
http://www.cambridge.org/9780521867061


This page intentionally left blank



Data Analysis Using Regression and Multilevel/Hierarchical Models

Data Analysis Using Regression and Multilevel/Hierarchical Models is a comprehensive

manual for the applied researcher who wants to perform data analysis using linear and

nonlinear regression and multilevel models. The book introduces and demonstrates a wide

variety of models, at the same time instructing the reader in how to fit these models using

freely available software packages. The book illustrates the concepts by working through

scores of real data examples that have arisen in the authors’ own applied research, with pro-

gramming code provided for each one. Topics covered include causal inference, including

regression, poststratification, matching, regression discontinuity, and instrumental vari-

ables, as well as multilevel logistic regression and missing-data imputation. Practical tips

regarding building, fitting, and understanding are provided throughout.

Andrew Gelman is Professor of Statistics and Professor of Political Science at Columbia

University. He has published more than 150 articles in statistical theory, methods, and

computation and in applications areas including decision analysis, survey sampling, polit-

ical science, public health, and policy. His other books are Bayesian Data Analysis (1995,

second edition 2003) and Teaching Statistics: A Bag of Tricks (2002).

Jennifer Hill is Assistant Professor of Public Affairs in the Department of International

and Public Affairs at Columbia University. She has coauthored articles that have appeared

in the Journal of the American Statistical Association, American Political Science Review,

American Journal of Public Health, Developmental Psychology, the Economic Journal, and

the Journal of Policy Analysis and Management, among others.





Analytical Methods for Social Research

Analytical Methods for Social Research presents texts on empirical and formal methods

for the social sciences. Volumes in the series address both the theoretical underpinnings

of analytical techniques and their application in social research. Some series volumes are

broad in scope, cutting across a number of disciplines. Others focus mainly on method-

ological applications within specific fields such as political science, sociology, demography,

and public health. The series serves a mix of students and researchers in the social sciences

and statistics.

Series Editors:

R. Michael Alvarez, California Institute of Technology

Nathaniel L. Beck, New York University

Lawrence L. Wu, New York University

Other Titles in the Series:

Event History Modeling: A Guide for Social Scientists, by Janet M. Box-Steffensmeier

and Bradford S. Jones

Ecological Inference: New Methodological Strategies, edited by Gary King, Ori Rosen,

and Martin A. Tanner

Spatial Models of Parliamentary Voting, by Keith T. Poole

Essential Mathematics for Political and Social Research, by Jeff Gill

Political Game Theory: An Introduction, by Nolan McCarty and Adam Meirowitz





Data Analysis Using Regression and

Multilevel/Hierarchical Models

ANDREW GELMAN
Columbia University

JENNIFER HILL
Columbia University



CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

First published in print format

ISBN-13 978-0-521-86706-1

ISBN-13 978-0-521-68689-1

ISBN-13 978-0-511-26878-6

© Andrew Gelman and Jennifer Hill 2007

2006

Information on this title: www.cambridg e.org /9780521867061

This publication is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

ISBN-10 0-511-26878-5

ISBN-10 0-521-86706-1

ISBN-10 0-521-68689-X

Cambridge University Press has no responsibility for the persistence or accuracy of urls
for external or third-party internet websites referred to in this publication, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

hardback

paperback

paperback

eBook (EBL)

eBook (EBL)

hardback

http://www.cambridge.org
http://www.cambridge.org/9780521867061


Data Analysis Using Regression and
Multilevel/Hierarchical Models

(Corrected final version: 9 Aug 2006)
Please do not reproduce in any form

without permission

Andrew Gelman

Department of Statistics and Department of Political Science

Columbia University, New York

Jennifer Hill

School of International and Public Affairs

Columbia University, New York

c©2002, 2003, 2004, 2005, 2006 by Andrew Gelman and Jennifer Hill

To be published in October, 2006 by Cambridge University Press





For Zacky and for Audrey





Contents

List of examples page xvii

Preface xix

1 Why? 1

1.1 What is multilevel regression modeling? 1
1.2 Some examples from our own research 3
1.3 Motivations for multilevel modeling 6
1.4 Distinctive features of this book 8
1.5 Computing 9

2 Concepts and methods from basic probability and statistics 13

2.1 Probability distributions 13
2.2 Statistical inference 16
2.3 Classical confidence intervals 18
2.4 Classical hypothesis testing 20
2.5 Problems with statistical significance 22
2.6 55,000 residents desperately need your help! 23
2.7 Bibliographic note 26
2.8 Exercises 26

Part 1A: Single-level regression 29

3 Linear regression: the basics 31

3.1 One predictor 31
3.2 Multiple predictors 32
3.3 Interactions 34
3.4 Statistical inference 37
3.5 Graphical displays of data and fitted model 42
3.6 Assumptions and diagnostics 45
3.7 Prediction and validation 47
3.8 Bibliographic note 49
3.9 Exercises 49

4 Linear regression: before and after fitting the model 53

4.1 Linear transformations 53
4.2 Centering and standardizing, especially for models with interactions 55
4.3 Correlation and “regression to the mean” 57
4.4 Logarithmic transformations 59
4.5 Other transformations 65
4.6 Building regression models for prediction 68
4.7 Fitting a series of regressions 73

ix



x CONTENTS

4.8 Bibliographic note 74
4.9 Exercises 74

5 Logistic regression 79

5.1 Logistic regression with a single predictor 79
5.2 Interpreting the logistic regression coefficients 81
5.3 Latent-data formulation 85
5.4 Building a logistic regression model: wells in Bangladesh 86
5.5 Logistic regression with interactions 92
5.6 Evaluating, checking, and comparing fitted logistic regressions 97
5.7 Average predictive comparisons on the probability scale 101
5.8 Identifiability and separation 104
5.9 Bibliographic note 105
5.10 Exercises 105

6 Generalized linear models 109

6.1 Introduction 109
6.2 Poisson regression, exposure, and overdispersion 110
6.3 Logistic-binomial model 116
6.4 Probit regression: normally distributed latent data 118
6.5 Multinomial regression 119
6.6 Robust regression using the t model 124
6.7 Building more complex generalized linear models 125
6.8 Constructive choice models 127
6.9 Bibliographic note 131
6.10 Exercises 132

Part 1B: Working with regression inferences 135

7 Simulation of probability models and statistical inferences 137

7.1 Simulation of probability models 137
7.2 Summarizing linear regressions using simulation: an informal

Bayesian approach 140
7.3 Simulation for nonlinear predictions: congressional elections 144
7.4 Predictive simulation for generalized linear models 148
7.5 Bibliographic note 151
7.6 Exercises 152

8 Simulation for checking statistical procedures and model fits 155

8.1 Fake-data simulation 155
8.2 Example: using fake-data simulation to understand residual plots 157
8.3 Simulating from the fitted model and comparing to actual data 158
8.4 Using predictive simulation to check the fit of a time-series model 163
8.5 Bibliographic note 165
8.6 Exercises 165

9 Causal inference using regression on the treatment variable 167

9.1 Causal inference and predictive comparisons 167
9.2 The fundamental problem of causal inference 170
9.3 Randomized experiments 172
9.4 Treatment interactions and poststratification 178



CONTENTS xi

9.5 Observational studies 181
9.6 Understanding causal inference in observational studies 186
9.7 Do not control for post-treatment variables 188
9.8 Intermediate outcomes and causal paths 190
9.9 Bibliographic note 194
9.10 Exercises 194

10 Causal inference using more advanced models 199

10.1 Imbalance and lack of complete overlap 199
10.2 Subclassification: effects and estimates for different subpopulations 204
10.3 Matching: subsetting the data to get overlapping and balanced

treatment and control groups 206
10.4 Lack of overlap when the assignment mechanism is known:

regression discontinuity 212
10.5 Estimating causal effects indirectly using instrumental variables 215
10.6 Instrumental variables in a regression framework 220
10.7 Identification strategies that make use of variation within or between

groups 226
10.8 Bibliographic note 229
10.9 Exercises 231

Part 2A: Multilevel regression 235

11 Multilevel structures 237

11.1 Varying-intercept and varying-slope models 237
11.2 Clustered data: child support enforcement in cities 237
11.3 Repeated measurements, time-series cross sections, and other

non-nested structures 241
11.4 Indicator variables and fixed or random effects 244
11.5 Costs and benefits of multilevel modeling 246
11.6 Bibliographic note 247
11.7 Exercises 248

12 Multilevel linear models: the basics 251

12.1 Notation 251
12.2 Partial pooling with no predictors 252
12.3 Partial pooling with predictors 254
12.4 Quickly fitting multilevel models in R 259
12.5 Five ways to write the same model 262
12.6 Group-level predictors 265
12.7 Model building and statistical significance 270
12.8 Predictions for new observations and new groups 272
12.9 How many groups and how many observations per group are

needed to fit a multilevel model? 275
12.10 Bibliographic note 276
12.11 Exercises 277

13 Multilevel linear models: varying slopes, non-nested models, and

other complexities 279

13.1 Varying intercepts and slopes 279
13.2 Varying slopes without varying intercepts 283



xii CONTENTS

13.3 Modeling multiple varying coefficients using the scaled inverse-
Wishart distribution 284

13.4 Understanding correlations between group-level intercepts and
slopes 287

13.5 Non-nested models 289
13.6 Selecting, transforming, and combining regression inputs 293
13.7 More complex multilevel models 297
13.8 Bibliographic note 297
13.9 Exercises 298

14 Multilevel logistic regression 301

14.1 State-level opinions from national polls 301
14.2 Red states and blue states: what’s the matter with Connecticut? 310
14.3 Item-response and ideal-point models 314
14.4 Non-nested overdispersed model for death sentence reversals 320
14.5 Bibliographic note 321
14.6 Exercises 322

15 Multilevel generalized linear models 325

15.1 Overdispersed Poisson regression: police stops and ethnicity 325
15.2 Ordered categorical regression: storable votes 331
15.3 Non-nested negative-binomial model of structure in social networks 332
15.4 Bibliographic note 342
15.5 Exercises 342

Part 2B: Fitting multilevel models 343

16 Multilevel modeling in Bugs and R: the basics 345

16.1 Why you should learn Bugs 345
16.2 Bayesian inference and prior distributions 345
16.3 Fitting and understanding a varying-intercept multilevel model

using R and Bugs 348
16.4 Step by step through a Bugs model, as called from R 353
16.5 Adding individual- and group-level predictors 359
16.6 Predictions for new observations and new groups 361
16.7 Fake-data simulation 363
16.8 The principles of modeling in Bugs 366
16.9 Practical issues of implementation 369
16.10 Open-ended modeling in Bugs 370
16.11 Bibliographic note 373
16.12 Exercises 373

17 Fitting multilevel linear and generalized linear models in Bugs

and R 375

17.1 Varying-intercept, varying-slope models 375
17.2 Varying intercepts and slopes with group-level predictors 379
17.3 Non-nested models 380
17.4 Multilevel logistic regression 381
17.5 Multilevel Poisson regression 382
17.6 Multilevel ordered categorical regression 383
17.7 Latent-data parameterizations of generalized linear models 384



CONTENTS xiii

17.8 Bibliographic note 385
17.9 Exercises 385

18 Likelihood and Bayesian inference and computation 387

18.1 Least squares and maximum likelihood estimation 387
18.2 Uncertainty estimates using the likelihood surface 390
18.3 Bayesian inference for classical and multilevel regression 392
18.4 Gibbs sampler for multilevel linear models 397
18.5 Likelihood inference, Bayesian inference, and the Gibbs sampler:

the case of censored data 402
18.6 Metropolis algorithm for more general Bayesian computation 408
18.7 Specifying a log posterior density, Gibbs sampler, and Metropolis

algorithm in R 409
18.8 Bibliographic note 413
18.9 Exercises 413

19 Debugging and speeding convergence 415

19.1 Debugging and confidence building 415
19.2 General methods for reducing computational requirements 418
19.3 Simple linear transformations 419
19.4 Redundant parameters and intentionally nonidentifiable models 419
19.5 Parameter expansion: multiplicative redundant parameters 424
19.6 Using redundant parameters to create an informative prior

distribution for multilevel variance parameters 427
19.7 Bibliographic note 434
19.8 Exercises 434

Part 3: From data collection to model understanding to model

checking 435

20 Sample size and power calculations 437

20.1 Choices in the design of data collection 437
20.2 Classical power calculations: general principles, as illustrated by

estimates of proportions 439
20.3 Classical power calculations for continuous outcomes 443
20.4 Multilevel power calculation for cluster sampling 447
20.5 Multilevel power calculation using fake-data simulation 449
20.6 Bibliographic note 454
20.7 Exercises 454

21 Understanding and summarizing the fitted models 457

21.1 Uncertainty and variability 457
21.2 Superpopulation and finite-population variances 459
21.3 Contrasts and comparisons of multilevel coefficients 462
21.4 Average predictive comparisons 466
21.5 R2 and explained variance 473
21.6 Summarizing the amount of partial pooling 477
21.7 Adding a predictor can increase the residual variance! 480
21.8 Multiple comparisons and statistical significance 481
21.9 Bibliographic note 484
21.10 Exercises 485



xiv CONTENTS

22 Analysis of variance 487

22.1 Classical analysis of variance 487
22.2 ANOVA and multilevel linear and generalized linear models 490
22.3 Summarizing multilevel models using ANOVA 492
22.4 Doing ANOVA using multilevel models 494
22.5 Adding predictors: analysis of covariance and contrast analysis 496
22.6 Modeling the variance parameters: a split-plot latin square 498
22.7 Bibliographic note 501
22.8 Exercises 501

23 Causal inference using multilevel models 503

23.1 Multilevel aspects of data collection 503
23.2 Estimating treatment effects in a multilevel observational study 506
23.3 Treatments applied at different levels 507
23.4 Instrumental variables and multilevel modeling 509
23.5 Bibliographic note 512
23.6 Exercises 512

24 Model checking and comparison 513

24.1 Principles of predictive checking 513
24.2 Example: a behavioral learning experiment 515
24.3 Model comparison and deviance 524
24.4 Bibliographic note 526
24.5 Exercises 527

25 Missing-data imputation 529

25.1 Missing-data mechanisms 530
25.2 Missing-data methods that discard data 531
25.3 Simple missing-data approaches that retain all the data 532
25.4 Random imputation of a single variable 533
25.5 Imputation of several missing variables 539
25.6 Model-based imputation 540
25.7 Combining inferences from multiple imputations 542
25.8 Bibliographic note 542
25.9 Exercises 543

Appendixes 545

A Six quick tips to improve your regression modeling 547

A.1 Fit many models 547
A.2 Do a little work to make your computations faster and more reliable 547
A.3 Graphing the relevant and not the irrelevant 548
A.4 Transformations 548
A.5 Consider all coefficients as potentially varying 549
A.6 Estimate causal inferences in a targeted way, not as a byproduct

of a large regression 549

B Statistical graphics for research and presentation 551

B.1 Reformulating a graph by focusing on comparisons 552
B.2 Scatterplots 553
B.3 Miscellaneous tips 559



CONTENTS xv

B.4 Bibliographic note 562
B.5 Exercises 563

C Software 565

C.1 Getting started with R, Bugs, and a text editor 565
C.2 Fitting classical and multilevel regressions in R 565
C.3 Fitting models in Bugs and R 567
C.4 Fitting multilevel models using R, Stata, SAS, and other software 568
C.5 Bibliographic note 573

References 575

Author index 601

Subject index 607





List of examples

Home radon 3, 36, 252, 279, 479

Forecasting elections 3, 144

State-level opinions from national polls 4, 301, 493

Police stops by ethnic group 5, 21, 112, 325

Public opinion on the death penalty 19

Testing for election fraud 23

Sex ratio of births 27, 137

Mothers’ education and children’s test scores 31, 55

Height and weight 41, 75

Beauty and teaching evaluations 51, 277

Height and earnings 53, 59, 140, 288

Handedness 66

Yields of mesquite bushes 70

Political party identification over time 73

Income and voting 79, 107

Arsenic in drinking water 86, 128, 193

Death-sentencing appeals process 116, 320, 540

Ordered logistic model for storable votes 120, 331

Cockroaches in apartments 126, 161

Behavior of couples at risk for HIV 132, 166

Academy Award voting 133

Incremental cost-effectiveness ratio 152

Unemployment time series 163

The Electric Company TV show 174, 503

Hypothetical study of parenting quality as an intermediate outcome 188

Sesame Street TV show 196

Messy randomized experiment of cow feed 196

Incumbency and congressional elections 197

xvii



xviii LIST OF EXAMPLES

Value of a statistical life 197

Evaluating the Infant Health and Development Program 201, 506

Ideology of congressmembers 213

Hypothetical randomized-encouragement study 216

Child support enforcement 237

Adolescent smoking 241

Rodents in apartments 248

Olympic judging 248

Time series of children’s CD4 counts 249, 277, 449

Flight simulator experiment 289, 464, 488

Latin square agricultural experiment 292, 497

Income and voting by state 310

Item-response models 314

Ideal-point modeling for the Supreme Court 317

Speed dating 322

Social networks 332

Regression with censored data 402

Educational testing experiments 430

Zinc for HIV-positive children 439

Cluster sampling of New York City residents 448

Value added of school teachers 458

Advanced Placement scores and college grades 463

Prison sentences 470

Magnetic fields and brain functioning 481

Analysis of variance for web connect times 492

Split-plot latin square 498

Educational-subsidy program in Mexican villages 508

Checking models of behavioral learning in dogs 515

Missing data in the Social Indicators Survey 529



Preface

Aim of this book

This book originated as lecture notes for a course in regression and multilevel mod-
eling, offered by the statistics department at Columbia University and attended
by graduate students and postdoctoral researchers in social sciences (political sci-
ence, economics, psychology, education, business, social work, and public health)
and statistics. The prerequisite is statistics up to and including an introduction to
multiple regression.

Advanced mathematics is not assumed—it is important to understand the linear
model in regression, but it is not necessary to follow the matrix algebra in the
derivation of least squares computations. It is useful to be familiar with exponents
and logarithms, especially when working with generalized linear models.

After completing Part 1 of this book, you should be able to fit classical linear and
generalized linear regression models—and do more with these models than simply
look at their coefficients and their statistical significance. Applied goals include
causal inference, prediction, comparison, and data description. After completing
Part 2, you should be able to fit regression models for multilevel data. Part 3
takes you from data collection, through model understanding (looking at a table of
estimated coefficients is usually not enough), to model checking and missing data.
The appendixes include some reference materials on key tips, statistical graphics,
and software for model fitting.

What you should be able to do after reading this book and working through the
examples

This text is structured through models and examples, with the intention that after
each chapter you should have certain skills in fitting, understanding, and displaying
models:

• Part 1A: Fit, understand, and graph classical regressions and generalized linear
models.

– Chapter 3: Fit linear regressions and be able to interpret and display estimated
coefficients.

– Chapter 4: Build linear regression models by transforming and combining
variables.

– Chapter 5: Fit, understand, and display logistic regression models for binary
data.

– Chapter 6: Fit, understand, and display generalized linear models, including
Poisson regression with overdispersion and ordered logit and probit models.

• Part 1B: Use regression to learn about quantities of substantive interest (not
just regression coefficients).

– Chapter 7: Simulate probability models and uncertainty about inferences and
predictions.

xix
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– Chapter 8: Check model fits using fake-data simulation and predictive simu-
lation.

– Chapter 9: Understand assumptions underlying causal inference. Set up re-
gressions for causal inference and understand the challenges that arise.

– Chapter 10: Understand the assumptions underlying propensity score match-
ing, instrumental variables, and other techniques to perform causal inference
when simple regression is not enough. Be able to use these when appropriate.

• Part 2A: Understand and graph multilevel models.

– Chapter 11: Understand multilevel data structures and models as generaliza-
tions of classical regression.

– Chapter 12: Understand and graph simple varying-intercept regressions and
interpret as partial-pooling estimates.

– Chapter 13: Understand and graph multilevel linear models with varying in-
tercepts and slopes, non-nested structures, and other complications.

– Chapter 14: Understand and graph multilevel logistic models.

– Chapter 15: Understand and graph multilevel overdispersed Poisson, ordered
logit and probit, and other generalized linear models.

• Part 2B: Fit multilevel models using the software packages R and Bugs.

– Chapter 16: Fit varying-intercept regressions and understand the basics of
Bugs. Check your programming using fake-data simulation.

– Chapter 17: Use Bugs to fit various models from Part 2A.

– Chapter 18: Understand Bayesian inference as a generalization of least squares
and maximum likelihood. Use the Gibbs sampler to fit multilevel models.

– Chapter 19: Use redundant parameterizations to speed the convergence of the
Gibbs sampler.

• Part 3:

– Chapter 20: Perform sample size and power calculations for classical and hier-
archical models: standard-error formulas for basic calculations and fake-data
simulation for harder problems.

– Chapter 21: Calculate and understand contrasts, explained variance, partial
pooling coefficients, and other summaries of fitted multilevel models.

– Chapter 22: Use the ideas of analysis of variance to summarize fitted multilevel
models; use multilevel models to perform analysis of variance.

– Chapter 23: Use multilevel models in causal inference.

– Chapter 24: Check the fit of models using predictive simulation.

– Chapter 25: Use regression to impute missing data in multivariate datasets.

In summary, you should be able to fit, graph, and understand classical and mul-
tilevel linear and generalized linear models and to use these model fits to make
predictions and inferences about quantities of interest, including causal treatment
effects.
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Data for the examples and homework assignments and other resources for
teaching and learning

The website www.stat.columbia.edu/∼gelman/arm/ contains datasets used in the
examples and homework problems of the book, as well as sample computer code.
The website also includes some tips for teaching regression and multilevel modeling
through class participation rather than lecturing. We plan to update these tips
based on feedback from instructors and students; please send your comments and
suggestions to gelman@stat.columbia.edu.

Outline of a course

When teaching a course based on this book, we recommend starting with a self-
contained review of linear regression, logistic regression, and generalized linear mod-
els, focusing not on the mathematics but on understanding these methods and im-
plementing them in a reasonable way. This is also a convenient way to introduce the
statistical language R, which we use throughout for modeling, computation, and
graphics. One thing that will probably be new to the reader is the use of random
simulations to summarize inferences and predictions.

We then introduce multilevel models in the simplest case of nested linear models,
fitting in the Bayesian modeling language Bugs and examining the results in R.
Key concepts covered at this point are partial pooling, variance components, prior
distributions, identifiability, and the interpretation of regression coefficients at dif-
ferent levels of the hierarchy. We follow with non-nested models, multilevel logistic
regression, and other multilevel generalized linear models.

Next we detail the steps of fitting models in Bugs and give practical tips for repa-
rameterizing a model to make it converge faster and additional tips on debugging.
We also present a brief review of Bayesian inference and computation. Once the
student is able to fit multilevel models, we move in the final weeks of the class to
the final part of the book, which covers more advanced issues in data collection,
model understanding, and model checking.

As we show throughout, multilevel modeling fits into a view of statistics that
unifies substantive modeling with accurate data fitting, and graphical methods are
crucial both for seeing unanticipated features in the data and for understanding the
implications of fitted models.

Acknowledgments
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of this book; Chuanhai Liu, Xiao-Li Meng, Zaiying Huang, John Boscardin, Jouni
Kerman, and Alan Zaslavsky for discussions about statistical computation; Iven
Van Mechelen and Hans Berkhof for discussions about model checking; Iain Par-
doe for discussions of average predictive effects and other summaries of regression
models; Matt Salganik and Wendy McKelvey for suggestions on the presentation
of sample size calculations; T. E. Raghunathan, Donald Rubin, Rajeev Dehejia,
Michael Sobel, Guido Imbens, Samantha Cook, Ben Hansen, Dylan Small, and Ed
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help in understanding identifiability in item-response models; Niall Bolger, Agustin
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CHAPTER 1

Why?

1.1 What is multilevel regression modeling?

Consider an educational study with data from students in many schools, predicting
in each school the students’ grades y on a standardized test given their scores on
a pre-test x and other information. A separate regression model can be fit within
each school, and the parameters from these schools can themselves be modeled
as depending on school characteristics (such as the socioeconomic status of the
school’s neighborhood, whether the school is public or private, and so on). The
student-level regression and the school-level regression here are the two levels of a
multilevel model.

In this example, a multilevel model can be expressed in (at least) three equivalent
ways as a student-level regression:

• A model in which the coefficients vary by school (thus, instead of a model such
as y = α+βx+error, we have y = αj +βjx+error, where the subscripts j index
schools),

• A model with more than one variance component (student-level and school-level
variation),

• A regression with many predictors, including an indicator variable for each school
in the data.

More generally, we consider a multilevel model to be a regression (a linear or gen-
eralized linear model) in which the parameters—the regression coefficients—are
given a probability model. This second-level model has parameters of its own—the
hyperparameters of the model—which are also estimated from data.

The two key parts of a multilevel model are varying coefficients, and a model for
those varying coefficients (which can itself include group-level predictors). Classi-
cal regression can sometimes accommodate varying coefficients by using indicator
variables. The feature that distinguishes multilevel models from classical regression
is in the modeling of the variation between groups.

Models for regression coefficients

To give a preview of our notation, we write the regression equations for two multi-
level models. To keep notation simple, we assume just one student-level predictor
x (for example, a pre-test score) and one school-level predictor u (for example,
average parents’ incomes).

Varying-intercept model. First we write the model in which the regressions have
the same slope in each of the schools, and only the intercepts vary. We use the

1
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notation i for individual students and j[i] for the school j containing student i:1

yi = αj[i] + βxi + εi, for students i = 1, . . . , n

αj = a + buj + ηj , for schools j = 1, . . . , J. (1.1)

Here, xi and uj represent predictors at the student and school levels, respectively,
and εi and ηj are independent error terms at each of the two levels. The model can
be written in several other equivalent ways, as we discuss in Section 12.5.

The number of “data points” J (here, schools) in the higher-level regression is
typically much less than n, the sample size of the lower-level model (for students
in this example).

Varying-intercept, varying-slope model. More complicated is the model where in-
tercepts and slopes both can vary by school:

yi = αj[i] + βj[i]xi + εi, for students i = 1, . . . , n

αj = a0 + b0uj + ηj1, for schools j = 1, . . . , J

βj = a1 + b1uj + ηj2, for schools j = 1, . . . , J.

Compared to model (1.1), this has twice as many vectors of varying coefficients
(α, β), twice as many vectors of second-level coefficients (a, b), and potentially cor-
related second-level errors η1, η2. We will be able to handle these complications.

Labels

“Multilevel” or “hierarchical.” Multilevel models are also called hierarchical, for
two different reasons: first, from the structure of the data (for example, students
clustered within schools); and second, from the model itself, which has its own hier-
archy, with the parameters of the within-school regressions at the bottom, controlled
by the hyperparameters of the upper-level model.

Later we shall consider non-nested models—for example, individual observations
that are nested within states and years. Neither “state” nor “year” is above the other
in a hierarchical sense. In this sort of example, we can consider individuals, states,
and years to be three different levels without the requirement of a full ordering
or hierarchy. More complex structures, such as three-level nesting (for example,
students within schools within school districts) are also easy to handle within the
general multilevel framework.

Why we avoid the term “random effects.” Multilevel models are often known as
random-effects or mixed-effects models. The regression coefficients that are being
modeled are called random effects, in the sense that they are considered random
outcomes of a process identified with the model that is predicting them. In contrast,
fixed effects correspond either to parameters that do not vary (for example, fitting
the same regresslon line for each of the schools) or to parameters that vary but
are not modeled themselves (for example, fitting a least squares regression model
with various predictors, including indicators for the schools). A mixed-effects model
includes both fixed and random effects; for example, in model (1.1), the varying
intercepts αj have a group-level model, but β is fixed and does not vary by group.

1 The model can also be written as yij = αj + βxij + εij , where yij is the measurement from
student i in school j. We prefer using the single sequence i to index all students (and j[i] to label
schools) because this fits in better with our multilevel modeling framework with data and models
at the individual and group levels. The data are yi because they can exist without reference to
the groupings, and we prefer to include information about the groupings as numerical data—
that is, the index variable j[i]—rather than through reordering the data through subscripting.
We discuss the structure of the data and models further in Chapter 11.
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Fixed effects can be viewed as special cases of random effects, in which the higher-
level variance (in model (1.1), this would be σ2

α) is set to 0 or ∞. Hence, in our
framework, all regression parameters are “random,” and the term “multilevel” is
all-encompassing. As we discuss on page 245, we find the terms “fixed,” “random,”
and “mixed” effects to be confusing and often misleading, and so we avoid their
use.

1.2 Some examples from our own research

Multilevel modeling can be applied to just about any problem. Just to give a feel
of the ways it can be used, we give here a few examples from our applied work.

Combining information for local decisions: home radon measurement and
remediation

Radon is a carcinogen—a naturally occurring radioactive gas whose decay products
are also radioactive—known to cause lung cancer in high concentrations and esti-
mated to cause several thousand lung cancer deaths per year in the United States.
The distribution of radon levels in U.S. homes varies greatly, with some houses hav-
ing dangerously high concentrations. In order to identify the areas with high radon
exposures, the Environmental Protection Agency coordinated radon measurements
in a random sample of more than 80,000 houses throughout the country.

To simplify the problem somewhat, our goal in analyzing these data was to
estimate the distribution of radon levels in each of the approximately 3000 counties
in the United States, so that homeowners could make decisions about measuring or
remediating the radon in their houses based on the best available knowledge of local
conditions. For the purpose of this analysis, the data were structured hierarchically:
houses within counties. If we were to analyze multiple measurements within houses,
there would be a three-level hierarchy of measurements, houses, and counties.

In performing the analysis, we had an important predictor—the floor on which
the measurement was taken, either basement or first floor; radon comes from un-
derground and can enter more easily when a house is built into the ground. We
also had an important county-level predictor—a measurement of soil uranium that
was available at the county level. We fit a model of the form (1.1), where yi is the
logarithm of the radon measurement in house i, x is the floor of the measurement
(that is, 0 for basement and 1 for first floor), and u is the uranium measurement at
the county level. The errors εi in the first line of (1.1) represent “within-county vari-
ation,” which in this case includes measurement error, natural variation in radon
levels within a house over time, and variation between houses (beyond what is ex-
plained by the floor of measurement). The errors ηj in the second line represent
variation between counties, beyond what is explained by the county-level uranium
predictor.

The hierarchical model allows us to fit a regression model to the individual mea-
surements while accounting for systematic unexplained variation among the 3000
counties. We return to this example in Chapter 12.

Modeling correlations: forecasting presidential elections

It is of practical interest to politicians and theoretical interest to political scientists
that the outcomes of elections can be forecast with reasonable accuracy given in-
formation available months ahead of time. To understand this better, we set up a
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model to forecast presidential elections. Our predicted outcomes were the Demo-
cratic Party’s share of the two-party vote in each state in each of the 11 elections
from 1948 through 1988, yielding 511 data points (the analysis excluded states
that were won by third parties), and we had various predictors, including the per-
formance of the Democrats in the previous election, measures of state-level and
national economic trends, and national opinion polls up to two months before the
election.

We set up our forecasting model two months before the 1992 presidential election
and used it to make predictions for the 50 states. Predictions obtained using classical
regression are reasonable, but when the model is evaluated historically (fitting to all
but one election and then using the model to predict that election, then repeating
this for the different past elections), the associated predictive intervals turn out to
be too narrow: that is, the predictions are not as accurate as claimed by the model.
Fewer than 50% of the predictions fall in the 50% predictive intervals, and fewer
than 95% are inside the 95% intervals. The problem is that the 511 original data
points are structured, and the state-level errors are correlated. It is overly optimistic
to say that we have 511 independent data points.

Instead, we model

yi = β0 + Xi1β1 + Xi2β2 + · · ·+ Xikβk + ηt[i] + δr[i],t[i] + εi, for i = 1, . . . , n, (1.2)

where t[i] is a indicator for time (election year), and r[i] is an indicator for the region
of the country (Northeast, Midwest, South, or West), and n = 511 is the number
of state-years used to fit the model. For each election year, ηt is a nationwide error
and the δr,t’s are four independent regional errors.

The error terms must then be given distributions. As usual, the default is the
normal distribution, which for this model we express as

ηt ∼ N(0, σ2
η), for t = 1, . . . , 11

δr,t ∼ N(0, σ2
δ ), for r = 1, . . . , 4; t = 1, . . . , 11

εi ∼ N(0, σ2
ε ), for i = 1, . . . , 511. (1.3)

In the multilevel model, all the parameters β, ση, σδ, σε are estimated from the data.
We can then make a prediction by simulating the election outcome in the 50

states in the next election year, t = 12:

yi = β0 + Xi1β1 + Xi2β2 + · · · + Xikβk + η12 + δr[i],12 + εi, for i = n+1, . . . , n+50.

To define the predictive distribution of these 50 outcomes, we need the point pre-
dictors Xiβ = β0 + Xi1β1 + Xi2β2 + · · · + Xikβk and the state-level errors ε as
before, but we also need a new national error η12 and four new regional errors δr,12,
which we simulate from the distributions (1.3). The variation from these gives a
more realistic statement of prediction uncertainties.

Small-area estimation: state-level opinions from national polls

In a micro-level version of election forecasting, it is possible to predict the political
opinions of individual voters given demographic information and where they live.
Here the data sources are opinion polls rather than elections.

For example, we analyzed the data from seven CBS News polls from the 10
days immediately preceding the 1988 U.S. presidential election. For each survey
respondent i, we label yi = 1 if he or she preferred George Bush (the Republican
candidate), 0 if he or she preferred Michael Dukakis (the Democrat). We excluded
respondents who preferred others or had no opinion, leaving a sample size n of
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about 6000. We then fit the model,

Pr(yi = 1) = logit−1(Xiβ),

where X included 85 predictors:

• A constant term

• An indicator for “female”

• An indicator for “black”

• An indicator for “female and black”

• 4 indicators for age categories (18–29, 30–44, 45–64, and 65+)

• 4 indicators for education categories (less than high school, high school, some
college, college graduate)

• 16 indicators for age × education

• 51 indicators for states (including the District of Columbia)

• 5 indicators for regions (Northeast, Midwest, South, West, and D.C.)

• The Republican share of the vote for president in the state in the previous
election.

In classical regression, it would be unwise to fit this many predictors because the
estimates will be unreliable, especially for small states. In addition, it would be
necessary to leave predictors out of each batch of indicators (the 4 age categories,
the 4 education categories, the 16 age × education interactions, the 51 states, and
the 5 regions) to avoid collinearity.

With a multilevel model, the coefficients for each batch of indicators are fit to a
probability distribution, and it is possible to include all the predictors in the model.
We return to this example in Section 14.1.

Social science modeling: police stops by ethnic group with variation across
precincts

There have been complaints in New York City and elsewhere that the police harass
members of ethnic minority groups. In 1999 the New York State Attorney General’s
Office instigated a study of the New York City police department’s “stop and frisk”
policy: the lawful practice of “temporarily detaining, questioning, and, at times,
searching civilians on the street.” The police have a policy of keeping records on
every stop and frisk, and this information was collated for all stops (about 175,000 in
total) over a 15-month period in 1998–1999. We analyzed these data to see to what
extent different ethnic groups were stopped by the police. We focused on blacks
(African Americans), hispanics (Latinos), and whites (European Americans). We
excluded others (about 4% of the stops) because of sensitivity to ambiguities in
classifications. The ethnic categories were as recorded by the police making the
stops.

It was found that blacks and hispanics represented 50% and 33% of the stops,
respectively, despite constituting only 26% and 24%, respectively, of the population
of the city. An arguably more relevant baseline comparison, however, is to the num-
ber of crimes committed by members of each ethnic group. Data on actual crimes
are not available, of course, so as a proxy we used the number of arrests within New
York City in 1997 as recorded by the Division of Criminal Justice Services (DCJS)
of New York State. We used these numbers to represent the frequency of crimes
that the police might suspect were committed by members of each group. When
compared in that way, the ratio of stops to previous DCJS arrests was 1.24 for
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whites, 1.53 for blacks, and 1.72 for hispanics—the minority groups still appeared
to be stopped disproportionately often.

These ratios are suspect too, however, because they average over the whole city.
Suppose the police make more stops in high-crime areas but treat the different
ethnic groups equally within any locality. Then the citywide ratios could show
strong differences between ethnic groups even if stops are entirely determined by
location rather than ethnicity. In order to separate these two kinds of predictors, we
performed a multilevel analysis using the city’s 75 precincts. For each ethnic group
e = 1, 2, 3 and precinct p = 1, . . . , 75, we model the number of stops yep using an
overdispersed Poisson regression. The exponentiated coefficients from this model
represent relative rates of stops compared to arrests for the different ethnic groups,
after controlling for precinct. We return to this example in Section 15.1.

1.3 Motivations for multilevel modeling

Multilevel models can be used for a variety of inferential goals including causal
inference, prediction, and descriptive modeling.

Learning about treatment effects that vary

One of the basic goals of regression analysis is estimating treatment effects—how
does y change when some x is varied, with all other inputs held constant? In many
applications, it is not an overall effect of x that is of interest, but how this effect
varies in the population. In classical statistics we can study this variation using
interactions: for example, a particular educational innovation may be more effective
for girls than for boys, or more effective for students who expressed more interest
in school in a pre-test measurement.

Multilevel models also allow us to study effects that vary by group, for example
an intervention that is more effective in some schools than others (perhaps because
of unmeasured school-level factors such as teacher morale). In classical regression,
estimates of varying effects can be noisy, especially when there are few observations
per group; multilevel modeling allows us to estimate these interactions to the extent
supported by the data.

Using all the data to perform inferences for groups with small sample size

A related problem arises when we are trying to estimate some group-level quan-
tity, perhaps a local treatment effect or maybe simply a group-level average (as in
the small-area estimation example on page 4). Classical estimation just using the
local information can be essentially useless if the sample size is small in the group.
At the other extreme, a classical regression ignoring group indicators can be mis-
leading in ignoring group-level variation. Multilevel modeling allows the estimation
of group averages and group-level effects, compromising between the overly noisy
within-group estimate and the oversimplified regression estimate that ignores group
indicators.

Prediction

Regression models are commonly used for predicting outcomes for new cases. But
what if the data vary by group? Then we can make predictions for new units in
existing groups or in new groups. The latter is difficult to do in classical regression:
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if a model ignores group effects, it will tend to understate the error in predictions
for new groups. But a classical regression that includes group effects does not have
any automatic way of getting predictions for a new group.

A natural attack on the problem is a two-stage regression, first including group
indicators and then fitting a regression of estimated group effects on group-level
predictors. One can then forecast for a new group, with the group effect predicted
from the group-level model, and then the observations predicted from the unit-level
model. However, if sample sizes are small in some groups, it can be difficult or even
impossible to fit such a two-stage model classically, and fully accounting for the
uncertainty at both levels leads directly to a multilevel model.

Analysis of structured data

Some datasets are collected with an inherent multilevel structure, for example, stu-
dents within schools, patients within hospitals, or data from cluster sampling. Sta-
tistical theory—whether sampling-theory or Bayesian—says that inference should
include the factors used in the design of data collection. As we shall see, multi-
level modeling is a direct way to include indicators for clusters at all levels of a
design, without being overwhelmed with the problems of overfitting that arise from
applying least squares or maximum likelihood to problems with large numbers of
parameters.

More efficient inference for regression parameters

Data often arrive with multilevel structure (students within schools and grades,
laboratory assays on plates, elections in districts within states, and so forth). Even
simple cross-sectional data (for example, a random sample survey of 1000 Amer-
icans) can typically be placed within a larger multilevel context (for example, an
annual series of such surveys). The traditional alternatives to multilevel modeling
are complete pooling, in which differences between groups are ignored, and no pool-
ing, in which data from different sources are analyzed separately. As we shall discuss
in detail throughout the book, both these approaches have problems: no pooling
ignores information and can give unacceptably variable inferences, and complete
pooling suppresses variation that can be important or even the main goal of a
study. The extreme alternatives can in fact be useful as preliminary estimates, but
ultimately we prefer the partial pooling that comes out of a multilevel analysis.

Including predictors at two different levels

In the radon example described in Section 1.2, we have outcome measurements at
the individual level and predictors at the individual and county levels. How can this
information be put together? One possibility is simply to run a classical regression
with predictors at both levels. But this does not correct for differences between
counties beyond what is included in the predictors. Another approach would be to
augment this model with indicators (dummy variables) for the counties. But in a
classical regression it is not possible to include county-level indicators as well along
with county-level predictors—the predictors would become collinear (see the end of
Section 4.5 for a discussion of collinearity and nonidentifiability in this context).

Another approach is to fit the model with county indicators but without the
county-level predictors, and then to fit a second model. This is possible but limited
because it relies on the classical regression estimates of the coefficients for those
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county-level indicators—and if the data are sparse within counties, these estimates
won’t be very good. Another possibility in the classical framework would be to fit
separate models in each group, but this is not possible unless the sample size is large
in each group. The multilevel model provides a coherent model that simultaneously
incorporates both individual- and group-level models.

Getting the right standard error: accurately accounting for uncertainty in
prediction and estimation

Another motivation for multilevel modeling is for predictions, for example, when
forecasting state-by-state outcomes of U.S. presidential elections, as described in
Section 1.2. To get an accurate measure of predictive uncertainty, one must account
for correlation of the outcome between states in a given election year. Multilevel
modeling is a convenient way to do this.

For certain kinds of predictions, multilevel models are essential. For example,
consider a model of test scores for students within schools. In classical regression,
school-level variability might be modeled by including an indicator variable for each
school. In this framework though, it is impossible to make a prediction for a new
student in a new school, because there would not be an indicator for this new
school in the model. This prediction problem is handled seamlessly using multilevel
models.

1.4 Distinctive features of this book

The topics and methods covered in this book overlap with many other textbooks on
regression, multilevel modeling, and applied statistics. We differ from most other
books in these areas in the following ways:

• We present methods and software that allow the reader to fit complicated, linear
or nonlinear, nested or non-nested models. We emphasize the use of the statistical
software packages R and Bugs and provide code for many examples as well as
methods such as redundant parameterization that speed computation and lead
to new modeling ideas.

• We include a wide range of examples, almost all from our own applied research.
The statistical methods are thus motivated in the best way, as successful practical
tools.

• Most books define regression in terms of matrix operations. We avoid much of
this matrix algebra for the simple reason that it is now done automatically by
computers. We are more interested in understanding the “forward,” or predic-
tive, matrix multiplication Xβ than the more complicated inferential formula
(XtX)−1Xty. The latter computation and its generalizations are important but
can be done out of sight of the user. For details of the underlying matrix algebra,
we refer readers to the regression textbooks listed in Section 3.8.

• We try as much as possible to display regression results graphically rather than
through tables. Here we apply ideas such as those presented in the books by
Ramsey and Schafer (2001) for classical regression and Kreft and De Leeuw
(1998) for multilevel models. We consider graphical display of model estimates
to be not just a useful teaching method but also a necessary tool in applied
research.

Statistical texts commonly recommend graphical displays for model diagnostics.
These can be very useful, and we refer readers to texts such as Cook and Weisberg
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(1999) for more on this topic—but here we are emphasizing graphical displays
of the fitted models themselves. It is our experience that, even when a model
fits data well, we have difficulty understanding it if all we do is look at tables of
regression coefficients.

• We consider multilevel modeling as generally applicable to structured data,
not limited to clustered data, panel data, or nested designs. For example, in
a random-digit-dialed survey of the United States, one can, and should, use
multilevel models if one is interested in estimating differences among states or
demographic subgroups—even if no multilevel structure is in the survey design.

Ultimately, you have to learn these methods by doing it yourself, and this chapter
is intended to make things easier by recounting stories about how we learned this
by doing it ourselves. But we warn you ahead of time that we include more of our
successes than our failures.

Costs and benefits of our approach

Doing statistics as described in this book is not easy. The difficulties are not math-
ematical but rather conceptual and computational. For classical regressions and
generalized linear models, the actual fitting is easy (as illustrated in Part 1), but
programming effort is still required to graph the results relevantly and to simulate
predictions and replicated data. When we move to multilevel modeling, the fitting
itself gets much more complicated (see Part 2B), and displaying and checking the
models require correspondingly more work. Our emphasis on R and Bugs means
that an initial effort is required simply to learn and use the software. Also, compared
to usual treatments of multilevel models, we describe a wider variety of modeling
options for the researcher so that more decisions will need to be made.

A simpler alternative is to use classical regression and generalized linear modeling
where possible—this can be done in R or, essentially equivalently, in Stata, SAS,
SPSS, and various other software—and then, when multilevel modeling is really
needed, to use functions that adapt classical regression to handle simple multilevel
models. Such functions, which can be run with only a little more effort than simple
regression fitting, exist in many standard statistical packages.

Compared to these easier-to-use programs, our approach has several advantages:

• We can fit a greater variety of models. The modular structure of Bugs allows us
to add complexity where needed to fit data and study patterns of interest.

• By working with simulations (rather than simply point estimates of parameters),
we can directly capture inferential uncertainty and propagate it into predictions
(as discussed in Chapter 7 and applied throughout the book). We can directly
obtain inference for quantities other than regression coefficients and variance
parameters.

• R gives us flexibility to display inferences and data flexibly.

We recognize, however, that other software and approaches may be useful too,
either as starting points or to check results. Section C.4 describes briefly how to fit
multilevel models in several other popular statistical software packages.

1.5 Computing

We perform computer analyses using the freely available software R and Bugs.
Appendix C gives instructions on obtaining and using these programs. Here we
outline how these programs fit into our overall strategy for data analysis.



10 WHY?

Our general approach to statistical computing

In any statistical analysis, we like to be able to directly manipulate the data, model,
and inferences. We just about never know the right thing to do ahead of time, so
we have to spend much of our effort examining and cleaning the data, fitting many
different models, summarizing the inferences from the models in different ways, and
then going back and figuring how to expand the model to allow new data to be
included in the analysis.

It is important, then, to be able to select subsets of the data, to graph whatever
aspect of the data might be of interest, and to be able to compute numerical sum-
maries and fit simple models easily. All this can be done within R—you will have
to put some initial effort into learning the language, but it will pay off later.

You will almost always need to try many different models for any problem: not
just different subsets of predictor variables as in linear regression, and not just minor
changes such as fitting a logit or probit model, but entirely different formulations of
the model—different ways of relating observed inputs to outcomes. This is especially
true when using new and unfamiliar tools such as multilevel models. In Bugs, we
can easily alter the internal structure of the models we are fitting, in a way that
cannot easily be done with other statistical software.

Finally, our analyses are almost never simply summarized by a set of parameter
estimates and standard errors. As we illustrate throughout, we need to look carefully
at our inferences to see if they make sense and to understand the operation of
the model, and we usually need to postprocess the parameter estimates to get
predictions or generalizations to new settings. These inference manipulations are
similar to data manipulations, and we do them in R to have maximum flexibility.

Model fitting in Part 1

Part 1 of this book uses the R software for three general tasks: (1) fitting classical
linear and generalized linear models, (2) graphing data and estimated models, and
(3) using simulation to propagate uncertainty in inferences and predictions (see
Sections 7.1–7.2 for more on this).

Model fitting in Parts 2 and 3

When we move to multilevel modeling, we begin by fitting directly in R; however, for
more complicated models we move to Bugs, which has a general language for writing
statistical models. We call Bugs from R and continue to use R for preprocessing of
data, graphical display of data and inferences, and simulation-based prediction and
model checking.

R and S

Our favorite all-around statistics software is R, which is a free open-source version
of S, a program developed in the 1970s and 1980s at Bell Laboratories. S is also
available commercially as S-Plus. We shall refer to R throughout, but other versions
of S generally do the same things.

R is excellent for graphics, classical statistical modeling (most relevant here are
the lm() and glm() functions for linear and generalized linear models), and various
nonparametric methods. As we discuss in Part 2, the lmer() function provides
quick fits in R for many multilevel models. Other packages such as MCMCpack exist
to fit specific classes of models in R, and other such programs are in development.
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Beyond the specific models that can be fit by these packages, R is fully pro-
grammable and can thus fit any model, if enough programming is done. It is pos-
sible to link R to Fortran or C to write faster programs. R also can choke on large
datasets (which is one reason we automatically “thin” large Bugs outputs before
reading into R; see Section 16.9).

Bugs

Bugs (an acronym for Bayesian Inference using Gibbs Sampling) is a program de-
veloped by statisticians at the Medical Research Council in Cambridge, England.
As of this writing, the most powerful versions available are WinBugs 1.4 and Open-
Bugs. In this book, when we say “Bugs,” we are referring to WinBugs 1.4; however,
the code should also work (perhaps with some modification) under OpenBugs or
future implementations.

The Bugs modeling language has a modular form that allows the user to put
together all sorts of Bayesian models, including most of the multilevel models cur-
rently fit in social science applications. The two volumes of online examples in Bugs
give some indication of the possibilities—in fact, it is common practice to write a
Bugs script by starting with an example with similar features and then altering it
step by step to fit the particular problem at hand.

The key advantage of Bugs is its generality in setting up models; its main disad-
vantage is that it is slow and can get stuck with large datasets. These problems can
be somewhat reduced in practice by randomly sampling from the full data to create
a smaller dataset for preliminary modeling and debugging, saving the full data until
you are clear on what model you want to fit. (This is simply a computational trick
and should not be confused with cross-validation, a statistical method in which a
procedure is applied to a subset of the data and then checked using the rest of
the data.) Bugs does not always use the most efficient simulation algorithms, and
currently its most powerful version runs only in Windows, which in practice reduces
the ability to implement long computations in time-share with other processes.

When fitting complicated models, we set up the data in R, fit models in Bugs,
then go back to R for further statistical analysis using the fitted models.

Some models cannot be fit in Bugs. For these we illustrate in Section 15.3 a
new R package under development called Umacs (universal Markov chain sampler).
Umacs is less automatic than Bugs and requires more knowledge of the algebra of
Bayesian inference.

Other software

Some statistical software has been designed specifically for fitting multilevel mod-
els, notably MLWin and HLM. It is also possible to fit some multilevel models in
R, Stata, SAS, and other general-purpose statistical software, but without the flex-
ibility of modeling in Bugs. The models allowed by these programs are less general
than available in Bugs; however, they are generally faster and can handle larger
datasets. We discuss these packages further in Section C.4.

Data and code for examples

Data and computer code for the examples and exercises in the book can be down-
loaded at the website www.stat.columbia.edu/∼gelman/arm/, which also includes
other supporting materials for this book.





CHAPTER 2

Concepts and methods from basic
probability and statistics

Simple methods from introductory statistics have three important roles in regres-
sion and multilevel modeling. First, simple probability distributions are the build-
ing blocks for elaborate models. Second, multilevel models are generalizations of
classical complete-pooling and no-pooling estimates, and so it is important to un-
derstand where these classical estimates come from. Third, it is often useful in
practice to construct quick confidence intervals and hypothesis tests for small parts
of a problem—before fitting an elaborate model, or in understanding the output
from such a model.

This chapter provides a quick review of some of these methods.

2.1 Probability distributions

A probability distribution corresponds to an urn with a potentially infinite number
of balls inside. When a ball is drawn at random, the “random variable” is what is
written on this ball.

Areas of application of probability distributions include:

• Distributions of data (for example, heights of men, heights of women, heights of
adults), for which we use the notation yi, i = 1, . . . , n.

• Distributions of parameter values, for which we use the notation θj , j = 1, . . . , J ,
or other Greek letters such as α, β, γ. We shall see many of these with the mul-
tilevel models in Part 2 of the book. For now, consider a regression model (for
example, predicting students’ grades from pre-test scores) fit separately in each
of several schools. The coefficients of the separate regressions can be modeled as
following a distribution, which can be estimated from data.

• Distributions of error terms, which we write as εi, i = 1, . . . , n—or, for group-
level errors, ηj , j = 1, . . . , J .

A “distribution” is how we describe a set of objects that are not identified, or when
the identification gives no information. For example, the heights of a set of unnamed
persons have a distribution, as contrasted with the heights of a particular set of
your friends.

The basic way that distributions are used in statistical modeling is to start by
fitting a distribution to data y, then get predictors X and model y given X with
errors ε. Further information in X can change the distribution of the ε’s (typically,
by reducing their variance). Distributions are often thought of as data summaries,
but in the regression context they are more commonly applied to ε’s.

Normal distribution; means and variances

The Central Limit Theorem of probability states that the sum of many small inde-
pendent random variables will be a random variable with an approximate normal

13
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Figure 2.1 (a) Heights of women (which approximately follow a normal distribution, as
predicted from the Central Limit Theorem), and (b) heights of all adults in the United
States (which have the form of a mixture of two normal distributions, one for each sex).

distribution. If we write this summation of independent components as z =
∑n

i=1 zi,
then the mean and variance of z are the sums of the means and variances of the

zi’s: μz =
∑n

i=1 μzi
and σz =

√∑n
i=1 σ2

zi
. We write this as z ∼ N(μz , σ

2
z).

The Central Limit Theorem holds in practice—that is,
∑n

i=1 zi actually follows
an approximate normal distribution—if the individual σ2

zi
’s are small compared to

the total variance σ2
z .

For example, the heights of women in the United States follow an approximate
normal distribution. The Central Limit Theorem applies here because height is
affected by many small additive factors. In contrast, the distribution of heights
of all adults in the United States is not so close to normality. The Central Limit
Theorem does not apply here because there is a single large factor—sex—that
represents much of the total variation. See Figure 2.1.

Linear transformations. Linearly transformed normal distributions are still nor-
mal. For example, if y are men’s heights in inches (with mean 69.1 and standard
deviation 2.9), then 2.54y are their heights in centimeters (with mean 2.54 · 69 = 175
and standard deviation 2.54 · 2.9 = 7.4).

For an example of a slightly more complicated calculation, suppose we take inde-
pendent samples of 100 men and 100 women and compute the difference between
the average heights of the men and the average heights of the women. This dif-
ference will be normally distributed with mean 69.1 − 63.7 = 5.4 and standard
deviation

√
2.92/100 + 2.72/100 = 0.4 (see Exercise 2.4).

Means and variances of sums of correlated random variables. If x and y are ran-
dom variables with means μx, μy, standard deviations σx, σy, and correlation ρ,

then x + y has mean μx + μy and standard deviation
√

σ2
x + σ2

y + 2ρσxσy . More

generally, the weighted sum ax+by has mean aμx +bμy, and its standard deviation

is
√

a2σ2
x + b2σ2

y + 2abρσxσy . From this we can derive, for example, that x−y has

mean μx − μy and standard deviation
√

σ2
x + σ2

y − 2ρσxσy .

Estimated regression coefficients. Estimated regression coefficients are themselves
linear combinations of data (formally, the estimate (XtX)−1Xty is a linear com-
bination of the data values y), and so the Central Limit Theorem again applies,
in this case implying that, for large samples, estimated regression coefficients are
approximately normally distributed. Similar arguments apply to estimates from lo-
gistic regression and other generalized linear models, and for maximum likelihood
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Figure 2.2 Weights of men (which approximately follow a lognormal distribution, as pre-
dicted from the Central Limit Theorem from combining several small multiplicative fac-
tors), plotted on the logarithmic and original scales.

estimation in general (see Section 18.1), for well-behaved models with large sample
sizes.

Multivariate normal distribution

More generally, a random vector z = (z1, . . . , zK) with a K-dimensional multivari-
ate normal distribution with a vector mean μ and a covariance matrix Σ is written
as z ∼ N(μ, Σ). The diagonal elements of Σ are the variances of the K individual
random variables zk; thus, we can write zk ∼ N(μk, Σkk). The off-diagonal elements
of Σ are the covariances between different elements of z, defined so that the cor-
relation between zj and zk is Σjk/

√
ΣjjΣkk. The multivariate normal distribution

sometimes arises when modeling data, but in this book we encounter it in models
for vectors of regression coefficients.

Approximate normal distribution of regression coefficients and other parameter es-
timates. The least squares estimate of a vector of linear regression coefficients β
is β̂ = (XtX)−1Xty (see Section 3.4), which, when viewed as a function of data
y (considering the predictors X as constants), is a linear combination of the data.

Using the Central Limit Theorem, it can be shown that the distribution of β̂ will
be approximately multivariate normal if the sample size is large. We describe in
Chapter 7 how we use this distribution to summarize uncertainty in regression
inferences.

Lognormal distribution

It is often helpful to model all-positive random variables on the logarithmic scale.
For example, the logarithms of men’s weights (in pounds) have an approximate
normal distribution with mean 5.13 and standard deviation 0.17. Figure 2.2 shows
the distributions of log weights and weights among men in the United States. The
exponential of the mean and standard deviations of log weights are called the geo-
metric mean and geometric standard deviation of the weights; in this example, they
are 169 pounds and 1.18, respectively. When working with this lognormal distri-
bution, we sometimes want to compute the mean and standard deviation on the
original scale; these are exp(μ+ 1

2σ2) and exp(μ+ 1
2σ2)

√
exp(σ2) − 1, respectively.

For the men’s weights example, these come to 171 pounds and 29 pounds.
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Binomial distribution

If you take 20 shots in basketball, and each has 0.3 probability of succeeding, and
if these shots are independent of each other (that is, success in one shot does not
increase or decrease the probability of success in any other shot), then the number of
shots that succeed is said to have a binomial distribution with n = 20 and p = 0.3,
for which we use the notation y ∼ Binomial(n, p). As can be seen even in this
simple example, the binomial model is typically only an approximation with real
data, where in multiple trials, the probability p of success can vary, and for which
outcomes can be correlated. Nonetheless, the binomial model is a useful starting
point for modeling such data. And in some settings—most notably, independent
sampling with Yes/No responses—the binomial model generally is appropriate, or
very close to appropriate.

Poisson distribution

The Poisson distribution is used for count data such as the number of cases of
cancer in a county, or the number of hits to a website during a particular hour, or
the number of persons named Michael whom you know:

• If a county has a population of 100,000, and the average rate of a particular
cancer is 45.2 per million persons per year, then the number of cancers in this
county could be modeled as Poisson with expectation 4.52.

• If hits are coming at random, with an average rate of 380 per hour, then the num-
ber of hits in any particular hour could be modeled as Poisson with expectation
380.

• If you know approximately 1000 persons, and 1% of all persons in the population
are named Michael, and you are as likely to know Michaels as anyone else, then
the number of Michaels you know could be modeled as Poisson with expectation
10.

As with the binomial distribution, the Poisson model is almost always an ideal-
ization, with the first example ignoring systematic differences among counties, the
second ignoring clustering or burstiness of the hits, and the third ignoring fac-
tors such as sex and age that distinguish Michaels, on average, from the general
population.

Again, however, the Poisson distribution is a starting point—as long as its fit
to data is checked. The model can be expanded to account for “overdispersion” in
data, as we discuss in the context of Figure 2.5 on page 21.

2.2 Statistical inference

Sampling and measurement error models

Statistical inference is used to learn from incomplete or imperfect data. There are
two standard paradigms for inference:

• In the sampling model, we are interested in learning some characteristics of a
population (for example, the mean and standard deviation of the heights of all
women in the United States), which we must estimate from a sample, or subset,
of that population.

• In the measurement error model, we are interested in learning aspects of some
underlying pattern or law (for example, the parameters a and b in the model
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y = a + bx), but the data are measured with error (most simply, y = a + bx + ε,
although one can also consider models with measurement error in x).

These two paradigms are different: the sampling model makes no reference to mea-
surements, and the measurement model can apply even when complete data are
observed. In practice, however, we often combine the two approaches when creating
a statistical model.

For example, consider a regression model predicting students’ grades from pre-
test scores and other background variables. There is typically a sampling aspect to
such a study, which is performed on some set of students with the goal of general-
izing to a larger population. The model also includes measurement error, at least
implicitly, because a student’s test score is only an imperfect measure of his or her
abilities.

This book follows the usual approach of setting up regression models in the
measurement-error framework (y = a + bx + ε), with the sampling interpretation
implicit in that the errors εi, . . . , εn can be considered as a random sample from a
distribution (for example, N(0, σ2)) that represents a hypothetical “superpopula-
tion.” We consider these issues in more detail in Chapter 21; at this point, we raise
this issue only to clarify the connection between probability distributions (which
are typically modeled as draws from an urn, or distribution, as described at the
beginning of Section 2.1) and the measurement error models used in regression.

Parameters and estimation

The goal of statistical inference for the sorts of parametric models that we use is to
estimate underlying parameters and summarize our uncertainty in these estimates.
We discuss inference more formally in Chapter 18; here it is enough to say that we
typically understand a fitted model by plugging in estimates of its parameters, and
then we consider the uncertainty in the parameter estimates when assessing how
much we actually have learned from a given dataset.

Standard errors

The standard error is the standard deviation of the parameter estimate and gives
us a sense of our uncertainty about a parameter and can be used in constructing
confidence intervals, as we discuss in the next section. When estimating the mean of
an infinite population, given a simple random sample of size n, the standard error
is σ/

√
n, where σ is the standard deviation of the measurements in the population.

Standard errors for proportions

Consider a survey of size n with y Yes responses and n− y No responses. The
estimated proportion of the population who would answer Yes to this survey is
p̂ = y/n, and the standard error of this estimate is

√
p̂(1 − p̂)/n. This estimate and

standard error are usually reasonable unless y = 0 or n−y = 0, in which case the
resulting standard error estimate of zero is misleading.1

1 A reasonable quick correction when y or n−y is near zero is to use the estimate p̂ = (y+1)/(n+2)

with standard error
p

p̂(1 − p̂)/n; see Agresti and Coull (1998).
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2.3 Classical confidence intervals

Confidence intervals from the normal and t distributions

The usual 95% confidence interval for large samples based on the normal distri-
bution is an estimate ±2 standard errors. Also from the normal distribution, an
estimate ±1 standard error is a 68% interval, and an estimate ± 2/3 of a standard
error is a 50% interval. A 50% interval is particularly easy to interpret since the
true value should be as likely to be inside as outside the interval. A 95% interval
is about three times as wide as a 50% interval. The t distribution can be used to
correct for uncertainty in the estimation of the standard error.

Continuous data. For example, suppose an object is weighed five times, with mea-
surements y = 35, 34, 38, 35, 37, which have an average value of 35.8 and a standard
deviation of 1.6. In R, we can create the 50% and 95% t intervals (based on 4
degrees of freedom) as follows:

R code n <- length(y)

estimate <- mean(y)

se <- sd(y)/sqrt(n)

int.50 <- estimate + qt(c(.25,.75),n-1)*se

int.95 <- estimate + qt(c(.025,.975),n-1)*se

Proportions. Confidence intervals for proportions come directly from the standard-
error formula. For example, if 700 persons in a random sample support the death
penalty and 300 oppose it, then a 95% interval for the proportion of supporters in
the population is simply [0.7 ± 2

√
0.7 · 0.3/1000] = [0.67, 0.73] or, in R,

R code estimate <- y/n

se <- sqrt (estimate*(1-estimate)/n)

int.95 <- estimate + qnorm(c(.025,.975))*se

Discrete data. For nonbinary discrete data, we can simply use the continuous
formula for the standard error. For example, consider a hypothetical survey that
asks 1000 randomly selected adults how many dogs they own, and suppose 600 have
no dog, 300 have 1 dog, 50 have 2 dogs, 30 have 3 dogs, and 20 have 4 dogs. What
is a 95% confidence interval for the average number of dogs in the population? If
the data are not already specified in a file, we can quickly code the data vector R:

R code y <- rep (c(0,1,2,3,4), c(600,300,50,30,20))

We can then continue by computing the mean, standard deviation, and standard
error, as shown with continuous data above.

Comparisons, visual and numerical

Confidence intervals can often be compared visually, as in Figure 2.3, which displays
68% confidence intervals for the proportion of American adults supporting the death
penalty (among those with an opinion on the question), from a series of Gallup polls.
For an example of a formal comparison, consider a change in the estimated support
for the death penalty from 80%± 1.4% to 74%± 1.3%. The estimated difference is
6%, with a standard error of

√
(1.4%)2 + (1.3%)2 = 1.9%.

Linear transformations

To get confidence intervals for a linear transformed parameter, simply transform the
intervals. For example, in the example on page 18, the 95% interval for the number
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Figure 2.3 Illustration of visual comparison of confidence intervals. Graph displays the
proportion of respondents supporting the death penalty (estimates ±1 standard error—that
is, 68% confidence intervals—under the simplifying assumption that each poll was a simple
random sample of size 1000), from Gallup polls over time.

of dogs per person is [0.52, 0.62]. Suppose this (hypothetical) random sample were
taken in a city of 1 million adults. The confidence interval for the total number of
pet dogs in the city is then [520,000, 620,000].

Weighted averages

Confidence intervals for other derived quantities can be determined by appropriately
combining the separate means and variances. For example, suppose that separate
surveys conducted in France, Germany, Italy, and other countries yield estimates
of 55%± 2%, 61%± 3%, 38%± 3%, . . . , for some opinion question. The estimated
proportion for all adults in the European Union is N1

Ntot
55%+ N2

Ntot
61%+ N3

Ntot
38%+

· · · , where N1, N2, N3, . . . are the total number of adults in France, Germany, Italy,
. . . , and Ntot is the total number in the European Union. The standard error of

this weighted average is
√

( N1

Ntot
2%)2 + ( N2

Ntot
3%)2 + ( N3

Ntot
3%)2 + · · ·.

Given N, p, se—the vectors of population sizes, estimated proportions of Yes
responses, and standard errors—we can compute the weighted average and its 95%
confidence interval in R:

R codew.avg <- sum(N*p)/sum(N)

se.w.avg <- sqrt (sum ((N*se/sum(N))^2))

int.95 <- w.avg + c(-2,2)*se.w.avg

Using simulation to compute confidence intervals for ratios, logarithms, odds
ratios, logits, and other functions of estimated parameters

For quantities more complicated than linear transformations, sums, and averages,
we can compute standard errors and approximate confidence intervals using simu-
lation. Section 7.2 discusses this in detail; here we illustrate with a quick example.

Consider a survey of 1100 persons, of whom 700 support the death penalty, 300
oppose, and 100 express no opinion. An estimate of the proportion in the population
who support the death penalty, among those with an opinion, is 0.7, with a 95%
confidence interval is [0.67, 0.73] (see page 18).
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Now suppose these 1000 respondents include 500 men and 500 women, and sup-
pose that the death penalty was supported by 75% of the men in the sample and
only 65% of the women. We would like to estimate the ratio of support for the
death penalty among men to that among women. The estimate is easily seen to be
0.75/0.65 = 1.15—men support it 15% more than women—but computing the stan-
dard error is more challenging. The most direct approach, which we recommend,
uses simulation.

In R we create 10,000 simulation draws of the inference for men and for women,
compute the ratio for each draw, and then determine a 95% interval based on the
central 95% of these simulations:

R code n.men <- 500

p.hat.men <- 0.75

se.men <- sqrt (p.hat.men*(1-p.hat.men)/n.men)

n.women <- 500

p.hat.women <- 0.65

se.women <- sqrt (p.hat.women*(1-p.hat.women)/n.women)

n.sims <- 10000

p.men <- rnorm (n.sims, p.hat.men, se.men)

p.women <- rnorm (n.sims, p.hat.women, se.women)

ratio <- p.men/p.women

int.95 <- quantile (ratio, c(.025,.975))

which yields a 95% interval of [1.06, 1.25].

2.4 Classical hypothesis testing

The possible outcomes of a hypothesis test are “reject” or “not reject.” It is never
possible to “accept” a statistical hypothesis, only to find that the data are not
sufficient to reject it.

Comparisons of parameters to fixed values and each other: interpreting confidence
intervals as hypothesis tests

The hypothesis that a parameter equals zero (or any other fixed value) is directly
tested by fitting the model that includes the parameter in question and examining
its 95% interval. If the interval excludes zero (or the specified fixed value), then the
hypothesis is rejected at the 5% level.

Testing whether two parameters are equal is equivalent to testing whether their
difference equals zero. We do this by including both parameters in the model and
then examining the 95% interval for their difference. As with inference for a single
parameter, the confidence interval is commonly of more interest than the hypothesis
test. For example, if support for the death penalty has decreased by 6% ± 2.1%,
then the magnitude of this estimated difference is probably as important as that
the change is statistically significantly different from zero.

The hypothesis of whether a parameter is positive is directly assessed via its
confidence interval. If both ends of the 95% confidence interval exceed zero, then
we are at least 95% sure (under the assumptions of the model) that the parameter
is positive. Testing whether one parameter is greater than the other is equivalent
to examining the confidence interval for their difference and testing for whether it
is entirely positive.
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Figure 2.4 Number of stops by the New York City police for each month over a 15-month
period, for three different precincts (chosen to show different patterns in the data).

precinct  A

⌠獴潰猀
㔀 ㄀ 〱 㔲 〲 㔳 　

　
㔀

㄰
ㄵ

㈰

precinct  B

⌠獴潰猀
ㄵ　 ㈵　 ㌵　 㐵　

　
㔀

㄰
ㄵ

㈰
precinct  C

⌠獴潰猀
㔰 ㄵ　 ㈵　 ㌀㔰

　
㔀

㄰
ㄵ

㈰

Figure 2.5 Histograms of monthly counts of stops for the three precincts displayed in 2.4,
with fitted Poisson distributions overlain. The data are much more variable than the fitted
distributions, indicating overdispersion that is mild in precinct A and huge in precincts B
and C.

Testing for the existence of a variance component

We illustrate with the example of overdispersion in the binomial or Poisson model.
For example, the police stop-and-frisk study (see Sections 1.2, 6.2, and 15.1) includes
data from a 15-month period. We can examine the data within each precinct to see
if the month-to-month variation is greater than would be expected by chance.

Figure 2.4 shows the number of police stops by month, in each of three differ-
ent precincts. If the data in any precinct really came from a Poisson distribution,
we would expect the variance among the counts, var15t=1yt, to be approximately
equal to their mean, avg15

t=1yt. The ratio of variance/mean is thus a measure of
dispersion, with var/mean = 1 indicating that the Poisson model is appropriate,
and var/mean > 1 indicating overdispersion (and var/mean < 1 indicating under-
dispersion, but in practice this is much less common). In this example, all three
precincts are overdispersed, with variance/mean ratios well over 1.

To give a sense of what this overdispersion implies, Figure 2.5 plots histograms
of the monthly counts in each precinct, with the best-fitting Poisson distributions
superimposed. The observed counts are much more variable than the model in each
case.

Underdispersion

Count data with variance less than the mean would indicate underdispersion, but
this is rare in actual data. In the police example, underdispersion could possibly
result from a “quota” policy in which officers are encouraged to make approximately
the same number of stops each month. Figure 2.6 illustrates with hypothetical data
in which the number of stops is constrained to be close to 50 each month. In this
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Figure 2.6 (a) Time series and (b) histogram of number of stops by month for a hy-
pothetical precinct with underdispersed counts. The theoretical Poisson distribution (with
parameter set to the mean of the data) is overlain on the histogram.

particular dataset, the mean is 49 and the variance is 34, and the underdispersion
is clear in the histogram.

Multiple hypothesis testing and why we do not worry about it

A concern is sometimes expressed that if you test a large number of hypotheses, then
you’re bound to reject some. For example, with 100 different hypothesis tests, you
would expect about 5 to be statistically significant at the 5% level—even if all the
hypotheses were true. This concern is sometimes allayed by multiple comparisons
procedures, which adjust significance levels to account for the multiplicity of tests.

From our data analysis perspective, however, we are not concerned about multiple
comparisons. For one thing, we almost never expect any of our “point null hypothe-
ses” (that is, hypotheses that a parameter equals zero, or that two parameters are
equal) to be true, and so we are not particularly worried about the possibility of
rejecting them too often. If we examine 100 parameters or comparisons, we expect
about half the 50% intervals and about 5% of the 95% intervals to exclude the true
values. There is no need to correct for the multiplicity of tests if we accept that
they will be mistaken on occasion.

2.5 Problems with statistical significance

A common statistical error is to summarize comparisons by statistical significance
and to draw a sharp distinction between significant and nonsignificant results. The
approach of summarizing by statistical significance has two pitfalls, one that is
obvious and one that is less well known.

First, statistical significance does not equal practical significance. For example,
if the estimated predictive effect of height on earnings were $10 per inch with a
standard error of $2, this would be statistically but not practically significant. Con-
versely, an estimate of $10,000 per inch with a standard error of $10,000 would not
be statistically significant, but it has the possibility of being practically significant
(and also the possibility of being zero; that is what “not statistically significant”
means).

The second problem is that changes in statistical significance are not themselves
significant. By this, we are not merely making the commonplace observation that
any particular threshold is arbitrary—for example, only a small change is required
to move an estimate from a 5.1% significance level to 4.9%, thus moving it into
statistical significance. Rather, we are pointing out that even large changes in sig-
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nificance levels can correspond to small, nonsignificant changes in the underlying
variables.

For example, consider two independent studies with effect estimates and standard
errors of 25 ± 10 and 10 ± 10. The first study is statistically significant at the 1%
level, and the second is not at all significant at 1 standard error away from zero.
Thus it would be tempting to conclude that there is a large difference between the
two studies. In fact, however, the difference is not even close to being statistically
significant: the estimated difference is 15, with a standard error of

√
102 + 102 = 14.

Section 21.8 gives a practical example of the pitfalls of using statistical signifi-
cance to classify studies, along with a discussion of how these comparisons can be
better summarized using a multilevel model.

2.6 55,000 residents desperately need your help!

We illustrate the application of basic statistical methods with a story. One day
a couple of years ago, we received a fax, entitled HELP!, from a member of a
residential organization:

Last week we had an election for the Board of Directors. Many residents believe,
as I do, that the election was rigged and what was supposed to be votes being cast
by 5,553 of the 15,372 voting households is instead a fixed vote with fixed percentages
being assigned to each and every candidate making it impossible to participate in an
honest election.

The unofficial election results I have faxed along with this letter represent the tallies.
Tallies were given after 600 were counted. Then again at 1200, 2444, 3444, 4444, and
final count at 5553.

After close inspection we believe that there was nothing random about the count
and tallies each time and that specific unnatural percentages or rigged percentages
were being assigned to each and every candidate.

Are we crazy? In a community this diverse and large, can candidates running on
separate and opposite slates as well as independents receive similar vote percentage
increases tally after tally, plus or minus three or four percent? Does this appear random
to you? What do you think? HELP!

Figure 2.7 shows a subset of the data. These vote tallies were deemed suspicious
because the proportion of the votes received by each candidate barely changed
throughout the tallying. For example, Clotelia Smith’s vote share never went below
34.6% or above 36.6%. How can we HELP these people and test their hypothesis?

We start by plotting the data: for each candidate, the proportion of vote received
after 600, 1200, . . . votes; see Figure 2.8. These graphs are difficult to interpret,
however, since the data points are not in any sense independent: the vote at any time
point includes all the votes that came before. We handle this problem by subtraction
to obtain the number of votes for each candidate in the intervals between the vote
tallies: the first 600 votes, the next 600, the next 1244, then next 1000, then next
1000, and the final 1109, with the total representing all 5553 votes.

Figure 2.9 displays the results. Even after taking differences, these graphs are
fairly stable—but how does this variation compare to what would be expected if
votes were actually coming in at random? We formulate this as a hypothesis test
and carry it out in five steps:

1. The null hypothesis is that the voters are coming to the polls at random. The fax
writer believed the data contradicted the null hypothesis; this is what we want
to check.

2. The test statistic is some summary of the data used to check the hypothesis.
Because the concern was that the votes were unexpectedly stable as the count
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Clotelia Smith 208 416 867 1259 1610 2020
Earl Coppin 55 106 215 313 401 505
Clarissa Montes 133 250 505 716 902 1129
. . . . . . . . . . . . . . . . . . . . .

Figure 2.7 Subset of results from the cooperative board election, with votes for each can-
didate (names altered for anonymity) tallied after 600, 1200, 2444, 3444, 4444, and 5553
votes. These data were viewed as suspicious because the proportion of votes for each can-
didate barely changed as the vote counting went on. (There were 27 candidates in total,
and each voter was allowed to choose 6 candidates.)
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Figure 2.8 Proportion of votes received by each candidate in the cooperative board election,
after each stage of counting: 600, 1200, 2444, . . . , 5553 votes. There were 27 candidates
in total; for brevity we display just the leading 8 vote-getters here. The vote proportions
appear to be extremely stable over time; this might be misleading, however, since the vote
at any time point includes all the previous vote tallies. See Figure 2.9.

proceeded, we define a test statistic to summarize that variability. For each
candidate i, we label yi1, . . . , yi6 to be the numbers of votes received by the
candidates in each of the six recorded stages of the count. (For example, from
Figure 2.7, the values of yi1, yi2, . . . , yi6 for Earl Coppin are 55, 51, . . . , 104.) We
then compute pit = yit/nt for t = 1, . . . , 6, the proportion of the votes received
by candidate i at each stage. The test statistic for candidate i is then the sample
standard deviation of these six values pi1, . . . , pi6,

Ti = sd6
t=1pit,

a measure of the variation in his or her votes over time.

3. The theoretical distribution of the test statistic if the null hypothesis were true.
Under the null hypothesis, the six subsets of the election are simply six different
random samples of the voters, with a proportion πi who would vote for candidate
i. From the binomial distribution, the proportion pit then has a mean of πi and
a variance of πi(1−πi)/nt. On average, the variance of the six pit’s will equal the
average of the six theoretical variances, and so the variance of the pit’s—whose
square root is our test statistic—should equal, on average, the theoretical value
avg6

t=1πi(1 − πi)/nt. The probabilities πi are not known, so we follow standard
practice and insert the empirical probabilities, pi, so that the expected value of
the test statistic, for each candidate i, is

T theory
i =

√
pi(1 − pi)avg6

t=1(1/nt).

4. Comparing the test statistic to its theoretical distribution. Figure 2.10 plots the
observed and theoretical values of the test statistic for each of the 27 candidates,
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Figure 2.9 Proportion of votes received by each of the 8 leading candidates in the cooper-
ative board election, at each disjoint stage of voting: the first 600 votes, the next 600, the
next 1244, then next 1000, then next 1000, and the final 1109, with the total representing
all 5553 votes. The plots here and in Figure 2.8 have been put on a common scale which
allows easy comparison of candidates, although at the cost of making it difficult to see
details in the individual time series.
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Figure 2.10 The open circles show, for each of the 27 candidates in the cooperative board
election, the standard deviation of the proportions of the vote received by the candidate
in the first 600, next 600, next 1244, . . . , and the final 1109 votes, plotted versus the
total number of votes received by the candidate. The solid dots show the expected standard
deviation of the separate vote proportions for each candidate, based on the binomial model
that would be appropriate if voters were coming to the polls at random. The actual standard
deviations appear consistent with the theoretical model.

as a function of the total number of votes received by the candidate. The theo-
retical values follow a simple curve (which makes sense, since the total number

of votes determines the empirical probabilities pi, which determine T theory
i ), and

the actual values appear to fit the theory fairly well, with some above and some
below.

5. Summary comparisons using χ2 tests. We can also express the hypothesis tests
numerically. Under the null hypothesis, the probability of a candidate receiving
votes is independent of the time of each vote, and thus the 2 × 6 table of votes
including or excluding each candidate would be consistent with the model of
independence. (See Figure 2.10 for an example.) We can then compute for each

candidate a χ2 statistic,
∑2

j=1

∑6
t=1(observedjt − expectedjt)

2/expectedjt, and

compare to a χ2 distribution with (6−1)× (2−1) = 5 degrees of freedom.
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Unlike the usual application of χ2 testing, in this case we are looking for un-
expectedly low values of the χ2 statistic (and thus p-values close to 1), which
would indicate vote proportions that have suspiciously little variation over time.
In fact, however, the χ2 tests for the 27 candidates show no suspicious patterns:
the p-values range from 0 to 1, with about 10% below 0.1, about 10% above 0.9,
and no extreme p-values at either end.

Another approach would be to perform a χ2 test on the entire 27 × 6 table of
votes over time (that is, the table whose first row is the top row of the left table
on Figure 2.7, then continues with the data from Earl Coppin, Clarissa Montes,
and so forth). This test is somewhat suspect since it ignores that the votes
come in batches (each voter can choose up to 6 candidates) but is a convenient
summary test. The value of the χ2 statistic is 115, which, when compared to a
χ2 distribution with (27 − 1) × (6 − 1) = 130 degrees of freedom, has a p-value
of 0.83—indicating slightly less variation than expected, but not statistically
significant. That is, if the null hypothesis were true, we would not be particularly
surprised to see a χ2 statistic of 115.

We thus conclude that the intermediate vote tallies are consistent with random
voting. As we explained to the writer of the fax, opinion polls of 1000 people are
typically accurate to within 2%, and so, if voters really are arriving at random, it
makes sense that batches of 1000 votes are highly stable. This does not rule out the
possibility of fraud, but it shows that this aspect of the voting is consistent with
the null hypothesis.

2.7 Bibliographic note

De Veaux, Velleman, and Bock (2006) is a good introductory statistics textbook,
and Ramsey and Schafer (2001) and Snedecor and Cochran (1989) are also good
sources for classical statistical methods. A quick summary of probability distribu-
tions appears in appendix A of Gelman et al. (2003).

Agresti and Coull (1998) consider the effectiveness of various quick methods of in-
ference for binomial proportions. Gilovich, Vallone, and Tversky (1985) discuss the
applicability of the binomial model to basketball shooting, along with psychological
difficulties in interpreting binomial data.

See Browner and Newman (1987), Krantz (1999), and Gelman and Stern (2006)
for further discussion and references on the problems with statistical significance.

The data on heights and weights of Americans come from Brainard and Burmas-
ter (1992). The voting example in Section 2.6 comes from Gelman (2004c).

2.8 Exercises

The data for the assignments in this and other chapters are at
www.stat.columbia.edu/∼gelman/arm/examples/. See Appendix C for further
details.

1. A test is graded from 0 to 50, with an average score of 35 and a standard deviation
of 10. For comparison to other tests, it would be convenient to rescale to a mean
of 100 and standard deviation of 15.

(a) How can the scores be linearly transformed to have this new mean and stan-
dard deviation?

(b) There is another linear transformation that also rescales the scores to have
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mean 100 and standard deviation 15. What is it, and why would you not want
to use it for this purpose?

2. The following are the proportions of girl births in Vienna for each month in 1908
and 1909 (out of an average of 3900 births per month):

.4777 .4875 .4859 .4754 .4874 .4864 .4813 .4787 .4895 .4797 .4876 .4859

.4857 .4907 .5010 .4903 .4860 .4911 .4871 .4725 .4822 .4870 .4823 .4973

The data are in the folder girls. von Mises (1957) used these proportions to
claim that the sex ratios were less variable than would be expected by chance.

(a) Compute the standard deviation of these proportions and compare to the
standard deviation that would be expected if the sexes of babies were inde-
pendently decided with a constant probability over the 24-month period.

(b) The actual and theoretical standard deviations from (a) differ, of course. Is
this difference statistically significant? (Hint: under the randomness model,
the actual variance should have a distribution with expected value equal to
the theoretical variance, and proportional to a χ2 with 23 degrees of freedom.)

3. Demonstration of the Central Limit Theorem: let x = x1 + · · · + x20, the sum
of 20 independent Uniform(0,1) random variables. In R, create 1000 simulations
of x and plot their histogram. On the histogram, overlay a graph of the normal
density function. Comment on any differences between the histogram and the
curve.

4. Distribution of averages and differences: the heights of men in the United States
are approximately normally distributed with mean 69.1 inches and standard de-
viation 2.9 inches. The heights of women are approximately normally distributed
with mean 63.7 inches and standard deviation 2.7 inches. Let x be the average
height of 100 randomly sampled men, and y be the average height of 100 ran-
domly sampled women. In R, create 1000 simulations of x − y and plot their
histogram. Using the simulations, compute the mean and standard deviation of
the distribution of x − y and compare to their exact values.

5. Correlated random variables: suppose that the heights of husbands and wives
have a correlation of 0.3. Let x and y be the heights of a married couple chosen
at random. What are the mean and standard deviation of the average height,
(x + y)/2?





Part 1A: Single-level regression

We start with an overview of classical linear regression and generalized linear mod-
els, focusing on practical issues of fitting, understanding, and graphical display. We
also use this as an opportunity to introduce the statistical package R.





CHAPTER 3

Linear regression: the basics

Linear regression is a method that summarizes how the average values of a numerical
outcome variable vary over subpopulations defined by linear functions of predictors.
Introductory statistics and regression texts often focus on how regression can be
used to represent relationships between variables, rather than as a comparison of
average outcomes. By focusing on regression as a comparison of averages, we are
being explicit about its limitations for defining these relationships causally, an issue
to which we return in Chapter 9. Regression can be used to predict an outcome
given a linear function of these predictors, and regression coefficients can be thought
of as comparisons across predicted values or as comparisons among averages in the
data.

3.1 One predictor

We begin by understanding the coefficients without worrying about issues of esti-
mation and uncertainty. We shall fit a series of regressions predicting cognitive test
scores of three- and four-year-old children given characteristics of their mothers, us-
ing data from a survey of adult American women and their children (a subsample
from the National Longitudinal Survey of Youth).

For a binary predictor, the regression coefficient is the difference between the
averages of the two groups

We start by modeling the children’s test scores given an indicator for whether the
mother graduated from high school (coded as 1) or not (coded as 0). The fitted
model is

kid.score = 78 + 12 · mom.hs + error, (3.1)

but for now we focus on the deterministic part,̂kid.score = 78 + 12 · mom.hs, (3.2)

where ̂kid.score denotes either predicted or expected test score given the mom.hs

predictor.
This model summarizes the difference in average test scores between the chil-

dren of mothers who completed high school and those with mothers who did not.
Figure 3.1 displays how the regression line runs through the mean of each subpop-
ulation.

The intercept, 78, is the average (or predicted) score for children whose mothers
did not complete high school. To see this algebraically, consider that to obtain
predicted scores for these children we would just plug 0 into this equation. To
obtain average test scores for children (or the predicted score for a single child)
whose mothers were high school graduates, we would just plug 1 into this equation
to obtain 78 + 12 · 1 = 91.

The difference between these two subpopulation means is equal to the coefficient

31
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Figure 3.1 Child’s test score plotted versus an indicator for whether mother completed
high school. Superimposed is the regression line, which runs through the average of each
subpopulation defined by maternal education level. The indicator variable for high school
completion has been jittered; that is, a random number has been added to each value so
that the points do not lie on top of each other.

on mom.hs. This coefficient tells us that children of mothers who have completed
high school score 12 points higher on average than children of mothers who have
not completed high school.

Regression with a continuous predictor

If we regress instead on a continuous predictor, mother’s score on an IQ test, the
fitted model is

kid.score = 26 + 0.6 · mom.iq + error, (3.3)

and is shown in Figure 3.2. We can think of the points on the line either as predicted
test scores for children at each of several maternal IQ levels, or average test scores
for subpopulations defined by these scores.

If we compare average child test scores for subpopulations that differ in maternal
IQ by 1 point, we expect to see that the group with higher maternal IQ achieves 0.6
points more on average. Perhaps a more interesting comparison would be between
groups of children whose mothers’ IQ differed by 10 points—these children would
be expected to have scores that differed by 6 points on average.

To understand the constant term in the regression we must consider a case with
zero values of all the other predictors. In this example, the intercept of 26 reflects
the predicted test scores for children whose mothers have IQ scores of zero. This is
not the most helpful quantity—we don’t observe any women with zero IQ. We will
discuss a simple transformation in the next section that gives the intercept a more
useful interpretation.

3.2 Multiple predictors

Regression coefficients are more complicated to interpret with multiple predictors
because the interpretation for any given coefficient is, in part, contingent on the
other variables in the model. Typical advice is to interpret each coefficient “with
all the other predictors held constant.” We illustrate with an example, followed by
an elaboration in which the simple interpretation of regression coefficients does not
work.

For instance, consider a linear regression predicting child test scores from mater-
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Figure 3.2 Child’s test score plotted versus maternal IQ with regression line superimposed.
Each point on the line can be conceived of either as a predicted child test score for children
with mothers who have the corresponding IQ, or as the average score for a subpopulation
of children with mothers with that IQ.

䵯瑨敲⁉儠獣潲攀

䍨
楬
搠
瑥
獴
⁳
捯
牥

㠰 ㄰　 ㄲ　 ㄴ　

㈰
㘰

㄰
　

ㄴ
　

Figure 3.3 Child’s test score plotted versus maternal IQ. Light dots represent children
whose mothers graduated from high school and dark dots represent children whose mothers
did not graduate from high school. Superimposed are the regression lines from the regression
of child’s test score on maternal IQ and maternal high school indicator (the darker line for
children whose mothers did not complete high school, the lighter line for children whose
mothers did complete high school).

nal education and maternal IQ. The fitted model is

kid.score = 26 + 6 · mom.hs + 0.6 · mom.iq + error, (3.4)

and is displayed in Figure 3.3. This model forces the slope of the regression of
child’s test score on mother’s IQ score to be the same for each maternal education
subgroup. The next section considers models in which the slopes of the two lines
differ. First, however, we interpret the coefficients in model (3.4):

1. The intercept. If a child had a mother with an IQ of 0 and who did not complete
high school (thus, mom.hs = 0), then we would predict this child’s test score to
be 26. This is not a useful prediction, since no mothers have IQs of 0.

2. The coefficient of maternal high school completion. Comparing children whose
mothers have the same IQ, but who differed in whether they completed high
school, the model predicts an expected difference of 6 in their test scores.

3. The coefficient of maternal IQ. Comparing children with the same value of
mom.hs, but whose mothers differ by 1 point in IQ, we would expect to see
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a difference of 0.6 points in the child’s test score (equivalently, a difference of 10
in mothers’ IQs corresponds to a difference of 6 points for their children).

