resulted from matching on the estimated
propensity scores from that model. Model variations tried excluding variables and
including interactions and quadratic terms. We finally settled on

ps.fit.2 <- glm (treat ~ bwg + as.factor(educ) + bwg:as.factor(educ) +
as.factor(ethnic) + b.marr + as.factor(ethnic):b.marr +
work.dur + prenatal + preterm + age + mom.age + sex + first,
data=cc2, family=binomial(link="logit"))

We then create predicted values:!
pscores <- predict (ps.fit.2, type="link")

The regression model is messy, but we are not concerned with all its coefficients;
we are only using it as a tool to construct a balanced comparison between treatment
and control groups. We used the estimated propensity scores to create matches,
using a little R function called matching that finds for each treatment unit in turn
the control unit (not previously chosen) with the closest propensity score:?

matches <- matching (z=cc2$treat, score=pscores)
matched <- cc2[matches$matched,]

Then the full dataset was reduced to only the treated observations and only those
control observations that were chosen as matches.

The differences between treated and control averages, for the matched subset, are
displayed by the solid dots in Figure 10.3. The imbalance has decreased noticeably
compared to the unmatched sample. Certain variables (birth weight and the number
of days the children were in the hospital after being born) still show imbalance, but
none of our models succeeded in balancing those variables. We hope the other
variables are more important in predicting future test scores (which appears to be
reasonable from the previous literature on this topic).

The process of fitting, assessing, and selecting a model for the propensity scores
has completely ignored the outcome variable. We have judged the model solely
by the balance that results from subsequent matches on the associated propensity
scores. This helps the researcher to be “honest” when fitting the propensity score
model because a treatment effect estimate is not automatically produced each time
a new model is fit.

1 We use the type="1link" option to get predictions on the scale of the linear predictor, that is,
X 3. If we wanted predictions on the probability scale, we would set type="response". In this
example, similar results would arise from using either approach.

Here we have performed the matching mostly “manually” in the sense of setting up a regression
on the treatment variable and then using the predicted probabilities to select a subset of
matched units for the analysis. Various more automatic methods for propensity score estimation,
matching, and balancing have be implemented in R and other software packages; see the end
of this chapter for references.

N
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Figure 10.7 (a) Distribution of logit propensity scores for treated (dark lines) and control
groups (gray lines) before matching. (b) Distributions of logit propensity scores for treated
(dark lines) and control groups (gray lines) after matching.

Having created and checked appropriateness of the matches by examining bal-
ance, we fit a regression model just on the matched data including all the predictors
considered so far, along with an indicator to estimate the treatment effect:

reg.ps <- 1lm (ppvtr.36 ~ treat + hispanic + black + b.marr + lths +

hs + 1ltcoll + work.dur + prenatal + mom.age + sex + first +

preterm + age + dayskidh + bw, data=matched)
Given the balance and overlap that the matching procedure has achieved, we are less
concerned than in the standard regression context about issues such as deviations
from linearity and model extrapolation. Our estimated treatment effect from the
matched dataset is 10.2 (with a standard error of 1.6), which can be compared to
the standard regression estimate of 11.7 (with standard error of 1.3) based on the
full dataset.

If we fully believed in the linear model and were confident that it could be
extrapolated to the areas of poor overlap, we would use 