It’s not always possible to change one predictor while holding all others constant

We interpret the regression slopes as comparisons of individuals that differ in one
predictor while being at the same levels of the other predictors. In some settings,
one can also imagine manipulating the predictors to change some or hold others
constant—but such an interpretation is not necessary. This becomes clearer when
we consider situations in which it is logically impossible to change the value of
one predictor while keeping the value of another constant. For example, if a model
includes both IQ and IQ2 as predictors, it does not make sense to consider changes in
IQ with IQ2 held constant. Or, as we discuss in the next section, if a model includes
mom.hs, mom.IQ, and their interaction, mom.hs * mom.IQ, it is not meaningful to
consider any of these three with the other two held constant.

Counterfactual and predictive interpretations

In the more general context of multiple linear regression, it pays to be more ex-
plicit about how we interpret coefficients in general. We distinguish between two
interpretations of regression coefficients.

• The predictive interpretation considers how the outcome variable differs, on aver-
age, when comparing two groups of units that differ by 1 in the relevant predictor
while being identical in all the other predictors. Under the linear model, the co-
efficient is the expected difference in y between these two units. This is the sort
of interpretation we have described thus far.

• The counterfactual interpretation is expressed in terms of changes within indi-
viduals, rather than comparisons between individuals. Here, the coefficient is the
expected change in y caused by adding 1 to the relevant predictor, while leaving
all the other predictors in the model unchanged. For example, “changing mater-
nal IQ from 100 to 101 would lead to an expected increase of 0.6 in child’s test
score.” This sort of interpretation arises in causal inference.

Most introductory statistics and regression texts warn against the latter interpre-
tation but then allow for similar interpretations such as “a change of 10 in maternal
IQ is associated with a change of 6 points in child’s score.” Thus, the counterfac-
tual interpretation is probably more familiar to you—and is sometimes easier to
understand. However, as we discuss in detail in Chapter 9, the counterfactual in-
terpretation can be inappropriate without making some strong assumptions.

3.3 Interactions

In model (3.4), the slope of the regression of child’s test score on mother’s IQ was
forced to be equal across subgroups defined by mother’s high school completion,
but inspection of the data in Figure 3.3 suggests that the slopes differ substantially.
A remedy for this is to include an interaction between mom.hs and mom.iq—that is,
a new predictor which is defined as the product of these two variables. This allows
the slope to vary across subgroups. The fitted model is

kid.score = −11 + 51 · mom.hs + 1.1 · mom.iq − 0.5 · mom.hs · mom.iq + error

and is displayed in Figure 3.4a, where we see the separate regression lines for each
subgroup defined by maternal education.
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Figure 3.4 (a) Regression lines of child’s test score on mother’s IQ with different symbols
for children of mothers who completed high school (light circles) and those whose mothers
did not complete high school (dark dots). The interaction allows for a different slope in
each group, with light and dark lines corresponding to the light and dark points. (b) Same
plot but with horizontal axis extended to zero to reveal the intercepts of the lines.

Figure 3.4b shows the regression line and uncertainty on a scale with the x-axis
extended to zero to display the intercepts—the points on the y-axis where the lines
cross zero. This highlights the fact that not only is the value meaningless in terms
of its interpretation, it is also so far out of the range of our data as to be highly
unreliable as a subpopulation estimate.

Care must be taken in interpreting the coefficients in this model. We derive mean-
ing from the coefficients (or, sometimes, functions of the coefficients) by examining
average or predicted test scores within and across specific subgroups. Some coeffi-
cients are interpretable only for certain subgroups.

1. The intercept represents the predicted test scores for children whose mothers did
not complete high school and had IQs of 0—not a meaningful scenario. (As we
discuss in Sections 4.1–4.2, intercepts can be more interpretable if input variables
are centered before including them as regression predictors.)

2. The coefficient of mom.hs can be conceived as the difference between the pre-
dicted test scores for children whose mothers did not complete high school and
had IQs of 0, and children whose mothers did complete high school and had IQs
of 0. You can see this by just plugging in the appropriate numbers and comparing
the equations. Since it is implausible to imagine mothers with IQs of zero, this
coefficient is not easily interpretable.

3. The coefficient of mom.iq can be thought of as the comparison of mean test
scores across children whose mothers did not complete high school, but whose
mothers differ by 1 point in IQ. This is the slope of the dark line in Figure 3.4.

4. The coefficient on the interaction term represents the difference in the slope for
mom.iq, comparing children with mothers who did and did not complete high
school: that is, the difference between the slopes of the light and dark lines in
Figure 3.4.

An equivalent way to understand the model is to look at the separate regression
lines for children of mothers who completed high school and those whose mothers
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Figure 3.5 Illustration of interactions between smoking and home radon level on the life-
time probability of lung cancer in men. The effects of radon are much more severe for
smokers. The lines are estimated based on case-control studies; see Lin et al. (1999) for
references.

did not:

no hs: kid.score = −11 + 51 · 0 + 1.1 · mom.iq − 0.5 · 0 · mom.iq

= −11 + 1.1 · mom.iq

hs: kid.score = −11 + 51 · 1 + 1.1 · mom.iq − 0.5 · 1 · mom.iq

= 40 + 0.6 · mom.iq.

The estimated slopes of 1.1 for children whose mothers did not complete high school
and 0.6 for children of mothers who did are directly interpretable. The intercepts
still suffer from the problem of only being interpretable at mothers’ IQs of 0.

When should we look for interactions?

Interactions can be important. In practice, inputs that have large main effects
also tend to have large interactions with other inputs (however, small main effects
do not preclude the possibility of large interactions). For example, smoking has a
huge effect on cancer. In epidemiologial studies of other carcinogens, it is crucial to
adjust for smoking both as a main effect and as an interaction. Figure 3.5 illustrates
with the example of home radon exposure: high levels of radon are associated with
greater likelihood of cancer—but this difference is much greater for smokers than
for nonsmokers.

Including interactions is a way to allow a model to be fit differently to different
subsets of data. These two approaches are related, as we discuss later in the context
of multilevel models.

Interpreting regression coefficients in the presence of interactions

Models with interactions can often be more easily interpreted if we first pre-process
the data by centering each input variable about its mean or some other convenient
reference point. We discuss this in Section 4.2 in the context of linear transforma-
tions.
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3.4 Statistical inference

When illustrating specific examples, it helps to use descriptive variable names. In
order to discuss more general theory and data manipulations, however, we shall
adopt generic mathematical notation. This section introduces this notation and
discusses the stochastic aspect of the model as well.

Units, outcome, predictors, and inputs

We refer to the individual data points as units—thus, the answer to the question,
“What is the unit of analysis?” will be something like “persons” or “schools” or
“congressional elections,” not something like “pounds” or “miles.” Multilevel mod-
els feature more than one set of units (for example, both persons and schools), as
we discuss later on.

We refer to the X-variables in the regression as predictors or “predictor vari-
ables,” and y as the outcome or “outcome variable.” We do not use the terms
“dependent” and “independent” variables, because we reserve those terms for their
use in describing properties of probability distributions.

Finally, we use the term inputs for the information on the units that goes into
the X-variables. Inputs are not the same as predictors. For example, consider the
model that includes the interaction of maternal education and maternal IQ:

kid.score = 58 + 16 · mom.hs + 0.5 · mom.iq − 0.2 · mom.hs · mom.iq + error.

This regression has four predictors—maternal high school, maternal IQ, maternal
high school × IQ, and the constant term—but only two inputs, maternal education
and IQ.

Regression in vector-matrix notation

We follow the usual notation and label the outcome for the ith individual as yi and
the deterministic prediction as Xiβ = β1Xi1 + · · ·+ βkXik, indexing the persons in
the data as i = 1, . . . , n = 1378. In our most recent example, yi is the ith child’s test
score, and there are k = 4 predictors in the vector Xi (the ith row of the matrix X):
Xi1, a constant term that is defined to equal 1 for all persons; Xi2, the mother’s
high school completion status (coded as 0 or 1); Xi3, the mother’s test score; and
Xi4, the interaction between mother’s test score and high school completion status.
The vector β of coefficients has length k = 4 as well. The errors from the model
are labeled as εi and assumed to follow a normal distribution with mean 0 and
standard deviation σ, which we write as N(0, σ2). The parameter σ represents the
variability with which the outcomes deviate from their predictions based on the
model. We use the notation ỹ for unobserved data to be predicted from the model,
given predictors X̃; see Figure 3.6.

Two ways of writing the model

The classical linear regression model can then be written mathematically as

yi = Xiβ + εi

= β1Xi1 + · · · + βkXik + εi, for i = 1, . . . , n,

where the errors εi have independent normal distributions with mean 0 and standard
deviation σ.
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Figure 3.6 Notation for regression modeling. The model is fit to the observed outcomes
y given predictors X. As described in the text, the model can then be applied to predict
unobserved outcomes ỹ (indicated by small question marks), given predictors on new data
X̃.

An equivalent representation is

yi ∼ N(Xiβ, σ2), for i = 1, . . . , n,

where X is an n by k matrix with ith row Xi, or, using multivariate notation,

y ∼ N(Xβ, σ2I),

where y is a vector of length n, X is a n × k matrix of predictors, β is a column
vector of length k, and I is the n× n identity matrix. Fitting the model (in any of

its forms) using least squares yields estimates β̂ and σ̂.

Fitting and summarizing regressions in R

We can fit regressions using the lm() function in R. We illustrate with the model
including mother’s high school completion and IQ as predictors, for simplicity not
adding the interaction for now. We shall label this model as fit.3 as it is the third
model fit in this chapter:

R code fit.3 <- lm (kid.score ~ mom.hs + mom.iq)

display (fit.3)

(The spaces in the R code are not necessary, but we include them to make the code
more readable.) The result is

R output lm(formula = kid.score ~ mom.hs + mom.iq)

coef.est coef.se

(Intercept) 25.7 5.9

mom.hs 5.9 2.2
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mom.iq 0.6 0.1

n = 434, k = 3

residual sd = 18.1, R-Squared = 0.21

The display() function was written by us (see Section C.2 for details) to give a
clean printout focusing on the most pertinent pieces of information: the coefficients
and their standard errors, the sample size, number of predictors, residual standard
deviation, and R2.

In contrast, the default R option,

R codeprint (fit.3)

displays too little information, giving only the coefficient estimates with no standard
errors and no information on the residual standard deviations:

R codeCall:

lm(formula = kid.score ~ mom.hs + mom.iq)

Coefficients:

(Intercept) mom.hs mom.iq

25.73154 5.95012 0.56391

Another option in R is the summary() function:

R codesummary (fit.3)

but this produces a mass of barely digestible information displayed to many decimal
places:

R outputCall:

lm(formula = formula("kid.score ~ mom.hs + mom.iq"))

Residuals:

Min 1Q Median 3Q Max

-52.873 -12.663 2.404 11.356 49.545

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 25.73154 5.87521 4.380 1.49e-05 ***

mom.hs 5.95012 2.21181 2.690 0.00742 **

mom.iq 0.56391 0.06057 9.309 < 2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 18.14 on 431 degrees of freedom

Multiple R-Squared: 0.2141, Adjusted R-squared: 0.2105

F-statistic: 58.72 on 2 and 431 DF, p-value: < 2.2e-16

We prefer our display() function, which consisely presents the most relevant in-
formation from the model fit.

Least squares estimate of the vector of regression coefficients, β

For the model y = Xβ + ε, the least squares estimate is the β̂ that minimizes the
sum of squared errors,

∑n
i=1(yi − Xiβ̂)2, for the given data X, y. Intuitively, the

least squares criterion seems useful because, if we are trying to predict an outcome
using other variables, we want to do so in such a way as to minimize the error of
our prediction.
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Figure 3.7 Distribution representing uncertainty in an estimated regression coefficient. The
range of this distribution corresponds to the possible values of β that are consistent with
the data. When using this as an uncertainty distribution, we assign an approximate 68%
chance that β will lie within 1 standard error of the point estimate, β̂, and an approximate
95% chance that β will lie within 2 standard errors. Assuming the regression model is
correct, it should happen only about 5% of the time that the estimate, β̂, falls more than 2
standard errors away from the true β.

The least squares estimate is also the maximum likelihood estimate if the errors
εi are independent with equal variance and normally distributed (see Section 18.1).
In any case, the least squares estimate can be expressed in matrix notation as
β̂ = (XtX)−1Xty. In practice, the computation is performed using various efficient
matrix decompositions without ever fully computing XtX or inverting it. For our
purposes, it is merely useful to realize that β̂ is a linear function of the outcomes y.

Standard errors: uncertainty in the coefficient estimates

The estimates β̂ come with standard errors, as displayed in the regression output.
The standard errors represent estimation uncertainty. We can roughly say that
coefficient estimates within 2 standard errors of β̂ are consistent with the data.
Figure 3.7 shows the normal distribution that approximately represents the range
of possible values of β. For example, in the model on page 38, the coefficient of
mom.hs has an estimate β̂ of 5.9 and a standard error of 2.2; thus the data are
roughly consistent with values of β in the range [5.9 ± 2 · 2.2] = [1.5, 10.3]. More
precisely, one can account for the uncertainty in the standard errors themselves by
using the t distribution with degrees of freedom set to the number of data points
minus the number of estimated coefficients, but the normal approximation works
fine when the degrees of freedom are more than 30 or so.

The uncertainty in the coefficient estimates will also be correlated (except in
the special case of studies with balanced designs). All this information is encoded
in the estimated covariance matrix Vβ σ̂2, where Vβ = (XtX)−1. The diagonal
elements of Vβ σ̂2 are the estimation variances of the individual components of β, and
the off-diagonal elements represent covariances of estimation. Thus, for example,√

Vβ 11 σ̂ is the standard error of β̂1,
√

Vβ 22 σ̂ is the standard error of β̂2, and

Vβ 12/
√

Vβ 11Vβ 22 is the correlation of the estimates β̂1, β̂2.
We do not usually look at this covariance matrix; rather, we summarize inferences

using the coefficient estimates and standard errors, and we use the covariance matrix
for predictive simulations, as described in Section 7.2.

Residuals, ri

The residuals, ri = yi − Xiβ̂, are the differences between the data and the fitted
values. As a byproduct of the least squares estimation of β, the residuals ri will be
uncorrelated with all the predictors in the model. If the model includes a constant
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Figure 3.8 Two hypothetical datasets with the same regression line, y = a+bx, but different
values of the residual standard deviation, σ. The left plot shows actual data from a survey
of adults; the right plot shows data with random noise added to y.

term, then the residuals must be uncorrelated with a constant, which means they
must have mean 0. This is a byproduct of how the model is estimated; it is not a
regression assumption. We shall discuss later in the chapter how residuals can be
used to diagnose problems with the model.

Residual standard deviation σ̂ and explained variance R2

The residual standard deviation, σ̂ =
√∑n

i=1 r2
i /(n − k), summarizes the scale

of the residuals. For example, in the test scores example, σ̂ = 18, which tells us
that the linear model can predict children’s test scores to about an accuracy of 18
points. Said another way, we can think of this standard deviation as a measure of
the average distance each observation falls from its prediction from the model.

The fit of the model can be summarized by σ̂ (the smaller the residual variance,
the better the fit) and by R2, the fraction of variance “explained” by the model.
The “unexplained” variance is σ̂2, and if we label sy as the standard deviation
of the data, then R2 = 1 − σ̂2/s2

y. In the test scores regression, R2 is a perhaps
disappointing 22%. (However, in a deeper sense, it is presumably a good thing
that this regression has a low R2—that is, that a child’s achievement cannot be
accurately predicted given only these maternal characteristics.)

The quantity n−k, the number of data points minus the number of estimated
coefficients, is called the degrees of freedom for estimating the residual errors. In
classical regression, k must be less than n—otherwise, the data could be fit perfectly,
and it would not be possible to estimate the regression errors at all.

Difficulties in interpreting residual standard deviation and explained variance

As we make clear throughout the book, we are generally more interested in the
“deterministic” part of the model, y = Xβ, than in the variation, ε. However, when
we do look at the residual standard deviation, σ̂, we are typically interested in it for
its own sake—as a measure of the unexplained variation in the data—or because of
its relevance to the precision of inferences about the regression coefficients β. (As
discussed already, standard errors for β are proportional to σ.) Figure 3.8 illustrates
two regressions with the same deterministic model, y = a + bx, but different values
of σ.

Interpreting the proportion of explained variance, R2, can be tricky because its
numerator and denominator can be changed in different ways. Figure 3.9 illustrates
with an example where the regression model is identical, but R2 decreases because
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Figure 3.9 Two hypothetical datasets with the same regression line, y = a+bx and residual
standard deviation, σ, but different values of the explained variance, R2. The left plot shows
actual data; the right plot shows data restricted to heights between 65 and 70 inches.

the model is estimated on a subset of the data. (Going from the left to right plots
in Figure 3.9, the residual standard deviation σ is unchanged but the standard
deviation of the raw data, sy, decreases when we restrict to this subset; thus, R2 =
1− σ̂2/s2

y declines.) Even though R2 is much lower in the right plot, the model fits
the data just as well as in the plot on the left.

Statistical significance

Roughly speaking, if a coefficient estimate is more than 2 standard errors away
from zero, then it is called statistically significant. When an estimate is statistically
significant, we are fairly sure that the sign (+ or −) of the estimate is stable, and
not just an artifact of small sample size.

People sometimes think that if a coefficient estimate is not significant, then it
should be excluded from the model. We disagree. It is fine to have nonsignificant
coefficients in a model, as long as they make sense. We discuss this further in Section
4.6.

Uncertainty in the residual standard deviation

Under the model, the estimated residual variance, σ̂2, has a sampling distribution
centered at the true value, σ2, and proportional to a χ2 distribution with n−k
degrees of freedom. We make use of this uncertainty in our predictive simulations,
as described in Section 7.2.

3.5 Graphical displays of data and fitted model

Displaying a regression line as a function of one input variable

We displayed some aspects of our test scores model using plots of the data in Figures
3.1–3.3.

We can make a plot such as Figure 3.2 as follows:

R code fit.2 <- lm (kid.score ~ mom.iq)

plot (mom.iq, kid.score, xlab="Mother IQ score", ylab="Child test score")

curve (coef(fit.2)[1] + coef(fit.2)[2]*x, add=TRUE)

The function plot() creates the scatterplot of observations, and curve superim-
poses the regression line using the saved coefficients from the lm() call (as extracted
using the coef() function). The expression within curve() can also be written us-
ing matrix notation in R:
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R codecurve (cbind(1,x) %*% coef(fit.2), add=TRUE)

Displaying two fitted regression lines

Model with no interaction. For the model with two inputs, we can create a graph
with two sets of points and two regression lines, as in Figure 3.3:

R codefit.3 <- lm (kid.score ~ mom.hs + mom.iq)

colors <- ifelse (mom.hs==1, "black", "gray")

plot (mom.iq, kid.score, xlab="Mother IQ score", ylab="Child test score",

col=colors, pch=20)

curve (cbind (1, 1, x) %*% coef(fit.3), add=TRUE, col="black")

curve (cbind (1, 0, x) %*% coef(fit.3), add=TRUE, col="gray")

Setting pch=20 tells the plot() function to display the data using small dots, and
the col option sets the colors of the points, which we have assigned to black or
gray according to the value of mom.hs.1 Finally, the calls to curve() superimpose
the regression lines for the two groups defined by maternal high school completion.

Model with interaction. We can set up the same sort of plot for the model with
interactions, with the only difference being that the two lines have different slopes:

R codefit.4 <- lm (kid.score ~ mom.hs + mom.iq + mom.hs:mom.iq)

colors <- ifelse (mom.hs==1, "black", "gray")

plot (mom.iq, kid.score, xlab="Mother IQ score", ylab="Child test score",

col=colors, pch=20)

curve (cbind (1, 1, x, 1*x) %*% coef(fit.4), add=TRUE, col="black")

curve (cbind (1, 0, x, 0*x) %*% coef(fit.4), add=TRUE, col="gray")

The result is shown in Figure 3.4.

Displaying uncertainty in the fitted regression

As discussed in Section 7.2, we can use the sim() function in R to create simulations
that represent our uncertainty in the estimated regression coefficients. Here we
briefly describe how to use these simulations to display this inferential uncertainty.
For simplicity we return to a model with just one predictor:

R codefit.2 <- lm (kid.score ~ mom.iq)

yielding

R outputcoef.est coef.se

(Intercept) 25.8 5.9

mom.iq 0.6 0.1

n = 434, k = 2

residual sd = 18.3, R-Squared = 0.2

The following code creates Figure 3.10, which shows the fitted regression line
along with several simulations representing uncertainty about the line:

1 An alternative sequence of commands is
plot (mom.iq, kid.score, xlab="Mother IQ score", ylab="Child test score", type="n")
points (mom.iq[mom.hs==1], kid.score[mom.hs==1], pch=20, col="black")
points (mom.iq[mom.hs==0], kid.score[mom.hs==0], pch=20, col="gray")
Here, plot(), called with the type="n" option, sets up the axes but without plotting the
points. Then each call to points() superimposes the observations for each group (defined by
maternal high school completion) separately—each using a different symbol.
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Figure 3.10 Data and regression of child’s test score on maternal IQ, with the solid line
showing the fitted regression model and light lines indicating uncertainty in the fitted re-
gression.

R code fit.2.sim <- sim (fit.2)

plot (mom.iq, kid.score, xlab="Mother IQ score", ylab="Child test score")

for (i in 1:10){

curve (fit.2.sim$beta[i,1] + fit.2.sim$beta[i,2]*x, add=TRUE,col="gray")

}

curve (coef(fit.2)[1] + coef(fit.2)[2]*x, add=TRUE, col="black")

The for (i in i:10) loop allows us to display 10 different simulations.2 Figure
3.10 also illustrates the uncertainty we have about predictions from our model.
This uncertainty increases with greater departures from the mean of the predictor
variable.

Displaying using one plot for each input variable

Now consider the regression model with the indicator for maternal high school
completion included:

R code fit.3 <- lm (kid.score ~ mom.hs + mom.iq)

We display this model in Figure 3.11 as two plots, one for each of the two input
variables with the other held at its average value:

R code beta.hat <- coef (fit.3)

beta.sim <- sim (fit.3)$beta

par (mfrow=c(1,2))

plot (mom.iq, kid.score, xlab="Mother IQ score", ylab="Child test score")

for (i in 1:10){

curve (cbind (1, mean(mom.hs), x) %*% beta.sim[i,], lwd=.5,

col="gray", add=TRUE)

}

curve (cbind (1, mean(mom.hs), x) %*% beta.hat, col="black", add=TRUE)

plot (mom.hs, kid.score, xlab="Mother completed high school",

2 Another way to code this loop in R is to use the apply() function, for example,
Oneline <- function (beta) {curve (beta[1]+beta[2]*x, add=TRUE, col="gray")}
apply (fit.2.sim$beta, 1, Oneline)
Using apply() in this way is cleaner for experienced R users; the looped form as shown in the
text is possibly easier for R novices to understand.
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Figure 3.11 Data and regression of child’s test score on maternal IQ and high school com-
pletion, shown as a function of each of the two input variables (with light lines indicating
uncertainty in the regressions). Values for high school completion have been jittered to
make the points more distinct.

ylab="Child test score")

for (i in 1:10){

curve (cbind (1, x, mean(mom.iq)) %*% beta.sim[i,], lwd=.5,

col="gray", add=TRUE)

}

curve (cbind (1, x, mean(mom.iq)) %*% beta.hat, col="black", add=TRUE)

3.6 Assumptions and diagnostics

We now turn to the assumptions of the regression model, along with diagnostics
that can be used to assess whether some of these assumptions are reasonable. Some
of the most important assumptions, however, rely on the researcher’s knowledge of
the subject area and may not be directly testable from the available data alone.

Assumptions of the regression model

We list the assumptions of the regression model in decreasing order of importance.

1. Validity. Most importantly, the data you are analyzing should map to the re-
search question you are trying to answer. This sounds obvious but is often over-
looked or ignored because it can be inconvenient. Optimally, this means that
the outcome measure should accurately reflect the phenomenon of interest, the
model should include all relevant predictors, and the model should generalize to
the cases to which it will be applied.

For example, with regard to the outcome variable, a model of earnings will not
necessarily tell you about patterns of total assets. A model of test scores will not
necessarily tell you about child intelligence or cognitive development.

Choosing inputs to a regression is often the most challenging step in the analysis.
We are generally encouraged to include all “relevant” predictors, but in practice it
can be difficult to determine which are necessary and how to interpret coefficients
with large standard errors. Chapter 9 discusses the choice of inputs for regressions
used in causal inference.

A sample that is representative of all mothers and children may not be the most
appropriate for making inferences about mothers and children who participate
in the Temporary Assistance for Needy Families program. However, a carefully
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selected subsample may reflect the distribution of this population well. Similarly,
results regarding diet and exercise obtained from a study performed on patients
at risk for heart disease may not be generally applicable to generally healthy
individuals. In this case assumptions would have to be made about how results
for the at-risk population might relate to those for the healthy population.

Data used in empirical research rarely meet all (if any) of these criteria precisely.
However, keeping these goals in mind can help you be precise about the types of
questions you can and cannot answer reliably.

2. Additivity and linearity. The most important mathematical assumption of the
regression model is that its deterministic component is a linear function of the
separate predictors: y = β1x1 + β2x2 + · · · .
If additivity is violated, it might make sense to transform the data (for example, if
y = abc, then log y = log a + log b + log c) or to add interactions. If linearity is
violated, perhaps a predictor should be put in as 1/x or log(x) instead of simply
linearly. Or a more complicated relationship could be expressed by including
both x and x2 as predictors.

For example, it is common to include both age and age2 as regression predictors.
In medical and public health examples, this allows a health measure to decline
with higher ages, with the rate of decline becoming steeper as age increases. In
political examples, including both age and age2 allows the possibility of increas-
ing slopes with age and also U-shaped patterns if, for example, the young and
old favor taxes more than the middle-aged.

In such analyses we usually prefer to include age as a categorical predictor, as
discussed in Section 4.5. Another option is to use a nonlinear function such as
a spline or other generalized additive model. In any case, the goal is to add
predictors so that the linear and additive model is a reasonable approximation.

3. Independence of errors. The simple regression model assumes that the errors
from the prediction line are independent. We will return to this issue in detail
when discussing multilevel models.

4. Equal variance of errors. If the variance of the regression errors are unequal,
estimation is more efficiently performed using weighted least squares, where each
point is weighted inversely proportional to its variance (see Section 18.4). In most
cases, however, this issue is minor. Unequal variance does not affect the most
important aspect of a regression model, which is the form of the predictor Xβ.

5. Normality of errors. The regression assumption that is generally least important
is that the errors are normally distributed. In fact, for the purpose of estimat-
ing the regression line (as compared to predicting individual data points), the
assumption of normality is barely important at all. Thus, in contrast to many
regression textbooks, we do not recommend diagnostics of the normality of re-
gression residuals.

If the distribution of residuals is of interest, perhaps because of predictive goals,
this should be distinguished from the distribution of the data, y. For example,
consider a regression on a single discrete predictor, x, which takes on the values
0, 1, and 2, with one-third of the population in each category. Suppose the
true regression line is y = 0.2 + 0.5x with normally distributed errors with
standard deviation 0.1. Then a graph of the data y will show three fairly sharp
modes centered at 0.2, 0.7, and 1.2. Other examples of such mixture distributions
arise in economics, when including both employed and unemployed people, or
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Figure 3.12 Residual plot for child test score data when regressed on maternal IQ, with
dotted lines showing ±1 standard-deviation bounds. The residuals show no striking pat-
terns.

the study of elections, when comparing districts with incumbent legislators of
different parties.

Further assumptions are necessary if a regression coefficient is to be given a causal
interpretation, as we discuss in Chapters 9 and 10.

Plotting residuals to reveal aspects of the data not captured by the model

A good way to diagnose violations of some of the assumptions just considered
(importantly, linearity) is to plot the residuals ri versus fitted values Xiβ̂ or simply
individual predictors xi; Figure 3.12 illustrates for the test scores example where
child’s test score is regressed simply on mother’s IQ. The plot looks fine; there do
not appear to be any strong patterns. In other settings, residual plots can reveal
systematic problems with model fit, as is illustrated, for example, in Chapter 6.

3.7 Prediction and validation

Sometimes the goal of our model is to make predictions using new data. In the case
of predictions of future time points, these data may eventually become available,
allowing the researcher to see how well the model works for this purpose. Sometimes
out-of-sample predictions are made for the explicit purpose of model checking, as
we illustrate next.

Prediction

From model (3.4) on page 33, we would predict that a child of a mother who
graduated from high school and with IQ of 100 would achieve a test score of 26 +
6 · 1 + 0.6 · 100 = 92. If this equation represented the true model, rather than an
estimated model, then we could use σ̂ = 18 as an estimate of the standard error for
our prediction. Actually, the estimated error standard deviation is slightly higher
than σ̂, because of uncertainty in the estimate of the regression parameters—a
complication that gives rise to those special prediction standard errors seen in most
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Figure 3.13 Plots assessing how well the model fit to older children works in making pre-
dictions for younger children. The first panel compares predictions for younger children
from a model against their actual values. The second panel compares residuals from these
predictions against the predicted values.

regression texts.3 In R we can create a data frame for the new data and then use
the predict() function. For example, the following code gives a point prediction
and 95% predictive interval:

R code x.new <- data.frame (mom.hs=1, mom.iq=100)

predict (fit.3, x.new, interval="prediction", level=0.95)

More generally, we can propagate predictive uncertainty using simulation, as ex-
plained in Section 7.2.

We use the notation ỹi for the outcome measured on a new data point and X̃i

for the vector of predictors (in this example, X̃i = (1, 1, 100)). The predicted value

from the model is X̃iβ̂, with a predictive standard error slightly higher than σ̂.
The normal distribution then implies that approximately 50% of the actual values
should be within ±0.67σ̂ of the predictions, 68% should be within ±σ̂, and 95%
within ±2σ̂.

We can similarly predict a vector of ñ new outcomes, ỹ, given a ñ × k matrix of
predictors, X̃; see Figure 3.13.

External validation

The most fundamental way to test a model, in any scientific context, is to use it to
make predictions and then compare to actual data.

Figure 3.13 illustrates with the test score data model, which was fit to data
collected from 1986 and 1994 for children who were born before 1987. We apply the
model to predict the outcomes of children born in 1987 or later (data collected from
1990 to 1998). This is not an ideal example for prediction because we would not
necessarily expect the model for the older children to be appropriate for the younger
children, even though tests for all children were taken at age 3 or 4. However, we
can use it to demonstrate the methods for computing and evaluating predictions.
We look at point predictions here and simulation-based predictions in Section 7.2.

The new data, ỹ, are the outcomes for the 336 new children predicted from

3 For example, in linear regression with one predictor, the “forecast standard error” around the
prediction from a new data point with predictor value x̃ is

σ̂forecast = σ̂

s
1 +

1

n
+

(x̃ − x̄)2Pn
i=1(xi − x̄)2

.
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mom.iq and mom.hs, using the model fit using the data from the older children.
The first panel of Figure 3.13 plots actual values ỹi versus predicted values X̃iβ̂,
and the second panel plots residuals versus predicted values with dotted lines at ±σ̂
(approximate 68% error bounds; see Section 2.3). The error plot shows no obvious
problems with applying the older-child model to the younger children, though from
the scale we detect that the predictions have wide variability.

Even if we had detected clear problems with these predictions, this would not
mean necessarily that there is anything wrong with the model as fit to the original
dataset. However, we would need to understand it further before generalizing to
other children.

3.8 Bibliographic note

Linear regression has been used for centuries in applications in the social and phys-
ical sciences; see Stigler (1986). Many introductory statistics texts have good dis-
cussions of simple linear regression, for example Moore and McCabe (1998) and De
Veaux et al. (2006). Fox (2002) teaches R in the context of applied regression. In
addition, the R website links to various useful free literature.

Carlin and Forbes (2004) provide an excellent introduction to the concepts of
linear modeling and regression, and Pardoe (2006) is an introductory text focus-
ing on business examples. For fuller treatments, Neter et al. (1996) and Weisberg
provide accessible introductions to regression, and Ramsey and Schafer (2001) is a
good complement, with a focus on issues such as model understanding, graphical
display, and experimental design. Woolridge (2001) presents regression modeling
from an econometric perspective. The R2 summary of explained variance is ana-
lyzed by Wherry (1931); see also King (1986) for examples of common mistakes in
reasoning with regression and Section 21.9 for more advanced references on R2 and
other methods for summarizing fitted models. Berk (2004) discusses the various
assumptions implicit in regression analysis.

For more on children’s test scores and maternal employment, see Hill et al. (2005).
See Appendix B and Murrell (2005) for more on how to make the sorts of graphs
shown in this chapter and throughout the book. The technique of jittering (used in
Figure 3.1 and elsewhere in this book) comes from Chambers et al. (1983).

3.9 Exercises

1. The folder pyth contains outcome y and inputs x1, x2 for 40 data points, with a
further 20 points with the inputs but no observed outcome. Save the file to your
working directory and read it into R using the read.table() function.

(a) Use R to fit a linear regression model predicting y from x1, x2, using the first
40 data points in the file. Summarize the inferences and check the fit of your
model.

(b) Display the estimated model graphically as in Figure 3.2.

(c) Make a residual plot for this model. Do the assumptions appear to be met?

(d) Make predictions for the remaining 20 data points in the file. How confident
do you feel about these predictions?

After doing this exercise, take a look at Gelman and Nolan (2002, section 9.4)
to see where these data came from.

2. Suppose that, for a certain population, we can predict log earnings from log
height as follows:
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• A person who is 66 inches tall is predicted to have earnings of $30,000.

• Every increase of 1% in height corresponds to a predicted increase of 0.8% in
earnings.

• The earnings of approximately 95% of people fall within a factor of 1.1 of
predicted values.

(a) Give the equation of the regression line and the residual standard deviation
of the regression.

(b) Suppose the standard deviation of log heights is 5% in this population. What,
then, is the R2 of the regression model described here?

3. In this exercise you will simulate two variables that are statistically independent
of each other to see what happens when we run a regression of one on the other.

(a) First generate 1000 data points from a normal distribution with mean 0 and
standard deviation 1 by typing var1 <- rnorm(1000,0,1) in R. Generate
another variable in the same way (call it var2). Run a regression of one
variable on the other. Is the slope coefficient statistically significant?

(b) Now run a simulation repeating this process 100 times. This can be done
using a loop. From each simulation, save the z-score (the estimated coefficient
of var1 divided by its standard error). If the absolute value of the z-score
exceeds 2, the estimate is statistically significant. Here is code to perform the
simulation:4

R code z.scores <- rep (NA, 100)

for (k in 1:100) {

var1 <- rnorm (1000,0,1)

var2 <- rnorm (1000,0,1)

fit <- lm (var2 ~ var1)

z.scores[k] <- coef(fit)[2]/se.coef(fit)[2]

}

How many of these 100 z-scores are statistically significant?

4. The child.iq folder contains a subset of the children and mother data discussed
earlier in the chapter. You have access to children’s test scores at age 3, mother’s
education, and the mother’s age at the time she gave birth for a sample of 400
children. The data are a Stata file which you can read into R by saving in your
working directory and then typing the following:

R code library ("foreign")

iq.data <- read.dta ("child.iq.dta")

(a) Fit a regression of child test scores on mother’s age, display the data and
fitted model, check assumptions, and interpret the slope coefficient. When do
you recommend mothers should give birth? What are you assuming in making
these recommendations?

(b) Repeat this for a regression that further includes mother’s education, inter-
preting both slope coefficients in this model. Have your conclusions about the
timing of birth changed?

4 We have initialized the vector of z-scores with missing values (NAs). Another approach is to
start with z.scores <- numeric(length=100), which would initialize with a vector of zeroes.
In general, however, we prefer to initialize with NAs, because then when there is a bug in the
code, it sometimes shows up as NAs in the final results, alerting us to the problem.
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(c) Now create an indicator variable reflecting whether the mother has completed
high school or not. Consider interactions between the high school completion
and mother’s age in family. Also, create a plot that shows the separate regres-
sion lines for each high school completion status group.

(d) Finally, fit a regression of child test scores on mother’s age and education level
for the first 200 children and use this model to predict test scores for the next
200. Graphically display comparisons of the predicted and actual scores for
the final 200 children.

5. The folder beauty contains data from Hamermesh and Parker (2005) on student
evaluations of instructors’ beauty and teaching quality for several courses at the
University of Texas. The teaching evaluations were conducted at the end of the
semester, and the beauty judgments were made later, by six students who had
not attended the classes and were not aware of the course evaluations.

(a) Run a regression using beauty (the variable btystdave) to predict course
evaluations (courseevaluation), controlling for various other inputs. Dis-
play the fitted model graphically, and explaining the meaning of each of the
coefficients, along with the residual standard deviation. Plot the residuals
versus fitted values.

(b) Fit some other models, including beauty and also other input variables. Con-
sider at least one model with interactions. For each model, state what the
predictors are, and what the inputs are (see Section 2.1), and explain the
meaning of each of its coefficients.

See also Felton, Mitchell, and Stinson (2003) for more on this topic.





CHAPTER 4

Linear regression: before and after fitting
the model

It is not always appropriate to fit a classical linear regression model using data
in their raw form. As we discuss in Sections 4.1 and 4.4, linear and logarithmic
transformations can sometimes help in the interpretation of the model. Nonlinear
transformations of the data are sometimes necessary to more closely satisfy additiv-
ity and linearity assumptions, which in turn should improve the fit and predictive
power of the model. Section 4.5 presents some other univariate transformations that
are occasionally useful. We have already discussed interactions in Section 3.3, and
in Section 4.6 we consider other techniques for combining input variables.

4.1 Linear transformations

Linear transformations do not affect the fit of a classical regression model, and they
do not affect predictions: the changes in the inputs and the coefficients cancel in
forming the predicted value Xβ.1 However, well-chosen linear transformation can
improve interpretability of coefficients and make a fitted model easier to understand.
We saw in Chapter 3 how linear transformations can help with the interpretation
of the intercept; this section provides examples involving the interpretation of the
other coefficients in the model.

Scaling of predictors and regression coefficients. The regression coefficient βj rep-
resents the average difference in y comparing units that differ by 1 unit on the jth

predictor and are otherwise identical. In some cases, though, a difference of 1 unit
on the x-scale is not the most relevant comparison. Consider, for example, a model
fit to data we downloaded from a survey of adult Americans in 1994 that predicts
their earnings (in dollars) given their height (in inches) and sex (coded as 1 for men
and 2 for women):

earnings = −61000 + 1300 · height + error, (4.1)

with a residual standard deviation of 19000. (A linear model is not really appropri-
ate for these data, as we shall discuss soon, but we’ll stick with the simple example
for introducing the concept of linear transformations.)

Figure 4.1 shows the regression line and uncertainty on a scale with the x-axis
extended to zero to display the intercept—the point on the y-axis where the line
crosses zero. The estimated intercept of −61000 has little meaning since it corre-
sponds to the predicted earnings for a person of zero height.

Now consider the following alternative forms of the model:

earnings = −61000 + 51 · height (in millimeters) + error

earnings = −61000 + 81000000 · height (in miles) + error.

How important is height? While $51 does not seem to matter very much, $81,000,000

1 In contrast, in a multilevel model, linear transformations can change the fit of a model and its
predictions, as we explain in Section 13.6.

53
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Figure 4.1 Regression of earnings on height, earnings = −61000 + 1300 · height, with solid
line showing the fitted regression model and light lines indicating uncertainty in the fitted
regression. In the plot on the right, the x-scale is extended to zero to reveal the intercept
of the regression line.

is a lot. Yet, both these equations reflect the same underlying information. To
understand these coefficients better, we need some sense of the variation in height
in the population to which we plan to apply the model. One approach is to consider
the standard deviation of heights in the data, which is 3.8 inches (or 97 millimeters,
or 0.000061 miles). The expected difference in earnings corresponding to a 3.8-inch
difference in height is $1300 ·3.8 = $51 ·97 = $81000000 ·0.000061 = $4900, which is
reasonably large but much smaller than the residual standard deviation of $19000
unexplained by the regression.

Standardization using z-scores

Another way to scale the coefficients is to standardize the predictor by subtract-
ing the mean and dividing by the standard deviation to yield a “z-score.” In this
example, height would be replaced by z.height = (height − 66.9)/3.8, and the
coefficient for z.height will be 4900. Then coefficients are interpreted in units of
standard deviations with respect to the corresponding predictor just as they were,
after the fact, in the previous example. In addition, standardizing predictors using
z-scores will change our interpretation of the intercept to the mean of y when all
predictor values are at their mean values.

We actually prefer to divide by 2 standard deviations to allow inferences to be
more consistent with those for binary inputs, as we discuss in Section 4.2.

Standardization using reasonable scales

It is often useful to keep inputs on familiar scales such as inches, dollars, or years,
but making convenient rescalings to aid in the interpretability of coefficients. For
example, we might work with income/$10000 or age/10.

For another example, in some surveys, party identification is on a 1–7 scale, from
strong Republican to strong Democrat. The rescaled variable (PID − 4)/2, equals
−1 for Republicans, 0 for moderates, and +1 for Democrats, and so the coefficient
on this variable is directly interpretable.
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4.2 Centering and standardizing, especially for models with

interactions

Figure 4.1b illustrates the difficulty of interpreting the intercept term in a regres-
sion in a setting where it does not make sense to consider predictors set to zero.
More generally, similar challenges arise in interpreting coefficients in models with
interactions, as we saw in Section 3.3 with the following model:

R outputlm(formula = kid.score ~ mom.hs + mom.iq + mom.hs:mom.iq)

coef.est coef.se

(Intercept) -11.5 13.8

mom.hs 51.3 15.3

mom.iq 1.1 0.2

mom.hs:mom.iq -0.5 0.2

n = 434, k = 4

residual sd = 18.0, R-Squared = 0.23

The coefficient on mom.hs is 51.3—does this mean that children with mothers
who graduated from high school do, on average, 51.3 points better on their tests?
No. The model includes an interaction, and 51.3 is the predicted difference for kids
that differ in mom.hs, among those with mom.iq = 0. Since mom.iq is never even
close to zero (see Figure 3.4 on page 35), the comparison at zero, and thus the
coefficient of 51.3, is essentially meaningless.

Similarly, the coefficient of 1.1 for “main effect” of mom.iq is the slope for this
variable, among those children for whom mom.hs = 0. This is less of a stretch (since
mom.hs actually does equal zero for many of the cases in the data; see Figure 3.1
on page 32) but still can be somewhat misleading since mom.hs = 0 is at the edge
of the data.

Centering by subtracting the mean of the data

We can simplify the interpretation of the regression model by first subtracting the
mean of each input variable:

R codec.mom.hs <- mom.hs - mean(mom.hs)

c.mom.iq <- mom.iq - mean(mom.iq)

The resulting regression is easier to interpret, with each main effect corresponding
to a predictive difference with the other input at its average value:

R outputlm(formula = kid.score ~ c.mom.hs + c.mom.iq + c.mom.hs:c.mom.iq)

coef.est coef.se

(Intercept) 87.6 0.9

c.mom.hs 2.8 2.4

c.mom.iq 0.6 0.1

c.mom.hs:c.mom.iq -0.5 0.2

n = 434, k = 4

residual sd = 18.0, R-Squared = 0.23

The residual standard deviation and R2 do not change—linear transformation of the
predictors does not affect the fit of a classical regression model—and the coefficient
and standard error of the interaction do not change, but the main effects and the
intercept move a lot and are now interpretable based on comparison to the mean
of the data.
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Using a conventional centering point

Another option is to center based on an understandable reference point, for example,
the midpoint of the range for mom.hs and the population average IQ:

R code c2.mom.hs <- mom.hs - 0.5

c2.mom.iq <- mom.iq - 100

In this parameterization, the coefficient of c2.mom.hs is the average predictive
difference between a child with mom.hs = 1 and mom.hs = 0, for those children with
mom.iq = 100. Similarly, the coefficient of c2.mom.iq corresponds to a comparison
for the case mom.hs = 0.5, which includes no actual data but represents a midpoint
of the range.

R output lm(formula = kid.score ~ c2.mom.hs + c2.mom.iq + c2.mom.hs:c2.mom.iq)

coef.est coef.se

(Intercept) 86.8 1.2

c2.mom.hs 2.8 2.4

c2.mom.iq 0.7 0.1

c2.mom.hs:c2.mom.iq -0.5 0.2

n = 434, k = 4

residual sd = 18.0, R-Squared = 0.23

Once again, the residual standard deviation, R2, and coefficient for the interaction
have not changed. The intercept and main effect have changed very little, because
the points 0.5 and 100 happen to be close to the mean of mom.hs and mom.iq in
the data.

Standardizing by subtracting the mean and dividing by 2 standard deviations

Centering helped us interpret the main effects in the regression, but it still leaves
us with a scaling problem. The coefficient of mom.hs is much larger than that of
mom.iq, but this is misleading, considering that we are comparing the complete
change in one variable (mother completed high school or not) to a mere 1-point
change in mother’s IQ, which is not much at all (see Figure 3.4 on page 35).

A natural step is to scale the predictors by dividing by 2 standard deviations—we
shall explain shortly why we use 2 rather than 1—so that a 1-unit change in the
rescaled predictor corresponds to a change from 1 standard deviation below the
mean, to 1 standard deviation above. Here are the rescaled predictors in the child
testing example:

R code z.mom.hs <- (mom.hs - mean(mom.hs))/(2*sd(mom.hs))

z.mom.iq <- (mom.iq - mean(mom.iq))/(2*sd(mom.iq))

We can now interpret all the coefficients on a roughly common scale (except for the
intercept, which now corresponds to the average predicted outcome with all inputs
at their mean):

R output lm(formula = kid.score ~ z.mom.hs + z.mom.iq + z.mom.hs:z.mom.iq)

coef.est coef.se

(Intercept) 87.6 0.9

z.mom.hs 2.3 2.0

z.mom.iq 17.7 1.8

z.mom.hs:z.mom.iq -11.9 4.0

n = 434, k = 4

residual sd = 18.0, R-Squared = 0.23
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Why scale by 2 standard deviations?

We divide by 2 standard deviations rather than 1 to maintain coherence when con-
sidering binary input variables. To see this, consider the simplest binary x variable
which takes on the values 0 and 1, each with probability 0.5. The standard devia-
tion of x is then

√
0.5 · 0.5 = 0.5, and so the standardized variable, (x−μx)/(2σx),

takes on the values ±0.5, and its coefficient reflects comparisons between x = 0 and
x = 1. In contrast, if we had divided by 1 standard deviation, the rescaled variable
takes on the values ±1, and its coefficient corresponds to half the difference between
the two possible values of x. This identity is close to precise for binary inputs even
when the frequencies are not exactly equal, since

√
p(1 − p) ≈ 0.5 when p is not

too far from 0.5.
In a complicated regression with many predictors, it can make sense to leave

binary inputs as is, and linearly transform continuous inputs, possibly by scaling
using the standard deviation. In this case, dividing by 2 standard deviations en-
sures a rough comparability in the coefficients. In our children’s testing example,
the predictive difference corresponding to 2 standard deviations of mother’s IQ is
clearly much higher than the comparison of mothers with and without a high school
education.

Multiplying each regression coefficient by 2 standard deviations of its predictor

For models with no interactions, a procedure that is equivalent to centering and
rescaling is to leave the regression predictors as is, and then create rescaled regres-
sion coefficients by multiplying each β by two times the standard deviation of its
corresponding x. This gives a sense of the importance of each variable, controlling
for all the others in the linear model. As noted, scaling by 2 (rather than 1) standard
deviations allows these scaled coefficients to be comparable to unscaled coefficients
for binary predictors.

4.3 Correlation and “regression to the mean”

Consider a regression with a single predictor (in addition to the constant term);
thus, y = a+bx+error. If both x and y are standardized—that is, if they are defined
as x <- (x-mean(x))/sd(x) and y <- (y-mean(y))/sd(y)—then the regression
intercept is zero and the slope is simply the correlation between x and y. Thus, the
slope of a regression of two standardized variables must always be between −1 and
1, or, to put it another way, if a regression slope is more than 1 or less than −1,
the variance of y must exceed that of x. In general, the slope of a regression with
one predictor is b = ρσy/σx, where ρ is the correlation between the two variables
and σx and σy are the standard deviations of x and y.

The principal components line and the regression line

Some of the confusing aspects of regression can be understood in the simple case of
standardized variables. Figure 4.2 shows a simulated-data example of standardized
variables with correlation (and thus regression slope) 0.5. The left plot shows the
principal component line, which goes closest through the cloud of points, in the
sense of minimizing the sum of squared Euclidean distances between the points and
the line. The principal component line in this case is simply y = x.

The right plot in Figure 4.2 shows the regression line, which minimizes the sum
of the squares of the vertical distances between the points and the line—it is the
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Figure 4.2 Data simulated from a bivariate normal distribution with correlation 0.5. The
regression line, which represents the best prediction of y given x, has half the slope of the
principal component line, which goes closest through the cloud of points.

familiar least squares line, y = â + b̂x, with â, b̂ chosen to minimize
∑n

i=1(yi − (â +

b̂xi))
2. In this case, â = 0 and b̂ = 0.5; the regression line thus has slope 0.5.

When given this sort of scatterplot (without any lines superimposed) and asked to
draw the regression line of y on x, students tend to draw the principal component
line shown in Figure 4.2a. However, for the goal of predicting y from x, or for
estimating the average of y for any given value of x, the regression line is in fact
better—even if it does not appear so at first.

The superiority of the regression line for estimating the average of y given x can
be seen from a careful study of Figure 4.2. For example, consider the points at
the extreme left of either graph. They all lie above the principal components line
but are roughly half below and half above the regression line. Thus, the principal
component line underpredicts y for low values of x. Similarly, a careful study of the
right side of each graph shows that the principal component line overpredicts y for
high values of x. In contrast, the regression line again gives unbiased predictions,
in the sense of going through the average value of y given x.

Regression to the mean

Recall that when x and y are standardized (that is, placed on a common scale,
as in Figure 4.2), the regression line always has slope less than 1. Thus, when x
is 1 standard deviations above the mean, the predicted value of y is somewhere
between 0 and 1 standard deviations above the mean. This phenomenon in linear
models—that y is predicted to be closer to the mean (in standard-deviation units)
than x—is called regression to the mean and occurs in many vivid contexts.

For example, if a woman is 10 inches taller than the average for her sex, and the
correlation of mothers’ and (adult) sons’ heights is 0.5, then her son’s predicted
height is 5 inches taller than the average for men. He is expected to be taller than
average, but not so much taller—thus a “regression” (in the nonstatistical sense)
to the average.

A similar calculation can be performed for any pair of variables that are not
perfectly correlated. For example, let xi and yi be the number of games won by
baseball team i in two successive seasons. They will not be correlated 100%; thus,
we would expect the teams that did the best in season 1 (that is, with highest
values of x) to do not as well in season 2 (that is, with values of y that are closer
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to the average for all the teams). Similarly, we would expect a team with a poor
record in season 1 to improve in season 2.

A naive interpretation of regression to the mean is that heights, or baseball
records, or other variable phenomena necessarily become more and more “average”
over time. This view is mistaken because it ignores the error in the regression
predicting y from x. For any data point xi, the point prediction for its yi will be
regressed toward the mean, but the actual yi that is observed will not be exactly
where it is predicted. Some points end up falling closer to the mean and some fall
further. This can be seen in Figure 4.2b.

4.4 Logarithmic transformations

When additivity and linearity (see Section 3.6) are not reasonable assumptions, a
nonlinear transformation can sometimes remedy the situation. It commonly makes
sense to take the logarithm of outcomes that are all-positive. For outcome variables,
this becomes clear when we think about making predictions on the original scale.
The regression model imposes no constraints that would force these predictions to
be positive as well. However, if we take the logarithm of the variable, run the model,
make predictions on the log scale, and then transform back (by exponentiating),
the resulting predictions are necessarily positive because for any real a, exp(a) > 0.

Perhaps more importantly, a linear model on the logarithmic scale corresponds
to a multiplicative model on the original scale. Consider the linear regression model

log yi = b0 + b1Xi1 + b2Xi2 + · · · + εi

Exponentiating both sides yields

yi = eb0+b1Xi1+b2Xi2+···+εi

= B0 · BXi1
1 · BXi2

2 · · ·Ei

where B0 = eb0 , B1 = eb1 , B2 = eb2 , . . . are exponentiated regression coefficients
(and thus are positive), and Ei = eεi is the exponentiated error term (also pos-
itive). On the scale of the original data yi, the predictors Xi1, Xi2, . . . come in
multiplicatively.

Height and earnings example

We illustrate logarithmic regression by considering models predicting earnings from
height. Expression (4.1) on page 53 shows a linear regression of earnings on height.
However, it really makes more sense to model earnings on the logarithmic scale
(our model here excludes those people who reported zero earnings). We can fit a
regression to log earnings and then take the exponential to get predictions on the
original scale.

Direct interpretation of small coefficients on the log scale. We take the logarithm
of earnings and regress on height,

R codelog.earn <- log (earn)

earn.logmodel.1 <- lm (log.earn ~ height)

display (earn.logmodel.1)

yielding the following estimate:

R outputlm(formula = log.earn ~ height)

coef.est coef.se

(Intercept) 5.74 0.45
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Log regression plotted on original scale
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Figure 4.3 Plot of regression of earnings on height, with solid line showing the fitted log
regression model, log(earnings) = 5.78 + 0.06 · height, plotted on the logarithmic and un-
transformed scales. Compare to the linear model (Figure 4.1a).
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Figure 4.4 Interpretation of exponentiated coefficients in a logarithmic regression model
as relative difference (curved upper line), and the approximation exp(x) = 1 + x, which is
valid for small coefficients x (straight line).

height 0.06 0.01

n = 1192, k = 2

residual sd = 0.89, R-Squared = 0.06

The estimated coefficient β1 = 0.06 implies that a difference of 1 inch in height
corresponds to an expected positive difference of 0.06 in log(earnings), so that
earnings are multiplied by exp(0.06). But exp(0.06) ≈ 1.06 (more precisely, it is
1.062). Thus, a difference of 1 in the predictor corresponds to an expected positive
difference of about 6% in the outcome variable. Similarly, if β1 were −0.06, then
a positive difference of 1 inch of height would correspond to an expected negative
difference of about 6% in earnings.

This correspondence does grow weaker as the magnitude of the coefficient in-
creases. Figure 4.4 displays the deterioration of the correspondence as the coefficient
size increases. The plot is restricted to coefficients in the range (−1, 1) because, on
the log scale, regression coefficients are typically (though not always) less than 1.
A coefficient of 1 on the log scale implies that a change of one unit in the predictor
is associated with a change of exp(1) = 2.7 in the outcome, and if predictors are
parameterized in a reasonable way, it is unusual to see effects of this magnitude.

Why we use natural log rather than log-base-10

We prefer natural logs (that is, logarithms base e) because, as described above,
coefficients on the natural-log scale are directly interpretable as approximate pro-
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portional differences: with a coefficient of 0.06, a difference of 1 in x corresponds to
an approximate 6% difference in y, and so forth.2

Another approach is to take logarithms base 10, which we write as log10. The
connection between the two different scales is that log10(x) = log(x)/ log(10) =
log(x)/2.30. The advantage of log10 is that the predicted values themselves are easier
to interpret; for example, when considering the earnings regressions, log10(10,000) =
4 and log10(100,000) = 5, and with some experience we can also quickly read off
intermediate values—for example, if log10(earnings) = 4.5, then earnings ≈ 30,000.

The disadvantage of log10 is that the resulting coefficients are harder to interpret.
For example, if we define

R codelog10.earn <- log10 (earn)

the regression on height looks like

R outputlm(formula = log10.earn ~ height)

coef.est coef.se

(Intercept) 2.493 0.197

height 0.026 0.003

n = 1187, k = 2

residual sd = 0.388, R-Squared = 0.06

The coefficient of 0.026 tells us that a difference of 1 inch in height corresponds
to a difference of 0.026 in log10(earnings); that is, a multiplicative difference of
100.026 = 1.062. This is the same 6% change as before, but it cannot be seen by
simply looking at the coefficient as could be done on the natural-log scale.

Building a regression model on the log scale

Adding another predictor. Each inch of height corresponds to a 6% increase in
earnings—that seems like a lot! But men are mostly taller than women and also tend
to have higher earnings. Perhaps the 6% predictive difference can be “explained” by
differences between the sexes. Do taller people earn more, on average, than shorter
people of the same sex? We can answer this question by including sex into the
regression model—in this case, a predictor called male that equals 1 for men and 0
for women:

R outputlm(formula = log.earn ~ height + male)

coef.est coef.se

(Intercept) 8.15 0.60

height 0.02 0.01

male 0.42 0.07

n = 1192, k = 3

residual sd = 0.88, R-Squared = 0.09

After controlling for sex, an inch of height corresponds to estimated predictive
difference of 2%: under this model, two persons of the same sex but differing by 1
inch in height will differ, on average, by 2% in earnings. The predictive comparison
of sex, however, is huge: comparing a man and a woman of the same height, the
man’s earnings are exp(0.42) = 1.52 times the woman’s; that is, 52% more. (We
cannot simply convert the 0.42 to 42% because this coefficient is not so close to
zero; see Figure 4.4.)

2 Natural log is sometimes written as “ln” or “loge” but we simply write “log” since this is our
default.
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Naming inputs. Incidentally, we named this new input variable male so that it
could be immediately interpreted. Had we named it sex, for example, we would
always have to go back to the coding to check whether 0 and 1 referred to men and
women, or vice versa.3

Checking statistical significance. The difference between the sexes is huge and well
known, but the height comparison is interesting too—a 2% difference, for earnings
of $50,000, comes to a nontrivial $1000 per inch. To judge statistical significance,
we can check to see if the estimated coefficient is more than 2 standard errors from
zero. In this case, with an estimate of 0.02 and standard error of 0.01, we would
need to display to three decimal places to be sure (using the digits option in the
display() function):

R output lm(formula = log.earn ~ height + male)

coef.est coef.se

(Intercept) 8.153 0.603

height 0.021 0.009

male 0.423 0.072

n = 1192, k = 3

residual sd = 0.88, R-Squared = 0.09

The coefficient for height indeed is statistically significant. Another way to check
significance is to directly compute the 95% confidence interval based on the infer-
ential simulations, as we discuss in Section 7.2.

Residual standard deviation and R2. Finally, the regression model has a residual
standard deviation of 0.88, implying that approximately 68% of log earnings will
be within 0.88 of the predicted value. On the original scale, approximately 68% of
earnings will be within a factor of exp(0.88) = 2.4 of the prediction. For example,
a 70-inch person has predicted earnings of 8.153+0.021 · 70 = 9.623, with a predic-
tive standard deviation of approximately 0.88. Thus, there is an approximate 68%
chance that this person has log earnings in the range [9.623± 0.88] = [8.74, 10.50],
which corresponds to earnings in the range [exp(8.74), exp(10.50)] = [6000, 36000].
This very wide range tells us that the regression model does not predict earnings
well—it is not very impressive to have a prediction that can be wrong by a factor of
2.4—and this is also reflected in the R2, which is only 0.09, indicating that only 9%
of the variance in the data is explained by the regression model. This low R2 man-
ifests itself graphically in Figure 4.3, where the range of the regression predictions
is clearly much narrower than the range of the data.

Including an interaction. We now consider a model with an interaction between
height and sex, so that the predictive comparison for height can differ for men and
women:

R code earn.logmodel.3 <- lm (log.earn ~ height + male + height:male)

which yields

R output coef.est coef.se

(Intercept) 8.388 0.844

height 0.017 0.013

male -0.079 1.258

height:male 0.007 0.019

n = 1192, k = 4

residual sd = 0.88, R-Squared = 0.09

3 Another approach would be to consider sex variable as a factor with two named levels, male and
female; see page 68. Our point here is that, if the variable is coded numerically, it is convenient
to give it the name male corresponding to the coding of 1.
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That is,

log(earnings) = 8.4 + 0.017 · height − 0.079 · male + 0.007 · height · male. (4.2)

We shall interpret each of the four coefficients in this model.

• The intercept is the predicted log earnings if height and male both equal zero.
Because heights are never close to zero, the intercept has no direct interpretation.

• The coefficient for height is the predicted difference in log earnings correspond-
ing to a 1-inch difference in height, if male equals zero. Thus, the estimated
predictive difference per inch of height is 1.7% for women. The estimate is less
than 2 standard errors from zero, indicating that the data are consistent with a
zero or negative predictive difference also.

• The coefficient for male is the predicted difference in log earnings between women
and men, if height equals 0. Heights are never close to zero, and so the coefficient
for male has no direct interpretation in this model. (We have already encountered
this problem; for example, consider the difference between the intercepts of the
two lines in Figure 3.4b on page 35.)

• The coefficient for height:male is the difference in slopes of the lines predict-
ing log earnings on height, comparing men to women. Thus, an inch of height
corresponds to 0.7% more of an increase in earnings among men than among
women, and the estimated predictive difference per inch of height among men is
1.7% + 0.7% = 2.4%.

The interaction coefficient is not statistically significant, but it is plausible that the
correlation between height and earnings is stronger for men and women, and so we
keep it in the model, following general principles we discuss more fully in Section
4.6.

Linear transformation to make coefficients more interpretable. We can make the
parameters in the interaction model clearer to interpret by rescaling the height
predictor to have a mean of 0 and standard deviation 1:

R codez.height <- (height - mean(height))/sd(height)

For these data, mean(height) and sd(height) are 66.9 inches and 3.8 inches,
respectively. Fitting the model to z.height, male, and their interaction yields

R outputlm(formula = log.earn ~ z.height + male + z.height:male)

coef.est coef.se

(Intercept) 9.53 0.05

z.height 0.07 0.05

male 0.42 0.07

z.height:male 0.03 0.07

n = 1192, k = 4

residual sd = 0.88, R-Squared = 0.09

We can now interpret all four of the coefficients:

• The intercept is the predicted log earnings if z.height and male both equal zero.
Thus, a 66.9-inch tall woman is predicted to have log earnings of 9.53, and thus
earnings of exp(9.53) = 14000.

• The coefficient for z.height is the predicted difference in log earnings corre-
sponding to a 1 standard-deviation difference in height, if male equals zero.
Thus, the estimated predictive difference for a 3.8-inch increase in height is 7%
for women.
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• The coefficient for male is the predicted difference in log earnings between women
and men, if z.height equals 0. Thus, a 66.9-inch man is predicted to have log
earnings that are 0.42 higher than that of a 66.9-inch woman. This corresponds to
a ratio of exp(0.42) = 1.52, so the man is predicted to have 52% higher earnings
than the woman.

• The coefficient for z.height:male is the difference in slopes between the pre-
dictive differences for height among women and men. Thus, a 3.8-inch difference
of height corresponds to 3% more of an increase in earnings for men than for
women, and the estimated predictive comparison among men is 7%+3% = 10%.

One might also consider centering the predictor for sex, but here it is easy enough
to interpret male = 0, which corresponds to the baseline category (in this case,
women).

Further difficulties in interpretation

For a glimpse into yet another difficulty in interpreting regression coefficients, con-
sider the simpler log earnings regression without the interaction term. The predic-
tive interpretation of the height coefficient is simple enough: comparing two adults
of the same sex, the taller person will be expected to earn 2% more per inch of
height (see the model on page 61). This seems to be a reasonable comparison.

For the coefficient for sex, we would say: comparing two adults of the same height
but different sex, the man will be expected to earn 52% more. But is this a relevant
comparison? For example, if we are comparing a 66-inch woman to a 66-inch man,
then we are comparing a tall woman to a short man. So, in some sense, they do not
differ only in sex. Perhaps a more reasonable comparison would be of an “average
woman” to an “average man.”

The ultimate solution to this sort of problem must depend on why the model is
being fit in the first place. For now we shall focus on the technical issues of fitting
reasonable models to data. We return to issues of interpretation in Chapters 9 and
10.

Log-log model: transforming the input and outcome variables

If the log transformation is applied to an input variable as well as the outcome,
the coefficient can be interpreted as the expected proportional change in y per
proportional change in x. For example:

R output lm(formula = log.earn ~ log.height + male)

coef.est coef.se

(Intercept) 3.62 2.60

log.height 1.41 0.62

male 0.42 0.07

n = 1192, k = 3

residual sd = 0.88, R-Squared = 0.09

For each 1% difference in height, the predicted difference in earnings is 1.41%. The
other input, male, is categorical so it does not make sense to take its logarithm.

In economics, the coefficient in a log-log model is sometimes called an “elasticity”;
see Exercise 4.6 for an example.
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Taking logarithms even when not necessary

If a variable has a narrow dynamic range (that is, if the ratio between the high
and low values is close to 1), then it will not make much of a difference in fit if
the regression is on the logarithmic or the original scale. For example, the standard
deviation of log.height in our survey data is 0.06, meaning that heights in the
data vary by only approximately a factor of 6%.

In such a situation, it might seem to make sense to stay on the original scale for
reasons of simplicity. However, the logarithmic transformation can make sense even
here, because coefficients are often more easily understood on the log scale. The
choice of scale comes down to interpretability: whether it is easier to understand the
model as proportional increase in earnings per inch, or per proportional increase in
height.

For an input with a larger amount of relative variation (for example, heights of
children, or weights of animals), it would make sense to work with its logarithm
immediately, both as an aid in interpretation and likely an improvement in fit too.

4.5 Other transformations

Square root transformations

The square root is sometimes useful for compressing high values more mildly than
is done by the logarithm. Consider again our height and earnings example.

Fitting a linear model to the raw, untransformed scale seemed inappropriate.
Expressed in a different way than before, we would expect the differences between
people earning nothing versus those earning $10,000 to be far greater than the
differences between people earning, say, $80,000 versus $90,000. But under the
linear model, these are all equal increments (as in model (4.1)), where an extra
inch is worth $1300 more in earnings at all levels.

On the other hand, the log transformation seems too severe with these data.
With logarithms, the differences between populations earning $5000 versus $10,000
is equivalent to the differences between those earning $40,000 versus those earning
$80,000. On the square root scale, however, the differences between the 0 earnings
and $10,000 earnings groups are about the same as comparisons between $10,000
and $40,000 or between $40,000 and $90,000. (These move from 0 to 100, 200, and
300 on the square root scale.) See Chapter 25 for more on this example.

Unfortunately, models on the square root scale lack the clean interpretation of the
original-scale and log-transformed models. For one thing, large negative predictions
on this scale get squared and become large positive values on the original scale,
thus introducing a nonmonotonicity in the model. We are more likely to use the
square root model for prediction than with models whose coefficients we want to
understand.

Idiosyncratic transformations

Sometimes it is useful to develop transformations tailored for specific problems.
For example, with the original height-earnings data it would have not been possible
to simply take the logarithm of earnings as many observations had zero values.
Instead, a model can be constructed in two steps: (1) model the probability that
earnings exceed zero (for example, using a logistic regression; see Chapter 5); (2)
fit a linear regression, conditional on earnings being positive, which is what we did
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Figure 4.5 Histogram of handedness scores of a sample of students. Scores range from −1
(completely left-handed) to +1 (completely right-handed) and are based on the responses
to ten questions such as “Which hand do you write with?” and “Which hand do you use
to hold a spoon?” The continuous range of responses shows the limitations of treating
handedness as a dichotomous variable. From Gelman and Nolan (2002).

in the example above. One could also model total income, but economists are often
interested in modeling earnings alone.

In any case, plots and simulation should definitely be used to summarize infer-
ences, since the coefficients of the two parts of the model combine nonlinearly in
their joint prediction of earnings. We discuss this sort of model further in Sections
6.7 and 7.4.

What sort of transformed scale would be appropriate for a variable such as “as-
sets” that can be negative, positive, or zero? One possibility is a discrete coding
that compresses the high range, for example, 0 for assets in the range [−$100, $100],
1 for assets between $100 and $1000, 2 for assets between $1000 and $10,000, and so
forth, and −1 for assets between −$100 and −$10,000, and so forth. Such a mapping
could be expressed more fully as a continuous transformation, but for explanatory
purposes it can be convenient to use a discrete scale.

Using continuous rather than discrete predictors

Many variables that appear binary or discrete can usefully be viewed as continuous.
For example, rather than define “handedness” as −1 for left-handers and +1 for
right-handers, one can use a standard ten-question handedness scale that gives an
essentially continuous scale from −1 to 1 (see Figure 4.5).

We avoid discretizing continuous variables (except as a way of simplifying a
complicated transformation, as described previously, or to model nonlinearity, as
described later). A common mistake is to take a numerical measure and replace it
with a binary “pass/fail” score. For example, suppose we tried to predict election
winners, rather than continuous votes. Such a model would not work well, as it
would discard much of the information in the data (for example, the distinction be-
tween a candidate receiving 51% or 65% of the vote). The model would be “wasting
its effort” in the hopeless task of predicting the winner in very close cases. Even
if our only goal is to predict the winners, we are better off predicting continuous
vote shares and then transforming them into predictions about winners, as in our
example with congressional elections in Section 7.3.

Using discrete rather than continuous predictors

In some cases, however, it is appropriate to discretize a continuous variable if a
simple monotonic or quadratic relation does not seem appropriate. For example, in
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modeling political preferences, it can make sense to include age with four indicator
variables: 18–29, 29–44, 45–64, and 65+, to allow for different sorts of generational
patterns. Furthermore, variables that assign numbers to categories that are ordered
but for which the gaps between neighboring categories are not always equivalent
are often good candidates for discretization.

As an example, Chapter 3 described models for children’s test scores given in-
formation about their mothers. Another input variable that can be used in these
models is maternal employment, which is defined on a four-point ordered scale:

• mom.work = 1: mother did not work in first three years of child’s life

• mom.work = 2: mother worked in second or third year of child’s life

• mom.work = 3: mother worked part-time in first year of child’s life

• mom.work = 4: mother worked full-time in first year of child’s life.

Fitting a simple model using discrete predictors yields

R outputlm(formula = kid.score ~ as.factor(mom.work), data = kid.iq)

coef.est coef.se

(Intercept) 82.0 2.3

as.factor(mom.work)2 3.8 3.1

as.factor(mom.work)3 11.5 3.6

as.factor(mom.work)4 5.2 2.7

n = 434, k = 4

residual sd = 20.2, R-Squared = 0.02

This parameterization of the model allows for different averages for the children
of mothers corresponding to each category of maternal employment. The “baseline”
category (mom.work = 1) corresponds to children whose mothers do not go back to
work at all in the first three years after the child is born; the average test score for
these children is estimated by the intercept, 82.0. The average test scores for the
children in the other categories is found by adding the corresponding coefficient to
this baseline average. This parameterization allows us to see that the children of
mothers who work part-time in the first year after the child is born achieve the
highest average test scores, 82.0 + 11.5. These families also tend to be the most
advantaged in terms of many other sociodemographic characteristics as well, so a
causal interpretation is not warranted.

Index and indicator variables

Index variables divide a population into categories. For example:

• male = 1 for males and 0 for females

• age = 1 for ages 18–29, 2 for ages 30–44, 3 for ages 45–64, 4 for ages 65+

• state = 1 for Alabama, . . ., 50 for Wyoming

• county indexes for the 3082 counties in the United States.

Indicator variables are 0/1 predictors based on index variables. For example:

• sex.1 = 1 for females and 0 otherwise

sex.2 = 1 for males and 0 otherwise

• age.1 = 1 for ages 18–29 and 0 otherwise

age.2 = 1 for ages 30–44 and 0 otherwise

age.3 = 1 for ages 45–64 and 0 otherwise

age.4 = 1 for ages 65+ and 0 otherwise
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• 50 indicators for state

• 3082 indicators for county.

As demonstrated in the previous section, including these variables as regression
predictors allows for different means for the populations corresponding to each of
the categories delineated by the variable.

When to use index or indicator variables. When an input has only two levels, we
prefer to code it with a single variable and name it appropriately; for example, as
discussed earlier with the earnings example, the name male is more descriptive than
sex.1 and sex.2.

R also allows variables to be included as factors with named levels; for example,
sex would have the levels male and female. In this book, however, we restrict
ourselves to numerically defined variables, which is convenient for mathematical
notation and also when setting up models in Bugs.

When an input has multiple levels, we prefer to create an index variable (thus,
for example, age, which can take on the levels 1, 2, 3, 4), which can then be given
indicators if necessary. As discussed in Chapter 11, multilevel modeling offers a
general approach to such categorical predictors.

Identifiability

A model is said to be nonidentifiable if it contains parameters that cannot be
estimated uniquely—or, to put it another way, that have standard errors of infinity.
The offending parameters are called nonidentified. The most familiar and important
example of nonidentifiability arises from collinearity of regression predictors. A set
of predictors is collinear if there is a linear combination of them that equals 0 for
all the data.

If an index variable takes on J values, then there are J associated indicator
variables. A classical regression can include only J−1 of any set of indicators—if
all J were included, they would be collinear with the constant term. (You could
include a full set of J by excluding the constant term, but then the same problem
would arise if you wanted to include a new set of indicators. For example, you could
not include both of the sex categories and all four of the age categories. It is simpler
just to keep the constant term and all but one of each set of indicators.)

For each index variable, the indicator that is excluded from the regression is
known as the default, reference, or baseline condition because it is the implied
category if all the J−1 indicators are set to zero. The default in R is to set the first
level of a factor as the reference condition; other options include using the last level
as baseline, selecting the baseline, and constraining the coefficients to sum to zero.
There is some discussion in the regression literature on how best to set reference
conditions, but we will not worry about it, because in multilevel models we can
include all J indicator variables at once.

In practice, you will know that a regression is nonidentified because your com-
puter program will give an error or return “NA” for a coefficient estimate (or it will
be dropped by the program from the analysis and nothing will be reported except
that it has been removed).

4.6 Building regression models for prediction

A model must be created before it can be fit and checked, and yet we put “model
building” near the end of this chapter. Why? It is best to have a theoretical model
laid out before any data analyses begin. But in practical data analysis it is usually
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easiest to start with a simple model and then build in additional complexity, taking
care to check for problems along the way.

There are typically many reasonable ways in which a model can be constructed.
Models may differ depending on the inferential goals or the way the data were
collected. Key choices include how the input variables should be combined in cre-
ating predictors, and which predictors should be included in the model. In classical
regression, these are huge issues, because if you include too many predictors in a
model, the parameter estimates become so variable as to be useless. Some of these
issues are less important in multilevel regression but they certainly do not disappear
completely.

This section focuses on the problem of building models for prediction. Build-
ing models that can yield causal inferences is a related but separate topic that is
addressed in Chapters 9 and 10.

General principles

Our general principles for building regression models for prediction are as follows:

1. Include all input variables that, for substantive reasons, might be expected to
be important in predicting the outcome.

2. It is not always necessary to include these inputs as separate predictors—for
example, sometimes several inputs can be averaged or summed to create a “total
score” that can be used as a single predictor in the model.

3. For inputs that have large effects, consider including their interactions as well.

4. We suggest the following strategy for decisions regarding whether to exclude a
variable from a prediction model based on expected sign and statistical signifi-
cance (typically measured at the 5% level; that is, a coefficient is “statistically
significant” if its estimate is more than 2 standard errors from zero):

(a) If a predictor is not statistically significant and has the expected sign, it is
generally fine to keep it in. It may not help predictions dramatically but is
also probably not hurting them.

(b) If a predictor is not statistically significant and does not have the expected
sign (for example, incumbency having a negative effect on vote share), consider
removing it from the model (that is, setting its coefficient to zero).

(c) If a predictor is statistically significant and does not have the expected sign,
then think hard if it makes sense. (For example, perhaps this is a country such
as India in which incumbents are generally unpopular; see Linden, 2006.) Try
to gather data on potential lurking variables and include them in the analysis.

(d) If a predictor is statistically significant and has the expected sign, then by all
means keep it in the model.

These strategies do not completely solve our problems but they help keep us from
making mistakes such as discarding important information. They are predicated on
having thought hard about these relationships before fitting the model. It’s always
easier to justify a coefficient’s sign after the fact than to think hard ahead of time
about what we expect. On the other hand, an explanation that is determined after
running the model can still be valid. We should be able to adjust our theories in
light of new information.
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Example: predicting the yields of mesquite bushes

We illustrate some ideas of model checking with a real-data example that is nonethe-
less somewhat artificial in being presented in isolation from its applied context.
Partly because this example is not a “success story” and our results are inconclu-
sive, it represents the sort of analysis a student might perform in exploring a new
dataset.

Data were collected in order to develop a method of estimating the total produc-
tion (biomass) of mesquite leaves using easily measured parameters of the plant, be-
fore actual harvesting takes place. Two separate sets of measurements were taken,
one on a group of 26 mesquite bushes and the other on a different group of 20
mesquite bushes measured at a different time of year. All the data were obtained in
the same geographical location (ranch), but neither constituted a strictly random
sample.

The outcome variable is the total weight (in grams) of photosynthetic material
as derived from actual harvesting of the bush. The input variables are:

diam1: diameter of the canopy (the leafy area of the bush)
in meters, measured along the longer axis of the bush

diam2: canopy diameter measured along the shorter axis
canopy.height: height of the canopy
total.height: total height of the bush
density: plant unit density (# of primary stems per plant unit)
group: group of measurements (0 for the first group,

1 for the second group)

It is reasonable to predict the leaf weight using some sort of regression model.
Many formulations are possible. The simplest approach is to regress weight on all
of the predictors, yielding the estimates:

R output lm(formula = weight ~ diam1 + diam2 + canopy.height + total.height +

density + group, data = mesquite)

coef.est coef.se

(Intercept) -729 147

diam1 190 113

diam2 371 124

canopy.height 356 210

total.height -102 186

density 131 34

group -363 100

n = 46, k = 7

residual sd = 269, R-Squared = 0.85

To get a sense of the importance of each predictor, it is useful to know the range
of each variable:

R output min q25 median q75 max IQR

diam1 0.8 1.4 2.0 2.5 5.2 1.1

diam2 0.4 1.0 1.5 1.9 4.0 0.9

canopy.height 0.5 0.9 1.1 1.3 2.5 0.4

total.height 0.6 1.2 1.5 1.7 3.0 0.5

density 1.0 1.0 1.0 2.0 9.0 1.0

group 0.0 0.0 0.0 1.0 1.0 1.0

weight 60 220 360 690 4050 470

“IQR” in the last column refers to the interquartile range—the difference between
the 75th and 25th percentile points of each variable.
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But perhaps it is more reasonable to fit on the logarithmic scale, so that effects
are multiplicative rather than additive:

R outputlm(formula = log(weight) ~ log(diam1) + log(diam2) + log(canopy.height) +

log(total.height) + log(density) + group, data = mesquite)

coef.est coef.se IQR of predictor

(Intercept) 5.35 0.17 --

log(diam1) 0.39 0.28 0.6

log(diam2) 1.15 0.21 0.6

log(canopy.height) 0.37 0.28 0.4

log(total.height) 0.39 0.31 0.4

log(density) 0.11 0.12 0.3

group -0.58 0.13 1.0

n = 46, k = 7

residual sd = 0.33, R-Squared = 0.89

Instead of, “each meter difference in canopy height is associated with an addi-
tional 356 grams of leaf weight,” we have, “a difference of x% in canopy height
is associated with an (approximate) positive difference of 0.37x% in leaf weight”
(evaluated at the same levels of all other variables across comparisons).

So far we have been throwing all the predictors directly into the model. A more
“minimalist” approach is to try to come up with a simple model that makes sense.
Thinking geometrically, we can predict leaf weight from the volume of the leaf
canopy, which we shall roughly approximate as

canopy.volume = diam1 · diam2 · canopy.height.

This model is an oversimplification: the leaves are mostly on the surface of a bush,
not in its interior, and so some measure of surface area is perhaps more appropriate.
We shall return to this point shortly.

It still makes sense to work on the logarithmic scale:

R outputlm(formula = log(weight) ~ log(canopy.volume))

coef.est coef.se

(Intercept) 5.17 0.08

log(canopy.volume) 0.72 0.05

n = 46, k = 2

residual sd = 0.41, R-Squared = 0.80

Thus, leaf weight is approximately proportional to canopy.volume to the 0.72
power. It is perhaps surprising that this power is not closer to 1. The usual expla-
nation for this is that there is variation in canopy.volume that is unrelated to the
weight of the leaves, and this tends to attenuate the regression coefficient—that is,
to decrease its absolute value from the “natural” value of 1 to something lower.
Similarly, regressions of “after” versus “before” typically have slopes of less than
1. (For another example, Section 7.3 has an example of forecasting congressional
elections in which the vote in the previous election has a coefficient of only 0.58.)

The regression with only canopy.volume is satisfyingly simple, with an impres-
sive R-squared of 80%. However, the predictions are still much worse than the model
with all the predictors. Perhaps we should go back and put in the other predictors.
We shall define:

canopy.area = diam1 · diam2

canopy.shape = diam1/diam2.

The set (canopy.volume, canopy.area, canopy.shape) is then just a different param-
eterization of the three canopy dimensions. Including them all in the model yields:
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R output lm(formula = log(weight) ~ log(canopy.volume) + log(canopy.area) +

log(canopy.shape) + log(total.height) + log(density) + group)

coef.est coef.se

(Intercept) 5.35 0.17

log(canopy.volume) 0.37 0.28

log(canopy.area) 0.40 0.29

log(canopy.shape) -0.38 0.23

log(total.height) 0.39 0.31

log(density) 0.11 0.12

group -0.58 0.13

n = 46, k = 7

residual sd = 0.33, R-Squared = 0.89

This fit is identical to that of the earlier log-scale model (just a linear transfor-
mation of the predictors), but to us these coefficient estimates are more directly
interpretable:

• Canopy volume and area are both positively associated with weight. Neither is
statistically significant, but we keep them in because they both make sense: (1)
a larger-volume canopy should have more leaves, and (2) conditional on volume,
a canopy with larger cross-sectional area should have more exposure to the sun.

• The negative coefficient of canopy.shape implies that bushes that are more
circular in cross section have more leaf weight (after controlling for volume and
area). It is not clear whether we should “believe” this. The coefficient is not
statistically significant; we could keep this predictor in the model or leave it out.

• Total height is positively associated with weight, which could make sense if the
bushes are planted close together—taller bushes get more sun. The coefficient is
not statistically significant, but it seems to make sense to “believe” it and leave
it in.

• It is not clear how to interpret the coefficient for density. Since it is not statis-
tically significant, maybe we can exclude it.

• For whatever reason, the coefficient for group is large and statistically significant,
so we must keep it in. It would be a good idea to learn how the two groups differ
so that a more relevant measurement could be included for which group is a
proxy.

This leaves us with a model such as

R output lm(formula = log(weight) ~ log(canopy.volume) + log(canopy.area) +

group)

coef.est coef.se

(Intercept) 5.22 0.09

log(canopy.volume) 0.61 0.19

log(canopy.area) 0.29 0.24

group -0.53 0.12

n = 46, k = 4

residual sd = 0.34, R-Squared = 0.87

or

R output lm(formula = log(weight) ~ log(canopy.volume) + log(canopy.area) +

log(canopy.shape) + log(total.height) + group)

coef.est coef.se

(Intercept) 5.31 0.16

log(canopy.volume) 0.38 0.28
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log(canopy.area) 0.41 0.29

log(canopy.shape) -0.32 0.22

log(total.height) 0.42 0.31

group -0.54 0.12

n = 46, k = 6

residual sd = 0.33, R-Squared = 0.88

We want to include both volume and area in the model, since for geometrical reasons
we expect both to be positively predictive of leaf volume. It would also make sense
to look at some residual plots to look for any patterns in the data beyond what has
been fitted by the model.

Finally, it would seem like a good idea to include interactions of group with
the other predictors. Unfortunately, with only 46 data points, it turns out to be
impossible to estimate these interactions accurately: none of them are statistically
significant.

To conclude this example: we have had some success in transforming the outcome
and input variables to obtain a reasonable predictive model. However, we do not
have any clean way of choosing among the models (or combining them). We also
do not have any easy way of choosing between the linear and log-transformation
models, or bridging the gap between them. For this problem, the log model seems
to make much more sense, but we would also like a data-based reason to prefer it,
if it is indeed preferable.

4.7 Fitting a series of regressions

It is common to fit a regression model repeatedly, either for different datasets or to
subsets of an existing dataset. For example, one could estimate the relation between
height and earnings using surveys from several years, or from several countries, or
within different regions or states within the United States.

As discussed in Part 2 of this book, multilevel modeling is a way to estimate
a regression repeatedly, partially pooling information from the different fits. Here
we consider the more informal procedure of estimating the regression separately—
with no pooling between years or groups—and then displaying all these estimates
together, which can be considered as an informal precursor to multilevel modeling.4

Predicting party identification

Political scientists have long been interested in party identification and its changes
over time. We illustrate here with a series of cross-sectional regressions modeling
party identification given political ideology and demographic variables.

We use the National Election Study, which asks about party identification on a 1–
7 scale (1= strong Democrat, 2=Democrat, 3=weak Democrat, 4= independent,
. . . , 7 = strong Republican), which we treat as a continuous variable. We include
the following predictors: political ideology (1 = strong liberal, 2 = liberal, . . . , 7 =
strong conservative), ethnicity (0=white, 1=black, 0.5=other), age (as categories:
18–29, 30–44, 45–64, and 65+ years, with the lowest age category as a baseline),
education (1 = no high school, 2 = high school graduate, 3 = some college, 4 =

4 The method of repeated modeling, followed by time-series plots of estimates, is sometimes called
the “secret weapon” because it is so easy and powerful but yet is rarely used as a data-analytic
tool. We suspect that one reason for its rarity of use is that, once one acknowledges the time-
series structure of a dataset, it is natural to want to take the next step and model that directly.
In practice, however, there is a broad range of problems for which a cross-sectional analysis is
informative, and for which a time-series display is appropriate to give a sense of trends.
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Figure 4.6 Estimated coefficients (and 50% intervals) for the regression of party identifi-
cation on political ideology, ethnicity, and other predictors, as fit separately to poll data
from each presidential election campaign from 1976 through 2000. The plots are on differ-
ent scales, with the input variables ordered roughly in declining order of the magnitudes
of their coefficients. The set of plots illustrates the display of inferences from a series of
regressions.

college graduate), sex (0=male, 1=female), and income (1=0–16th percentile, 2=
17–33rd percentile, 3=34–67th percentile, 4=68–95th percentile, 5=96–100th per-
centile).

Figure 4.6 shows the estimated coefficients tracked over time. Ideology and ethnic-
ity are the most important,5 and they remain fairly stable over time. The predictive
differences for age and sex change fairly dramatically during the thirty-year period.

4.8 Bibliographic note

For additional reading on transformations, see Atkinson (1985), Mosteller and
Tukey (1977), Box and Cox (1964), and Carroll and Ruppert (1981). Bring (1994)
has a thoroough discussion on standardizing regression coefficients; see also Blalock
(1961) and Greenland, Schlessman, and Criqui (1986). Harrell (2001) discusses
strategies for regression modeling.

For more on the earnings and height example, see Persico, Postlewaite, and Sil-
verman (2004) and Gelman and Nolan (2002). For more on the handedness example,
see Gelman and Nolan (2002, sections 2.5 and 3.3.2). The historical background of
regression to the mean is covered by Stigler (1986), and its connections to multilevel
modeling are discussed by Stigler (1983).

The mesquite bushes example in Section 4.6 comes from an exam problem from
the 1980s; we have not been able to track down the original data. For more on the
ideology example in Section 4.7, see Bafumi (2005).

4.9 Exercises

1. Logarithmic transformation and regression: consider the following regression:

log(weight) = −3.5 + 2.0 log(height) + error,

5 Ideology is on a seven-point scale, so that its coefficients must be multiplied by 4 to get the
expected change when comparing a liberal (ideology=2) to a conservative (ideology=6).
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with errors that have standard deviation 0.25. Weights are in pounds and heights
are in inches.

(a) Fill in the blanks: approximately 68% of the persons will have weights within
a factor of and of their predicted values from the regression.

(b) Draw the regression line and scatterplot of log(weight) versus log(height) that
make sense and are consistent with the fitted model. Be sure to label the axes
of your graph.

2. The folder earnings has data from the Work, Family, and Well-Being Survey
(Ross, 1990). Pull out the data on earnings, sex, height, and weight.

(a) In R, check the dataset and clean any unusually coded data.

(b) Fit a linear regression model predicting earnings from height. What transfor-
mation should you perform in order to interpret the intercept from this model
as average earnings for people with average height?

(c) Fit some regression models with the goal of predicting earnings from some
combination of sex, height, and weight. Be sure to try various transformations
and interactions that might make sense. Choose your preferred model and
justify.

(d) Interpret all model coefficients.

3. Plotting linear and nonlinear regressions: we downloaded data with weight (in
pounds) and age (in years) from a random sample of American adults. We first
created new variables: age10 = age/10 and age10.sq = (age/10)2, and indicators
age18.29, age30.44, age45.64, and age65up for four age categories. We then
fit some regressions, with the following results:

R outputlm(formula = weight ~ age10)

coef.est coef.se

(Intercept) 161.0 7.3

age10 2.6 1.6

n = 2009, k = 2

residual sd = 119.7, R-Squared = 0.00

lm(formula = weight ~ age10 + age10.sq)

coef.est coef.se

(Intercept) 96.2 19.3

age10 33.6 8.7

age10.sq -3.2 0.9

n = 2009, k = 3

residual sd = 119.3, R-Squared = 0.01

lm(formula = weight ~ age30.44 + age45.64 + age65up)

coef.est coef.se

(Intercept) 157.2 5.4

age30.44TRUE 19.1 7.0

age45.64TRUE 27.2 7.6

age65upTRUE 8.5 8.7

n = 2009, k = 4

residual sd = 119.4, R-Squared = 0.01

(a) On a graph of weights versus age (that is, weight on y-axis, age on x-axis),
draw the fitted regression line from the first model.

(b) On the same graph, draw the fitted regression line from the second model.
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(c) On another graph with the same axes and scale, draw the fitted regression
line from the third model. (It will be discontinuous.)

4. Logarithmic transformations: the folder pollution contains mortality rates and
various environmental factors from 60 U.S. metropolitan areas (see McDonald
and Schwing, 1973). For this exercise we shall model mortality rate given nitric
oxides, sulfur dioxide, and hydrocarbons as inputs. This model is an extreme
oversimplification as it combines all sources of mortality and does not adjust for
crucial factors such as age and smoking. We use it to illustrate log transforma-
tions in regression.

(a) Create a scatterplot of mortality rate versus level of nitric oxides. Do you
think linear regression will fit these data well? Fit the regression and evaluate
a residual plot from the regression.

(b) Find an appropriate transformation that will result in data more appropriate
for linear regression. Fit a regression to the transformed data and evaluate
the new residual plot.

(c) Interpret the slope coefficient from the model you chose in (b).

(d) Now fit a model predicting mortality rate using levels of nitric oxides, sulfur
dioxide, and hydrocarbons as inputs. Use appropriate transformations when
helpful. Plot the fitted regression model and interpret the coefficients.

(e) Cross-validate: fit the model you chose above to the first half of the data and
then predict for the second half. (You used all the data to construct the model
in (d), so this is not really cross-validation, but it gives a sense of how the
steps of cross-validation can be implemented.)

5. Special-purpose transformations: for a study of congressional elections, you would
like a measure of the relative amount of money raised by each of the two major-
party candidates in each district. Suppose that you know the amount of money
raised by each candidate; label these dollar values Di and Ri. You would like to
combine these into a single variable that can be included as an input variable
into a model predicting vote share for the Democrats.

(a) Discuss the advantages and disadvantages of the following measures:

• The simple difference, Di − Ri

• The ratio, Di/Ri

• The difference on the logarithmic scale, log Di − log Ri

• The relative proportion, Di/(Di + Ri).

(b) Propose an idiosyncratic transformation (as in the example on page 65) and
discuss the advantages and disadvantages of using it as a regression input.

6. An economist runs a regression examining the relations between the average price
of cigarettes, P , and the quantity purchased, Q, across a large sample of counties
in the United States, assuming the following functional form, log Q = α+β log P .
Suppose the estimate for β is 0.3. Interpret this coefficient.

7. Sequence of regressions: find a regression problem that is of interest to you and
can be performed repeatedly (for example, data from several years, or for several
countries). Perform a separate analysis for each year, or country, and display the
estimates in a plot as in Figure 4.6 on page 74.

8. Return to the teaching evaluations data from Exercise 3.5. Fit regression models
predicting evaluations given many of the inputs in the dataset. Consider interac-
tions, combinations of predictors, and transformations, as appropriate. Consider
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several models, discuss in detail the final model that you choose, and also explain
why you chose it rather than the others you had considered.





CHAPTER 5

Logistic regression

Logistic regression is the standard way to model binary outcomes (that is, data
yi that take on the values 0 or 1). Section 5.1 introduces logistic regression in a
simple example with one predictor, then for most of the rest of the chapter we work
through an extended example with multiple predictors and interactions.

5.1 Logistic regression with a single predictor

Example: modeling political preference given income

Conservative parties generally receive more support among voters with higher in-
comes. We illustrate classical logistic regression with a simple analysis of this pat-
tern from the National Election Study in 1992. For each respondent i in this poll,
we label yi = 1 if he or she preferred George Bush (the Republican candidate for
president) or 0 if he or she preferred Bill Clinton (the Democratic candidate), for
now excluding respondents who preferred Ross Perot or other candidates, or had
no opinion. We predict preferences given the respondent’s income level, which is
characterized on a five-point scale.1

The data are shown as (jittered) dots in Figure 5.1, along with the fitted logistic
regression line, a curve that is constrained to lie between 0 and 1. We interpret the
line as the probability that y = 1 given x—in mathematical notation, Pr(y = 1|x).

We fit and display the logistic regression using the following R function calls:

R codefit.1 <- glm (vote ~ income, family=binomial(link="logit"))

display (fit.1)

to yield

R outputcoef.est coef.se

(Intercept) -1.40 0.19

income 0.33 0.06

n = 1179, k = 2

residual deviance = 1556.9, null deviance = 1591.2 (difference = 34.3)

The fitted model is Pr(yi = 1) = logit−1(−1.40 + 0.33 · income). We shall define
this model mathematically and then return to discuss its interpretation.

The logistic regression model

It would not make sense to fit the continuous linear regression model, Xβ + error,
to data y that take on the values 0 and 1. Instead, we model the probability that
y = 1,

Pr(yi = 1) = logit−1(Xiβ), (5.1)

under the assumption that the outcomes yi are independent given these probabili-
ties. We refer to Xβ as the linear predictor.

1 See Section 4.7 for details on the income categories and other variables measured in this survey.

79
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Figure 5.1 Logistic regression estimating the probability of supporting George Bush in the
1992 presidential election, as a function of discretized income level. Survey data are indi-
cated by jittered dots. In this example little is revealed by these jittered points, but we want
to emphasize here that the data and fitted model can be put on a common scale. (a) Fitted
logistic regression: the thick line indicates the curve in the range of the data; the thinner
lines at the end show how the logistic curve approaches 0 and 1 in the limits. (b) In the
range of the data, the solid line shows the best-fit logistic regression, and the light lines
show uncertainty in the fit.
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Figure 5.2 (a) Inverse-logit function logit−1(x): the transformation from linear predictors
to probabilities that is used in logistic regression. (b) An example of the predicted probabili-
ties from a logistic regression model: y = logit−1(−1.40+0.33x). The shape of the curve is
the same, but its location and scale have changed; compare the x-axes on the two graphs.
For each curve, the dotted line shows where the predicted probability is 0.5: in graph (a),
this is at logit(0.5) = 0; in graph (b), the halfway point is where −1.40 + 0.33x = 0, which
is x = 1.40/0.33 = 4.2.
The slope of the curve at the halfway point is the logistic regression coefficient divided by
4, thus 1/4 for y = logit−1(x) and 0.33/4 for y = logit−1(−1.40 + 0.33x). The slope of the
logistic regression curve is steepest at this halfway point.

The function logit−1(x) = ex

1+ex transforms continuous values to the range (0, 1),
which is necessary, since probabilities must be between 0 and 1. This is illustrated
for the election example in Figure 5.1 and more theoretically in Figure 5.2.

Equivalently, model (5.1) can be written

Pr(yi = 1) = pi

logit(pi) = Xiβ, (5.2)

where logit(x) = log(x/(1−x)) is a function mapping the range (0, 1) to the range
(−∞,∞). We prefer to work with logit−1 because it is natural to focus on the
mapping from the linear predictor to the probabilities, rather than the reverse.
However, you will need to understand formulation (5.2) to follow the literature and
also when fitting logistic models in Bugs.
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The inverse-logistic function is curved, and so the expected difference in y corre-
sponding to a fixed difference in x is not a constant. As can be seen in Figure 5.2,
the steepest change occurs at the middle of the curve. For example:

• logit(0.5) = 0, and logit(0.6) = 0.4. Here, adding 0.4 on the logit scale corre-
sponds to a change from 50% to 60% on the probability scale.

• logit(0.9) = 2.2, and logit(0.93) = 2.6. Here, adding 0.4 on the logit scale corre-
sponds to a change from 90% to 93% on the probability scale.

Similarly, adding 0.4 at the low end of the scale moves a probability from 7% to
10%. In general, any particular change on the logit scale is compressed at the ends
of the probability scale, which is needed to keep probabilities bounded between 0
and 1.

5.2 Interpreting the logistic regression coefficients

Coefficients in logistic regression can be challenging to interpret because of the
nonlinearity just noted. We shall try to generalize the procedure for understanding
coefficients one at a time, as was done for linear regression in Chapter 3. We illus-
trate with the model, Pr(Bush support) = logit−1(−1.40 + 0.33 · income). Figure
5.1 shows the story, but we would also like numerical summaries. We present some
simple approaches here and return in Section 5.7 to more comprehensive numerical
summaries.

Evaluation at and near the mean of the data

The curve of the logistic function requires us to choose where to evaluate changes,
if we want to interpret on the probability scale. The mean of the input variables in
the data is often a useful starting point.

• As with linear regression, the intercept can only be interpreted assuming zero val-
ues for the other predictors. When zero is not interesting or not even in the model
(as in the voting example, where income is on a 1–5 scale), the intercept must be
evaluated at some other point. For example, we can evaluate Pr(Bush support)
at the central income category and get logit−1(−1.40 + 0.33 · 3) = 0.40.

Or we can evaluate Pr(Bush support) at the mean of respondents’ incomes:
logit−1(−1.40 + 0.33 · x̄); in R we code this as2

R codeinvlogit (-1.40 + 0.33*mean(income))

or, more generally,

R codeinvlogit (coef(fit.1)[1] + coef(fit.1)[2]*mean(income))

For this dataset, x̄ = 3.1, yielding Pr(Bush support) = 0.40 at this central point.

• A difference of 1 in income (on this 1–5 scale) corresponds to a positive difference
of 0.33 in the logit probability of supporting Bush. There are two convenient ways
to summarize this directly in terms of probabilities.

– We can evaluate how the probability differs with a unit difference in x near
the central value. Since x̄ = 3.1 in this example, we can evaluate the logistic
regression function at x = 3 and x = 2; the difference in Pr(y = 1) correspond-
ing to adding 1 to x is logit−1(−1.40+0.33·3)−logit−1(−1.40+0.33·2) = 0.08.

2 We are using a function we have written, invlogit <- function (x) {1/(1+exp(-x))}.
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A difference of 1 in income category corresponds to a positive difference of
8% in the probability of supporting Bush.

– Rather than consider a discrete change in x, we can compute the derivative of
the logistic curve at the central value, in this case x̄ = 3.1. Differentiating the
function logit−1(α + βx) with respect to x yields βeα+βx/(1 + eα+βx)2. The
value of the linear predictor at the central value of x̄ = 3.1 is −1.40+0.33·3.1 =
−0.39, and the slope of the curve—the “change” in Pr(y = 1) per small unit
of “change” in x—at this point is 0.33e−0.39/(1 + e−0.39)2 = 0.13.

– For this example, the difference on the probability scale is the same value
of 0.13 (to one decimal place); this is typical but in some cases where a unit
difference is large, the differencing and the derivative can give slightly different
answers. They will always be the same sign, however.

The “divide by 4 rule”

The logistic curve is steepest at its center, at which point α + βx = 0 so that
logit−1(α+βx) = 0.5 (see Figure 5.2). The slope of the curve—the derivative of the
logistic function—is maximized at this point and attains the value βe0/(1 + e0)2 =
β/4. Thus, β/4 is the maximum difference in Pr(y = 1) corresponding to a unit
difference in x.

As a rule of convenience, we can take logistic regression coefficients (other than
the constant term) and divide them by 4 to get an upper bound of the predictive
difference corresponding to a unit difference in x. This upper bound is a reasonable
approximation near the midpoint of the logistic curve, where probabilities are close
to 0.5.

For example, in the model Pr(Bush support) = logit−1(−1.40 + 0.33 · income),
we can divide 0.33/4 to get 0.08: a difference of 1 in income category corresponds
to no more than an 8% positive difference in the probability of supporting Bush.
Because the data in this case actually lie near the 50% point (see Figure 5.1), this
“divide by 4” approximation turns out to be close to 0.13, the derivative evaluated
at the central point of the data.

Interpretation of coefficients as odds ratios

Another way to interpret logistic regression coefficients is in terms of odds ratios.
If two outcomes have the probabilities (p, 1−p), then p/(1 − p) is called the odds.
An odds of 1 is equivalent to a probability of 0.5—that is, equally likely outcomes.
Odds of 0.5 or 2.0 represent probabilities of (1/3, 2/3). The ratio of two odds—
thus, (p1/(1 − p1))/(p2/(1 − p2))—is called an odds ratio. Thus, an odds ratio of
2 corresponds to a change from p = 0.33 to p = 0.5, or a change from p = 0.5 to
p = 0.67.

An advantage of working with odds ratios (instead of probabilities) is that it
is possible to keep scaling up odds ratios indefinitely without running into the
boundary points of 0 and 1. For example, going from an odds of 2 to an odds of
4 increases the probability from 2/3 to 4/5; doubling the odds again increases the
probability to 8/9, and so forth.

Exponentiated logistic regression coefficients can be interpreted as odds ratios.
For simplicity, we illustrate with a model with one predictor, so that

log

(
Pr(y = 1|x)

Pr(y = 0|x)

)
= α + βx. (5.3)
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Figure 5.3 Distribution representing uncertainty in an estimated regression coefficient (re-
peated from page 40). The range of this distribution corresponds to the possible values of β
that are consistent with the data. When using this as an uncertainty distribution, we assign
an approximate 68% chance that β will lie within 1 standard error of the point estimate,
β̂, and an approximate 95% chance that β will lie within 2 standard errors. Assuming the
regression model is correct, it should happen only about 5% of the time that the estimate,
β̂, falls more than 2 standard errors away from the true β.

Adding 1 to x (that is, changing x to x+1 in (5.3)) has the effect of adding β to both
sides of the equation. Exponentiating both sides, the odds are then multiplied by eβ .
For example, if β = 0.2, then a unit difference in x corresponds to a multiplicative
change of e0.2 = 1.22 in the odds (for example, changing the odds from 1 to 1.22,
or changing p from 0.5 to 0.55).

We find that the concept of odds can be somewhat difficult to understand, and
odds ratios are even more obscure. Therefore we prefer to interpret coefficients on
the original scale of the data when possible.for example, saying that adding 0.2 on
the logit scale corresponds to a change in probability from logit−1(0) to

Inference

Coefficient estimates and standard errors. The coefficients in classical logistic re-
gression are estimated using maximum likelihood, a procedure that can often work
well for models with few predictors fit to reasonably large samples (but see Section
5.8 for a potential problem).

As with the linear model, the standard errors represent estimation uncertainty.
We can roughly say that coefficient estimates within 2 standard errors of β̂ are con-
sistent with the data. Figure 5.3 shows the normal distribution that approximately
represents the range of possible values of β. For the voting example, the coefficient
of income has an estimate β̂ of 0.33 and a standard error of 0.06; thus the data are
roughly consistent with values of β in the range [0.33 ± 2 · 0.06] = [0.21, 0.45].

Statistical significance. As with linear regression, a coefficient is considered “sta-
tistically significant” if it is at least 2 standard errors away from zero. In the voting
example, the coefficient of income is statistically significant and positive, meaning
that we can be fairly certain that, in the population represented by this survey, posi-
tive differences in income generally correspond to positive (not negative) differences
in the probability of supporting Bush for president.

Also as with linear regression, we usually do not try to interpret the statistical
significance of the intercept. The sign of an intercept is not generally of any interest,
and so it is usually meaningless to compare it to zero or worry about whether it is
statistically significantly different from zero.

Finally, when considering multiple inputs, we follow the same principles as with
linear regression when deciding when and how to include and combine inputs in a
model, as discussed in Section 4.6.
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Figure 5.4 Coefficient of income (on a 1–5 scale) with ±1 standard-error bounds in logistic
regressions predicting Republican preference for president, as estimated separately from
surveys in the second half of the twentieth century. The pattern of richer voters supporting
Republicans has increased since 1970. The data used in the estimate for 1992 appear in
Figure 5.1.

Predictions. Logistic regression predictions are probabilistic, so for each unob-
served future data point ỹi, there is a predictive probability,

p̃i = Pr(ỹi = 1) = logit−1(X̃iβ),

rather than a point prediction. For example, for a voter not in the survey with
income level 5 (recall the 5-point scale in Figure 5.1), the predicted probability of
supporting Bush is Pr(ỹi = 1) = logit−1(−1.40 + 0.33 · 5) = 0.55. We do not say
that our prediction for the outcome is 0.55, since the outcome ỹi—support for Bush
or not—itself will be 0 or 1.

Fitting and displaying the model in R

After fitting the logistic regression using the glm function (see page 79), we can
graph the data and fitted line (see Figure 5.1a) as follows:

R code plot (income, vote)

curve (invlogit (coef(fit.1)[1] + coef(fit.1)[2]*x), add=TRUE)

(The R code we actually use to make the figure has more steps so as to display
axis labels, jitter the points, adjust line thickness, and so forth.) Figure 5.1b has
dotted lines representing uncertainty in the coefficients; we display these by adding
the following to the plotting commands:

R code sim.1 <- sim (fit.1)

for (j in 1:10){

curve (invlogit (sim.1$beta[j,1] + sim.1$beta[j,2]*x),

col="gray", lwd=.5, add=TRUE)}

We demonstrate further use of the sim function in Chapter 7.

Displaying the results of several logistic regressions

We can display estimates from a series of logistic regressions in a single graph, just
as was done in Section 4.7 for linear regression coefficients. Figure 5.4 illustrates
with the estimate ±1 standard error for the coefficient for income on presidential
preference, fit to National Election Studies pre-election polls from 1952 through
2000. Higher income has consistently been predictive of Republican support, but
the connection has become stronger over the years.
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the error term in the latent-data formulation (5.4) of logistic regression. The logistic curve
in Figure 5.2a is the cumulative distribution function of this density. The maximum of
the density is 0.25, which corresponds to the maximum slope of 0.25 in the inverse-logit
function of Figure 5.2a.
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Figure 5.6 The probability density function of the latent variable zi in model (5.4) if the
linear predictor, Xiβ, has the value −1.07. The shaded area indicates the probability that
zi > 0, so that yi = 1 in the logistic regression.

5.3 Latent-data formulation

We can interpret logistic regression directly—as a nonlinear model for the proba-
bility of a “success” or “yes” response given some predictors—and also indirectly,
using what are called unobserved or latent variables. In this formulation, each dis-
crete outcome yi is associated with a continuous, unobserved outcome zi, defined
as follows:

yi =

{
1 if zi > 0
0 if zi < 0

zi = Xiβ + εi, (5.4)

with independent errors εi that have the logistic probability distribution. The lo-
gistic distribution is shown in Figure 5.5 and is defined so that

Pr(εi < x) = logit−1(x) for all x.

Thus, Pr(yi = 1) = Pr(zi > 0) = Pr(εi > −Xiβ) = logit−1(Xiβ), and so models
(5.1) and (5.4) are equivalent.

Figure 5.6 illustrates for an observation i with income level xi = 1 (that is, a
person in the lowest income category), whose linear predictor, Xiβ, thus has the
value −1.40 + 0.33 · 1 = −1.07. The curve illustrates the distribution of the latent
variable zi, and the shaded area corresponds to the probability that zi > 0, so that
yi = 1. In this example, Pr(yi = 1) = logit−1(−1.07) = 0.26.
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Interpretation of the latent variables

Latent variables are a computational trick but they can also be interpreted sub-
stantively. For example, in the pre-election survey, yi = 1 for Bush supporters and
0 for Clinton supporters. The unobserved continuous zi can be interpreted as the
respondent’s “utility” or preference for Bush, compared to Clinton: the sign of the
utility tells us which candidate is preferred, and its magnitude reveals the strength
of the preference.

Only the sign of zi, not its magnitude, can be determined directly from binary
data. However, we can learn more about the zi’s given the logistic regression pre-
dictors. In addition, in some settings direct information is available about the zi’s;
for example, a survey can ask “feeling thermometer” questions such as, “Rate your
feelings about George Bush on a 1–10 scale, with 1 being the most negative and 10
being the most positive.”

Nonidentifiability of the latent variance parameter

The logistic probability density function in Figure 5.5 appears bell-shaped, much
like the normal density that is used for errors in linear regression. In fact, the logistic
distribution is very close to the normal distribution with mean 0 and standard
deviation 1.6—an identity that we discuss further on page 118 in the context of
“probit regression.” For now, we merely note that the logistic model (5.4) for the
latent variable z is closely approximated by the normal regression model,

zi = Xiβ + εi, εi ∼ N(0, σ2), (5.5)

with σ = 1.6. This then raises the question, why not estimate σ?
We cannot estimate the parameter σ in model (5.5) because it is not identified

when considered jointly with the regression parameter β. If all the elements of β
are multiplied by a positive constant and σ is also multiplied by that constant, then
the model does not change. For example, suppose we fit the model

zi = −1.40 + 0.33xi + εi, εi ∼ N(0, 1.62).

This is equivalent to the model

zi = −14.0 + 3.3xi + εi, εi ∼ N(0, 162),

or

zi = −140 + 33xi + εi, εi ∼ N(0, 1602).

As we move from each of these models to the next, z is multiplied by 10, but
the sign of z does not change. Thus all the models have the same implications for
the observed data y: for each model, Pr(yi = 1) ≈ logit−1(−1.40 + 0.33xi) (only
approximate because the logistic distribution is not exactly normal).

Thus, model (5.5) has an essential indeterminacy when fit to binary data, and it
is standard to resolve this by setting the variance parameter σ to a fixed value, for
example 1.6, which is essentially equivalent to the unit logistic distribution.

5.4 Building a logistic regression model: wells in Bangladesh

We illustrate the steps of building, understanding, and checking the fit of a logistic
regression model using an example from economics (or perhaps it is psychology, or
public health): modeling the decisions of households in Bangladesh about whether
to change their source of drinking water.
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Figure 5.7 Wells in an area of Araihazar upazila, Bangladesh. Light and dark dots rep-
resent wells with arsenic greater than and less than the safety standard of 0.5 (in units
of hundreds of micrograms per liter). (The wells are located where people live. The empty
areas between the wells are mostly cropland.) Safe and unsafe wells are intermingled in
most of the area, which suggests that users of unsafe wells can switch to nearby safe wells.

Background

Many of the wells used for drinking water in Bangladesh and other South Asian
countries are contaminated with natural arsenic, affecting an estimated 100 million
people. Arsenic is a cumulative poison, and exposure increases the risk of cancer
and other diseases, with risks estimated to be proportional to exposure.

Any locality can include wells with a range of arsenic levels, as can be seen from
the map in Figure 5.7 of all the wells in a collection of villages in a small area of
Bangladesh. The bad news is that even if your neighbor’s well is safe, it does not
mean that yours is safe. However, the corresponding good news is that, if your well
has a high arsenic level, you can probably find a safe well nearby to get your water
from—if you are willing to walk the distance and your neighbor is willing to share.
(The amount of water needed for drinking is low enough that adding users to a
well would not exhaust its capacity, and the surface water in this area is subject to
contamination by microbes, hence the desire to use water from deep wells.)

In the area shown in Figure 5.7, a research team from the United States and
Bangladesh measured all the wells and labeled them with their arsenic level as well
as a characterization as “safe” (below 0.5 in units of hundreds of micrograms per
liter, the Bangladesh standard for arsenic in drinking water) or “unsafe” (above 0.5).
People with unsafe wells were encouraged to switch to nearby private or community
wells or to new wells of their own construction.

A few years later, the researchers returned to find out who had switched wells.
We shall perform a logistic regression analysis to understand the factors predictive
of well switching among the users of unsafe wells. In the notation of the previous
section, our outcome variable is

yi =

{
1 if household i switched to a new well
0 if household i continued using its own well.
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Figure 5.8 Histogram of distance to the nearest safe well, for each of the unsafe wells in
the Araihazar dataset (see Figure 5.7).

We consider the following inputs:

• A constant term

• The distance (in meters) to the closest known safe well

• The arsenic level of respondent’s well

• Whether any members of the household are active in community organizations

• The education level of the head of household.

We shall first fit the model just using distance to nearest well and then put in
arsenic concentration, organizational membership, and education.

Logistic regression with just one predictor

We fit the logistic regression in R:

R code fit.1 <- glm (switch ~ dist, family=binomial(link="logit"))

Displaying this yields

R output glm(formula = switch ~ dist, family=binomial(link="logit"))

coef.est coef.se

(Intercept) 0.6060 0.0603

dist -0.0062 0.0010

n = 3020, k = 2

residual deviance = 4076.2, null deviance = 4118.1 (difference = 41.9)

The coefficient for dist is −0.0062, which seems low, but this is misleading since
distance is measured in meters, so this coefficient corresponds to the difference
between, say, a house that is 90 meters away from the nearest safe well and a house
that is 91 meters away.

Figure 5.8 shows the distribution of dist in the data. It seems more reasonable
to rescale distance in 100-meter units:

R code dist100 <- dist/100

and refitting the logistic regression yields

R output glm(formula = switch ~ dist100, family=binomial(link="logit"))

coef.est coef.se

(Intercept) 0.61 0.06

dist100 -0.62 0.10

n = 3020, k = 2

residual deviance = 4076.2, null deviance = 4118.1 (difference = 41.9)
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Figure 5.9 Graphical expression of the fitted logistic regression, Pr(switching wells) =
logit−1(0.61 − 0.62 · dist100), with (jittered) data overlain. The predictor dist100 is
dist/100: distance to the nearest safe well in 100-meter units.

Graphing the fitted model

In preparing to plot the data, we first create a function to jitter the binary outcome
while keeping the points between 0 and 1:

R codejitter.binary <- function(a, jitt=.05){

ifelse (a==0, runif (length(a), 0, jitt), runif (length(a), 1-jitt, 1))

}

We can then graph the data and fitted model:3

R codeswitch.jitter <- jitter.binary (switch)

plot (dist, switch.jitter)

curve (invlogit (coef(fit.1)[1] + coef(fit.1)[2]*x), add=TRUE)

The result is displayed in Figure 5.9. The probability of switching is about 60% for
people who live near a safe well, declining to about 20% for people who live more
than 300 meters from any safe well. This makes sense: the probability of switching
is higher for people who live closer to a safe well.

Interpreting the logistic regression coefficients

We can interpret the coefficient estimates using evaluations of the inverse-logit
function and its derivative, as in the example of Section 5.1. Our model here is

Pr(switch) = logit−1(0.61 − 0.62 · dist100).

1. The constant term can be interpreted when dist100 = 0, in which case the
probability of switching is logit−1(0.61) = 0.65. Thus, the model estimates a
65% probability of switching if you live right next to an existing safe well.

2. We can evaluate the predictive difference with respect to dist100 by computing
the derivative at the average value of dist100 in the dataset, which is 0.48 (that
is, 48 meters; see Figure 5.8). The value of the linear predictor here is 0.61−0.62 ·
0.48 = 0.31, and so the slope of the curve at this point is −0.62e0.31/(1+e0.31)2 =
−0.15. Thus, adding 1 to dist100—that is, adding 100 meters to the distance
to the nearest safe well—corresponds to a negative difference in the probability
of switching of about 15%.

3 Another display option, which would more clearly show the differences between households that
did and did not switch, would be to overlay separate histograms of dist for the switchers and
nonswitchers.
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Figure 5.10 Histogram of arsenic levels in unsafe wells (those exceeding 0.5) in the mea-
sured area of Araihazar, Bangladesh (see Figure 5.7).

3. More quickly, the “divide by 4 rule” gives us −0.62/4 = −0.15. This comes out
the same, to two decimal places, as was calculated using the derivative because
the curve passes through the 50% point right in the middle of the data (see
Figure 5.9).

In addition to interpreting its magnitude, we can look at the statistical signifi-
cance of the coefficient for distance. The slope is estimated well, with a standard
error of only 0.10, which is tiny compared to the coefficient estimate of −0.62. The
approximate 95% interval is [−0.82,−0.42], which is clearly statistically significantly
different from zero.

Adding a second input variable

We now extend the well-switching example by adding the arsenic level of the existing
well as a regression input. At the levels present in the Bangladesh drinking water,
the health risks from arsenic are roughly proportional to exposure, and so we would
expect switching to be more likely from wells with high arsenic levels. Figure 5.10
shows the arsenic levels of the unsafe wells before switching.

R code fit.3 <- glm (switch ~ dist100 + arsenic, family=binomial(link="logit"))

which, when displayed, yields

R output coef.est coef.se

(Intercept) 0.00 0.08

dist100 -0.90 0.10

arsenic 0.46 0.04

n = 3020, k = 3

residual deviance = 3930.7, null deviance = 4118.1 (difference = 187.4)

Thus, comparing two wells with the same arsenic level, every 100 meters in distance
to the nearest safe well corresponds to a negative difference of 0.90 in the logit prob-
ability of switching. Similarly, a difference of 1 in arsenic concentration corresponds
to a 0.46 positive difference in the logit probability of switching. Both coefficients
are statistically significant, each being more than 2 standard errors away from zero.
And both their signs make sense: switching is easier if there is a nearby safe well,
and if a household’s existing well has a high arsenic level, there should be more
motivation to switch.

For a quick interpretation, we divide the coefficients by 4: thus, 100 meters more
in distance corresponds to an approximately 22% lower probability of switching,
and 1 unit more in arsenic concentration corresponds to an approximately 11%
positive difference in switching probability.

Comparing these two coefficients, it would at first seem that distance is a more
important factor than arsenic level in determining the probability of switching.
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Figure 5.11 Fitted logistic regression of probability of switching from an unsafe well as a
function of two variables, plotted (a) as a function of distance to nearest safe well and (b)
as a function of arsenic level of existing well. For each plot, the other input variable is
held constant at different representative values.

Such a statement is misleading, however, because in our data dist100 shows less
variation than arsenic: the standard deviation of distances to the nearest well is
0.38 (in units of 100 meters), whereas arsenic levels have a standard deviation of 1.10
on the scale used here. Thus, the logistic regression coefficients corresponding to 1-
standard-deviation differences are −0.90 ·0.38 = −0.34 for distance and 0.46 ·1.10 =
0.51 for arsenic level. Dividing by 4 yields the quick summary estimate of a 1-
standard-deviation difference in distance or arsenic level corresponding to an 8%
negative difference or a 13% positive difference, respectively, in Pr(switch).

Comparing the coefficient estimates when adding a predictor

The coefficient for dist100 changes from −0.62 in the original model to 0.90 when
arsenic level is added to the model. This change occurs because wells that are far
from the nearest safe well are also likely to be particularly high in arsenic.

Graphing the fitted model with two predictors

The most natural way to graph the regression of y on two predictors might be as
a three-dimensional surface, with the vertical axis showing Pr(y = 1) as a function
of predictors plotted on the two horizontal axes.

However, we find such graphs hard to read, so instead we make separate plots as
a function of each of the two variables; see Figure 5.11. As with the lines in Figure
3.4, we can plot the focus input variable on the x-axis and use multiple lines to
show the fit for different values of the other input. To produce Figure 5.11a, we
first plot the (jittered) data points, forcing zero to be included in the x-range of
the plot because it is a natural baseline comparison for distance:

R codeplot (dist, switch.jitter, xlim=c(0,max(dist)))

We next add the fitted curves:

R codecurve (invlogit (cbind (1, x/100, .5) %*% coef(fit.3)), add=TRUE)

curve (invlogit (cbind (1, x/100, 1.0) %*% coef(fit.3)), add=TRUE)

We need to divide x by 100 here because the plot is in the scale of meters but the
model is defined in terms of dist100 = dist/100.

The object created by cbind(1,x/100,.5) is an n × 3 matrix constructed from
a column of 1’s, the vector x (used internally by the curve function), and a vector
of .5’s. In constructing the matrix, R automatically expands the scalars 1 and
.5 to the length of the vector x. For the two lines, we pick arsenic levels of 0.5
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and 1.0 because 0.5 is the minimum value of arsenic concentration (since we are
only studying users of unsafe wells), and a difference of 0.5 represents a reasonable
comparison, given the distribution of arsenic levels in the data (see Figure 5.10).

Similar commands are used to make Figure 5.11b, showing the probability of
switching as a function of arsenic concentration with distance held constant:

R code plot (arsenic, switch.jitter, xlim=c(0,max(arsenic)))

curve (invlogit (cbind (1, 0, x) %*% coef(fit.3)), add=TRUE)

curve (invlogit (cbind (1,.5, x) %*% coef(fit.3)), add=TRUE)

5.5 Logistic regression with interactions

We continue our modeling by adding the interaction between the two inputs:

R code fit.4 <- glm (switch ~ dist100 + arsenic + dist100:arsenic,

family=binomial(link="logit"))

display (fit.4)

which yields

R output coef.est coef.se

(Intercept) -0.15 0.12

dist100 -0.58 0.21

arsenic 0.56 0.07

dist100:arsenic -0.18 0.10

n = 3020, k = 4

residual deviance = 3927.6, null deviance = 4118.1 (difference = 190.5)

To understand the numbers in the table, we use the following tricks:

• Evaluating predictions and interactions at the mean of the data, which have
average values of 0.48 for dist100 and 1.66 for arsenic (that is, a mean distance
of 48 meters to the nearest safe well, and a mean arsenic level of 1.66 among the
unsafe wells).

• Dividing by 4 to get approximate predictive differences on the probability scale.

We now interpret each regression coefficient in turn.

• Constant term: logit−1(−0.15) = 0.47 is the estimated probability of switching,
if the distance to the nearest safe well is 0 and the arsenic level of the current
well is 0. This is an impossible condition (since arsenic levels all exceed 0.5 in
our set of unsafe wells), so we do not try to interpret the constant term. Instead,
we can evaluate the prediction at the average values of dist100 = 0.48 and
arsenic = 1.66, where the probability of switching is logit−1(−0.15 − 0.58 ·
0.48 + 0.56 · 1.66 − 0.18 · 0.48 · 1.66) = 0.59.

• Coefficient for distance: this corresponds to comparing two wells that differ by
1 in dist100, if the arsenic level is 0 for both wells. Once again, we should not
try to interpret this.

Instead, we can look at the average value, arsenic = 1.66, where distance has a
coefficient of −0.58− 0.18 · 1.66 = −0.88 on the logit scale. To quickly interpret
this on the probability scale, we divide by 4: −0.88/4 = −0.22. Thus, at the
mean level of arsenic in the data, each 100 meters of distance corresponds to an
approximate 22% negative difference in probability of switching.

• Coefficient for arsenic: this corresponds to comparing two wells that differ by 1
in arsenic, if the distance to the nearest safe well is 0 for both.

Instead, we evaluate the comparison at the average value for distance, dist100 =
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0.48, where arsenic has a coefficient of 0.56−0.18 ·0.48 = 0.47 on the logit scale.
To quickly interpret this on the probability scale, we divide by 4: 0.47/4 = 0.12.
Thus, at the mean level of distance in the data, each additional unit of arsenic
corresponds to an approximate 12% positive difference in probability of switching.

• Coefficient for the interaction term: this can be interpreted in two ways. Looking
from one direction, for each additional unit of arsenic, the value −0.18 is added to
the coefficient for distance. We have already seen that the coefficient for distance
is −0.88 at the average level of arsenic, and so we can understand the interaction
as saying that the importance of distance as a predictor increases for households
with higher existing arsenic levels.

Looking at it the other way, for each additional 100 meters of distance to the
nearest well, the value −0.18 is added to the coefficient for arsenic. We have
already seen that the coefficient for distance is 0.47 at the average distance to
nearest safe well, and so we can understand the interaction as saying that the
importance of arsenic as a predictor decreases for households that are farther
from existing safe wells.

Centering the input variables

As discussed earlier in the context of linear regression, before fitting interactions it
makes sense to center the input variables so that we can more easily interpret the
coefficients. The centered inputs are:

R codec.dist100 <- dist100 - mean(dist100)

c.arsenic <- arsenic - mean(arsenic)

We do not fully standardize these—that is, we do not scale by their standard
deviations—because it is convenient to be able to consider known differences on the
original scales of the data (100-meter distances and arsenic-concentration units).

Refitting the interaction model using the centered inputs

We can refit the model using the centered input variables, which will make the
coefficients much easier to interpret:

R codefit.5 <- glm (switch ~ c.dist100 + c.arsenic + c.dist100:c.arsenic,

family=binomial(link="logit"))

We center the inputs, not the predictors. Hence, we do not center the interaction
(dist100*arsenic); rather, we include the interaction of the two centered input
variables. Displaying fit.5 yields

R outputcoef.est coef.se

(Intercept) 0.35 0.04

c.dist100 -0.88 0.10

c.arsenic 0.47 0.04

c.dist100:c.arsenic -0.18 0.10

n = 3020, k = 4

residual deviance = 3927.6, null deviance = 4118.1 (difference = 190.5)

Interpreting the inferences on this new scale:

• Constant term: logit−1(0.35) = 0.59 is the estimated probability of switching, if
c.dist100 = c.arsenic = 0, that is, if distance to nearest safe well and arsenic
level are at their averages in the data. (We obtained this same calculation, but
with more effort, with our earlier model with uncentered inputs.)
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Figure 5.12 Fitted logistic regression of probability of switching from an unsafe well as a
function of distance to nearest safe well and arsenic level of existing well, for the model
with interactions. Compare to the no-interaction model in Figure 5.11.

• Coefficient for distance: this is the coefficient for distance (on the logit scale) if
arsenic level is at its average value. To quickly interpret this on the probability
scale, we divide by 4: −0.88/4 = −0.22. Thus, at the mean level of arsenic in the
data, each 100 meters of distance corresponds to an approximate 22% negative
difference in probability of switching.

• Coefficient for arsenic: this is the coefficient for arsenic level if distance to nearest
safe well is at its average value. To quickly interpret this on the probability
scale, we divide by 4: 0.47/4 = 0.12. Thus, at the mean level of distance in the
data, each additional unit of arsenic corresponds to an approximate 12% positive
difference in probability of switching.

• Coefficient for the interaction term: this is unchanged by centering and has the
same interpretation as before.

The predictions for new observations are unchanged. The linear centering of the
predictors changes the interpretations of the coefficients but does not change the
underlying model.

Statistical significance of the interaction

As can be seen from the regression table on the previous page, c.dist100:c.arsenic
has an estimated coefficient of −0.18 with a standard error of 0.10. The estimate
is not quite 2 standard errors away from zero and so is not quite statistically sig-
nificant. However, the negative sign makes sense—it is plausible that arsenic level
becomes a less important predictor for households that are farther from the nearest
safe well, and the magnitude of the association is also plausible. So we keep the
interaction in, following our general rules for regression coefficients and statistical
significance, as given in Section 4.6.

Graphing the model with interactions

The clearest way to visualize the interaction model is to plot the regression curves
as a function for each picture. The result is shown in Figure 5.12, the first graph of
which we make in R as follows (with similar commands for the other graph):

R code plot (dist, switch.jitter, xlim=c(0,max(dist)))

curve (invlogit (cbind(1,x/100, .5, .5*x/100) %*% coef(fit.4)), add=TRUE)

curve (invlogit (cbind(1,x/100,1.0,1.0*x/100) %*% coef(fit.4)), add=TRUE)

As Figure 5.12 makes clear, the interaction is not large in the range of most of the
data. The largest pattern that shows up is in Figure 5.12a, where the two lines
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intersect at around 300 meters. This graph shows evidence that the differences in
switching associated with differences in arsenic level are large if you are close to
a safe well, but with a diminishing effect if you are far from any safe well. This
interaction makes some sense; however, there is some uncertainty in the size of the
interaction (from the earlier regression table, an estimate of −0.18 with a standard
error of 0.10), and as Figure 5.12a shows, there are only a few data points in the
area where the interaction makes much of a difference.

The interaction also appears in Figure 5.12b, this time in a plot of probability of
switching as a function of arsenic concentration, at two different levels of distance.

Adding social predictors

Are well users more likely to switch if they have community connections or more
education? To see, we add two inputs:

• assoc = 1 if a household member is in any community organization

• educ = years of education of the well user.

We actually work with educ4 = educ/4, for the usual reasons of making its
regression coefficient more interpretable—it now represents the predictive difference
of adding four years of education.4

R outputglm(formula = switch ~ c.dist100 + c.arsenic + c.dist100:c.arsenic +

assoc + educ4, family=binomial(link="logit"))

coef.est coef.se

(Intercept) 0.20 0.07

c.dist100 -0.88 0.11

c.arsenic 0.48 0.04

c.dist100:c.arsenic -0.16 0.10

assoc -0.12 0.08

educ4 0.17 0.04

n = 3020, k = 6

residual deviance = 3905.4, null deviance = 4118.1 (difference = 212.7)

For households with unsafe wells, belonging to a community association surpris-
ingly is not predictive of switching, after controlling for the other factors in the
model. However, persons with higher education are more likely to switch: the crude
estimated difference is 0.17/4 = 0.04, or a 4% positive difference in switching prob-
ability when comparing households that differ by 4 years of education.5

The coefficient for education makes sense and is statistically significant, so we
keep it in the model. The coefficient for association does not make sense and is not
statistically significant, so we remove it. (See Section 4.6 for a fuller discussion of
including or excluding regression predictors.) We are left with

R outputglm(formula = switch ~ c.dist100 + c.arsenic + c.dist100:c.arsenic +

educ4, family = binomial(link = "logit"))

coef.est coef.se

(Intercept) 0.15 0.06

4 The levels of education among the 3000 respondents varied from 0 to 17 years, with nearly a
third having zero. We repeated our analysis with a discrete recoding of the education variable
(0 = 0 years, 1 = 1–8 years, 2 = 9–12 years, 3 = 12+ years), and our results were essentially
unchanged.

5 Throughout this example, we have referred to “coefficients” and “differences,” rather than to
“effects” and “changes,” because the observational nature of the data makes it difficult to
directly interpret the regression model causally. We continue causal inference more carefully in
Chapter 9, briefly discussing the arsenic problem at the end of Section 9.8.
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c.dist100 -0.87 0.11

c.arsenic 0.48 0.04

c.dist100:c.arsenic -0.16 0.10

educ4 0.17 0.04

n = 3020, k = 5

residual deviance = 3907.9, null deviance = 4118.1 (difference = 210.2)

Adding further interactions

When inputs have large main effects, it is our general practice to include their
interactions as well. We first create a centered education variable:

R code c.educ4 <- educ4 - mean(educ4)

and then fit a new model interacting it with distance to nearest safe well and arsenic
level of the existing well:

R output glm(formula=switch~c.dist100 + c.arsenic + c.educ4 + c.dist100:c.arsenic +

c.dist100:c.educ4 + c.arsenic:c.educ4, family=binomial(link="logit"))

coef.est coef.se

(Intercept) 0.36 0.04

c.dist100 -0.90 0.11

c.arsenic 0.49 0.04

c.educ4 0.18 0.04

c.dist100:c.arsenic -0.12 0.10

c.dist100:c.educ4 0.32 0.11

c.arsenic:c.educ4 0.07 0.04

n = 3020, k = 7

residual deviance = 3891.7, null deviance = 4118.1 (difference = 226.4)

We can interpret these new interactions by understanding how education modifies
the predictive difference corresponding to distance and arsenic.

• Interaction of distance and education: a difference of 4 years of education corre-
sponds to a difference of 0.32 in the coefficient for dist100. As we have already
seen, dist100 has a negative coefficient on average; thus positive changes in
education reduce distance’s negative association. This makes sense: people with
more education probably have other resources so that walking an extra distance
to get water is not such a burden.

• Interaction of arsenic and education: a difference of 4 years of education corre-
sponds to a difference of 0.07 in the coefficient for arsenic. As we have already
seen, arsenic has a positive coefficient on average; thus increasing education
increases arsenic’s positive association. This makes sense: people with more edu-
cation could be more informed about the risks of arsenic and thus more sensitive
to increasing arsenic levels (or, conversely, less in a hurry to switch from wells
with arsenic levels that are relatively low).

As before, centering allows us to interpret the main effects as coefficients when
other inputs are held at their average values in the data.

Standardizing predictors

We should think seriously about standardizing all predictors as a default option
when fitting models with interactions. The struggles with dist100 and educ4 in
this example suggest that standardization—by subtracting the mean from each of
the continuous input variables and dividing by 2 standard deviations, as suggested
near the end of Section 4.2—might be the simplest approach.
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Figure 5.13 (a) Residual plot and (b) binned residual plot for the well-switching model
shown on page 96. The strong patterns in the raw residual plot arise from the discreteness
of the data and inspire us to use the binned residual plot instead. The bins are not equally
spaced; rather, each bin has an equal number of data points. The light lines in the binned
residual plot indicate theoretical 95% error bounds.

5.6 Evaluating, checking, and comparing fitted logistic regressions

Residuals and binned residuals

We can define residuals for logistic regression, as with linear regression, as observed
minus expected values:

residuali = yi − E(yi|Xi) = yi − logit−1(Xiβ).

The data yi are discrete and so are the residuals. For example, if logit−1(Xiβ) = 0.7,
then residuali = −0.7 or +0.3, depending on whether yi = 0 or 1. As a result, plots
of raw residuals from logistic regression are generally not useful. For example, Figure
5.13a plots residuals versus fitted values for the well-switching regression.

Instead, we plot binned residuals by dividing the data into categories (bins) based
on their fitted values, and then plotting the average residual versus the average fitted
value for each bin. The result appears in Figure 5.13b; here we divided the data into
40 bins of equal size.6 The dotted lines (computed as 2

√
p(1 − p)/n, where n is the

number of points per bin, 3020/40 = 75 in this case) indicate ±2 standard-error
bounds, within which one would expect about 95% of the binned residuals to fall,
if the model were actually true. One of the 40 binned residuals in Figure 5.13b falls
outside the bounds, which is not a surprise, and no dramatic pattern appears.

Plotting binned residuals versus inputs of interest

We can also look at residuals in a more structured way by binning and plotting them
with respect to individual input variables or combinations of inputs. For example,
in the well-switching example, Figure 5.14a displays the average residual in each
bin as defined by distance to the nearest safe well, and Figure 5.14b shows average
residuals, binned by arsenic levels.

This latter plot shows a disturbing pattern, with an extreme negative residual
in the first three bins: people with wells in the lowest bin (which turns out to
correspond to arsenic levels between 0.51 and 0.53) are about 20% less likely to

6 There is typically some arbitrariness in choosing the number of bins: we want each bin to contain
enough points so that the averaged residuals are not too noisy, but it helps to have many bins
so as to see more local patterns in the residuals. For this example, 40 bins seemed to give
sufficient resolution, while still having enough points per bin. Another approach would be to
apply a nonparametric smoothing procedure such as lowess (Cleveland, 1979) to the residuals.
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Figure 5.14 Plots of residuals for the well-switching model, binned and plotted versus (a)
distance to nearest well and (b) arsenic level. The dotted lines in the binned residual plot
indicate theoretical 95% error bounds that would be appropriate if the model were true.
The second plot shows a problem with the model in the lowest bins of arsenic levels.

switch than is predicted by the model: the average predicted probability of switching
for these users is 49%, but actually only 32% of them switched. There is also a slight
pattern in the residuals as a whole, with positive residuals (on average) in the middle
of the range of arsenic and negative residuals at the high end.

Considering a log transformation

To experienced regression modelers, a rising and then falling pattern of residuals
such as in Figure 5.14b is a signal to consider taking the logarithm of the predictor
on the x axis—in this case, arsenic level. Another option would be to add a quadratic
term to the regression; however, since arsenic is an all-positive variable, it makes
sense to consider its logarithm. We do not, however, model distance on the log
scale, since the residual plot, as shown in Figure 5.13a, indicates a good fit of the
linear model.

We define

R code log.arsenic <- log(arsenic)

c.log.arsenic <- log.arsenic - mean (log.arsenic)

and then fit the same model as before, using log.arsenic in place of arsenic:

R output glm(formula = switch ~ c.dist100 + c.log.arsenic + c.educ4 +

c.dist100:c.log.arsenic + c.dist100:c.educ4 + c.log.arsenic:c.educ4,

family = binomial(link = "logit"))

coef.est coef.se

(Intercept) 0.35 0.04

c.dist100 -0.98 0.11

c.log.arsenic 0.90 0.07

c.educ4 0.18 0.04

c.dist100:c.log.arsenic -0.16 0.19

c.dist100:c.educ4 0.34 0.11

c.log.arsenic:c.educ4 0.06 0.07

n = 3020, k = 7

residual deviance = 3863.1, null deviance = 4118.1 (difference = 255)

This is qualitatively similar to the model on the original scale: the interactions have
the same sign as before, and the signs of the main effects are also unchanged.

Figure 5.15a shows the predicted probability of switching as a function of arsenic
level. Compared to the model in which arsenic was included as a linear predictor
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Figure 5.15 (a) Probability of switching as a function of arsenic level (at two different
values of dist and with education held constant at its average value), for the model that
includes arsenic on the logarithmic scale. Compared to Figure 5.11b (the corresponding
plot with arsenic level included as a linear predictor), the model looks similar, but with a
steeper slope at the low end of the curve and a more gradual slope at the high end.
(b) Average residuals for this model, binned by arsenic level. Compared to Figure 5.14b, the
residual plot still shows problems at the lowest arsenic levels but otherwise looks cleaner.

(see Figure 5.11b on page 91), the curves are compressed at the left and stretched
out at the right.

Figure 5.15b displays the residuals for the log model, again binned by arsenic
level. Compared to the earlier model, the residuals look better but there is still a
problem at the very low end. Users of wells with arsenic levels just above 0.50 are
less likely to switch than predicted by the model. At this point, we do not know
if this can be explained psychologically (measurements just over the threshold do
not seem so bad), through measurement error (perhaps some of the wells we have
recorded as 0.51 or 0.52 were measured before or after and found to have arsenic
levels below 0.5), or for some other reason.

Error rate and comparison to the null model

The error rate is defined as the proportion of cases for which the determinis-
tic prediction—guessing yi = 1 if logit−1(Xiβ) > 0.5 and guessing yi = 0 if
logit−1(Xiβ) < 0.5—is wrong. In R, we could write:

R codeerror.rate <- mean ((predicted>0.5 & y==0) | (predicted<.5 & y==1))

The error rate should always be less than 1/2 (otherwise we could simply set all
the β’s to 0 and get a better-fitting model), but in many cases we would expect it to
be much lower. We can compare it to the error rate of the null model, which is simply
to assign the same probability to each yi. This is simply logistic regression with only
a constant term, and the estimated probability will simply be the proportion of 1’s
in the data, or p =

∑n
i=1 yi/n (recalling that each yi = 0 or 1). The error rate of

the null model is then p or 1−p, whichever is lower.
For example, in the well-switching example, the null model has an error rate

of 42% (58% of the respondents are switchers and 42% are not, thus the model
with no predictors gives each person a 58% chance of switching, which corresponds
to a point prediction of switching for each person, and that guess will be wrong
42% of the time). Our final logistic regression model (as calculated in R as shown)
has an error rate of 36%. The model correctly predicts the behavior of 64% of the
respondents.
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The error rate is not a perfect summary of model misfit, because it does not
distinguish between predictions of 0.6 and 0.9, for example. But, as with R2 for the
linear model, it is easy to interpret and is often helpful in understanding the model
fit. An error rate equal to the null rate is terrible, and the best possible error rate
is zero. Thus, the well-switching model is not particularly impressive with an error
rate of 38%, a mere 4% better than simply guessing that all people will switch.

This low error rate does not mean the model is useless—as the plots showed, the
fitted model is highly predictive of the probability of switching. But most of the
data are close to the mean level of the inputs (distances of less than 100 meters to
the nearest safe well, and arsenic levels between 0.5 and 1.0), and so for most of
the data, the simple mean prediction, Pr(switch)=0.58, works well. The model is
informative near the extremes, but relatively few data points are out there and so
the overall predictive accuracy of the model is not high.

Deviance

For logistic regressions and other discrete-data models, it does not quite make
sense to calculate residual standard deviation and R2, for pretty much the same
reason that the models are not simply fit by least squares—the squared error is
not the mathematically optimal measure of model error. Instead, it is standard to
use deviance, a statistical summary of model fit, defined for logistic regression and
other generalized linear models to be an analogy to residual standard deviation.

For now, you should know the following properties of deviance:

• Deviance is a measure of error; lower deviance means better fit to data.

• If a predictor that is simply random noise is added to a model, we expect deviance
to decrease by 1, on average.

• When an informative predictor is added to a model, we expect deviance to de-
crease by more than 1. When k predictors are added to a model, we expect
deviance to decrease by more than k.

For classical (non-multilevel) models, the deviance is defined as −2 times the loga-
rithm of the likelihood function (up to an arbitrary additive constant, since we are
always comparing deviances, never evaluating them on their own).

For example, in the first model fit to the well-switching example, the display
on page 88 reports that the “null deviance” is 4118.1 and the “residual deviance”
is 4076.2. The null deviance corresponds to the null model, with just the constant
term. Thus, by adding dist as a predictor in the model, the deviance has decreased
by 41.9. This is much more than the expected decrease of 1 if the predictor were
noise, so it has clearly improved the fit.

The next fitted model uses dist100 = dist/100 as a predictor instead. The de-
viance stays at 4076.2, because linear transformations have no effect on predictions
in classical regression models. (We shall see, however, that linear transformations
can make a difference in multilevel models.)

We then add the arsenic predictor, and the deviance decreases to 3930.7, a
drop of 145.5—once again, much more than the expected decrease of 1 if the new
predictor were noise, so it has clearly improved the fit.

The following model including the interaction between dist and arsenic has a
residual deviance of 3927.6, a decrease of 3.1 from the previous model, only a bit
more than the expected decrease of 1 if the new predictor were noise. This decrease
in deviance is not statistically significant (we can see this because the coefficient
for the added predictor is less than 2 standard errors from zero) but, as discussed
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in Section 5.5, we keep the interaction in the model because it makes sense in the
applied context.

Adding the social predictors assoc and educ to the regression decreases the de-
viance to 3905.4, implying better prediction than all the previous models. Removing
assoc increases the deviance only a small amount, to 3907.9. Adding interactions
of education with distance and arsenic level reduces the deviance by quite a bit
more, to 3891.7.

Transforming arsenic on to the log scale—that is, removing arsenic from the
model and replacing it with log.arsenic, takes the deviance down to 3863.1, an-
other large improvement.

For multilevel models, deviance is generalized to the deviance information crite-
rion (DIC), as described in Section 24.3.

5.7 Average predictive comparisons on the probability scale

As illustrated, for example, by Figure 5.11 on page 91, logistic regressions are
nonlinear on the probability scale—that is, a specified difference in one of the x
variables does not correspond to a constant difference in Pr(y = 1). As a result,
logistic regression coefficients cannot directly be interpreted on the scale of the
data. Logistic regressions are inherently more difficult than linear regressions to
interpret.

Graphs such as Figure 5.11 are useful, but for models with many predictors, or
where graphing is inconvenient, it is helpful to have a summary, comparable to
the linear regression coefficient, which gives the expected, or average, difference in
Pr(y=1) corresponding to a unit difference in each of the input variables.

Example: well switching in Bangladesh

For a model with nonlinearity or interactions, or both, this average predictive com-
parison depends on the values of the input variables, as we shall illustrate with the
well-switching example. To keep the presentation clean at this point, we shall work
with a simple no-interaction model,

R codefit.10 <- glm (switch ~ dist100 + arsenic + educ4,

family=binomial(link="logit"))

which yields

R outputcoef.est coef.se

(Intercept) -0.21 0.09

dist100 -0.90 0.10

arsenic 0.47 0.04

educ4 0.17 0.04

n = 3020, k = 4

residual deviance = 3910.4, null deviance = 4118.1 (difference = 207.7)

giving the probability of switching as a function of distance to the nearest well (in
100-meter units), arsenic level, and education (in 4-year units).

Average predictive difference in probability of switching, comparing households that
are next to, or 100 meters from, the nearest safe well. Let us compare two house-
holds—one with dist100 = 0 and one with dist100 = 1—but identical in the
other input variables, arsenic and educ4. The predictive difference in probability
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of switching between these two households is

δ(arsenic, educ4) = logit−1(−0.21 − 0.90 · 1 + 0.47 · arsenic + 0.17 · educ4) −
logit−1(−0.21 − 0.90 · 0 + 0.47 · arsenic + 0.17 · educ4). (5.6)

We write δ as a function of arsenic and educ4 to emphasize that it depends on
the levels of these other variables.

We average the predictive differences over the n households in the data to obtain:

average predictive difference: =
1

n

n∑
i=1

δ(arsenici, educ4i). (5.7)

In R:

R code b <- coef (fit.10)

hi <- 1

lo <- 0

delta <- invlogit (b[1] + b[2]*hi + b[3]*arsenic + b[4]*educ4) -

invlogit (b[1] + b[2]*lo + b[3]*arsenic + b[4]*educ4)

print (mean(delta))

The result is −0.20, implying that, on average in the data, households that are
100 meters from the nearest safe well are 20% less likely to switch, compared to
househoulds that are right next to the nearest safe well, at the same arsenic and
education levels.

Average predictive difference in probability of switching, comparing households with
existing arsenic levels of 0.5 and 1.0. We can similarly compute the predictive
difference, and average predictive difference, comparing households at two different
arsenic levels, assuming equality in distance to nearest safe well and education
levels. We choose arsenic = 0.5 and 1.0 as comparison points because 0.5 is the
lowest unsafe level, 1.0 is twice that, and this comparison captures much of the
range of the data (see Figure 5.10 on page 90). Here is the computation:

R code hi <- 1.0

lo <- 0.5

delta <- invlogit (b[1] + b[2]*dist100 + b[3]*hi + b[4]*educ4) -

invlogit (b[1] + b[2]*dist100 + b[3]*lo + b[4]*educ4)

print (mean(delta))

The result is 0.06—so this comparison corresponds to a 6% difference in probability
of switching.

Average predictive difference in probability of switching, comparing householders
with 0 and 12 years of education. Similarly, we can compute an average predictive
difference of the probability of switching for householders with 0 compared to 12
years of education (that is, comparing educ4 = 0 to educ4 = 3):

R code hi <- 3

lo <- 0

delta <- invlogit (b[1]+b[2]*dist100+b[3]*arsenic+b[4]*hi) -

invlogit (b[1]+b[2]*dist100+b[3]*arsenic+b[4]*lo)

print (mean(delta))

which comes to 0.12.
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Average predictive comparisons in the presence of interactions

We can perform similar calculations for models with interactions. For example,
consider the average predictive difference, comparing dist = 0 to dist = 100, for
the model that includes a distance × arsenic interaction:

R codefit.11 <- glm (switch ~ dist100 + arsenic + educ4 + dist100:arsenic,

family=binomial(link="logit"))

which, when displayed, yields

R outputcoef.est coef.se

(Intercept) -0.35 0.13

dist100 -0.60 0.21

arsenic 0.56 0.07

educ4 0.17 0.04

dist100:arsenic -0.16 0.10

n = 3020, k = 5

residual deviance = 3907.9, null deviance = 4118.1 (difference = 210.2)

Here is the R code for computing the average predictive difference comparing
dist1 = 1 to dist1 = 0:

R codeb <- coef (fit.11)

hi <- 1

lo <- 0

delta <- invlogit (b[1] + b[2]*hi + b[3]*arsenic + b[4]*educ4 +

b[5]*hi*arsenic) -

invlogit (b[1] + b[2]*lo + b[3]*arsenic + b[4]*educ4 +

b[5]*lo*arsenic)

print (mean(delta))

which comes to −0.19.

General notation for predictive comparisons

Considering each input one at a time, we use the notation u for the input of interest
and v for the vector of all other inputs. Suppose we are considering comparisons
of u = u(1) to u = u(0) with all other inputs held constant (for example, we have
considered the comparison of households that are 0 meters or 100 meters from
the nearest safe well). The predictive difference in probabilities between two cases,
differing only in u, is

δ(u(hi), u(lo), v, β) = Pr(y=1|u(hi), v, β) − Pr(y=1|u(lo), v, β), (5.8)

where the vertical bar in these expressions is read “conditional on” (for example,
the probability that y = 1 given u(hi), v, and β).

The average predictive difference then averages over the n points in the dataset
used to fit the logistic regression:

Δ(u(hi), u(lo)) =
1

n

n∑
i=1

δ(u(hi), u(lo), vi, β), (5.9)

where vi represents the vector of other inputs (in our example, arsenic and education
levels) for data point i. These expressions generalize formulas (5.6) and (5.7).

For models with interactions, the predictive difference formula (5.8) must be
computed carefully, with awareness of where each input enters into the regression
model. The distinction between input variables (in this case, distance, arsenic, and



104 LOGISTIC REGRESSION

−㘀 −㐀 −㈰ ㈀ 㐀 㘀

〮
　

　⸲
〮
㐀

　⸶
〮
㠀

㄀⸰
砀

礀

Figure 5.16 Example of data for which a logistic regression model is nonidentifiable. The
outcome y equals 0 for all data below x = 2 and 1 for all data above x = 2, hence the
best-fit logistic regression line is y = logit−1(∞(x − 2)), which has an infinite slope at
x = 2.

education) and predictors (constant term, distance, arsenic, education, and distance
× arsenic) is crucial. We discuss average predictive comparisons further in Section
21.4.

5.8 Identifiability and separation

There are two reasons that a logistic regression can be nonidentified (that is, have
parameters that cannot be estimated from the available data and model, as dis-
cussed in Section 4.5 in the context of linear regression):

1. As with linear regression, if predictors are collinear, then estimation of the linear
predictor, Xβ, does not allow separate estimation of the individual parameters
β. We can handle this kind of nonidentifiability in the same way that we would
proceed for linear regression, as described in Section 4.5.

2. A completely separate identifiability problem, called separation, can arise from
the discreteness of the data.

• If a predictor xj is completely aligned with the outcome, so that y = 1 for all
the cases where xj exceeds some threshold T , and y = 0 for all cases where
xj < T , then the best estimate for the coefficient βj is ∞. Figure 5.16 shows
an example. Exercise 5.11 gives an example with a binary predictor.

• Conversely, if y = 1 for all cases where xj < T , and y = 0 for all cases where

xj > T , then β̂j will be −∞.

• More generally, this problem will occur if any linear combination of predictors
is perfectly aligned with the outcome. For example, suppose that 7x1+x2−3x3

is completely positively aligned with the data, with y = 1 if and only if
this linear combination of predictors exceeds some threshold. Then the linear
combination 7β̂1 + β̂2 − 3β̂3 will be estimated at ∞, which will cause at least
one of the three coefficients β1, β2, β3 to be estimated at ∞ or −∞.

One way to handle separation is using a Bayesian or penalized-likelihood ap-
proach (implemented for R in the brlr package) that provides a small amount
of information on all the regression coefficients, including those that are not
identified from the data alone. (See Chapter 18 for more on Bayesian inference.)
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5.9 Bibliographic note

According to Cramer (2003, chapter 9), logistic regression was introduced for bi-
nary data in the mid-twentieth century and has become increasingly popular as
computational improvements have allowed it to become a routine data-analytic
tool.

For more on income and voting in presidential elections, see Gelman, Shor, et al.
(2005). The example of drinking water in Bangladesh is described further by van
Geen et al. (2003) and Gelman, Trevisani, et al. (2004).

Binned residual plots and related tools for checking the fit of logistic regressions
are discussed by Landwehr, Pregibon, and Shoemaker (1984), Gelman, Goegebeur,
et al. (2000), Pardoe and Cook (2002), and Pardoe (2004).

Deviance is discussed by McCullagh and Nelder (1989); related ideas include the
Akaike (1973) information criterion (AIC), Cp (Mallows, 1973), and the deviance
information criterion (DIC; Spiegelhalter et al., 2002). See also Fox (2002) for an
applied overview and Gelman et al. (2003, sections 6.7–6.8) for a Bayesian perspec-
tive.

Nonidentifiability of logistic regression and separation in discrete data are dis-
cussed by Albert and Anderson (1984), Lesaffre and Albert (1989), Heinze and
Schemper (2003), as well as in the book by Agresti (2002). Zorn (2005) proposes a
Bayesian resolution, following Firth (1993).

5.10 Exercises

1. The folder nes contains the survey data of presidential preference and income for
the 1992 election analyzed in Section 5.1, along with other variables including
sex, ethnicity, education, party identification, and political ideology.

(a) Fit a logistic regression predicting support for Bush given all these inputs.
Consider how to include these as regression predictors and also consider pos-
sible interactions.

(b) Evaluate and compare the different models you have fit. Consider coefficient
estimates and standard errors, residual plots, and deviances.

(c) For your chosen model, discuss and compare the importance of each input
variable in the prediction.

2. Without using a computer, sketch the following logistic regression lines:

(a) Pr(y = 1) = logit−1(x)

(b) Pr(y = 1) = logit−1(2 + x)

(c) Pr(y = 1) = logit−1(2x)

(d) Pr(y = 1) = logit−1(2 + 2x)

(e) Pr(y = 1) = logit−1(−2x)

3. You are interested in how well the combined earnings of the parents in a child’s
family predicts high school graduation. You are told that the probability a child
graduates from high school is 27% for children whose parents earn no income and
is 88% for children whose parents earn $60,000. Determine the logistic regression
model that is consistent with this information. (For simplicity you may want to
assume that income is measured in units of $10,000).

4. Perform a logistic regression for a problem of interest to you. This can be from
a research project, a previous class, or data you download. Choose one variable
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of interest to be the outcome, which will take on the values 0 and 1 (since you
are doing logistic regression).

(a) Analyze the data in R. Use the display() function to summarize the results.

(b) Fit several different versions of your model. Try including different predictors,
interactions, and transformations of the inputs.

(c) Choose one particular formulation of the model and do the following:

i. Describe how each input affects Pr(y = 1) in the fitted model. You must
consider the estimated coefficient, the range of the input values, and the
nonlinear inverse-logit function.

ii. What is the error rate of the fitted model? What is the error rate of the
null model?

iii. Look at the deviance of the fitted and null models. Does the improvement
in fit seem to be real?

iv. Use the model to make predictions for some test cases of interest.

5. In a class of 50 students, a logistic regression is performed of course grade (pass
or fail) on midterm exam score (continuous values with mean 60 and standard
deviation 15). The fitted model is Pr(pass) = logit−1(−24 + 0.4x).

(a) Graph the fitted model. Also on this graph put a scatterplot of hypothetical
data consistent with the information given.

(b) Suppose the midterm scores were transformed to have a mean of 0 and stan-
dard deviation of 1. What would be the equation of the logistic regression
using these transformed scores as a predictor?

(c) Create a new predictor that is pure noise (for example, in R you can create
newpred <- rnorm (n,0,1)). Add it to your model. How much does the
deviance decrease?

6. Latent-data formulation of the logistic model: take the model Pr(y = 1) =
logit−1(1 + 2x1 + 3x2) and consider a person for whom x1 = 1 and x2 = 0.5.
Sketch the distribution of the latent data for this person. Figure out the proba-
bility that y=1 for the person and shade the corresponding area on your graph.

7. Limitations of logistic regression: consider a dataset with n = 20 points, a single
predictor x that takes on the values 1, . . . , 20, and binary data y. Construct data
values y1, . . . , y20 that are inconsistent with any logistic regression on x. Fit a
logistic regression to these data, plot the data and fitted curve, and explain why
you can say that the model does not fit the data.

8. Building a logistic regression model: the folder rodents contains data on rodents
in a sample of New York City apartments.

(a) Build a logistic regression model to predict the presence of rodents (the vari-
able rodent2 in the dataset) given indicators for the ethnic groups (race).
Combine categories as appropriate. Discuss the estimated coefficients in the
model.

(b) Add to your model some other potentially relevant predictors describing the
apartment, building, and community district. Build your model using the
general principles explained in Section 4.6. Discuss the coefficients for the
ethnicity indicators in your model.

9. Graphing logistic regressions: the well-switching data described in Section 5.4
are in the folder arsenic.



EXERCISES 107

(a) Fit a logistic regression for the probability of switching using log (distance to
nearest safe well) as a predictor.

(b) Make a graph similar to Figure 5.9 displaying Pr(switch) as a function of
distance to nearest safe well, along with the data.

(c) Make a residual plot and binned residual plot as in Figure 5.13.

(d) Compute the error rate of the fitted model and compare to the error rate of
the null model.

(e) Create indicator variables corresponding to dist < 100, 100 ≤ dist < 200,
and dist > 200. Fit a logistic regression for Pr(switch) using these indicators.
With this new model, repeat the computations and graphs for part (a) of this
exercise.

10. Model building and comparison: continue with the well-switching data described
in the previous exercise.

(a) Fit a logistic regression for the probability of switching using, as predictors,
distance, log(arsenic), and their interaction. Interpret the estimated coeffi-
cients and their standard errors.

(b) Make graphs as in Figure 5.12 to show the relation between probability of
switching, distance, and arsenic level.

(c) Following the procedure described in Section 5.7, compute the average pre-
dictive differences corresponding to:

i. A comparison of dist = 0 to dist = 100, with arsenic held constant.
ii. A comparison of dist = 100 to dist = 200, with arsenic held constant.
iii. A comparison of arsenic = 0.5 to arsenic = 1.0, with dist held constant.
iv. A comparison of arsenic = 1.0 to arsenic = 2.0, with dist held constant.

Discuss these results.

11. Identifiability: the folder nes has data from the National Election Studies that
were used in Section 5.1 to model vote preferences given income. When we try
to fit a similar model using ethnicity as a predictor, we run into a problem. Here
are fits from 1960, 1964, 1968, and 1972:

R outputglm(formula = vote ~ female + black + income,

family=binomial(link="logit"), subset=(year==1960))

coef.est coef.se

(Intercept) -0.14 0.23

female 0.24 0.14

black -1.03 0.36

income 0.03 0.06

glm(formula = vote ~ female + black + income,

family=binomial(link="logit"), subset=(year==1964))

coef.est coef.se

(Intercept) -1.15 0.22

female -0.09 0.14

black -16.83 420.40

income 0.19 0.06

glm(formula = vote ~ female + black + income,

family=binomial(link="logit"), subset=(year==1968))

coef.est coef.se

(Intercept) 0.47 0.24
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female -0.01 0.15

black -3.64 0.59

income -0.03 0.07

glm(formula = vote ~ female + black + income,

family=binomial(link="logit"), subset=(year==1972))

coef.est coef.se

(Intercept) 0.67 0.18

female -0.25 0.12

black -2.63 0.27

income 0.09 0.05

What happened with the coefficient of black in 1964? Take a look at the data
and figure out where this extreme estimate came from. What can be done to fit
the model in 1964?



CHAPTER 6

Generalized linear models

6.1 Introduction

Generalized linear modeling is a framework for statistical analysis that includes
linear and logistic regression as special cases. Linear regression directly predicts
continuous data y from a linear predictor Xβ = β0 + X1β1 + · · · + Xkβk. Logistic
regression predicts Pr(y = 1) for binary data from a linear predictor with an inverse-
logit transformation. A generalized linear model involves:

1. A data vector y = (y1, . . . , yn)

2. Predictors X and coefficients β, forming a linear predictor Xβ

3. A link function g, yielding a vector of transformed data ŷ = g−1(Xβ) that are
used to model the data

4. A data distribution, p(y|ŷ)

5. Possibly other parameters, such as variances, overdispersions, and cutpoints,
involved in the predictors, link function, and data distribution.

The options in a generalized linear model are the transformation g and the data
distribution p.

• In linear regression, the transformation is the identity (that is, g(u) ≡ u) and
the data distribution is normal, with standard deviation σ estimated from data.

• In logistic regression, the transformation is the inverse-logit, g−1(u) = logit−1(u)
(see Figure 5.2a on page 80) and the data distribution is defined by the proba-
bility for binary data: Pr(y=1) = ŷ.

This chapter discusses several other classes of generalized linear model, which we
list here for convenience:

• The Poisson model (Section 6.2) is used for count data; that is, where each
data point yi can equal 0, 1, 2, . . . . The usual transformation g used here is the
logarithmic, so that g(u) = exp(u) transforms a continuous linear predictor Xiβ
to a positive ŷi. The data distribution is Poisson.

It is usually a good idea to add a parameter to this model to capture overdis-
persion, that is, variation in the data beyond what would be predicted from the
Poisson distribution alone.

• The logistic-binomial model (Section 6.3) is used in settings where each data
point yi represents the number of successes in some number ni of tries. (This ni,
the number of tries for data point i, is not the same as n, the number of data
points.) In this model, the transformation g is the inverse-logit and the data
distribution is binomial.

As with Poisson regression, the binomial model is typically improved by the
inclusion of an overdispersion parameter.

• The probit model (Section 6.4) is the same as logistic regression but with the
logit function replaced by the normal cumulative distribution, or equivalently
with the normal distribution instead of the logistic in the latent-data errors.

109
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• Multinomial logit and probit models (Section 6.5) are extensions of logistic and
probit regressions for categorical data with more than two options, for example
survey responses such as Strongly Agree, Agree, Indifferent, Disagree, Strongly
Disagree. These models use the logit or probit transformation and the multi-
nomial distribution and require additional parameters to model the multiple
possibilities of the data.

Multinomial models are further classified as ordered (for example, Strongly Agree,
. . . , Strongly Disagree) or unordered (for example, Vanilla, Chocolate, Straw-
berry, Other).

• Robust regression models (Section 6.6) replace the usual normal or logistic models
by other distributions1 (usually the so-called Student-t family of models) that
allow occasional extreme values.

This chapter briefly goes through many of these models, with an example of
overdispersed Poisson regression in Section 6.2 and an ordered logistic example in
Section 6.5. Finally, in Section 6.8 we discuss the connections between generalized
linear models and behavioral models of choice that are used in psychology and eco-
nomics, using as an example the logistic regression for well switching in Bangladesh.
The chapter is not intended to be a comprehensive overview of generalized linear
models; rather, we want to give a sense of the variety of regression models that can
be appropriate for different data structures that we have seen in applications.

Fitting generalized linear models in R

Because of the variety of options involved, generalized linear modeling can be more
complicated than fitting linear and logistic regressions. The starting point in R is
the glm() function, which we have already used extensively for logistic regression
in Chapter 5 and is a generalization of the linear-modeling function lm(). We can
use glm() directly to fit logistic-binomial, probit, and Poisson regressions, among
others, and to correct for overdispersion where appropriate. Ordered logit and probit
regressions can be fit using the polr() function, unordered probit models can be
fit using the mnp package, and t models can be fit using the hett package in R. (See
Appendix C for information on these and other R packages.) Beyond this, most of
these models and various generalizations can be fit in Bugs, as we discuss in Part
2B of this book in the context of multilevel modeling.

6.2 Poisson regression, exposure, and overdispersion

The Poisson distribution is used to model variation in count data (that is, data
that can equal 0, 1, 2, . . .). After a brief introduction, we illustrate in detail with the
example of New York City police stops that we introduced in Section 1.2.

Traffic accidents

In the Poisson model, each unit i corresponds to a setting (typically a spatial
location or a time interval) in which yi events are observed. For example, i could

1 In the statistical literature, generalized linear models have been defined using exponential-family
models, a particular class of data distributions that excludes, for example, the t distribution. For
our purposes, however, we use the term “generalized linear model” to apply to any model with
a linear predictor, link function, and data distribution, not restricting to exponential-family
models.
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index street intersections in a city and yi could be the number of traffic accidents
at intersection i in a given year.

As with linear and logistic regression, the variation in y can be explained with
linear predictors X . In the traffic accidents example, these predictors could include:
a constant term, a measure of the average speed of traffic near the intersection, and
an indicator for whether the intersection has a traffic signal. The basic Poisson
regression model has the form

yi ∼ Poisson(θi). (6.1)

The parameter θi must be positive, so it makes sense to fit a linear regression on
the logarithmic scale:

θi = exp(Xiβ). (6.2)

Interpreting Poisson regression coefficients

The coefficients β can be exponentiated and treated as multiplicative effects. For
example, suppose the traffic accident model is

yi ∼ Poisson(exp(2.8 + 0.012Xi1 − 0.20Xi2)),

where Xi1 is average speed (in miles per hour, or mph) on the nearby streets and
Xi2 = 1 if the intersection has a traffic signal or 0 otherwise. We can then interpret
each coefficient as follows:

• The constant term gives the intercept of the regression, that is, the prediction if
Xi1 = 0 and Xi2 = 0. Since this is not possible (no street will have an average
speed of 0), we will not try to interpret the constant term.

• The coefficient of Xi1 is the expected difference in y (on the logarithmic scale) for
each additional mph of traffic speed. Thus, the expected multiplicative increase
is e0.012 = 1.012, or a 1.2% positive difference in the rate of traffic accidents per
mph. Since traffic speeds vary by tens of mph, it would actually make sense to
define Xi1 as speed in tens of mph, in which case its coefficient would be 0.12,
corresponding to a 12% increase (more precisely, e0.12 = 1.127: a 12.7% increase)
in accident rate per ten mph.

• The coefficient of Xi2 tells us that the predictive difference of having a traffic
signal can be found be multiplying the accident rate by exp(−0.20) = 0.82
yielding a reduction of 18%.

As with regression models in general, each coefficient is interpreted as a comparison
in which one predictor differs by one unit while all the other predictors remain at
the same level, which is not necessarily the most appropriate assumption when
extending the model to new settings. For example, installing traffic signals in all
the intersections in the city would not necessarily be expected to reduce accidents
by 18%.

Poisson regression with an exposure input

In most applications of Poisson regression, the counts can be interpreted relative
to some baseline or “exposure,” for example, the number of vehicles that travel
through the intersection. In the general Poisson regression model, we think of yi as
the number of cases in a process with rate θi and exposure ui.

yi ∼ Poisson(uiθi), (6.3)
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where, as before, θi = exp(Xiβ). The logarithm of the exposure, log(ui), is called
the offset in generalized linear model terminology.

The regression coefficients β summarize the associations between the predictors
and θi (in our example, the rate of traffic accidents per vehicle).

Including log(exposure) as a predictor in the Poisson regression. Putting the log-
arithm of the exposure into the model as an offset, as in model (6.3), is equivalent
to including it as a regression predictor, but with its coefficient fixed to the value
1. Another option is to include it as a predictor and let its coefficient be estimated
from the data. In some settings, this makes sense in that it can allow the data to
be fit better; in other settings, it is simpler to just keep it as an offset so that the
estimated rate θ has a more direct interpretation.

Differences between the binomial and Poisson models

The Poisson model is similar to the binomial model for count data (see Section 6.3)
but is applied in slightly different situations:

• If each data point yi can be interpreted as the number of “successes” out of ni

trials, then it is standard to use the binomial/logistic model (as described in
Section 6.3) or its overdispersed generalization.

• If each data point yi does not have a natural limit—it is not based on a number of
independent trials—then it is standard to use the Poisson/logarithmic regression
model (as described here) or its overdispersed generalization.

Example: police stops by ethnic group

For the analysis of police stops:

• The units i are precincts and ethnic groups (i = 1, . . . , n = 3 × 75).

• The outcome yi is the number of stops of members of that ethnic group in that
precinct.

• The exposure ui is the number of arrests by people of that ethnic group in that
precinct in the previous year as recorded by the Department of Criminal Justice
Services (DCJS).

• The inputs are the precinct and ethnicity indexes.

• The predictors are a constant, 74 precinct indicators (for example, precincts 2–
75, with precinct 1 as the baseline), and 2 ethnicity indicators (for example, for
hispanics and whites, with blacks as the baseline).

We illustrate model fitting in three steps. First, we fit a model with the offset
and a constant term alone:

R output glm(formula = stops ~ 1, family=poisson, offset=log(arrests))

coef.est coef.se

(Intercept) -3.4 0.0

n = 225, k = 1

residual deviance = 44877, null deviance = 44877 (difference = 0)

Next, we add ethnicity indicators:

R output glm(formula = stops ~ factor(eth), family=poisson,

offset=log(arrests))

coef.est coef.se

(Intercept) -3.30 0.00
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factor(eth)2 0.06 0.01

factor(eth)3 -0.18 0.01

n = 225, k = 3

residual deviance = 44133, null deviance = 44877 (difference = 744.1)

The two ethnicity coefficients are highly statistically significant, and the deviance
has decreased by 744, much more than the 2 that would be expected if ethnicity had
no explanatory power in the model. Compared to the baseline category 1 (blacks),
we see that category 2 (hispanics) has 6% more stops, and category 3 (whites) has
18% fewer stops, in proportion to DCJS arrest rates.

Now we add the 75 precincts:

R outputglm(formula = stops ~ factor(eth) + factor(precinct), family=poisson,

offset=log(arrests))

coef.est coef.se

(Intercept) -4.03 0.05

factor(eth)2 0.00 0.01

factor(eth)3 -0.42 0.01

factor(precinct)2 -0.06 0.07

factor(precinct)3 0.54 0.06

. . .

factor(precinct)75 1.41 0.08

n = 225, k = 77

residual deviance = 2828.6, null deviance = 44877 (difference = 42048.4)

overdispersion parameter = 18.2

The decrease in the deviance, from 44,000 to 2800, is huge—much larger than the
decrease of 74 that would be expected if the precinct factor were random noise. After
controlling for precincts, the ethnicity coefficients have changed a bit—blacks and
hispanics (categories 1 and 2) have approximately the same rate of being stopped,
and whites (category 3) have about a 42% lower chance than minorities of being
stopped—all in comparison to the DCJS arrest rates, which are used as a baseline.2

Thus, controlling for precinct actually increases the difference between whites
and minorities in the rate of stops. We explore this issue further in Section 15.1.

We can also look at the precinct coefficients in the regression—for example,
the stop rates (per DCJS arrest) after controlling for ethnicity, are approximately
6% lower in precinct 2, exp(0.54) = 1.72 times as high in precinct 3, . . . , and
exp(1.41) = 4.09 times as high in precinct 75, as compared to the baseline precinct
1.

The exposure input

In this example, stops by police are compared to the number of arrests in the
previous year, so that the coefficient for the “hispanic” or “white” indicator will be
greater than 1 if the people in that group are stopped disproportionately to their
rates of arrest, as compared to blacks. Similarly, the coefficients for the indicators
for precincts 2–75 will exceed 1 for those precincts where stops are more frequent
than in precinct 1, as compared to their arrest rates in the previous year.

In Section 15.1 we shall consider another possible analysis that uses population,
rather than previous year’s arrests, as the exposure.

2 More precisely, the exponentiated coefficient for whites is exp(−0.42) = 0.66, so their chance
of being stopped is actually 34% lower—the approximation exp(−β) ≈ 1−β is accurate only
when β is close to 0.
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Figure 6.1 Testing for overdispersion in a Poisson regression model: (a) residuals versus
predicted values, (b) standardized residuals versus predicted values. As expected from the
model, the variance of the residuals increases as predicted values increase. The standardized
residuals should have mean 0 and standard deviation 1 (hence the lines at ±2 indicating
approximate 95% error bounds). The variance of the standardized residuals is much greater
than 1, indicating a large amount of overdispersion.

Overdispersion

Poisson regressions do not supply an independent variance parameter σ, and as a
result can be overdispersed and usually are, a point we considered briefly on page
21 and pursue further here in a regression context. Under the Poisson distribution
the variance equals the mean—that is, the standard deviation equals the square
root of the mean. In the model (6.3), E(yi) = uiθi and sd(yi) =

√
uiθi. We define

the standardized residuals:

zi =
yi − ŷi

sd(ŷi)

=
yi − uiθ̂i√

uiθ̂i

, (6.4)

where θ̂i = eXiθ̂. If the Poisson model is true, then the zi’s should be approxi-
mately independent (not exactly independent, since the same estimate β̂ is used
in computing all of them), each with mean 0 and standard deviation 1. If there is
overdispersion, however, we would expect the zi’s to be larger, in absolute value,
reflecting the extra variation beyond what is predicted under the Poisson model.

We can test for overdispersion in classical Poisson regression by computing the
sum of squares of the n standardized residuals,

∑n
i=1 z2

i , and comparing this to the
χ2

n−k distribution, which is what we would expect under the model (using n−k
rather than n degrees of freedom to account for the estimation of k regression
coefficients). The χ2

n−k distribution has average value n−k, and so the ratio,

estimated overdispersion =
1

n − k

n∑
i=1

z2
i , (6.5)

is a summary of the overdispersion in the data compared to the fitted model.
For example, the classical Poisson regression for the police stops has n = 225

data points and k = 77 linear predictors. Figure 6.1 plots the residuals yi − ŷi and
standardized residuals zi = (yi − ŷi)/sd(ŷi), as a function of predicted values from
the Poisson regression model. As expected from the Poisson model, the variance of
the residuals increases as the predicted values increase, and the variance of the stan-
dardized residuals is approximately constant. However, the standardized residuals
have a variance much greater than 1, indicating serious overdispersion.
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To program the overdispersion test in R:

R codeyhat <- predict (glm.police, type="response")

z <- (stops-yhat)/sqrt(yhat)

cat ("overdispersion ratio is ", sum(z^2)/(n-k), "\n")

cat ("p-value of overdispersion test is ", pchisq (sum(z^2), n-k), "\n")

The sum of squared standardized residuals is
∑n

i=1 z2
i = 2700, compared to an ex-

pected value of n−k = 148. The estimated overdispersion factor is 2700/148 = 18.2,
and the p-value is 1, indicating that the probability is essentially zero that a random
variable from a χ2

148 distribution would be as large as 2700. In summary, the police
stops data are overdispersed by a factor of 18, which is huge—even an overdispersion
factor of 2 would be considered large—and also statistically significant.

Adjusting inferences for overdispersion

In this example, the basic correction for overdispersion is to multiply all regression
standard errors by

√
18.2 = 4.3. Luckily, it turns out that our main inferences are

not seriously affected. The parameter of primary interest is α3—the log of the rate of
stops for whites compared to blacks—which is estimated at −0.42±0.01 before (see
the regression display on page 113) and now becomes −0.42 ± 0.04. Transforming
back to the original scale, whites are stopped at an estimated 66% of the rate of
blacks, with an approximate 50% interval of e−0.42±(2/3)0.04 = [0.64, 0.67] and an
approximate 95% interval of e−0.42±2·0.04 = [0.61, 0.71].

Fitting the overdispersed-Poisson or negative-binomial model

More simply, we can fit an overdispersed model using the quasipoisson family:

R outputglm(formula = stops ~ factor(eth) + factor(precinct), family=quasipoisson,

offset=log(arrests))

coef.est coef.se

(Intercept) -4.03 0.21

factor(eth)2 0.00 0.03

factor(eth)3 -0.42 0.04

factor(precinct)2 -0.06 0.30

factor(precinct)3 0.54 0.24

. . .

factor(precinct)75 1.41 0.33

n = 225, k = 77

residual deviance = 2828.6, null deviance = 44877 (difference = 42048.4)

overdispersion parameter = 18.2

We write this model as

yi ∼ overdispersed Poisson (ui exp(Xiβ), ω),

where ω is the overdispersion parameter (estimated at 18.2 in this case). Strictly
speaking, “overdispersed Poisson” is not a single model but rather describes any
count-data model for which the variance of the data is ω times the mean, reducing
to the Poisson if ω = 1.

A specific model commonly used in this scenario is the so-called negative-binomial
distribution:

yi ∼ Negative-binomial (mean = ui exp(Xiβ), overdispersion = ω).

Unfortunately, the negative-binomial distribution is conventionally expressed not
based on its mean and overdispersion but rather in terms of parameters a and b,
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where the mean of the distribution is a/b and the overdispersion is 1 + 1/b. One
must check the parameterization when fitting such models, and it can be helpful to
double-check by simulating datasets from the fitted model and checking that they
look like the actual data (see Section 8.3).

We return to the police stops example, correcting for overdispersion using a
multilevel model, in Section 15.1.

6.3 Logistic-binomial model

Chapter 5 discussed logistic regression for binary (Yes/No or 0/1) data. The logistic
model can also be used for count data, using the binomial distribution (see page
16) to model the number of “successess” out of a specified number of possibilities,
with the probability of success being fit to a logistic regression.

The binomial model for count data, applied to death sentences

We illustrate binomial logistic regression in the context of a study of the proportion
of death penalty verdicts that were overturned, in each of 34 states in the 23 years,
1973–1995. The units of this analysis are the 34×23 = 784 state-years (actually, we
only have n = 450 state-years in our analysis, since different states have restarted
the death penalty at different times since 1973). For each state-year i, we label ni

as the number of death sentences in that state in that year and yi as the number of
these verdicts that were later overturned by higher courts. Our model has the form

yi ∼ Binomial(ni, pi)

pi = logit−1(Xiβ), (6.6)

where X is a matrix of predictors. To start, we use

• A constant term

• 33 indicators for states

• A time trend for years (that is, a variable that equals 1 for 1973, 2 for 1974, 3
for 1975, and so on).

This model could also be written as

yst ∼ Binomial(nst, pst)

pst = logit−1(μ + αs + βt),

with subscripts s for state and t for time (that is, year−1972). We prefer the form
(6.6) because of its greater generality. But it is useful to be able to go back and
forth between the two formulations.

Overdispersion

When logistic regression is applied to count data, it is possible—in fact, usual—for
the data to have more variation than is explained by the model. This overdisper-
sion problem arises because the logistic regression model does not have a variance
parameter σ.

More specifically, if data y have a binomial distribution with parameters n and
p, then the mean of y is np and the standard deviation of y is

√
np(1 − p). As in
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model (6.4), we define the standardized residual for each data point i as

zi =
yi − ŷi

sd(ŷi)

=
yi − nip̂i√
nip̂i(1 − p̂i)

, (6.7)

where pi = logit−1(Xiβ̂). If the binomial model is true, then the zi’s should be
approximately independent, each with mean 0 and standard deviation 1.

As with the Poisson model, we can then compute the estimated overdispersion
1

n−k

∑n
i=1 z2

i (see model (6.5) on page 114) and formally test for overdispersion by

comparing
∑n

i=1 z2
i to a χ2

n−k distribution. (The n here represents the number of
data points and is unrelated to the notation ni in models (6.6) and (6.7) referring
to the number of cases in state-year i.)

In practice, overdispersion happens almost all the time that logistic regression
(or Poisson regression, as discussed in Section 6.2) is applied to count data. In the
more general family of distributions known as overdispersed models, the standard
deviation can have the form

√
ωnp(1 − p), where ω > 1 is known as the overdis-

persion parameter. The overdispersed model reduces to binomial logistic regression
when ω = 1.

Adjusting inferences for overdispersion

As with Poisson regression, a simple correction for overdispersion is to multiply the
standard errors of all the coefficient estimates by the square root of the estimated
overdispersion (6.5). Without this adjustment, the confidence intervals would be
too narrow, and inferences would be overconfident.

Overdispersed binomial regressions can be fit in R using the glm() function
with the quasibinomial(link="logit") family. A corresponding distribution is
the beta-binomial.

Binary-data model as a special case of the count-data model

Logistic regression for binary data as in Chapter 5 is a special case of the binomial
form (6.6) with ni ≡ 1 for all i. Overdispersion at the level of the individual
data points cannot occur in the binary model, which is why we did not introduce
overdispersed models in Chapter 5.

Count-data model as a special case of the binary-data model

Conversely, the binomial model (6.6) can be expressed in the binary-data form (5.1)
by considering each of the ni cases as a separate data point. The sample size of
this expanded regression is

∑
i ni, and the data points are 0’s and 1’s: each unit i

corresponds to yi ones and ni−yi zeroes. Finally, the X matrix is expanded to have∑
i ni rows, where the ith row of the original X matrix becomes ni identical rows in

the expanded matrix. In this parameterization, overdispersion could be included in
a multilevel model by creating an index variable for the original measurements (in
the death penalty example, taking on the values 1, . . . , 450) and including a varying
coefficient or error term at this level.
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Figure 6.2 Normal density function with mean 0 and standard deviation 1.6. For most
practical purposes, this is indistinguishable from the logistic density (Figure 5.5 on page
85). Thus we can interpret coefficients in probit models as logistic regression coefficients
divided by 1.6.

6.4 Probit regression: normally distributed latent data

The probit model is the same as the logit, except it replaces the logistic by the
normal distribution (see Figure 5.5). We can write the model directly as

Pr(yi = 1) = Φ(Xiβ),

where Φ is the normal cumulative distribution function. In the latent-data formu-
lation,

yi =

{
1 if zi > 0
0 if zi < 0

zi = Xiβ + εi

εi ∼ N(0, 1), (6.8)

that is, a normal distribution for the latent errors with mean 0 and standard devi-
ation 1.

More generally, the model can have an error variance, so that the last line of
(6.8) is replaced by

εi ∼ N(0, σ2),

but then σ is nonidentified, because the model is unchanged if we multiply σ by
some constant c and then multiply the vector β by c also. Hence we need some
restriction on the parameters, and the standard approach is to fix σ = 1 as in (6.8).

Probit or logit?

As is shown in Figure 6.2 (compare to Figure 5.5 on page 85), the probit model
is close to the logit with the residual standard deviation of ε set to 1 rather than
1.6. As a result, coefficients in a probit regression are typically close to logistic
regression coefficients divided by 1.6. For example, here is the probit version of the
logistic regression model on page 88 for well switching:

R output glm(formula = switch ~ dist100, family=binomial(link="probit"))

coef.est coef.se

(Intercept) 0.38 0.04

dist100 -0.39 0.06

n = 3020, k = 2

residual deviance = 4076.3, null deviance = 4118.1 (difference = 41.8)
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For the examples we have seen, the choice of logit or probit model is a matter of
taste or convenience, for example, in interpreting the latent normal errors of probit
models. When we see probit regression coefficients, we can simply multiply them
by 1.6 to obtain the equivalent logistic coefficients. For example, the model we have
just fit, Pr(y = 1) = Φ(0.38− 0.39x), is essentially equivalent to the logistic model
Pr(y = 1) = logit−1(1.6(0.38 − 0.39x)) = logit−1(0.61 − 0.62x)), which indeed is
the logit model estimated on page 88.

6.5 Multinomial regression

Ordered and unordered categorical outcomes

Logistic and probit regression can be extended to multiple categories, which can
be ordered or unordered. Examples of ordered categorical outcomes include Demo-
crat, Independent, Republican; Yes, Maybe, No; Always, Frequently, Often, Rarely,
Never. Examples of unordered categorical outcomes include Liberal, Labor, Con-
servative; Football, Basketball, Baseball, Hockey; Train, Bus, Automobile, Walk;
White, Black, Hispanic, Asian, Other. We discuss ordered categories first, includ-
ing an extended example, and then briefly discuss regression models for unordered
categorical variables.

The ordered multinomial logit model

Consider a categorical outcome y that can take on the values 1, 2, . . . , K. The
ordered logistic model can be written in two equivalent ways. First we express it as
a series of logistic regressions:

Pr(y > 1) = logit−1(Xβ)

Pr(y > 2) = logit−1(Xβ − c2)

Pr(y > 3) = logit−1(Xβ − c3)

. . .

Pr(y > K−1) = logit−1(Xβ − cK−1). (6.9)

The parameters ck (which are called thresholds or cutpoints, for reasons which we
shall explain shortly) are constrained to increase: 0 = c1 < c2 < · · · < cK−1, because
the probabilities in (6.9) are strictly decreasing (assuming that all K outcomes have
nonzero probabilities of occurring). Since c1 is defined to be 0, the model with K
categories has K−2 free parameters ck in addition to β. This makes sense since
K =2 for the usual logistic regression, for which only β needs to be estimated.

The cutpoints c2, . . . , cK−1 can be estimated using maximum likelihood, simul-
taneously with the coefficients β. For some datasets, however, the parameters can
be nonidentified, as with logistic regression for binary data (see Section 5.8).

The expressions in (6.9) can be subtracted to get the probabilities of individual
outcomes:

Pr(y = k) = Pr(y > k−1) − Pr(y > k)

= logit−1(Xβ − ck−1) − logit−1(Xβ − ck).
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Figure 6.3 Illustration of cutpoints in an ordered categorical logistic model. In this example,
there are K = 4 categories and the cutpoints are c1 = 0, c2 = 0.8, c3 = 1.8. The three graphs
illustrate the distribution of the latent outcome z corresponding to three different values of
the linear predictor, Xβ. For each, the cutpoints show where the outcome y will equal 1,
2, 3, or 4.

Latent variable interpretation with cutpoints

The ordered categorical model is easiest to understand by generalizing the latent
variable formulation (5.4) to K categories:

yi =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 if zi < 0
2 if zi ∈ (0, c2)
3 if zi ∈ (c2, c3)

. . .
K−1 if zi ∈ (cK−2, cK−1)
K if zi > cK−1

zi = Xiβ + εi, (6.10)

with independent errors εi that have the logistic distribution, as in (5.4).
Figure 6.3 illustrates the latent variable model and shows how the distance be-

tween any two adjacent cutpoints ck−1, ck affects the probability that y = k. We
can also see that if the linear predictor Xβ is high enough, y will almost certainly
take on the highest possible value, and if Xβ is low enough, y will almost certainly
equal the lowest possible value.

Example: storable votes

We illustrate ordered categorical data analysis with a study from experimental
economics, on the topic of “storable votes.” This example is somewhat complicated,
and illustrates both the use and potential limitations of the ordered logistic model.
In the experiment under study, college students were recruited to play a series of
voting games. In each game, a set of k players vote on two issues, with the twist
being that each player is given a total of 4 votes. On the first issue, a player has
the choice of casting 1, 2, or 3 votes, with the remaining votes cast on the second
issue. The winning side of each issue is decided by majority vote, at which point
the players on the winning side each get positive payoffs, which are drawn from a
uniform distribution on the interval [1, 100].

To increase their expected payoffs, players should follow a strategy of casting more
votes for issues where their potential payoffs are higher. The way this experiment is
conducted, the players are told the distribution of possible payoffs, and they are told
their potential payoff for each issue just before the vote. Thus, in making the choice
of how many votes to cast in the first issue, each player knows his or her potential
payoff for that vote only. Then, the players are told their potential payoffs for the
second vote, but no choice is involved at this point since they will automatically



MULTINOMIAL REGRESSION 121

　 ㈀ 〴 〶 〸 　 ㄀ 　 　

Perfectly monotonic

噡汵攀

噯
瑥

ㄲ
㌀

　 ㈀ 〴 〶 〸 　 ㄀ 　 　

One fuzzy and one sharp cutpoint

噡汵攀

噯
瑥

ㄲ
㌀

　 ㈀ 〴 〶 〸 　 ㄀ 　 　

Monotonic with one outlier

噡汵攀

噯
瑥

ㄲ
㌀

　 ㈀ 〴 〶 〸 　 ㄀ 　 　

Only 1’s and 3’s

噡汵攀

噯
瑥

ㄲ
㌀

　 ㈀ 〴 〶 〸 　 ㄀ 　 　

Almost only 3’s

噡汵攀

噯
瑥

ㄲ
㌀

　 ㈀ 〴 〶 〸 　 ㄀ 　 　

Erratic

噡汵攀

噯
瑥

ㄲ
㌀

Figure 6.4 Data from some example individuals in the storable votes study. Vertical lines
show estimated cutpoints, and curves show expected responses as estimated using ordered
logistic regressions. The two left graphs show data that fit the model reasonably well; the
others fit the model in some ways but not perfectly.

spend all their remaining votes. Players’ strategies can thus be summarized as their
choices of initial votes, y = 1, 2, or 3, given their potential payoff, x.

Figure 6.4 graphs the responses from six of the hundred or so students in the
experiment, with these six chosen to represent several different patterns of data.
We were not surprised to see that responses were generally monotonic—that is,
students tend to spend more votes when their potential payoff is higher—but it
was interesting to see the variety of approximately monotonic strategies that were
chosen.

As is apparent in Figure 6.4, most individuals’ behaviors can be summarized by
three parameters—the cutpoint between votes of 1 and 2, the cutpoint between 2
and 3, and the fuzziness of these divisions. The two cutpoints characterize the chosen
monotone strategy, and the sharpness of the divisions indicates the consistency with
which the strategy is followed.

Three parameterizations of the ordered logistic model. It is convenient to model
the responses using an ordered logit, using a parameterization slightly different
from that of model (6.10) to match up with our understanding of the monotone
strategies. The model is

yi =

⎧⎨⎩
1 if zi < c1.5

2 if zi ∈ (c1.5, c2.5)
3 if zi > c2.5

zi ∼ logistic(xi, σ
2). (6.11)

In this model, the cutpoints c1.5 and c2.5 are on the 1–100 scale of the data x, and
the scale σ of the errors ε corresponds to the fuzziness of the cutpoints.

This model has the same number of parameters as the conventional parameter-
ization (6.10)—two regression coefficients have disappeared, while one additional
free cutpoint and an error variance have been added. Here is model (6.10) with
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K = 3 categories and one predictor x,

yi =

⎧⎨⎩
1 if zi < 0
2 if zi ∈ (0, c2)
3 if zi > c2

zi = α + βx + εi, (6.12)

with independent errors εi ∼ logistic(0, 1).
Yet another version of the model keeps the two distinct cutpoints but removes

the constant term, α; thus,

yi =

⎧⎨⎩
1 if zi < c1|2
2 if zi ∈ (0, c2|3)
3 if zi > c2|3

zi = βx + εi, (6.13)

with independent errors εi ∼ logistic(0, 1).
The three models are in fact equivalent, with zi/β in (6.13) and (zi − α)/β in

(6.12) corresponding to zi in (6.11) and the parameters matching up as follows:

Model (6.11) Model (6.12) Model (6.13)

c1.5 −α/β −c1|2/β
c2.5 (c2 − α)/β −c2|3/β
σ 1/β 1/β

We prefer parameterization (6.11) because we can directly interpret c1.5 and c2.5

as thresholds on the scale of the input x, and σ corresponds to the gradualness
of the transitions from 1’s to 2’s and from 2’s to 3’s. It is sometimes convenient,
however, to fit the model using the standard parameterizations (6.12) and (6.13),
and so it is helpful to be able to go back and forth between the models.

Fitting the model in R. We can fit ordered logit (or probit) models using the polr
(“proportional odds logistic regression”) function, which is part of the MASS package
in R. We illustrate with data from one of the persons in the storable votes study:

R code polr (factor(y) ~ x)

which yields

R output Coefficients:

x

0.07911799

Intercepts:

1|2 2|3

1.956285 4.049963

From the output we can see this has fitted a model of the form (6.13), with

estimates β̂ = 0.079, ĉ1|2 = 1.96 and ĉ2|3 = 4.05. Transforming to model (6.11) using
the table of the three models, we get ĉ1.5 = 1.96/0.079 = 24.8, ĉ2.5 = 4.03/0.079 =
51.3, and σ̂ = 1/0.079 = 12.7.

Displaying the fitted model. Figure 6.4 shows the cutpoints c1.5, c2.5 and expected
votes E(y) as a function of x, as estimated from the data from each of several
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students. From the model (6.11), the expected votes can be written as

E(y|x) = 1 · Pr(y = 1|x) + 2 · Pr(y = 2|x) + 3 · Pr(y = 3|x)

= 1 ·
(

1 − logit−1

(
x − c1.5

σ

))
+

+ 2 ·
(

logit−1

(
x − c1.5

σ

)
− logit−1

(
x − c2.5

σ

))
+

+ 3 · logit−1

(
x − c2.5

σ

)
, (6.14)

where logit−1(x) = ex/(1+ex) is the logistic curve displayed in Figure 5.2a on page
80. Expression (6.14) looks complicated but is easy to program as a function in R:

R codeexpected <- function (x, c1.5, c2.5, sigma){

p1.5 <- invlogit ((x-c1.5)/sigma)

p2.5 <- invlogit ((x-c2.5)/sigma)

return ((1*(1-p1.5) + 2*(p1.5-p2.5) + 3*p2.5))

}

The data, cutpoints, and curves in Figure 6.4 can then be plotted as follows:

R codeplot (x, y, xlim=c(0,100), ylim=c(1,3), xlab="Value", ylab="Vote")

lines (rep (c1.5, 2), c(1,2))

lines (rep (c2.5, 2), c(2,3))

curve (expected (x, c1.5, c2.5, sigma), add=TRUE)

Having displayed these estimates for individuals, the next step is to study the dis-
tribution of the parameters in the population, to understand the range of strategies
applied by the students. In this context, the data have a multilevel structure—30
observations for each of several students—and we pursue this example further in
Section 15.2 in the chapter on multilevel generalized linear models.

Alternative approaches to modeling ordered categorical data

Ordered categorical data can be modeled in several ways, including:

• Ordered logit model with K−1 cutpoint parameters, as we have just illustrated.

• The same model in probit form.

• Simple linear regression (possibly preceded by a simple transformation of the
outcome values). This can be a good idea if the number of categories is large
and if they can be considered equally spaced. This presupposes that a reasonable
range of the categories is actually used. For example, if ratings are on a 1 to 10
scale, but in practice always equal 9 or 10, then a linear model probably will not
work well.

• Separate logistic regressions—that is, a logistic regression model for y = 1 versus
y = 2, . . . , K; then, if y ≥ 2, a logistic regression for y = 2 versus y = 3, . . . , K;
and so on up to a model, if y ≥ K −1 for y = K−1 versus y = K. Or this can be
set up using the probit model. Separate logistic (or probit) regressions have the
advantage of more flexibility in fitting data but the disadvantage of losing the
simple latent-variable interpretation of the cutpoint model we have described.

• Finally, robit regression, which we discuss in Section 6.6, is a competitor to
logistic regression that accounts for occasional aberrant data such as the outlier
in the upper-right plot of Figure 6.4.
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Figure 6.5 Hypothetical data to be fitted using logistic regression: (a) a dataset with an
“outlier” (the unexpected y = 1 value near the upper left); (b) data simulated from a
logistic regression model, with no outliers. In each plot, the dotted and solid lines show
the fitted logit and robit regressions, respectively. In each case, the robit line is steeper—
especially for the contaminated data—because it effectively downweights the influence of
points that do not appear to fit the model.

Unordered categorical regression

As discussed at the beginning of Section 6.5, it is sometimes appropriate to model
discrete outcomes as unordered. An example that arose in our research was the well-
switching problem. As described in Section 5.4, households with unsafe wells had
the option to switch to safer wells. But the actual alternatives are more complicated
and can be summarized as: (0) do nothing, (1) switch to an existing private well,
(2) switch to an existing community well, (3) install a new well yourself. If these are
coded as 0, 1, 2, 3, then we can model Pr(y ≥ 1), Pr(y ≥ 2|y ≥ 1), Pr(y = 3|y ≥ 2).
Although the four options could be considered to be ordered in some way, it does not
make sense to apply the ordered multinomial logit or probit model, since different
factors likely influence the three different decisions. Rather, it makes more sense to
fit separate logit (or probit) models to each of the three components of the decision:
(a) do you switch or do nothing? (b) if you switch, do you switch to an existing
well or build a new well yourself? (c) if you switch to an existing well, is it a private
or community well? More about this important category of model can be found in
the references at the end of this chapter.

6.6 Robust regression using the t model

The t distribution instead of the normal

When a regression model can have occasional very large errors, it is generally more
appropriate to use a Student-t rather than normal distribution for the errors. The
basic form of the regression is unchanged—y = Xβ + ε—but with a different dis-
tribution for the ε’s and thus a slightly different method for estimating β (see the
discussion of maximum likelihood estimation in Chapter 18) and a different dis-
tribution for predictions. Regressions estimated using the t model are said to be
robust in that the coefficient estimates are less influenced by individual outlying
data points. Regressions with t errors can be fit using the tlm() function in the
hett package in R.

Robit instead of logit or probit

Logistic regression (and the essentially equivalent probit regression) are flexible
and convenient for modeling binary data, but they can run into problems with
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outliers. Outliers are usually thought of as extreme observations, but in the context
of discrete data, an “outlier” is more of an unexpected observation. Figure 6.5a
illustrates, with data simulated from a logistic regression, with an extreme point
switched from 0 to 1. In the context of the logistic model, an observation of y =
1 for this value of x would be extremely unlikely, but in real data this sort of
“misclassification” can definitely occur. Hence this graph represents the sort of
data to which we might fit a logistic regression, even though this model is not
exactly appropriate.

For another illustration of a logistic regression with an aberrant data point, see
the upper-right plot in Figure 6.4. That is an example with three outcomes; for
simplicity, we restrict our attention here to binary outcomes.

Logistic regression can be conveniently “robustified” by generalizing the latent-
data formulation (5.4):

yi =

{
1 if zi > 0
0 if zi < 0

zi = Xiβ + εi,

to give the latent errors ε a t distribution:

εi ∼ tν

(
0,

ν − 2

ν

)
, (6.15)

with the degrees-of-freedom parameter ν > 2 estimated from the data and the t
distribution scaled so that its standard deviation equals 1.

The t model for the εi’s allows the occasional unexpected prediction—a positive
value of z for a highly negative value of the linear predictor Xβ, or vice versa.
Figure 6.5a illustrates with the simulated “contaminated” dataset: the solid line
shows Pr(y = 1) as a function of the x for the fitted robit regression, and it is
quite a bit steeper than the fitted logistic model. The t distribution effectively
downweights the discordant data point so that the model better fits the main part
of the data.

Figure 6.5b shows what happens with data that actually come from a logistic
model: here, the robit model is close to the logit, which makes sense since it does
not find discrepancies.

Mathematically, the robit model can be considered as a generalization of probit
and an approximate generalization of logit. Probit corresponds to the degrees of
freedom ν = ∞, and logit is very close to the robit model with ν = 7.

6.7 Building more complex generalized linear models

The models we have considered so far can handle many regression problems in
practice. For continuous data we start with linear regression with normal errors,
consider appropriate transformations and interactions as discussed in Chapter 4,
and switch to a t error model for data with occasional large errors. For binary data
we use logit, probit, or perhaps robit, again transforming input variables and con-
sidering residual plots as discussed in Chapter 5. For count data, the starting points
are the overdispersed binomial and Poisson distributions, and for discrete outcomes
with more than two categories we can fit ordered or unordered multinomial logit
or probit regression. Here we briefly describe some situations where it is helpful to
consider other models.



126 GENERALIZED LINEAR MODELS

Mixed discrete/continuous data

Earnings is an example of an outcome variable with both discrete and continuous
aspects. In our earnings and height regressions in Chapter 4, we preprocessed the
data by removing all respondents with zero earnings. In general, however, it can
be appropriate to model a variable such as earnings in two steps: first a logistic
regression for Pr(y > 0), then a linear regression on log(y), conditional on y > 0.
Predictions for such a model then must be done in two steps, most conveniently
using simulation (see Chapter 7).

When modeling an outcome in several steps, programming effort is sometimes
required to convert inferences on to the original scale of the data. For example, in a
two-step model for predicting earnings given height and sex, we first use a logistic
regression to predict whether earnings are positive:

R code earn.pos <- ifelse (earnings>0, 1, 0)

fit.1a <- glm (earn.pos ~ height + male, family=binomial(link="logit"))

yielding the fit

R output coef.est coef.se

(Intercept) -3.85 2.07

height 0.08 0.03

male 1.70 0.32

n = 1374, k = 3

residual deviance = 988.3, null deviance = 1093.2 (difference = 104.9)

We then fit a linear regression to the logarithms of positive earnings:

R code log.earn <- log(earnings)

fit.1b <- lm (log.earn ~ height + male, subset = earnings>0)

yielding the fit

R output coef.est coef.se

(Intercept) 8.12 0.60

height 0.02 0.01

male 0.42 0.07

n = 1187, k = 3

residual sd = 0.88, R-Squared = 0.09

Thus, for example, a 66-inch-tall woman has a probability logit−1(−3.85 + 0.08 ·
66 + 1.70 · 0) = 0.81, or an 81% chance, of having positive earnings. If her earnings
are positive, their predicted value is exp(8.12+0.02·66+0.42·0) = 12600. Combining
these gives a mixture of a spike at 0 and a lognormal distribution, which is most
easily manipulated using simulations, as we discuss in Sections 7.4 and 25.4.

Latent-data models. Another way to model mixed data is through latent data, for
example positing an “underlying” income level zi—the income that person i would
have if he or she were employed—that is observed only if yi > 0. Tobit regression
is one such model that is popular in econometrics.

Cockroaches and the zero-inflated Poisson model

The binomial and Poisson models, and their overdispersed generalizations, all can
be expressed in terms of an underlying continuous probability or rate of occurrence
of an event. Sometimes, however, the underlying rate itself has discrete aspects.

For example, in a study of cockroach infestation in city apartments, each apart-
ment i was set up with traps for several days. We label ui as the number of trap-days
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and yi as the number of cockroaches trapped. With a goal of predicting cockroach
infestation given predictors X (including income and ethnicity of the apartment
dwellers, indicators for neighborhood, and measures of quality of the apartment),
we would start with the model

yi ∼ overdispersed Poisson(uie
Xiβ , ω). (6.16)

It is possible, however, for the data to have more zeroes (that is, apartments i
with cockroach counts yi = 0) than predicted by this model.3 A natural explanation
is that some apartments have truly a zero (or very near-zero) rate of cockroaches,
whereas others simply have zero counts from the discreteness of the data. The
zero-inflated model places (6.16) into a mixture model:

yi

{
= 0, if Si = 0
∼ overdispersed Poisson (uie

Xiβ , ω), if Si = 1.

Here, Si is an indicator of whether apartment i has any cockroaches at all, and it
could be modeled using logistic regression:

Pr(Si = 1) = logit−1(Xiγ),

where γ is a new set of regression coefficients for this part of the model. Estimating
this two-stage model is not simple—the Si’s are not observed and so one cannot
directly estimate γ; and we do not know which zero observations correspond to
Si = 0 and which correspond to outcomes of the Poisson distribution, so we cannot
directly estimate β. Some R functions have been written to fit such models and
they can also be fit using Bugs.

Other models

The basic choices of linear, logistic, and Poisson models, along with mixtures of
these models and their overdispersed, robust, and multinomial generalizations, can
handle many regression problems. However, other distributional forms have been
used for specific sorts of data; these include exponential, gamma, and Weibull mod-
els for waiting-time data, and hazard models for survival data. More generally,
nonparametric models including generalized additive models, neural networks, and
many others have been developed for going beyond the generalized linear modeling
framework by allowing data-fitted nonlinear relations between inputs and the data.

6.8 Constructive choice models

So far we have considered regression modeling as a descriptive tool for studying how
an outcome can be predicted given some input variables. A completely different
approach, sometimes applicable to choice data such as in the examples in Chapters
5 and 6 on logistic regression and generalized linear models, is to model the decisions
as a balancing of goals or utilities.

We demonstrate this idea using the example of well switching in Bangladesh
(see Section 5.4). How can we understand the relation between distance, arsenic
level, and the decision to switch? It makes sense that people with higher arsenic
levels would be more likely to switch, but what coefficient values should we expect?
Should the relation be on the log or linear scale? The actual health risk is believed

3 In our actual example, the overdispersed Poisson model did a reasonable job predicting the
number of zeroes; see page 161. But in other similar datasets the zero-inflated model can both
make sense and fit data well, hence our presentation here.
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to be linear in arsenic concentration; does that mean that a logarithmic model
is inappropriate? Such questions can be addressed using a model for individual
decisions.

To set up a choice model, we must specify a value function, which represents the
strength of preference for one decision over the other—in this case, the preference
for switching as compared to not switching. The value function is scaled so that zero
represents indifference, positive values correspond to a preference for switching, and
negative values result in not switching. This model is thus similar to the latent-data
interpretation of logistic regression (see page 85); and in fact that model is a special
case, as we shall see here.

Logistic or probit regression as a choice model in one dimension

There are simple one-dimensional choice models that reduce to probit or logit re-
gression with a single predictor, as we illustrate with the model of switching given
distance to nearest well. From page 88, the logistic regression is

R output glm(formula = switch ~ dist100, family=binomial(link="logit"))

coef.est coef.se

(Intercept) 0.61 0.06

dist100 -0.62 0.10

n = 3020, k = 2

residual deviance = 4076.2, null deviance = 4118.1 (difference = 41.9)

Now let us think about it from first principles as a decision problem. For house-
hold i, define

• ai = the benefit of switching from an unsafe to a safe well

• bi + cixi = the cost of switching to a new well a distance xi away.

We are assuming a utility theory in which the benefit (in reduced risk of disease) can
be expressed on the same scale as the cost (the inconvenience of no longer using
one’s own well, plus the additional effort—proportional to distance—required to
carry the water).

Logit model. Under the utility model, household i will switch if ai > bi + cixi.
However, we do not have direct measurements of the ai’s, bi’s, and ci’s. All we can
learn from the data is the probability of switching as a function of xi; that is,

Pr(switch) = Pr(yi = 1) = Pr(ai >bi + cixi), (6.17)

treating ai, bi, ci as random variables whose distribution is determined by the (un-
known) values of these parameters in the population.

Expression (6.17) can be written as

Pr(yi = 1) = Pr

(
ai − bi

ci
>xi

)
,

a re-expression that is useful in that it puts all the random variables in the same
place and reveals that the population relation between y and x depends on the
distribution of (a − b)/c in the population.

For convenience, label di = (ai − bi)/ci: the net benefit of switching to a neigh-
boring well, divided by the cost per distance traveled to a new well. If di has a
logistic distribution in the population, and if d is independent of x, then Pr(y = 1)
will have the form of a logistic regression on x, as we shall show here.

If di has a logistic distribution with center μ and scale σ, then di = μ + σεi,
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Figure 6.6 (a) Hypothesized logistic distribution of di = (ai − bi)/ci in the population and
(b) corresponding logistic regression curve of the probability of switching given distance.
These both correspond to the model, Pr(yi = 1) = Pr(di > xi) = logit−1(0.61−0.62x). The
dark part of the curve in (b) corresponds to the range of x (distance in 100-meter units)
in the well-switching data; see Figure 5.9 on page 89.
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Figure 6.7 (a) Hypothesized normal distribution of di = (ai − bi)/ci with mean 0.98 and
standard deviation 2.6 and (b) corresponding probit regression curve of the probability of
switching given distance. These both correspond to the model, Pr(yi = 1) = Pr(di > xi) =
Φ(0.38 − 0.39x). Compare to Figure 6.6.

where εi has the unit logistic density; see Figure 5.2 on page 80. Then

Pr(switch) = Pr(di > x) = Pr

(
di − μ

σ
>

x − μ

σ

)
= logit−1

(
μ − x

σ

)
= logit−1

(
μ

σ
− 1

σ
x

)
,

which is simply a logistic regression with coefficients μ/σ and −1/σ. We can then fit
the logistic regression and solve for μ and σ. For example, the well-switching model,
Pr(y = 1) = logit−1(0.61 − 0.62x), corresponds to μ/σ = 0.61 and −1/σ = −0.62;
thus σ = 1/0.62 = 1.6 and μ = 0.61/0.62 = 0.98. Figure 6.6 shows the distribution
of d, along with the curve of Pr(d > x) as a function of x.

Probit model. A similar model is obtained by starting with a normal distribution
for the utility parameter: d ∼ N(μ, σ2). In this case,

Pr(switch) = Pr(di > x) = Pr

(
di − μ

σ
>

x − μ

σ

)
= Φ

(
μ − x

σ

)
= Φ

(
μ

σ
− 1

σ
x

)
,

which is simply a probit regression. The model Pr(y = 1) = Φ(0.38 − 0.39x)
corresponds to μ/σ = 0.38 and −1/σ = −0.39; thus σ = 1/0.39 = 2.6 and
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Figure 6.8 Decision options for well switching given arsenic level of current well and
distance to the nearest safe well, based on the decision rule: switch if ai · (As)i > bi + cxi.

μ = 0.38/0.39 = 0.98. Figure 6.7 shows this model, which is nearly identical to
the logistic model shown in Figure 6.6.

Choice models, discrete data regressions, and latent data

Logistic regression and generalized linear models are usually set up as methods
for estimating the probabilities of different outcomes y given predictors x. A fitted
model represents an entire population, with the “error” in the model coming in
through probabilities that are not simply 0 or 1 (hence, the gap between data
points and fitted curves in graphs such as Figure 5.9 on page 89).

In contrast, choice models are defined at the level of the individual, as we can see
in the well-switching example, where each household i has, along with its own data
Xi, yi, its own parameters ai, bi, ci that determine its utility function and thus its
decision of whether to switch.

Logistic or probit regression as a choice model in multiple dimensions

We can extend the well-switching model to multiple dimensions by considering the
arsenic level of the current well as a factor in the decision.

• ai · (As)i = the benefit of switching from an unsafe well with arsenic level Asi

to a safe well. (It makes sense for the benefit to be proportional to the current
arsenic level, because risk is believed to be essentially proportional to cumulative
exposure to arsenic.)

• bi + cixi = the cost of switching to a new well a distance xi away.

Household i should then switch if ai · (As)i > bi + cxi—the decision thus depends
on the household’s arsenic level (As)i, its distance xi to the nearest well, and its
utility parameters ai, bi, ci.

Figure 6.8 shows the decision space for an individual household, depending on
its arsenic level and distance to the nearest safe well. Given ai, bi, ci, the decision
under this model is deterministic. However, ai, bi, ci are not directly observable—all
we see are the decisions (yi = 0 or 1) for households, given their arsenic levels Asi

and distances xi to the nearest safe well.
Certain distributions of (a, b, c) in the population reduce to the fitted logistic

regression, for example, if ai and ci are constants and bi/ai has a logistic distribution
that is independent of (As)i and xi. More generally, choice models reduce to logistic
regressions if the factors come in additively, with coefficients that do not vary in
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the population, and if there is a fixed cost (bi in this example) that has a logistic
distribution in the population.

Other distributions of (a, b, c) are possible. The corresponding models can be fit,
treating these utility parameters as latent data. There is no easy way of fitting
such models using glm() in R (except for the special cases that reduce to logit and
probit), but they can be fit in Bugs (see Exercise 17.7).

Insights from decision models

A choice model can give us some insight even if we do not formally fit it. For
example, in fitting logistic regressions, we found that distance worked well as a
linear predictor, whereas arsenic level fit better on the logarithmic scale. A simple
utility analysis would suggest that both these factors should come in linearly, and
the transformation for arsenic suggests that people are (incorrectly) perceiving the
risks on a logarithmic scale—seeing the difference between 4 to 8, say, as no worse
than the difference between 1 and 2. (In addition, our residual plot showed the
complication that people seem to underestimate risks from arsenic levels very close
to 0.5. And behind this is the simplifying assumption that all wells with arsenic
levels below 0.5 are “safe.”)

We can also use the utility model to interpret the coefficient for education in the
model—more educated people are more likely to switch, indicating that their costs
of switching are lower, or their perceived benefits from reducing arsenic exposure are
higher. Interactions correspond to dependence among the latent utility parameters
in population.

The model could also be elaborated to consider the full range of individual op-
tions, which include doing nothing, switching to an existing private well, switching
to an existing community well, or digging a new private well. The decision depends
on the cost of walking, perception of health risks, financial resources, and future
plans.

6.9 Bibliographic note

The concept of generalized linear model was introduced by Nelder and Wedder-
burn (1972) and developed further, with many examples, by McCullagh and Nelder
(1989). Dobson (2001) is an accessible introductory text. For more on overdisper-
sion, see Anderson (1988) and Liang and McCullagh (1993). Fienberg (1977) and
Agresti (2002) are other useful references.

The death penalty example comes from Gelman, Liebman, et al. (2004). Models
for traffic accidents are discussed by Chapman (1973) and Hauer, Ng, and Lovell
(1988). For more on the New York City police example, see Spitzer (1999) and
Gelman, Fagan, and Kiss (2005).

Maddala (1983) presents discrete-data regressions and choice models from an
econometric perspective, and McCullagh (1980) considers general forms for latent-
parameter models for ordered data. Amemiya (1981) discusses the factor of 1.6 for
converting from logit to probit coefficients.

Walker and Duncan (1967) introduce the ordered logistic regression model, and
Imai and van Dyk (2003) discuss the models underlying multinomial logit and probit
regression. The storable votes example comes from Casella, Gelman, and Palfrey
(2006). See Agresti (2002) and Imai and van Dyk (2003) for more on categorical
regression models, ordered and unordered.

Robust regression using the t distribution is discussed by Zellner (1976) and
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Lange, Little, and Taylor (1989), and the robit model is introduced by Liu (2004).
See Stigler (1977) and Mosteller and Tukey (1977) for further discussions of ro-
bust inference from an applied perspective. Wiens (1999) and Newton et al. (2001)
discuss the gamma and lognormal models for positive continuous data. For general-
ized additive models and other nonparametric methods, see Hastie and Tibshirani
(1990) and Hastie, Tibshirani, and Friedman (2002).

Connections between logit/probit regressions and choice models have been stud-
ied in psychology, economics, and political science; some important references are
Thurstone (1927a, b), Wallis and Friedman (1942), Mosteller (1951), Bradley and
Terry (1952), and McFadden (1973). Tobit models are named after Tobin (1958)
and are covered in econometrics texts such as Woolridge (2001).

6.10 Exercises

1. Poisson regression: the folder risky.behavior contains data from a random-
ized trial targeting couples at high risk of HIV infection. The intervention pro-
vided counseling sessions regarding practices that could reduce their likelihood
of contracting HIV. Couples were randomized either to a control group, a group
in which just the woman participated, or a group in which both members of
the couple participated. One of the outcomes examined after three months was
“number of unprotected sex acts.”

(a) Model this outcome as a function of treatment assignment using a Poisson
regression. Does the model fit well? Is there evidence of overdispersion?

(b) Next extend the model to include pre-treatment measures of the outcome and
the additional pre-treatment variables included in the dataset. Does the model
fit well? Is there evidence of overdispersion?

(c) Fit an overdispersed Poisson model. What do you conclude regarding effec-
tiveness of the intervention?

(d) These data include responses from both men and women from the partici-
pating couples. Does this give you any concern with regard to our modeling
assumptions?

2. Multinomial logit: using the individual-level survey data from the 2000 National
Election Study (data in folder nes), predict party identification (which is on a
five-point scale) using ideology and demographics with an ordered multinomial
logit model.

(a) Summarize the parameter estimates numerically and also graphically.

(b) Explain the results from the fitted model.

(c) Use a binned residual plot to assess the fit of the model.

3. Comparing logit and probit: take one of the data examples from Chapter 5.
Fit these data using both logit and probit model. Check that the results are
essentially the same (after scaling by factor of 1.6; see Figure 6.2 on page 118).

4. Comparing logit and probit: construct a dataset where the logit and probit mod-
els give different estimates.

5. Tobit model for mixed discrete/continuous data: experimental data from the
National Supported Work example are available in the folder lalonde. Use the
treatment indicator and pre-treatment variables to predict post-treatment (1978)
earnings using a tobit model. Interpret the model coefficients.



EXERCISES 133

6. Robust linear regression using the t model: The folder congress has the votes
for the Democratic and Republican candidates in each U.S. congressional district
in 1988, along with the parties’ vote proportions in 1986 and an indicator for
whether the incumbent was running for reelection in 1988. For your analysis,
just use the elections that were contested by both parties in both years.

(a) Fit a linear regression (with the usual normal-distribution model for the er-
rors) predicting 1988 Democratic vote share from the other variables and
assess model fit.

(b) Fit a t-regression model predicting 1988 Democratic vote share from the other
variables and assess model fit; to fit this model in R you can use the tlm()

function in the hett package. (See the end of Section C.2 for instructions on
loading R packages.)

(c) Which model do you prefer?

7. Robust regression for binary data using the robit model: Use the same data as
the previous example with the goal instead of predicting for each district whether
it was won by the Democratic or Republican candidate.

(a) Fit a standard logistic or probit regression and assess model fit.

(b) Fit a robit regression and assess model fit.

(c) Which model do you prefer?

8. Logistic regression and choice models: using the individual-level survey data from
the election example described in Section 4.7 (data available in the folder nes),
fit a logistic regression model for the choice of supporting Democrats or Repub-
licans. Then interpret the output from this regression in terms of a utility/choice
model.

9. Multinomial logistic regression and choice models: repeat the previous exercise
but now with three options: Democrat, no opinion, Republican. That is, fit an
ordered logit model and then express it as a utility/choice model.

10. Spatial voting models: suppose that competing political candidates A and B have
positions that can be located spatially in a one-dimensional space (that is, on
a line). Suppose that voters have “ideal points” with regard to these positions
that are normally distributed in this space, defined so that voters will prefer
candidates whose positions are closest to their ideal points. Further suppose
that voters’ ideal points can be modeled as a linear regression given inputs such
as party identification, ideology, and demographics.

(a) Write this model in terms of utilities.

(b) Express the probability that a voter supports candidate S as a probit regres-
sion on the voter-level inputs.

See Erikson and Romero (1990) and Clinton, Jackman, and Rivers (2004) for
more on these models.

11. Multinomial choice models: Pardoe and Simonton (2006) fit a discrete choice
model to predict winners of the Academy Awards. Their data are in the folder
academy.awards.

(a) Fit your own model to these data.

(b) Display the fitted model on a plot that also shows the data.

(c) Make a plot displaying the uncertainty in inferences from the fitted model.





Part 1B: Working with regression
inferences

We now discuss how to go beyond simply looking at regression coefficients, first by
using simulation to summarize and propagate inferential uncertainty, and then by
considering how regression can be used for causal inference.





CHAPTER 7

Simulation of probability models and
statistical inferences

Whenever we represent inferences for a parameter using a point estimate and stan-
dard error, we are performing a data reduction. If the estimate is normally dis-
tributed, this summary discards no information because the normal distribution is
completely defined by its mean and variance. But in other cases it can be useful
to represent the uncertainty in the parameter estimation by a set of random sim-
ulations that represent possible values of the parameter vector (with more likely
values being more likely to appear in the simulation). By simulation, then, we
mean summarizing inferences by random numbers rather than by point estimates
and standard errors.

7.1 Simulation of probability models

In this section we introduce simulation for two simple probability models. The
rest of the chapter discusses how to use simulations to summarize and understand
regressions and generalize linear models, and the next chapter applies simulation to
model checking and validation. Simulation is important in itself and also prepares
for multilevel models, which we fit using simulation-based inference, as described
in Part 2B.

A simple example of discrete predictive simulation

How many girls in 400 births? The probability that a baby is a girl or boy is
48.8% or 51.2%, respectively. Suppose that 400 babies are born in a hospital in a
given year. How many will be girls?

We can simulate the 400 births using the binomial distribution:

R coden.girls <- rbinom (1, 400, .488)

print (n.girls)

which shows us what could happen in 400 births. To get a sense of the distribution
of what could happen, we simulate the process 1000 times (after first creating the
vector n.girls to store the simulations):

R coden.sims <- 1000

n.girls <- rep (NA, n.sims)

for (s in 1:n.sims){

n.girls[s] <- rbinom (1, 400, .488)}

hist (n.girls)

which yields the histogram in Figure 7.1 representing the probability distribution
for the number of girl births. The 1000 simulations capture the uncertainty.1

1 In this example, we performed all the simulations in a loop. It would also be possible to simulate
1000 draws from the binomial distribution directly:
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Figure 7.1 Histogram of 1000 simulated values for the number of girls born in a hospital
out of 400 babies, as simulated from the binomial probability distribution with probability
0.488.

Accounting for twins. We can complicate the model in various ways. For example,
there is a 1/125 chance that a birth event results in fraternal twins, of which each
has an approximate 49.5% chance of being a girl, and a 1/300 chance of identical
twins, which have an approximate 49.5% chance of being girls. We can simulate 400
birth events as follows:

R code birth.type <- sample (c("fraternal twin","identical twin","single birth"),

size=400, replace=TRUE, prob=c(1/125, 1/300, 1 - 1/125 - 1/300))

girls <- rep (NA, 400)

for (i in 1:400){

if (birth.type[i]=="single birth"){

girls[i] <- rbinom (1, 1, .488)}

else if (birth.type[i]=="identical twin"){

girls[i] <- 2*rbinom (1, 1, .495)}

else if (birth.type[i]=="fraternal twin"){

girls[i] <- rbinom (1, 2, .495)}

}

n.girls <- sum (girls)

Here, girls is a vector of length 400, of 0’s, 1’s, and 2’s (mostly 0’s and 1’s) rep-
resenting the number of girls in each birth event.2 To approximate the distribution
of the number of girls in 400 births, we put the simulation in a loop and repeat it
1000 times:

R code n.girls <- rep (NA, n.sims)

for (s in 1:n.sims){

birth.type <-sample(c("fraternal twin","identical twin","single birth"),

size=400, replace=TRUE, prob=c(1/125, 1/300, 1 - 1/125 - 1/300))

girls <- rep (NA, 400)

for (i in 1:400){

if (birth.type[i]=="single birth"){

girls[i] <- rbinom (1, 1, .488)}

else if (birth.type[i]=="identical twin"){

girls[i] <- 2*rbinom (1, 1, .495)}

else if (birth.type[i]=="fraternal twin"){

girls[i] <- rbinom (1, 2, .495)}

n.girls <- rbinom (n.sims, 400, .488)
In other settings one can write the simulation as a function and perform the looping implicitly
using the replicate() function in R, as we illustrate on page 139.

2 Again, this calculation could also be performed without looping using vector operations in R:
girls <- ifelse (birth.type=="single birth", rbinom (400, 1, .488), ifelse (

birth.type="identical twins", 2*rbinom (400, 1, .495), rbinom (400, 2, .495)))
We have used looping in the main text to emphasize the parallel calculation for the 400 birth
events, but the vectorized computation is faster and can be more convenient when part of a
larger computation.
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}

n.girls[s] <- sum (girls)

}

This nested looping is characteristic of simulations of complex data structures and
can also be implemented using custom R functions and the replicate() function,
as we discuss shortly.

A simple example of continuous predictive simulation

Similarly, we can program R to simulate continuous random variables. For example,
52% of adults in the United States are women and 48% are men. The heights of the
men are approximately normally distributed with mean 69.1 inches and standard
deviation 2.9 inches; women with mean 63.7 and standard deviation 2.7.

Suppose we select 10 adults at random. What can we say about their average
height?

R codesex <- rbinom (10, 1, .52)

height <- ifelse (sex==0, rnorm (10, 69.1, 2.9), rnorm (10, 64.5, 2.7))

avg.height <- mean (height)

print (avg.height)

To simulate the distribution of avg.height, we loop the simulation 1000 times:

R coden.sims <- 1000

avg.height <- rep (NA, n.sims)

for (s in 1:n.sims){

sex <- rbinom (10, 1, .52)

height <- ifelse (sex==0, rnorm (10, 69.1, 2.9), rnorm (10, 64.5, 2.7))

avg.height[s] <- mean (height)

}

hist (avg.height, main="Average height of 10 adults")

What about the maximum height of the 10 people? To determine this, just add the
following line within the loop:

R codemax.height[s] <- max (height)

and before the loop, initialize max.height:

R codemax.height <- rep (NA, n.sims)

Then, after the loop, make a histogram of max.height.

Simulation in R using custom-made functions

The coding for simulations becomes cleaner if we express the steps for a single
simulation as a function in R. We illustrate with the simulation of average heights.
First, the function:

R codeHeight.sim <- function (n.adults){

sex <- rbinom (n.adults, 1, .52)

height <- ifelse (sex==0, rnorm (10, 69.5, 2.9), rnorm (10, 64.5, 2.7))

return (mean(height))

}

(For simplicity we have “hard-coded” the proportion of women and the mean and
standard deviation of men’s and women’s heights, but more generally these could
be supplied as arguments to the function.)

We then use the replicate() function to call Height.sim() 1000 times:
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R code avg.height <- replicate (1000, Height.sim (n.adults=10))

hist (avg.height)

See Section 20.5 for a more elaborate example of the use of functions in R, in a
fake-data simulation to perform a power calculation.

7.2 Summarizing linear regressions using simulation: an informal

Bayesian approach

In a regression setting, we can use simulation to capture both predictive uncertainty
(the error term in the regression model) and inferential uncertainty (the standard
errors of the coefficients and uncertainty about the residual error). We first discuss
the simplest case of simulating prediction errors, then consider inferential uncer-
tainty and the combination of both sources of variation.

Simulation to represent predictive uncertainty

We illustrate predictive uncertainty with the problem of predicting the earnings of
a 68-inch-tall man, using model (4.2) on page 63.

Obtaining the point and interval predictions automatically. The predictive esti-
mate and confidence interval can easily be accessed using the regression software
in R:

R code x.new <- data.frame (height=68, male=1)

pred.interval <- predict (earn.logmodel.3, x.new, interval="prediction",

level=.95)

and then exponentiating to get the predictions on the original (unlogged) scale of
earnings:

R code exp (pred.interval)

Constructing the predictive interval using simulation. We now discuss how to ob-
tain predictive intervals “manually” using simulations derived from the fitted re-
gression model. In this example it would be easier to simply use the predict()

function as just shown; however, simulation is a general tool that we will be able to
apply in more complicated predictive settings, as we illustrate later in this chapter
and the next.

• The point estimate for log earnings is 8.4+0.017·68−0.079·1+0.007·68·1 = 9.95,
with a standard deviation of 0.88. To put these on the original (unlogged) scale,
we exponentiate to yield a geometric mean of e9.95 = 21000 and a geometric
standard deviation of e0.88 = 2.4.

Then, for example, the 68% predictive interval is [21000/2.4, 21000 · 2.4] =
[8800, 50000], and the 95% interval is [21000/2.42, 21000 · 2.42] = [3600, 121000]

• The simulation prediction is a set of random numbers whose logarithms have
mean 9.95 and standard deviation 0.88. For example, in R, we can summarize
the predictive distribution using the following command:

R code pred <- exp (rnorm (1000, 9.95, .88))

which tells R to draw 1000 random numbers from a normal distribution with
mean 9.95 and variance 0.88, and then exponentiate these values.
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Figure 7.2 Histogram of 1000 simulated values from the predictive distribution of the earn-
ings of a 68-inch-tall man from a fitted regression model, on the logarithmic and original
scales.

We can display the simulations as a histogram (see Figure 7.2) and also compute
various numerical summaries, for example,

• mean: mean(pred)

• median: quantile(pred,.5)

• 50% interval: quantile(pred,c(.25,.75))

• 95% interval: quantile(pred,c(.025,.975))

(These calculations ignore uncertainty in the regression parameters and thus are
only approximate; we describe a more complete computational procedure later in
this section.)

Why do we need simulation for predictive inferences?

For many purposes, point estimates, standard errors, and the intervals obtained
from the predict() function in R are sufficient because the Central Limit Theorem
ensures that for all but the smallest sample sizes and for reasonably well-behaved
error distributions, coefficient estimates are approximately normally distributed
(see page 14). Accounting for the uncertainty in the standard-error estimates, the
t-distribution with n−k degrees of freedom (where k is the number of predictors in
the model) is a reliable approximation for the appropriate uncertainty distribution
for the coefficients. Analytic procedures can also be used to get uncertainty for linear
combinations of parameters and predictions. (An example of a linear combination
of predictions is to use one of the models in Chapter 3 to predict the average test
score of a group of 100 children whose mothers’ educations and IQs are known.)

For more general predictions, however, the easiest and most reliable way to com-
pute uncertainties is by simulation. For example, suppose we have a 68-inch-tall
woman and a 68-inch-tall man, and we would like to use model (4.2) to predict the
difference of their earnings. As a point estimate, we can use the difference of the
point predictions: exp(8.4 + 0.017 · 68− 0.079 · 1 + 0.007 · 68 · 1)− exp(8.4 + 0.017 ·
68 − 0.079 · 0 + 0.007 · 68 · 0) = 6900. The simplest way to get a standard error or
uncertainty interval for this prediction is to use simulation:

R codepred.man <- exp (rnorm (1000, 8.4 + .017*68 - .079*1 + .007*68*1, .88))

pred.woman <- exp (rnorm (1000, 8.4 + .017*68 - .079*0 + .007*68*0, .88))

pred.diff <- pred.man - pred.woman

pred.ratio <- pred.man/pred.woman

We can summarize the distribution of this difference using a histogram or numer-
ical summaries such as mean(pred.diff), quantile(pred.ratio,c(.25,.75)),
and so forth.

More generally, simulation is valuable because it can be used to summarize any
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function of estimated and predicted values. This is important partly for practical
purposes in summarizing predictions and also because it allows us to fit complicated
models in which the ultimate objects of interest are more complicated than a set
of regression coefficients or linear combination of coefficients. Simulation will also
be crucial when working with nonlinear models such as logistic regression.

Simulation to represent uncertainty in regression coefficients

The usual summary of a fitted regression gives standard errors along with esti-
mates for each coefficient, and these give a sense of the uncertainty in estimation
(see Figure 3.7 on page 40). When going beyond inferences for individual coeffi-
cients, however, it is helpful to summarize inferences by simulation, which gives us
complete flexibility in propagating uncertainty about combinations of parameters
and predictions.

For classical linear regressions and generalized linear models, we implement these
simulations using the sim() function in R. For example, if we do

R code n.sims <- 1000

fit.1 <- lm (log.earn ~ height + male + height:male)

sim.1 <- sim (fit.1, n.sims)

then sim.1$beta is a matrix with 1000 rows and 4 columns (representing 1000
independent simulations of the vector (β0, β1, β2, β3)), and sim.1$sigma is a vector
of length 1000 (representing the estimation uncertainty in the residual standard-
deviation parameter σ).

We can check that these simulations are equivalent to the regression computa-
tions, for example by the following commands in R, which print the mean, standard
deviation, and 95% interval for the coefficient for height in the fitted model:

R code height.coef <- sim.1$beta[,2]

mean (height.coef)

sd (height.coef)

quantile (height.coef, c(.025,.975))

For a more interesting example, consider the question: In this interaction model,
what can be said about the coefficient of height among men? We cannot directly
answer this question using the regression output: the slope for men is a sum of
the height and height:male coefficients, and there is no simple way to compute
its standard error given the information in the regression table. The most direct
approach is to compute the 95% interval directly from the inferential simulations:

R code height.for.men.coef <- sim.1$beta[,2] + sim.1$beta[,4]

quantile (height.for.men.coef, c(.025,.975))

The result is [−0.003, 0.049], that is, [−0.3%, 4.9%]. Statistical significance is not
the object of the analysis—our conclusions should not be greatly changed if, for
example, the 95% interval instead were [0.1%, 5.3%]—but it is important to have a
sense of the uncertainty of estimates, and it is convenient to be able to do this using
the inferential simulations. The powers of inferential simulations are demonstrated
more effectively when combined with prediction, as illustrated in Section 7.3.

Details of the simulation procedure

To get n.sims simulation draws (for example, 1000 is typically more than enough;
see Chapter 17), we apply the following procedure based on Bayesian inference (see
Chapter 18).
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1. Use classical regression of n data points on k predictors to compute the vector β̂
of estimated parameters, the unscaled estimation covariance matrix Vβ , and the
residual variance σ̂2.

2. Create n.sims random simulations of the coefficient vector β and the residual
standard deviation σ. For each simulation draw:

(a) Simulate σ = σ̂
√

(n−k)/X, where X is a random draw from the χ2 distribu-
tion with n−k degrees of freedom.

(b) Given the random draw of σ, simulate β from a multivariate normal distribu-

tion with mean β̂ and variance matrix σ2Vβ .

These simulations are centered about the estimates β̂ and σ̂ with variation repre-
senting estimation uncertainty in the parameters. (For example, approximately

68% of the simulations of β1 will be within ±1 standard error of β̂1, approxi-
mately 95% will be within ±2 standard errors, and so forth.)

These steps are performed automatically by our R function sim(), which pulls out
n, k, β̂, Vβ , σ̂ from the fitted linear model and then performs a loop over the nsims

simulations:

R codefor (s in 1:n.sims){

sigma[s] <- sigma.hat*sqrt((n-k)/rchisq(1,n-k))

beta[s,] <- mvrnorm (1, beta.hat, V.beta*sigma[s]^2)

}

The sim() function then returns the vector of simulations of σ and the nsims × k
matrix of simulations of β:

R codereturn (list (beta=beta, sigma=sigma))

The list items are given names so they can be accessed using these names from the
simulation object. The function works similarly for generalized linear models such
as logistic and Poisson regressions, adjusting for any overdispersion by using the
standard errors of the coefficient estimates, which are scaled for overdispersion if
that is included in the model.

Informal Bayesian inference

Bayesian inference refers to statistical procedures that model unknown parameters
(and also missing and latent data) as random variables. As described in more detail
in Section 18.3, Bayesian inference starts with a prior distribution on the unknown
parameters and updates this with the likelihood of the data, yielding a posterior
distribution which is used for inferences and predictions.

Part 2 of this book discusses how Bayesian inference is appropriate for multi-
level modeling—in which it is natural to fit probability distributions to batches
of parameters. For the classical models considered in Part 1, Bayesian inference is
simpler, typically starting with a “noninformative” or uniform prior distribution
on the unknown parameters. We will not explore the technical issues further here
except to note that the simulations presented here correspond to these noninfor-
mative prior distributions. It can also be helpful to think of these simulations as
representing configurations of parameters and predictions that are compatible with
the observed data—in the same sense that a classical confidence interval contains
a range of parameter values that are not contradicted by the data.
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Congressional elections in 1988
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Figure 7.3 Histogram of congressional election data from 1988. The spikes at the left and
right ends represent uncontested Republicans and Democrats, respectively.

7.3 Simulation for nonlinear predictions: congressional elections

We illustrate nonlinear predictions in the context of a model of elections for the U.S.
Congress. We first construct a model to predict the 1988 election from the 1986
election. Then we apply the model to predict 1990 from 1988. (It is convenient,
when learning about a method, to predict outcomes that have already occurred, so
the predictions can be compared to reality.)

Background

The United States is divided into 435 congressional districts, and we define the
outcome yi, for i = 1, . . . , n = 435 to be the Democratic Party’s share of the two-
party vote (that is, excluding the votes for parties other than the Democrats and
the Republicans) in district i in 1988. Figure 7.3 shows a histogram of the data y.

How can the variation in the data be understood? What information would be
relevant in predicting the outcome of a congressional election? First of all, it is useful
to know whether both parties are contesting the election; the spikes at the two ends
of the histogram reveal that many of the elections were uncontested. After that, it
would seem to make sense to use the outcome of the most recent previous election,
which was in 1988. In addition, we use the knowledge of whether the incumbent—the
current occupant of the congressional seat—is running for reelection.

Our regression model has the following predictors:

• A constant term

• The Democratic share of the two-party vote in district i in the previous election

• Incumbency: an indicator that equals +1 if district i is currently (as of 1988)
occupied by a Democrat who is running for reelection, −1 if a Republican is
running for reelection, and 0 if the election is open—that is, if neither of the two
candidates is currently occupying the seat.

Because the incumbency predictor is categorical, we can display the data in a
single scatterplot using different symbols for Republican incumbents, Democratic
incumbents, and open seats; see Figure 7.4a.

We shall fit a linear regression. The data—number of votes for each candidate—
are discrete, so it might at first seem appropriate to fit a generalized linear model
such as an overdispersed binomial. But the number of votes within each district is
large enough that the vote proportions are essentially continuous, so nothing would
be gained by attempting to model the discreteness in the data.
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Figure 7.4 (a) Congressional election data from 1986 and 1988. Crosses correspond to
elections with Republican incumbents running in 1988, dots correspond to Democratic
incumbents, and open circles correspond to open seats. The “incumbency” predictor in
the regression model equals 0 for the circles, +1 for the dots, and −1 for the crosses.
Uncontested election outcomes (at 0 and 1) have been jittered slightly. (b) Data for the
regression analysis, with uncontested 1988 elections removed and uncontested 1986 election
values replaced by 0.25 and 0.75. The y = x line is included as a comparison on both plots.

Data issues

Many of the elections were uncontested in 1988, so that yi = 0 or 1 exactly; for sim-
plicity, we exclude these from our analysis. Thus, we are predicting the 1988 results
given the outcome in the previous election and the knowledge of (a) whether the
incumbent is running for reelection, and (b) whether the election will be contested.
Primary elections are typically in September, and so it is reasonable to expect
to have this information about two months before the November general election.
We also exclude any elections that were won by third parties, yielding n = 343
congressional elections for our analysis.

In addition, many elections were uncontested in 1986, so the previous election
outcome X2i is 0 or 1 exactly. It would be possible to simply include these in
the model as is; however, instead we impute the value 0.25 for uncontested Re-
publicans and 0.75 for uncontested Democrats, which are intended to represent
approximately the proportion of votes received by the Democratic candidate had
the election actually been contested. (More generally, we can impute random values
from the distribution of contested election outcomes preceding an uncontested race,
but for our purposes here the simple imputation is suficient.) The adjusted dataset
is displayed in Figure 7.4b.

Fitting the model

First we fit the regression model in R: we label the adjusted variables as vote.88,
vote.86, incumbency.88, subset them to include only the elections that were con-
tested in 1988, and fit a linear model:

R codefit.88 <- lm (vote.88 ~ vote.86 + incumbency.88)

Displaying yields

R outputcoef.est coef.se

(Intercept) 0.20 0.02

vote.86 0.58 0.04
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sim σ β0 β1 β2 ỹ1 ỹ2 · · · ỹ55 · · · ỹ435

P
i I(ỹi > 0.5)

1 .065 .19 .62 .067 .69 .57 · · · NA · · · .79 251
2 .069 .25 .50 .097 .75 .63 · · · NA · · · .76 254
...

...
...

...
...

...
...

...
...

. . .
...

...
1000 .067 .23 .51 .089 .73 .57 · · · NA · · · .69 251

median .068 .20 .58 .077 .73 .65 · · · NA · · · .72 253
mean .067 .20 .58 .078 .73 .65 · · · NA · · · .72 252.4

sd .003 .02 .04 .007 .07 .07 · · · NA · · · .07 3.1

Figure 7.5 Simulation results for the congressional election forecasting model. The pre-
dicted values ỹi correspond to the 1990 election. The NAs are for a district that was
uncontested in 1990, so it was not predicted by the regression model.

incumbency.88 0.08 0.01

n = 343, k = 3

residual sd = 0.067, R-Squared = 0.88

This model has serious problems, as can be seen, for example, by careful exami-
nation of the plot of residuals or even of the before-after plot in Figure 7.4b (for
example, the jump between the average y-values just below and just above x = 0.5
is not completely fit by the incumbency.88 predictor). Better models can be fit
to these data (see Exercise 9.13), but the simple regression fit here is sufficient to
demonstrate the principles of simulation-based predictive inference.

Simulation for inferences and predictions of new data points

The first five columns of Figure 7.5 show a set of simulation results for the param-
eters in the fitted model. We use these, along with the data from 1988 and incum-
bency information in 1990, to predict the district-by-district election outcome in
1990. We start by creating a new matrix of predictors, X̃:

R code n.tilde <- length (vote.88)

X.tilde <- cbind (rep(1,n.tilde), vote.88, incumbency.90)

We then simulate nsims = 1000 predictive simulations of the vector of ñ new data
points with ñ × k matrix of predictors X̃. For each simulation, we compute the
predicted value X̃β and add normal errors:

R code n.sims <- 1000

sim.88 <- sim (fit.88, n.sims)

y.tilde <- array (NA, c(n.sims, n.tilde))

for (s in 1:n.sims){

y.tilde[s,] <- rnorm (n.tilde, X.tilde %*% sim.88$beta[s,],

sim.88$sigma[s])}

This last matrix multiplication works because X.tilde is a ñ× 3 matrix and
sim.88$beta is a nsims× 3 matrix; thus the selected row, sim.88$beta[s,], is
a vector of length 3, and the product X.tilde%*%sim.88$beta[s,] is a vector of
length ñ that represents the vector of predicted values for that particular simulation
draw.



SIMULATION FOR NONLINEAR PREDICTIONS 147

Predictive simulation for a nonlinear function of new data

For the congressional elections example, we perform inference on the summary
measure

∑ñ
i=1 I(ỹi > 0.5)—the number of elections won by the Democrats in 1990,

by summing over the rows in the matrix:3

R codedems.tilde <- rowSums (y.tilde > .5)

The last column of Figure 7.5 shows the results. Each row shows the outcome of
a different random simulation.

The lower lines of the table in Figure 7.5 show the median, mean, and standard
deviation of each simulated outcome. The means and medians of the parameters σ
and β are nearly identical to the point estimates (the differences are due to variation
because there are only 1000 simulation draws). The future election outcome in
each district has a predictive uncertainty of about 0.07, which makes sense since
the estimated standard deviation from the regression is σ̂ = 0.07. (The predictive
uncertainties are slightly higher than σ̂, but by only a very small amount since the
number of data points in the original regression is large, and the x-values for the
predictions are all within the range of the original data.)

Finally, the entries in the lower-right corner of Figure 7.5 give a predictive mean
of 252.4 and standard error of 3.1 for the number of districts to be won by the
Democrats. This estimate and standard error could not simply be calculated from
the estimates and uncertainties for the individual districts. Simulation is the only
practical method of assessing the predictive uncertainty for this nonlinear function
of the predicted outcomes.

Incidentally, the actual number of seats won by the Democrats in 1990 was 262.
This is more than 3 standard deviations away from the mean, which suggests that
the model is not quite applicable to the 1990 election—this makes sense since it
does not allow for national partisan swings of the sort that happen from election
to election.

Implementation using functions

We could also compute these predictions by writing a custom R function:

R codePred.88 <- function (X.pred, lm.fit){

n.pred <- dim(X.pred)[1]

sim.88 <- sim (lm.fit, 1)

y.pred <- rnorm (n.pred, X.pred %*% t(sim.88$beta), sim.88$sigma)

return (y.pred)

}

and then creating 1000 simulations using the replicate() function in R:

R codey.tilde <- replicate (1000, Pred.88 (X.tilde, fit.88))

To predict the total number of seats won by the Democrats, we can add a wrapper:

R codedems.tilde <- replicate (1000, Pred.88 (X.tilde, fit.88) > .5)

Computing using replicate() (or related functions such as apply() and sapply())
results in faster and more compact R code which, depending on one’s programming
experience can appear either simpler or more mysterious than explicit looping. We
sometimes find it helpful to perform computations both ways when we are uncertain
about the programming.

3 We could also calculate this sum in a loop as
dems.tilde <- rep (NA, n.sims)
for (s in 1:n.sims){

dems.tilde[s] <- sum (y.tilde[s,] > .5)}
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Combining simulation and analytic calculations

In some settings it is helpful to supplement simulation-based inference with math-
ematical analysis. For example, in the election prediction model, suppose we want
to estimate the probability that the election in a particular district will be tied, or
within one vote of being exactly tied. (This calculation is relevant, for example, in
estimating the probability that an individual vote will be decisive, and comparing
these probabilities can be relevant for parties’ decisions for allocating campaign
resources.)

Consider a district, i, with ni voters. For simplicity we suppose ni is even. This
district’s election will be tied if the future vote outcome, ỹi, is exactly 0.5. We
have approximated the distribution of ỹ as continuous—which is perfectly reason-
able given that the ni’s are in the tens or hundreds of thousands—and so a tie is
equivalent to ỹi being in the range [12 − 1

2ni
, 1

2 + 1
2ni

].
How can we compute this probability by simulation? The most direct way is to

perform many predictive simulations and count the proportion for which ỹi falls in
the range 0.5 ± 1/(2ni). Unfortunately, for realistic ni’s, this range is so tiny that
thousands or millions of simulations could be required to estimate this probability
accurately. (For example, it would not be very helpful to learn that 0 out of 1000
simulations fell within the interval.)

A better approach is to combine simulation and analytical results: first compute
1000 simulations of ỹ, as shown, then for each district compute the proportion of
simulations that fall between 0.49 and 0.51, say, and divide by 0.02ni (that is, the
number of intervals of width 1/ni that fit between 0.49 and 0.51). Or compute the
proportion falling between 0.45 and 0.55, and divide by 0.1ni. For some districts,
the probability will still be estimated at zero after 1000 simulation draws, but in
this case the estimated zero is much more precise.

Estimated probabilities for extremely rare events can be computed in this ex-
ample using the fact that predictive distributions from a linear regression follow
the t distribution with n−k degrees of freedom. We can use 1000 simulations to
compute a predictive mean and standard deviation for each ỹi, then use tail prob-
abilities of the t340 distribution (in this example, n = 343 and k = 3) to compute
the probability of falling in the range 0.5 ± 1/(2ni).

7.4 Predictive simulation for generalized linear models

As with linear regression, we simulate inference for generalized linear models in two
steps: first using sim() to obtain simulations for the coefficients, then simulating
predictions from the appropriate model, given the linear predictor.

Logistic regression

We illustrate for one of the models from Chapter 5 of the probability of switching
wells given the distance from the nearest safe well.

Simulating the uncertainty in the estimated coefficients. Figure 7.6a shows the
uncertainty in the regression coefficients, computed as follows:

R code sim.1 <- sim (fit.1, n.sims=1000)

plot (sim.1$beta[,1], sim.1$beta[,2], xlab=expression(beta[0]),

ylab=expression(beta[1]))

and Figure 7.6b shows the corresponding uncertainty in the logistic regression curve,
displayed as follows:
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Figure 7.6 (a) Uncertainty in the estimated coefficients β0 and β1 in the logistic regression,
Pr(switching wells) = logit−1(β0 − β0 · dist100). (b) Graphical expression of the best-fit
model, Pr(switching wells) = logit−1(0.61 − 0.62 · dist100), with (jittered) data overlain.
Light lines represent estimation uncertainty in the logistic regression coefficients, corre-
sponding to the distribution of β shown to the left. Compare to Figure 5.9 on page 89.

sim β0 β1 ỹ1 ỹ2 · · · ỹ10

1 0.68 −0.007 1 0 · · · 1
2 0.61 −0.005 0 0 · · · 1
...

...
...

...
...

. . .
...

1000 0.69 −0.006 1 1 · · · 1

mean 0.61 −0.006 0.60 0.59 · · · 0.52

Figure 7.7 Simulation results for ten hypothetical new households in the well-switching
example, predicting based only on distance to the nearest well. The inferences for (β0, β1)
are displayed as a scatterplot in Figure 7.6a. The bottom row—the mean of the simulated
values of ỹi for each household i—gives the estimated probabilities of switching.

R codeplot (dist, switch)

for (s in 1:20){

curve (invlogit (sim.1$beta[s,1] + sim.1$beta[s,2]*x), col="gray",

add=TRUE)}

curve (invlogit (fit.1$coef[1] + fit.1$coef[2]*x), add=TRUE)

Predictive simulation using the binomial distribution. Now suppose, for example,
that we would like to predict the switching behavior for ñ new households, given a
predictor matrix X̃ (which will have ñ rows and, in this example, two columns, cor-
responding to the constant term and the distance to the nearest safe well). As with
linear regression, we can use simulation to account for the predictive uncertainty.
In this case, we use the binomial distribution to simulate the prediction errors:

R coden.tilde <- nrow (X.tilde)

y.tilde <- array (NA, c(n.sims, n.tilde))

for (s in 1:n.sims){

p.tilde <- invlogit (X.tilde %*% sim.1$beta[s,])

y.tilde[s,] <- rbinom (n.tilde, 1, p.tilde)

}

Figure 7.7 shows an example set of n.sims = 1000 simulations corresponding to
n.tilde = 10 new households.

Predictive simulation using the latent logistic distribution. An alternative way to
simulate logistic regression predictions uses the latent-data formulation (see Section
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5.3). We obtain simulations for the latent data z̃ by adding independent errors ε̃ to
the linear predictor, and then convert to binary data by setting ỹi = 1 if z̃i > 0 for
each new household i:

R code y.tilde <- array (NA, c(n.sims, n.tilde))

for (s in 1:n.sims){

epsilon.tilde <- logit (runif (n.tilde, 0, 1))

z.tilde <- X.tilde %*% t(sim.1$beta) + epsilon.tilde

y.tilde[s,] <- ifelse (z.tilde>0, 1, 0)

}

Other generalized linear models

We can do similar computations with Poisson regression: inference just as before,
and predictive simulations using rpois().

For overdispersed Poisson regression, the function rnegbin() samples from the
negative binomial distribution. Another option is to sample first from the gamma,
then the Poisson. For overdispersed binomial, simulations from the beta-binomial
distribution can be obtained by drawing first from the beta distribution, then the
binomial.

Compound models

Simulation is the easiest way of summarizing inferences from more complex models.
For example, as discussed in Section 6.7, we can model earnings from height in two
steps:

Pr(earnings>0) = logit−1(−3.76 + 0.08 · height + 1.70 · male)

If earnings>0, then earnings = exp (8.15 + 0.02 · height + 0.42 · male + ε),

with the error term ε having a normal distribution with mean 0 and standard
deviation 0.88.

We can simulate the earnings of a randomly chosen 68-inch tall man. We first
show, for simplicity, the simulation ignoring uncertainty in the regression coeffi-
cients:

R code fit.1a <- glm (earn.pos ~ height + male, family=binomial(link="logit"))

fit.1b <- lm (log.earn ~ height + male, subset = earnings>0)

x.new <- c (1, 68, 1) # constant term=1, height=68, male=1

n.sims <- 1000

prob.earn.pos <- invlogit (coef(fit.1a) %*% x.new)

earn.pos.sim <- rbinom (n.sims, 1, prob.earn.pos)

earn.sim <- ifelse (earn.pos.sim==0, 0,

exp (rnorm (n.sims, coef(fit.1b) %*% x.new, sigma.hat(fit.1b))))

More generally, we can use the simulated values of the coefficient estimates:

R code sim.1a <- sim (fit.1a, n.sims)

sim.1b <- sim (fit.1b, n.sims)

for (s in 1:n.sims){

prob.earn.pos <- invlogit (sim.1a$beta %*% x.new)

earn.pos.sim <- rbinom (n.sims, 1, prob.earn.pos)

earn.sim[s] <- ifelse (earn.pos.sim==0, 0

exp (rnorm (n.sims, sim.1b$beta %*% x.new, sim.1b$sigma)))

}
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n.sims = 10000
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Figure 7.8 Mean predicted earnings as a function of height and sex for the two-stage model
(logistic regression for the probability earnings being positive, followed by linear regression
for the logarithms of positive earnings), as computed using 100, 1000, or 10000 simulations.

Now suppose we want to understand this compound model by plotting the mean
predicted earnings as a function of height and sex. We can first put the computations
into a function:

R codeMean.earn <- function (height, male, sim.a, sim.b){

x.new <- c (1, height, male)

prob.earn.pos <- invlogit (sim.a$beta %*% x.new)

earn.pos.sim <- rbinom (n.sims, 1, prob.earn.pos)

earn.sim <- ifelse (earn.pos.sim==0, 0,

exp (rnorm (n.sims, sim.b$beta %*% x.new, sim.b$sigma)))

return (mean(earn.sim))

}

and then evaluate the function in a loop using the sapply() function:4

R codeheights <- seq (60, 75, 1)

mean.earn.female <- sapply (heights, Mean.earn, male=0, sim.1a, sim.1b)

mean.earn.male <- sapply (heights, Mean.earn, male=1, sim.1a, sim.1b)

The plots of mean.earn.female and mean.earn.male versus heights appear in
Figure 7.8, for three different values of nsims. The general pattern is clear from 100
simulations, but more simulations are helpful to avoid being distracted by random
noise.

7.5 Bibliographic note

Random simulation for performing computations in probability and statistics was
one of the first applications of computers, dating back to the 1940s. As computing
power became more dispersed since the 1970s, simulation has been used increasingly
frequently for summarizing statistical inferences; Rubin (1980) is an early example.

Our simulation-based approach to computation is described in Gelman et al.
(2003), and a recent implementation in R appears in Kerman and Gelman (2006).
The congressional election analysis in Section 7.3 uses a simplified version of the
models of Gelman and King (1990, 1994a).

4 Alternatively, the looping could be programmed explicitly:
heights <- seq (60, 75, 1)
k <- length(heights)
mean.earn.female <- rep (NA, k)
mean.earn.male <- rep (NA, k)
for (i in 1:k) {

mean.earn.female[i] <- Mean.earn (heights[i], 0, sim.1a, sim.1b)
mean.earn.male[i] <- Mean.earn (heights[i], 1, sim.1a, sim.1b)

}
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7.6 Exercises

1. Discrete probability simulation: suppose that a basketball player has a 60%
chance of making a shot, and he keeps taking shots until he misses two in a
row. Also assume his shots are independent (so that each shot has 60% proba-
bility of success, no matter what happened before).

(a) Write an R function to simulate this process.

(b) Put the R function in a loop to simulate the process 1000 times. Use the
simulation to estimate the mean, standard deviation, and distribution of the
total number of shots that the player will take.

(c) Using your simulations, make a scatterplot of the number of shots the player
will take and the proportion of shots that are successes.

2. Continuous probability simulation: the logarithms of weights (in pounds) of men
in the United States are approximately normally distributed with mean 5.13
and standard deviation 0.17; women with mean 4.96 and standard deviation
0.20. Suppose 10 adults selected at random step on an elevator with a capacity
of 1750 pounds. What is the probability that the elevator cable breaks?

3. Propagation of uncertainty: we use a highly idealized setting to illustrate the
use of simulations in combining uncertainties. Suppose a company changes its
technology for widget production, and a study estimates the cost savings at $5
per unit, but with a standard error of $4. Furthermore, a forecast estimates the
size of the market (that is, the number of widgets that will be sold) at 40,000,
with a standard error of 10,000. Assuming these two sources of uncertainty are
independent, use simulation to estimate the total amount of money saved by the
new product (that is, savings per unit, multiplied by size of the market).

4. Predictive simulation for linear regression: take one of the models from Exercise
3.5 or 4.8 that predicts course evaluations from beauty and other input variables.
You will do some simulations.

(a) Instructor A is a 50-year-old woman who is a native English speaker and
has a beauty score of −1. Instructor B is a 60-year-old man who is a native
English speaker and has a beauty score of −0.5. Simulate 1000 random draws
of the course evaluation rating of these two instructors. In your simulation,
account for the uncertainty in the regression parameters (that is, use the
sim() function) as well as the predictive uncertainty.

(b) Make a histogram of the difference between the course evaluations for A and
B. What is the probability that A will have a higher evaluation?

5. Predictive simulation for linear regression: using data of interest to you, fit a
linear regression model. Use the output from this model to simulate a predictive
distribution for observations with a particular combination of levels of all the
predictors in the regression.

6. Repeat the previous exercise using a logistic regression example.

7. Repeat the previous exercise using a Poisson regression example.

8. Inference for the ratio of parameters: a (hypothetical) study compares the costs
and effectiveness of two different medical treatments.

• In the first part of the study, the difference in costs between treatments A
and B is estimated at $600 per patient, with a standard error of $400, based
on a regression with 50 degrees of freedom.
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• In the second part of the study, the difference in effectiveness is estimated
at 3.0 (on some relevant measure), with a standard error of 1.0, based on a
regression with 100 degrees of freedom.

• For simplicity, assume that the data from the two parts of the study were
collected independently.

Inference is desired for the incremental cost-effectiveness ratio: the difference
between the average costs of the two treatments, divided by the difference be-
tween their average effectiveness. (This problem is discussed further by Heitjan,
Moskowitz, and Whang, 1999.)

(a) Create 1000 simulation draws of the cost difference and the effectiveness dif-
ference, and make a scatterplot of these draws.

(b) Use simulation to come up with an estimate, 50% interval, and 95% interval
for the incremental cost-effectiveness ratio.

(c) Repeat this problem, changing the standard error on the difference in effec-
tiveness to 2.0.

9. Summarizing inferences and predictions using simulation: Exercise 6.5 used a
Tobit model to fit a regression with an outcome that had mixed discrete and
continuous data. In this exercise you will revisit these data and build a two-
step model: (1) logistic regression for zero earnings versus positive earnings, and
(2) linear regression for level of earnings given earnings are positive. Compare
predictions that result from each of these models with each other.

10. How many simulation draws are needed: take the model from Exercise 3.5 that
predicts course evaluations from beauty and other input variables. Use display()
to summarize the model fit. Focus on the estimate and standard error for the
coefficient of beauty.

(a) Use sim() with n.iter = 10000. Compute the mean and standard deviations
of the 1000 simulations of the coefficient of beauty, and check that these are
close to the output from display.

(b) Repeat with n.iter = 1000, n.iter = 100, and n.iter = 10. Do each of these
a few times in order to get a sense of the simulation variability.

(c) How many simulations were needed to give a good approximation to the mean
and standard error for the coefficient of beauty?





CHAPTER 8

Simulation for checking statistical
procedures and model fits

This chapter describes a variety of ways in which probabilistic simulation can be
used to better understand statistical procedures in general, and the fit of models
to data in particular. In Sections 8.1–8.2, we discuss fake-data simulation, that is,
controlled experiments in which the parameters of a statistical model are set to fixed
“true” values, and then simulations are used to study the properties of statistical
methods. Sections 8.3–8.4 consider the related but different method of predictive
simulation, where a model is fit to data, then replicated datasets are simulated from
this estimated model, and then the replicated data are compared to the actual data.

The difference between these two general approaches is that, in fake-data simula-
tion, estimated parameters are compared to true parameters, to check that a statis-
tical method performs as advertised. In predictive simulation, replicated datasets
are compared to an actual dataset, to check the fit of a particular model.

8.1 Fake-data simulation

Simulation of fake data can be used to validate statistical algorithms and to check
the properties of estimation procedures. We illustrate with a simple regression
model, where we simulate fake data from the model, y = α + βx + ε, refit the
model to the simulated data, and check the coverage of the 68% and 95% intervals
for the coefficent β.

First we set up the true values of the parameters—which we arbitrarily set to
α = 1.4, β = 2.3, σ = 0.9—and set up the predictors, which we arbitrarily set to
(1, 2, 3, 4, 5):

R codea <- 1.4

b <- 2.3

sigma <- 0.9

x <- 1:5

n <- length(x)

We then simulate a vector y of fake data and fit a regression model to these data.
The fitting makes no use of the true values of α, β, and σ.

R codey <- a + b*x + rnorm (n, 0, sigma)

lm.1 <- lm (y ~ x)

display (lm.1)

Here is the regression output:

R outputlm(formula = y ~ x)

coef.est coef.se

(Intercept) 0.92 1.09

x 2.62 0.33

n = 5, k = 2

residual sd = 1.04, R-Squared = 0.95

155
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Comparing the estimated coefficients to the true values 1.4 and 2.3, the fit seems
reasonable enough: the estimates are not exact but are within the margin of error.
We can perform this comparison more formally by extracting from the regression
object the estimate and standard error of β (the second coefficient in the model):

R code b.hat <- coef (lm.1)[2] # "b" is the 2nd coef in the model

b.se <- se.coef (lm.1)[2] # "b" is the 2nd coef in the model

and then checking whether the true β falls within the estimated 68% and 95%
confidence intervals obtained by taking the estimate ±1 or ±2 standard errors
(recall Figure 3.7 on page 40):

R code cover.68 <- abs (b - b.hat) < b.se # this will be TRUE or FALSE

cover.95 <- abs (b - b.hat) < 2*b.se # this will be TRUE or FALSE

cat (paste ("68% coverage: ", cover.68, "\n"))

cat (paste ("95% coverage: ", cover.95, "\n"))

So, the confidence intervals worked once, but do they have the correct coverage
probabilities? We can check by embedding the data simulation, model fitting, and
coverage checking in a loop and running 1000 times:1

R code n.fake <- 1000

cover.68 <- rep (NA, n.fake)

cover.95 <- rep (NA, n.fake)

for (s in 1:n.fake){

y <- a + b*x + rnorm (n, 0, sigma)

lm.1 <- lm (y ~ x)

b.hat <- coef (lm.1)[2]

b.se <- se.coef (lm.1)[2]

cover.68[s] <- abs (b - b.hat) < b.se

cover.95[s] <- abs (b - b.hat) < 2*b.se

}

cat (paste ("68% coverage: ", mean(cover.68), "\n"))

cat (paste ("95% coverage: ", mean(cover.95), "\n"))

The following appears on the console:

R output 68% coverage: 0.61

95% coverage: 0.85

That is, mean(cover.68) = 0.61 and mean(cover.95) = 0.85. This does not seem
right: only 61% of the 68% intervals and 85% of the 95% intervals covered the true
parameter value!

Our problem is that the ±1 and ±2 standard-error intervals are appropriate for
the normal distribution, but with such a small sample size our inferences should
use the t distribution, in this case with 3 degrees of freedom (5 data points, minus
2 coefficients estimated; see Section 3.4). We repeat our simulation but using t3
confidence intervals:

R code n.fake <- 1000

cover.68 <- rep (NA, n.fake)

cover.95 <- rep (NA, n.fake)

t.68 <- qt (.84, n-2)

t.95 <- qt (.975, n-2)

for (s in 1:n.fake){

y <- a + b*x + rnorm (n, 0, sigma)

1 This and other loops in this chapter could also be performed implicitly using the replicate()
function in R, as illustrated on pages 139 and 147.
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Figure 8.1 From a model predicting final exam grades from midterms: plots of regression
residuals versus predicted and versus observed values. The left plot looks reasonable but
the right plot shows strong patterns. How to understand these? An exploration using fake
data (see Figure 8.2) shows that, even if the model were correct, we would expect the right
plot to show strong patterns. The plot of residuals versus observed thus does not indicate
a problem with the model.

lm.1 <- lm (y ~ x)

b.hat <- coef (lm.1)[2]

b.se <- se.coef (lm.1)[2]

cover.68[s] <- abs (b - b.hat) < t.68*b.se

cover.95[s] <- abs (b - b.hat) < t.95*b.se

}

cat (paste ("68% coverage ", mean(cover.68), "\n"))

cat (paste ("95% coverage: ", mean(cover.95), "\n"))

and now we obtain coverages of 67% and 96%, as predicted (within the expected
level of variation based on 1000 simulations; see Exercise 7.10).

8.2 Example: using fake-data simulation to understand residual plots

For another illustration of the power of fake data, we simulate from a regression
model to get insight into residual plots, in particular, to understand why we plot
residuals versus fitted values rather than versus observed values (see Section 3.6).

We illustrate with a simple model predicting final exam scores from midterms in
an introductory statistics class:

R codelm.1 <- lm (final ~ midterm)

yielding

R outputcoef.est coef.se

(Intercept) 64.5 17.0

midterm 0.7 0.2

n = 52, k = 2

residual sd = 14.8, R-Squared = 0.18

We construct fitted values ŷ = Xβ̂ and residuals y − Xβ̂:

R coden <- length (final)

X <- cbind (rep(1,n), midterm)

predicted <- X %*% coef (lm.1)

Figure 8.1 shows the residuals from this model, plotted in two different ways: (a)
residuals versus fitted values, and (b) residuals versus observed values. The first
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Figure 8.2 From fake data: plots of regression residuals versus predicted and versus ob-
served values. The data were simulated from the fitted family of regression models, and so
we know that the strong pattern in the right panel does not represent any sort of model
failure. This is an illustration of the use of fake data to evaluate diagnostic plots. Compare
to the corresponding plots of real data in Figure 8.1.

plot looks reasonable: the residuals are centered around zero for all fitted values.
But the second plot looks troubling.

It turns out that the first plot is what we should be looking at, and the second plot
is misleading. This can be understood using probability theory (from the regression
model, the errors ε should be independent of the predictors x, not the data y) but
a perhaps more convincing demonstration uses fake data, as we now illustrate.

For this example, we set the regression coefficients and residual standard error
to reasonable values given the model estimates, and then simulate fake data:

R code a <- 65

b <- 0.7

sigma <- 15

y.fake <- a + b*midterm + rnorm (n, 0, 15)

Next we fit the regression model to the fake data and compute fitted values and
residuals:

R code lm.fake <- lm (y.fake ~ midterm)

predicted.fake <- X %*% coef (lm.fake)

resid.fake <- y.fake - predicted.fake

(The predicted values could also be obtained in R using fitted(lm.fake); here we
explicitly multiply the predictors by the coefficients to emphasize the computations
used in creating the fake data.) Figure 8.2 shows the plots of resid.fake versus
predicted.fake and y.fake. These are the sorts of residual plots we would see if
the model were correct. This simulation shows why we prefer, as a diagnostic plot,
to view residuals versus predicted rather than observed values.

8.3 Simulating from the fitted model and comparing to actual data

So far we have considered several uses of simulation: exploring the implications of
hypothesized probability models (Section 7.1); exploring the implications of sta-
tistical models that were fit to data (Sections 7.2–7.4); studying the properties of
statistical procedures by comparing to known true values of parameters (Sections
8.1–8.2). Here we introduce yet another twist: simulating replicated data under the
fitted model (as with the predictions in Sections 7.2–7.4) and then comparing these
to the observed data (rather than comparing estimates to true parameter values as
in Section 8.1).
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Figure 8.3 Histogram of Simon Newcomb’s measurements for estimating the speed of light,
from Stigler (1977). The data represent the amount of time required for light to travel a
distance of 7442 meters and are recorded as deviations from 24,800 nanoseconds.

Example: comparing data to replications from a fitted normal distribution

The most fundamental way to check model fit is to display replicated datasets
and compare them to the actual data. Here we illustrate with a simple case, from
a famous historical dataset that did not fit the normal distribution. The goal of
this example is to demonstrate how the lack of fit can be seen using predictive
replications.

Figure 8.3 shows the data, a set of measurements taken by Simon Newcomb in
1882 as part of an experiment to estimate the speed of light. We (inappropriately)
fit a normal distribution to these data, which in the regression context can be done
by fitting a linear regression with no predictors:

R codelight <- lm (y ~ 1)

The next step is to simulate 1000 replications from the parameters in the fitted
model (in this case, simply the constant term β0 and the residual standard deviation
σ):

R coden.sims <- 1000

sim.light <- sim (light, n.sims)

We can then use these simulations to create 1000 fake datasets of 66 observations
each:

R coden <- length (y)

y.rep <- array (NA, c(n.sims, n))

for (s in 1:n.sims){

y.rep[s,] <- rnorm (n, sim.light$beta[s], sim.light$sigma[s])

}

Visual comparison of actual and replicated datasets. Figure 8.4 shows a plot of 20
of the replicated datasets, produced as follows:

R codepar (mfrow=c(5,4))

for (s in 1:20){

hist (y.rep[s,])

}

The systematic differences between data and replications are clear. In more com-
plicated problems, more effort may be needed to effectively display the data and
replications for useful comparisons, but the same general idea holds.

Checking model fit using a numerical data summary. Data displays can suggest
more focused test statistics with which to check model fit, as we illustrate in Section
24.2. Here we demonstrate a simple example with the speed-of-light measurements.
The graphical check in Figures 8.3 and 8.4 shows that the data have some extremely
low values that do not appear in the replications. We can formalize this check by
defining a test statistic, T (y), equal to the minimum value of the data, and then
calculating T (yrep) for each of the replicated datasets:



160 SIMULATION FOR MODEL VALIDATION

〲 　 㐀 　 㘀 　　 ㈀ 〴 〶 　 〲 　 㐀 　 㘀 　〲 　 㐀 　 㘀 　

〲 　 㐀 　 㘀 　　 ㈀ 〴 〶 　 〲 　 㐀 　 㘀 　〲 　 㐀 　 㘀 　

〲 　 㐀 　 㘀 　　 ㈀ 〴 〶 　 〲 　 㐀 　 㘀 　〲 　 㐀 　 㘀 　

〲 　 㐀 　 㘀 　　 ㈀ 〴 〶 　 〲 　 㐀 　 㘀 　〲 　 㐀 　 㘀 　

〲 　 㐀 　 㘀 　　 ㈀ 〴 〶 　 〲 　 㐀 　 㘀 　〲 　 㐀 　 㘀 　

Figure 8.4 Twenty replications, yrep, of the speed-of-light data from the predictive distribu-
tion under the normal model; compare to observed data, y, in Figure 8.3. Each histogram
displays the result of drawing 66 independent values yrep

i from a common normal distribu-
tion with mean and standard deviation (μ, σ) estimated from the data.
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Figure 8.5 Smallest observation of Newcomb’s speed-of-light data (the vertical line at the
left of the graph), compared to the smallest observations from each of 20 posterior predictive
simulated datasets displayed in Figure 8.4.

R code Test <- function (y){

min (y)

}

test.rep <- rep (NA, n.sims)

for (s in 1:n.sims){

test.rep[s] <- Test (y.rep[s,])

}

We then plot a histogram of the minima of the replicated datasets, with a vertical
line indicating the minimum of the observed data:

R code hist (test.rep, xlim=range (Test(y), test.rep))

lines (rep (Test(y), 2), c(0,n))

Figure 8.5 shows the result: the smallest observations in each of the hypothetical
replications are all much larger than Newcomb’s smallest observation, which is
indicated by a vertical line on the graph. The normal model clearly does not capture
the variation that Newcomb observed. A revised model might use an asymmetric
contaminated normal distribution or a symmetric long-tailed distribution in place
of the normal measurement model.
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Example: zeroes in count data

For a more complicated example, we consider a study of the effect of integrated pest
management on reducing cockroach levels in urban apartments. In this experiment,
the treatment and control were applied to 160 and 104 apartments, respectively, and
the outcome measurement yi in each apartment i was the number of roaches caught
in a set of traps. Different apartments had traps for different numbers of days, and
we label as ui the number of trap-days. The natural model for the roach counts
is then yi ∼ Poisson(ui exp(Xiβ)), where X represents the regression predictors
(in this case, a pre-treatment roach level, a treatment indicator, and an indicator
for whether the apartment is in a “senior” building restricted to the elderly, and
the constant term). The logarithm of the exposure, log(ui), plays the role of the
“offset” in the Poisson regression (see model (6.3) on page 111).

We fit the model

R codeglm.1 <- glm (y ~ roach1 + treatment + senior, family=poisson,

offset=log(exposure2))

which yields

R outputcoef.est coef.se

(Intercept) -0.46 0.02

roach1 0.24 0.00

treatment -0.48 0.02

senior -0.40 0.03

n = 264, k = 4

residual deviance = 11753.3, null deviance = 17354 (difference = 5600.7)

The treatment appears to be effective in reducing roach counts—we shall return
to this issue in a later chapter with a fuller exploration of this study. For now, we
are simply interested in evaluating the model as a description of the data, without
worrying about causal issues or the interpretation of the coefficients.

Comparing the data, y, to a replicated dataset, yrep. How well does this model fit
the data? We explore by simulating a replicated dataset yrep that might be seen if
the model were true and the study were performed again:

R coden <- length (y)

X <- cbind (rep(1,n), roach1, treatment, senior)

y.hat <- exposure2 * exp (X %*% coef (glm.1))

y.rep <- rpois (n, y.hat)

We can compare the replicated data yrep to the original data y in various ways.
We illustrate with a simple test of the number of zeroes in the data:

R codeprint (mean (y==0))

print (mean (y.rep==0))

which reveals that 36% of the observed data points, but none of the replicated data
points, equal zero. This suggests a potential problem with the model: in reality,
many apartments have zero roaches, but this would not be happening if the model
were true, at least to judge from one simulation.

Comparing the data y to 1000 replicated datasets yrep. To perform this model
check more formally, we simulate 1000 replicated datasets yrep, which we store in
a matrix:
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R code n.sims <- 1000

sim.1 <- sim (glm.1, n.sims)

y.rep <- array (NA, c(n.sims, n))

for (s in 1:n.sims){

y.hat <- exposure2 * exp (X %*% sim.1$beta[s,])

y.rep[s,] <- rpois (n, y.hat)

}

For each of these replications, we then compute a test statistic: the proportion of
zeroes in the (hypothetical) dataset:

R code Test <- function (y){

mean (y==0)

}

test.rep <- rep (NA, n.sims)

for (s in 1:n.sims){

test.rep[k] <- Test (y.rep[s,])

}

The 1000 values of test.rep vary from 0 to 0.008—all of which are much lower
than the observed test statistic of 0.36. Thus the Poisson regression model does not
replicate the frequency of zeroes in the data.

Checking the overdispersed model

We probably should have just started with an overdispersed Poisson regression:

R code glm.2 <- glm (y ~ roach1 + treatment + senior, family=quasipoisson,

offset=log(exposure2))

which yields

R output glm(formula = y ~ roach1 + treatment + senior, family = quasipoisson,

offset = log(exposure2))

coef.est coef.se

(Intercept) -0.46 0.17

roach1 0.24 0.03

treatment -0.48 0.20

senior -0.40 0.27

n = 264, k = 4

residual deviance = 11753.3, null deviance = 17354 (difference = 5600.7)

overdispersion parameter = 66.6

As discussed in Section 6.2, the coefficient estimates are the same as before but the
standard errors are much larger, reflecting the variation that is now being modeled.

Again, we can test the model by simulating 1000 replicated datasets:

R code n.sims <- 1000

sim.2 <- sim (glm.2, n.sims)

y.rep <- array (NA, c(n.sims, n))

for (s in 1:n.sims){

y.hat <- exposure2 * exp (X %*% sim.2$beta[s,])

a <- y.hat/(overdisp-1) # Using R’s parameterization for

y.rep[s,] <- rnegbin (n, y.hat, a) # the negative-binomial distribution

}

and again computing the test statistic for each replication. This time, the proportion
of zeroes in the replicated datasets varies from 18% to 48%, with a 95% interval



PREDICTIVE SIMULATION FOR CHECKING A TIME-SERIES MODEL 163

ㄹ㔰 ㄹ㜰 ㄹ㤰
祥慲

畮
敭
灬
潹
浥
湴

〥
㔥

㄰
─

Figure 8.6 Time series of U.S. unemployment rates from 1947 to 2004. We fit a first-order
autoregression to these data and then simulated several datasets, shown in Figure 8.7, from
the fitted model.

of [0.22, 0.40]. The observed 36% fits right in, which tells us that this aspect of the
data is reasonably fit by the model.

However, other aspects of the data might not be so well fit, as could be discovered
by looking at other test statistics. We discuss this in Chapter 24 in the context of
a more elaborate example.

8.4 Using predictive simulation to check the fit of a time-series model

Predictive simulation is more complicated in time-series models, which are typically
set up so that the distribution for each point depends on the earlier data. We
illustrate with a simple autoregressive model.

Fitting a first-order autoregression to the unemployment series

Figure 8.6 shows the time series of annual unemployment rates in the United States
from 1947 to 2004. We would like to see how well these data are fit by a first-order
autoregression, that is, a regression on last year’s unemployment rate. Such a model
is easy to set up and fit:2

R coden <- length (y)

y.lag <- c (NA, y[1:(n-1)])

lm.lag <- lm (y ~ y.lag)

yielding the following fit:

R outputcoef.est coef.se

(Intercept) 1.43 0.50

y.lag 0.75 0.09

n = 57, k = 2

residual sd = 0.99, R-Squared = 0.57

This information is potentially informative but does not tell us whether the model
is a reasonable fit to the data. To examine fit, we will simulate replicated data from
the fitted model.

Simulating replicated datasets

Using a point estimate of the fitted model. We first simulate replicated data in a
slightly simplified way, using the following point estimate from the fitted model:

2 Another option is to use some of the special time-series features in R, but it is simpler for us
here to just fit as an ordinary regression.
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Figure 8.7 Simulated replications of the unemployment series from the fitted autoregressive
model. The replications capture many of the features of the actual data in Figure 8.6 but
show slightly more short-term variation.

R code b.hat <- coef (lm.lag) # vector of 2 regression coefs

s.hat <- sigma.hat (lm.lag) # residual standard deviation

We start each of the simulated time series at the observed value y1 (the actual
unemployment rate in 1947) and then use the model, step by step, to simulate each
year’s value from the last:

R output n.sims <- 100

y.rep <- array (NA, c(n.sims, n))

for (s in 1:n.sims){

y.rep[s,1] <- y[1]

for (t in 2:n){

prediction <- c (1, y.rep[s,t-1]) %*% b.hat

y.rep[s,t] <- rnorm (1, prediction, s.hat)

}

}

Including the uncertainty in the estimated parameters. It is slightly better to prop-
agate the estimation uncertainty by using simulations from the fitted model (as in
Section 7.2), and then using these draws of β and σ to simulate replicated datasets:

R code lm.lag.sim <- sim (lm.lag, n.sims) # simulations of beta and sigma

for (s in 1:n.sims){

y.rep[s,1] <- y[1]

for (t in 2:n){

prediction <- c (1, y.rep[s,t-1]) %*% lm.lag.sim$beta[s,]

y.rep[s,t] <- rnorm (1, prediction, lm.lag.sim$sigma[s])

}

}

Visual and numerical comparisons of replicated to actual data

Our first step in model checking is to plot some simulated datasets, which we do
in Figure 8.7, and compare them visually to the actual data in Figure 8.6. The
15 simulations show different patterns, with many of them capturing the broad
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features of the data—its range, lack of overall trend, and irregular rises and falls.
This autoregressive model clearly can represent many different sorts of time-series
patterns.

Looking carefully at Figure 8.7, we see one pattern in all these replicated data
that was not in the original data in 8.6, and that is a jaggedness, a level of short-
term ups and downs that contrasts to the smoother appearance of the actual time
series.

To quantify this discrepancy, we define a test statistic that is the frequency of
“switches”—the number of years in which an increase in unemployment is immedi-
ately followed by a decrease, or vice versa:

R codeTest <- function (y){

n <- length (y)

y.lag <- c (NA, y[1:(n-1)])

y.lag2 <- c (NA, NA, y[1:(n-2)])

sum (sign(y-y.lag) != sign(y.lag-y.lag2), na.rm=TRUE)

}

As with the examples in the previous section, we compute this test for the data
and for the replicated datasets:

R codeprint (Test(y))

test.rep <- rep (NA, n.sims)

for (s in 1:n.sims){

test.rep[s] <- Test (y.rep[s,])

}

The actual unemployment series featured 23 switches. Of the 1000 replications, 97%
had more than 23 switches, implying that this aspect of the data was not captured
well by the model.

8.5 Bibliographic note

Fake-data simulation is commonly used to validate statistical models and proce-
dures. Two recent papers from a Bayesian perspective are Geweke (2004) and Cook,
Gelman, and Rubin (2006). The predictive approach to model checking is described
in detail in Gelman et al. (2003, chapter 6) and Gelman, Meng, and Stern (1996),
deriving from the ideas of Rubin (1984). Gelman (2004a) connects graphical model
checks to exploratory data analysis (Tukey, 1977). Examples of simulation-based
model checking appear throughout the statistical literature, especially for highly
structured models; see, for example, Bush and Mosteller (1955) and Ripley (1988).

8.6 Exercises

1. Fitting the wrong model: suppose you have 100 data points that arose from the
following model: y = 3+0.1x1 +0.5x2 +error, with errors having a t distribution
with mean 0, scale 5, and 4 degrees of freedom.We shall explore the implications
of fitting a standard linear regression to these data.

(a) Simulate data from this model. For simplicity, suppose the values of x1 are
simply the integers from 1 to 100, and that the values of x2 are random and
equally likely to be 0 or 1.3 Fit a linear regression (with normal errors) to these

3 In R, you can define x.1 <- 1:100, simulate x.2 using rbinom(), then create the linear predic-
tor, and finally simulate the random errors in y using the rt() function.
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data and see if the 68% confidence intervals for the regression coefficients (for
each, the estimates ±1 standard error) cover the true values.

(b) Put the above step in a loop and repeat 1000 times. Calculate the confidence
coverage for the 68% intervals for each of the three coefficients in the model.

(c) Repeat this simulation, but instead fit the model using t errors (see Exercise
6.6).

2. Predictive checks: using data of interest to you, fit a model of interest.

(a) Simulate replicated datasets and visually compare to the actual data.

(b) Summarize the data by a numerical test statistic, and compare to the values
of the test statistic in the replicated datasets.

3. Using simulation to check the fit of a time-series model: find time-series data
and fit a first-order autoregression model to it. Then use predictive simulation
to check the fit of this model as in Section 8.4.

4. Model checking for count data: the folder risky.behavior contains data from
a study of behavior of couples at risk for HIV; see Exercise 6.1.

(a) Fit a Poisson regression model predicting number of unprotected sex acts from
baseline HIV status. Perform predictive simulation to generate 1000 datasets
and record both the percent of observations that are equal to 0 and the percent
that are greater than 10 (the third quartile in the observed data) for each.
Compare these values to the observed value in the original data.

(b) Repeat (a) using an overdispersed Poisson regression model.

(c) Repeat (b), also including ethnicity and baseline number of unprotected sex
acts as input variables.



CHAPTER 9

Causal inference using regression on the
treatment variable

9.1 Causal inference and predictive comparisons

So far, we have been interpreting regressions predictively: given the values of several
inputs, the fitted model allows us to predict y, considering the n data points as a
simple random sample from a hypothetical infinite “superpopulation” or probability
distribution. Then we can make comparisons across different combinations of values
for these inputs.

This chapter and the next consider causal inference, which concerns what would
happen to an outcome y as a result of a hypothesized “treatment” or intervention.
In a regression framework, the treatment can be written as a variable T :1

Ti =

{
1 if unit i receives the “treatment”
0 if unit i receives the “control,”

or, for a continuous treatment,

Ti = level of the “treatment” assigned to unit i.

In the usual regression context, predictive inference relates to comparisons between
units, whereas causal inference addresses comparisons of different treatments if
applied to the same units. More generally, causal inference can be viewed as a
special case of prediction in which the goal is to predict what would have happened
under different treatment options. We shall discuss this theoretical framework more
thoroughly in Section 9.2. Causal interpretations of regression coefficients can only
be justified by relying on much stricter assumptions than are needed for predictive
inference.

To motivate the detailed study of regression models for causal effects, we present
two simple examples in which predictive comparisons do not yield appropriate
causal inferences.

Hypothetical example of zero causal effect but positive predictive comparison

Consider a hypothetical medical experiment in which 100 patients receive the treat-
ment and 100 receive the control condition. In this scenario, the causal effect rep-
resents a comparison between what would have happened to a given patient had
he or she received the treatment compared to what would have happened under
control. We first suppose that the treatment would have no effect on the health
status of any given patient, compared with what would have happened under the
control. That is, the causal effect of the treatment is zero.

However, let us further suppose that treated and control groups systematically
differ, with healthier patients receiving the treatment and sicker patients receiving

1 We use a capital letter for the vector T (violating our usual rule of reserving capitals for
matrices) in order to emphasize the treatment as a key variable in causal analyses, and also to
avoid potential confusion with t, which we sometimes use for “time.”
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Figure 9.1 Hypothetical scenario of zero causal effect of treatment: for any value of pre-
vious health status, the distributions of potential outcomes are identical under control and
treatment. However, the predictive comparison between treatment and control could be
positive, if healthier patients receive the treatment and sicker patients receive the control
condition.

Distribution of measurements after experiment
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Figure 9.2 Hypothetical scenario of positive causal effect of treatment: for any value of
previous health status, the distributions of potential outcomes are centered at higher values
for treatment than for control. However, the predictive comparison between treatment and
control could be zero, if sicker patients receive the treatment and healthier patients receive
the control condition. Compare to Figure 9.1.

the control. This scenario is illustrated in Figure 9.1, where the distribution of
outcome health status measurements is centered at the same place for the treatment
and control conditions within each previous health status category (reflecting the
lack of causal effect) but the heights of each distribution reflect the differential
proportions of the sample that fell in each condition. This scenario leads to a positive
predictive comparison between the treatment and control groups, even though the
causal effect is zero. This sort of discrepancy between the predictive comparison
and the causal effect is sometimes called self-selection bias, or simply selection bias,
because participants are selecting themselves into different treatments.

Hypothetical example of positive causal effect but zero positive predictive
comparison

Conversely, it is possible for a truly nonzero treatment effect to not show up in the
predictive comparison. Figure 9.2 illustrates. In this scenario, the treatment has a
positive effect for all patients, whatever their previous health status, as displayed
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by outcome distributions that for the treatment group are centered one point to
the right of the corresponding (same previous health status) distributions in the
control group. So, for any given unit, we would expect the outcome to be better
under treatment than control. However, suppose that this time, sicker patients are
given the treatment and healthier patients are assigned to the control condition,
as illustrated by the different heights of these distributions. It is then possible to
see equal average outcomes of patients in the two groups, with sick patients who
received the treatment canceling out healthy patients who received the control.

Previous health status plays an important role in both these scenarios because
it is related both to treatment assignment and future health status. If a causal
estimate is desired, simple comparisons of average outcomes across groups that
ignore this variable will be misleading because the effect of the treatment will
be “confounded” with the effect of previous health status. For this reason, such
predictors are sometimes called confounding covariates.

Adding regression predictors; “omitted” or “lurking” variables

The preceding theoretical examples illustrate how a simple predictive comparison is
not necessarily an appropriate estimate of a causal effect. In these simple examples,
however, there is a simple solution, which is to compare treated and control units
conditional on previous health status. Intuitively, the simplest way to do this is to
compare the averages of the current health status measurements across treatment
groups only within each previous health status category; we discuss this kind of
subclassification strategy in Section 10.2.

Another way to estimate the causal effect in this scenario is to regress the outcome
on two inputs: the treatment indicator and previous health status. If health status
is the only confounding covariate—that is, the only variable that predicts both the
treatment and the outcome—and if the regression model is properly specified, then
the coefficient of the treatment indicator corresponds to the average causal effect in
the sample. In this example a simple way to avoid possible misspecification would
be to discretize health status using indicator variables rather than including it as
a single continuous predictor.

In general, then, causal effects can be estimated using regression if the model
includes all confounding covariates (predictors that can affect treatment assignment
or the outcome) and if the model is correct. If the confounding covariates are all
observed (as in this example), then accurate estimation comes down to proper
modeling and the extent to which the model is forced to extrapolate beyond the
support of the data. If the confounding covariates are not observed (for example, if
we suspect that healthier patients received the treatment, but no accurate measure
of previous health status is included in the model), then they are “omitted” or
“lurking” variables that complicate the quest to estimate causal effects.

We consider these issues in more detail in the rest of this chapter and the next,
but first we will provide some intuition in the form of an algebraic formula.

Formula for omitted variable bias

We can quantify the bias incurred by excluding a confounding covariate in the
context where a simple linear regression model is appropriate and there is only one
confounding covariate. First define the “correct” specification as

yi = β0 + β1Ti + β2xi + εi (9.1)
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where Ti is the treatment and xi is the covariate for unit i.
If instead the confounding covariate, xi, is ignored, one can fit the model

yi = β∗
0 + β∗

1Ti + ε∗i

What is the relation between these models? To understand, it helps to define a
third regression,

xi = γ0 + γ1Ti + νi

If we substitute this representation of x into the original, correct, equation, and
rearrange terms, we get

yi = β0 + β2γ0 + (β1 + β2γ1)Ti + εi + β2νi (9.2)

Equating the coefficients of T in (9.1) and (9.2) yields

β∗
1 = β1 + β∗

2γ1

This correspondence helps demonstrate the definition of a confounding covariate. If
there is no association between the treatment and the purported confounder (that
is, γ1 = 0) or if there is no association between the outcome and the confounder
(that is, β2 = 0) then the variable is not a confounder because there will be no bias
(β∗

2γ1 = 0).
This formula is commonly presented in regression texts as a way of describing

the bias that can be incurred if a model is specified incorrectly. However, this term
has little meaning outside of a context in which one is attempting to make causal
inferences.

9.2 The fundamental problem of causal inference

We begin by considering the problem of estimating the causal effect of a treatment
compared to a control, for example in a medical experiment. Formally, the causal
effect of a treatment T on an outcome y for an observational or experimental unit
i can be defined by comparisons between the outcomes that would have occurred
under each of the different treatment possibilities. With a binary treatment T taking
on the value 0 (control) or 1 (treatment), we can define potential outcomes, y0

i and
y1

i for unit i as the outcomes that would be observed under control and treatment
conditions, respectively.2(These ideas can also be directly generalized to the case of
a treatment variable with multiple levels.)

The problem

For someone assigned to the treatment condition (that is, Ti = 1), y1
i is observed

and y0
i is the unobserved counterfactual outcome—it represents what would have

happened to the individual if assigned to control. Conversely, for control units, y0
i

is observed and y1
i is counterfactual. In either case, a simple treatment effect for

unit i can be defined as

treatment effect for unit i = y1
i − y0

i

Figure 9.3 displays hypothetical data for an experiment with 100 units (and thus
200 potential outcomes). The top panel displays the data we would like to be able
to see in order to determine causal effects for each person in the dataset—that is,
it includes both potential outcomes for each person.

2 The word “counterfactual” is sometimes used here, but we follow Rubin (1990) and use the
term “potential outcome” because some of these potential data are actually observed.
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(Hypothetical) complete data:

Pre-treatment Treatment Potential Treatment
inputs indicator outcomes effect

Unit, i Xi Ti y0
i y1

i y1
i − y0

i

1 2 1 50 0 69 75 6

2 3 1 98 0 111 108 −3

3 2 2 80 1 92 102 10

4 3 1 98 1 112 111 −1

...
...

...
...

...
...

...
...

100 4 1 104 1 111 114 3

Observed data:

Pre-treatment Treatment Potential Treatment
inputs indicator outcomes effect

Unit, i Xi Ti y0
i y1

i y1
i − y0

i

1 2 1 50 0 69 ? ?
2 3 1 98 0 111 ? ?
3 2 2 80 1 ? 102 ?
4 3 1 98 1 ? 111 ?
...

...
...

...
...

...
...

...
100 4 1 104 1 ? 114 ?

Figure 9.3 Illustration of the fundamental problem of causal inference. For each unit, we
have observed some pre-treatment inputs, and then the treatment (Ti = 1) or control
(Ti = 0) is applied. We can then observe only one of the potential outcomes, (y0

i , y1
i ). As

a result, we cannot observe the treatment effect, y1
i − y0

i , for any of the units.
The top table shows what the complete data might look like, if it were possible to observe
both potential outcomes on each unit. For each pair, the observed outcome is displayed in
boldface. The bottom table shows what would actually be observed.

The so-called fundamental problem of causal inference is that at most one of these
two potential outcomes, y0

i and y1
i , can be observed for each unit i. The bottom

panel of Figure 9.3 displays the data that can actually be observed. The y1
i values

are “missing” for those in the control group and the y0
i values are “missing” for

those in the treatment group.

Ways of getting around the problem

We cannot observe both what happens to an individual after taking the treatment
(at a particular point in time) and what happens to that same individual after
not taking the treatment (at the same point in time). Thus we can never measure
a causal effect directly. In essence, then, we can think of causal inference as a
prediction of what would happen to unit i if Ti = 0 or Ti = 1. It is thus predictive
inference in the potential-outcome framework. Viewed this way, estimating causal
effects requires one or some combination of the following: close substitutes for the
potential outcomes, randomization, or statistical adjustment. We discuss the basic
strategies here and go into more detail in the remainder of this chapter and the
next.
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Close substitutes. One might object to the formulation of the fundamental problem
of causal inference by noting situations where it appears one can actually measure
both y0

i and y1
i on the same unit. Consider, for example drinking tea one evening

and milk another evening, and then measuring the amount of sleep each time. A
careful consideration of this example reveals the implicit assumption that there are
no systematic differences between days that could also affect sleep. An additional
assumption is that applying the treatment on one day has no effect on the outcome
on another day.

More pristine examples can generally be found in the natural and physical sci-
ences. For instance, imagine dividing a piece of plastic into two parts and then
exposing each piece to a corrosive chemical. In this case, the hidden assumption is
that pieces are identical in how they would respond with and without treatment,
that is, y0

1 = y0
2 and y1

1 = y1
2 .

As a third example, suppose you want to measure the effect of a new diet by
comparing your weight before the diet and your weight after. The hidden assump-
tion here is that the pre-treatment measure can act as a substitute for the potential
outcome under control, that is, y0

i = xi.
It is not unusual to see studies that attempt to make causal inferences by substi-

tuting values in this way. It is important to keep in mind the strong assumptions
often implicit in such strategies.

Randomization and experimentation. A different approach to causal inference is
the “statistical” idea of using the outcomes observed on a sample of units to learn
about the distribution of outcomes in the population.

The basic idea is that since we cannot compare treatment and control outcomes
for the same units, we try to compare them on similar units. Similarity can be
attained by using randomization to decide which units are assigned to the treat-
ment group and which units are assigned to the control group. We will discuss this
strategy in depth in the next section.

Statistical adjustment. For a variety of reasons, it is not always possible to achieve
close similarity between the treated and control groups in a causal study. In obser-
vational studies, units often end up treated or not based on characteristics that are
predictive of the outcome of interest (for example, men enter a job training program
because they have low earnings and future earnings is the outcome of interest). Ran-
domized experiments, however, can be impractical or unethical, and even in this
context imbalance can arise from small-sample variation or from unwillingness or
inability of subjects to follow the assigned treatment.

When treatment and control groups are not similar, modeling or other forms
of statistical adjustment can be used to fill in the gap. For instance, by fitting a
regression (or more complicated model), we may be able to estimate what would
have happened to the treated units had they received the control, and vice versa.
Alternately, one can attempt to divide the sample into subsets within which the
treatment/control allocation mimics an experimental allocation of subjects. We
discuss regression approaches in this chapter. We discuss imbalance and related
issues more thoroughly in Chapter 10 along with a description of ways to help
observational studies mimic randomized experiments.

9.3 Randomized experiments

We begin with the cleanest scenario, an experiment with units randomly assigned
to receive treatment and control, and with the units in the study considered as a
random sample from a population of interest. The random sampling and random
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treatment assignment allow us to estimate the average causal effect of the treatment
in the population, and regression modeling can be used to refine this estimate.

Average causal effects and randomized experiments

Although we cannot estimate individual-level causal effects (without making strong
assumptions, as discussed previously), we can design studies to estimate the popu-
lation average treatment effect:

average treatment effect = avg (y1
i − y0

i ),

for the units i in a larger population. The cleanest way to estimate the population
average is through a randomized experiment in which each unit has a positive
chance of receiving each of the possible treatments.3 If this is set up correctly, with
treatment assignment either entirely random or depending only on recorded data
that are appropriately modeled, the coefficient for T in a regression corresponds to
the causal effect of the treatment, among the population represented by the n units
in the study.

Considered more broadly, we can think of the control group as a group of units
that could just as well have ended up in the treatment group, they just happened
not to get the treatment. Therefore, on average, their outcomes represent what
would have happened to the treated units had they not been treated; similarly,
the treatment group outcomes represent what might have happened to the control
group had they been treated. Therefore the control group plays an essential role in
a causal analysis.

For example, if n0 units are selected at random from the population and given
the control, and n1 other units are randomly selected and given the treatment,
then the observed sample averages of y for the treated and control units can be
used to estimate the corresponding population quantities, avg(y0) and avg(y1),
with their difference estimating the average treatment effect (and with standard
error

√
s2
0/n0 + s2

1/n1; see Section 2.3). This works because the y0
i ’s for the control

group are a random sample of the values of y0
i in the entire population. Similarly,

the y1
i ’s for the treatment group are a random sample of the y1

i ’s in the population.
Equivalently, if we select n0 +n1 units at random from the population, and then

randomly assign n0 of them to the control and n1 to the treatment, we can think of
each of the sample groups as representing the corresponding population of control
or treated units. Therefore the control group mean can act as a counterfactual for
the treatment group (and vice versa).

What if the n0+n1 units are selected nonrandomly from the population but then
the treatment is assigned at random within this sample? This is common practice,
for example, in experiments involving human subjects. Experiments in medicine,
for instance, are conducted on volunteers with specified medical conditions who
are willing to participate in such a study, and experiments in psychology are of-
ten conducted on university students taking introductory psychology courses. In
this case, causal inferences are still justified, but inferences no longer generalize to
the entire population. It is usual instead to consider the inference to be appropri-
ate to a hypothetical superpopulation from which the experimental subjects were
drawn. Further modeling is needed to generalize to any other population. A study

3 Ideally, each unit should have a nonzero probability of receiving each of the treatments, because
otherwise the appropriate counterfactual (potential) outcome cannot be estimated for units in
the corresponding subset of the population. In practice, if the probabilities are highly unequal,
the estimated population treatment effect will have a high standard error due to the difficulty
of reliably estimating such a rare event.
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Figure 9.4 Post-treatment test scores from an experiment measuring the effect of an ed-
ucational television program, The Electric Company, on children’s reading abilities. The
experiment was applied on a total of 192 classrooms in four grades. At the end of the
experiment, the average reading test score in each classroom was recorded.

in which causal inferences are merited for a specific sample or population is said to
have internal validity, and when those inferences can be generalized to a broader
population of interest the study is said to have external validity.

We illustrate with a simple binary treatment (that is, two treatment levels, or a
comparison of treatment to control) in an educational experiment. We then briefly
discuss more general categorical, continuous, and multivariate treatments.

Example: showing children an educational television show

Figure 9.4 summarizes data from an educational experiment performed around 1970
on a set of elementary school classes. The treatment in this experiment was exposure
to a new educational television show called The Electric Company. In each of four
grades, the classes were randomized into treated and control groups. At the end of
the school year, students in all the classes were given a reading test, and the average
test score within each class was recorded. Unfortunately, we do not have data on
individual students, and so our entire analysis will be at the classroom level.

Figure 9.4 displays the distribution of average post-treatment test scores in the
control and treatment group for each grade. (The experimental treatment was ap-
plied to classes, not to schools, and so we treat the average test score in each class as
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a single measurement.) We break up the data by grade for convenience and because
it is reasonable to suppose that the effects of this show could vary by grade.

Analysis as a completely randomized experiment. The experiment was performed
in two cities (Fresno and Youngstown). For each city and grade, the experimenters
selected a small number of schools (10–20) and, within each school, they selected
the two poorest reading classes of that grade. For each pair, one of these classes
was randomly assigned to continue with its regular reading course and the other
was assigned to view the TV program.

This is called a paired comparisons design (which in turn is a special case of a
randomized block design, with exactly two units within each block). For simplicity,
however, we shall analyze the data here as if the treatment assignment had been
completely randomized within each grade. In a completely randomized experiment
on n units (in this case, classrooms), one can imagine the units mixed together in
a bag, completely mixed, and then separated into two groups. For example, the
units could be labeled from 1 to n, and then permuted at random, with the first n1

units receiving the treatment and the others receiving the control. Each unit has
the same probability of being in the treatment group and these probabilities are
independent of each other.

Again, for the rest of this chapter we pretend that the Electric Company ex-
periment was completely randomized within each grade. In Section 23.1 we return
to the example and present an analysis appropriate to the paired design that was
actually used.

Basic analysis of a completely randomized experiment

When treatments are assigned completely at random, we can think of the different
treatment groups (or the treatment and control groups) as a set of random samples
from a common population. The population average under each treatment, avg(y0)
and avg(y1), can then be estimated by the sample average, and the population
average difference between treatment and control, avg(y1) − avg(y0)—that is, the
average causal effect—can be estimated by the difference in sample averages, ȳ1−ȳ0.

Equivalently, the average causal effect of the treatment corresponds to the coeffi-
cient θ in the regression, yi = α+θTi +errori. We can easily fit the four regressions
(one for each grade) in R:

R codefor (k in 1:4) {

display (lm (post.test ~ treatment, subset=(grade==k)))

}

The estimates and uncertainty intervals for the Electric Company experiment
are graphed in the left panel of Figure 9.5. The treatment appears to be generally
effective, perhaps more so in the low grades, but it is hard to be sure given the
large standard errors of estimation.

Controlling for pre-treatment predictors

In this study, a pre-test was given in each class at the beginning of the school year
(before the treatment was applied). In this case, the treatment effect can also be
estimated using a regression model: yi = α+θTi+βxi +errori on the pre-treatment
predictor x.4 Figure 9.6 illustrates for the Electric Company experiment. For each

4 We avoid the term confounding covariates when describing adjustment in the context of a ran-
domized experiment. Predictors are included in this context to increase precision. We expect



176 CAUSAL INFERENCE USING DIRECT REGRESSION

卵扰潰畬慴楯渀 剥杲敳獩潮⁯渠瑲敡瑭敮琠楮摩捡瑯爀 剥杲敳獩潮⁯渠瑲敡瑭敮琠楮摩捡瑯爬
捯湴牯汬楮朠景爠灲攀−瑥獴

　 㔀 ㄰ ㄵ 　 㔀 ㄰ ㄵ

䝲慤攠㄀

䝲慤攠㈀

䝲慤攠㌀

䝲慤攠㐀

Figure 9.5 Estimates, 50%, and 95% intervals for the effect of the Electric Company tele-
vision show (see data in Figures 9.4 and 9.6) as estimated in two ways: first, from a
regression on treatment alone, and second, also controlling for pre-test data. In both cases,
the coefficient for treatment is the estimated causal effect. Including pre-test data as a
predictor increases the precision of the estimates.
Displaying these coefficients and intervals as a graph facilitates comparisons across grades
and across estimation strategies (controlling for pre-test or not). For instance, the plot
highlights how controlling for pre-test scores increases precision and reveals decreasing ef-
fects of the program for the higher grades, a pattern that would be more difficult to see in
a table of numbers.
Sample sizes are approximately the same in each of the grades. The estimates for higher
grades have lower standard errors because the residual standard deviations of the regres-
sions are lower in these grades; see Figure 9.6.
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Figure 9.6 Pre-test/post-test data for the Electric Company experiment. Treated and con-
trol classes are indicated by circles and dots, respectively, and the solid and dotted lines
represent parallel regression lines fit to the treatment and control groups, respectively. The
solid lines are slightly higher than the dotted lines, indicating slightly positive estimated
treatment effects. Compare to Figure 9.4, which displays only the post-test data.

grade, the difference between the regression lines for the two groups represents the
treatment effect as a function of pre-test score. Since we have not included any
interaction in the model, this treatment effect is assumed constant over all levels of
the pre-test score.

For grades 2–4, the pre-test was the same as the post-test, and so it is no surprise
that all the classes improved whether treated or not (as can be seen from the plots).
For grade 1, the pre-test was a subset of the longer test, which explains why the
pre-test scores for grade 1 are so low. We can also see that the distribution of post-
test scores for each grade is similar to the next grade’s pre-test scores, which makes
sense.

In any case, for estimating causal effects (as defined in Section 9.2) we are in-
terested in the difference between treatment and control conditions, not in the
simple improvement from pre-test to post-test. The pre-post improvement is not a

them to be related to the outcome but not to the treatment assignment due to the randomiza-
tion. Therefore they are not confounding covariates.
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causal effect (except under the assumption, unreasonable in this case, that under
the control there would be no change from pre-post change).

In the regression
yi = α + θTi + βxi + errori (9.3)

the coefficient for the treatment indicator still represents the average treatment
effect, but controlling for pre-test can improve the efficiency of the estimate. (More
generally, the regression can control for multiple pre-treatment predictors, in which
case the model has the form yi = α + θTi + Xiβ + errori, or alternatively α can be
removed from the equation and considered as a constant term in the linear predictor
Xβ.)

The estimates for the Electric Company study appear in the right panel of Figure
9.5. It is now clear that the treatment is effective, and it appears to be more effective
in the lower grades. A glance at Figure 9.6 suggests that in the higher grades there
is less room for improvement; hence this particular test might not be the most
effective for measuring the benefits of The Electric Company in grades 3 and 4.

It is only appropriate to control for pre-treatment predictors, or, more generally,
predictors that would not be affected by the treatment (such as race or age). This
point will be illustrated more concretely in Section 9.7.

Gain scores

An alternative way to specify a model that controls for pre-test measures is to use
these measures to transform the response variable. A simple approach is to subtract
the pre-test score, xi, from the outcome score, yi, thereby creating a “gain score,” gi.
Then this score can be regressed on the treatment indicator (and other predictors
if desired), gi = α + θTi + errori. (In the simple case with no other predictors, the

regression estimate is simply θ̂ = ḡT − ḡC , the average difference of gain scores in
the treatment and control groups.)

In some cases the gain score can be more easily interpreted than the original
outcome variable y. Using gain scores is most effective if the pre-treatment score is
comparable to the post-treatment measure. For instance, in our Electric Company
example it would not make sense to create gain scores for the classes in grade 1
since their pre-test measure was based on only a subset of the full test.

One perspective on this model is that it makes an unnecessary assumption,
namely, that β = 1 in model (9.3). On the other hand, if this assumption is close to
being true then θ may be estimated more precisely. One way to resolve this concern
about misspecification would simply be to include the pre-test score as a predictor
as well, gi = α + θTi + γxi + errori. However, in this case, θ̂, the estimate of the
coefficient for T , is equivalent to the estimated coefficient from the original model,
yi = α + θTi + βxi + errori (see Exercise 9.7).

More than two treatment levels, continuous treatments, and multiple treatment
factors

Going beyond a simple treatment-and-control setting, multiple treatment effects
can be defined relative to a baseline level. With random assignment, this simply
follows general principles of regression modeling.

If treatment levels are numerical, the treatment level can be considered as a con-
tinuous input variable. To conceptualize randomization with a continuous treatment
variable, think of choosing a random number that falls anywhere in the continuous
range. As with regression inputs in general, it can make sense to fit more compli-
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Figure 9.7 Pre-test/post-test data for the Electric Company experiment. Treated and con-
trol classes are indicated by circles and dots, respectively, and the solid and dotted lines
represent separate regression lines fit to the treatment and control groups, respectively.
For each grade, the difference between the solid and dotted lines represents the estimated
treatment effect as a function of pre-test score.

cated models if suggested by theory or supported by data. A linear model—which
estimates the average effect on y for each additional unit of T—is a natural starting
point, though it may need to be refined.

With several discrete treatments that are unordered (such as in a comparison of
three different sorts of psychotherapy), we can move to multilevel modeling, with the
group index indicating the treatment assigned to each unit, and a second-level model
on the group coefficients, or treatment effects. We shall illustrate such modeling in
Section 13.5 with an experiment from psychology. We shall focus more on multilevel
modeling as a tool for fitting data, but since the treatments in that example are
randomly assigned, their coefficients can be interpreted as causal effects.

Additionally, different combinations of multiple treatments can be administered
randomly. For instance, depressed individuals could be randomly assigned to receive
nothing, drugs, counseling sessions, or a combination of drugs and counseling ses-
sions. These combinations could be modeled as two treatments and their interaction
or as four distinct treatments.

The assumption of no interference between units

Our discussion so far regarding estimation of causal effects using experiments is
contingent upon another, often overlooked, assumption. We must assume also that
the treatment assignment for one individual (unit) in the experiment does not affect
the outcome for another. This has been incorporated into the “stable unit treat-
ment value assumption” (SUTVA). Otherwise, we would need to define a different
potential outcome for the ith unit not just for each treatment received by that
unit but for each combination of treatment assignments received by every other
unit in the experiment. This would enormously complicate even the definition, let
alone the estimation, of individual causal effects. In settings such as agricultural
experiments where interference between units is to be expected, it can be modeled
directly, typically using spatial interactions.

9.4 Treatment interactions and poststratification

Interactions of treatment effect with pre-treatment inputs

Once we include pre-test in the model, it is natural to allow it to interact with
treatment effect. The treatment is then allowed to affect both the intercept and the
slope of the pre-test/post-test regression. Figure 9.7 shows the Electric Company
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data with separate regression lines estimated for the treatment and control groups.
As with Figure 9.6, for each grade the difference between the regression lines is the
estimated treatment effect as a function of pre-test score.

We illustrate in detail for grade 4. First, we fit the simple model including only
the treatment indicator:

R outputlm(formula = post.test ~ treatment, subset=(grade==4))

coef.est coef.se

(Intercept) 110.4 1.3

treatment 3.7 1.8

n = 42, k = 2

residual sd = 6.0, R-Squared = 0.09

The estimated treatment effect is 3.7 with a standard error of 1.8. We can improve
the efficiency of the estimator by controlling for the pre-test score:

R outputlm(formula = post.test ~ treatment + pre.test, subset=(grade==4))

coef.est coef.se

(Intercept) 42.0 4.3

treatment 1.7 0.7

pre.test 0.7 0.0

n = 42, k = 3

residual sd = 2.2, R-Squared = 0.88

The new estimated treatment effect is 1.7 with a standard error of 0.7. In this case,
controlling for the pre-test reduced the estimated effect. Under a clean randomiza-
tion, controlling for pre-treatment predictors in this way should reduce the standard
errors of the estimates.5 (Figure 9.5 shows the estimates for the Electric Company
experiment in all four grades.)

Complicated arise when we include the interaction of treatment with pre-test:

R outputlm(formula = post.test ~ treatment + pre.test + treatment:pre.test,

subset=(grade==4))

coef.est coef.se

(Intercept) 37.84 4.90

treatment 17.37 9.60

pre.test 0.70 0.05

treatment:pre.test -0.15 0.09

n = 42, k = 4

residual sd = 2.1, R-Squared = 0.89

The estimated treatment effect is now 17 − 0.15x, which is difficult to interpret
without knowing the range of x. From Figure 9.7 we see that pre-test scores range
from approximately 80 to 120; in this range, the estimated treatment effect varies
from 17−0.15 ·80 = 5 for classes with pre-test scores of 80 to 17−0.15 ·120 = −1 for
classes with pre-test scores of 120. This range represents the variation in estimated
treatment effects as a function of pre-test score, not uncertainty in the estimated
treatment effect.

To get a sense of the uncertainty, we can plot the estimated treatment effect as
a function of x, overlaying random simulation draws to represent uncertainty:

5 Under a clean randomization, controlling for pre-treatment predictors in this way does not
change what we are estimating. If the randomization was less than pristine, however, the ad-
dition of predictors to the equation may help us control for unbalanced characteristics across
groups. Thus, this strategy has the potential to move us from estimating a noncausal estimand
(due to lack of randomization) to estimating a causal estimand by in essence “cleaning” the
randomization.
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Figure 9.8 Estimate and uncertainty for the effect of viewing The Electric Company (com-
pared to the control treatment) for fourth-graders. Compare to the data in the rightmost
plot in Figure 9.7. The dark line here—the estimated treatment effect as a function of pre-
test score—is the difference between the two regression lines in the grade 4 plot in Figure
9.7. The gray lines represent 20 random draws from the uncertainty distribution of the
treatment effect.

R code lm.4 <- lm (post.test ~ treatment + pre.test + treatment:pre.test,

subset=(grade==4))

lm.4.sim <- sim (lm.4)

plot (0, 0, xlim=range (pre.test[grade==4]), ylim=c(-5,10),

xlab="pre-test", ylab="treatment effect",

main="treatment effect in grade 4")

abline (0, 0, lwd=.5, lty=2)

for (i in 1:20){

curve (lm.4.sim$beta[i,2] + lm.4.sim$beta[i,4]*x, lwd=.5, col="gray",

add=TRUE)}

curve (coef(lm.4)[2] + coef(lm.4)[4]*x, lwd=.5, add=TRUE)

This produces the graph shown in Figure 9.8.
Finally, we can estimate a mean treatment effect by averaging over the values of x

in the data. If we write the regression model as yi = α+θ1Ti +βxi +θ2Tixi +errori,
then the treatment effect is θ1+θ2x, and the summary treatment effect in the sample
is 1

n

∑n
i=1(θ1 + θ2xi), averaging over the n fourth-grade classrooms in the data. We

can compute the average treatment effect as follows:

R code n.sims <- nrow(lm.4.sim$beta)

effect <- array (NA, c(n.sims, sum(grade==4)))

for (i in 1:n.sims){

effect[i,] <- lm.4.sim$beta[i,2] + lm.4.sim$beta[i,4]*pre.test[grade==4]

}

avg.effect <- rowMeans (effect)

The rowMeans() function averages over the grade 4 classrooms, and the result
of this computation, avg.effect, is a vector of length n.sims representing the
uncertainty in the average treatment effect. We can summarize with the mean and
standard error:

R code print (c (mean(avg.effect), sd(avg.effect)))

The result is 1.8 with a standard deviation of 0.7—quite similar to the result from
the model controlling for pre-test but with no interactions. In general, for a linear
regression model, the estimate obtained by including the interaction, and then
averaging over the data, reduces to the estimate with no interaction. The motivation
for including the interaction is thus to get a better idea of how the treatment effect
varies with pre-treatment predictors, not simply to estimate an average effect.
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Poststratification

We have discussed how treatment effects interact with pre-treatment predictors
(that is, regression inputs). To estimate an average treatment effect, we can post-
stratify—that is, average over the population.6

For example, suppose we have treatment variable T and pre-treatment control
variables x1, x2, and our regression predictors are x1, x2, T, and the interactions x1T
and x2T , so that the linear model is: y = β0 +β1x1 +β2x2 +β3T +β4x1T +β5x2T +
error. The estimated treatment effect is then β3 + β4x1 + β5x2, and its average, in
a linear regression, is simply β3 + β4μ1 + β5μ2, where μ1 and μ2 are the averages
of x1 and x2 in the population. These population averages might be available from
another source, or else they can be estimated using the averages of x1 and x2 in
the data at hand. Standard errors for summaries such as β3 + β4μ1 + β5μ2 can be
determined analytically, but it is easier to simply compute them using simulations.

Modeling interactions is important when we care about differences in the treat-
ment effect for different groups, and poststratification then arises naturally if a
population average estimate is of interest.

9.5 Observational studies

In theory, the simplest solution to the fundamental problem of causal inference is,
as we have described, to randomly sample a different set of units for each treat-
ment group assignment from a common population, and then apply the appropriate
treatments to each group. An equivalent approach is to randomly assign the treat-
ment conditions among a selected set of units. Either of these approaches ensures
that, on average, the different treatment groups are balanced or, to put it another
way, that the ȳ0 and ȳ1 from the sample are estimating the average outcomes under
control and treatment for the same population.

In practice, however, we often work with observational data because, compared
to experiments, observational studies can be more practical to conduct and can
have more realism with regard to how the program or treatment is likely to be
“administered” in practice. As we have discussed, however, in observational studies
treatments are observed rather than assigned (for example, comparisons of smok-
ers to nonsmokers), and it is not at all reasonable to consider the observed data
under different treatments as random samples from a common population. In an
observational study, there can be systematic differences between groups of units
that receive different treatments—differences that are outside the control of the
experimenter—and they can affect the outcome, y. In this case we need to rely on
more data than just treatments and outcomes and implement a more complicated
analysis strategy that will rely upon stronger assumptions. The strategy discussed
in this chapter, however, is relatively simple and relies on controlling for confound-
ing covariates through linear regression. Some alternative approaches are described
in Chapter 10.

6 In survey sampling, stratification refers to the procedure of dividing the population into disjoint
subsets (strata), sampling separately within each stratum, and then combining the stratum
samples to get a population estimate. Poststratification is the analysis of an unstratified sample,
breaking the data into strata and reweighting as would have been done had the survey actually
been stratified. Stratification can adjust for potential differences between sample and population
using the survey design; poststratification makes such adjustments in the data analysis.
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Figure 9.9 Estimates, 50%, and 95% intervals for the effect of The Electric Company
as a supplement rather than a replacement, as estimated by a regression on the supple-
ment/replacement indicator also controlling for pre-test data. For each grade, the regres-
sion is performed only on the treated classes; this is an observational study embedded in
an experiment.

Electric Company example

Here we illustrate an observational study for which a simple regression analysis,
controlling for pre-treatment information, may yield reasonable causal inferences.

The educational experiment described in Section 9.3 actually had an embedded
observational study. Once the treatments had been assigned, the teacher for each
class assigned to the Electric Company treatment chose to either replace or sup-
plement the regular reading program with the Electric Company television show.
That is, all the classes in the treatment group watched the show, but some watched
it instead of the regular reading program and others got it in addition.7

The simplest starting point to analyzing these observational data (now limited to
the randomized treatment group) is to consider the choice between the two treat-
ment options—“replace” or “supplement”—to be randomly assigned conditional
on pre-test scores. This is a strong assumption but we use it simply as a starting
point. We can then estimate the treatment effect by regression, as with an actual
experiment. In the R code, we create a variable called supp that equals 0 for the
replacement form of the treatment, 1 for the supplement, and NA for the controls.
We then estimate the effect of the supplement, as compared to the replacement, for
each grade:

R code for (k in 1:4) {

ok <- (grade==k) & (!is.na(supp))

lm.supp <- lm (post.test ~ supp + pre.test, subset=ok)

}

The estimates are graphed in Figure 9.9. The uncertainties are high enough that
the comparison is inconclusive except in grade 2, but on the whole the pattern is
consistent with the reasonable hypothesis that supplementing is more effective than
replacing in the lower grades.

Assumption of ignorable treatment assignment

As opposed to making the same assumption as the completely randomized ex-
periment, the key assumption underlying the estimate is that, conditional on the
confounding covariates used in the analysis (here as inputs in the regression analy-
sis), the distribution of units across treatment conditions is, in essence, “random”

7 This procedural detail reveals that the treatment effect for the randomized experiment is actu-
ally more complicated than described earlier. As implemented, the experiment estimated the
effect of making the program available, either as a supplement or replacement for the current
curriculum.
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(in this case, pre-test score) with respect to the potential outcomes. To help with
the intuition here, one could envision units being randomly assigned to treatment
conditions conditional on the confounding covariates; however, of course, no actual
randomized assigment need take place.

Ignorability is often formalized by the conditional independence statement,

y0, y1 ⊥ T |X.

This says that the distribution of the potential outcomes, (y0, y1), is the same across
levels of the treatment variable, T , once we condition on confounding covariates X .

This assumption is referred to as ignorability of the treatment assignment in the
statistics literature and selection on observables in econometrics. Said another way,
we would not necessarily expect any two classes to have had the same probability
of receiving the supplemental version of the treatment. However, we expect any
two classes at the same levels of the confounding covariates (that is, pre-treatment
variables; in our example, average pre-test score) to have had the same probability
of receiving the supplemental version of the treatment. A third way to think about
the ignorability assumption is that it requires that we control for all confounding
covariates, the pre-treatment variables that are associated with both the treatment
and the outcome.

If ignorability holds, then causal inferences can be made without modeling the
treatment assignment process—that is, we can ignore this aspect of the model as
long as analyses regarding the causal effects condition on the predictors needed to
satisfy ignorability. Randomized experiments represent a simple case of ignorabil-
ity. Completely randomized experiments need not condition on any pre-treatment
variables—this is why we can use a simple difference in means to estimate causal ef-
fects. Randomized experiments that block or match satisfy ignorability conditional
on the design variables used to block or match, and therefore these variables need
to be included when estimating causal effects.

In the Electric Company supplement/replacement example, an example of a non-
ignorable assignment mechanism would be if the teacher of each class chose the
treatment that he or she believed would be more effective for that particular class
based on unmeasured characteristics of the class that were related to their sub-
sequent test scores. Another nonignorable assignment mechanism would be if, for
example, supplementing was more likely to be chosen by more “motivated” teachers,
with teacher motivation also associated with the students’ future test scores.

For ignorability to hold, it is not necessary that the two treatments be equally
likely to be picked, but rather that the probability that a given treatment is picked
should be equal, conditional on our confounding covariates.8 In an experiment, one
can control this at the design stage by using a random assignment mechanism.
In an observational study, the “treatment assignment” is not under the control of
the statistician, but one can aim for ignorability by conditioning in the analysis
stage on as much pre-treatment information in the regression model as possible.
For example, if teachers’ motivation might affect treatment assignment, it would
be advisable to have a pre-treatment measure of teacher motivation and include
this as an input in the regression model. This would increase the plausibility of
the ignorability assumption. Realistically, this may be a difficult characteristic to

8 As further clarification, consider two participants of a study for which ignorability holds. If we
define the probability of treatment participation as Pr(T = 1|X), then this probability must be
equal for these two individuals. However, suppose there exists another variable, w, that is asso-
ciated with treatment participation (conditional on X) but not with the outcome (conditional
on X). We do not require that Pr(T = 1 |X, W ) be the same for these two participants.
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Figure 9.10 Hypothetical before/after data demonstrating the potential problems in using
linear regression for causal inference. The dark dots and line correspond to the children who
received the educational supplement; the lighter dots and line correspond to the children
who did not receive the supplement. The dashed lines are regression lines fit to the observed
data. The model shown in the right panel allows for an interaction between receiving the
supplement and pre-test scores.

measure, but other teacher characteristics such as years of experience and schooling
might act as partial proxies.

In general, one can never prove that the treatment assignment process in an
observational study is ignorable—it is always possible that the choice of treatment
depends on relevant information that has not been recorded. In an educational
study this information could be characteristics of the teacher or school that are
related both to treatment assignment and to post-treatment test scores. Thus,
if we interpret the estimates in Figure 9.9 as causal effects, we do so with the
understanding that we would prefer to have further pre-treatment information,
especially on the teachers, in order to be more confident in ignorability.

If we believe that treatment assignments depend on information not included in
the model, then we should choose a different analysis strategy. We discuss some
options at the end of the next chapter.

Judging the reasonableness of regression as a modeling approach, assuming
ignorability

Even if the ignorability assumption appears to be justified, this does not mean
that simple regression of our outcomes on confounding covariates and a treatment
indicator is necessarily the best modeling approach for estimating treatment effects.
There are two primary concerns related to the distributions of the confounding
covariates across the treatment groups: lack of complete overlap and lack of balance.
For instance, consider our initial hypothetical example of a medical treatment that
is supposed to affect subsequent health measures. What if there were no treatment
observations among the group of people whose pre-treatment health status was
highest? Arguably, we could not make any causal inferences about the effect of the
treatment on these people because we would have no empirical evidence regarding
the counterfactual state. Lack of overlap and balance forces stronger reliance on our
modeling than if covariate distributions were the same across treatment groups. We
provide a brief illustration in this chapter and discuss in greater depth in Chapter
10.

Suppose we are interested in the effect of a supplementary educational activity
(such as viewing The Electric Company) that was not randomly assigned. Suppose,
however, that only one predictor, pre-test score, is necessary to satisfy ignorability—
that is, there is only one confounding covariate. Suppose further, though, that those
individuals who participate in the supplementary activity tend to have higher pre-
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Figure 9.11 Hypothetical before/after data demonstrating the potential problems in using
linear regression for causal inference. The dark dots and line correspond to the children who
received the educational supplement; the lighter dots and line correspond to the children
who did not receive the supplement. The dashed lines are regression lines fit to the observed
data. Plots are restricted to observations in the region where there is overlap in terms of the
pre-treatment test score across treatment and control groups. The left panel shows only the
portion of the plot in Figure 9.10 where there is overlap. The right panel shows regression
lines fit only using observations in this overlapping region.

test scores, on average, than those who do not participate. One realization of this
hypothetical scenario is illustrated in Figure 9.10. The dark line represents the
true relation between pre-test scores (x-axis) and post-test scores (y-axis) for those
who receive the supplement. The lighter line represents the true relation between
pre-test scores and post-test scores for those who do not receive the supplement.
Estimated linear regression lines are superimposed for these data. The linear model
has problems fitting the true nonlinear regression relation—a problem that is com-
pounded by the lack of overlap of the two groups in the data. Because there are no
“control” children with high test scores and virtually no “treatment” children with
low test scores, these linear models, to create counterfactual predictions, are forced
to extrapolate over portions of the space where there are no data to support them.
These two problems combine to create, in this case, a substantial underestimate of
the true average treatment effect. Allowing for an interaction, as illustrated in the
right panel, does not solve the problem.

In the region of pre-test scores where there are observations from both treatment
groups, however, even the incorrectly specified linear regression lines do not provide
such a bad fit to the data. And no model extrapolation is required, so diagnosing
this lack of fit would be possible. This is demonstrated in the left panel of Figure
9.11 by restricting the plot from the left panel of Figure 9.10 to the area of overlap.
Furthermore, if the regression lines are fit only using this restricted sample they fit
quite well in this region, as is illustrated in the right panel of Figure 9.11. Some
of the strategies discussed in the next chapter use this idea of limiting analyses to
observations with the region of complete overlap.

Examining overlap in the Electric Company embedded observational study

For the Electric Company data we can use plots such as in Figure 9.10–9.11 to assess
the appropriateness of the modeling assumptions and the extent to which we are
relying on unsupported model extrapolations. For the most part, Figure 9.12 reveals
a reasonable amount of overlap in pre-test scores across treatment groups within
each grade. Grade 3, however, has some classrooms with average pre-test scores
that are lower than the bulk of the sample, all of which received the supplement. It
might be appropriate to decide that no counterfactual classrooms exist in our data
for these classrooms and thus the data cannot support causal inferences for these
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Figure 9.12 Pre-test/post-test data examining the overlap in pre-test scores across treat-
ment groups as well as the extent to which models are being extrapolated to regions where
there is no support in the data. Classrooms that watched The Electric Company as a sup-
plement are represented by the dark points and regression line; classrooms that watched
The Electric Company as a replacement are represented by the lighter points and regression
line. No interactions were included when estimating the regression lines.

classrooms. The sample sizes for each grade make it difficult to come to any firm
conclusions one way or another, however.

Therefore, we must feel confident in the (probably relatively minor) degree of
model extrapolation relied upon by these estimates in order to trust a causal inter-
pretation.

9.6 Understanding causal inference in observational studies

Sometimes the term “observational study” refers to a situation in which a specific
intervention was offered nonrandomly to a population or in which a population was
exposed nonrandomly to a well-defined treatment. The primary characteristic that
distinguishes causal inference in these settings from causal inference in randomized
experiments is the inability to identify causal effects without making assumptions
such as ignorability. (Other sorts of assumptions will be discussed in the next
chapter.)

Often, however, observational studies refer more broadly to survey data settings
where no intervention has been performed. In these settings, there are other aspects
of the research design that need to be carefully considered as well. The first is the
mapping between the “treatment” variable in the data and a policy or intervention.
The second considers whether it is possible to separately identify the effects of
multiple treatment factors. When attempting causal inference using observational
data, it is helpful to formalize exactly what the experiment might have been that
would have generated the data, as we discuss next.

Defining a “treatment” variable

A causal effect needs to be defined with respect to a cause, or an intervention, on a
particular set of experimental units. We need to be able to conceive of each unit as
being able to experience each level of the treatment variable for which causal effects
will be defined for that unit. Thus, the “effect” of height on earnings is ill-defined
without reference to a treatment that could change one’s height. Otherwise what
does it mean to define a potential outcome for a person that would occur if he or
she had been shorter or taller?

More subtly, consider the effect of single-motherhood on children’s outcomes. We
might be able to envision several different kinds of interventions that could change
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a mother’s marital status either before or after birth: changes in tax laws, partici-
pation in a marriage encouragement program for unwed parents, new child support
enforcement policies, divorce laws, and so on. These potential “treatments” vary
in the timing of marriage relative to birth and even the strength of the marriages
that might result, and consequently might be expected to have different effects on
the children involved. Therefore, this conceptual mapping to a hypothetical inter-
vention can be important for choice of study design, analysis, and interpretation of
results.

Consider, for instance, a study that examines Korean children who were randomly
assigned to American families for adoption. This “natural experiment” allows for
fair comparisons across conditions such as being raised in one-parent versus two-
parent households. However, this is a different kind of treatment altogether than
considering whether a couple should get married. There is no attempt to compare
parents who are similar to each other; instead, it is the children who are similar on
average at the outset. The treatment in question then has to do with the child’s
placement in a family. This addresses an interesting although perhaps less policy-
relevant question (at least in terms of policies that affect incentives for marriage
formation or dissolution).

Multiple treatment factors

It is difficult to directly interpret more than one input variable causally in an
observational study. Suppose we have two variables, A and B, whose effects we
would like to estimate from a single observational study. To estimate causal effects,
we must consider implicit treatments—and to estimate both effects at once, we
would have to imagine a treatment that affects A while leaving B unchanged, and
a treatment that affects B while leaving A unchanged. In examples we have seen,
it is generally difficult to envision both these interventions: if A comes before B
in time or logical sequence, then we can estimate the effect of B controlling for
A but not the reverse (because of the problem with controlling for post-treatment
variables, which we discuss in greater detail in the next section).

More broadly, for many years a common practice when studying a social problem
(for example, poverty) was to compare people with different outcomes, throwing
many inputs into a regression to see which was the strongest predictor. As opposed
to the way we have tried to frame causal questions thus far in this chapter, as the
effect of causes, this is a strategy that searches for the causes of an effect. This is
an ill-defined notion that we will avoid for exactly the kind of reasons discussed in
this chapter.9

Thought experiment: what would be an ideal randomized experiment?

If you find yourself confused about what can be estimated and how the various
aspects of your study should be defined, a simple strategy is to try to formalize the
randomized experiment you would have liked to have done to answer your causal
question. A perfect mapping rarely exists between this experimental ideal and your
data so often you will be forced instead to figure out, given the data you have, what
randomized experiment could be thought to have generated such data.

9 Also, philosophically, looking for the most important cause of an outcome is a confusing framing
for a research question because one can always find an earlier cause that affected the “cause”
you determine to be the strongest from your data. This phenomenon is sometimes called the
“infinite regress of causation.”
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For instance, if you were interested in the effect of breastfeeding on children’s
cognitive outcomes, what randomized experiment would you want to perform as-
suming no practical, legal, or moral barriers existed? We could imagine randomizing
mothers to either breastfeed their children exclusively or bottle-feed them formula
exclusively. We would have to consider how to handle those who do not adhere
to their treatment assignment, such as mothers and children who are not able to
breastfeed, and children who are allergic to standard formula. Moreover, what if
we want to separately estimate the physiological effects of the breast milk from the
potential psychological implications (to both mother and child) of nursing at the
breast and the more extended physical contact that is often associated with breast-
feeding? In essence, then, we think that perhaps breastfeeding represents several
concurrent treatments. Perhaps we would want to create a third treatment group of
mothers who feed their babies with bottles of expressed breast milk. This exercise
of considering the randomized experiment helps to clarify what the true nature of
the intervention is that we are using our treatment variable to represent.

Just as in a randomized experiment, all causal inference requires a comparison of
at least two treatments (counting “control” as a treatment). For example, consider
a study of the effect on weight loss of a new diet. The treatment (following the
diet) may be clear but the control is not. Is it to try a different diet? To continue
eating “normally”? To exercise more? Different control conditions imply different
counterfactual states and thus induce different causal effects.

Finally, thinking about hypothetical randomized experiments can help with prob-
lems of trying to establish a causal link between two variables when neither has
temporal priority and when they may have been simultaneously determined. For
instance, consider a regression of crime rates in each of 50 states using a cross sec-
tion of data, where the goal is to determine the “effect” of the number of police
officers while controlling for the social, demographic, and economic features of each
state as well as characteristics of the state (such as the crime rate) that might af-
fect decisions to increase the size of the police force. The problem is that it may be
difficult (if not impossible) to disentangle the “effect” of the size of the police force
on crime from the “effect” of the crime rate on the size of the police force.

If one is interested in figuring out policies that can affect crime rates, it might be
more helpful to conceptualize both “number of police officers” and “crime rate” as
outcome variables. Then one could imagine different treatments (policies) that could
affect these outcomes. For example, the number of police officers could be affected
by a bond issue to raise money earmarked for hiring new police, or a change in the
retirement age, or a reallocation of resources within local and state government law
enforcement agencies. These different treatments could have different effects on the
crime rate.

9.7 Do not control for post-treatment variables

As illustrated in the examples of this chapter, we recommend controlling for pre-
treatment covariates when estimating causal effects in experiments and observa-
tional studies. However, it is generally not a good idea to control for variables
measured after the treatment. In this section and the next we explain why con-
trolling for a post-treatment variable messes up the estimate of total treatment
effect, and also the difficulty of using regression on “mediators” or “intermediate
outcomes” (variables measured post-treatment but generally prior to the primary
outcome of interest) to estimate so-called mediating effects.

Consider a hypothetical study of a treatment that incorporates a variety of social
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observed potential
unit, treatment, intermediate intermediate outcomes, final

i Ti outcome, zi z0
i z1

i outcome, yi

1 0 0.5 0.5 0.7 y1

2 1 0.5 0.3 0.5 y2

...
...

...
...

...
...

Figure 9.13 Hypothetical example illustrating the problems with regressions that control
on a continuous intermediate outcome. If we control for z when regressing y on T , we
will be essentially making comparisons between units such as 1 and 2 above, which differ
in T but are identical in z. The trouble is that such units are not, in fact, comparable,
as can be seen by looking at the potential outcomes, z0 and z1 (which can never both be
observed, but which we can imagine for the purposes of understanding this comparison).
Unit 1, which received the control, has higher potential outcomes than unit 2, which received
the treatment. Matching on the observed z inherently leads to misleading comparisons as
measured by the potential outcomes, which are the more fundamental quantity.
The coefficient θ in regression (9.6) thus in general represents an inappropriate comparison
of units that fundamentally differ. See Figure 9.14 for a similar example with a discrete
intermediate outcome.

services including high-quality child care and home visits by trained professionals.
We label y as the child’s IQ score, z as the parenting quality, T as the randomly
assigned binary treatment, and x as a pre-treatment background variable (which
could in general be a vector). The goal here is to measure the effect of T on y, and
we shall explain why it is not a good idea to control for the intermediate outcome,
z, in making this estimate.

To keep things clean, we shall assume a linear regression for the intermediate
outcome:

z = 0.3 + 0.2T + γx + error, (9.4)

with independent errors.10 We further suppose that the pre-treatment variable x
has been standardized to have mean 0. Then, on average, we would see parenting
quality at 0.3 for the controls and 0.5 for the treated parents. Thus the causal effect
of the treatment on parenting quality is 0.2. An interaction of T and x could be
easily added and interpreted as well if it is desired to estimate systematic variation
of treatment effects.

Similarly, a model for y given T and x—excluding z—is straightforward, with the
coefficient of T representing the total effect of the treatment on the child’s cognitive
outcome:

regression estimating the treatment effect: y = θT + βx + ε. (9.5)

The difficulty comes if z is added to this model. Adding z as a predictor could
improve the model fit, explaining much of the variation in y:

regression including intermediate outcome: y = θ∗T + β∗x + δ∗z + ε∗. (9.6)

We add the asterisks here because adding a new predictor changes the interpretation
of each of the parameters. Unfortunately, the new coefficient θ∗ does not, in general,
estimate the effect of T .

Figure 9.13 illustrates the problem with controlling for an intermediate outcome.

10 We use the notation γ for the coefficient of x because we are saving β for the regression of y;
see model (9.5).
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The coefficient of T in regression (9.6) corresponds to a comparison of units that
are identical in x and z but differ in T . The trouble is, they will then automatically
differ in their potential outcomes, z0 and z1. For example, consider two families,
one with z = 0.5 but one with T = 0 and one with T = 1. Under the (simplifying)
assumption that the effect of T is to increase z by exactly 0.2 (recall the assumed
model (9.4)), the first family has potential outcomes z0 = 0.5, z1 = 0.7, and the
second family has potential outcomes z0 = 0.3, z1 = 0.5. Thus, given two families
with the same intermediate outcome z, the one that received the treatment has lower
underlying parenting skills. Thus, in the regression of y on (x, T, z), the coefficient of
T represents a comparison of families that differ in their underlying characteristics.
This is an inevitable consequence of controlling for an intermediate outcome.

This reasoning suggests a strategy of estimating treatment effects conditional on
the potential outcomes—in this example, including both z0 and z1, along with T and
x, in the regression. The practical difficulty here (as usual) is that we observe at most
one potential outcome for each observation, and thus such a regression would require
imputation of z0 or z1 for each case (perhaps, informally, by using pre-treatment
variables as proxies for z0 and z1), and correspondingly strong assumptions.

9.8 Intermediate outcomes and causal paths

Randomized experimentation is often described as a “black box” approach to causal
inference. We see what goes into the box (treatments) and we see what comes out
(outcomes), and we can make inferences about the relation between these inputs
and outputs, without the ability to see what happens inside the box. This section
discusses what happens when we use standard techniques to try to ascertain the
role of post-treatment, or mediating variables, in the causal path between treatment
and outcomes. We present this material at the end of this chapter because the
discussion relies on concepts from the analysis of both randomized experiments
and observational studies.

Hypothetical example of a binary intermediate outcome

Continuing the hypothetical experiment on child care, suppose that the randomly
assigned treatment increases children’s IQ points after three years by an average
of 10 points (compared to the outcome under usual care). We would additionally
like to know to what extent these positive results were the result of improved
parenting practices. This question is sometimes phrased as: “What is the ‘direct’
effect of the treatment, net the effect of parenting?” Does the experiment allow us
to evaluate this question? The short answer is no. At least not without making
further assumptions.

Yet it would not be unusual to see such a question addressed by simply running
a regression of the outcome on the randomized treatment variable along with a pre-
dictor representing (post-treatment) “parenting” added to the equation; recall that
this is often called a mediating variable or mediator. Implicitly, the coefficient on
the treatment variable then creates a comparison between those randomly assigned
to treatment and control, within subgroups defined by post-treatment parenting
practices. Let us consider what is estimated by such a regression.

For simplicity, assume these parenting practices are measured by a simple catego-
rization as “good” or “poor.” The simple comparison of the two groups can mislead,
because parents who demonstrate good practices after the treatment is applied are
likely to be different, on average, from the parents who would have been classified
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Parenting quality Child’s IQ score
after assigned to after assigned to Proportion

Parenting potential control treat control treat of sample

Poor parenting either way Poor Poor 60 70 0.1
Good parenting if treated Poor Good 65 80 0.7
Good parenting either way Good Good 90 100 0.2

Figure 9.14 Hypothetical example illustrating the problems with regressions that control
on intermediate outcomes. The table shows, for three categories of parents, their poten-
tial parenting behaviors and the potential outcomes for their children under the control
and treatment conditions. The proportion of the sample falling into each category is also
provided. In actual data, we would not know which category was appropriate for each in-
dividual parent—it is the fundamental problem of causal inference that we can observe
at most one treatment condition for each person—but this theoretical setup is helpful for
understanding the properties of statistical estimates. See Figure 9.13 for a similar example
with a continuous intermediate outcome.

as having good parenting practices even in the absence of the treatment. There-
fore such comparisons, in essence, lose the advantages originally imparted by the
randomization and it becomes unclear what such estimates represent.

Regression controlling for intermediate outcomes cannot, in general, estimate
“mediating” effects

Some researchers who perform these analyses will claim that these models are still
useful because, if the estimate of the coefficient on the treatment variable goes to
zero after including the mediating variable, then we have learned that the entire
effect of the treatment acts through the mediating variable. Similarly, if the treat-
ment effect is cut in half, they might claim that half of the effect of the treatment
acts through better parenting practices or, equivalently, that the effect of treat-
ment net the effect of parenting is half the total value. This sort of conclusion is
not generally appropriate, however, as we illustrate with a hypothetical example.

Hypothetical scenario with direct and indirect effects. Figure 9.14 displays poten-
tial outcomes of the children of the three different kinds of parents in our sample:
those who will demonstrate poor parenting practices with or without the inter-
vention, those whose parenting will get better if they receive the intervention, and
those who will exhibit good parenting practices with or without the intervention.
We can think of these categories as reflecting parenting potential. For simplicity, we
have defined the model deterministically, with no individual variation within the
three categories of family.

Here the effect of the intervention is 10 IQ points on children whose parents’
parenting practices were unaffected by the treatment. For those parents who would
improve their parenting due to the intervention, the children get a 15-point improve-
ment. In some sense, philosophically, it is difficult (some would say impossible) to
even define questions such as “what percentage of the treatment effect can be at-
tributed to improved parenting practices” since treatment effects (and fractions
attributable to various causes) can differ across people. How can we ever say for
those families that have good parenting, if treated, what portion of their treatment
effect can be attributed to differences in parenting practices as compared to the ef-
fects experienced by the families whose parenting practices would not change based
on their treatment assignment? If we assume, however, that the effect on children
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due to sources other than parenting practices stays constant over different types
of people (10 points), then we might say that, at least for those with the poten-
tial to have their parenting improved by the intervention, this improved parenting
accounts for about (15 − 10)/15 = 1/3 of the effect.

A regression controlling for the intermediate outcome does not generally work.
However, if one were to try to estimate this effect using a regression of the outcome
on the randomized treatment variable and observed parenting behavior, the coeffi-
cient on the treatment indicator will be −1.5, falsely implying that the treatment
has some sort of negative “direct effect” on IQ scores!

To see what is happening here, recall that this coefficient is based on comparisons
of treated and control groups within groups defined by observed parenting behavior.
Consider, for instance, the comparison between treated and control groups within
those observed to have poor parenting behavior. The group of parents who did
not receive the treatment and are observed to have poor parenting behavior is a
mixture of those who would have exhibited poor parenting either way and those
who exhibited poor parenting simply because they did not get the treatment. Those
in the treatment group who exhibited poor parenting are all those who would have
exhibited poor parenting either way. Those whose poor parenting is not changed
by the intervention have children with lower test scores on average—under either
treatment condition—than those whose parenting would have been affected by the
intervention.

The regression controlling for the intermediate outcome thus implicitly compares
unlike groups of people and underestimates the treatment effect, because the treat-
ment group in this comparison is made up of lower-performing children, on average.
A similar phenomenon occurs when we make comparisons across treatment groups
among those who exhibit good parenting. Those in the treatment group who demon-
strate good parenting are a mixture of two groups (good parenting if treated and
good parenting either way) whereas the control group is simply made up of the
parents with the highest-performing children (good parenting either way). This es-
timate does not reflect the effect of the intervention net the effect of parenting. It
does not estimate any causal effect. It is simply a mixture of some nonexperimental
comparisons.

This example is an oversimplification, but the basic principles hold in more com-
plicated settings. In short, randomization allows us to calculate causal effects of the
variable randomized, but not other variables unless a whole new set of assumptions
is made. Moreover, the benefits of the randomization for treatment effect estimation
are generally destroyed by including post-treatment variables. These assumptions
and the strategies that allow us to estimate the effects conditional on intermediate
outcomes in certain situations will be discussed at the end of Chapter 10.

What can be estimated: principal stratification

We noted earlier that questions such as “What proportion of the treatment effect
works through variable A?” are in some sense, inherently unanswerable. What can
we learn about the role of intermediate outcomes or mediating variables? As we
discussed in the context of Figure 9.14, treatment effects can vary depending on
the extent to which the mediating variable (in this example, parenting practices) is
affected by the treatment. The key theoretical step here is to divide the population
into categories based on their potential outcomes for the mediating variable—what
would happen under each of the two treatment conditions. In statistical parlance,
these categorizations are sometimes called principal strata. The problem is that
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the principal stratum labels are generally unobserved. It is theoretically possible to
statistically infer principal-stratum categories based on covariates, especially if the
treatment was randomized—because then at least we know that the distribution
of principal strata is the same across the randomized groups. In practice, how-
ever, this reduces to making the same kinds of assumptions as are made in typical
observational studies when ignorability is assumed.

Principal strata are important because they can define, even if only theoreti-
cally, the categories of people for whom the treatment effect can be estimated from
available data. For example, if treatment effects were nonzero only for the study par-
ticipants whose parenting practices had been changed, and if we could reasonably
exclude other causal pathways, even stronger conclusions could be drawn regard-
ing the role of this mediating variable. We discuss this scenario of instrumental
variables in greater detail in Section 10.5.

Intermediate outcomes in the context of observational studies

If trying to control directly for mediating variables is problematic in the context
of randomized experiments, it should come as no surprise that it generally is also
problematic for observational studies. The concern is nonignorability—systematic
differences between groups defined conditional on the post-treatment intermediate
outcome. In the example above if we could control for the true parenting potential
designations, the regression would yield the correct estimate for the treatment effect
if we are willing to assume constant effects across groups (or willing to posit a model
for how effects change across groups). One conceivably can obtain the same result
by controlling sufficiently for covariates that adequately proxy this information.

In observational studies, researchers often already know to control for many pre-
dictors. So it is possible that these predictors will mitigate some of the problems
we have discussed. On the other hand, studying intermediate outcomes in an ob-
servational study involves two ignorability problems to deal with rather than just
one, making it all the more challenging to obtain trustworthy results.

Well-switching example. As an example where the issues discussed in this and
the previous section come into play, consider one of the logistic regressions from
Chapter 5:

Pr(switch) = logit−1(−0.21 − 0.90 · dist100 + 0.47 · arsenic + 0.17 · educ4),

predicting the probability that a household switches drinking-water wells as a func-
tion of distance to the nearest safe well, arsenic level of the current well, and edu-
cation of head of household.

This model can simply be considered as data description, but it is natural to
try to interpret it causally: being further from a safe well makes one less likely to
switch, having a higher arsenic level makes switching more likely, and having more
education makes one more likely to switch. Each of these coefficients is interpreted
with the other two inputs held constant—and this is what we want to do, in isolating
the “effects” (as crudely interpreted) of each variable. For example, households that
are farther from safe wells turn out to be more likely to have high arsenic levels, and
in studying the “effect” of distance, we would indeed like to compare households that
are otherwise similar, including in their arsenic level. This fits with a psychological
or decision-theoretic model in which these variables affect the perceived costs and
benefits of the switching decision (as outlined in Section 6.8).

However, in the well-switching example as in many regression problems, addi-
tional assumptions beyond the data are required to justify the convenient interpre-



194 CAUSAL INFERENCE USING DIRECT REGRESSION

tation of multiple regression coefficients as causal effects—what would happen to y
if a particular input were changed, with all others held constant—and it is rarely
appropriate to give more than one coefficient such an interpretation, and then only
after careful consideration of ignorability. Similarly, we cannot learn about causal
pathways from observational data without strong assumptions.

For example, a careful estimate of the effect of a potential intervention (for exam-
ple, digging new, safe wells in close proximity to existing high-arsenic households)
should include, if not an actual experiment, a model of what would happen in the
particular households being affected, which returns us to the principles of observa-
tional studies discussed earlier in this chapter.

9.9 Bibliographic note

The fundamental problem of causal inference and the potential outcome notation
were introduced by Rubin (1974, 1978). Related earlier work includes Neyman
(1923) and Cox (1958). For other approaches to causal inference, see Pearl (2000)
along with many of the references in Section 10.8.

The stable unit treatment value assumption was defined by Rubin (1978); see
also Sobel (2006) for a more recent discussion in the context of a public policy in-
tervention and evaluation. Ainsley, Dyke, and Jenkyn (1995) and Besag and Higdon
(1999) discuss spatial models for interference between units in agricultural experi-
ments. Gelman (2004d) discusses treatment interactions in before/after studies.

Campbell and Stanley (1963) is an early presentation of causal inference in exper-
iments and observational studies from a social science perspective; see also Achen
(1986) and Shadish, Cook, and Campbell (2002). Rosenbaum (2002b) and Imbens
(2004) present overviews of inference for observational studies. Dawid (2000) offers
another perspective on the potential-outcome framework. Leamer (1978, 1983) ex-
plores the challenges of relying on regression models for answering causal questions.

Modeling strategies also exist that rely on ignorability but loosen the relatively
strict functional form imposed by linear regression. Examples include Hahn (1998),
Heckman, Ichimura and Todd (1998), Hirano, Imbens, and Ridder (2003), and Hill
and McCulloch (2006).

The example regarding the Korean babies up for adoption was inspired by Sac-
erdote (2004). The Electric Company experiment is described by Ball and Bogatz
(1972) and Ball et al. (1972).

Rosenbaum (1984) provides a good discussion of the dangers outlined in Section
9.8 involved in trying to control for post-treatment outcomes. Raudenbush and
Sampson (1999), Rubin (2000), and Rubin (2004) discuss direct and indirect effects
for multilevel designs. We do not attempt here to review the vast literature on
structural equation modeling; Kenny, Kashy, and Bolger (1998) is a good place to
start.

The term “principal stratification” was introduced by Frangakis and Rubin (2002);
examples of its application include Frangakis et al. (2003) and Barnard et al. (2003).
Similar ideas appear in Robins (1989, 1994).

9.10 Exercises

1. Suppose you are interested in the effect of the presence of vending machines in
schools on childhood obesity. What randomized experiment would you want to
do (in a perfect world) to evaluate this question?

2. Suppose you are interested in the effect of smoking on lung cancer. What ran-
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domized experiment could you plausibly perform (in the real world) to evaluate
this effect?

3. Suppose you are a consultant for a researcher who is interested in investigating
the effects of teacher quality on student test scores. Use the strategy of mapping
this question to a randomized experiment to help define the question more clearly.
Write a memo to the researcher asking for needed clarifications to this study
proposal.

4. The table below describes a hypothetical experiment on 2400 persons. Each row
of the table specifies a category of person, as defined by his or her pre-treatment
predictor x, treatment indicator T , and potential outcomes y0, y1. (For simplicity,
we assume unrealistically that all the people in this experiment fit into these eight
categories.)

Category # persons in category x T y0 y1

1 300 0 0 4 6
2 300 1 0 4 6
3 500 0 1 4 6
4 500 1 1 4 6
5 200 0 0 10 12
6 200 1 0 10 12
7 200 0 1 10 12
8 200 1 1 10 12

In making the table we are assuming omniscience, so that we know both y0 and
y1 for all observations. But the (nonomniscient) investigator would only observe
x, T , and yT for each unit. (For example, a person in category 1 would have
x=0, T =0, y=4, and a person in category 3 would have x=0, T =1, y=6.)

(a) What is the average treatment effect in this population of 2400 persons?

(b) Is it plausible to believe that these data came from a randomized experiment?
Defend your answer.

(c) Another population quantity is the mean of y for those who received the
treatment minus the mean of y for those who did not. What is the relation
between this quantity and the average treatment effect?

(d) For these data, is it plausible to believe that treatment assignment is ignorable
given sex? Defend your answer.

5. For the hypothetical study in the previous exercise, figure out the estimate and
the standard error of the coefficient of T in a regression of y on T and x.

6. You are consulting for a researcher who has performed a randomized trial where
the treatment was a series of 26 weekly therapy sessions, the control was no ther-
apy, and the outcome was self-report of emotional state one year later. However,
most people in the treatment group did not attend every therapy session. In fact
there was a good deal of variation in the number of therapy sessions actually
attended. The researcher is concerned that her results represent “watered down”
estimates because of this variation and suggests adding in another predictor to
the model: number of therapy sessions attended. What would you advise her?

7. Gain-score models: in the discussion of gain-score models in Section 9.3, we
noted that if we include the pre-treatment measure of the outcome in a gain
score model, the coefficient on the treatment indicator will be the same as if we
had just run a standard regression of the outcome on the treatment indicator
and the pre-treatment measure. Show why this is true.
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8. Assume that linear regression is appropriate for the regression of an outcome,
y, on treatment indicator, T , and a single confounding covariate, x. Sketch hy-
pothetical data (plotting y versus x, with treated and control units indicated
by circles and dots, respectively) and regression lines (for treatment and control
group) that represent each of the following situations:

(a) No treatment effect,

(b) Constant treatment effect,

(c) Treatment effect increasing with x.

9. Consider a study with an outcome, y, a treatment indicator, T , and a single con-
founding covariate, x. Draw a scatterplot of treatment and control observations
that demonstrates each of the following:

(a) A scenario where the difference in means estimate would not capture the true
treatment effect but a regression of y on x and T would yield the correct
estimate.

(b) A scenario where a linear regression would yield the wrong estimate but a
nonlinear regression would yield the correct estimate.

10. The folder sesame contains data from an experiment in which a randomly se-
lected group of children was encouraged to watch the television program Sesame
Street and the randomly selected control group was not.

(a) The goal of the experiment was to estimate the effect on child cognitive devel-
opment of watching more Sesame Street. In the experiment, encouragement
but not actual watching was randomized. Briefly explain why you think this
was done. (Hint: think of practical as well as statistical reasons.)

(b) Suppose that the investigators instead had decided to test the effectiveness
of the program simply by examining how test scores changed from before the
intervention to after. What assumption would be required for this to be an
appropriate causal inference? Use data on just the control group from this
study to examine how realistic this assumption would have been.

11. Return to the Sesame Street example from the previous exercise.

(a) Did encouragement (the variable viewenc in the dataset) lead to an increase
in post-test scores for letters (postlet) and numbers (postnumb)? Fit an
appropriate model to answer this question.

(b) We are actually more interested in the effect of watching Sesame Street regu-
larly (regular) than in the effect of being encouraged to watch Sesame Street.
Fit an appropriate model to answer this question.

(c) Comment on which of the two previous estimates can plausibly be interpreted
causally.

12. Messy randomization: the folder cows contains data from an agricultural exper-
iment that was conducted on 50 cows to estimate the effect of a feed additive on
six outcomes related to the amount of milk fat produced by each cow.

Four diets (treatments) were considered, corresponding to different levels of the
additive, and three variables were recorded before treatment assignment: lacta-
tion number (seasons of lactation), age, and initial weight of cow.

Cows were initially assigned to treatments completely at random, and then the
distributions of the three covariates were checked for balance across the treat-
ment groups; several randomizations were tried, and the one that produced the
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“best” balance with respect to the three covariates was chosen. The treatment
assignment is ignorable (because it depends only on fully observed covariates
and not on unrecorded variables such as the physical appearances of the cows
or the times at which the cows entered the study) but unknown (because the
decisions whether to rerandomize are not explained).

We shall consider different estimates of the effect of additive on the mean daily
milk fat produced.

(a) Consider the simple regression of mean daily milk fat on the level of additive.
Compute the estimated treatment effect and standard error, and explain why
this is not a completely appropriate analysis given the randomization used.

(b) Add more predictors to the model. Explain your choice of which variables to
include. Compare your estimated treatment effect to the result from (a).

(c) Repeat (b), this time considering additive level as a categorical predictor
with four letters. Make a plot showing the estimate (and standard error) of
the treatment effect at each level, and also showing the inference the model
fit in part (b).

13. The folder congress has election outcomes and incumbency for U.S. congres-
sional election races in the 1900s.

(a) Take data from a particular year, t, and estimate the effect of incumbency
by fitting a regression of vi,t, the Democratic share of the two-party vote in
district i, on vi,t−2 (the outcome in the previous election, two years earlier), Iit

(the incumbency status in district i in election t, coded as 1 for Democratic
incumbents, 0 for open seats, −1 for Republican incumbents), and Pit (the
incumbent party, coded as 1 if the sitting congressmember is a Democrat and
−1 if he or she is a Republican). In your analysis, include only the districts
where the congressional election was contested in both years, and do not pick
a year ending in “2.” (District lines in the United States are redrawn every ten
years, and district election outcomes vit and vi,t−2 are not comparable across
redistrictings, for example, from 1970 to 1972.)

(b) Plot the fitted model and the data, and discuss the political interpretation of
the estimated coefficients.

(c) What assumptions are needed for this regression to give a valid estimate of the
causal effect of incumbency? In answering this question, define clearly what
is meant by incumbency as a “treatment variable.”

See Erikson (1971), Gelman and King (1990), Cox and Katz (1996), Levitt and
Wolfram (1997), Ansolabehere, Snyder, and Stewart (2000), Ansolabehere and
Snyder (2002), and Gelman and Huang (2006) for further work and references
on this topic.

14. Causal inference based on data from individual choices: our lives involve trade-
offs between monetary cost and physical risk, in decisions ranging from how
large a car to drive, to choices of health care, to purchases of safety equipment.
Economists have estimated people’s implicit balancing of dollars and danger by
comparing different jobs that are comparable but with different risks, fitting re-
gression models predicting salary given the probability of death on the job. The
idea is that a riskier job should be compensated with a higher salary, with the
slope of the regression line corresponding to the “value of a statistical life.”

(a) Set up this problem as an individual choice model, as in Section 6.8. What
are an individual’s options, value function, and parameters?
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(b) Discuss the assumptions involved in assigning a causal interpretation to these
regression models.

See Dorman and Hagstrom (1998), Costa and Kahn (2002), and Viscusi and
Aldy (2002) for different perspectives of economists on assessing the value of a
life, and Lin et al. (1999) for a discussion in the context of the risks from radon
exposure.



CHAPTER 10

Causal inference using more advanced
models

Chapter 9 discussed situations in which it is dangerous to use a standard linear
regression of outcome on predictors and an indicator variable for estimating causal
effects: when there is imbalance or lack of complete overlap or when ignorability is
in doubt. This chapter discusses these issues in more detail and provides potential
solutions for each.

10.1 Imbalance and lack of complete overlap

In a study comparing two treatments (which we typically label “treatment” and
“control”), causal inferences are cleanest if the units receiving the treatment are
comparable to those receiving the control. Until Section 10.5, we shall restrict our-
selves to ignorable models, which means that we only need to consider observed
pre-treatment predictors when considering comparability.

For ignorable models, we consider two sorts of departures from comparability—
imbalance and lack of complete overlap. Imbalance occurs if the distributions of
relevant pre-treatment variables differ for the treatment and control groups. Lack
of complete overlap occurs if there are regions in the space of relevant pre-treatment
variables where there are treated units but no controls, or controls but no treated
units.

Imbalance and lack of complete overlap are issues for causal inference largely
because they force us to rely more heavily on model specification and less on direct
support from the data.

When treatment and control groups are unbalanced, the simple comparison of
group averages, ȳ1− ȳ0, is not, in general, a good estimate of the average treat-
ment effect. Instead, some analysis must be performed to adjust for pre-treatment
differences between the groups.

When treatment and control groups do not completely overlap, the data are in-
herently limited in what they can tell us about treatment effects in the regions of
nonoverlap. No amount of adjustment can create direct treatment/control compar-
isons, and one must either restrict inferences to the region of overlap, or rely on a
model to extrapolate outside this region.

Thus, lack of complete overlap is a more serious problem than imbalance. But
similar statistical methods are used in both scenarios, so we discuss these problems
together here.

Imbalance and model sensitivity

When attempting to make causal inferences by comparing two samples that differ in
terms of the “treatment” or causing variable of interest (participation in a program,
taking a drug, engaging in some activity) but that also differ in terms of confounding
covariates (predictors related both to the treatment and outcome), we can be misled

199
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Figure 10.1 Imbalance in distributions across treatment and control groups. (a) In the left
panel, the groups differ in their averages (dotted vertical lines) but cover the same range
of x. (b) The right panel shows a more subtle form of imbalance, in which the groups have
the same average but differ in their distributions.

if we do not appropriately control for those confounders. The examples regarding
the effect of a treatment on health outcomes in Section 9.1 illustrated this point in
a simple setting.

Even when all the confounding covariates are measured (hence ignorability is sat-
isfied), however, it can be difficult to properly control for them if the distributions
of the predictors are not similar across groups. Broadly speaking, any differences
across groups can be referred to as lack of balance across groups. The terms “im-
balance” and “lack of balance” are commonly used as a shorthand for differences
in averages, but more broadly they can refer to more general differences in distri-
butions across groups. Figure 10.1 provides two examples of imbalance. In the first
case the groups have different means (dotted vertical lines) and different skews. In
the second case groups have the same mean but different skews. In both examples
the standard deviations are the same across groups though differences in standard
deviation might be another manifestation of imbalance.

Imbalance creates problems primarily because it forces us to rely more on the
correctness of our model than we would have to if the samples were balanced. To
see this, consider what happens when we try to make inferences about the effect of
a treatment variable, for instance a new reading program, on test score, y, while
controlling for a crucial confounding covariate, pre-test score, x. Suppose that the
true treatment effect is θ and the relations between the response variable, y, and the
sole confounding covariate, x, is quadratic, as indicated by the following regressions,
written out separately for the members of each treatment group:

treated: yi = β0 + β1xi + β2x
2
i + θ + errori

controls: yi = β0 + β1xi + β2x
2
i + errori

Averaging over each treatment group separately, solving the second equation for
β0, plugging back into the first, and solving for θ yields the estimate

θ̂ = ȳ1 − ȳ0 − β1(x̄1 − x̄0) − β2(x2
1 − x2

0), (10.1)

where ȳ1 and ȳ0 denote the average of the outcome test scores in the treatment and
control groups respectively, x̄1 and x̄0 represent average pre-test scores for treat-
ment and control groups respectively, and x2

1 and x2
0 represent these averages for

squared pre-test scores. Ignoring x (that is, simply using the raw treatment/control
comparison ȳ1 − ȳ0) is a poor estimate of the treatment effect: it will be off by the

amount β1(x̄1 − x̄0) + β2(x2
1 − x2

0), which corresponds to systematic pre-treatment
differences between groups 0 and 1. The magnitude of this bias depends on how
different the distribution of x is across treatment and control groups (specifically
with regard to variance in this case) and how large β1 and β2 are. The closer the
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Figure 10.2 Lack of complete overlap in distributions across treatment and control groups.
Dashed lines indicate distributions for the control group; solid lines indicate distributions
for the treatment group. (a) Two distributions with no overlap; (b) two distributions with
partial overlap; (c) a scenario in which the range of one distribution is a subset of the
range of the other.

distributions of pre-test scores across treatment and control groups, the smaller this
bias will be.

Moreover, a linear model regression using x as a predictor would also yield the
wrong answer; it will be off by the amount β2(x2

1−x2
0). The closer the distributions

of pre-test scores across treatment and control groups, however, the smaller (x2
1−x2

0)
will be, and the less worried we need to be about correctly specifying this model as
quadratic rather than linear.

Lack of complete overlap and model extrapolation

Overlap describes the extent to which the range of the data is the same across
treatment groups. There is complete overlap if this range is the same in the two
groups. Figure 10.1 illustrated treatment and control confounder distributions with
complete overlap.

As discussed briefly in the previous chapter, lack of complete overlap creates
problems because it means that there are treatment observations for which we have
no counterfactuals (that is, control observations with the same covariate distribu-
tion) and vice versa. A model fitted to data such as these is forced to extrapolate
beyond the support of the data. The illustrations in Figure 10.2 display several
scenarios that exhibit lack of complete overlap.

If these are distributions for an important confounding covariate, then areas
where there is no overlap represent observations about which we may not want
to make causal inferences. Observations in these areas have no empirical counter-
factuals. Thus, any inferences regarding these observations would have to rely on
modeling assumptions in place of direct support from the data. Adhering to this
structure would imply that in the setting of Figure 10.2a, it would be impossible
to make data-based causal inferences about any of the observations. Figure 10.2b
shows a scenario in which data-based inferences are only possible for the region of
overlap, which is underscored on the plot. In Figure 10.2c, causal inferences are
possible for the full treatment group but only for a subset of the control group
(again indicated by the underscored region).

Example: evaluating the effectiveness of high-quality child care

We illustrate with data collected regarding the development of nearly 4500 children
born in the 1980s. A subset of 290 of these children who were premature and with
low birth weight (between 1500 and 2500 grams) received special services in the
first few years of life, including high-quality child care (five full days a week) in the
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Figure 10.3 Imbalance in averages of confounding covariates across treatment groups.
Open circles represent differences in averages for the unmatched groups standardized by
the pooled within-group standard deviations for unmatched groups. Solid circles represent
differences in averages for matched groups standardized by the pooled within-group stan-
dard deviation for unmatched groups to facilitate comparisons. Negative birth weight is
defined as 2500 grams minus the child’s weight at birth.

second and third years of life as part of a formal intervention (the Infant Health and
Development Program). We want to evaluate the impact of this intervention on the
children’s subsequent cognitive outcomes by comparing the outcomes for children
in the intervention group to the outcomes in a comparison group of 4091 children
who did not participate in the program. The outcome of interest is test score at age
3; this test is similar to an IQ measure so we simplistically refer to these scores as
IQ scores from now on.

Missing data. Incomplete data arise in virtually all observational studies. For this
sample dataset, we imputed missing data once, using a model-based random impu-
tation (see Chapter 25 for a general discussion of this approach). We excluded the
most severely low-birth-weight children (those at or below 1500 grams) from the
sample because they are so different from the comparison sample. For these reasons,
results presented here do not exactly match the complete published analysis, which
multiply imputed the missing values.

Examining imbalance for several covariates

To illustrate the ways in which the treated and comparison groups differ, the open
circles in Figure 10.3 display the standardized differences in mean values (differences
in averages divided by the pooled within-group standard deviations for the treat-
ment and control groups) for a set of confounding covariates that we think predict
both program participation and subsequent test scores. Many of these differences
are large given that they are shown in standard-deviation units.

Setting up the plot to reveal systematic patterns of imbalance. In Figure 10.3, the
characteristics of this sample are organized by whether they pertain to the child
or to the mother. Additionally, continuous and binary predictors have been coded
when possible such that the larger values are typically associated with lower test
scores for children. For instance, “negative birth weight” is defined as the child’s
birth weight subtracted from 2500 grams, the cutoff for the official designation of
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Figure 10.4 Data from an intervention targeting low birth weight, premature children
(black dots), and data from a comparison group of children (gray dots). Test scores at
age 3 are plotted against birth weight. The solid line and dotted lines are regressions fit to
the black and gray points, respectively.

low birth weight. Therefore, high values of this predictor reflect children whom we
would expect to have lower test scores than children with lower values for negative
birth weight. Categorical variables have been broken out into indicators for each
category and organized so that the category associated with lowest test scores comes
first.

Displaying the confounders in this way and plotting standardized averages—
rather than displaying a table of numbers—facilitate comparisons across predictors
and methods (the dark points, to be described later, correspond to results obtained
from another strategy) and allow us to more clearly identify trends when they exist.
For instance, compared to the control group, the at-risk treatment group generally
has characteristics associated with lower test scores—such as low birth weight for
the child (coded as high “negative birth weight”), mother unmarried at birth, and
mother not a high school graduate.

Figure 10.4, which shows a scatterplot and regression lines of test scores on
birth weight, illustrates that, not only do the average birth weights differ in the
two groups (lack of balance), but there are many control observations (gray dots)
who have birth weights far out of the range of birth weights experienced in the
treatment population (black dots). This is an example of lack of complete overlap
in this predictor across groups. If birth weight is a confounding covariate that we
need to control for to achieve ignorability, Figure 10.4 demonstrates that if we
want to make inferences about the effect of the program on children with birth
weights above 2500 grams, we will have to rely on model extrapolations that may
be inappropriate.

Imbalance is not the same as lack of overlap

Figure 10.5 illustrates the distinction between balance and overlap. Imbalance does
not necessarily imply lack of complete overlap; conversely, lack of complete overlap
does not necessarily necessarily result in imbalance in the sense of different average
values in the two groups. Ultimately, lack of overlap is a more serious problem,
corresponding to a lack of data that limits the causal conclusions that can be made
without uncheckable modeling assumptions.

Figure 10.5a demonstrates complete overlap across groups in terms of mother’s
education. Each category includes observations in each treatment group. However,
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Figure 10.5 Comparisons of the treatment (black histogram bars) and control (gray his-
togram bars) groups for the child-intervention study, with respect to two of the pre-
treatment variables. There is lack of complete overlap for child age, but the averages are
similar across groups. In contrast, mother’s education shows complete overlap, but imbal-
ance exists in that the distributions differ for the two groups.

the percentages falling in each category (and the overall average, were we to code
these categories as 1–4) differ when comparing treatment and control groups—thus
there is clearly imbalance.

Figure 10.5b shows balance in mean values but without complete overlap. As
the histograms show, the averages of children’s ages differ little across treatment
groups, but the vast majority of control children have ages that are not represented
in the treatment group. Thus there is a lack of complete overlap across groups for
this variable. More specifically, there is complete overlap in terms of the treatment
observations, but not in terms of the control observations. If we believe age to be
a crucial confounding covariate, we probably would not want to make inferences
about the full set of controls in this sample.

10.2 Subclassification: effects and estimates for different

subpopulations

Assuming we are willing to trust the ignorability assumption, how can we assess
whether we are relying too strongly on modeling assumptions? And if we are un-
certain of our assumptions, how can we proceed cautiously? Section 9.5 illustrated
a check for overlap in one continuous predictor across treatment groups. In this
section we demonstrate a check that accommodates many predictors and discuss
options for more flexible modeling.

Subclassification

We saw in Chapter 3 that mother’s educational attainment is an important pre-
dictor of her child’s test scores. Education level also traditionally is associated
with participation in interventions such as this program for children with low birth
weights. Let us make the (unreasonable) assumption for the moment that this is the
only confounding covariate (that is, the only predictor associated with both par-
ticipation in this program and test scores). How would we want to estimate causal
effects? In this case a simple solution would be to estimate the difference in mean
test scores within each subclass defined by mother’s education. These averages as
well as the associated standard error and sample size in each subclass are displayed
in Figure 10.6. These point to positive effects for all participants, though not all
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Treatment effect Sample size
Mother’s education estimate ± s.e. treated controls

Not a high school grad 9.3 ± 1.3 126 1358
High school graduate 4.0 ± 1.8 82 1820
Some college 7.9 ± 2.3 48 837
College graduate 4.6 ± 2.1 34 366

Figure 10.6 Estimates ± standard errors of the effect on children’s test scores of a child
care intervention, for each of four subclasses formed by mother’s educational attainment.
The study was of premature infants with low birth weight, most of whom were born to
mothers with low levels of education.

effects are statistically significant, with by far the largest effects for the children
whose mothers had not graduated from high school.

Recall that there is overlap on this variable across the treatment and control
groups as is evidenced by the sample sizes for treated and control observations
within each subclass in Figure 10.6. If there were a subclass with observations only
from one group, we would not be able to make inferences for this type of person.
Also, if there were a subclass with only a small number of observations in either
the treatment group or the control group, we would probably be wary of making
inferences for these children as well.

To get an estimate of the overall effect for those who participated in the program,
the subclass-specific estimates could be combined using a weighted average where
the weights are defined by the number of children in each subclass who participated
in the program:

Est. effect on the treated =
9.3 · 126 + 4.0 · 82 + 7.9 · 48 + 4.6 · 34

126 + 82 + 48 + 34
= 7.0, (10.2)

with a standard error of
√

1.32·1262+1.82·822+2.32·5.32+2.12·342

(126+82+48+34)2 = 0.9.

This analysis is similar to a regression with interactions between the treatment
and mother’s educational attainment. To calculate the average treatment effect for
program participants, we would have to poststratify—that is, estimate the treat-
ment effect separately for each category of mother’s education, and then average
these effects based on the distribution of mother’s education in the population.

This strategy has the advantage of imposing overlap and, moreover, forcing the
control sample to have roughly the same covariate distribution as the treated sam-
ple. This reduces reliance on the type of model extrapolations discussed previously.
Moreover, one can choose to avoid modeling altogether after subclassifying, and
simply can take a difference in averages across treatment and control groups to
perform inferences, therefore completely avoiding making assumptions about the
parametric relation between the response and the confounding covariates.

One drawback of subclassifying, however, is that when controlling for a continu-
ous variable, some information may be lost when discretizing the variable. A more
substantial drawback is that it is difficult to control for many variables at once.

Average treatment effects: whom do we average over?

Figure 10.6 demonstrated how treatment effects can vary over different subpopula-
tions. Why did we weight these subclass-specific estimates by the number of treated
children in each subclass rather than the total number of children in each subclass?
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For this application, we are interested in the effect of the intervention for the sort of
children who would have participated in it. Weighting using the number of treatment
children in each subclass forces the estimate implicitly to be representative of the
treatment children we observe. The effect we are trying to estimate is sometimes
called the effect of the treatment on the treated.

If we had weighted instead by the number of control children in each subclass,
we could estimate the effect of the treatment on the controls. However, this partic-
ular intervention was designed for the special needs of low-birth-weight, premature
children—not for typical children—and there is little interest in its effect on com-
parison children who would not have participated.

The effect of the intervention might vary, for instance, for children with different
initial birth weights, and since we know that the mix of children’s birth weights
differs in treatment and comparison groups, the average effects across these groups
could also differ. Moreover, we saw in Figure 10.4 that there are so many control
observations with no counterfactual observations in the treatment group with regard
to birth weight that these data are likely inappropriate for drawing inferences about
the control group either directly (the effect of the treatment on the controls) or as
part of an average effect across the entire sample.

Again, this is related to poststratification. We can think of the estimate of the
effect of the treatment on the treated as a poststratified version of the estimate of
the average causal effect. As the methods we discuss in this section rely on more
and more covariates, however, it can be more attractive to apply methods that more
directly estimate the effect of the treatment on the treated, as we discuss next.

10.3 Matching: subsetting the data to get overlapping and balanced

treatment and control groups

Matching refers to a variety of procedures that restrict and reorganize the original
sample in preparation for a statistical analysis. In the simplest form of matching,
one-to-one matching, the data points are divided into pairs—each containing one
treated and one control unit—with the two units matched into a pair being as
similar as possible on relevant pre-treatment variables. The number of units in the
two groups will not in general be equal—typically there are more controls than
treated units, as in Figure 10.5, for example—and so there will be some leftover
units unmatched. In settings with poor overlap, there can be unmatched units from
both groups, so that the matched pairs represent the region of data space where
the treatment and control groups overlap.

Once the matched units have been selected out of the larger dataset, they can be
analyzed by estimating a simple difference in average outcomes across treatment
groups or by using regression methods to estimate the effect of the treatment in
the area of overlap.

Matching and subclassification

Matching on one variable is similar to subclassification except that it handles con-
tinuous variables more precisely. For instance, a treatment observation might be
matched to control observations that had the closest age to their own as opposed
to being grouped into subclasses based on broader age categories. Thus, matching
has the same advantages of stratification in terms of creating balance and forcing
overlap, and may even be able to create slightly better balance. However, many
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matching methods discard observations even when they are within the range of
overlap, which is likely inefficient.

Matching has some advantages over subclassification when controlling for many
variables at once. Exact matching is difficult with many confounders, but “nearest-
neighbor” matching is often still possible. This strategy matches treatment units
to control units that are “similar” in terms of their confounders where the metric
for similarity can be defined in any variety of ways, one of the most popular be-
ing the Mahalanobis distance, which is defined in matrix notation as d(x(1), x(2)) =
(x(1)−x(2))tΣ−1(x(1)−x(2)), where x(1) and x(2) represent the vectors of predictors
for points 1 and 2, and Σ is the covariance of the predictors in the dataset. Recently,
other algorithms have been introduced to accomplish this same task—finding sim-
ilar treatment and control observations—that rely on algorithms originally created
for genetic or data mining applications. Another matching approach, which we de-
scribe next, compares the input variables for treatment and control cases in order
to find an effective scale on which to match.

Propensity score matching

One way to simplify the issue of matching or subclassifying on many confounding
covariates at once is to create a one-number summary of all the covariates and
then use this to match or subclassify. We illustrate using a popular summary, the
propensity score, with our example of the intervention for children with low birth
weights. It seems implausible that mother’s education, for example, is the only
predictor we need to satisfy the ignorability assumption in our example. We would
like to control for as many predictors as possible to allow for the possibility that
any of them is a confounding covariate. We also want to maintain the beneficial
properties of matching. How can we match on many predictors at once?

Propensity score matching provides a solution to this problem. The propensity
score for the ith individual is defined as the probability that he or she receives
the treatment given everything we observe before the treatment (that is, all the
confounding covariates for which we want to control). Propensity scores can be
estimated using standard models such as logistic regression, where the outcome
is the treatment indicator and the predictors are all the confounding covariates.
Then matches are found by choosing for each treatment observation the control
observation with the closest propensity score.

In our example we randomly ordered the treatment observations, and then each
time a control observation was chosen as a match for a given treatment observation
it could not be used again. More generally, methods have been developed for match-
ing multiple control units to a single treated unit, and vice versa; these ideas can be
effective, especially when there is overlap but poor balance (so that, for example,
some regions of predictor space contain many controls and few treated units, or the
reverse). From this perspective, matching can be thought of as a way of discarding
observations so that the remaining data show good balance and overlap.

The goal of propensity score matching is not to ensure that each pair of matched
observations is similar in terms of all their covariate values, but rather that the
matched groups are similar on average across all their covariate values. Thus, the
adequacy of the model used to estimate the propensity score can be evaluated by
examining the balance that results on average across the matched groups.
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Computation of propensity score matches

The first step in creating matches is to fit a model to predict who got the interven-
tion based on the set of predictors we think are necessary to achieve ignorability
(confounding covariates). A natural starting point would be a logistic regression,
something like

R code ps.fit.1 <- glm (treat ~ as.factor(educ) + as.factor(ethnic) + b.marr +

work.dur + prenatal + mom.age + sex + first + preterm + age +

dayskidh + bw + unemp.rt, data=cc2, family=binomial(link="logit"))

In our example, we evaluated several different model fits before settling on one that
provided balance that seemed adequate. In each case we evaluated the adequacy of
the model by evaluating the balance that resulted from matching on the estimated
propensity scores from that model. Model variations tried excluding variables and
including interactions and quadratic terms. We finally settled on

R code ps.fit.2 <- glm (treat ~ bwg + as.factor(educ) + bwg:as.factor(educ) +

as.factor(ethnic) + b.marr + as.factor(ethnic):b.marr +

work.dur + prenatal + preterm + age + mom.age + sex + first,

data=cc2, family=binomial(link="logit"))

We then create predicted values:1

R code pscores <- predict (ps.fit.2, type="link")

The regression model is messy, but we are not concerned with all its coefficients;
we are only using it as a tool to construct a balanced comparison between treatment
and control groups. We used the estimated propensity scores to create matches,
using a little R function called matching that finds for each treatment unit in turn
the control unit (not previously chosen) with the closest propensity score:2

R code matches <- matching (z=cc2$treat, score=pscores)

matched <- cc2[matches$matched,]

Then the full dataset was reduced to only the treated observations and only those
control observations that were chosen as matches.

The differences between treated and control averages, for the matched subset, are
displayed by the solid dots in Figure 10.3. The imbalance has decreased noticeably
compared to the unmatched sample. Certain variables (birth weight and the number
of days the children were in the hospital after being born) still show imbalance, but
none of our models succeeded in balancing those variables. We hope the other
variables are more important in predicting future test scores (which appears to be
reasonable from the previous literature on this topic).

The process of fitting, assessing, and selecting a model for the propensity scores
has completely ignored the outcome variable. We have judged the model solely
by the balance that results from subsequent matches on the associated propensity
scores. This helps the researcher to be “honest” when fitting the propensity score
model because a treatment effect estimate is not automatically produced each time
a new model is fit.

1 We use the type="link" option to get predictions on the scale of the linear predictor, that is,

X̃β. If we wanted predictions on the probability scale, we would set type="response". In this
example, similar results would arise from using either approach.

2 Here we have performed the matching mostly “manually” in the sense of setting up a regression
on the treatment variable and then using the predicted probabilities to select a subset of
matched units for the analysis. Various more automatic methods for propensity score estimation,
matching, and balancing have be implemented in R and other software packages; see the end
of this chapter for references.



MATCHING 209

before matching

灲潰敮獩瑹⁳捯牥

䑥
湳
楴
礀

−㄰ −㔰 㔀

〰
⸀

㄀
　

⸀
㈀

after matching

灲潰敮獩瑹⁳捯牥

䑥
湳
楴
礀

−㄰ −㔰 㔀

　
　⸱

〮
㈀
　⸳

Figure 10.7 (a) Distribution of logit propensity scores for treated (dark lines) and control
groups (gray lines) before matching. (b) Distributions of logit propensity scores for treated
(dark lines) and control groups (gray lines) after matching.

Having created and checked appropriateness of the matches by examining bal-
ance, we fit a regression model just on the matched data including all the predictors
considered so far, along with an indicator to estimate the treatment effect:

R codereg.ps <- lm (ppvtr.36 ~ treat + hispanic + black + b.marr + lths +

hs + ltcoll + work.dur + prenatal + mom.age + sex + first +

preterm + age + dayskidh + bw, data=matched)

Given the balance and overlap that the matching procedure has achieved, we are less
concerned than in the standard regression context about issues such as deviations
from linearity and model extrapolation. Our estimated treatment effect from the
matched dataset is 10.2 (with a standard error of 1.6), which can be compared to
the standard regression estimate of 11.7 (with standard error of 1.3) based on the
full dataset.

If we fully believed in the linear model and were confident that it could be
extrapolated to the areas of poor overlap, we would use the regression based on
all the data. Realistically, however, we prefer to construct comparable groups and
restrict our attention to the range of overlap.

Insufficient overlap? What happens if there are observations about which we want
to make inferences but there are no observations with similar propensity scores
in the other group? For instance, suppose we are interested in the effect of the
treatment on the treated but there are some treated observations with propensity
scores far from the propensity scores of all the control observations. One option
is to accept some lack of comparability (and corresponding level of imbalance in
covariates). Another option is to eliminate the problematic treated observations.
If the latter choice is made it is important to be clear about the change in the
population about whom inferences will now generalize. It is also helpful to try
“profile” the observations that are omitted from the analysis.

Matched pairs? Although matching often results in pairs of treated and control
units, we typically ignore the pairing in the analysis of the matched data. Propensity
score matching works well (in appropriate settings) to create matched groups, but
it does not necessarily created closely matched pairs. It is not generally appropriate
to add the complication of including the pairing in the model, because the pairing in
the matching is performed in the analysis, not the data collection. However, pairing
in this way does affect variance calculations, as we shall discuss.

The propensity score as a one-number summary used to assess balance and overlap

A quick way of assessing whether matching has achieved increased balance and
overlap is to plot histograms of propensity scores across treated and control groups.
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Figure 10.7 displays these histograms for unmatched and matched samples. (We
plot the propensity scores on the logit scale to better display their variation at the
extremes, which correspond to probabilities near 0 and 1.) The decreased imbalance
and increased overlap illustrated in the histograms for the matched groups do not
ensure that all predictors included in the model will be similarly matched, but they
provide some indication that these distribution will have closer balance in general
than before matching.

Geographic information

We have excluded some important information from these analyses. We have access
to indicators reflecting the state in which each child resides. Given the tremendous
variation in test scores and child care quality3 across states, it seems prudent to
control for this variable as well. If we redo the propensity score matching by includ-
ing state indicators in both the propensity score model and final regression model,
we get an estimate of 8.8 (with standard error of 2.1), which is even lower than our
original estimate of 10.2. Extending the regression analysis on the full dataset to
include state indicators changes the estimate only from 11.7 to 11.6.

We include results from this analyses using classical regression to adjust for states
because it would be a standard approach given these data. A better approach would
be to include states in a multilevel model, as we discuss in Chapter 23.

Experimental benchmark by which to evaluate our estimates

It turns out that the researchers evaluating this intervention did not need to rely on
a comparison group strategy to assess its impact on test scores. The intervention
was evaluated using a randomized experiment. In the preceding example, we simply
replaced the true experimental control group with a comparison group pulled from
the National Longitudinal Survey of Youth. The advantage of this setup as an
illustration of propensity score matching is that we can compare the estimates
obtained from the observational study that we have “constructed” to the estimates
found using the original randomized experiment. For this sample, the experimental
estimate is 7.4. Thus, both propensity score estimates are much closer to the best
estimate of the true effect than the standard regression estimates.

Subclassification on mother’s education alone yields an estimated treatment effect
of 7.0, which happens to be close to the experimental benchmark. However, this
does not imply that subclassifying on one variable is generally the best strategy
overall. In this example, failure to control for all confounding covariates leads to
many biases (some negative and some positive—the geographic variables complicate
this picture), and unadjusted differences in average outcomes yield estimates that
are lower than the experimental benchmark. Controlling for one variable appears to
work well for this example because the biases caused by the imbalances in the other
variables just happen to cancel. We would not expect this to happen in general.

Other matching methods, matching on all covariates, and subclassification

The method we have illustrated is called matching without replacement because any
given control observation cannot be used as a match for more than one treatment

3 Variation in quality of child care is important because it reflects one of the most important
alternatives that can be chosen by the parents in the control group.
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observation. This can work well in situations when there is a large enough con-
trol group to provide adequate overlap. It has the advantage of using each control
observation only once, which maximizes our sample size (assuming a constraint of
one match per treatment unit) and makes variance calculations a bit easier; see the
discussion of standard errors at the end of this section.

However, situations arise when there are not enough controls in the overlapping
region to fully provide one match per treated unit. In this case it can help to use
some control observations as matches for more than one treated unit. This approach
is often called matching with replacement, a term which commonly refers to with
one-to-one matching but could generalize to multiple control matches for each con-
trol. Such strategies can create better balance, which should yield estimates that
are closer to the truth on average. Once such data are incorporated into a regres-
sion, however, the multiple matches reduce to single data points, which suggests
that matching with replacement has limitations as a general strategy.

A limitation of one-to-one matching is that it may end up “throwing away” many
informative units if the control group is substantially bigger than the treatment
group. One way to make better use of the full sample is simply to subclassify based
on values of the propensity score—perhaps discarding some noncomparable units
in the tails of the propensity score distribution. Then separate analyses can be
performed within each subclass (for example, difference in outcome averages across
treatment groups or linear regressions of the outcome on an indicator variable for
treatment and other covariates). The estimated treatment effects from each of the
subclasses then can either be reported separately or combined in a weighted average
with different weights used for different estimands. For instance, when estimating
the effect of the treatment on the treated, the number of treated observations in each
subclass would be used as the weight, just as we did for the simple subclassification
of mother’s education in model (10.2) on page 205.

A special case of subclassification called full matching can be conceptualized
as a fine stratification of the units where each statum has either (1) one treated
unit and one control unit, (2) one treated unit and multiple control units, or (3)
multiple treated units and one control unit. “Optimal” versions of this matching
algorithm have the property of minimizing the average distance between treatment
and control units. Strategies with nonoverlapping strata such as subclassification
and full matching have the advantage of being more easily incorporated into larger
models. This enables strata to be modeled as groups in any number of ways.

Other uses for propensity scores

Some researchers use the propensity score in other ways. For instance, the inverse
of estimated propensity scores can be used to create a weight for each point in the
data, with the goal that weighted averages of the data should look, in effect, like
what would be obtained from a randomized experiment. For instance, to obtain
an estimate of an average treatment effect, one would use weights of 1/pi and
1/(1−pi) for treated and control observations i, respectively, where the pi’s are the
estimated propensity scores. To obtain an estimate of the effect of the treatment
on the treated, one would use weights of 1 for the treated and pi/(1 − pi) for the
controls. These weights can be used to calculate simple means or can be included
within a regression framework. In our example, this method yielded a treatment
effect estimate of 7.8 (when including state information), which is close to the
experimental benchmark.

These strategies have the advantage (in terms of precision) of retaining the full
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sample. However, the weights may have wide variability and may be sensitive to
model specification, which could lead to instability. Therefore, these strategies work
best when care is taken to create stable weights and to use robust or nonparametric
models to estimate the weights. Such methods are beyond the scope of this book.

More simply, propensity scores can be used in a regression of the outcome on
the treatment and the scores rather than the full set of covariates. However, if
observations that lie in areas where there is no overlap across treatment groups are
not removed, the same problems regarding model extrapolation will persist. Also,
this method once again places a great deal of faith in precise and correct estimation
of the propensity score.

Finally, generalizations of the binary treatment setup have been formalized to
accommodate multiple-category or continuous treatment variables.

Standard errors

The standard errors presented for the analyses fitted to matched samples are not
technically correct. First, matching induces correlation among the matched obser-
vations. The regression model, however, if correctly specified, should account for
this by including the variables used to match. Second, our uncertainty about the
true propensity score is not reflected in our calculations. This issue has no per-
fect solution to date and is currently under investigation by researchers in this
field. Moreover, more complicated matching methods (for example, matching with
replacement and many-to-one matching methods) generally require more sophisti-
cated approaches to variance estimation. Ultimately, one good solution may be a
multilevel model that includes treatment interactions so that inferences explicitly
recognize the decreased precision that can be obtained outside the region of overlap.

10.4 Lack of overlap when the assignment mechanism is known:

regression discontinuity

Simple regression works to estimate treatment effects under the assumption of ignor-
able treatment assignment if the model is correct, or if the confounding covariates
are well balanced with respect to the treatment variable, so that regression serves
as a fine-tuning compared to a simple difference of averages. But if the treated and
control groups are very different from each other, it can be more appropriate to
identify the subset of the population with overlapping values of the predictor vari-
ables for both treatment and control conditions, and to estimate the causal effect
(and the regression model) in this region only. Propensity score matching is one
approach to lack of overlap.

If the treatment and control groups do not overlap at all in key confounding
covariates, it can be prudent to abandon causal inferences altogether. However,
sometimes a clean lack of overlap arises from a covariate that itself was used to
assign units to treatment conditions. Regression discontinuity analysis is an ap-
proach for dealing with this extreme case of lack of overlap in which the assignment
mechanism is clearly defined.

Regression discontinuity and ignorability

A particularly clear case of imbalance sometimes arises in which there is some pre-
treatment variable x, with a cutoff value C so that one of the treatments applies
for all units i for which xi < C, and the other treatment applies for all units for
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Figure 10.8 Example of a regression discontinuity analysis: political ideology of members
of the 1993–1994 House of Representatives versus Republican share of the two-party vote
in the district’s congressional election in 1992. Democrats and Republicans are indicated
by crosses and circles, respectively. For the purpose of estimating the effect of electing a
Democrat or Republican, there is no overlap between the “treatment” (the congressmem-
ber’s party) and the pre-treatment control variable on the x-axis.

which xi > C. This could occur, for example, in a medical experiment in which a
risky new treatment is only given to patients who are judged to be in particularly
bad condition. But the usual setting is in observational studies, where a particular
event or “treatment” only occurs under certain specified conditions. For example,
in a two-candidate election, a candidate wins if and only if he or she receives more
than half the vote.

In a setting where one treatment occurs only for x < C and the other only for
x > C, it is still possible to estimate the treatment effect for units with x in the
neighborhood of C, if we assume that the regression function—the average value of
the outcome y, given x and the treatment—is a continuous function of x near the
cutoff value C.

In this scenario, the mechanism that assigns observations to treatment or control
is known, and so we need not struggle to set up a model in which the ignorabil-
ity assumption is reasonable. All we need to do is control for the input(s) used to
determine treatment assignment—these are our confounding covariates. The disad-
vantage is that, by design, there is no overlap on this covariate across treatment
groups. Therefore, to “control for” this variable we must make stronger modeling
assumptions because we will be forced to extrapolate our model out of the range of
our data. To mitigate such extrapolations, one can limit analyses to observations
that fall just above and below the threshold for assignment.

Example: political ideology of congressmembers

Figure 10.8 shows an example, where the goal is to estimate one aspect of the effect
of electing a Republican, as compared to a Democrat, in the U.S. House of Rep-
resentatives. The graph displays political ideologies (as computed using a separate
statistical analysis of congressional roll-call votes) for Republican and Democratic
congressmembers, plotted versus the vote received by the Republican candidate in
the previous election. There is no overlap because the winner in each district nec-
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essarily received at least 50% of the vote. (For simplicity, we are only considering
districts where an incumbent was running for reelection, so that different districts
with the same congressional vote share can be considered as comparable.)

Regression discontinuity analysis. If we wish to consider the effect of the winning
party on the political ideology of the district’s congressmember, then a simple re-
gression discontinuity analysis would consider a narrow range—for example, among
all the districts where x lies between 0.45 and 0.55, and then fit a model of the form

yi = β0 + θTi + β1xi + errori

where Ti is the “treatment,” which we can set to 1 for Republicans and 0 for
Democrats.

Here is the result of the regression:

R output lm(formula = score1 ~ party + x, subset=overlap)

coef.est coef.se

(Intercept) -1.21 0.62

party 0.73 0.07

x 1.65 1.31

n = 68, k = 3

residual sd = 0.15, R-Squared = 0.88

The effect of electing a Republican (compared to a Democrat) is 0.73 (on a scale
in which the most extreme congressmembers are at ±1; see Figure 10.8) after con-
trolling for the party strength in the district. The coefficient of x is estimated to
be positive—congressmembers in districts with higher Republican votes tend to be
more conservative, after controlling for party—but this coefficient is not statisti-
cally significant. The large uncertainty in the coefficient for x is no surprise, given
that we have restricted our analysis to the subset of data for which x lies in the
narrow range from 0.45 to 0.55.

Regression fit to all the data. Alternatively, we could fit the model to the whole
dataset:

R output lm(formula = score1 ~ party + x)

coef.est coef.se

(Intercept) -0.68 0.05

party 0.69 0.04

x 0.64 0.13

n = 357, k = 3

residual sd = 0.21, R-Squared = 0.8

The coefficient on x is estimated much more precisely, which makes sense given
that we have more leverage on x (see Figure 10.8).

Regression with interactions. However, a closer look at the figure suggests different
slopes for the two parties, and so we can fit a model interacting x with party:

R output lm(formula = score1 ~ party + x + party:x)

coef.est coef.se

(Intercept) -0.76 0.06

party 1.13 0.16

x 0.87 0.15

party:x -0.81 0.29

n = 357, k = 4

residual sd = 0.21, R-Squared = 0.81

Everything is statistically significant, but it is difficult to interpret these coefficients.
We shall reparameterize and define
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R codez <- x - 0.5

so that when z = 0, we are at the point of discontinuity. We then reparameterize the
interaction slope as separate slopes for the Democrats (party==0) and Republicans
(party==1):

R outputlm(formula = score1 ~ party + I(z*(party==0)) + I(z*(party==1)))

coef.est coef.se

(Intercept) -0.33 0.03

party 0.73 0.04

I(z * (party == 0)) 0.87 0.15

I(z * (party == 1)) 0.06 0.24

n = 357, k = 4

residual sd = 0.21, R-Squared = 0.81

We see a strong positive slope of z among Democrats but not Republicans, and an
estimate of 0.73 for the effect of party at the discontinuity point.

Comparison of regression discontinuity analysis to the model with interactions us-
ing all the data. In this example, the analysis fit to the entire dataset gives similar
results (but with a much lower standard error) as the regression discontinuity anal-
ysis that focused on the region of near overlap. In general, however, the model fit
just to the area of overlap may be considered more trustworthy.

Partial overlap

What happens when the discontinuity is not so starkly defined? This is sometimes
called a “fuzzy” discontinuity, as opposed to the “sharp” discontinuity discussed
thus far. Consider, for instance, a situation where the decision whether to promote
children to the next grade is made based upon results from a standardized test
(or set of standardized tests). Theoretically this should create a situation with no
overlap in these test scores across those children forced to repeat their grade and
those promoted to the next grade (the treatment and control groups). In reality,
however, there is some “slippage” in the assignment mechanism. Some children may
be granted waivers from the official policy based on any of several reasons, including
parental pressure on school administrators, a teacher who advocates for the child,
and designation of the child as learning-disabled.

This situation creates partial overlap between the treatment and control groups
in terms of the supposed sole confounding covariate, promotion test scores. Unfor-
tunately, this overlap arises from deviations from the stated assignment mechanism.
If the reasons for these deviations are well defined (and measurable), then ignora-
bility can be maintained by controlling for the appropriate child, parent, or school
characteristics. Similarly, if the reasons for these deviations are independent of the
potential outcomes of interest, there is no need for concern. If not, inferences could
be compromised by failure to control for important omitted confounders.

10.5 Estimating causal effects indirectly using instrumental variables

There are situations when the ignorability assumption seems inadequate because
the dataset does not appear to capture all inputs that predict both the treatment
and the outcomes. In this case, controlling for observed confounding covariates
through regression, subclassification, or matching will not be sufficient for calculat-
ing valid causal estimates because unobserved variables could be driving differences
in outcomes across groups.
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When ignorability is in doubt, the method of instrumental variables (IV) can
sometimes help. This method requires a special variable, the instrument, which is
predictive of the treatment and brings with it a new set of assumptions.

Example: a randomized-encouragement design

Suppose we want to estimate the effect of watching an educational television pro-
gram (this time the program is Sesame Street) on letter recognition. We might con-
sider implementing a randomized experiment where the participants are preschool
children, the treatment of interest is watching Sesame Street, the control condition
is not watching,4 and the outcome is the score on a test of letter recognition. It is
not possible here for the experimenter to force children to watch a TV show or to
refrain from watching (the experiment took place while Sesame Street was on the
air). Thus watching cannot be randomized. Instead, when this study was actually
performed, what was randomized was encouragement to watch the show—this is
called a randomized encouragement design.

A simple comparison of randomized groups in this study will yield an estimate of
the effect of encouraging these children to watch the show, not an estimate of the
effect of actually viewing the show. In this setting the simple randomized compari-
son is an estimate of a quantity called the intent-to-treat (ITT) effect. However, we
may be able to take advantage of the randomization to estimate a causal effect for
at least some of the people in the study by using the randomized encouragement as
an “instrument.” An instrument is a variable thought to randomly induce variation
in the treatment variable of interest.

Assumptions for instrumental variables estimation

Instrumental variables analyses rely on several key assumptions, one combination
of which we will discuss in this section in the context of a simple example with
binary treatment and instrument:

• Ignorability of the instrument,

• Nonzero association between instrument and treatment variable,

• Monotonicity,

• Exclusion restriction.

In addition, the model assumes no interference between units (the stable unit treat-
ment value assumption) as with most other causal analyses, an issue we have already
discussed at the end of Section 9.3.

Ignorability of the instrument

The first assumption in the list above is ignorability of the instrument with respect
to the potential outcomes (both for the primary outcome of interest and the treat-
ment variable). This is trivially satisfied in a randomized experiment (assuming the
randomization was pristine). In the absence of a randomized experiment (or nat-
ural experiment) this property may be more difficult to satisfy and often requires
conditioning on other predictors.

4 Actually the researchers in this study recorded four viewing categories: (1) rarely watched, (2)
watched once or twice a week, (3) watched 3-5 times a week, and (4) watched more than 5
times a week on average. Since there is no a category for “never watched,” for the purposes of
this illustration we treat the lowest viewing category (“rarely watched”) as if it were equivalent
to “never watched.”



INSTRUMENTAL VARIABLES 217

Nonzero association between instrument and treatment variable

To demonstrate how we can use the instrument to obtain a causal estimate of the
treatment effect in our example, first consider that about 90% of those encour-
aged watched the show regularly; by comparison, only 55% of those not encouraged
watched the show regularly. Therefore, if we are interested in the effect of actually
viewing the show, we should focus on the 35% of the treatment population who
decided to watch the show because they were encouraged but who otherwise would
not have watched the show. If the instrument (encouragement) did not affect regu-
lar watching, then we could not proceed. Although a nonzero association between
the instrument and the treatment is an assumption of the model, fortunately this
assumption is empirically verifiable.

Monotonicity and the exclusion restrictions

Those children whose viewing patterns could be altered by encouragement are the
only participants in the study for whom we can conceptualize counterfactuals with
regard to viewing behavior—under different experimental conditions they might
have been observed either viewing or not viewing, so a comparison of these potential
outcomes (defined in relation to randomized encouragement) makes sense. We shall
label these children “induced watchers”; these are the only children for whom we
will make inferences about the effect of watching Sesame Street.

For the children who were encouraged to watch but did not, we might plausibly
assume that they also would not have watched if not encouraged—we shall label this
type of child a “never-watcher.” We cannot directly estimate the effect of viewing
for these children since in this context they would never be observed watching
the show. Similarly, for the children who watched Sesame Street even though not
encouraged, we might plausibly assume that if they had been encouraged they
would have watched as well, again precluding an estimate of the effect of viewing
for these children. We shall label these children “always-watchers.”

Monotonicity. In defining never-watchers and always-watchers, we assumed that
there were no children who would watch if they were not encouraged but who
would not watch if they were encouraged. Formally this is called the monotonicity
assumption, and it need not hold in practice, though there are many situations in
which it is defensible.

Exclusion restriction. To estimate the effect of viewing for those children whose
viewing behavior would have been affected by the encouragement (the induced
watchers), we must make another important assumption, called the exclusion re-
striction. This assumption says for those children whose behavior would not have
been changed by the encouragement (never-watchers and always-watchers) there is
no effect of encouragement on outcomes. So for the never-watchers (children who
would not have watched either way), for instance, we assume encouragement to
watch did not affect their outcomes. And for the always-watchers (children who
would have watched either way), we assume encouragement to watch did not affect
their outcomes.5

It is not difficult to tell a story that violates the exclusion restriction. Consider,
for instance, the conscientious parents who do not let their children watch television

5 Technically, the assumptions regarding always-watchers and never-watchers represent distinct
exclusion restrictions. In this simple framework, however, the analysis suffers if either assump-
tion is violated. Using more complicated estimation strategies, it can be helpful to consider
these assumptions separately as it may be possible to weaken one or the other or both.
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Potential
Potential Encouragement test Encouragement

Unit viewing outcomes indicator outcomes effect
i T 0

i T 1
i zi y0

i y1
i y1

i − y0
i

1 0 1 (induced watcher) 0 67 76 9
2 0 1 (induced watcher) 0 72 80 8
3 0 1 (induced watcher) 0 74 81 7
4 0 1 (induced watcher) 0 68 78 10
5 0 0 (never-watcher) 0 68 68 0
6 0 0 (never-watcher) 0 70 70 0
7 1 1 (always-watcher) 0 76 76 0
8 1 1 (always-watcher) 0 74 74 0
9 1 1 (always-watcher) 0 80 80 0
10 1 1 (always-watcher) 0 82 82 0
11 0 1 (induced watcher) 1 67 76 9
12 0 1 (induced watcher) 1 72 80 8
13 0 1 (induced watcher) 1 74 81 7
14 0 1 (induced watcher) 1 68 78 10
15 0 0 (never-watcher) 1 68 68 0
16 0 0 (never-watcher) 1 70 70 0
17 1 1 (always-watcher) 1 76 76 0
18 1 1 (always-watcher) 1 74 74 0
19 1 1 (always-watcher) 1 80 80 0
20 1 1 (always-watcher) 1 82 82 0

Figure 10.9 Hypothetical complete data in a randomized encouragement design. Units have
been ordered for convenience. For each unit, the students are encouraged to watch Sesame
Street (zi = 1) or not (zi = 0). This reveals which of the potential viewing outcomes
(T 0

i , T 1
i ) and which of the potential test outcomes (y0

i , y1
i ) we get to observe. The observed

outcomes are displayed in boldface. Here, potential outcomes are what we would observe
under either encouragement option. The exclusion restriction forces the potential outcomes
to be the same for those whose viewing would not be affected by the encouragement. The
effect of watching for the “induced watchers” is equivalent to the intent-to-treat effect
(encouragement effect over the whole sample) divided by the proportion induced to view;
thus, 3.4/0.4 = 8.5.

and are concerned with providing their children with a good start educationally.
The materials used to encourage them to have their children watch Sesame Street
for its educational benefits might instead have motivated them to purchase other
types of educational materials for their children or to read to them more often.

Derivation of instrumental variables estimation with complete data (including
unobserved potential outcomes)

To illustrate the instrumental variables approach, however, let us proceed as if the
exclusion restriction were true (or at least approximately true). In this case, if we
think about individual-level causal effects, the answer becomes relatively straight-
forward.

Figure 10.9 illustrates with hypothetical data based on the concepts in this real-
life example by displaying for each study participant not only the observed data
(encouragement and viewing status as well as observed outcome test score) but
also the unobserved categorization, ci, into always-watcher, never-watcher, or in-
duced watcher based on potential watching behavior as well as the counterfactual
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test outcomes (the potential outcome corresponding to the treatment not received).
Here, potential outcomes are the outcomes we would have observed under either
encouragement option. Because of the exclusion restriction, for the always-watchers
and the never-watchers the potential outcomes are the same no matter the encour-
agement (really they need not be exactly the same, just distributionally the same,
but this simplifies the exposition).

The true intent-to-treat effect for these 20 observations is then an average of
the effects for the 8 induced watchers, along with 12 zeroes corresponding to the
encouragement effects for the always-watchers and never-watchers:

ITT =
9 + 8 + 7 + 10 + 9 + 8 + 7 + 10 + 0 + · · · + 0

20

= 8.5 · 8

20
+ 0 · 12

20
= 8.5 · 0.4. (10.3)

The effect of watching Sesame Street for the induced watchers is 8.5 points on the
letter recognition test. This is algebraically equivalent to the intent-to-treat effect
(3.4) divided by the proportion of induced watchers (8/20 = 0.40).

Instrumental variables estimate

We can calculate an estimate of the effect of watching Sesame Street for the induced
watchers with the actual data using the same principles.

We first estimate the percentage of children actually induced to watch Sesame
Street by the intervention, which is the coefficient of the treatment (encouraged),
in the following regression:

R codefit.1a <- lm (watched ~ encouraged)

The estimated coefficient of encouraged here is 0.36 (which, in this regression with
a single binary predictor, is simply the proportion of induced watchers in the data).

We then compute the intent-to-treat estimate, obtained in this case using the
regression of outcome on treatment:

R codefit.1b <- lm (y ~ encouraged)

The estimated coefficient of encouraged in this regression is 2.9, which we then
“inflate” by dividing by the percentage of children affected by the intervention:

R codeiv.est <- coef(fit.1a)[,"encouraged"]/coef(fit.1b)[,"encouraged"]

The estimated effect of regularly viewing Sesame Street is thus 2.9/0.36 = 7.9 points
on the letter recognition test. This ratio is sometimes called the Wald estimate.

Local average treatment effects

The instrumental variables strategy here does not estimate an overall causal effect
of watching Sesame Street across everyone in the study. The exclusion restriction
implies that there is no effect of the instrument (encouragement) on the outcomes
for always-watchers and for never-watchers. Given that the children in these groups
cannot be induced to change their watching behavior by the instrument, we cannot
estimate the causal effect of watching Sesame Street for these children. Therefore
the causal estimates apply only to the “induced watchers.”
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We are estimating (a special case of) what has been called a local average treat-
ment effect (LATE). Some researchers argue that intent-to-treat effects are more
interesting from a policy perspective because they accurately reflect that not all
targeted individuals will participate in the intended program. However, the intent-
to-treat effect only parallels a true policy effect if in the subsequent policy imple-
mentation the compliance rate remains unchanged. We recommend estimating both
the intent-to-treat effect and the local average treatment effect to maximize what
we can learn about the intervention.

10.6 Instrumental variables in a regression framework

Instrumental variables models and estimators can also be derived using regression,
allowing us to more easily extend the basic concepts discussed in the previous
section. A general instrumental variables model with continuous instrument, z, and
treatment, d, can be written as

y = β0 + β1T + εi

T = γ0 + γ1z + νi (10.4)

The assumptions can now be expressed in a slightly different way. The first as-
sumption is that zi is uncorrelated with both εi and νi, which translates informally
into the ignorability assumption and exclusion restriction (here often expressed
informally as “the instrument only affects the outcome through its effect on the
treatment”). Also the correlation between zi and ti must be nonzero (parallel to
the monotonicity assumption from the previous section). We next address how this
framework identifies the causal effect of T on y.

Identifiability with instrumental variables

Generally speaking, identifiability refers to whether the data contain sufficient in-
formation for unique estimation of a given parameter or set of parameters in a par-
ticular model. For example, in our formulation of the instrumental variables model,
the causal parameter is not identified without assuming the exclusion restriction
(although more generally the exclusion restriction is not the only assumption that
could be used to achieve identifiability).

What if we did not impose the exclusion restriction for our basic model? The
model (ignoring covariate information, and switching to mathematical notation for
simplicity and generalizability) can be written as

y = β0 + β1T + β2z + error

T = γ0 + γ1z + error, (10.5)

where y is the response variable, z is the instrument, and T is the treatment of
interest. Our goal is to estimate β1, the treatment effect. The difficulty is that T
has not been randomly assigned; it is observational and, in general, can be correlated
with the error in the first equation; thus we cannot simply estimate β1 by fitting a
regression of y on T and z.

However, as described in the previous section, we can estimate β1 using instru-
mental variables. We derive the estimate here algebraically, in order to highlight
the assumptions needed for identifiability.
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Substituting the equation for T into the equation for y yields

y = β0 + β1T + β2z + error

= β0 + β1(γ0 + γ1z) + β2z + error

= (β0 + β1γ0) + (β1γ1 + β2)z + error. (10.6)

We now show how to estimate β1, the causal effect of interest, using the slope of
this regression, along with the regressions (10.5) and the exclusion restriction.

The first step is to express (10.6) in the form

y = δ0 + δ1z + error.

From this equation we need δ1, which can be estimated from a simple regression of
y on z. We can now solve for β1 in the following equation:

δ1 = β1γ1 + β2,

which we can rearrange to get

β1 = (δ1 − β2)/γ2. (10.7)

We can directly estimate the denominator of this expression, γ2, from the regression
of T on z in (10.5)—this is not a problem since we are assuming that the instrument,
z, is randomized.

The only challenge that remains in estimating β1 from (10.7) is to estimate β2,
which in general cannot simply be estimated from the top equation of (10.5) since,
as already noted, the error in that equation can be correlated with T . However,
under the exclusion restriction, we know that β2 is zero, and so β1 = δ1/γ1, leaving
us with the standard instrumental variables estimate.

Other models. There are other ways to achieve identifiability in this two-equation
setting. Approaches such as selection correction models rely on functional form
specifications to identify the causal effects even in the absence of an instrument.
For example, a probit specification could be used for the regression of T on z. The
resulting estimates of treatment effects are often unstable if a true instrument is
not included as well.

Two-stage least squares

The Wald estimate discussed in the previous section can be used with this formu-
lation of the model as well. We now describe a more general estimation strategy,
two-stage least squares.

To illustrate we return to our Sesame Street example. The first step is to regress
the “treatment” variable—an indicator for regular watching (watched)—on the
randomized instrument, encouragement to watch (encouraged). Then we plug pre-
dicted values of encouraged into the equation predicting the letter recognition
outcome, y:

R codefit.2a <- lm (watched ~ encouraged)

watched.hat <- fit.2a$fitted

fit.2b <- lm (y ~ watched.hat)

The result is

R outputcoef.est coef.se

(Intercept) 20.6 3.9

watched.hat 7.9 4.9

n = 240, k = 2

residual sd = 13.3, R-Squared = 0.01
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where now the coefficient on watched.hat is the estimate of the causal effect of
watching Sesame Street on letter recognition for those induced to watch by the
experiment. This two-stage estimation strategy is especially useful for more com-
plicated versions of the model, for instance, when multiple instruments are included.

This second-stage regression does not give the correct standard error, however,
as we discuss at the bottom of this page.

Adjusting for covariates in an instrumental variables framework

It turns out that the randomization for this experiment took place within sites
and settings; it is therefore appropriate to control for these covariates in estimat-
ing the treatment effect. Additionally, pre-test scores are available that are highly
predictive of post-test scores. Our preferred model would control for all of these
predictors. We can calculate the same ratio (intent-to-treat effect divided by effect
of encouragement on viewing) as before using models that include these additional
predictors but pulling out only the coefficients on encouraged for the ratio.

Here we equivalently perform this analysis using two-stage least squares:

R code fit.3a <- lm (watched ~ encouraged + pretest + as.factor(site) + setting)

watched.hat <- fit.3a$fitted

fit.3b <- lm (y ~ watched.hat + pretest + as.factor(site) + setting)

display (fit.3b)

yielding

R output coef.est coef.se

(Intercept) 1.2 4.8

watched.hat 14.0 4.0

pretest 0.7 0.1

as.factor(site)2 8.4 1.8

as.factor(site)3 -3.9 1.8

as.factor(site)4 0.9 2.5

as.factor(site)5 2.8 2.9

setting 1.6 1.5

n = 240, k = 8

residual sd = 9.7, R-Squared = 0.49

The estimated effect of watching Sesame Street on the induced watchers is about 14
points on the letter recognition test. Again, we do not trust this standard error and
will discuss later how to appropriately adjust it for the two stages of estimation.

Since the randomization took place within each combination of site (five cat-
egories) and setting (two categories), it would be appropriate to interact these
variables in our equations. Moreover, it would probably be interesting to estimate
variation of effects across sites and settings. However, for simplicity of illustration
(and also due to the complication that one site × setting combination has no obser-
vations) we only include main effects for this discussion. We return to this example
using multilevel models in Chapter 23. It turns out that the estimated average treat-
ment effect changes only slightly (from 14.0 to 14.1) with the model that includes
site × setting interactions.

Standard errors for instrumental variables estimates

The second step of two-stage regression yields the instrumental variables estimate,
but the standard-error calculation is complicated because we cannot simply look at
the second regression in isolation. We show here how to adjust the standard error
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to account for the uncertainty in both stages of the model. We illustrate with the
model we have just fitted.

The regression of compliance on treatment and other covariates (model fit.3a)
is unchanged. We then regress the outcome on predicted compliance and covariance,
this time saving the predictor matrix, X , from this second-stage regression (which
we do using the x=TRUE option in the lm call):

R codefit.3b <- lm (y ~ watched.hat+pretest+as.factor(site)+setting, x=TRUE)

We next compute the standard deviation of the adjusted residuals, radj
i = yi−Xadj

i β̂,
where Xadj is the predictor matrix from fit.3b but with the column of predicted
treatment values replaced by observed treatment values:

R codeX.adj <- fit.2$x

X.adj[,"watched.hat"] <- watched

residual.sd.adj <- sd (y - X.adj %*% coef(fit.3b))

Finally, we compute the adjusted standard error for the two-stage regression esti-
mate by taking the standard error from fit.3b and scaling by the adjusted residual
standard deviation, divided by the residual standard deviation from fit.3b itself:

R codese.adj <-se.coef(fit.3b)["watched.hat"]*residual.sd.adj/sigma.hat(fit.3b)

So the adjusted standard errors are calculated as the square roots of the diag-
onal elements of (XtX)−1σ̂2

TSLS rather than (XtX)−1σ̂2, where σ̂ is the residual
standard deviation from fit.3b and σ̂TSLS is calculated using the residuals from
an equation predicting the outcome from watched (not watched.hat) using the
two-stage least squares estimate of the coefficient, not the coefficient that would
have been obtained in a least squares regression of the outcome on watched).

The resulting standard-error estimate for our example is 3.9, which is actually
a bit smaller than the unadjusted estimate (which is not unusual for these correc-
tions).

Performing two-stage least squares automatically using the tsls function

We have illustrated the key concepts in our instrumental variables discussion using
basic R commands with which you were already familiar so that the steps were
transparent. There does exist, however, a package available in R called sem that has
a function, tsls(), that automates this process, including calculating appropriate
standard errors.

To calculate the effect of regularly watching Sesame Street on post-treatment
letter recognition scores using encouragement as an instrument, we specify both
equations:

R codeiv1 <- tsls (postlet ~ regular, ~ encour, data=sesame)

display (iv1)

where in the second equation it is assumed that the “treatment” (in econometric
parlance, the endogenous variable) for which encour is an instrument is whatever
predictor from the first equation that is not specified as a predictor in the second.
Fitting and displaying the two-stage least squares model yields

R outputEstimate Std. Error

(Intercept) 20.6 3.7

watched 7.9 4.6

To incorporate other pre-treatment variables as controls, we must include them in
both equations; for example,
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R code iv2 <- tsls (postlet ~ watched + prelet + as.factor(site) + setting,

~ encour + prelet + as.factor(site) + setting, data=sesame)

display(iv2)

yielding

R output Estimate Std. Error

(Intercept) 1.2 4.6

watched 14.0 3.9

prelet 0.7 0.1

as.factor(site)2 8.4 1.8

as.factor(site)3 -3.9 1.7

as.factor(site)4 0.9 2.4

as.factor(site)5 2.8 2.8

setting 1.6 1.4

The point estimate of the treatment calculated this way is the same as with the
preceding step-by-step procedure, but now we automatically get correct standard
errors.

More than one treatment variable; more than one instrument

In the experiment discussed in Section 10.3, the children randomly assigned to
the intervention group received several services (“treatments”) that the children in
the control group did not receive, most notably, access to high-quality child care
and home visits from trained professionals. Children assigned to the intervention
group did not make full use of these services. Simply conceptualized, some children
participated in the child care while some did not, and some children received home
visits while others did not. Can we use the randomization to treatment or control
groups as an instrument for these two treatments? The answer is no.

Similar arguments as those used in Section 10.6 can be given to demonstrate that
a single instrument cannot be used to identify more than one treatment variable.
In fact, as a general rule, we need to use at least as many instruments as treatment
variables in order for all the causal estimates to be identifiable.

Continuous treatment variables or instruments

When using two-stage least squares, the models we have discussed can easily be ex-
tended to accommodate continuous treatment variables and instruments, although
at the cost of complicating the interpretation of the causal effects.

Researchers must be careful, however, in the context of binary instruments and
continuous treatment variables. A binary instrument cannot in general identify a
continuous treatment or “dosage” effect (without further assumptions). If we map
this back to a randomized experiment, the randomization assigns someone only
to be encouraged or not. This encouragement may lead to different dosage levels,
but for those in the intervention group these levels will be chosen by the subject
(or subject’s parents in this case). In essence this is equivalent to a setting with
many different treatments (one at each dosage level) but only one instrument—
therefore causal effects for all these treatments are not identifiable (without further
assumptions). To identify such dosage effects, one would need to randomly assign
encouragement levels that lead to the different dosages or levels of participation.
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Have we really avoided the ignorability assumption? Natural experiments and
instrumental variables

We have motivated instrumental variables using the cleanest setting, within a con-
trolled, randomized experiment. The drawback of illustrating instrumental variables
using this example is that it de-emphasizes one of the most important assumptions
of the instrumental variables model, ignorability of the instrument. In the context
of a randomized experiment, this assumption should be trivially satisfied (assum-
ing the randomization was pristine). However, in practice an instrumental variables
strategy potentially is more useful in the context of a natural experiment, that is, an
observational study context in which a “randomized” variable (instrument) appears
to have occurred naturally. Examples of this include:

• The draft lottery in the Vietnam War as an instrument for estimating the effect
of military service on civilian health and earnings,

• The weather in New York as an instrument for estimating the effect of supply of
fish on their price,

• The sex of a second child (in an analysis of people who have at least two children)
as an instrument when estimating the effect of number of children on labor
supply.

In these examples we have simply traded one ignorability assumption (ignorability
of the treatment variable) for another (ignorability of the instrument) that we
believe to be more plausible. Additionally, we must assume monotonicity and the
exclusion restriction.

Assessing the plausibility of the instrumental variables assumptions

How can we assess the plausibility of the assumptions required for causal inference
from instrumental variables? As a first step, the “first stage” model (the model that
predicts the treatment using the instrument) should be examined closely to ensure
both that the instrument is strong enough and that the sign of the coefficient makes
sense. This is the only assumption that can be directly tested. If the association
between the instrument and the treatment is weak, instrumental variables can yield
incorrect estimates of the treatment effect even if all the other assumptions are
satisfied. If the association is not in the expected direction, then closer examination
is required because this might be the result of a mixture of two different mechanisms,
the expected process and one operating in the opposite direction, which could in
turn imply a violation of the monotonicity assumption.

Another consequence of a weak instrument is that it exacerbates the bias that
can result from failure to satisfy the monotonicity and exclusion restrictions. For
instance, for a binary treatment and instrument, when the exclusion restriction is
not satisfied, our estimates will be off by a quantity that is equal to the effect of
encouragement on the outcomes of noncompliers (in our example, never-watchers
and always-watchers) multiplied by the ratio of noncompliers to compliers (in our
example, induced watchers). The bias when monotonicity is not satisfied is slightly
more complicated but also increases as the percentage of compliers decreases.

The two primary assumptions of instrumental variables (ignorability, exclusion)
are not directly verifiable, but in some examples we can work to make them more
plausible. For instance, if unconditional ignorability of the instrument is being as-
sumed, yet there are differences in important pre-treatment characteristics across
groups defined by the instrument, then these characteristics should be included in
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the model. This will not ensure that ignorability is satisfied, but it removes the
observed problem with the ignorability assumption.

Example: Vietnam War draft lottery study. One strategy to assess the plausibility
of the exclusion restriction is to calculate an estimate within a sample that would
not be expected to be affected by the instrument. For instance, researchers esti-
mated the effect of military service on earnings (and other outcomes) using, as an
instrument, the draft lottery number for young men eligible for the draft during
the Vietnam War. This number was assigned randomly and strongly affected the
probability of military service. It was hoped that the lottery number would only
have an effect on earnings for those who served in the military only because they
were drafted (as determined by a low enough lottery number). Satisfaction of the
exclusion restriction is not certain, however, because, for instance, men with low
lottery numbers may have altered their educational plans so as to avoid or postpone
military service. So the researchers also ran their instrumental variables model for
a sample of men who were assigned numbers so late that the war ended before they
ever had to serve. This showed no significant relation between lottery number and
earnings, which provides some support for the exclusion restriction.

Structural equation models

A goal in many areas of social science is to infer causal relations among many vari-
ables, a generally difficult problem (as discussed in Section 9.8). Structural equation
modeling is a family of methods of multivariate data analysis that are sometimes
used for causal inference.6 In that setting, structural equation modeling relies on
conditional independence assumptions in order to identify causal effects, and the
resulting inferences can be sensitive to strong parametric assumptions (for instance,
linear relationships and multivariate normal errors). Instrumental variables can be
considered to be a special case of a structural equation model. As we have just
discussed, even in a relatively simple instrumental variables model, the assump-
tions needed to identify causal effects are difficult to satisfy and largely untestable.
A structural equation model that tries to estimate many causal effects at once
multiplies the number of assumptions required with each desired effect so that it
quickly becomes difficult to justify all of them. Therefore we do not discuss the
use of structural equation models for causal inference in any greater detail here.
We certainly have no objection to complicated models, as will become clear in the
rest of this book; however, we are cautious about attempting to estimate complex
causal structures from observational data.

10.7 Identification strategies that make use of variation within or

between groups

Comparisons within groups—so-called fixed effects models

What happens when you want to make a causal inference but no valid instrument
exists and ignorability does not seem plausible? Do alternative strategies exist?
Sometimes repeated observations within groups or within individuals over time can
provide a means for controlling for unobserved characteristics of these groups or
individuals. If comparisons are made across the observations within a group or

6 Structural equation modeling is also used to estimate latent factors in noncausal regression
settings with many inputs, and sometimes many outcome variables, which can be better un-
derstood by reducing to a smaller number of linear combinations.
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persons, implicitly such comparisons “hold constant” all characteristics intrinsic to
the group or individual that do not vary across observations (across members of
the group or across measures over time for the same person).

For example, suppose you want to examine the effect of low birth weight on chil-
dren’s mortality and other health outcomes. One difficulty in establishing a causal
effect here is that children with low birth weight are also typically disadvantaged in
genetic endowments and socioeconomic characteristics of the family, some of which
may not be easy or possible to measure. Rather than trying to directly control for all
of these characteristics, however, one could implicitly control for them by comparing
outcomes across twins. Twins share many of the same genetic endowments (all if
identical) and, in most cases, live in exactly the same household. However, there are
physiological reasons (based, for instance, on position in the uterus) why one child
in the pair may be born with a markedly different birth weight than the sibling.
So we may be able to consider birth weight to be randomly assigned (ignorable)
within twin pairs. Theoretically, if there is enough variation in birth weight, within
sets of twins, we can estimate the effect of birth weight on subsequent outcomes.
In essence each twin acts as a counterfactual for his or her sibling.

A regression model that is sometimes used to approximate this conceptual com-
parison simply adds an indicator variable for each of the groups to the standard
regression model that might otherwise have been fit. So, for instance, in our twins
example one might regress outcomes on birth weight (the “treatment” variable)
and one indicator variable for each pair of twins (keeping one pair as a baseline
category to avoid collinearity). More generally, we could control for the groups us-
ing a multilevel model, as we discuss in Part 2. In any case, the researcher might
want to control for other covariates to improve the plausibility of the ignorability
assumption (to control for the fact that the treatment may not be strictly randomly
assigned even within each group—here, the pair of twins). In this particular exam-
ple, however, it is difficult to find child-specific predictors that vary across children
within a pair but can still be considered “pre-treatment.”

In examples where the treatment is dichotomous, a substantial portion of the data
may not exhibit any variation at all in “treatment assignment” within groups. For
instance, if this strategy is used to estimate the effect of maternal employment on
child outcomes by including indicators for each family (set of siblings) in the dataset,
then in some families the mother may not have varied her employment status across
children. Therefore, no inferences about the effect of maternal employment status
can be made for these families. We can only estimate effects for the type of family
where the mother varied her employment choice across the children (for example,
working after her first child was born but staying home from work after the second).

Conditioning on post-treatment outcomes. Still more care must be taken when
considering variation over time. Consider examining the effect of marriage on men’s
earnings by looking at data that follows men over time and tracks marital status,
earnings, and predictors of each (confounding covariates such as race, education,
and occupation). Problems can easily arise in a model that includes an indicator
for each person and also controls for covariates at each time point (to help satisfy
ignorability). In this case the analysis would be implicitly conditioning on post-
treatment variables, which, as we know from Section 9.8, can lead to bias.

Better suited for a multilevel model framework? This model with indicators for
each group is often (particularly in the economics literature) called a “fixed effects”
model. We dislike this terminology because it is interpreted differently in different
settings, as discussed in Section 11.4. Further, this model is hierarchically struc-
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tured, so from our perspective it is best analyzed using a multilevel model. This is
not completely straightforward, however, because one of the key assumptions of a
simple multilevel model is that the individual-level effects are independent of the
other predictors in the model—a condition that is particularly problematic in this
setting where we are expecting that unobserved characteristics of the individuals
may be associated with observed characteristics of the individuals. In Chapter 23
we discuss how to appropriately extend this model to the multilevel framework
while relaxing this assumption.

Comparisons within and between groups: difference-in-differences estimation

Almost all causal strategies make use of comparisons across groups: one or more that
were exposed to a treatment, and one or more that were not. Difference-in-difference
strategies additionally make use of another source of variation in outcomes, typically
time, to help control for potential (observed and unobserved) differences across these
groups. For example, consider estimating the effect of a newly introduced school
busing program on housing prices in a school district where some neighborhoods
were affected by the program and others were not. A simple comparison of housing
prices across affected and unaffected areas sometime after the busing program went
into effect might not be appropriate because these neighborhoods might be different
in other ways that might be related to housing prices. A simple before-after com-
parison of housing prices may also be inappropriate if other changes that occurred
during this time period (for example, a recession) might also be influencing housing
prices. A difference-in-differences approach would instead calculate the difference in
the before-after change in housing prices in exposed and unexposed neighborhoods.
An important advantage of this strategy is that the units of observation (in this
case, houses) need not be the same across the two time periods.

The assumption needed with this strategy is a weaker than the (unconditional)
ignorability assumption because rather than assuming that potential outcomes are
the same across treatment groups, one only has to assume that the potential gains in
potential outcomes over time are the same across groups (for example, exposed and
unexposed neighborhoods). Therefore we need only believe that the difference in
housing prices over time would be the same across the two types of neighborhoods,
not that the average post-program potential housing prices if exposed or unexposed
would be the same.

Panel data. A special case of difference-in-differences estimation occurs when the
same set of units are observed at both time points. This is also a special case of the
so-called fixed effects model that includes indicators for treatment groups and for
time periods. A simple way to fit this model is with a regression of the outcome on
an indicator for the groups, an indicator for the time period, and the interaction
between the two. The coefficient on the interaction is the estimated treatment effect.

In this setting, however, the advantages of the difference-in-differences strategy
are less apparent because an alternative model would be to include an indicator
for treatment exposure but then simply regress on the pre-treatment version of
the outcome variable. In this framework it is unclear if the assumption of ran-
domly assigned changes in potential outcome is truly weaker than the assumption
of randomly assigned potential outcomes for those with the same value of the pre-
treatment variable.7

7 Strictly speaking, we need not assume actual random manipulation of treatment assignment
for either assumption to hold, only results that would be consistent with such manipulation.
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Do not condition on post-treatment outcomes. Once again, to make the (new) ig-
norability assumption more plausible it may be desirable to condition on additional
predictor variables. For models where the variation takes place over time—for in-
stance, the differences-in-differences estimate that includes both pre-treatment and
post-treatment observations on the same units—a standard approach is to include
changes in characteristics for each observation over time. Implicitly, however, this
conditions on post-treatment variables. If these predictors can be reasonably as-
sumed to be unchanged by the treatment, then this is reasonable. However, as
discussed in Section 9.8, it is otherwise inappropriate to control for post-treatment
variables. A better strategy would be to control for pre-treatment variables only.

10.8 Bibliographic note

We have more references here than for any of the other chapters in this book because
causal inference is a particularly contentious and active research area, with meth-
ods and applications being pursued in many fields, including statistics, economics,
public policy, and medicine.

Imbalance and lack of complete overlap have been discussed in many places;
see, for example, Cochran and Rubin (1973), and King and Zeng (2006). The in-
tervention for low-birth-weight children is described by Brooks-Gunn, Liaw, and
Klebanov (1992) and Hill, Brooks-Gunn, and Waldfogel (2003). Imbalance plots
such as Figure 10.3 are commonly used; see Hansen (2004), for example.

Subclassification and its connection to regression are discussed by Cochran (1968).
Imbens and Angrist (1994) introduce the local average treatment effect. Cochran
and Rubin (1973), Rubin (1973), Rubin (1979), Rubin and Thomas (2000), and Ru-
bin (2006) discuss the use of matching, followed by regression, for causal inference.
Dehejia (2003) discusses an example of the interpretation of a treatment effect with
interactions.

Propensity scores were introduced by Rosenbaum and Rubin (1983a, 1984, 1985).
A discussion of common current usage is provided by D’Agostino (1998). Examples
across several fields include Lavori, Keller, and Endicott (1995), Lechner (1999),
Hill, Waldfogel, and Brooks-Gunn (2002), Vikram et al. (2003), and O’Keefe (2004).
Rosenbaum (1989) and Hansen (2004) discuss full matching. Diamond and Sekhon
(2005) present a genetic matching algorithm. Drake (1993) discusses robustness of
treatment effect estimates to misspecification of the propensity score model. Joffe
and Rosenbaum (1999), Imbens (2000), and Imai and van Dyk (2004) generalize
the propensity score beyond binary treatments. Rubin and Stuart (2005) extend
to matching with multiple control groups. Imbens (2004) provides a recent review
of methods for estimating causal effects assuming ignorability using matching and
other approaches.

Use of propensity scores as weights is discussed by Rosenbaum (1987), Ichimura
and Linton (2001), Hirano, Imbens, and Ridder (2003), and Frolich (2004) among
others. This work has been extended to a “doubly-robust” framework by Robins
and Rotnitzky (1995), Robins, Rotnitzsky, and Zhao (1995), and Robins and Ritov
(1997).

As far as we are aware, LaLonde (1986) was the first use of so-called con-
structed observational studies as a testing ground for nonexperimental methods.
Other examples include Friedlander and Robins (1995), Heckman, Ichimura, and
Todd (1997), Dehejia and Wahba (1999), Michalopoulos, Bloom, and Hill (2004),
and Agodini and Dynarski (2004). Dehejia (2005a, b), in response to Smith and
Todd (2005), provides useful guidance regarding appropriate uses of propensity
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scores (the need to think hard about ignorability and to specify propensity score
models that are specific to any given dataset). The constructed observational anal-
ysis presented in this chapter is based on a more complete analysis presented in
Hill, Reiter, and Zanutto (2004).

Interval estimation for treatment effect estimates obtained via propensity score
matching is discussed in Hill and Reiter (2006). Du (1998) and Tu and Zhou (2003)
discuss intervals for estimates obtained via propensity score subclassification. Hill
and McCulloch (2006) present a Bayesian nonparametric method for matching.

Several packages exist that automate different combinations of the propensity
score steps described here and are available as supplements to R and other sta-
tistical software. We mention some of these here without intending to provide a
comprehensive list. There is a program available for R called MatchIt that is avail-
able at gking.harvard.edu/matchit/ that implements several different matching
methods including full matching (using software called OptMatch; Hansen, 2006).
Three packages available for Stata are psmatch2, pscore, and nnmatch; any of
these can be installed easily using the “net search” (or comparable) feature in
Stata. Additionally, nnmatch produces valid standard errors for matching. Code is
also available in SAS for propensity score matching or subclassification; see, for
example, www.rx.uga.edu/main/home/cas/faculty/propensity.pdf.

Regression discontinuity analysis is described by Thistlethwaite and Campbell
(1960). Recent work in econometrics includes Hahn, Todd, and van der Klaauw
(2001) and Linden (2006). The political ideology example in Section 10.4 is de-
rived from Poole and Rosenthal (1997) and Gelman and Katz (2005); see also Lee,
Moretti, and Butler (2004) for related work. The example regarding children’s pro-
motion in school was drawn from work by Jacob and Lefgren (2004).

Instrumental variables formulations date back to work in the economics literature
by Tinbergen (1930) and Haavelmo (1943). Angrist and Krueger (2001) present an
upbeat applied review of instrumental variables. Imbens (2004) provides a review
of statistical methods for causal inference that is a little less enthusiastic about
instrumental variables. Woolridge (2001, chapter 5) provides a crisp overview of
instrumental variables from a classical econometric perspective; Lancaster (2004,
chapter 8) uses a Bayesian framework. The “always-watcher,” “induced watcher,”
and “never-watcher” categorizations here are alterations of the “never-taker,” “com-
plier,” and “always-taker” terminology first used by Angrist, Imbens, and Rubin
(1996), who reframe the classic econometric presentation of instrumental variables
in statistical language and clarify the assumptions and the implications when the
assumptions are not satisfied. For a discussion of all of the methods discussed in
this chapter from an econometric standpoint, see Angrist and Krueger (1999).

The Vietnam draft lottery example comes from several papers including Angrist
(1990). The weather and fish price example comes from Angrist, Graddy, and Im-
bens (2000). The sex of child example comes from Angrist and Evans (1998).

For models that link instrumental variables with the potential-outcomes frame-
work described in Chapter 9, see Angrist, Imbens, and Rubin (1996). Glickman
and Normand (2000) derive an instrumental variables estimate using a latent-data
model; see also Carroll et al. (2004).

Imbens and Rubin (1997) discuss a Bayesian approach to instrumental variables
in the context of a randomized experiment with noncompliance. Hirano et al. (2000)
extend this framework to include covariates. Barnard et al. (2003) describe further
extensions that additionally accommodate missing outcome and covariate data.
For discussions of prior distributions for instrumental variables models, see Dreze
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(1976), Maddala (1976), Kleibergen and Zivot (2003), and Hoogerheide, Kleibergen
and van Dijk (2006).

For a discussion of use of instrumental variables models to estimate bounds for
the average treatment effect (as opposed to the local average treatment effect), see
Robins (1989), Manski (1990), and Balke and Pearl (1997). Robins (1994) discusses
estimation issues.

For more on the Sesame Street encouragement study, see Bogatz and Ball (1971)
and Murphy (1991).

Wainer, Palmer, and Bradlow (1998) provide a friendly introduction to selection
bias. Heckman (1979) and Diggle and Kenward (1994) are influential works on
selection models in econometrics and biostatistics, respectively. Rosenbaum and
Rubin (1983b), Rosenbaum (2002a), and Greenland (2005) consider sensitivity of
inferences to ignorability assumptions.

Sobel (1990, 1998) discusses the assumptions needed for structural equation mod-
eling more generally.

Ashenfelter, Zimmerman, and Levine (2003) discuss “fixed effects” and difference-
in-differences methods for causal inference. The twins and birth weight example was
based on a paper by Almond, Chay, and Lee (2005). Another interesting twins ex-
ample examining the returns from education on earnings can be found in Ashenfelter
and Krueger (1994). Aaronson (1998) and Chay and Greenstone (2003) provide fur-
ther examples of the application of these approaches. The busing and housing prices
example is from Bogart and Cromwell (2000). Card and Krueger (1994) discuss a
classic example of a difference-in-differences model that uses panel data.

10.9 Exercises

1. Constructed observational studies: the folder lalonde contains data from an
observational study constructed by LaLonde (1986) based on a randomized ex-
periment that evaluated the effect on earnings of a job training program called
National Supported Work. The constructed observational study was formed by
replacing the randomized control group with a comparison group formed using
data from two national public-use surveys: the Current Population Survey (CPS)
and the Panel Study in Income Dynamics.

Dehejia and Wahba (1999) used a subsample of these data to evaluate the po-
tential efficacy of propensity score matching. The subsample they chose removes
men for whom only one pre-treatment measure of earnings is observed. (There is
substantial evidence in the economics literature that controlling for earnings from
only one pre-treatment period is insufficient to satisfy ignorability.) This exercise
replicates some of Dehejia and Wahba’s findings based on the CPS comparison
group.

(a) Estimate the treatment effect from the experimental data in two ways: (i)
a simple difference in means between treated and control units, and (ii) a
regression-adjusted estimate (that is, a regression of outcomes on the treat-
ment indicator as well as predictors corresponding to the pre-treatment char-
acteristics measured in the study).

(b) Now use a regression analysis to estimate the causal effect from Dehejia and
Wahba’s subset of the constructed observational study. Examine the sensitiv-
ity of the model to model specification (for instance, by excluding the em-
ployed indicator variables or by including interactions). How close are these
estimates to the experimental benchmark?
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Figure 10.10 Hypothetical data of length of hospital stay and age of patients, with separate
points and regression lines plotted for each treatment condition: the new procedure in gray
and the old procedure in black.

(c) Now estimate the causal effect from the Dehejia and Wahba subset using
propensity score matching. Do this by first trying several different specifica-
tions for the propensity score model and choosing the one that you judge to
yield the best balance on the most important covariates.

Perform this propensity score modeling without looking at the estimated treat-
ment effect that would arise from each of the resulting matching procedures.

For the matched dataset you construct using your preferred model, report
the estimated treatment effects using the difference-in-means and regression-
adjusted methods described in part (a) of this exercise. How close are these
estimates to the experimental benchmark (about $1800)?

(d) Assuming that the estimates from (b) and (c) can be interpreted causally,
what causal effect does each estimate? (Hint: what populations are we making
inferences about for each of these estimates?)

(e) Redo both the regression and the matching exercises, excluding the variable
for earnings in 1974 (two time periods before the start of this study). How im-
portant does the earnings-in-1974 variable appear to be in terms of satisfying
the ignorability assumption?

2. Regression discontinuity analysis: suppose you are trying to evaluate the effect
of a new procedure for coronary bypass surgery that is supposed to help with the
postoperative healing process. The new procedure is risky, however, and is rarely
performed in patients who are over 80 years old. Data from this (hypothetical)
example are displayed in Figure 10.10.

(a) Does this seem like an appropriate setting in which to implement a regression
discontinuity analysis?

(b) The folder bypass contains data for this example: stay is the length of hospital
stay after surgery, age is the age of the patient, and new is the indicator
variable indicating that the new surgical procedure was used. Preoperative
disease severity (severity) was unobserved by the researchers, but we have
access to it for illustrative purposes. Can you find any evidence using these
data that the regression discontinuity design is inappropriate?

(c) Estimate the treatment effect using a regression discontinuity estimate (ig-
noring) severity. Estimate the treatment effect in any way you like, taking
advantage of the information in severity. Explain the discrepancy between
these estimates.
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3. Instrumental variables: come up with a hypothetical example in which it would
be appropriate to estimate treatment effects using an instrumental variables
strategy. For simplicity, stick to an example with a binary instrument and binary
treatment variable.

(a) Simulate data for this imaginary example if all the assumptions are met. Esti-
mate the local average treatment effect for the data by dividing the intent-to-
treat effect by the percentage of compliers. Show that two-stage least squares
yields the same point estimate.

(b) Now simulate data in which the exclusion restriction is not met (so, for in-
stance, those whose treatment level is left unaffected by the instrument have
a treatment effect of half the magnitude of the compliers) but the instrument
is strong (say, 80% of the population are compliers), and see how far off your
estimate is.

(c) Finally, simulate data in which the exclusion restriction is violated in the
same way, but where the instrument is weak (only 20% of the population are
compliers), and see how far off your estimate is.

4. In Exercise 9.13, you estimated the effect of incumbency on votes for Congress.
Now consider an additional variable: money raised by the congressional candi-
dates. Assume this variable has been coded in some reasonable way to be positive
in districts where the Democrat has raised more money and negative in districts
where the Republican has raised more.

(a) Explain why it is inappropriate to include money as an additional input vari-
able to “improve” the estimate of incumbency advantage in the regression in
Exercise 9.13.

(b) Suppose you are interested in estimating the effect of money on the election
outcome. Set this up as a causal inference problem (that is, define the treat-
ments and potential outcomes).

(c) Explain why it is inappropriate to simply estimate the effect of money using
instrumental variables, with incumbency as the instrument. Which of the
instrumental variables assumptions would be reasonable in this example and
which would be implausible?

(d) How could you estimate the effect of money on congressional election out-
comes?

See Campbell (2002) and Gerber (2004) for more on this topic.





Part 2A: Multilevel regression

We now introduce multilevel linear and generalized linear models, including issues
such as varying intercepts and slopes and non-nested models. We view multilevel
models either as regressions with potentially large numbers of coefficients that are
themselves modeled, or as regressions with coefficients that can vary by group.





CHAPTER 11

Multilevel structures

As we illustrate in detail in subsequent chapters, multilevel models are extensions
of regression in which data are structured in groups and coefficients can vary by
group. In this chapter, we illustrate basic multilevel models and present several
examples of data that are collected and summarized at different levels. We start with
simple grouped data—persons within cities—where some information is available
on persons and some information is at the city level. We then consider examples of
repeated measurements, time-series cross sections, and non-nested structures. The
chapter concludes with an outline of the costs and benefits of multilevel modeling
compared to classical regression.

11.1 Varying-intercept and varying-slope models

With grouped data, a regression that includes indicators for groups is called a
varying-intercept model because it can be interpreted as a model with a different
intercept within each group. Figure 11.1a illustrates with a model with one contin-
uous predictor x and indicators for J = 5 groups. The model can be written as a
regression with 6 predictors or, equivalently, as a regression with two predictors (x
and the constant term), with the intercept varying by group:

varying-intercept model: yi = αj[i] + βxi + εi.

Another option, shown in Figure 11.1b, is to let the slope vary with constant inter-
cept:

varying-slope model: yi = α + βj[i]xi + εi.

Finally, Figure 11.1c shows a model in which both the intercept and the slope vary
by group:

varying-intercept, varying-slope model: yi = αj[i] + βj[i]xi + εi.

The varying slopes are interactions between the continuous predictor x and the
group indicators.

As we discuss shortly, it can be challenging to estimate all these αj ’s and βj ’s,
especially when inputs are available at the group level. The first step of multilevel
modeling is to set up a regression with varying coefficients; the second step is to
set up a regression model for the coefficients themselves.

11.2 Clustered data: child support enforcement in cities

With multilevel modeling we need to go beyond the classical setup of a data vector
y and a matrix of predictors X (as shown in Figure 3.6 on page 38). Each level of
the model can have its own matrix of predictors.

We illustrate multilevel data structures with an observational study of the effect
of city-level policies on enforcing child support payments from unmarried fathers.
The treatment is at the group (city) level, but the outcome is measured on individual
families.

237
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Figure 11.1 Linear regression models with (a) varying intercepts (y = αj +βx), (b) varying
slopes (y = α + βjx), and (c) both (y = αj + βjx). The varying intercepts correspond to
group indicators as regression predictors, and the varying slopes represent interactions
between x and the group indicators.

dad mom informal city city enforce benefit city indicators
ID age race support ID name intensity level 1 2 · · · 20

1 19 hisp 1 1 Oakland 0.52 1.01 1 0 · · · 0
2 27 black 0 1 Oakland 0.52 1.01 1 0 · · · 0
3 26 black 1 1 Oakland 0.52 1.01 1 0 · · · 0
...

...
...

...
...

...
...

...
...

...
...

248 19 white 1 3 Baltimore 0.05 1.10 0 0 · · · 0
249 26 black 1 3 Baltimore 0.05 1.10 0 0 · · · 0

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
1366 21 black 1 20 Norfolk −0.11 1.08 0 0 · · · 1
1367 28 hisp 0 20 Norfolk −0.11 1.08 0 0 · · · 1

Figure 11.2 Some of the data from the child support study, structured as a single matrix
with one row for each person. These indicators would be used in classical regression to
allow for variation among cities. In a multilevel model they are not necessary, as we code
cities using their index variable (“city ID”) instead. We prefer separating the data into
individual-level and city-level datasets, as in Figure 11.3.

Studying the effectiveness of child support enforcement

Cities and states in the United States have tried a variety of strategies to encourage
or force fathers to give support payments for children with parents who live apart.
In order to study the effectiveness of these policies for a particular subset of high-
risk children, an analysis was done using a sample of 1367 noncohabiting parents
from the Fragile Families study, a survey of unmarried mothers of newborns in
20 cities. The survey was conducted by sampling from hospitals which themselves
were sampled from the chosen cities, but here we ignore the complexities of the
data collection and consider the mothers to have been sampled at random (from
their demographic category) in each city.

To estimate the effect of child support enforcement policies, the key “treatment”
predictor is a measure of enforcement policies, which is available at the city level.
The researchers estimated the probability that the mother received informal sup-
port, given the city-level enforcement measure and other city- and individual-level
predictors.
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dad mom informal city
ID age race support ID

1 19 hisp 1 1
2 27 black 0 1
3 26 black 1 1
...

...
...

...
...

248 19 white 1 3
249 26 black 1 3

...
...

...
...

...
1366 21 black 1 20
1367 28 hisp 0 20

city city enforce- benefit
ID name ment level

1 Oakland 0.52 1.01
2 Austin 0.00 0.75
3 Baltimore −0.05 1.10
...

...
...

...
20 Norfolk −0.11 1.08

Figure 11.3 Data from the child support study, structured as two matrices, one for persons
and one for cities. The inputs at the different levels are now clear. Compare to Figure 11.2.

A data matrix for each level of the model

Figure 11.2 shows the data for the analysis as it might be stored in a computer
package, with information on each of the 1367 mothers surveyed. To make use
of the multilevel structure of the data, however, we need to construct two data
matrices, one for each level of the model, as Figure 11.3 illustrates. At the left is
the person-level data matrix, with one row for each survey respondent, and their
cities are indicated by an index variable; at the right is the city data matrix, giving
the name and other information available for each city.

At a practical level, the two-matrix format of Figure 11.3 has the advantage
that it contains each piece of information exactly once. In contrast, the single large
matrix in Figure 11.2 has each city’s data repeated several times. Computer memory
is cheap so this would not seem to be a problem; however, if city-level information
needs to be added or changed, the single-matrix format invites errors.

Conceptually, the two-matrix, or multilevel, data structure has the advantage of
clearly showing which information is available on individuals and which on cities. It
also gives more flexibility in fitting models, allowing us to move beyond the classical
regression framework.

Individual- and group-level models

We briefly outline several possible ways of analyzing these data, as a motivation
and lead-in to multilevel modeling.

Individual-level regression. In the most basic analysis, informal support (as re-
ported by mothers in the survey) is the binary outcome, and there are several
individual- and city-level predictors. Enforcement is considered as the treatment,
and a logistic regression is used, also controlling for other inputs. This is the starting
point of the observational study.

Using classical regression notation, the model is Pr(yi =1) = logit−1(Xiβ), where
X includes the constant term, the treatment (enforcement intensity), and the other
predictors (father’s age and indicators for mother’s race at the individual level;
and benefit level at the city level). X is thus constructed from the data matrix of
Figure 11.2. This individual-level regression has the problem that it ignores city-
level variation beyond that explained by enforcement intensity and benefit level,
which are the city-level predictors in the model.
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city city enforce- benefit # in avg. prop. proportion with
ID name ment level sample age black informal support

1 Oakland 0.52 1.01 78 25.9 0.67 0.55
2 Austin 0.00 0.75 91 25.8 0.42 0.54
3 Baltimore −0.05 1.10 101 27.0 0.86 0.67
...

...
...

...
...

...
...

...
20 Norfolk −0.11 1.08 31 27.4 0.84 0.65

Figure 11.4 City-level data from child support study (as in the right panel of Figure 11.3),
also including sample sizes and sample averages from the individual responses.

Group-level regression on city averages. Another approach is to perform a city-
level analysis, with individual-level predictors included using their group-level av-
erages. Figure 11.4 illustrates: here, the outcome, yj , would be the average total
support among the respondents in city j, the enforcement indicator would be the
treatment, and the other variables would also be included as predictors. Such a
regression—in this case, with 20 data points—has the advantage that its errors are
automatically at the city level. However, by aggregating, it removes the ability of
individual predictors to predict individual outcomes. For example, it is possible that
older fathers give more informal support—but this would not necessarily translate
into average father’s age being predictive of more informal support at the city level.

Individual-level regression with city indicators, followed by group-level regression of
the estimated city effects. A slightly more elaborate analysis proceeds in two steps,
first fitting a logistic regression to the individual data y given individual predictors
(in this example, father’s age and indicators for mother’s race) along with indicators
for the 20 cities. This first-stage regression then has 22 predictors. (The constant
term is not included since we wish to include indicators for all the cities; see the
discussion at the end of Section 4.5.)

The next step in this two-step analysis is to perform a linear regression at the city
level, considering the estimated coefficients of the city indicators (in the individual
model that was just fit) as the “data” yj . This city-level regression has 20 data points
and uses, as predictors, the city-level data (in this case, enforcement intensity and
benefit level). Each of the predictors in the model is thus included in one of the two
regressions.

The two-step analysis is reasonable in this example but can run into problems
when sample sizes are small in particular groups, or when there are interactions be-
tween individual- and group-level predictors. Multilevel modeling is a more general
approach that can include predictors at both levels at once.

Multilevel models

The multilevel model looks something like the two-step model we have described,
except that both steps are fitted at once. In this example, a simple multilevel model
would have two components: a logistic regression with 1369 data points predicting
the binary outcome given individual-level predictors and with an intercept that can
vary by city, and a linear regression with 20 data points predicting the city intercepts
from city-level predictors. In the multilevel framework, the key link between the
individual and city levels is the city indicator—the “city ID” variable in Figure
11.3, which takes on values between 1 and 20.
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For this example, we would have a logistic regression at the data level:

Pr(yi =1) = logit−1(Xiβ + αj[i]), for i = 1, . . . , n, (11.1)

where X is the matrix of individual-level predictors and j[i] indexes the city where
person i resides. The second part of the model—what makes it “multilevel”—is the
regression of the city coefficients:

αj ∼ N(Ujγ, σ2
α), for j = 1, . . . , 20, (11.2)

where U is the matrix of city-level predictors, γ is the vector of coefficients for the
city-level regression, and σα is the standard deviation of the unexplained group-level
errors.

The model for the α’s in (11.2) allows us to include all 20 of them in model (11.1)
without having to worry about collinearity. The key is the group-level variation
parameter σα, which is estimated from the data (along with α, β, and a) in the
fitting of the model. We return to this point in the next chapter.

Directions for the observational study

The “treatment” variable in this example is not randomly applied; hence it is quite
possible that cities that differ in enforcement intensities could differ in other impor-
tant ways in the political, economic, or cultural dimensions. Suppose the goal were
to estimate the effects of potential interventions (such as increased enforcement),
rather than simply performing a comparative analysis. Then it would make sense
to set this up as an observational study, gather relevant pre-treatment information
to capture variation among the cities, and perhaps use a matching approach to
estimate effects. In addition, good pre-treatment measures on individuals should
improve predictive power, thus allowing treatment effects to be estimated more
accurately. The researchers studying these child support data are also looking at
other outcomes, including measures of the amity between the parents as well as
financial and other support.

Along with the special concerns of causal inference, the usual recommendations of
regression analysis apply. For example, it might make sense to consider interactions
in the model (to see if enforcement is more effective for older fathers, for example).

11.3 Repeated measurements, time-series cross sections, and other

non-nested structures

Repeated measurements

Another kind of multilevel data structure involves repeated measurements on per-
sons (or other units)—thus, measurements are clustered within persons, and pre-
dictors can be available at the measurement or person level. We illustrate with a
model fitted to a longitudinal dataset of about 2000 Australian adolescents whose
smoking patterns were recorded every six months (via questionnaire) for a period of
three years. Interest lay in the extent to which smoking behavior can be predicted
based on parental smoking and other background variables, and the extent to which
boys and girls pick up the habit of smoking during their teenage years. Figure 11.5
illustrates the overall rate of smoking among survey participants.

A multilevel logistic regression was fit, in which the probability of smoking de-
pends on sex, parental smoking, the wave of the study, and an individual parameter
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Figure 11.5 Prevalence of regular (daily) smoking among participants responding at each
wave in the study of Australian adolescents (who were on average 15 years old at wave 1).

person parents smoke? wave 1 wave 2 · · ·

ID sex mom dad age smokes? age smokes?

1 f Y Y 15:0 N 15:6 N · · ·

2 f N N 14:7 N 15:1 N · · ·

3 m Y N 15:1 N 15:7 Y · · ·

4 f N N 15:3 N 15:9 N · · ·

...
...

...
...

...
...

...
...

. . .

Figure 11.6 Data from the smoking study as they might be stored in a single computer
file and read into R as a matrix, data. (Ages are in years:months.) These data have a
multilevel structure, with observations nested within persons.

for the person. For person j at wave t, the modeled probability of smoking is

Pr(yjt = 1) = logit−1(β0 + β1psmokej + β2femalej +

+β3(1 − femalej) · t + β4femalej · t + αj), (11.3)

where psmoke is the number of the person’s parents who smoke and female is an
indicator for females, so that β3 and β4 represent the time trends for boys and girls,
respectively.1

Figures 11.6 and 11.7 show two ways of storing the smoking data, either of which
would be acceptable for a multilevel analysis. Figure 11.6 shows a single data matrix,
with one row for each person in the study. We could then pull out the smoking
outcome y = (yjt) in R, as follows:

R code y <- data[,seq(6,16,2)]

female <- ifelse (data[,2]=="f", 1, 0)

mom.smoke <- ifelse (data[,3]=="Y", 1, 0)

dad.smoke <- ifelse (data[,4]=="Y", 1, 0)

psmoke <- mom.smoke + dad.smoke

and from there fit the model (11.3).
Figure 11.7 shows an alternative approach using two data matrices, one with a

1 Alternatively, we could include a main effect for time and an interaction between time and sex,
Pr(yjt = 1) = logit−1(β0 + β1 · psmokej + β2 · femalej + β3 · t + β4 · femalej · t + αj), so that
the time trends for boys and girls are β3 and β3 + β4, respectively. This parameterization is
appropriate to the extent that the comparison between the sexes is of interest; in this case we
used (11.3) so that we could easily interpret β3 and β4 symmetrically.
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person
age smokes? ID wave

15:0 N 1 1
14.7 N 2 1
15:1 N 3 1
15:3 N 4 1

...
...

...
...

15:6 N 1 2
15:1 N 2 2
15:7 Y 3 2
15:9 N 4 2

...
...

...
...

person parents smoke?
ID sex mom dad

1 f Y Y
2 f N N
3 m Y N
4 f N N
...

...
...

...

Figure 11.7 Data from the smoking study, with observational data written as a single long
matrix, obs.data, with person indicators, followed by a shorter matrix, person.data, of
person-level information. Compare to Figure 11.6.

row for each observation and one with a row for each person. To model these data,
one could use R code such as

R codey <- obs.data[,2]

person <- obs.data[,3]

wave <- obs.data[,4]

female <- ifelse (person.data[,2]=="f", 1, 0)

mom.smoke <- ifelse (person.data[,3]=="Y", 1, 0)

dad.smoke <- ifelse (person.data[,4]=="Y", 1, 0)

psmoke <- mom.smoke + dad.smoke

and then parameterize the model using the index i to represent individual observa-
tions, with j[i] and t[i] indicating the person and wave associated with observation
i:

Pr(yi =1) = logit−1(β0 + β1psmokej[i] + β2femalej[i] +

+ β3(1 − femalej[i]) · t[i] + β4femalej[i] · t[i] + αj[i]). (11.4)

Models (11.3) and (11.4) are equivalent, and both can be fit in Bugs (as we
describe in Part 2B). Choosing between them is a matter of convenience. For data
in a simple two-way structure (each adolescent is measured at six regular times), it
can make sense to work with the double-indexed outcome variable, (yjt). For a less
rectangular data structure (for example, different adolescents measured at irregular
intervals) it can be easier to string together a long data vector (yi), with person
and time recorded for each measurement, and with a separate matrix of person-level
information (as in Figure 11.7).

Time-series cross-sectional data

In settings where overall time trends are important, repeated measurement data are
sometimes called time-series cross-sectional. For example, Section 6.3 introduced a
study of the proportion of death penalty verdicts that were overturned, in each of
34 states in the 23 years, 1973–1995. The data come at the state × year levels but
we are also interested in studying variation among states and over time.

Time-series cross-sectional data are typically (although not necessarily) “rectan-
gular” in structure, with observations at regular time intervals. In contrast, gen-
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eral repeated measurements could easily have irregular patterns (for example, in
the smoking study, some children could be measured only once, others could be
measured monthly and others yearly). In addition, time-series cross-sectional data
commonly have overall time patterns, for example, the steady expansion of the
death penalty from the 1970s through the early 1990s. In this context one must
consider the state-year data as clustered within states and also within years, with
the potential for predictors at all three levels. We discuss such non-nested models
in Section 13.5.

Other non-nested structures

Non-nested data also arise when individuals are characterized by overlapping cate-
gories of attributes. For example, consider a study of earnings given occupation and
state of residence. A survey could include, say, 1500 persons in 40 job categories
in 50 states, and a regression model could predict log earnings given individual
demographic predictors X , 40 indicators for job categories, and 50 state indicators.
We can write the model generalizing the notation of (11.1)–(11.2):

yi = Xiβ + αj[i] + γk[i] + εi, for i = 1, . . . , n, (11.5)

where j[i] and k[i] represent the job category and state, respectively, for person i.
The model becomes multilevel with regressions for the job and state coefficients.
For example,

αj ∼ N(Uja, σ2
α), for j = 1, . . . , 40, (11.6)

where U is a matrix of occupation-level predictors (for example, a measure of social
status and an indicator for whether it is supervisory), a is a vector of coefficients
for the job model, and σα is the standard deviation of the model errors at the level
of job category. Similarly, for the state coefficients:

γk ∼ N(Vkg, σ2
γ) for k = 1, . . . , 50. (11.7)

The model defined by regressions (11.5)–(11.7) is non-nested because neither the
job categories j[i] nor the states k[i] are subsets of the other.

As this example illustrates, regression notation can become awkward with mul-
tilevel models because of the need for new symbols (U , V , a, g, and so forth) to
denote data matrices, coefficients, and errors at each level.

11.4 Indicator variables and fixed or random effects

Classical regression: including a baseline and J − 1 indicator variables

As discussed at the end of Section 4.5, when including an input variable with
J categories into a classical regression, standard practice is to choose one of the
categories as a baseline and include indicators for the other J − 1 categories. For
example, if controlling for the J = 20 cities in the child support study in Figure 11.2
on page 238, one could set city 1 (Oakland) as the baseline and include indicators
for the other 19. The coefficient for each city then represents its comparison to
Oakland.

Multilevel regression: including all J indicators

In a multilevel model it is unnecessary to do this arbitrary step of picking one of
the levels as a baseline. For example, in the child support study, one would include
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indicators for all 20 cities as in model (11.1). In a classical regression these could
not all be included because they would be collinear with the constant term, but in
a multilevel model this is not a problem because they are themselves modeled by a
group-level distribution (which itself can be a regression, as in (11.2)). We discuss
on page 393 how the added information removes the collinearity that is present in
the simple least squares estimate.

Fixed and random effects

The varying coefficients (αj ’s or βj ’s) in a multilevel model are sometimes called
random effects, a term that refers to the randomness in the probability model for
the group-level coefficients (as, for example, in (11.2) on page 241).

The term fixed effects is used in contrast to random effects—but not in a con-
sistent way! Fixed effects are usually defined as varying coefficients that are not
themselves modeled. For example, a classical regression including J − 1 = 19 city
indicators as regression predictors is sometimes called a “fixed-effects model” or a
model with “fixed effects for cities.” Confusingly, however, “fixed-effects models”
sometimes refer to regressions in which coefficients do not vary by group (so that
they are fixed, not random).2

A question that commonly arises is when to use fixed effects (in the sense of vary-
ing coefficients that are unmodeled) and when to use random effects. The statistical
literature is full of confusing and contradictory advice. Some say that fixed effects
are appropriate if group-level coefficients are of interest, and random effects are
appropriate if interest lies in the underlying population. Others recommend fixed

2 Here we outline five definitions that we have seen of fixed and random effects:

1. Fixed effects are constant across individuals, and random effects vary. For example, in a growth
study, a model with random intercepts αi and fixed slope β corresponds to parallel lines for
different individuals i, or the model yit = αi + βt. Kreft and De Leeuw (1998, p. 12) thus
distinguish between fixed and random coefficients.

2. Effects are fixed if they are interesting in themselves or random if there is interest in the un-
derlying population. Searle, Casella, and McCulloch (1992, section 1.4) explore this distinction
in depth.

3. “When a sample exhausts the population, the corresponding variable is fixed; when the sample
is a small (i.e., negligible) part of the population the corresponding variable is random” (Green
and Tukey, 1960).

4. “If an effect is assumed to be a realized value of a random variable, it is called a random effect”
(LaMotte, 1983).

5. Fixed effects are estimated using least squares (or, more generally, maximum likelihood) and
random effects are estimated with shrinkage (“linear unbiased prediction” in the terminology
of Robinson, 1991). This definition is standard in the multilevel modeling literature (see, for
example, Snijders and Bosker, 1999, section 4.2) and in econometrics.

In a multilevel model, this definition implies that fixed effects βj are estimated conditional on a
group-level variance σβ = ∞ and random effects βj are estimated conditional on σβ estimated
from data.

Of these definitions, the first clearly stands apart, but the other four definitions differ also.
Under the second definition, an effect can change from fixed to random with a change in the
goals of inference, even if the data and design are unchanged. The third definition differs from
the others in defining a finite population (while leaving open the question of what to do with
a large but not exhaustive sample), while the fourth definition makes no reference to an actual
(rather than mathematical) population at all. The second definition allows fixed effects to come
from a distribution, as long as that distribution is not of interest, whereas the fourth and fifth
do not use any distribution for inference about fixed effects. The fifth definition has the virtue
of mathematical precision but leaves unclear when a given set of effects should be considered
fixed or random. In summary, it is easily possible for a factor to be “fixed” according to some
definitions above and “random” for others. Because of these conflicting definitions, it is no
surprise that “clear answers to the question ‘fixed or random?’ are not necessarily the norm”
(Searle, Casella, and McCulloch, 1992, p. 15).
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effects when the groups in the data represent all possible groups, and random effects
when the population includes groups not in the data. These two recommendations
(and others) can be unhelpful. For example, in the child support example, we are
interested in these particular cities and also the country as a whole. The cities are
only a sample of cities in the United States—but if we were suddenly given data
from all the other cities, we would not want then to change our model.

Our advice (elaborated upon in the rest of this book) is to always use multilevel
modeling (“random effects”). Because of the conflicting definitions and advice, we
avoid the terms “fixed” and “random” entirely, and focus on the description of
the model itself (for example, varying intercepts and constant slopes), with the
understanding that batches of coefficients (for example, α1, . . . , αJ) will themselves
be modeled.

11.5 Costs and benefits of multilevel modeling

Quick overview of classical regression

Before we go to the effort of learning multilevel modeling, it is helpful to briefly
review what can be done with classical regression:

• Prediction for continuous or discrete outcomes,

• Fitting of nonlinear relations using transformations,

• Inclusion of categorical predictors using indicator variables,

• Modeling of interactions between inputs,

• Causal inference (under appropriate conditions).

Motivations for multilevel modeling

There are various reasons why it might be worth moving to a multilevel model,
whether for purposes of causal inference, the study of variation, or prediction of
future outcomes:

• Accounting for individual- and group-level variation in estimating group-level
regression coefficients. For example, in the child support study in Section 11.2,
interest lies in a city-level predictor (child support enforcement), and in classi-
cal regression it is not possible to include city indicators along with city-level
predictors.

• Modeling variation among individual-level regression coefficients. In classical re-
gression, one can do this using indicator variables, but multilevel modeling is
convenient when we want to model the variation of these coefficients across
groups, make predictions for new groups, or account for group-level variation in
the uncertainty for individual-level coefficients.

• Estimating regression coefficients for particular groups. For example, in the next
chapter, we discuss the problem of estimating radon levels from measurements
in several counties in Minnesota. With a multilevel model, we can get reasonable
estimates even for counties with small sample sizes, which would be difficult
using classical regression.

One or more of these reasons might apply in any particular study.

Complexity of multilevel models

A potential drawback to multilevel modeling is the additional complexity of coeffi-
cients varying by group. We do not mind this complexity—in fact, we embrace it
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in its realism—however, it does create new difficulties in understanding and sum-
marizing the model, issues we explore in Part 3 of this book.

Additional modeling assumptions

As we discuss in the next few chapters, a multilevel model requires additional
assumptions beyond those of classical regression—basically, each level of the model
corresponds to its own regression with its own set of assumptions such as additivity,
linearity, independence, equal variance, and normality.

We usually don’t mind. First, it can be possible to check these assumptions.
Perhaps more important, classical regressions can typically be identified with par-
ticular special cases of multilevel models with hierarchical variance parameters set
to zero or infinity—these are the complete pooling and no pooling models discussed
in Sections 12.2 and 12.3. Our ultimate justification, which can be seen through ex-
amples, is that the assumptions pay off in practice in allowing more realistic models
and inferences.

When does multilevel modeling make a difference?

The usual alternative to multilevel modeling is classical regression—either ignor-
ing group-level variation, or with varying coefficients that are estimated classically
(and not themselves modeled)—or combinations of classical regressions such as the
individual and group-level models described on page 239.

In various limiting cases, the classical and multilevel approaches coincide. When
there is very little group-level variation, the multilevel model reduces to classical
regression with no group indicators; conversely, when group-level coefficients vary
greatly (compared to their standard errors of estimation), multilevel modeling re-
duces to classical regression with group indicators.

When the number of groups is small (less than five, say), there is typically not
enough information to accurately estimate group-level variation. As a result, multi-
level models in this setting typically gain little beyond classical varying-coefficient
models.

These limits give us a sense of where we can gain the most from multilevel
modeling—where it is worth the effort of expanding a classical regression in this
way. However, there is little risk from applying a multilevel model, assuming we are
willing to put in the effort to set up the model and interpret the resulting inferences.

11.6 Bibliographic note

Several introductory books on multilevel models have been written in the past
decade in conjunction with specialized computer programs (see Section 1.5), in-
cluding Raudenbush and Bryk (2002), Goldstein (1995), and Snijders and Bosker
(1999). Kreft and De Leeuw (1998) provide an accessible introduction and a good
place to start (although we do not agree with all of their recommendations). These
books have a social science focus, perhaps because it is harder to justify the use
of linear models in laboratory sciences where it is easier to isolate the effects of
individual factors and so the functional form of responses is better understood.
Giltinan and Davidian (1995) and Verbeke and Molenberghs (2000) are books on
nonlinear multilevel models focusing on biostatistical applications.

Another approach to regression with multilevel data structures is to use classical
estimates and then correct the standard errors to deal with the dependence in the
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data. We briefly discuss the connection between multilevel models and correlated-
error models in Section 12.5 but do not consider these other inferential methods,
which include generalized estimating equations (see Carlin et al., 2001, for a com-
parison to multilevel models) and panel-corrected standard errors (see Beck and
Katz, 1995, 1996).

The articles in the special issue of Political Analysis devoted to multilevel mod-
eling (Kedar and Shively, 2005) illustrate several different forms of analysis of mul-
tilevel data, including two-level classical regression and multilevel modeling.

Gelman (2005) discusses difficulties with the terms “fixed” and “random” effects.
See also Kreft and De Leeuw (1998, section 1.3.3), for a discussion of the multiplicity
of definitions of fixed and random effects and coefficients, and Robinson (1998) for
a historical overview.

The child support example comes from Nepomnyaschy and Garfinkel (2005). The
teenage smoking example comes from Carlin et al. (2001), who consider several
different models, including a multilevel logistic regression.

11.7 Exercises

1. The file apt.dat in the folder rodents contains data on rodent infestation in
a sample of New York City apartments (see codebook rodents.doc). The file
dist.dat contains data on the 55 “community districts” (neighborhoods) in the
city.

(a) Write the notation for a varying-intercept multilevel logistic regression (with
community districts as the groups) for the probability of rodent infestation
using the individual-level predictors but no group-level predictors.

(b) Expand the model in (a) by including the variables in dist.dat as group-level
predictors.

2. Time-series cross-sectional data: download data with an outcome y and predic-
tors X in each of J countries for a series of K consecutive years. The outcome
should be some measure of educational achievement of children and the predic-
tors should be a per capita income measure, a measure of income inequality, and
a variable summarizing how democratic the country is. For these countries, also
create country-level predictors that are indicators for the countries’ geographic
regions.

(a) Set up the data as a wide matrix of countries × measurements (as in Figure
11.6).

(b) Set up the data as two matrices as in Figure 11.7: a long matrix with JK
rows with all the measurements, and a matrix with J rows, with information
on each country.

(c) Write a multilevel regression as in (11.5)–(11.7). Explain the meaning of all
the variables in the model.

3. The folder olympics has seven judges’ ratings of seven figure skaters (on two cri-
teria: “technical merit” and “artistic impression”) from the 1932 Winter Olympics.

(a) Construct a 7× 7× 2 array of the data (ordered by skater, judge, and judging
criterion).

(b) Reformulate the data as a 98×4 array (similar to the top table in Figure 11.7),
where the first two columns are the technical merit and artistic impression
scores, the third column is a skater ID, and the fourth column is a judge ID.
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(c) Add another column to this matrix representing an indicator variable that
equals 1 if the skater and judge are from the same country, or 0 otherwise.

4. The folder cd4 has CD4 percentages for a set of young children with HIV who
were measured several times over a period of two years. The dataset also includes
the ages of the children at each measurement.

(a) Graph the outcome (the CD4 percentage, on the square root scale) for each
child as a function of time.

(b) Each child’s data has a time course that can be summarized by a linear fit.
Estimate these lines and plot them for all the children.

(c) Set up a model for the children’s slopes and intercepts as a function of
the treatment and age at baseline. Estimate this model using the two-step
procedure–first estimate the intercept and slope separately for each child, then
fit the between-child models using the point estimates from the first step.





CHAPTER 12

Multilevel linear models: the basics

Multilevel modeling can be thought of in two equivalent ways:

• We can think of a generalization of linear regression, where intercepts, and possi-
bly slopes, are allowed to vary by group. For example, starting with a regression
model with one predictor, yi = α + βxi + εi, we can generalize to the varying-
intercept model, yi = αj[i] + βxi + εi, and the varying-intercept, varying-slope
model, yi = αj[i] + βj[i]xi + εi (see Figure 11.1 on page 238).

• Equivalently, we can think of multilevel modeling as a regression that includes a
categorical input variable representing group membership. From this perspective,
the group index is a factor with J levels, corresponding to J predictors in the
regression model (or 2J if they are interacted with a predictor x in a varying-
intercept, varying-slope model; or 3J if they are interacted with two predictors
X(1), X(2); and so forth).

In either case, J−1 linear predictors are added to the model (or, to put it another
way, the constant term in the regression is replaced by J separate intercept terms).
The crucial multilevel modeling step is that these J coefficients are then themselves
given a model (most simply, a common distribution for the J parameters αj or,
more generally, a regression model for the αj ’s given group-level predictors). The
group-level model is estimated simultaneously with the data-level regression of y.

This chapter introduces multilevel linear regression step by step. We begin in
Section 12.2 by characterizing multilevel modeling as a compromise between two
extremes: complete pooling, in which the group indicators are not included in the
model, and no pooling, in which separate models are fit within each group. After
laying out some notational difficulties in Section 12.5, we discuss in Section 12.6 the
different roles of the individual- and group-level regressions. Chapter 13 continues
with more complex multilevel structures.

12.1 Notation

We briefly review the notation for classical regression and then outline how it can
be generalized for multilevel models. As we illustrate in the examples, however, no
single notation is appropriate for all problems. We use the following notation for
classical regression:

• Units i = 1, . . . , n. By units, we mean the smallest items of measurement.

• Outcome measurements y = (y1, . . . , yn). These are the unit-level data being
modeled.

• Regression predictors are represented by an n × k matrix X , so that the vector
of predicted values is ŷ = Xβ, where ŷ and β are column vectors of length n
and k, respectively. We include in X the constant term (unless it is explicitly
excluded from the model), so that the first column of X is all 1’s. We usually
label the coefficients as β0, . . . , βk−1, but sometimes we index from 1 to k.

• For each individual unit i, we denote its row vector of predictors as Xi. Thus,
ŷi = Xiβ is the prediction for unit i.

251
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• For each predictor κ, we label the (κ+1)st column of X as X(κ) (assuming that
X(0) is a column of 1’s).

• Any information contained in the unit labels i should be coded in the regres-
sion inputs. For example, if i = 1, . . . , n represents the order in which persons
i enrolled in a study, we should create a time variable ti and, for example, in-
clude it in the matrix X of regression predictors. Or, more generally, consider
transformations and interactions of this new input variable.

For multilevel models, we label:

• Groups j = 1, . . . , J . This works for a single level of grouping (for example,
students within schools, or persons within states).

• We occasionally use k = 1, . . . , K for a second level of grouping (for exam-
ple, students within schools within districts; or, for a non-nested example, test
responses that can be characterized by person or by item). In any particular
example, we have to distinguish this k from the number of predictors in X . For
more complicated examples we develop idiosyncratic notation as appropriate.

• Index variables j[i] code group membership. For example, if j[35] = 4, then the
35th unit in the data (i = 35) belongs to group 4.

• Coefficients are sometimes written as a vector β, sometimes as α, β (as in Figure
11.1 on page 238), with group-level regression coefficients typically called γ.

• We make our R and Bugs code more readable by typing α, β, γ as a,b,g.

• We write the varying-intercept model with one additional predictor as yi =
αj[i]+βxi+εi or yi ∼ N(αj[i]+βxi, σ

2
y). Similarly, the varying-intercept, varying-

slope model is yi = αj[i] + βj[i]xi + εi or yi ∼ N(αj[i] + βj[i]xi, σ
2
y).

• With multiple predictors, we write yi = XiB + εi, or yi ∼ N(XiB, σ2
y). B is

a matrix of coefficients that can be modeled using a general varying-intercept,
varying-slope model (as discussed in the next chapter).

• Standard deviation is σy for data-level errors and σα, σβ , and so forth, for group-
level errors.

• Group-level predictors are represented by a matrix U with J rows, for example,
in the group-level model, αj ∼ N(Ujγ, σ2

α). When there is a single group-level
predictor, we label it as lowercase u.

12.2 Partial pooling with no predictors

As noted in Section 1.3, multilevel regression can be thought of as a method for
compromising between the two extremes of excluding a categorical predictor from
a model (complete pooling), or estimating separate models within each level of the
categorical predictor (no pooling).

Complete-pooling and no-pooling estimates of county radon levels

We illustrate with the home radon example, which we introduced in Section 1.2 and
shall use throughout this chapter. Consider the goal of estimating the distribution of
radon levels of the houses within each of the 85 counties in Minnesota.1 This seems

1 Radon levels are always positive, and it is reasonable to suppose that effects will be multiplica-
tive; hence it is appropriate to model the data on the logarithmic scale (see Section 4.4). For
some purposes, though, such as estimating total cancer risk, it makes sense to estimate averages
on the original, unlogged scale; we can obtain these inferences using simulation, as discussed
at the end of Section 12.8.
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Figure 12.1 Estimates ± standard errors for the average log radon levels in Minnesota
counties plotted versus the (jittered) number of observations in the county: (a) no-pooling
analysis, (b) multilevel (partial pooling) analysis, in both cases with no house-level or
county-level predictors. The counties with fewer measurements have more variable esti-
mates and larger higher standard errors. The horizontal line in each plot represents an
estimate of the average radon level across all counties. The left plot illustrates a problem
with the no-pooling analysis: it systematically causes us to think that certain counties are
more extreme, just because they have smaller sample sizes.

simple enough. One estimate would be the average that completely pools data
across all counties. This ignores variation among counties in radon levels, however,
so perhaps a better option would be simply to use the average log radon level in
each county. Figure 12.1a plots these averages against the number of observations
in each county.

Whereas complete pooling ignores variation between counties, the no-pooling
analysis overstates it. To put it another way, the no-pooling analysis overfits the
data within each county. To see this, consider Lac Qui Parle County (circled in the
plot), which has the highest average radon level of all 85 counties in Minnesota.
This average, however, is estimated using only two data points. Lac Qui Parle may
very well be a high-radon county, but do we really believe it is that high? Maybe,
but probably not: given the variability in the data we would not have much trust
in an estimate based on only two measurements.

To put it another way, looking at all the counties together: the estimates from
the no-pooling model overstate the variation among counties and tend to make the
individual counties look more different than they actually are.

Partial-pooling estimates from a multilevel model

The multilevel estimates of these averages, displayed in Figure 12.1b, represent a
compromise between these two extremes. The goal of estimation is the average log
radon level αj among all the houses in county j, for which all we have available
are a random sample of size nj . For this simple scenario with no predictors, the
multilevel estimate for a given county j can be approximated as a weighted average
of the mean of the observations in the county (the unpooled estimate, ȳj) and the
mean over all counties (the completely pooled estimate, ȳall):

α̂multilevel
j ≈

nj

σ2
y
ȳj + 1

σ2
α
ȳall

nj

σ2
y

+ 1
σ2

α

, (12.1)
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where nj is the number of measured houses in county j, σ2
y is the within-county

variance in log radon measurements, and σ2
α is the variance among the average

log radon levels of the different counties. We could also allow the within-county
variance to vary by county (in which case σy would be replaced by σy j in the
preceding formula) but for simplicity we assume it is constant.

The weighted average (12.1) reflects the relative amount of information available
about the individual county, on one hand, and the average of all the counties, on
the other:

• Averages from counties with smaller sample sizes carry less information, and the
weighting pulls the multilevel estimates closer to the overall state average. In the
limit, if nj = 0, the multilevel estimate is simply the overall average, ȳall.

• Averages from counties with larger sample sizes carry more information, and the
corresponding multilevel estimates are close to the county averages. In the limit
as nj → ∞, the multilevel estimate is simply the county average, ȳj .

• In intermediate cases, the multilevel estimate lies between the two extremes.

To actually apply (12.1), we need estimates of the variation within and between
counties. In practice, we estimate these variance parameters together with the αj ’s,
either with an approximate program such as lmer() (see Section 12.4) or using
fully Bayesian inference, as implemented in Bugs and described in Part 2B of this
book. For now, we present inferences (as in Figure 12.1) without dwelling on the
details of estimation.

12.3 Partial pooling with predictors

The same principle of finding a compromise between the extremes of complete
pooling and no pooling applies for more general models. This section considers
partial pooling for a model with unit-level predictors. In this scenario, no pooling
might refer to fitting a separate regression model within each group. However, a less
extreme and more common option that we also sometimes refer to as “no pooling”
is a model that includes group indicators and estimates the model classically.2

As we move on to more complicated models, we present estimates graphically
but do not continue with formulas of the form (12.1). However, the general prin-
ciple remains that multilevel models compromise between pooled and unpooled
estimates, with the relative weights determined by the sample size in the group and
the variation within and between groups.

Complete-pooling and no-pooling analyses for the radon data, with predictors

Continuing with the radon data, Figure 12.2 shows the logarithm of the home radon
measurement versus floor of measurement3 for houses sampled from eight of the 85
counties in Minnesota. (We fit our model to the data from all 85 counties, including
a total of 919 measurements, but to save space we display the data and estimates
for a selection of eight counties, chosen to capture a range of the sample sizes in
the survey.)

In each graph of Figure 12.2, the dashed line shows the linear regression of log

2 This version of “no pooling” does not pool the estimates for the intercepts—the parameters
we focus on in the current discussion—but it does completely pool estimates for any slope
coefficients (they are forced to have the same value across all groups) and also assumes the
residual variance is the same within each group.

3 Measurements were taken in the lowest living area of each house, with basement coded as 0
and first floor coded as 1.
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Figure 12.2 Complete-pooling (dashed lines, y = α + βx) and no-pooling (solid lines,
y = αj +βx) regressions fit to radon data from the 85 counties in Minnesota, and displayed
for eight of the counties. The estimated slopes β differ slightly for the two models, but here
our focus is on the intercepts.

radon, given the floor of measurement, using a model that pools all counties together
(so the same line appears in all eight plots), and the solid line shows the no-pooling
regressions, obtained by including county indicators in the regression (with the
constant term removed to avoid collinearity; we also could have kept the constant
term and included indicators for all but one of the counties). We can write the
complete-pooling regression as yi = α + βxi + εi and the no-pooling regression as
yi = αj[i] + βxi + εi, where j[i] is the county corresponding to house i. The solid

lines then plot y = α̂ + β̂x from the complete-pooling model, and the dashed lines
show y = α̂j + β̂x, for j = 1, . . . , 8, from the no-pooling model.

Here is the complete-pooling regression for the radon data:

R outputlm(formula = y ~ x)

coef.est coef.se

(Intercept) 1.33 0.03

x -0.61 0.07

n = 919, k = 2

residual sd = 0.82

To fit the no-pooling model in R, we include the county index (a variable named
county that takes on values between 1 and 85) as a factor in the regression—thus,
predictors for the 85 different counties. We add “−1” to the regression formula to
remove the constant term, so that all 85 counties are included. Otherwise, R would
use county 1 as a baseline.

R outputlm(formula = y ~ x + factor(county) - 1)

coef.est coef.sd

x -0.72 0.07

factor(county)1 0.84 0.38

factor(county)2 0.87 0.10

. . .

factor(county)85 1.19 0.53

n = 919, k = 86

residual sd = 0.76

The estimated slopes β differ slightly for the two regressions. The no-pooling
model includes county indicators, which can change the estimated coefficient for
x, if the proportion of houses with basements varies among counties. This is just
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Figure 12.3 (a) Estimates ± standard errors for the county intercepts αj in the model
yi = αj[i] +βxi +errori, for the no-pooling analysis of the radon data, plotted versus num-
ber of observations from the county. The counties with fewer measurements have more
variable estimates with higher standard errors. This graph illustrates a problem with clas-
sical regression: it systematically causes us to think that certain counties are more extreme,
just because they have smaller sample sizes.
(b) Multilevel (partial pooling) estimates ± standard errors for the county intercepts αj

for the radon data, plotted versus number of observations from the county. The horizontal
line shows the complete pooling estimate. Comparing to the left plot (no pooling), which is
on the same scale, we see that the multilevel estimate is typically closer to the complete-
pooling estimate for counties with few observations, and closer to the no-pooling estimates
for counties with many observations.
These plots differ only slightly from the no-pooling and multilevel estimates without the
house-level predictor, as displayed in Figure 12.1.

a special case of the rule that adding new predictors in a regression can change
the estimated coefficient of x, if these new predictors are correlated with x. In
the particular example shown in Figure 12.2, the complete-pooling and no-pooling
estimates of β differ only slightly; in the graphs, the difference can be seen most
clearly in Stearns and Ramsey counties.

Problems with the no-pooling and complete-pooling analyses

Both the analyses shown in Figure 12.2 have problems. The complete-pooling anal-
ysis ignores any variation in average radon levels between counties. This is unde-
sirable, particularly since the goal of our analysis was to identify counties with
high-radon homes. We do not want to pool away the main subject of our study!

The no-pooling analysis has problems too, however, which we can again see in
Lac Qui Parle County. Even after controlling for the floors of measurement, this
county has the highest fitted line (that is, the highest estimate α̂j), but again we
do not have much trust in an estimate based on only two observations.

More generally, we would expect the counties with the least data to get more
extreme estimates α̂j in the no-pooling analyses. Figure 12.3a illustrates with the
estimates ± standard errors for the county intercepts αj , plotted versus the sample
size in each county j.

Multilevel analysis

The simplest multilevel model for the radon data with the floor predictor can be
written as

yi ∼ N(αj[i] + βxi, σ
2
y), for i = 1, . . . , n, (12.2)
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Figure 12.4 Multilevel (partial pooling) regression lines y = αj + βx fit to radon data
from Minnesota, displayed for eight counties. Light-colored dashed and solid lines show
the complete-pooling and no-pooling estimates, respectively, from Figure 12.3a.

which looks like the no-pooling model but with one key difference. In the no-pooling
model, the αj ’s are set to the classical least squares estimates, which correspond to
the fitted intercepts in a model run separately in each county (with the constraint
that the slope coefficient equals β in all models). Model (12.2) also looks a little
like the complete-pooling model except that, with complete pooling, the αj ’s are
given a “hard constraint”—they are all fixed at a common α.

In the multilevel model, a “soft constraint” is applied to the αj ’s: they are as-
signed a probability distribution,

αj ∼ N(μα, σ2
α), for j = 1, . . . , J, (12.3)

with their mean μα and standard deviation σα estimated from the data. The distri-
bution (12.3) has the effect of pulling the estimates of αj toward the mean level μα,
but not all the way—thus, in each county, a partial-pooling compromise between the
two estimates shown in Figure 12.2. In the limit of σα → ∞, the soft constraints
do nothing, and there is no pooling; as σα → 0, they pull the estimates all the way
to zero, yielding the complete-pooling estimate.

Figure 12.4 shows, for the radon example, the estimated line from the multi-
level model (12.2), which in each county lies between the complete-pooling and
no-pooling regression lines. There is strong pooling (solid line closer to complete-
pooling line) in counties with small sample sizes, and only weak pooling (solid line
closer to no-pooling line) in counties containing many measurements.

Going back to Figure 12.3, the right panel shows the estimates and standard
errors for the county intercepts αj from the multilevel model, plotted versus county
sample size. Comparing to the left panel, we see more pooling for the counties with
fewer observations. We also see a trend that counties with larger sample sizes have
lower radon levels, indicating that “county sample size” is correlated with some
relevant county-level predictor.

Average regression line and individual- and group-level variances

Multilevel models typically have so many parameters that it is not feasible to closely
examine all their numerical estimates. Instead we plot the estimated group-level
models (as in Figure 12.4) and varying parameters (as in Figure 12.3b) to look
for patterns and facilitate comparisons across counties. It can be helpful, however,
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to look at numerical summaries for the hyperparameters—those model parameters
without group-level subscripts.

For example, in the radon model, the hyperparameters are estimated as μ̂α =
1.46, β̂ = −0.69, σ̂y = 0.76, and σ̂α = 0.33. (We show the estimates in Section 12.4.)
That is, the estimated average regression line for all the counties is y = 1.46−0.69x,
with error standard deviations of 0.76 at the individual level and 0.33 at the county
level. For this dataset, variation within counties (after controlling for the floor of
measurement) is comparable to the average difference between measurements in
houses with and without basements.

One way to interpret the variation between counties, σα, is to consider the
variance ratio, σ2

α/σ2
y, which in this example is estimated at 0.332/0.762 = 0.19,

or about one-fifth. Thus, the standard deviation of average radon levels between
counties is the same as the standard deviation of the average of 5 measurements
within a county (that is, 0.76/

√
5 = 0.33). The relative values of individual- and

group-level variances are also sometimes expressed using the intraclass correlation,
σ2

α/(σ2
α + σ2

y), which ranges from 0 if the grouping conveys no information to 1 if
all members of a group are identical.

In our example, the group-level model tells us that the county intercepts, αj , have
an estimated mean of 1.46 and standard deviation of 0.33. (What is relevant to our
discussion here is the standard deviation, not the mean.) The amount of information
in this distribution is the same as that in 5 measurements within a county. To put it
another way, for a county with a sample size less than 5, there is more information
in the group-level model than in the county’s data; for a county with more than 5
observations, the within-county measurements are more informative (in the sense
of providing a lower-variance estimate of the county’s average radon level). As a
result, the multilevel regression line in a county is closer to the complete-pooling
estimate when sample size is less than 5, and closer to the no-pooling estimate when
sample size exceeds 5. We can see this in Figure 12.4: as sample size increases, the
multilevel estimates move closer and closer to the no-pooling lines.

Partial pooling (shrinkage) of group coefficients αj

Multilevel modeling partially pools the group-level parameters αj toward their
mean level, μα. There is more pooling when the group-level standard deviation
σα is small, and more smoothing for groups with fewer observations. Generaliz-
ing (12.1), the multilevel-modeling estimate of αj can be expressed as a weighted
average of the no-pooling estimate for its group (ȳj − βx̄j) and the mean, μα:

estimate of αj ≈
nj

σ2
y

nj

σ2
y

+ 1
σ2

α

(ȳj − βx̄j) +

1
σ2

α

nj

σ2
y

+ 1
σ2

α

μα. (12.4)

When actually fitting multilevel models, we do not actually use this formula; rather,
we fit models using lmer() or Bugs, which automatically perform the calculations,
using formulas such as (12.4) internally. Chapter 19 provides more detail on the
algorithms used to fit these models.

Classical regression as a special case

Classical regression models can be viewed as special cases of multilevel models.
The limit of σα → 0 yields the complete-pooling model, and σα → ∞ reduces to
the no-pooling model. Given multilevel data, we can estimate σα. Therefore we
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see no reason (except for convenience) to accept estimates that arbitrarily set this
parameter to one of these two extreme values.

12.4 Quickly fitting multilevel models in R

We fit most of the multilevel models in this part of the book using the lmer()

function, which fits linear and generalized linear models with varying coefficients.4

Part 2B of the book considers computation in more detail, including a discussion
of why it can be helpful to make the extra effort and program models using Bugs
(typically using a simpler lmer() fit as a starting point). The lmer() function
is currently part of the R package Matrix; see Appendix C for details. Here we
introduce lmer() in the context of simple varying-intercept models.

The lmer function

Varying-intercept model with no predictors. The varying intercept model with no
predictors (discussed in Section 12.2) can be fit and displayed using lmer() as
follows:

R codeM0 <- lmer (y ~ 1 + (1 | county))

display (M0)

This model simply includes a constant term (the predictor “1”) and allows it to
vary by county. We next move to a more interesting model including the floor of
measurement as an individual-level predictor.

Varying-intercept model with an individual-level predictor. We shall introduce mul-
tilevel fitting with model (12.2)–(12.3), the varying-intercept regression with a single
predictor. We start with the call to lmer():

R codeM1 <- lmer (y ~ x + (1 | county))

This expression starts with the no-pooling model, “y ~ x,” and then adds “(1 |

county),” which allows the intercept (the coefficient of the predictor “1,” which is
the column of ones—the constant term in the regression) to vary by county.

We can then display a quick summary of the fit:

R codedisplay (M1)

which yields

R outputlmer(formula = y ~ x + (1 | county))

coef.est coef.se

(Intercept) 1.46 0.05

x -0.69 0.07

Error terms:

Groups Name Std.Dev.

county (Intercept) 0.33

Residual 0.76

# of obs: 919, groups: county, 85

deviance = 2163.7

4 The name lmer stands for “linear mixed effects in R,” but the function actually works for
generalized linear models as well. The term “mixed effects” refers to random effects (coefficients
that vary by group) and fixed effects (coefficients that do not vary). We avoid the terms “fixed”
and “random” (see page 245) and instead refer to coefficients as “modeled” (that is, grouped)
or “unmodeled.”
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The top part of this display shows the inference about the intercept and slope
for the model, averaging over the counties. The bottom part gives the estimated
variation: σ̂α = 0.33 and σ̂y = 0.76. We also see that the model was fit to 919
houses within 85 counties. We shall ignore the deviance for now.

Estimated regression coefficients

To see the estimated model within each county. We type

R code coef (M1)

which yields

R output $county

(Intercept) x

1 1.19 -0.69

2 0.93 -0.69

3 1.48 -0.69

. . .

85 1.39 -0.69

Thus, the estimated regression line is y = 1.19−0.69x in county 1, y = 0.93+0.69x
in county 2, and so forth. The slopes are all identical because they were specified
thus in the model. (The specification (1|county) tells the model to allow only the
intercept to vary. As we shall discuss in the next chapter, we can allow the slope to
vary by specifying (1+x|county) in the regression model.)

Fixed and random effects. Alternatively, we can separately look at the estimated
model averaging over the counties—the “fixed effects”—and the county-level errors—
the “random effects.” Typing

R code fixef (M1)

yields

R output (Intercept) x

1.46 -0.69

The estimated regression line in an average county is thus y = 1.46 − 0.69x. We
can then look at the county-level errors:

R code ranef (M1)

which yields

R output (Intercept)

1 -0.27

2 -0.53

3 0.02

. . .

85 -0.08

These tell us how much the intercept is shifted up or down in particular counties.
Thus, for example, in county 1, the estimated intercept is 0.27 lower than average,
so that the regression line is (1.46 − 0.27) − 0.69x = 1.19 − 0.69x, which is what
we saw earlier from the call to coef(). For some applications, it is best to see the
estimated model within each group; for others, it is helpful to see the estimated
average model and group-level errors.



QUICKLY FITTING MULTILEVEL MODELS IN R 261

Uncertainties in the estimated coefficients

We wrote little functions se.fixef() and se.ranef() for quickly pulling out these
standard errors from the model fitted by lmer(). In this example,

R codese.fixef (M1)

yields

R output(Intercept) x

0.05 0.07

and

R codese.ranef (M1)

yields,

R output$county

(Intercept)

1 0.25

2 0.10

3 0.26

. . .

85 0.28

As discussed in Section 12.3, the standard errors differ according to the sample size
within each county; for example, counties 1, 2, and 85 have 4, 52, and 2 houses,
respectively, in the sample. For the within-county regressions, standard errors are
only given for the intercepts, since this model has a common slope for all counties.

Summarizing and displaying the fitted model

We can access the components of the estimates and standard errors using list no-
tation in R. For example, to get a 95% confidence interval for the slope (which, in
this model, does not vary by county):

R codefixef(M1)["x"] + c(-2,2)*se.fixef(M1)["x"]

or, equivalently, since the slope is the second coefficient in the regression,

R codefixef(M1)[2] + c(-2,2)*se.fixef(M1)[2]

The term “fixed effects” is used for the regression coefficients that do not vary by
group (such as the coefficient for x in this example) or for group-level coefficients
or group averages (such as the average intercept, μα in (12.3)).

Identifying the batches of coefficients. In pulling out elements of the coefficients
from coef() or ranef(), we must first identify the grouping (county, in this case).
The need for this labeling will become clear in the next chapter in the context of
non-nested models, where there are different levels of grouping and thus different
structures of varying coefficients.

For example, here is a 95% confidence interval for the intercept in county 26:

R codecoef(M1)$county[26,1] + c(-2,2)*se.ranef(M1)$county[26]

and here is a 95% confidence interval for the error in the intercept in that county
(that is, the deviation from the average):

R codeas.matrix(ranef(M1)$county)[26] + c(-2,2)*se.ranef(M1)$county[26]

For a more elaborate example, we make Figure 12.4 using the following commands:
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R code a.hat.M1 <- coef(M1)$county[,1] # 1st column is the intercept

b.hat.M1 <- coef(M1)$county[,2] # 2nd element is the slope

x.jitter <- x + runif(n,-.05,.05) # jittered data for plotting

par (mfrow=c(2,4)) # make a 2x4 grid of plots

for (j in display8){

plot (x.jitter[county==j], y[county==j], xlim=c(-.05,1.05),

ylim=y.range, xlab="floor", ylab="log radon level", main=uniq.name[j])

## [uniq.name is a vector of county names that was created earlier]

curve (coef(lm.pooled)[1] + coef(lm.pooled)[2]*x, lty=2, col="gray10",

add=TRUE)

curve (coef(lm.unpooled)[j+1] + coef(lm.unpooled)[1]*x, col="gray10",

add=TRUE)

curve (a.hat.M1[j] + b.hat.M1[j]*x, lwd=1, col="black", add=TRUE)

}

Here, lm.pooled and lm.unpooled are the classical regressions that we have already
fit.

More complicated models

The lmer() function can also handle many of the multilevel regressions discussed
in this part of the book, including group-level predictors, varying intercepts and
slopes, nested and non-nested structures, and multilevel generalized linear models.
Approximate routines such as lmer() tend to work well when the sample size and
number of groups is moderate to large, as in the radon models. When the number of
groups is small, or the model becomes more complicated, it can be useful to switch
to Bayesian inference, using the Bugs program, to better account for uncertainty
in model fitting. We return to this point in Section 16.1.

12.5 Five ways to write the same model

We begin our treatment of multilevel models with the simplest structures—nested
models, in which we have observations i = 1, . . . , n clustered in groups j = 1, . . . , J ,
and we wish to model variation among groups. Often, predictors are available at
the individual and group levels. We shall use as a running example the home radon
analysis described above, using as predictors the house-level xi and a measure of
the logarithm of soil uranium as a county-level predictor, uj. For some versions of
the model, we include these both as individual-level predictors and label them as
Xi1 and Xi2.

There are several different ways of writing a multilevel model. Rather than in-
troducing a restrictive uniform notation, we describe these different formulations
and explain how they are connected. It is useful to be able to express a model in
different ways, partly so that we can recognize the similarities between models that
only appear to be different, and partly for computational reasons.

Allowing regression coefficients to vary across groups

Perhaps the simplest way to express a multilevel model generally is by starting with
the classical regression model fit to all the data, yi = β0 + β1Xi1 + β2Xi2 + · · ·+ εi,
and then generalizing to allow the coefficients β to vary across groups; thus,

yi = β0 j[i] + β1 j[i]Xi1 + β2 j[i]Xi2 + · · · + εi.

The “multilevel” part of the model involves assigning a multivariate distribution to
the vector of β’s within each group, as we discuss in Section 13.1.
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For now we will focus on varying-intercept models, in which the only coefficient
that varies across groups is the constant term β0 (which, to minimize subscripting,
we label α). For the radon data that include the floor and a county-level uranium
predictor, the model then becomes

yi = αj[i] + β1Xi1 + β2Xi2 + εi

where Xi1 is the ith element of the vector X(1) representing the first-floor indicators

and Xi2 is the ith element of the vector X(2) representing the uranium measurement
in the county containing house i. We can also write this in matrix notation as

yi = αj[i] + Xiβ + εi

with the understanding that X includes the first-floor indicator and the county
uranium measurement but not the constant term. This is the way that models are
built using lmer(), including all predictors at the individual level, as we discuss in
Section 12.6.

The second level of the model is simply

αj ∼ N(μα, σ2
α). (12.5)

Group-level errors. The model (12.5) can also be written as

αj = μα + ηj , with ηj ∼ N(0, σ2
α). (12.6)

The group-level errors ηj can be helpful in understanding the model; however, we
often use the more compact notation (12.5) to reduce the profusion of notation.
(We have also toyed with notation such as αj = μα + εα

j in which ε is consistently
used for regression errors—but the superscripts seem too confusing. As illustrated
in Part 2B of this book, we sometimes use such notation when programming models
in Bugs.)

Combining separate local regressions

An alternative way to write the multilevel model is as a linking of local regressions
in each group. Within each group j, a regression is performed on the local predictors
(in this case, simply the first-floor indicator, xi), with a constant term α that is
indexed by group:

within county j: yi ∼ N(αj + βxi, σ
2
y), for i = 1, . . . , nj . (12.7)

The county uranium measurement has not yet entered the model since we are imag-
ining separate regressions fit to each county—there would be no way to estimate the
coefficient for a county-level predictor from any of these within-county regressions.

Instead, the county-level uranium level, uj , is included as a predictor in the
second level of the model:

αj ∼ N(γ0 + γ1uj , σ
2
α). (12.8)

We can also write the distribution in (12.8) as N(Ujγ, σ2
α), where U has two columns:

a constant term, U(0), and the county-level uranium measurement, U(1). The errors
in this model (with mean 0 and standard deviation σα) represent variation among
counties that is not explained by the local and county-level predictors.

The multilevel model combines the J local regression models (12.7) in two ways:
first, the local regression coefficients β are the same in all J models (an assumption
we will relax in Section 13.1). Second, the different intercepts αj are connected
through the group-level model (12.8), with consequences to the coefficient estimates
that we discuss in Section 12.6.
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Group-level errors. We can write (12.8) as

αj = γ0 + γ1uj + ηj , with ηj ∼ N(0, σ2
α), (12.9)

explicitly showing the errors in the county-level regression.

Modeling the coefficients of a large regression model

The identical model can be written as a single regression, in which the local and
group-level predictors are combined into a single matrix X :

yi ∼ N(Xiβ, σ2
y), (12.10)

where, for our example, X includes vectors corresponding to:

• A constant term, X(0);

• The floor where the measurement was taken, X(1);

• The county-level uranium measure, X(2);

• J (not J−1) county indicators, X(3), . . . , X(J+2).

At the upper level of the model, the J county indicators (which in this case are
β3, . . . , βJ+2) follow a normal distribution:

βj ∼ N(0, σ2
α), for j = 3, . . . , J + 2. (12.11)

In this case, we have centered the βj distribution at 0 rather than at an estimated
μβ because any such μβ would be statistically indistinguishable from the constant
term in the regression. We return to this point shortly.

The parameters in the model (12.10)–(12.11) can be identified exactly with those
in the separate local regressions above:

• The local predictor x in model (12.7) is the same as X(1) (the floor) here.

• The local errors εi are the same in the two models.

• The matrix of group-level predictors U in (12.8) is just X(0) here (the constant
term) joined with X(2) (the uranium measure).

• The group-level errors η1, . . . , ηJ in (12.9) are identical to β3, . . . , βJ+2 here.

• The standard-deviation parameters σy and σα keep the same meanings in the
two models.

Moving the constant term around. The multilevel model can be written in yet
another equivalent way by moving the constant term:

yi = N(Xiβ, σ2
y), for i = 1, . . . , n

βj ∼ N(μα, σ2
α), for j = 3, . . . , J + 2. (12.12)

In this version, we have removed the constant term from X (so that it now has only
J +2 columns) and replaced it by the equivalent term μα in the group-level model.
The coefficients β3, . . . , βJ+2 for the group indicators are now centered around μα

rather than 0, and are equivalent to α1, . . . , αJ as defined earlier, for example, in
model (12.9).

Regression with multiple error terms

Another option is to re-express model (12.10), treating the group-indicator coeffi-
cients as error terms rather than regression coefficients, in what is often called a
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“mixed effects” model popular in the social sciences:

yi ∼ N(Xiβ + ηj[i], σ
2
y), for i = 1, . . . , n

ηj ∼ N(0, σ2
α), (12.13)

where j[i] represents the county that contains house i, and X now contains only
three columns:

• A constant term, X(0);

• The floor, X(1);

• The county-level uranium measure, X(2).

This is the same as model (12.10)–(12.11), simply renaming some of the βj ’s as
ηj ’s. All our tools for multilevel modeling will automatically work for models with
multiple error terms.

Large regression with correlated errors

Finally, we can express a multilevel model as a classical regression with correlated
errors:

yi = Xiβ + εalli , εall ∼ N(0, Σ), (12.14)

where X is now the matrix with three predictors (the constant term, first-floor
indicator, and county-level uranium measure) as in (12.13), but now the errors εalli

have an n × n covariance matrix Σ. The error εalli in (12.14) is equivalent to the
sum of the two errors, ηj[i] + εi, in (12.13). The term ηj[i], which is the same for all

units i in group j, induces correlation in εall.
In multilevel models, Σ is parameterized in some way, and these parameters are

estimated from the data. For the nested multilevel model we have been considering
here, the variances and covariances of the n elements of εall can be derived in terms
of the parameters σy and σα:

For any unit i: Σii = var(εalli ) = σ2
y + σ2

α

For any units i, k within the same group j: Σik = cov(εalli , εallk ) = σ2
α

For any units i, k in different groups: Σik = cov(εalli , εallk ) = 0.

It can also be helpful to express Σ in terms of standard errors and correlations:

sd(εi) =
√

Σii =
√

σ2
y + σ2

α

corr(εi, εk) =
Σik√
ΣiiΣkk

=

{
σ2

α

σ2
y+σ2

α
if j[i] = j[k]

0 if j[i] 
= j[k].

We generally prefer modeling the multilevel effects explicitly rather than burying
them as correlations, but once again it is useful to see how the same model can be
written in different ways.

12.6 Group-level predictors

Adding a group-level predictor to improve inference for group coefficients αj

We continue with the radon example from Sections 12.2–12.3 to illustrate how a
multilevel model handles predictors at the group as well as the individual levels.
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Figure 12.5 Multilevel (partial pooling) regression lines y = αj + βx fit to radon data,
displayed for eight counties, including uranium as a county-level predictor. Light-colored
lines show the multilevel estimates, without uranium as a predictor, from Figure 12.4.
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Figure 12.6 Estimated county coefficients αj (±1 standard error) plotted versus county-
level uranium measurement uj , along with the estimated multilevel regression line αj =
γ0 + γ1uj . The county coefficients roughly follow the line but not exactly; the deviation of
the coefficients from the line is captured in σα, the standard deviation of the errors in the
county-level regression.

We use the formulation

yi ∼ N(αj[i] + βxi, σ2
y), for i = 1, . . . , n

αj ∼ N(γ0 + γ1uj, σ2
α), for j = 1, . . . , J, (12.15)

where xi is the house-level first-floor indicator and uj is the county-level uranium
measure.

R code u.full <- u[county]

M2 <- lmer (y ~ x + u.full + (1 | county))

display (M2)

This model includes floor, uranium, and intercepts that vary by county. The lmer()
function only accepts predictors at the individual level, so we have converted uj to
ufull

i = uj[i] (with the variable county playing the role of the indexing j[i]), to pull
out the uranium level of the county where house i is located.

The display of the lmer() fit shows coefficients and standard errors, along with
estimated residual variation at the county and individual (“residual”) level:
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R outputlmer(formula = y ~ x + u.full + (1 | county))

coef.est coef.se

(Intercept) 1.47 0.04

x -0.67 0.07

u.full 0.72 0.09

Error terms:

Groups Name Std.Dev.

county (Intercept) 0.16

Residual 0.76

# of obs: 919, groups: county, 85

deviance = 2122.9

As in our earlier example on page 261, we use coef() to pull out the estimated
coefficients,

R codecoef (M2)

yielding

R output$county

(Intercept) x u.full

1 1.45 -0.67 0.72

2 1.48 -0.67 0.72

. . .

85 1.42 -0.67 0.72

Only the intercept varies, so the coefficients for x and u.full are the same for all 85
counties. (Actually, u.full is constant within counties so it cannot have a varying
coefficient here.) On page 280 we shall see a similar display for a model in which
the coefficient for x varies by county.

As before, we can also examine the estimated model averaging over the counties:

R codefixef (M2)

yielding

R output(Intercept) x u.full

1.47 -0.67 0.72

and the county-level errors:

R coderanef (M2)

yielding

R output(Intercept)

1 -0.02

2 0.01

. . .

85 -0.04

The results of fixef() and ranef() add up to the coefficients in coef(): for
county 1, 1.47 − 0.02 = 1.45, for county 2, 1.47 + 0.01 = 1.48, . . . , and for county
85, 1.47 − 0.04 = 1.42 (up to rounding error).
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Interpreting the coefficients within counties

We can add the unmodeled coefficients (the “fixed effects”) to the county-level errors
to get an intercept and slope for each county. We start with the model that averages
over all counties, yi = 1.47 − 0.67xi + 0.72uj[i] (as obtained from display(M2) or
fixef(M2).

Now consider a particular county, for example county 85. We can determine its
fitted regression line in two ways from the lmer() output, in each case using the
log uranium level in county 85, u85 = 0.36.

First, using the the last line of the display of coef(M2), the fitted model for county
85 is yi = 1.42 − 0.67xi + 0.72u85 = (1.42 + 0.72 · 0.36) − 0.67xi = 1.68 − 0.67xi,
that is, 1.68 for a house with a basement and 1.01 for a house with no basement.
Exponentiating gives estimated geometric mean predictions of 5.4 pCi/L and 2.7
pCi/L for houses in county 85 with and without basements.

Alternatively, we can construct the fitted line for county 85 by starting with the
results from fixef(M2)—that is, yi = 1.47−0.67xi+0.72uj[i], setting uj[i] = u85 =
0.36—and adding the group-level error from ranef(M2), which for county 85 is
−0.04. The resulting model is yi = 1.47−0.67xi +0.72 ·0.36−0.04 = 1.68−0.67xi,
the same as in the other calculation (up to rounding error in the last digit of the
intercept).

Figure 12.5 shows the fitted line for each of a selection of counties, and Figure
12.6 shows the county-level regression, plotting the estimated coefficients αj versus
the county-level predictor uj. These two figures represent the two levels of the
multilevel model.

The group-level predictor has increased the precision of our estimates of the
county intercepts αj : the ±1 standard-error bounds are narrower in Figure 12.6
than in Figure 12.3b, which showed αj ’s estimated without the uranium predictor
(note the different scales on the y-axes of the two plots and the different county
variables plotted on the x-axes).

The estimated individual- and county-level standard deviations in this model are
σ̂y = 0.76 and σ̂α = 0.16. In comparison, these residual standard deviations were
0.76 and 0.33 without the uranium predictor. This predictor has left the within-
county variation unchanged—which makes sense, since it is a county-level predictor
which has no hope of explaining variation within any county—but has drastically
reduced the unexplained variation between counties. In fact, the variance ratio is
now only σ2

α/σ2
y = 0.162/0.762 = 0.044, so that the county-level model is as good

as 1/0.044 = 23 observations within any county. The multilevel estimates under
this new model will be close to the complete-pooling estimates (with county-level
uranium included as a predictor) for many of the smaller counties in the dataset
because a county would have to have more than 23 observations to be pulled closer
to the no-pooling estimate than the complete-pooling estimate.

Interpreting the coefficient of the group-level predictor

The line in Figure 12.6 shows the prediction of average log radon in a county
(for homes with basements—that is, xi = 0—since these are the intercepts αj),
as a function of the log uranium level in the county. This estimated group-level
regression line has an estimated slope of about 0.7. Coefficients between 0 and 1
are typical in a log-log regression: in this case, each increase of 1% in uranium level
corresponds to a 0.7% predicted increase in radon.

It makes sense that counties higher in uranium have higher radon levels, and it
also makes sense that the slope is less than 1. Radon is affected by factors other
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than soil uranium, and the “uranium” variable in the dataset is itself an imprecise
measure of actual soil uranium in the county, and so we would expect a 1% increase
in the uranium variable to match to something less than a 1% increase in radon.
Compared to classical regression, the estimation of this coefficient is trickier (since
the αj ’s—the “data” for the county-level regression—are not themselves observed)
but the principles of interpretation do not change.

A multilevel model can include county indicators along with a county-level
predictor

Users of multilevel models are often confused by the idea of including county in-
dicators along with a county-level predictor. Is this possible? With 85 counties in
the dataset, how can a regression fit 85 coefficients for counties, plus a coefficient
for county-level uranium? This would seem to induce perfect collinearity into the
regression or, to put it more bluntly, to attempt to learn more than the data can
tell us. Is it really possible to estimate 86 coefficients from 85 data points?

The short answer is that we really have more than 85 data points. There are
hundreds of houses with which to estimate the 85 county-level intercepts, and 85
counties with which to estimate the coefficient of county-level uranium. In a classical
regression, however, the 85 county indicators and the county-level predictor would
indeed be collinear. This problem is avoided in a multilevel model because of the
partial pooling of the αj ’s toward the group-level linear model. This is illustrated in
Figure 12.6, which shows the estimates of all these 86 parameters—the 85 separate
points and the slope of the line. In this model that includes a group-level predictor,
the estimated intercepts are pulled toward this group-level regression line (rather
than toward a constant, as in Figure 12.3b). The county-level uranium predictor
uj thus helps us estimate the county intercepts αj but without overwhelming the
information in individual counties.

Partial pooling of group coefficients αj in the presence of group-level predictors

Equation (12.4) on page 258 gives the formula for partial pooling in the simple
model with no group-level predictors. Once we add a group-level regression, αj ∼
N(Ujγ, σ2

α), the parameters αj are shrunk toward their regression estimates α̂j =
Ujγ. Equivalently, we can say that the group-level errors ηj (in the model αj =
Ujγ + ηj) are shrunk toward 0. As always, there is more pooling when the group-
level standard deviation σα is small, and more smoothing for groups with fewer
observations. The multilevel estimate of αj is a weighted average of the no-pooling
estimate for its group (ȳj − Xjβ) and the regression prediction α̂j :

estimate of αj ≈
nj

σ2
y

nj

σ2
y

+ 1
σ2

α

· (estimate from group j) +

+

1
σ2

α

nj

σ2
y

+ 1
σ2

α

· (estimate from regression). (12.16)

Equivalently, the group-level errors ηj are partially pooled toward zero:

estimate of ηj ≈
nj

σ2
y

nj

σ2
y

+ 1
σ2

α

(ȳj − Xjβ − Ujγ) +

1
σ2

α

nj

σ2
y

+ 1
σ2

α

· 0.
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12.7 Model building and statistical significance

From classical to multilevel regression

When confronted with a multilevel data structure, such as the radon measurements
considered here or the examples in the previous chapter, we typically start by fitting
some simple classical regressions and then work our way up to a full multilevel
model. The four natural starting points are:

• Complete-pooling model: a single classical regression completely ignoring the
group information—that is, a single model fit to all the data, perhaps including
group-level predictors but with no coefficients for group indicators.

• No-pooling model: a single classical regression that includes group indicators
(but no group-level predictors) but with no model for the group coefficients.

• Separate models: a separate classical regression in each group. This approach is
not always possible if there are groups with small sample sizes. (For example,
in Figure 12.4 on page 257, Aitkin County has three measurements in homes
with basements and one in a home with no basement. If the sample from Aitkin
County had happened to contain only houses with basements, then it would be
impossible to estimate the slope β from this county alone.)

• Two-step analysis: starting with either the no-pooling or separate models, then
fitting a classical group-level regression using, as “data,” the estimated coeffi-
cients for each group.

Each of these simpler models can be informative in its own right, and they also set
us up for understanding the partial pooling in a multilevel model, as in Figure 12.4.

For large datasets, fitting a model separately in each group can be computa-
tionally efficient as well. One might imagine an iterative procedure that starts by
fitting separate models, continues with the two-step analysis, and then returns to
fitting separate models, but using the resulting group-level regression to guide the
estimates of the varying coefficients. Such a procedure, if formalized appropriately,
is in fact the usual algorithm used to fit multilevel models, as we discuss in Chapter
17.

When is multilevel modeling most effective?

Multilevel model is most important when it is close to complete pooling, at least
for some of the groups (as for Lac Qui Parle County in Figure 12.4 on page 257).
In this setting we can allow estimates to vary by group while still estimating them
precisely. As can be seen from formula (12.16), estimates are more pooled when the
group-level standard deviation σα is small, that is, when the groups are similar to
each other. In contrast, when σα is large, so that groups vary greatly, multilevel
modeling is not much better than simple no-pooling estimation.

At this point, it might seem that we are contradicting ourselves. Earlier we mo-
tivated multilevel modeling as a compromise between no pooling and complete
pooling, but now we are saying that multilevel modeling is effective when it is close
to complete pooling, and ineffective when it is close to no pooling. If this is so, why
not just always use the complete-pooling estimate?

We answer this question in two ways. First, when the multilevel estimate is close
to complete pooling, it still allows variation between groups, which can be impor-
tant, in fact can be one of the goals of the study. Second, as in the radon example,
the multilevel estimate can be close to complete pooling for groups with small sam-
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ple size and close to no pooling for groups with large sample size, automatically
performing well for both sorts of group.

Using group-level predictors to make partial pooling more effective

In addition to being themselves of interest, group-level predictors play a special
role in multilevel modeling by reducing the unexplained group-level variation and
thus reducing the group-level standard deviation σα. This in turn increases the
amount of pooling done by the multilevel estimate (see formula (12.16)), giving more
precise estimates of the αj ’s, especially for groups for which the sample size nj is
small. Following the template of classical regression, multilevel modeling typically
proceeds by adding predictors at the individual and group levels and reducing
the unexplained variance at each level. (However, as discussed in Section 21.7,
adding a group-level predictor can actually increase the unexplained variance in
some situations.)

Statistical significance

It is not appropriate to use statistical significance as a criterion for including par-
ticular group indicators in a multilevel model. For example, consider the simple
varying-intercept radon model with no group-level predictor, in which the average
intercept μα is estimated at 1.46, and the within-group intercepts αj are estimated
at 1.46− 0.27± 0.25 for county 1, 1.46− 0.53± 0.10 for county 2, 1.46+0.02± 0.28
for county 3, and so forth (see page 261).

County 1 is thus approximately 1 standard error away from the average intercept
of 1.46, county 2 is more than 4 standard errors away, . . . and county 85 is less than
1 standard error away. Of these three counties, only county 2 would be considered
“statistically significantly” different from the average.

However, we should include all 85 counties in the model, and nothing is lost by
doing so. The purpose of the multilevel model is not to see whether the radon levels
in county 1 are statistically significantly different from those in county 2, or from
the Minnesota average. Rather, we seek the best possible estimate in each county,
with appropriate accounting for uncertainty. Rather than make some significance
threshold, we allow all the intercepts to vary and recognize that we may not have
much precision in many of the individual groups. We illustrate this point in another
example in Section 21.8.

The same principle holds for the models discussed in the following chapters, which
include varying slopes, non-nested levels, discrete data, and other complexities.
Once we have included a source of variation, we do not use statistical significance
to pick and choose indicators to include or exclude from the model.

In practice, our biggest constraints—the main reasons we do not use extremely
elaborate models in which all coefficients can vary with respect to all grouping
factors—are fitting and understanding complex models. The lmer() function works
well when it works, but it can break down for models with many grouping factors.
Bugs is more general (see Part 2B of this book) but can be slow with large datasets
or complex models. In the meantime we need to start simple and build up gradually,
a process during which we can also build understanding of the models being fit.
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12.8 Predictions for new observations and new groups

Predictions for multilevel models can be more complicated than for classical re-
gression because we can apply the model to existing groups or new groups. After
a brief review of classical regression prediction, we explain in the context of the
radon model.

Review of prediction for classical regression

In classical regression, prediction is simple: specify the predictor matrix X̃ for a set
of new observations5 and then compute the linear predictor X̃β, then simulate the
predictive data:

• For linear regression, simulate independent normal errors ε̃i with mean 0 and
standard deviation σ, and compute ỹ = X̃β + ε̃; see Section 7.2.

• For logistic regression, simulate the predictive binary data: Pr(ỹi) = logit−1(X̃iβ)
for each new data point i; see Section 7.4.

• With binomial logistic regression, specify the number of tries ñi for each new
unit i, and simulate ỹi from the binomial distribution with parameters ñi and
logit−1(X̃iβ); see Section 7.4.

• With Poisson regression, specify the exposures ũi for the new units, and simulate

ỹi ∼ Poisson(ũie
X̃iβ) for each new i; see Section 7.4.

As discussed in Section 7.2, the estimation for a regression in R gives a set of nsims

simulation draws. Each of these is used to simulate the predictive data vector ỹ,
yielding a set of nsims simulated predictions. For example, in the election forecasting
example of Figure 7.5 on page 146:

R code model.1 <- lm (vote.88 ~ vote.86 + party.88 + inc.88)

display (model.1)

n.sims <- 1000

sim.1 <- sim (model.1, n.sims)

beta.sim <- sim.1$beta

sigma.sim <- sim.1$sigma

n.tilde <- length (vote.88)

X.tilde <- cbind (rep(1,n.tilde), vote.88, party.90, inc.90)

y.tilde <- array (NA, c(n.sims, n.tilde))

for (s in 1:n.sims) {

y.tilde[s,] <- rnorm (n.tilde, X.tilde%*%beta.sim[s,], sigma.sim[s])

}

This matrix of simulations can be used to get point predictions (for example,
median(y.tilde[,3]) gives the median estimate for ỹ3) or predictive intervals
(for example, quantile(y.tilde[,3],c(.025,.975))) for individual data points
or for more elaborate derived quantities, such as the predicted number of seats
won by the Democrats in 1990 (see the end of Section 7.3). For many applications,
the predict() function in R is a good way to quickly get point predictions and
intervals (see page 48); here we emphasize the more elaborate simulation approach
which allows inferences for arbitrary quantities.

5 Predictions are more complicated for time-series models: even when parameters are fit by clas-
sical regression, predictions must be made sequentially. See Sections 8.4 and 24.2 for examples.
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Prediction for a new observation in an existing group

We can make two sorts of predictions for the radon example: predicting the radon
level for a new house within one of the counties in the dataset, and for a new house
in a new county. We shall work with model (12.15) on page 266, with floor as an
individual-level predictor and uranium as a group-level predictor

For example, suppose we wish to predict ỹ, the log radon level for a house with no
basement (thus, with radon measured on the first floor, so that x̃ = 1) in Hennepin
County (j = 26 of our Minnesota dataset). Conditional on the model parameters,
the predicted value has a mean of α26 + β and a standard deviation of σy . That is,

ỹ|θ ∼ N(α26 + βx̃, σ2
y),

where we are using θ to represent the entire vector of model parameters.
Given estimates of α, β, and σy , we can create a predictive simulation for ỹ using

R code such as

R codex.tilde <- 1

sigma.y.hat <- sigma.hat(M2)$sigma$data

coef.hat <- as.matrix(coef(M2)$county)[26,]

y.tilde <- rnorm (1, coef.hat %*% c(1, x.tilde, u[26]), sigma.y.hat)

More generally, we can create a vector of n.sims simulations to represent the pre-
dictive uncertainty in ỹ:

R coden.sims <- 1000

coef.hat <- as.matrix(coef(M2)$county)[26,]

y.tilde <- rnorm (1000, coef.hat %*% c(1, x.tilde, u[26]), sigma.y.hat)

Still more generally, we can add in the inferential uncertainty in the estimated
parameters, α, β, and σ. For our purposes here, however, we shall ignore inferential
uncertainty and just treat the parameters α, β, σy , σα as if they were estimated
perfectly from the data.6 In that case, the computation gives us 1000 simulation
draws of ỹ, which we can summarize in various ways. For example,

R codequantile (y.tilde, c(.25,.5,.75))

gives us a predictive median of 0.76 and a 50% predictive interval of [0.26, 1.27].
Exponentiating gives us a prediction on the original (unlogged) scale of exp(0.76) =
2.1, with a 50% interval of [1.3, 3.6].

For some applications we want the average, rather than the median, of the pre-
dictive distribution. For example, the expected risk from radon exposure is propor-
tional to the predictive average or mean, which we can compute directly from the
simulations:

R codeunlogged <- exp(y.tilde)

mean (unlogged)

In this example, the predictive mean is 2.9, which is a bit higher than the median
of 2.1. This makes sense: on the unlogged scale, this predictive distribution is skewed
to the right.

6 One reason we picked Hennepin County (j = 26) for this example is that, with a sample size
of 105, its average radon level is accurately estimated from the available data.
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Prediction for a new observation in a new group

Now suppose we want to predict the radon level for a house, once again with no
basement, but this time in a county not included in our analysis. We then must
generate a new county-level error term, α̃, which we sample from its N(γ0+γ1ũj, σ

2
α)

distribution. We shall assume the new county has a uranium level equal to the
average of the uranium levels in the observed counties:

R code u.tilde <- mean (u)

grab the estimated γ0, γ1, σα from the fitted model:

R code g.0.hat <- fixef(M2)["(Intercept)"]

g.1.hat <- fixef(M2)["u.full"]

sigma.a.hat <- sigma.hat(M2)$sigma$county

and simulate possible intercepts for the new county:

R code a.tilde <- rnorm (n.sims, g.0.hat + g.1.hat*u.tilde, sigma.a.hat)

We can then simulate possible values of the radon level for the new house in this
county:

R code y.tilde <- rnorm (n.sims, a.tilde + b.hat*x.tilde, sigma.y.hat)

Each simulation draw of ỹ uses a different simulation of α̃, thus propagating the
uncertainty about the new county into the uncertainty about the new house in this
county.

Comparison of within-group and between-group predictions. The resulting predic-
tion will be more uncertain than for a house in a known county, since we have no
information about α̃. Indeed, the predictive 50% interval of this new ỹ is [0.28, 1.34],
which is slightly wider than the predictive interval of [0.26, 1.27] for the new house
in county 26. The interval is only slightly wider because the within-county variation
in this particular example is much higher than the between-county variation.

More specifically, from the fitted model on page 266, the within-county (residual)
standard deviation σy is estimated at 0.76, and the between-county standard devi-
ation σα is estimated at 0.16. The log radon level for a new house in an already-
measured county can then be measured to an accuracy of about ±0.76. The log
radon level for a new house in a new county can be predicted to an accuracy of
about ±√

0.762 + 0.162 = ±0.78. The ratio 0.78/0.76 is 1.03, so we would expect
the predictive interval for a new house in a new county to be about 3% wider
than for a new house in an already-measured county. The change in interval width
is small here because the unexplained between-county variance is so small in this
dataset.

For another example, the 50% interval for the log radon level of a house with no
basement in county 2 is [0.28, 1.30], which is centered in a different place but also
is narrower than the predictive interval for a new county.

Nonlinear predictions

Section 7.3 illustrated the use of simulation for nonlinear predictions from classical
regression. We can perform similar calculations in multilevel models. For example,
suppose we are interested in the average radon level among all the houses in Hen-
nepin County (j = 26). We can perform this inference using poststratification, first
estimating the average radon level of the houses with and without basements in the
county, then weighting these by the proportion of houses in the county that have
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basements. We can look up this proportion from other data sources on homes, or
we can estimate it from the available sample data.

For our purposes here, we shall assume that 90% of all the houses in Hennepin
County have basements. The average radon level of all the houses in the county is
then 0.1 times the average for the houses in Hennepin County without basements,
plus 0.9 times the average for those with basements. To simulate in R:

R codey.tilde.basement <- rnorm (n.sims, a.hat[26], sigma.y.hat)

y.tilde.nobasement <- rnorm (n.sims, a.hat[26] + b.hat, sigma.y.hat)

We then compute the estimated mean for 1000 houses of each type in the county
(first exponentiating since our model was on the log scale):

R codemean.radon.basement <- mean (exp (y.tilde.basement))

mean.radon.nobasement <- mean (exp (y.tilde.nobasement))

and finally poststratify given the proportion of houses of each type in the county:

R codemean.radon <- .9*mean.radon.basement + .1*mean.radon.basement

In Section 16.6 we return to the topic of predictions, using simulations from Bugs
to capture the uncertainty in parameter estimates and then propagating inferential
uncertainty into the predictions, rather than simply using point estimates a.hat,
b.hat, and so forth.

12.9 How many groups and how many observations per group are

needed to fit a multilevel model?

Advice is sometimes given that multilevel models can only be used if the number of
groups is higher than some threshold, or if there is some minimum number of obser-
vations per groups. Such advice is misguided. Multilevel modeling includes classical
regression as a limiting case (complete pooling when group-level variances are zero,
no pooling when group-level variances are large). When sample sizes are small, the
key concern with multilevel modeling is the estimation of variance parameters, but
it should still work at least as well as classical regression.

How many groups?

When J , the number of groups, is small, it is difficult to estimate the between-group
variation and, as a result, multilevel modeling often adds little in such situations,
beyond classical no-pooling models. The difficulty of estimating variance parameters
is a technical issue to which we return in Section 19.6; to simplify, when σα cannot
be estimated well, it tends to be overestimated, and so the partially pooled estimates
are close to no pooling (this is what happens when σα has a high value in (12.16)
on page 269).

At the same time, multilevel modeling should not do any worse than no-pooling
regression and sometimes can be easier to interpret, for example because one can
include indicators for all J groups rather than have to select one group as a baseline
category.

One or two groups

With only one or two groups, however, multilevel modeling reduces to classical
regression (unless “prior information” is explicitly included in the model; see Section
18.3). Here we usually express the model in classical form (for example, including
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a single predictor for female, rather than a multilevel model for the two levels of
the sex factor).

Even with only one or two groups in the data, however, multilevel models can
be useful for making predictions about new groups. See also Sections 21.2–22.5 for
further connections between classical and multilevel models, and Section 22.6 for
hierarchical models for improving estimates of variance parameters in settings with
many grouping factors but few levels per factor.

How many observations per group?

Even two observations per group is enough to fit a multilevel model. It is even
acceptable to have one observation in many of the groups. When groups have few
observations, their αj ’s won’t be estimated precisely, but they can still provide par-
tial information that allows estimation of the coefficients and variance parameters
of the individual- and group-level regressions.

Larger datasets and more complex models

As more data arise, it makes sense to add parameters to a model. For example,
consider a simple medical study, then separate estimates for men and women, other
demographic breakdowns, different regions of the country, states, smaller geographic
areas, interactions between demographic and geographic categories, and so forth.
As more data become available it makes sense to estimate more. These complexities
are latent everywhere, but in small datasets it is not possible to learn so much, and
it is not necessarily worth the effort to fit a complex model when the resulting
uncertainties will be so large.

12.10 Bibliographic note

Multilevel models have been used for decades in agriculture (Henderson, 1950,
1984, Henderson et al., 1959, Robinson, 1991) and educational statistics (Novick
et al., 1972, 1973, Bock, 1989), where it is natural to model animals in groups
and students in classrooms. More recently, multilevel models have become popu-
lar in many social sciences and have been reviewed in books by Longford (1993),
Goldstein (1995), Kreft and De Leeuw (1998), Snijders and Bosker (1999), Verbeke
and Molenberghs (2000), Leyland and Goldstein (2001), Hox (2002), and Rauden-
bush and Bryk (2002). We do not attempt to trace here the many applications of
multilevel models in various scientific fields.

It might also be useful to read up on Bayesian inference to understand the the-
oretical background behind multilevel models.7 Box and Tiao (1973) is a classic
reference that focuses on linear models. It predates modern computational meth-
ods but might be useful for understanding the fundamentals. Gelman et al. (2003)
and Carlin and Louis (2000) cover applied Bayesian inference including the basics of
multilevel modeling, with detailed discussions of computational algorithms. Berger

7 As we discuss in Section 18.3, multilevel inferences can be formulated non-Bayesianly; however,
understanding the Bayesian derivations should help with the other approaches too. All mul-
tilevel models are Bayesian in the sense of assigning probability distributions to the varying
regression coefficients. The distinction between Bayesian and non-Bayesian multilevel mod-
els arises only for the question of modeling the other parameters—the nonvarying coefficients
and the variance parameters—and this is typically a less important issue, especially when the
number of groups is large.
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(1985) and Bernardo and Smith (1994) cover Bayesian inference from two different
theoretical perspectives.

The R function lmer() is described by Bates (2005a, b) and was developed from
the linear and nonlinear mixed effects software described in Pinheiro and Bates
(2000).

Multilevel modeling used to be controversial in statistics; see, for example, the
discussions of the papers by Lindley and Smith (1972) and Rubin (1980) for some
sense of the controversy.

The Minnesota radon data were analyzed by Price, Nero, and Gelman (1996);
see also Price and Gelman (2004) for more on home radon modeling.

Statistical researchers have studied partial pooling in many ways; see James and
Stein (1960), Efron and Morris (1979), DuMouchel and Harris (1983), Morris (1983),
and Stigler (1983). Louis (1984), Shen and Louis (1998), Louis and Shen (1999), and
Gelman and Price (1999) discuss some difficulties in the interpretation of partially
pooled estimates. Zaslavsky (1993) discusses adjustments for undercount in the
U.S. Census from a partial-pooling perspective. Normand, Glickman, and Gatsonis
(1997) discuss the use of multilevel models for evaluating health-care providers.

12.11 Exercises

1. Using data of your own that are appropriate for a multilevel model, write the
model in the five ways discussed in Section 12.5.

2. Continuing with the analysis of the CD4 data from Exercise 11.4:

(a) Write a model predicting CD4 percentage as a function of time with varying
intercepts across children. Fit using lmer() and interpret the coefficient for
time.

(b) Extend the model in (a) to include child-level predictors (that is, group-level
predictors) for treatment and age at baseline. Fit using lmer() and interpret
the coefficients on time, treatment, and age at baseline.

(c) Investigate the change in partial pooling from (a) to (b) both graphically and
numerically.

(d) Compare results in (b) to those obtained in part (c).

3. Predictions for new observations and new groups:

(a) Use the model fit from Exercise 12.2(b) to generate simulation of predicted
CD4 percentages for each child in the dataset at a hypothetical next time
point.

(b) Use the same model fit to generate simulations of CD4 percentages at each of
the time periods for a new child who was 4 years old at baseline.

4. Posterior predictive checking: continuing the previous exercise, use the fitted
model from Exercise 12.2(b) to simulate a new dataset of CD4 percentages (with
the same sample size and ages of the original dataset) for the final time point of
the study, and record the average CD4 percentage in this sample. Repeat this
process 1000 times and compare the simulated distribution to the observed CD4
percentage at the final time point for the actual data.

5. Using the radon data, include county sample size as a group-level predictor and
write the varying-intercept model. Fit this model using lmer().

6. Return to the beauty and teaching evaluations introduced in Exercise 3.5 and
4.8.
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(a) Write a varying-intercept model for these data with no group-level predictors.
Fit this model using lmer() and interpret the results.

(b) Write a varying-intercept model that you would like to fit including three
group-level predictors. Fit this model using lmer() and interpret the results.

(c) How does the variation in average ratings across instructors compare to the
variation in ratings across evaluators for the same instructor?

7. This exercise will use the data you found for Exercise 4.7. This time, rather than
repeating the same analysis across each year, or country (or whatever group the
data varies across), fit a multilevel model using lmer() instead. Compare the
results to those obtained in your earlier analysis.

8. Simulate data (outcome, individual-level predictor, group indicator, and group-
level predictor) that would be appropriate for a multilevel model. See how partial
pooling changes as you vary the sample size in each group and the number of
groups.

9. Number of observations and number of groups:

(a) Take a simple random sample of one-fifth of the radon data. (You can cre-
ate this subset using the sample() function in R.) Fit the varying-intercept
model with floor as an individual-level predictor and log uranium as a county-
level predictor, and compare your inferences to what was obtained by fitting
the model to the entire dataset. (Compare inferences for the individual- and
group-level standard deviations, the slopes for floor and log uranium, the av-
erage intercept, and the county-level intercepts.)

(b) Repeat step (a) a few times, with a different random sample each time, and
summarize how the estimates vary.

(c) Repeat step (a), but this time taking a cluster sample: a random sample of
one-fifth of the counties, but then all the houses within each sampled county.



CHAPTER 13

Multilevel linear models: varying slopes,
non-nested models, and other

complexities

This chapter considers some generalizations of the basic multilevel regression. Mod-
els in which slopes and intercepts can vary by group (for example, yi = αj[i] +
βj[i]xi + · · · , where α and β both vary by group j; see Figure 11.1c on page 238)
can also be interpreted as interactions of the group index with individual-level pre-
dictors.

Another direction is non-nested models, in which a given dataset can be struc-
tured into groups in more than one way. For example, persons in a national survey
can be divided by demographics or by states. Responses in a psychological experi-
ment might be classified by person (experimental subject), experimental condition,
and time.

The chapter concludes with some examples of models with nonexchangeable mul-
tivariate structures. We continue with generalized linear models in Chapters 14–15
and discuss how to fit all these models in Chapters 16–19.

13.1 Varying intercepts and slopes

The next step in multilevel modeling is to allow more than one regression coefficient
to vary by group. We shall illustrate with the radon model from the previous chap-
ter, which is relatively simple because it only has a single individual-level predictor,
x (the indicator for whether the measurement was taken on the first floor).

We begin with a varying-intercept, varying-slope model including x but without
the county-level uranium predictor; thus,

yi ∼ N(αj[i] + βj[i]xi, σ2
y), for i = 1, . . . , n(

αj

βj

)
∼ N

((
μα

μβ

)
,

(
σ2

α ρσασβ

ρσασβ σ2
β

))
, for j = 1, . . . , J, (13.1)

with variation in the αj ’s and the βj’s and also a between-group correlation param-
eter ρ. In R:

R codeM3 <- lmer (y ~ x + (1 + x | county))

display (M3)

which yields

R outputlmer(formula = y ~ x + (1 + x | county))

coef.est coef.se

(Intercept) 1.46 0.05

x -0.68 0.09

Error terms:

Groups Name Std.Dev. Corr

county (Intercept) 0.35

x 0.34 -0.34

279
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Residual 0.75

# of obs: 919, groups: county, 85

deviance = 2161.1

In this model, the unexplained within-county variation has an estimated standard
deviation of σ̂y = 0.75; the estimated standard deviation of the county intercepts
is σ̂α = 0.35; the estimated standard deviation of the county slopes is σ̂β = 0.34;
and the estimated correlation between intercepts and slopes is −0.34.

We then can type

R code coef (M3)

to yield

R output $county

(Intercept) x

1 1.14 -0.54

2 0.93 -0.77

3 1.47 -0.67

. . .

85 1.38 -0.65

Or we can separately look at the estimated population mean coefficients μα, μβ and
then the estimated errors for each county. First, we type

R code fixef (M3)

to see the estimated average coefficients (“fixed effects”):

R output (Intercept) x

1.46 -0.68

Then, we type

R code ranef (M3)

to see the estimated group-level errors (“random effects”):

R output (Intercept) x

1 -0.32 0.14

2 -0.53 -0.09

3 0.01 0.01

. . .

85 -0.08 0.03

We can regain the estimated intercept and slope αj , βj for each county by simply
adding the errors to μα and μβ ; thus, the estimated regression line for county 1 is
(1.46 − 0.32) + (−0.68 + 0.14)x = 1.14 − 0.54x, and so forth.

The group-level model for the parameters (αj , βj) allows for partial pooling in
the estimated intercepts and slopes. Figure 13.1 shows the results—the estimated
lines y = αj + βjx—for the radon data in eight different counties.

Including group-level predictors

We can expand the model of (α, β) in (13.1) by including a group-level predictor
(in this case, soil uranium):(

αj

βj

)
∼ N

((
γα
0 + γα

1 uj

γβ
0 + γβ

1 uj

)
,

(
σ2

α ρσασβ

ρσασβ σ2
β

))
, for j = 1, . . . , J. (13.2)

The resulting estimates for the αj ’s and βj ’s are changed slightly from what is
displayed in Figure 13.1, but more interesting are the second-level models them-
selves, whose estimates are shown in Figure 13.2. Here is the result of fitting the
model in R:



VARYING INTERCEPTS AND SLOPES 281

LAC QUI PARLE

晬潯爀

汯
朠
牡
摯
渠
汥
癥
氀

〱

−
ㄱ

㌀

AITKIN

晬潯爀

汯
朠
牡
摯
渠
汥
癥
氀

〱

−
ㄱ

㌀

KOOCHICHING

晬潯爀

汯
朠
牡
摯
渠
汥
癥
氀

〱

−
ㄱ

㌀

DOUGLAS

晬潯爀

汯
朠
牡
摯
渠
汥
癥
氀

〱

−
ㄱ

㌀

CLAY

晬潯爀

汯
朠
牡
摯
渠
汥
癥
氀

〱

−
ㄱ

㌀

STEARNS

晬潯爀

汯
朠
牡
摯
渠
汥
癥
氀

〱

−
ㄱ

㌀

RAMSEY

晬潯爀

汯
朠
牡
摯
渠
汥
癥
氀

〱

−
ㄱ

㌀

ST LOUIS

晬潯爀

汯
朠
牡
摯
渠
汥
癥
氀

〱

−
ㄱ

㌀

Figure 13.1 Multilevel (partial pooling) regression lines y = αj + βjx, displayed for eight
counties j. In this model, both the intercept and the slope vary by county. The light solid
and dashed lines show the no-pooling and complete pooling regression lines. Compare to
Figure 12.4, in which only the intercept varies.
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Figure 13.2 (a) Estimates ± standard errors for the county intercepts αj, plotted versus
county-level uranium measurement uj, along with the estimated multilevel regression line,
α = γα

0 + γα
1 u. (b) Estimates ± standard errors for the county slopes βj , plotted versus

county-level uranium measurement uj, along with the estimated multilevel regression line,
β = γβ

0 + γβ
1 u. Estimates and standard errors are the posterior medians and standard

deviations, respectively. For each graph, the county coefficients roughly follow the line
but not exactly; the discrepancies of the coefficients from the line are summarized by the
county-level standard-deviation parameters σα, σβ.

R outputlmer(formula = y ~ x + u.full + x:u.full + (1 + x | county))

coef.est coef.se

(Intercept) 1.47 0.04

x -0.67 0.08

u.full 0.81 0.09

x:u.full -0.42 0.23

Error terms:

Groups Name Std.Dev. Corr

county (Intercept) 0.12

x 0.31 0.41

Residual 0.75

# of obs: 919, groups: county, 85

deviance = 2114.3

The parameters γα
0 , γβ

0 , γα
1 , γβ

1 in model (13.2) are the coefficients for the intercept,
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x, u.full, and x:u.full, respectively, in the regression. In particular, the inter-
action corresponds to allowing uranium to be a predictor in the regression for the
slopes.

The estimated coefficients in each group (from coef(M4)) are:

R output $county

(Intercept) x u.full x:u.full

1 1.46 -0.65 0.81 -0.42

2 1.50 -0.89 0.81 -0.42

. . .

85 1.44 -0.70 0.81 -0.42

Or we can display the average coefficients (using fixef(M4)):

R output (Intercept) x u.full x:u.full

1.47 -0.67 0.81 -0.42

and the group-level errors for the intercepts and slopes (using ranef(M4)):

R output (Intercept) x

1 -0.01 0.02

2 0.03 -0.21

. . .

85 -0.02 -0.03

The coefficients for the intercept and x vary, as specified in the model. This can be
compared to the model on page 267 in which only the intercept varies.

Going from lmer output to intercepts and slopes

As before, we can combine the average coefficients with the group-level errors to
compute the intercepts αj and slopes βj of model (13.2). For example, the fitted
regression model in county 85 is yi = 1.47 − 0.67xi + 0.81u85 − 0.42xiu85 − 0.02 −
0.03xi. The log uranium level in county 85, u85, is 0.36, and so the fitted regression
line in county 85 is yi = 1.73− 0.85xi. More generally, we can compute a vector of
county intercepts α and slopes β:

R code a.hat.M4 <- coef(M4)[,1] + coef(M4)[,3]*u

b.hat.M4 <- coef(M4)[,2] + coef(M4)[,4]*u

Here it is actually useful to have the variable u defined at the county level (as
compared to u.full = u[county] which was used in the lmer() call). We next
consider these linear transformations algebraically.

Varying slopes as interactions

Section 12.5 gave multiple ways of writing the basic multilevel model. These same
ideas apply to models with varying slopes, which can be considered as interactions
between group indicators and an individual-level predictor. For example, consider
the model with an individual-level predictor xi and a group-level predictor uj,

yi = αj[i] + βj[i]xi + εi

αj = γα
0 + γα

1 uj + ηα
j

βj = γβ
0 + γβ

1 uj + ηβ
j .

We can re-express this as a single model by substituting the formulas for αj and
βj into the equation for yi:

yi =
[
γα
0 + γα

1 uj[i] + ηα
j[i]

]
+
[
γβ
0 + γβ

1 uj[i] + ηβ
j[i]

]
xi + εi. (13.3)
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This expression looks messy but it is really just a regression including various
interactions. If we define a new individual-level predictor vi = uj[i] (in the radon
example, this is the uranium level in the county where your house is located), we
can re-express (13.3) term by term as

yi = a + bvi + cj[i] + dxi + evixi + fj[i]xi + εi.

This can be thought of in several ways:

• A varying-intercept, varying-slope model with four individual-level predictors
(the constant term, vi, xi, and the interaction vixi) and varying intercepts and
slopes that are centered at zero.

• A regression model with 4 + 2J predictors: the constant term, vi, xi, vixi, indi-
cators for the J groups, and interactions between x and the J group indicators.

• A regression model with four predictors and three error terms.

• Or, to go back to the original formulation, a varying-intercept, varying-slope
model with one group-level predictor.

Which of these expressions is most useful depends on the context. In the radon
analysis, where the goal is to predict radon levels in individual counties, the varying-
intercept, varying-slope formulation, as pictured in Figure 13.2, seems most appro-
priate. But in a problem where interest lies in the regression coefficients for xi,
uj, and their interaction, it can be more helpful to focus on these predictors and
consider the unexplained variation in intercepts and slopes merely as error terms.

13.2 Varying slopes without varying intercepts

Figure 11.1 on page 238 displays a varying-intercept model, a varying-slope model,
and a varying-intercept, varying-slope model. Almost always, when a slope is al-
lowed to vary, it makes sense for the intercept to vary also. That is, the graph in
the center of Figure 11.1b usually does not make sense. For example, if the coeffi-
cient of floor varies with county, then it makes sense to allow the intercept of the
regression to vary also. It would be an implausible scenario in which the counties
were all identical in radon levels for houses without basements, but differed in their
coefficients for x.

A situation in which a constant-intercept, varying-slope model is appropriate

Occasionally it is reasonable to allow the slope but not the intercept to vary by
group. For example, consider a study in which J separate experiments are performed
on samples from a common population, with each experiment randomly assigning
a control condition to half its subjects and a treatment to the other half. Further
suppose that the “control” conditions are the same for each experiment but the
“treatments” vary. In that case, it would make sense to fix the intercept and allow
the slope to vary—thus, a basic model of:

yi ∼ N(α + θj[i]Ti, σ2
y)

θj ∼ N(μθ, σ
2
θ), (13.4)

where Ti = 1 for treated units and 0 for controls. Individual-level predictors could
be added to the regression for y, and any interactions with treatment could also
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have varying slopes; for example,

yi ∼ N(α + βxi + θ1,j[i]Ti + β2,j[i]xiTi, σ2
y)(

θ1,j

θ2,j

)
∼ N

((
μ1

μ2

)
,

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

))
, for j = 1, . . . , J, (13.5)

The multilevel model could be further extended with group-level predictors char-
acterizing the treatments.

Fitting in R

To fit such a model in lmer(), we must explicitly remove the intercept from the
group of coefficients that vary by group; for example, here is model (13.4) including
the treatment indicator T as a predictor:

R code lmer (y ~ T + (T - 1 | group))

The varying slope allows a different treatment effect for each group.
And here is model (13.5) with an individual-level predictor x:

R code lmer (y ~ x + T + (T + x:T - 1 | group))

Here, the treatment effect and its interaction with x vary by group.

13.3 Modeling multiple varying coefficients using the scaled

inverse-Wishart distribution

When more than two coefficients vary (for example, yi ∼ N(β0+β1Xi1+β2Xi2, σ
2),

with β0, β1, and β2 varying by group), it is helpful to move to matrix notation in
modeling the coefficients and their group-level regression model and covariance
matrix.

Simple model with two varying coefficients and no group-level predictors

Starting with the model that begins this chapter, we can rewrite the basic varying-
intercept, varying-slope model (13.1) in matrix notation as

yi ∼ N(XiBj[i], σ2
y), for i = 1, . . . , n

Bj ∼ N(MB, ΣB), for j = 1, . . . , J, (13.6)

where

• X is the n×2 matrix of predictors: the first column of X is a column of 1’s (that
is, the constant term in the regression), and the second column is the predictor
x. Xi is then the vector of length 2 representing the ith row of X , and XiBj[i] is
simply αj[i] + βj[i]xi from the top line of (13.1).

• B = (α, β) is the J × 2 matrix of individual-level regression coefficients. For any
group j, Bj is a vector of length 2 corresponding to the jth row of B (although
for convenience we consider Bj as a column vector in the product XiBj[i] in
model (13.6)). The two elements of Bj correspond to the intercept and slope,
respectively, for the regression model in group j. Bj[i] in the first line of (13.6)

is the j[i]th row of B, that is, the vector representing the intercept and slope for
the group that includes unit i.

• MB = (μα, μβ) is a vector of length 2, representing the mean of the distribution
of the intercepts and the mean of the distribution of the slopes.
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• ΣB is the 2 × 2 covariance matrix representing the variation of the intercepts
and slopes in the population of groups, as in the second line of (13.1).

We are following our general notation in which uppercase letters represent matrices:
thus, the vectors α and β are combined into the matrix B.

In the fitted radon model on page 279, the parameters of the group-level model are

estimated at M̂B = (1.46,−0.68) and Σ̂B =

(
σ̂2

a ρ̂σ̂aσ̂b

ρ̂σ̂aσ̂b σ̂2
b

)
, where σ̂a = 0.35,

σ̂b = 0.34, and ρ̂ = −0.34. The estimated coefficient matrix B̂ is given by the 85×2
array at the end of the display of coef(M3) on page 280.

More than two varying coefficients

The same expression as above holds, except that the 2’s are replaced by K’s, where
K is the number of individual-level predictors (including the intercept) that vary by
group. As we discuss shortly in the context of the inverse-Wishart model, estimation
becomes more difficult when K > 2 because of constraints among the correlation
parameters of the covariance matrix ΣB.

Including group-level predictors

More generally, we can have J groups, K individual-level predictors, and L pre-
dictors in the group-level regression (including the constant term as a predictor in
both cases). For example, K = L = 2 in the radon model that has floor as an
individual predictor and uranium as a county-level predictor.

We can extend model (13.6) to include group-level predictors:

yi ∼ N(XiBj[i], σ2
y), for i = 1, . . . , n

Bj ∼ N(UjG, ΣB), for j = 1, . . . , J, (13.7)

where B is the J ×K matrix of individual-level coefficients, U is the J ×L matrix
of group-level predictors (including the constant term), and G is the L×K matrix
of coefficients for the group-level regression. Uj is the jth row of U , the vector of
predictors for group j, and so UjG is a vector of length K.

Model (13.1) is a special case with K = L = 2, and the coefficients in G are

then γα
0 , γβ

0 , γα
1 , γβ

1 . For the fitted radon model on page 279, the γ’s are the four
unmodeled coefficients (for the intercept, x, u.full, and x:u.full, respectively),

and the two columns of the estimated coefficient matrix B̂ are estimated by a.hat

and b.hat, as defined by the R code on page 282.

Including individual-level predictors whose coefficients do not vary by group

The model can be further expanded by adding unmodeled individual-level coeffi-
cients, so that the top line of (13.7) becomes

yi ∼ N(X0
i β0 + XiBj[i], σ2

y), for i = 1, . . . , n, (13.8)

where X0 is a matrix of these additional predictors and β0 is the vector of their
regression coefficients (which, by assumption, are common to all the groups).

Model (13.8) is sometimes called a mixed-effects regression, where the β0’s and
the B’s are the fixed and random effects, respectively. As noted on pages 2 and
245, we avoid these terms because of their ambiguity in the statistical literature.
For example, sometimes unvarying coefficients such as the β0’s in model (13.8) are
called “fixed,” but sometimes the term “fixed effects” refers to intercepts that vary
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by groups but are not given a multilevel model (this is what we call the “no-pooling
model,” as pictured, for example, by the solid lines in Figure 12.2 on page 255).

Equivalently, model (13.8) can be written by folding X0 and X into a common
predictor matrix X , folding β0 and B into a common coefficient matrix B, and
using model (13.1), with the appropriate elements in ΣB set to zero, implying no
variation among groups for certain coefficients.

Modeling the group-level covariance matrix using the scaled inverse-Wishart
distribution

When the number K of varying coefficients per group is more than two, modeling
the correlation parameters ρ is a challenge. In addition to each of the correlations
being restricted to fall between −1 and 1, the correlations are jointly constrained in
a complicated way—technically, the covariance matrix Σβ must be positive definite.
(An example of the constraint is: if ρ12 = 0.9 and ρ13 = 0.9, then ρ23 must be at
least 0.62.)

Modeling and estimation are more complicated in this jointly constrained space.
We first introduce the inverse-Wishart model, then generalize to the scaled inverse-
Wishart, which is what we recommend for modeling the covariance matrix of the
distribution of varying coefficients.

Inverse-Wishart model. One model that has been proposed for the covariance
matrix Σβ is the inverse-Wishart distribution, which has the advantage of being
computationally convenient (especially when using Bugs, as we illustrate in Section
17.1) but the disadvantage of being difficult to interpret.

In the model ΣB ∼ Inv-WishartK+1(I), the two parameters of the inverse-
Wishart distribution are the degrees of freedom (here set to K +1, where K is
the dimension of B, that is, the number of coefficients in the model that vary by
group) and the scale (here set to the K × K identity matrix).

To understand this model, we consider its implications for the standard deviation
and correlations. Recall that if there are K varying coefficients, then ΣB is a K×K
matrix, with diagonal elements Σkk = σ2

k and off-diagonal-elements Σkl = ρklσkσl

(generalizing models (13.1) and (13.2) to K > 2).

Setting the degrees-of-freedom parameter to K +1 has the effect of setting a
uniform distribution on the individual correlation parameters (that is, they are
assumed equally likely to take on any value between −1 and 1).

Scaled inverse-Wishart model. When the degrees of freedom parameter of the
inverse-Wishart distribution is set to K+1, the resulting model is reasonable for the
correlations but is quite constraining on the scale parameters σk. This is a prob-
lem because we would like to estimate σk from the data. Changing the degrees of
freedom allows the σk’s to be estimated more freely, but at the cost of constraining
the correlation parameters.

We get around this problem by expanding the inverse-Wishart model with a new
vector of scale parameters ξk:

ΣB = Diag(ξ)QDiag(ξ),

with the unscaled covariance matrix Q being given the inverse-Wishart model:

Q ∼ Inv-WishartK+1(I).

The variances then correspond to the diagonal elements of the unscaled covariance
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Figure 13.3 Multilevel regression lines y = αj+βjx for log earnings on height (among those
with positive earnings), in four ethnic categories j. The gray lines indicate uncertainty in
the fitted regressions.
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Figure 13.4 Scatterplot of estimated intercepts and slopes (for whites, hispanics, blacks,
and others), (αj , βj), for the earnings-height regressions shown in Figure 13.3. The ex-
treme negative correlation arises because the center of the range of height is far from zero.
Compare to the coefficients in the rescaled model, as displayed in Figure 13.7.

matrix Q, multiplied by the appropriate scaling factors ξ:

σ2
k = Σkk = ξ2

kQkk, for k = 1, . . . , K,

and the covariances are

Σkl = ξkξlQkl, for k, l = 1, . . . , K,

We prefer to express in terms of the standard deviations,

σk = |ξk|
√

Qkk,

and correlations
ρkl = Σkl/(σkσl).

The parameters in ξ and Q cannot be interpreted separately: they are a convenient
way to set up the model, but it is the standard deviations σk and the correlations ρkl

that are of interest (and which are relevant for producing partially pooled estimates
for the coefficients in B).

As with the unscaled Wishart, the model implies a uniform distribution on the
correlation parameters. As we discuss next, it can make sense to transform the data
to remove any large correlations that could be expected simply from the structure
of the data.

13.4 Understanding correlations between group-level intercepts and

slopes

Recall that varying slopes can be interpreted as interactions between an individual-
level predictor and group indicators. As with classical regression models with in-
teractions, the intercepts can often be more clearly interpreted if the continuous
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Figure 13.5 Sketch illustrating the difficulty of simultaneously estimating α and β. The
lines show the regressions for the four ethnic groups as displayed in Figure 13.3: the center
of the range of x values is far from zero, and so small changes in the slope induce large
changes in the intercept.
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Figure 13.6 Multilevel regression lines y = αj + βjz, for log earnings given mean-adjusted
height (zi = xi − x̄), in four ethnic groups j. The gray lines indicate uncertainty in the
fitted regressions.

predictor is appropriately centered. We illustrate with the height and earnings ex-
ample from Chapter 4.

We begin by fitting a multilevel model of log earnings given height, allowing the
coefficients to vary by ethnicity. The data and fitted model are displayed in Figure
13.3. (Little is gained by fitting a multilevel model here—with only four groups,
a classical no-pooling model would work nearly as well, as discussed in Section
12.9—but this is a convenient example to illustrate a general point.)

Figure 13.4 displays the estimates of (αj , βj) for the four ethnic groups, and they
have a strong negative correlation: the groups with high values of α have relatively
low values of β, and vice versa. This correlation occurs because the center of the
x-values of the data is far from zero. The regression lines have to go roughly through
the center of the data, and then changes in the slope induce opposite changes in
the intercept, as illustrated in Figure 13.5.

There is nothing wrong with a high correlation between the α’s and β’s, but
it makes the estimated intercepts more difficult to interpret. As with interaction
models in classical regression, it can be helpful to subtract the average value of the
continuous x before including it in the regression; thus, yi ∼ N(αj[i] + βj[i]zi, σ2

y),
where zi = xi−x̄. Figures 13.6 and 13.7 show the results for the earnings regression:
the correlation has pretty much disappeared. Centering the predictor x will not
necessarily remove correlations between intercepts and slopes—but any correlation
that remains can then be more easily interpreted. In addition, centering can speed
convergence of the Gibbs sampling algorithm used by Bugs and other software.

We fit this model, and the subsequent models in this chapter, in Bugs (see Chap-
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Figure 13.7 Scatterplot of estimated intercepts and slopes, (αj , βj), for the regression of
earnings on mean-adjusted height z, for the four groups j displayed in Figure 13.6. The
coefficients are no longer strongly correlated (compare to Figure 13.4).

ter 17 for examples of code) because, as discussed in Section 12.4, the current
version of lmer() does not work so well when the number of groups is small—and,
conversely, with these small datasets, Bugs is not too slow.

13.5 Non-nested models

So far we have considered the simplest hierarchical structure of individuals i in
groups j. We now discuss models for more complicated grouping structures such as
introduced in Section 11.3.

Example: a psychological experiment with two potentially interacting factors

Figure 13.8 displays data from a psychological experiment of pilots on flight simu-
lators, with n = 40 data points corresponding to J = 5 treatment conditions and
K = 8 different airports. The responses can be fit to a non-nested multilevel model
of the form

yi ∼ N(μ + γj[i] + δk[i], σ2
y), for i = 1, . . . , n

γj ∼ N(0, σ2
γ), for j = 1, . . . , J

δk ∼ N(0, σ2
δ ), for k = 1, . . . , K. (13.9)

The parameters γj and δk represent treatment effects and airport effects. Their
distributions are centered at zero (rather than given mean levels μγ , μδ) because
the regression model for y already has an intercept, μ, and any nonzero mean for
the γ and δ distributions could be folded into μ. As we shall see in Section 19.4,
it can sometimes be effective for computational purposes to add extra mean-level
parameters into the model, but the coefficients in this expanded model must be
interpreted with care.

We can perform a quick fit as follows:

R codelmer (y ~ 1 + (1 | group.id) + (1 | scenario.id))

where group.id and scenario.id are the index variables for the five treatment
conditions and eight airports, respectively.

When fit to the data in Figure 13.8, the estimated residual standard deviations
at the individual, treatment, and airport levels are σ̂y = 0.23, σ̂γ = 0.04, and
σ̂δ = 0.32. Thus, the variation among airports is huge—even larger than that among
individual measurements—but the treatments vary almost not at all. This general
pattern can be seen in Figure 13.8.



290 VARYING SLOPES AND NON-NESTED MODELS

乎
奙

奎
乙

楮
晬
楧
桴

卨敭祡 䊒桡洀 倀楴瑳执栀一慧潹愀副獥汷渀 䑥瑲潩琀呯汥摯 䍨慲汯瑴攀

Figure 13.8 Success rates of pilots training on a flight simulator with five different treat-
ments and eight different airports. Shadings in the 40 cells i represent different success
rates yi, with black and white corresponding to 0 and 100%, respectively. For convenience
in reading the display, the treatments and airports have each been sorted in increasing order
of average success. These 40 data points have two groupings—treatments and airports—
which are not nested.

Data in matrix form

airport treatment conditions

1 0.38 0.25 0.50 0.14 0.43
2 0.00 0.00 0.67 0.00 0.00
3 0.38 0.50 0.33 0.71 0.29
4 0.00 0.12 0.00 0.00 0.86
5 0.33 0.50 0.14 0.29 0.86
6 1.00 1.00 1.00 1.00 0.86
7 0.12 0.12 0.00 0.14 0.14
8 1.00 0.86 1.00 1.00 0.75

Data in vector form

y j k

0.38 1 1
0.00 1 2
0.38 1 3
0.00 1 4
0.33 1 5
1.00 1 6
0.12 1 7
1.00 1 8
0.25 2 1
. . . . . . . . .

Figure 13.9 Data from Figure 13.8 displayed as an array (yjk) and in our preferred nota-
tion as a vector (yi) with group indicators j[i] and k[i].

Model (13.9) can also be written more cleanly as yjk ∼ N(μ+γj +δk, σ2
y), but we

actually prefer the more awkward notation using j[i] and k[i] because it emphasizes
the multilevel structure of the model and is not restricted to balanced designs. When
modeling a data array of the form (yjk), we usually convert it into a vector with
index variables for the rows and columns, as illustrated in Figure 13.9 for the flight
simulator data.

Example: regression of earnings on ethnicity categories, age categories, and height

All the ideas of the earlier part of this chapter, introduced in the context of a
simple structure of individuals within groups, apply to non-nested models as well.
For example, Figure 13.10 displays the estimated regression of log earnings, yi, on
height, zi (mean-adjusted, for reasons discussed in the context of Figures 13.3–
13.6), applied to the J = 4 ethnic groups and K = 3 age categories. In essence,
there is a separate regression model for each age group and ethnicity combination.
The multilevel model can be written, somewhat awkwardly, as a data-level model,

yi ∼ N(αj[i],k[i] + βj[i],k[i]zi, σ2
y), for i = 1, . . . , n,
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Figure 13.10 Multilevel regression lines y = β0
j,k + β1

j,kz, for log earnings y given mean-
adjusted height z, for four ethnic groups j and three age categories k. The gray lines
indicate uncertainty in the fitted regressions.

a decomposition of the intercepts and slopes into terms for ethnicity, age, and
ethnicity × age,(

αj,k

βj,k

)
=

(
μ0

μ1

)
+

(
γeth
0j

γeth
1j

)
+

(
γage
0k

γage
1k

)
+

(
γeth×age
0jk

γeth×age
1jk

)
,

and models for variation,(
γeth
0j

γeth
1j

)
∼ N

((
0
0

)
, Σeth

)
, for j = 1, . . . , J(

γage
0k

γage
1k

)
∼ N

((
0
0

)
, Σage

)
, for k = 1, . . . , K(

γeth×age
0jk

γeth×age
1jk

)
∼ N

((
0
0

)
, Σeth×age

)
, for j = 1, . . . , J ; k = 1, . . . , K.

Because we have included means μ0, μ1 in the decomposition above, we can center
each batch of coefficients at 0.

Interpretation of data-level variance. The data-level errors have estimated resid-
ual standard deviation σ̂y = 0.87. That is, given ethnicity, age group, and height,
log earnings can be predicted to within approximately ±0.87, and so earnings them-
selves can be predicted to within a multiplicative factor of e0.87 = 2.4. So earnings
cannot be predicted well at all by these factors, which is also apparent from the
scatter in Figure 13.10.

Interpretation of group-level variances. The group-level errors can be separated
into intercept and slope coefficients. The intercepts have estimated residual stan-
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Figure 13.11 Data from a 5×5 latin square experiment studying the effects of five ordered
treatments on the yields of millet crops, from Snedecor and Cochran (1989). Each cell
shows the randomly assigned treatment and the observed yield for the plot.

dard deviations of (Σ̂eth
00 )1/2 = 0.08 at the ethnicity level, (Σ̂age

00 )1/2 = 0.25 at the

age level, and (Σ̂eth×age
00 )1/2 = 0.11 at the ethnicity × age level. Because we have

rescaled height to have a mean of zero (see Figure 13.10), we can interpret these
standard deviations as the relative importance of each factor (ethnicity, age group,
and their interaction) on log earnings at the average height in the population.

This model fits earnings on the log scale and so these standard deviations can
be interpreted accordingly. For example, the residual standard deviation of 0.08 for
the ethnicity coefficients implies that the predictive effects of ethnic groups in the
model are on the order of ±0.08, which correspond to multiplicative factors from
about e−0.08 = 0.92 to e0.08 = 1.08.

The slopes have estimated residual standard deviations of (Σ̂eth
11 )1/2 = 0.03 at

the ethnicity level, (Σ̂age
11 )1/2 = 0.02 at the age level, and (Σ̂eth×age

11 )1/2 = 0.02 at
the ethnicity × age level. These slopes are per inch of height, so, for example, the
predictive effects of ethnic groups in the model are in the range of ±3% in income
per inch of height. One can also look at the estimated correlation between intercepts
and slopes for each factor.

Example: a latin square design with grouping factors and group-level predictors

Non-nested models can also include group-level predictors. We illustrate with data
from a 5×5 latin square experiment, a design in which 25 units arranged in a square
grid are assigned five different treatments, with each treatment being assigned to one
unit in each row and each column. Figure 13.11 shows the treatment assignments
and data from a small agricultural experiment. There are three non-nested levels
of grouping—rows, columns, and treatments—and each has a natural group-level
predictor corresponding to a linear trend. (The five treatments are ordered.)

The corresponding multilevel model can be written as

yi ∼ N(μ + βrow
j[i] + βcolumn

k[i] + βtreat
l[i] , σ2

y), for i = 1, . . . , 25

βrow
j ∼ N(γrow · (j − 3), σ2

β row), for j = 1, . . . , 5

βcolumn
k ∼ N(γcolumn · (k − 3), σ2

β column), for k = 1, . . . , 5

βtreat
l ∼ N(γtreat · (l − 3), σ2

β treat), for l = 1, . . . , 5. (13.10)

Thus j, k, and l serve simultaneously as values of the row, column, and treatment
predictors.

By subtracting 3, we have centered the row, column, and treatment predictors at
zero; the parameter μ has a clear interpretation as the grand mean of the data, with
the different β’s supplying deviations for rows, columns, and treatments. As with
group-level models in general, the linear trends at each level potentially allow more
precise estimates of the group effects, to the extent that these trends are supported
by the data. An advantage of multilevel modeling here is that it doesn’t force a
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Figure 13.12 Estimates ±1 standard error for the row, column, and treatment effects for
the latin square data in Figure 13.11. The five levels of each factor are ordered, and the
lines display the estimated group-level regressions, y=μ+γrow

·(x−3), y =μ+γcolumn
·(x−3),

and y=μ+γtreat
· (x−3).

choice between a linear fit and separate estimates for each level of a predictor. (This
is an issue we discussed more generally in Chapter 11 in the context of including
group indicators as well as group-level predictors.)

Figure 13.12 shows the estimated row, column, and treatment effects on graphs,
along with the estimated linear trends. The grand mean μ has been added back to
each of these observations so that the plots are on the scale of the original data.
This sort of data structure is commonly studied using the analysis of variance,
whose connections with multilevel models we discuss fully in Chapter 22, including
a discussion of this latin square example in Section 22.5.

13.6 Selecting, transforming, and combining regression inputs

As with classical regression (see Section 4.5), choices must be made in multilevel
models about which input variables to include, and how best to transform and
combine them. We discuss here how some of these decisions can be expressed as
particular choices of parameters in a multilevel model. The topic of formalizing
modeling choices is currently an active area of research—key concerns include using
information in potential input variables without being overwhelmed by the com-
plexity of the relating model, and including model choice in uncertainty estimates.
As discussed in Section 9.5, the assumption of ignorability in observational studies
is more plausible when controlling for more pre-treatment inputs, which gives us a
motivation to include more regression predictors.

Classical models for regression coefficients

Multilevel modeling includes classical least squares regression as a special case.
In a multilevel model, each coefficient is part of a model with some mean and
standard deviation. (These mean values can themselves be determined by group-
level predictors in a group-level model.) In classical regression, every predictor is
either in or out of the model, and each of these options corresponds to a special
case of the multilevel model.

• If a predictor is “in,” this corresponds to a coefficient model with standard
deviation of ∞: no group-level information is used to estimate this parameter,
so it is estimated directly using least squares. It turns out that in this case
the group-level mean is irrelevant (see formula (12.16) on page 269 for the case
σα = ∞); for convenience we often set it to 0.

• If a predictor is “out,” this corresponds to a group-level model with group-level
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mean 0 and standard deviation 0: the coefficient estimate is then fixed at zero
(see (12.16) for the case σα = 0) with no uncertainty.

Multilevel modeling as an alternative to selecting regression predictors

Multilevel models can be used to combine inputs into more effective regression
predictors, generalizing some of the transformation ideas discussed in Section 4.6.
When many potential regression inputs are available, the fundamental approach is
to include as many of these inputs as possible, but not necessarily as independent
least squares predictors.

For example, Witte et al. (1994) describe a logistic regression in a case-control
study of 362 persons, predicting cancer incidence given information on consumption
of 87 different foods (and also controlling for five background variables which we do
not discuss further here). Each of the foods can potentially increase or decrease the
probability of cancer, but it would be hard to trust the result of a regression with
87 predictors fit to only 362 data points, and classical tools for selecting regression
predictors do not seem so helpful here. In our general notation, the challenge is to
estimate the logistic regression of cancer status y on the 362× 87 matrix X of food
consumption (and the 362 × 6 matrix X0 containing the constant term and the 5
background variables).

More information is available, however, because each of the 87 foods can be
characterized by its level of each of 35 nutrients, information that can be expressed
as an 87 × 36 matrix of predictors Z indicating how much of each nutrient is in
each food. Witte et al. fit the following multilevel model:

Pr(yi = 1) = logit−1(X0
i β0 + XiBj[i]), for i = 1, . . . , 362

Bj ∼ N(Zjγ, σ2
β), for j = 1, . . . , 87. (13.11)

The food-nutrient information in Z allows the multilevel model to estimate separate
predictive effects for foods, after controlling for systematic patterns associated with
nutrients. In the extreme case that σβ = 0, all the variation associated with the
foods is explained by the nutrients. At the other extreme, σβ = ∞ would imply
that the nutrient information is not helping at all.

Model (13.11) is helpful in reducing the number of food predictors from 87 to
35. At this point, Witte et al. used substantive understanding of diet and cancer
to understand the result. Ultimately, we would like to have a model that structures
the 35 predictors even more, perhaps by categorizing them into batches or com-
bining them in some way. The next example sketches how this might be done; it is
currently an active research topic to generally structure large numbers of regression
predictors.

Linear transformation and combination of inputs in a multilevel model

For another example, we consider the problem of forecasting presidential elections
by state (see Section 1.2). A forecasting model based on 11 recent national elections
has more than 500 “data points”—state-level elections—and can then potentially in-
clude many state-level predictors measuring factors such as economic performance,
incumbency, and popularity. However, at the national level there are really only
11 observations and so one must be parsimonious with national-level predictors.
In practice, this means performing some preliminary data analysis to pick a sin-
gle economic predictor, a single popularity predictor, and maybe one or two other
predictors based on incumbency and political ideology.
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Setting up a model to allow partial pooling of a set of regression predictors

A more general approach to including national predictors is possible using multilevel
modeling. For example, suppose we wish to include five measures of the national
economy (for example, change in GDP per capita, change in unemployment, and
so forth). The usual approach (which we have followed in the past in this problem)
is to choose one of these as the economic predictor, x, thus writing the model as

yi = α + βxi + · · · , (13.12)

where the dots indicate all the rest of the model, including other state-level and
national predictors, as well as error terms at the state, regional, and national levels.
Here we focus on the economic inputs, for simplicity setting aside the rest of the
model.

Instead of choosing just one of the five economic inputs, it would perhaps be
better first to standardize each of them (see Section 4.2), orient them so they are
in the same direction, label these standardized variables as X(j), for j = 1, . . . , 5,
and then average them into a single predictor, defined for each data point as

xavg
i =

1

5

5∑
j=1

∑
Xij , for i = 1, . . . .n. (13.13)

This new xavg can be included in place of x as the regression predictor in (13.12),
or, equivalently,

yi = α + βxavg
i + · · ·

= α +
1

5
βXi1 + · · · + 1

5
βXi5 + · · · .

The resulting model will represent an improvement to the extent that the average
of the five standardized economy measures is a better predictor than the single
measure chosen before.

However, model (13.13) is limited in that it restricts the coefficients of the five
separate xj ’s to be equal. More generally, we can replace (13.13) by a weighted
average:

xw.avg
i =

1

5

5∑
j=1

γjXij , for i = 1, . . . , n, (13.14)

so that the data model becomes

yi = α + βxw.avg
i + · · ·

= α +
1

5
γ1βXi1 + · · · + 1

5
γ5βXi5 + · · · . (13.15)

We would like to estimate the relative coefficients γj from the data, but we cannot
simply use classical regression, since this would then be equivalent to estimating a
separate coefficient for each of the five predictors, and we have already established
that not enough data are available to do a good job of this.

Instead, one can set up a model for the γj ’s:

γj ∼ N(1, σ2
γ), for j = 1, . . . , 5, (13.16)

so that, in the model (13.15), the common coefficient β can be estimated classically,
but the relative coefficients γj are part of a multilevel model. The hyperparameter
σγ can be interpreted as follows:

• If σγ = 0, the model reduces to the simple averaging (13.14): complete pooling
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of the γj ’s to the common value of 1, so that the combined predictor xw.avg is
simply xavg, the average of the five individual X(j)’s.

• If σγ = ∞, there is no pooling, with the individual coefficients 1
5γjβ estimated

separately using least squares.

• When σγ is positive but finite, the γj ’s are partially pooled, so that the five
predictors xj have coefficients that are near each other but not identical.

Depending on the amount of data available, σγ can be estimated as part of the
model or set to a value such as 0.3 that constrains the γj ’s to be fairly close to 1
and thus constrains the coefficients of the individual xj ’s toward each other in the
data model (13.15).

Connection to factor analysis

A model can include multiplicative parameters for both modeling and computa-
tional purposes. For example, we could predict the election outcome in year t in
state s within region r[s] as

yst = β(0)X
(0)
st + α1

5∑
j=1

β
(1)
j X

(1)
jt + α2γt + α3δr[s],t + εst,

where X(0) is the matrix of state × year-level predictors, X(1) is the matrix of year-
level predictors, and γ, δ, and ε are national, regional, and statewide error terms.
In this model, the auxiliary parameters α2 and α3 exist for purely computational
reasons, and they can be estimated, with the understanding that we are interested
only in the products α2γt and α3δr,t. More interestingly, α1 serves both a compu-

tational and modeling role—the β
(1)
j parameters have a common N(1

5 , σ2
m) model,

and α1 has the interpretation as the overall coefficient for the economic predictors.
More generally, we can imagine K batches of predictors, with the data-level

regression model using a weighted average from each batch:

y = X(0)β(0) + β1x
w.avg, 1 + · · · + βkxw.avg, K + · · · ,

where each predictor xw.avg
k is a combination of Jk individual predictors xjk:

for each k: xw.avg, k
i =

1

Jk

Jk∑
j=1

γjkxjk
i , for i = 1, . . . , n.

This is equivalent to a regression model on the complete set of available predictors,
x11, . . . , xJ11; x12, . . . , xJ22; . . . , x1K , . . . , xJKK , where the predictor xjk gets the co-
efficient 1

Jk
γjkβk. Each batch of relative weights γ is then modeled hierarchically:

for each k: γjk ∼ N(1, σ2
γ k), for j = 1, . . . , Jk,

with the hyperparameters σγ k estimated from the data or set to low values such
as 0.3.

In this model, each combined predictor xw.avg, k represents a “factor” formed by a
linear combination of the Jk individual predictors, βk represents the importance of
that factor, and the γjk’s give the relative importance of the different components.

As noted at the beginning of this section, these models are currently the subject
of active research, and we suggest that they can serve as a motivation to specially
tailored models for individual problems rather than as off-the-shelf solutions to
generic multilevel problems with many predictors.
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13.7 More complex multilevel models

The models we have considered so far can be generalized in a variety of ways.
Chapters 14 and 15 discuss multilevel logistic and generalized linear models. Other
extensions within multilevel linear and generalized linear models include the fol-
lowing:

• Variances can vary, as parametric functions of input variables, and in a mul-
tilevel way by allowing different variances for groups. For example, the model
yi ∼ N(Xiβ, σ2

i ), with σi = exp(Xiγ), allows the variance to depend on the
predictors in a way that can be estimated from the data, and similarly, in a
multilevel context, a model such as σi = exp(aj[i] + bxi) allows variances to vary
by group. (It is natural to model the parameters σ on the log scale because they
are restricted to be positive.)

• Models with several factors can have many potential interactions, which them-
selves can be modeled in a structured way, for example with larger variances for
coefficients of interactions whose main effects are large. This is a model-based,
multilevel version of general advice for classical regression modeling.

• Regression models can be set up for multivariate outcomes, so that vectors of
coefficients become matrices, with a data-level covariance matrix. These models
become correspondingly more complex when multilevel factors are added.

• Time series can be modeled in many ways going beyond simple autoregressions,
and these parameters can vary by group with time-series cross-sectional data.
This can be seen as a special case of non-nested groupings (for example, country
× year), with calendar time being a group-level predictor.

• One way to go beyond linearity is with nonparametric regression, with the sim-
plest version being yi = g(Xi, θ) + εi, and the function g being allowed to have
some general form (for example, cubic splines, which are piecewise-continuous
third-degree polynomials). Versions of such models can also be estimated using
locally weighted regression, and again can be expanded to multilevel structures
as appropriate.

• More complicated models are appropriate to data with spatial or network struc-
ture. These can be thought of as generalizations of multilevel models in which
groups (for example, social networks) are not necessarily disjoint, and in which
group membership can be continuous (some connections are stronger than oth-
ers) rather than simply “in” or “out.”

We do not discuss any of these models further here, but we wanted to bring them
up to be clear that the particular models presented in this book are just the starting
point to our general modeling approach.

13.8 Bibliographic note

The textbooks by Kreft and De Leeuw (1998), Raudenbush and Bryk (2002), and
others discuss multilevel models with varying intercepts and slopes. For an early
example, see Dempster, Rubin, and Tsutakawa (1981). Non-nested models are dis-
cussed by Rasbash and Browne (2003). The flight simulator example comes from
Gawron et al. (2003), and the latin square example comes from Snedecor and
Cochran (1989).

Models for covariance matrices have been presented by Barnard, McCulloch, and
Meng (1996), Pinheiro and Bates (1996), Daniels and Kass (1999, 2001), Daniels
and Pourahmadi (2002). Boscardin and Gelman (1996) discuss parametric models
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for unequal variances in multilevel linear regression. The scaled inverse-Wishart
model we recommend comes from O’Malley and Zaslavsky (2005).

The models for combining regression predictors discussed in Section 13.6 ap-
pear in Witte et al. (1994), Greenland (2000), Gelman (2004b), and Gustafson and
Greenland (2005). See also Hodges et al. (2005) and West (2003) on methods of
including many predictors and interactions in a regression. Other work on select-
ing and combining regression predictors in multilevel models includes Madigan and
Raftery (1994), Hoeting et al. (1999), Chipman, George, and McCulloch (2001), and
Dunson (2006). The election forecasting example is discussed in Gelman and King
(1993) and Gelman et al. (2003, section 15.2); see Fair (1978), Rosenstone (1983),
Campbell (1992), and Wlezien and Erikson (2004, 2005) for influential work in this
area.

Some references for hierarchical spatial and space-time models include Besag,
York, and Mollie (1991), Waller et al. (1997), Besag and Higdon (1999), Wikle et al.
(2001), and Bannerjee, Gelfand, and Carlin (2003). Jackson, Best, and Richardson
(2006) discuss hierarchical models combining aggregate and survey data in public
health. Datta et al. (1999) compare hierarchical time series models; see also Fay and
Herriot (1979). Girosi and King (2005) present a multilevel model for estimating
trends within demographic subgroups.

For information on nonparametric methods such as lowess, splines, wavelets, haz-
ard regression, generalized additive models, and regression trees, see Hastie, Tibshi-
rani, and Friedman (2002), and, for examples in R, see Venables and Ripley (2002).
Crainiceanu, Ruppert, and Wand (2005) fit spline models using Bugs. MacLehose
et al. (2006) combine ideas of nonparametric and multilevel models.

13.9 Exercises

1. Fit a multilevel model to predict course evaluations from beauty and other pre-
dictors in the beauty dataset (see Exercises 3.5, 4.8, and 12.6) allowing the
intercept and coefficient for beauty to vary by course category:

(a) Write the model in statistical notation.

(b) Fit the model using lmer() and discuss the results: the coefficient estimates
and the estimated standard deviation and correlation parameters. Identify
each of the estimated parameters with the notation in your model from (a).

(c) Display the estimated model graphically in plots that also include the data.

2. Models for adjusting individual ratings: a committee of 10 persons is evaluat-
ing 100 job applications. Each person on the committee reads 30 applications
(structured so that each application is read by three people) and gives each a
numerical rating between 1 and 10.

(a) It would be natural to rate the applications based on their combined scores;
however, there is a worry that different raters use different standards, and we
would like to correct for this. Set up a model for the ratings (with parameters
for the applicants and the raters).

(b) It is possible that some persons on the committee show more variation than
others in their ratings. Expand your model to allow for this.

3. Non-nested model: continuing the Olympic ratings example from Exercise 11.3:

(a) Write the notation for a non-nested multilevel model (varying across skaters
and judges) for the technical merit ratings and fit using lmer().
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(b) Fit the model in (a) using the artistic impression ratings.

(c) Display your results for both outcomes graphically.

(d) Use posterior predictive checks to investigate model fit in (a) and (b).

4. Models with unequal variances: the folder age.guessing contains a dataset from
Gelman and Nolan (2002) from a classroom demonstration in which 10 groups
of students guess the ages of 10 different persons based on photographs. The
dataset also includes the true ages of the people in the photographs.

Set up a non-nested model to these data, including a coefficient for each of the
persons in the photos (indicating their apparent age), a coefficient for each of
the 10 groups (indicating potential systematic patterns of groups guessing high
or low), and a separate error variance for each group (so that some groups are
more consistent than others).

5. Return to the CD4 data introduced from Exercise 11.4.

(a) Extend the model in Exercise 12.2 to allow for varying slopes for the time
predictor.

(b) Next fit a model that does not allow for varying slopes but does allow for
different coefficients for each time point (rather than fitting the linear trend).

(c) Compare the results of these models both numerically and graphically.

6. Using the time-series cross-sectional dataset you worked with in Exercise 11.2,
fit the model you formulated in part (c) of that exercise.





CHAPTER 14

Multilevel logistic regression

Multilevel modeling is applied to logistic regression and other generalized linear
models in the same way as with linear regression: the coefficients are grouped into
batches and a probability distribution is assigned to each batch. Or, equivalently
(as discussed in Section 12.5), error terms are added to the model corresponding
to different sources of variation in the data. We shall discuss logistic regression in
this chapter and other generalized linear models in the next.

14.1 State-level opinions from national polls

Dozens of national opinion polls are conducted by media organizations before every
election, and it is desirable to estimate opinions at the levels of individual states as
well as for the entire country. These polls are generally based on national random-
digit dialing with corrections for nonresponse based on demographic factors such
as sex, ethnicity, age, and education.

Here we describe a model developed for estimating state-level opinions from na-
tional polls, while simultaneously correcting for nonresponse, for any survey re-
sponse of interest. The procedure has two steps: first fitting the model and then
applying the model to estimate opinions by state:

1. We fit a regression model for the individual response y given demographics
and state. This model thus estimates an average response θl for each cross-
classification l of demographics and state. In our example, we have sex (male
or female), ethnicity (African American or other), age (4 categories), educa-
tion (4 categories), and 51 states (including the District of Columbia); thus
l = 1, . . . , L = 3264 categories.

2. From the U.S. Census, we look up the adult population Nl for each category l.
The estimated population average of the response y in any state j is then

θj =
∑
l∈j

Nlθl/
∑
l∈j

Nl, (14.1)

with each summation over the 64 demographic categories l in the state. This
weighting by population totals is called poststratification (see the footnote on
page 181). In the actual analysis we also considered poststratification over the
population of eligible voters but we do not discuss this further complication here.

We need many categories because (a) we are interested in estimates for individual
states, and (b) nonresponse adjustments force us to include the demographics. As
a result, any given survey will have few or no data in many categories. This is not a
problem, however, if a multilevel model is fitted. Each factor or set of interactions in
the model is automatically given a variance component. This inferential procedure
works well and outperforms standard survey estimates when estimating state-level
outcomes.

In this demonstration, we choose a single outcome—the probability that a re-
spondent prefers the Republican candidate for president—as estimated by a logistic
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regression model from a set of seven CBS News polls conducted during the week
before the 1988 presidential election.

A simple model with some demographic and geographic variation

We label the survey responses yi as 1 for supporters of the Republican candidate
and 0 for supporters of the Democrat (with undecideds excluded) and model them
as independent, with Pr(yi = 1) = logit−1(Xiβ). Potential input variables include
the state index j[i] and the demographics used by CBS in the survey weighting:
categorical variables for sex, ethnicity, age, and education.

We introduce multilevel logistic regression with a simple example including two
individual predictors—female and black—and the 51 states:

Pr(yi =1) = logit−1
(
αj[i] + βfemale · femalei + βblack · blacki

)
, for i = 1, . . . , n

αj ∼ N
(
μα, σ2

state

)
, for j = 1, . . . , 51.

We can quickly fit the model in R,

R code M1 <- lmer(y ~ black + female + (1|state), family=binomial(link="logit"))

display (M1)

and get the following:

R code coef.est coef.se

(Intercept) 0.4 0.1

black -1.7 0.2

female -0.1 0.1

Error terms:

Groups Name Std.Dev.

state (Intercept) 0.4

No residual sd

# of obs: 2015, groups: state, 49

deviance = 2658.7

overdispersion parameter = 1.0

The top part of this display gives the estimate of the average intercept, the co-
efficients for black and female, and their standard errors. Reading down, we see
that σstate is estimated at 0.4. There is no “residual standard deviation” because
the logistic regression model does not have such a parameter (or, equivalently, it
is fixed to the value 1.6, as discussed near the end of Section 5.3). The deviance
(see page 100) is printed as a convenience but we usually do not look at it. Finally,
the model has an overdispersion of 1.0—that is, no overdispersion—because logistic
regression with binary data (as compared to count data; see Section 6.3) cannot be
overdispersed.

We can also type coef(M1) to examine the estimates and standard errors of the
state intercepts αj , but rather than doing this we shall move to a larger model
including additional predictors at the individual and state level. Recall that our
ultimate goal here is not to estimate the α’s, β’s, and σ’s, but to estimate the
average value of y within each of the poststratification categories, and then to
average over the population using the census numbers using equation (14.1).

A fuller model including non-nested factors

We expand the model to use all the demographic predictors used in the CBS weight-
ing, including sex × ethnicity and age × education. We model age and education
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(with four categories each) with varying intercepts, and also model the 16 levels of
the age × education interaction.

At the state level, we include indicators for the 5 regions of the country (North-
east, Midwest, South, West, and D.C., considered as a separate region because of its
distinctive voting patterns), along with v.prev, a measure of previous Republican
vote in the state (more precisely, the average Republican vote share in the three
previous elections, adjusted for home-state and home-region effects in the previous
elections).

We shall write the model using indexes j, k, l, m for state, age category, education
category, and region:

Pr (yi =1) = logit−1
(
β0 + βfemale · femalei + βblack · blacki+

+ βfemale.black · femalei · blacki + αage
k[i] + αedu

l[i] + αage.edu
k[i],l[i] + αstate

j[i]

)
αstate

j ∼ N
(
αregion

m[j] + βv.prev · v.prevj , σ2
state

)
. (14.2)

We also model the remaining multilevel coefficients:

αage
k ∼ N(0, σ2

age), for k = 1, . . . , 4 (14.3)

αedu
l ∼ N(0, σ2

edu), for l = 1, . . . , 4

αage.edu
k,l ∼ N(0, σ2

age.edu), for k = 1, . . . , 4, l = 1, . . . , 4

αregion
m ∼ N(0, σ2

region), for m = 1, . . . , 5. (14.4)

As with the non-nested linear models in Section 13.5, this model can be expressed
in equivalent ways by moving the constant term β0 around. Here we have included
β0 in the data-level regression and included no intercepts in the group-level models
for the different batches of α’s.

Another approach is to include constant terms in several places in the model,
centering the distributions in (14.4) at μage, μedu, μage, μage.edu, and μregion. This
makes the model nonidentifiable, but it can then be reparameterized in terms of
identifiable combinations of parameters. Such a redundant parameterization speeds
computation and offers some conceptual advantages, and we shall return to it in
Section 19.4.

We can quickly fit model (14.2) in R: we first construct the index variable for the
age × education interaction and expand the state-level predictors to the data level:

R codeage.edu <- n.edu*(age-1) + edu

region.full <- region[state]

v.prev.full <- v.prev[state]

We then fit and display the full multilevel model, to get:

R outputlmer(formula = y ~ black + female + black:female + v.prev.full +

(1 | age) + (1 | edu) + (1 | age.edu) + (1 | state) +

(1 | region.full), family = binomial(link = "logit"))

coef.est coef.se

(Intercept) -3.5 1.0

black -1.6 0.3

female -0.1 0.1

v.prev.full 7.0 1.7

black:female -0.2 0.4

Error terms:

Groups Name Std.Dev.
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state (Intercept) 0.2

age.edu (Intercept) 0.2

region.full (Intercept) 0.2

edu (Intercept) 0.1

age (Intercept) 0.0

No residual sd

# of obs: 2015, groups: state,49; age.edu,16; region.full,5; edu,4; age,4

deviance = 2629.5

overdispersion parameter = 1.0

Quickly reading this regression output:

• The intercept is not easily interpretable since it corresponds to a case in which
black, female, and v.prev are all 0—but v.prev typically takes on values near
0.5 and is never 0.

• The coefficient for black is −1.6. Dividing by 4 (see page 82) yields a rough
estimate that African-American men were 40% less likely than other men to
support Bush, after controlling for age, education, and state.

• The coefficient for female is −0.1. Dividing by 4 yields a rough estimate that
non-African-American women were very slightly less likely than non-African-
American men to support Bush, after controlling for age, education, and state.
However, the standard error on this coefficient is as large as the estimate itself,
indicating that our sample size is too small for us to be certain of this pattern
in the population.

• The coefficient for v.prev.full is 7.0, which, when divided by 4, is 1.7, sug-
gesting that a 1% difference in a state’s support for Republican candidates in
previous elections mapped to a predicted 1.7% difference in support for Bush in
1988.

• The large standard error on the coefficient for black:female indicates that the
sample size is too small to estimate this interaction precisely.

• The state-level errors have estimated standard deviation 0.2 on the logit scale.
Dividing by 4 tells us that the states differed by approximately ±5% on the prob-
ability scale (over and above the differences explained by demographic factors).

• The differences among age-education groups and regions are also approximately
±5% on the probability scale.

• Very little variation is found among age groups or education groups after con-
trolling for the other predictors in the model.

To make more precise inferences and predictions, we shall fit the model using
Bugs (as described in Section 17.4), because with so many factors—including some
with only 4 or 5 levels—the approximate inference provided by lmer() (which does
not fully account for uncertainty in the estimated variance parameters) is not so
reliable. It is still useful as a starting point, however, and we recommend performing
the quick fit if possible before getting to more elaborate inference. In some other
settings, it will be difficult to get Bugs to run successfully and we simply use the
inferences from lmer().

Graphing the estimated model

We would like to construct summary plots as we did with the multilevel models of
Chapters 12 and 13. We alter the plotting strategy in two ways. First, the outcome
is binary and so we plot Pr(y =1) = E(y) as a function of the predictors; thus the
graphs are curved, as are the classical generalized linear models in Chapter 6.
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Our second modification of the plots is needed to deal with the many different
predictors in our model: instead of plotting E(y) as a function of each of the demo-
graphic inputs, we combine them into a linear predictor for demographics, which
we shall call linpredi:

linpredi = β0 + βfemale · femalei + βblack · blacki +

+ βfemale.black · femalei · blacki + αage
k[i] + αedu

l[i] + αage.edu
k[i],l[i] . (14.5)

The estimates, 50% intervals, and 95% intervals for the demographic coefficients are
displayed in Figure 14.1. Because all categories of each predictor variable have been
included, these estimates can be interpreted directly as the contribution each makes
to the sum, Xiβ. So, for instance, if we were to predict the response for someone
who is female, age 20, and with no high school diploma, we could simply take
the constant term, plus the estimates for the corresponding three main effects plus
the interaction between “18–29” and “no high school,” plus the corresponding state
coefficient, and then take the inverse-logit to obtain the probability of a Republican
vote. As can be seen from the graph, the demographic factors other than ethnicity
are estimated to have little predictive power. (Recall from Section 5.1 that we can
quickly interpret logistic regression coefficients on the probability scale by dividing
them by 4.)

For any survey respondent i, the regression prediction can then be written as

Pr(yi = 1) = logit−1(linpredi + αstate
j[i] ),

where linpredi is the combined demographic predictor (14.5), and we can plot this
for each state. We can do this in R—after first fitting the model in Bugs (as called
from R) and attaching the resulting object, which puts arrays into the R workspace
representing simulations for all the parameters from the model fit.

We summarize the linear predictor linpredi from (14.5) by its average over the
simulations. Recall that we are using simulations from the fitted model (see Section
17.4), which we shall call M3.bugs. As discussed in Chapter 16, the first step after
fitting the model is to attach the Bugs object so that the vectors and arrays of
parameter simulations can be accessed within the R workspace. Here is the code to
compute the vector linpred:

R codeattach.bugs (M3.bugs)

linpred <- rep (NA, n)

for (i in 1:n){

linpred[i] <- mean (b.0 + b.female*female[i] + b.black*black[i] +

b.female.black*female[i]*black[i] + a.age[age[i]] + a.edu[edu[i]] +

a.age.edu[age[i],edu[i]])

}

We can then make Figure 14.2 given the simulations from the fitted Bugs model:

R codepar (mfrow=c(2,4))

for (j in displayed.states){

plot (0, 0, xlim=range(linpred), ylim=c(0,1), yaxs="i",

xlab="linear predictor", ylab="Pr (support Bush)",

main=state.name[j], type="n")

for (s in 1:20){

curve (invlogit (a.state[s,j] + x), lwd=.5, add=TRUE, col="gray")}

curve (invlogit (median (a.state[,j]) + x), lwd=2, add=TRUE)

if (sum(state==j)>0) points (linpred[state==j], y.jitter[state==j])

}
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Figure 14.1 Estimates, 50% intervals, and 95% intervals for the logistic regression coeffi-
cients for the demographic predictors in the model predicting the probability of supporting
George Bush in polls before the 1988 presidential election. Recall that a change of x on
the logistic scale corresponds to a change of at most x/4 on the probability scale. Thus,
demographic factors other than ethnicity have small estimated predictive effects on vote
preference.

Figure 14.2 shows the result for a selection of eight states and illustrates a number
of points about multilevel models. The solid lines display the estimated logistic
regressions: thus, in any state, the probability of supporting Bush ranges from
about 10% to 70% depending on the demographic variables—most importantly,
ethnicity. Roughly speaking, there is about a 10% probability of supporting Bush
for African Americans and about 60% for others, with other demographic variables
slightly affecting the predicted probability. The variation among states is fairly
small—you have to look at the different plots carefully to see it—but is important
in allowing us to estimate average opinion by state, as we shall discuss. Changes of
only a few percent in preferences can have large political impact.

The gray lines on the graphs represent uncertainty in the state-level coefficients,
αstate

j . Alaska has no data at all, but the inference there is still reasonably precise—
its αstate

j is estimated from its previous election outcome, its regional predictor
(Alaska is categorized as a Western state), and from the distribution of the errors
from the state-level regression. In general, the larger states such as California have
more precise estimates than the smaller states such as Delaware—with more data
in a state j, it is possible to estimate αstate

j more accurately.
The logistic regression curve is estimated for all states, even those such as Arizona

with little range of x in the data (the survey included no black respondents from
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Figure 14.2 Estimated probability of a survey respondent supporting Bush for president,
as a function of the linear predictor for demographics, in each state (displaying only a
selection of eight states, ordered by decreasing support for Bush, to save space). Dots show
the data (y-jittered for visibility), and the heavy and light lines show the median estimate
and 20 random simulation draws from the estimated model.
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Figure 14.3 Estimates and 50% intervals for the state coefficients αstate
j , plotted versus

previous state vote v.prevj, in each of the four regions of the United States. The estimated

group-level regression line, αstate
j = αregion

m[j] + βv.prev
j · v.prevj , is overlain on each plot

(corresponding to regions m = 1, 2, 3, 4).

Arizona). The model is set up so the demographic coefficients are the same for
all states, so the estimate of the logistic curve is pooled for all the data. If the
model included an interaction between demographics and state, then we would see
differing slopes, and more uncertainty about the slope in states such as Arizona
that have less variation in their data.

Figure 14.3 displays the estimated logistic regression coefficients for the 50 states,
grouping them by region and, within each region, showing the state-level regression
on v.prev, the measure of Republican vote in the state in previous presidential
elections. Region and previous vote give good but not perfect predictions of the
state-level coefficients in the public opinion model.

Using the model inferences to estimate average opinion for each state

The logistic regression model gives the probability that any adult will prefer Bush,
given the person’s sex, ethnicity, age, education level, and state. We can now com-
pute weighted averages of these probabilities to represent the proportion of Bush
supporters in any specified subset of the population.

We first extract from the U.S. Census the counts Nl in each of the 3264 cross-
classification cells and create a 3264 × 6 data frame, census, indicating the sex,
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female black age edu state N

1 0 0 1 1 1 66177

2 0 1 1 1 1 32465

3 1 0 1 1 1 59778

4 1 1 1 1 1 27416

5 0 0 2 1 1 83032

. . .

3262 0 1 4 4 51 5

3263 1 0 4 4 51 2610

3264 1 1 4 4 51 5

Figure 14.4 The data frame census in R used for poststratification in the election polling
example. The categories are ordered by ethnicity, sex, age category, education category,
and state. The states are in alphabetical order; thus there were, according to the U.S.
Census, 66177 non-African-American men between 18 and 29 with less than a high school
education in Alabama, . . . , and 5 African American women over 65 with a college education
in Wyoming.

ethnicity, age, education, state, and number of people corresponding to each cell,
as shown in Figure 14.4.

We then compute the expected response ypred—the probability of supporting
Bush for each cell. Assuming we have n.sims simulation draws after fitting the
model in Bugs (see Chapter 16), we construct the following n.sims× 3264 matrix:

R code L <- ncol (census)

y.pred <- array (NA, c(n.sims, L))

for (l in 1:L){

y.pred[,l] <- invlogit(b.0 + b.female*census$female[l] +

b.black*census$black[l] +

b.female.black*census$female[l]*census$black[l] +

a.age[,census$age[l]] + a.edu[,census$edu[l]] +

a.age.edu[,census$age[l],census$edu[l]] + a.state[,census$state[l]])

}

For each state j, we are estimating the average response in the state,

ypred
state j =

∑
l∈j Nlθl∑
l∈j Nl

,

summing over the 64 demographic categories within the state. Here, we are using
l as a general stratum indicator (not the same l used to index education categories
in model (14.2); we are simply running out of “index”-type letters from the middle
of the alphabet). The notation “l ∈ j” is shorthand for “category l represents a
subset of state j.” In R:

R code y.pred.state <- array (NA, c(n.sims, n.state))

for (s in 1:n.sims){

for (j in 1:n.state){

ok <- census$state==j

y.pred.state[s,j] <- sum(census$N[ok]*y.pred[s,ok])/sum(census$N[ok])

}

}

We can then summarize these n.sims simulations to get a point prediction and a
50% interval for the proportion of adults in each state who supported Bush:
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Figure 14.5 For each state, the proportion of the two-party vote received by George Bush
in 1988, plotted versus the support for Bush in the state, as estimated from a multilevel
model applied to pre-election polls. The second plot excludes the District of Columbia in
order to more clearly show the 50 states.
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Figure 14.6 For each state, Bush’s vote in 1988 plotted versus his support in the polls,
as estimated from (a) the complete-pooling model (using demographics alone with no state
predictors), and (b) the no-pooling models (estimating each state separately). The two
models correspond to σstate = σregion = 0 and ∞, respectively. Compare to Figure 14.5a,
which shows results from the multilevel model (with σstate and σregion estimated from data).

R codestate.pred <- array (NA, c(3,n.state))

for (j in 1:n.state){

state.pred[,j] <- quantile (y.pred.state[,j], c(.25,.5,.75))

}

Comparing public opinion estimates to election outcomes

In this example, the estimates of the model come from opinion polls taken imme-
diately before the election, and they can be externally validated by comparing to
the actual election outcomes. We can thus treat this as a sort of “laboratory” for
testing the accuracy of multilevel models and any other methods that might be
used to estimate state-level opinions from national polls.

Figure 14.5 shows the actual election outcome for each state, compared to the
model-based estimates of the proportion of Bush supporters. The fit is pretty good,
with no strong systematic bias and an average absolute error of only 4.0%.
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Comparison to simpler methods

By comparison, Figure 14.6 shows the predictive performance of the estimates based
on complete pooling of states (estimating opinion solely based on demographics,
thus setting αstate

j ≡ 0 for all states) and no pooling (corresponding to completely
separate estimates for each state, thus setting σstate = σregion = ∞). The complete-
pooling model generally shrinks the state estimates too close toward the mean,
whereas the no-pooling model does not shrink them enough. To make a numerical
comparison, the average absolute error of the state estimates is 4.0% for the mul-
tilevel analysis, compared to 5.4% for complete pooling and 10.8% for no pooling.

14.2 Red states and blue states: what’s the matter with Connecticut?

Throughout the twentieth century and even before, the Democratic Party in the
United States has been viewed as representing the party of the lower classes and
thus, by extension, the “average American.” More recently, however, a different
perspective has taken hold, in which the Democrats represent the elites rather than
the masses. These patterns are complicated; on one hand, in recent U.S. presidential
elections the Democrats have done best in the richer states of the Northeast and
West (often colored blue in electoral maps) while the Republicans have dominated
in the poorer “red states” in the South and between the coasts. On the other hand,
using census and opinion poll data since 1952, we find that higher-income voters
continue to support the Republicans in presidential elections.

We can understand these patterns, first by fitting a sequence of classical regres-
sions and displaying estimates over time (as in Section 4.7), then by fitting some
multilevel models:

• Aggregate, by state: to what extent do richer states favor the Democrats?

• Nationally, at the level of the individual voter: to what extent do richer voters
support the Republicans?

• Individual voters within states: to what extent do richer voters support the
Republicans, within any given state? In other words, how much does context
matter?

We fit these models quickly with lmer() and then with Bugs, whose simulations
we used to plot and understand the model. Here we describe the model and its
estimate without presenting the steps of computation.

Classical regressions of state averages and individuals

Richer states now support the Democrats. We first present the comparison of red
and blue states—more formally, regressions of Republican share of the two-party
vote on state average per capita income (in tens of thousands of 1996 dollars).
Figure 14.7a shows that, since the 1976 election, there has been a steady downward
trend in the income coefficient over time. As time has gone on, richer states have
increasingly favored the Democrats. For the past twenty years, the same patterns
appear when fitting southern and non-southern states separately (Figure 14.7b,c).

Richer voters continue to support the Republicans overall. We fit a logistic regres-
sion of reported presidential vote preference (yi = 1 for supporters of the Repub-
lican, 0 for the Democrats, and excluding respondents who preferred other candi-
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Figure 14.7 (a) Regression predicting Republican vote share by average income in each
state. The model was fit separately for each election year. Estimates and 95% error bars
are shown. (b, c) Same model but fit separately to southern and non-southern states each
year. Republicans do better in poor states than rich states, especially in recent years.
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Figure 14.8 Coefficients for income in logistic regressions of Republican vote, fit to Na-
tional Election Studies data from each year. The positive coefficients indicate that higher-
income voters have consistently supported the Republicans, a pattern that holds both within
and outside the South.

dates or expressed no opinion) on personal income,1 fit separately to the National
Election Study from each presidential election since 1952. Figure 14.8 shows that
higher-income people have been consistently more likely to vote Republican. These
patterns remain when ethnicity, sex, education, and age are added into the model:
after controlling for these other individual-level predictors, the coefficient of income
is still consistently positive.

A paradox? The conflicting patterns of Figures 14.7 and 14.8 have confused many
political commentators. How can we understand the pattern of richer states sup-
porting the Democrats, while richer voters support the Republicans? We shall use
multilevel modeling to simultaneously study patterns within and between states.

Varying-intercept model of income and vote preference within states

We now focus on the 2000 presidential election using the National Annenberg Elec-
tion Survey, which, with more than 100,000 respondents, allows accurate estimation
of patterns within individual states. We fit a multilevel model that allows income to
predict vote preference within each state, while also allowing systematic differences
between states:

Pr(yi =1) = logit−1(αj[i] + βxi), for i = 1, . . . , n, (14.6)

1 The National Election Study uses 1 = 0–16 percentile, 2 = 17–33 percentile, 3 = 34–67 per-
centile, 4 = 68–95 percentile, 5 = 96–100 percentile. We label these as −2,−1, 0, 1, 2, centering
at zero (see Section 4.2) so that we can more easily interpret the intercept terms of regressions
that include income as a predictor.
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Figure 14.9 Estimated state intercepts αj in the varying-intercept logistic regression model
(14.6)–(14.7) predicting Republican vote intention given individual income, plotted versus
average state income. A nonparametric regression line fitted to the estimates is overlain
for convenience.
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Figure 14.10 The paradox is no paradox. From the multilevel logistic regression model for
the 2000 election: probability of supporting Bush as a function of income category, for a
a rich state (Connecticut), a medium state (Ohio), and a poor state (Mississippi). The
open circles show the relative proportion (as compared to national averages) of households
in each income category in each of the three states, and the solid circles show the average
income level and estimated average support for Bush for each state. Within each state,
richer people are more likely to vote Republican, but the states with higher income give
more support to the Democrats.

where j[i] indexes the state (from 1 to 50) corresponding to respondent i, xi is
the person’s household income (on the five-point scale), and n is the number of
respondents in the poll.

We set up a state-level regression for the coefficients αj , using the state average
income level as a group-level predictor, which we label uj:

αj ∼ N(γ0 + γ1uj, σ2
α), for j = 1, . . . , 50. (14.7)

Figure 14.9 shows the estimated state intercepts αj , plotted versus average state
income. There is a negative correlation between intercept and state income, which
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Figure 14.11 From the multilevel logistic regression with varying intercepts and slopes for
the 2000 election: probability of supporting Bush as a function of income category, for a
a rich state (Connecticut), a medium state (Ohio), and a poor state (Mississippi). The
open circles show the relative proportion (as compared to national averages) of households
in each income category in each of the three states, and the solid circles show the average
income level and estimated average support for Bush for each state. Income is a very strong
predictor of vote preference in Mississippi, a weaker predictor in Ohio, and does not predict
vote choice at all in Connecticut. See Figure 14.12 for estimated slopes in all 50 states,
and compare to Figure 14.10, in which the state slopes are constrained to be equal.
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Figure 14.12 Estimated coefficient for income within state plotted versus average state
income, for the varying-intercept, varying-slope multilevel model (14.8)–(14.9) fit to the
Annenberg survey data from 2000. A nonparametric regression line fitted to the estimates
is overlain for convenience.

tells us that, after adjusting for individual income, voters in richer states tend to
support Democrats.

To understand the model as a whole, we display in Figure 14.10 the estimated
logistic regression line, logit−1(αj +βx), for three states j: Connecticut (the richest
state), Ohio (a state in the middle of the income distribution), and Mississippi (the
poorest state). The graph shows a statistical resolution of the red-blue paradox.
Within each state, income is positively correlated with Republican vote choice,
but average income varies by state. For each of the three states in the plot, the
open circles show the relative proportion of households in each income category (as
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compared to national averages), and the solid circle shows the average income level
and estimated average support for Bush in the state. The Bush-supporting states
have more lower-income people, and as a result there is a negative correlation
between average state income and state support for Bush, even amid the positive
slope for each state. The poor people in “red” (Republican-leaning) states tend
to be Democrats; the rich people in “blue” (Democratic-leaning) states tend to
be Republicans. Income matters; also geography matters. Individual income is a
positive predictor, and state average income is a negative predictor, of Republican
presidential vote support.

Varying-intercept, varying-slope model

As Figure 14.10 shows, income and state are both predictive of vote preference.
It is thus natural to consider their interaction, which in a multilevel context is a
varying-intercept, varying-slope model:

Pr(yi =1) = logit−1(αj[i] + βj[i]xi), for i = 1, . . . , n, (14.8)

where, as in (14.6), xi is respondent i’s income (on the −2 to +2 scale). The state-
level intercepts and slopes that are themselves modeled given average state incomes
uj :

αj = γα
0 + γα

1 uj + εα
j , for j = 1, . . . , 50

βj = γβ
0 + γβ

1 uj + εβ
j , for j = 1, . . . , 50, (14.9)

with errors εα
j , εβ

j having mean 0, variances σ2
α, σ2

β , and correlation ρ, all estimated
from data. By including average income as a state-level predictor, we are not re-
quiring the intercepts and slopes to vary linearly with income—the error terns εj

allow for deviation from the model—but rather are allowing the model to find such
linear relations to the extent they are supported by the data.

From this new model, we indeed find strong variation among states in the role
of income in predicting vote preferences. Figure 14.11 recreates Figure 14.10 with
the estimated varying intercepts and slopes. As before, we see generally positive
slopes within states and a negative slope between states. What is new, though, is a
systematic pattern of the within-state slopes, with the steepest slope in the poorest
state—Mississippi—and the shallowest slope in the richest state—Connecticut.

Figure 14.12 shows the estimated slopes for all 50 states and reveals a clear
pattern, with high coefficients—steep slopes—in poor states and low coefficients in
rich states. Income matters more in “red America” than in “blue America.” The
varying-intercept, varying-slope multilevel model has been a direct approach for us
to discover these patterns.

14.3 Item-response and ideal-point models

We could have introduced these in Chapter 6 in the context of classical generalized
linear models, but item-response and ideal-point models are always applied to data
with multilevel structure, typically non-nested, for example with measurements
associated with persons and test items, or judges and cases. As with the example of
the previous section, we present the models here, deferring computation until the
presentation of Bugs in Part 2B of this book.
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Figure 14.13 Illustration of the logistic item-response (Rasch) model, Pr(yi = 1) =
logit−1(αj[i] − βk[i]), for an example with 5 persons j (with abilities αj) and 10 items
k (with difficulties βk). If your ability α is greater than the difficulty β of an item, then
you have a better-than-even chance of getting that item correct. This graph also illustrates
the nonidentifiability in the model: the probabilities depend only on the relative positions
of the ability and difficulty parameters; thus, a constant could be added to all the αj’s and
all the βk’s, and the model would be unchanged. One way to resolve this nonidentifiability
is to constrain the αj’s to have mean 0. Another solution is to give the αj’s a distribution
with mean fixed at 0.

The basic model with ability and difficulty parameters

A standard model for success or failure in testing situations is the logistic item-
response model, also called the Rasch model. Suppose J persons are given a test
with K items, with yjk = 1 if the response is correct. Then the logistic model can
be written as

Pr(yjk =1) = logit−1(αj − βk), (14.10)

with parameters:

• αj : the ability of person j

• βk: the difficulty of item k.

In general, not every person is given every item, so it is convenient to index the
individual responses as i = 1, . . . , n, with each response i associated with a person
j[i] and item k[i]. Thus model (14.10) becomes

Pr(yi =1) = logit−1(αj[i] − βk[i]). (14.11)

Figure 14.13 illustrates the model as it might be estimated for 5 persons with
abilities αj , and 10 items with difficulties βk. In this particular example, questions
5, 3, and 8 are easy questions (relative to the abilities of the persons in the study),
and all persons except person 2 are expected to answer more than half the items
correctly. More precise probabilities can be calculated using the logistic distribution:
for example, α2 is 2.4 higher than β5, so the probability that person 2 correctly
answers item 5 is logit−1(2.4) = 0.92, or 92%.

Identifiability problems

This model is not identified, whether written as (14.10) or as (14.11), because a
constant can be added to all the abilities αj and all the difficulties βk, and the
predictions of the model will not change. The probabilities depend only on the
relative positions of the ability and difficulty parameters. For example, in Figure
14.13, the scale could go from −104 to −96 rather than −4 to 4, and the model
would be unchanged—a difference of 1 on the original scale is still a difference of 1
on the shifted scale.

From the standpoint of classical logistic regression, this nonidentifiability is a
simple case of collinearity and can be resolved by constraining the estimated pa-
rameters in some way: for example, setting α1 = 0 (that is, using person 1 as a
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“baseline”), setting β1 = 0 (so that a particular item is the comparison point), con-
straining the αj ’s to sum to 0, or constraining the βj ’s to sum to 0. In a multilevel
model, such constraints are unnecessary, as we discuss next.

Multilevel model

The natural multilevel model for (14.11) assigns normal distributions to the ability
and difficulty parameters:

αj ∼ N(μα, σ2
α), for j = 1, . . . , J

βk ∼ N(μβ , σ2
β), for k = 1, . . . , K.

This model is nonidentified for the reasons discussed above: now it is μα and μβ

that are not identified, because a constant can be added to each without changing
the predictions. The simplest way to identify the multilevel model is set μα to 0, or
to set μβ to 0 (but not both).

As usual, we can add group-level predictors. In this case, the “groups” are the
persons and items:

αj ∼ N(Xα
j γα, σ2

α), for j = 1, . . . , J

βk ∼ N(Xβ
j , σ2

β), for k = 1, . . . , K.

In an educational testing example, the person-level predictors Xα could include
age, sex, and previous test scores, and the item-level predictors Xβ could include
a prior measure of item difficulty (perhaps the average score for that item from a
previous administration of the test).

Defining the model using redundant parameters

Another way to identify the model is by allowing the parameters α and β to “float”
and then defining new quantities that are well identified. The new quantities can
be defined, for example, by rescaling based on the mean of the αj ’s:

αadj
j = αj − ᾱ, for j = 1, . . . , J

βadj
k = βk − ᾱ, for k = 1, . . . , K. (14.12)

The new ability parameters αadj
j and difficulty parameters βadj

k are well defined,
and they work in place of α and β in the original model:

Pr(yi =1) = logit−1(αadj
j[i] − βadj

k[i]).

This holds because we subtracted the same constant from the α’s and β’s in (14.12).
For example, it would not work to subtract ᾱ from the αj ’s and β̄ from the βk’s
because then we would lose our ability to distinguish the position of the parameters
relative to each other.

Adding a discrimination parameter

The item-response model can be generalized by allowing the slope of the logistic
regression to vary by item:

Pr(yi =1) = logit−1(γk[i](αj[i] − βk[i])). (14.13)

In this new model, γk is called the discrimination of item k: if γk = 0, then the
item does not “discriminate” at all (Pr(yi =1) = 0.5 for any person), whereas high
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Figure 14.14 Curves and simulated data from the logistic item-response (Rasch) model for
items k with “difficulty” parameter βk = 1 and high, low, zero, and negative “discrimina-
tion” parameters γk.

values of γk correspond to strong relation between ability and the probability of
getting a correct response. Figure 14.14 illustrates.

In educational testing, it is generally desirable for items k to have high values
of γk, because the responses to these items can better “discriminate” between high
and low abilities (see the left plot in Figure 14.14). The ideal test would have
several items, each with high γk, and with difficulties βk that span the range of the
abilities of the persons being tested. Items with γk near zero do not do a good job
at discriminating between abilities (see the center two plots in Figure 14.14), and
negative values of γk correspond to items where low-ability persons do better. Such
items typically represent mistakes in the construction of the test.

Including the discrimination parameter creates additional identifiability problems
which we will discuss in the context of an example in the next section.

An ideal-point model for Supreme Court voting

Ideal-point modeling is an application of item-response models to a setting where
what is being measured is not “ability” of individuals and “difficulty” of items, but
rather positions of individuals and items on some scale of values.

We illustrate with a study of voting records of U.S. Supreme Court justices, using
all the Court’s decisions since 1954. Each vote i is associated with a justice j[i] and
a case k[i], with an outcome yi that equals 1 if the justice voted “yes” on the case
and 0 if “no.” In this particular example, the votes have been coded so that a
“yes” response (yi = 1) is intended to correspond to the politically “conservative”
outcome, with “no” (yi = 0) corresponding to a “liberal” vote.

As with the item-response models discussed above, the data are modeled with
a logistic regression, with the probability of voting “yes” depending on the “ideal
point” αj for each justice, the “position” βk for each case, and a “discrimination
parameter” γk for each case, following the three-parameter logistic model (14.13).

The positions on this scale (equivalent to the α’s and β’s on Figure 14.14) rep-
resent whatever dimension is best able to explain the voting patterns. For the
Supreme Court, we represent it as an ideological dimension, with liberal justices
having positions on the left side of the scale (negative αj ’s) and conservatives being
on the right side (positive αj ’s).

For any given justice j and case k, the difference between αj and βk indicates
the relative positions of the justice and the case—if a justice’s ideal point is near
a case’s position, then the case could go either way, but if the ideal point is far
from the position, then the justice’s vote is highly predictable. The discrimination
parameter γk captures the importance of the positioning in determining the justices’
votes: if γk = 0, the votes on case k are purely random; and if γk is very large (in
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absolute value), then the relative positioning of justice and case wholly determines
the outcome. Changing the sign of γ changes which justices are expected to vote
yes and which to vote no.

Model (14.13) has two indeterminacies: an additive aliasing in α and β (that is,
a situation in which values of α and β can be changed while keeping the model’s
predictions unchanged), and a multiplicative aliasing in all three parameters. The
additive aliasing occurs because a constant can be added to all the α’s and all
the β’s, leaving the model predictions (and thus the likelihood) unchanged. The
multiplicative aliasing arises when multiplying the γ’s by a constant and dividing
the α’s and β’s by that same constant. We can resolve both these indeterminacies
by constraining the αj ’s to have mean 0 and standard deviation 1 or, in a multilevel
context, by giving the αj a N(0, 1) distribution. In contrast the parameters β and
γ are unconstrained (or, in a multilevel context, have N(μβ , σ2

β) and N(μγ , σ2
γ)

distributions whose means and variances are estimated from the data, as part of a
multilevel model).

Even after constraining the distribution of the position parameters αj , one inde-
terminacy remains in model (14.13): a reflection invariance associated with multi-
plying all the γk’s, αj ’s, and βk’s by −1. If no additional constraints are assigned to
this model, this aliasing will cause a bimodal likelihood and posterior distribution.
It is desirable to select just one of these modes for our inferences. (Among other
problems, if we include both modes, then each parameter will have two maximum
likelihood estimates and a posterior mean of 0.)

We first briefly discuss two simple and natural ways of resolving the aliasing. The
first approach is to constrain the γ’s to all have positive signs. This might seem to
make sense, since the outcomes have been precoded so that positive yi’s correspond
to conservative votes. However, we do not use this approach because it relies too
strongly on the precoding, which, even if it is generally reasonable, is not perfect.
We would prefer to estimate the ideological direction of each vote from the data
and then compare to the precoding to check that the model makes sense (and to
explore any differences found between the estimates and the precoding).

A second approach to resolving the aliasing is to choose one of the α’s, β’s, or γ’s,
and restrict its sign or choose two and constrain their relative position. For example,
we could constrain αj to be negative for the extremely liberal William Douglas, or
constrain αj to be positive for the extremely conservative Antonin Scalia. Or, we
could constrain Douglas’s αj to be less than Scalia’s αj .

Only a single constraint is necessary to resolve the two modes; if possible, how-
ever, it should be a clear-cut division. One can imagine a general procedure that
would be able to find such divisions based on the data, but in practice it is simpler
to constrain using prior information such as the identification of extremely liberal
and conservative judges in this example. (Not all choices of constraints would work.
For example, if we were to constrain αj > 0 for a merely moderately conservative
judge such as Sandra Day O’Connor, this could split the likelihood surface across
both modes, rather than cleanly selecting a single mode.)

The alternative approach we actually use in this example is to encode the addi-
tional information in the form of a group-level regression predictor, whose coefficient
we constrain to be positive. Various case-level and justice-level predictors can be
added to model (14.13), but the simplest is an indicator that equals 1 for Scalia,
−1 for Douglas, and 0 for all other justices. We set up a multilevel model for the
justices’ ideal points,

αj = δxj + errorj (14.14)

where xj is this Scalia/Douglas predictor. Constraining the regression coefficient
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δ > 0 identifies the model (by aligning the positive direction with the difference
between these two extreme justices) but in a flexible way that allows us to estimate
our full model.

Two-dimensional item-response or ideal-point models

In a two-dimensional item-response model, the task of getting an item correct re-
quires a combination of two “skills,” which can be represented for each person j

as a two-dimensional “ability” vector (α
(1)
j , α

(2)
j ). (For example, on a high school

general aptitude test, the two dimensions might correspond to verbal and mathe-

matical ability.) The two-dimensional “difficulty” parameter (β
(1)
k , β

(2)
k ) represents

the thresholds required to perform well on the task, and the discrimination param-

eters γ
(1)
k , γ

(2)
k indicate the relevance of each of the two skills to task k.

Success on the two skills can be combined in a variety of ways. For example, in
a “conjunctive” model, both skills are required to perform the task correctly; thus,

conjunctive model: Pr(yi = 1) = logit−1
[
γ

(1)
k[i]

(
α

(1)
j[i] − β

(1)
k[i]

)]
× logit−1

[
γ

(2)
k[i]

(
α

(2)
j[i] − β

(2)
k[i]

)]
.

In a “disjunctive” model, either skill is sufficient to perform the task:

disjunctive model: 1 − Pr(yi = 1) =
(
1 − logit−1

[
γ

(1)
k[i]

(
α

(1)
j[i] − β

(1)
k[i]

)])
×
(
1 − logit−1

[
γ

(2)
k[i]

(
α

(2)
j[i] − β

(2)
k[i]

)])
.

Perhaps the most straightforward model is additive on the logistic scale:

additive model: Pr(yi = 1) = logit−1
[
γ

(1)
k[i]

(
α

(1)
j[i] − β

(1)
k[i]

)
+ γ

(2)
k[i]

(
α

(2)
j[i] − β

(2)
k[i]

)]
.

In the “ideal-point” formulation of these models, αj represents the ideal point of
justice j in two dimensions (for example, a left-right dimension for economic issues,
and an authoritarian-libertarian dimension on social issues), βk is the indifference
point for case k in these dimensions, the signs of the two components of γk give
the direction of a Yes vote in terms of the two issues, and the absolute values of

γ
(1)
k , γ

(2)
k indicate the importance of each issue in determining the vote.

Other generalizations

As formulated so far, the probabilities in the item-response and ideal-point models
range from 0 to 1 and are symmetric about 0.5 (see Figure 14.14). Real data do
not necessarily look like this. One simple way to generalize the model is to limit
the probabilities to a fixed range:

Pr(yi =1) = π1 + (1 − π0 − π1)logit−1[γk[i](αj[i] − βk[i])].

In this model, every person has an immediate probability of π1 of success and π0 of
failure, with the logistic regression model applying to the remaining (1 − π0 − π1)
of outcomes. For example, suppose we are modeling responses to a multiple-choice
exam, and π1 = 0.25 and π0 = 0.05. We could interpret this as a 25% chance of
getting an item correct by guessing, along with a 5% chance of getting an item
wrong by a careless mistake.
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Another way to generalize item response and ideal point models is to go beyond
the logistic distribution, for example using a robit model as described in Section
6.6 that allows for occasional mispredictions.

14.4 Non-nested overdispersed model for death sentence reversals

So far in this chapter we have presented logistic regression for binary data points
yi that can equal 0 or 1. The model can also be used for proportions, in which each
data point yi equals the number of “successes” out of ni chances. For example,
Section 6.3 describes data on death penalty reversals, in which i indexes state-
years (for example, Alabama in 1983), ni is the number of death sentences given
out in that particular state in that particular year, and yi is the number of these
death sentences that were reversed by a higher court. We now describe how we
added multilevel structure to this model.

Non-nested model for state and year coefficients

The death penalty model had several predictors in X , including measures of the
frequency that the death sentence was imposed, the backlog of capital cases in the
appeals courts, the level of political pressure on judges, and other variables at the
state-year level.

In addition, we included indicators for the years from 1973 to 1995 and the 34
states (all of those in this time span that had death penalty laws). The regression
model with all these predictors can be written as

yi ∼ Bin(ni, pi)

pi = logit−1(Xiβ + αj[i] + γt[i]), (14.15)

where j indexes states and t indexes years. We complete the multilevel model with
distributions for the state and year coefficients,

αj ∼ N(0, σ2
α)

γt ∼ N(a + bt, σ2
γ).

The coefficients for year include a linear time trend to capture the overall increase
in reversal rates during the period under study. The model for the γt’s also includes
an intercept, and so we do not need to include a constant term in the model for the
αj ’s or in the matrix X of individual-level predictors in (14.15).

In this particular example, we are not particularly interested in the coefficients
for individual states or years; rather, we want to include these sources of variability
into the model in order to get appropriate uncertainty estimates for the coefficients
of interest, β.

Multilevel overdispersed binomial regression

Testing for overdispersion. Model (14.15) is inappropriate for the death penalty
data because the data are overdispersed, as discussed in Section 6.3. To measure the
overdispersion, we compute the standardized residuals, zi = (yi−pi)/

√
pi(1 − pi)/ni

with pi as defined in (14.15). Under the binomial model, the residuals should have
mean 0 and standard deviation 1, and so

∑
i z2

i should look like a random draw from
a χ2 distribution with degrees of freedom equal to 520 (the number of state-years
in the data).

Testing for overdispersion in a classical binomial regression is described in Section
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6.3, where the zi’s are computed based on estimated probabilities p̂i, and
∑

i z2
i is

compared to a χ2 distribution with degrees of freedom adjusted for the number of
coefficients estimated in the model.

Beta-binomial model. There are two natural overdispersed generalizations of the
multilevel binomial regression (14.15). The first approach uses the beta-binomial
distribution:

yi ∼ beta-binomial(ni, pi, ω),

where ω ≥ 1 is the overdispersion parameter (and the model with ω = 1 reduces to
the binomial).

Binomial-normal model. The other direct way to construct an overdispersed bino-
mial distribution is to add normal errors on the logistic scale, keeping the binomial
model but adding a data-level error ξi to the linear predictor in (14.15):

pi = logit−1(Xiβ + αj[i] + γt[i] + ξi),

with these errors having their own normal distribution:

ξi ∼ N(0, σ2
ξ ).

The resulting model reduces to the binomial when σξ = 0; otherwise it is overdis-
persed.

With moderate sample sizes, it is typically difficult to distinguish between the
beta-binomial and binomial-normal models, and the choice between them is one of
convenience. The beta-binomial model adds only one new parameter and so can be
easier to fit; however, the binomial-normal model has the advantage that the new
error term ξi is on the same scale as the group-level predictors, αj and γt, which
can make the fitted model easier to understand.

14.5 Bibliographic note

Multilevel logistic regression has a long history in the statistical and applied liter-
ature which we do not attempt to trace here: the basic ideas are the same as in
multilevel linear models (see references in Sections 12.10 and 13.8) but with com-
plications arising from the discreteness of the data and the nonlinearity of some of
the computational steps.

The example of state-level opinions from national polls comes from Gelman and
Little (1997) and Park, Gelman, and Bafumi (2004). The analysis of income and vot-
ing comes from Gelman, Shor, et al. (2005); see also Wright (1989), Ansolabehere,
Rodden, and Snyder (2005), and McCarty, Poole, and Rosenthal (2005) for related
work. Wainer (2002) discusses “B-K” plots (named after ), which similar to Figure
14.10, which simultaneously displays patterns within and between groups, is related
to the “B-K plot” (discussed by Wainer, 2002, and named after Baker and Kramer,
2001).

The multilevel framework for item-response and ideal-point models appears in
Bafumi, Gelman, and Park (2005). See Lord and Novick (1968) and van der Linden
and Hambleton (1997) for more on item-response models, and Poole and Rosenthal
(1997), Jackman (2001), and Martin and Quinn (2002a) for more on ideal-point
models. Loken (2004) discusses identifiability problems in models with aliasing.

The death sentencing example comes from Gelman, Liebman, et al. (2004). See
Donohue and Wolfers (2006) for an overview of some of the research literature on
death sentencing.
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14.6 Exercises

1. The folder nes contains the survey data of presidential preference and income for
the 1992 election analyzed in Section 5.1, along with other variables including
sex, ethnicity, education, party identification, political ideology, and state.

(a) Fit a logistic regression predicting support for Bush given all these inputs
except state. Consider how to include these as regression predictors and also
consider possible interactions.

(b) Now formulate a model predicting support for Bush given the same inputs
but allowing the intercept to vary over state. Fit using lmer() and discuss
your results.

(c) Create graphs of the probability of choosing Bush given the linear predictor
associated with your model separately for each of eight states as in Figure
14.2.

2. The well-switching data described in Section 5.4 are in the folder arsenic.

(a) Formulate a multilevel logistic regression model predicting the probability
of switching using log distance (to nearest safe well) and arsenic level and
allowing intercepts to vary across villages. Fit this model using lmer() and
discuss the results.

(b) Extend the model in (b) to allow the coefficient on arsenic to vary across
village, as well. Fit this model using lmer() and discuss the results.

(c) Create graphs of the probability of switching wells as a function of arsenic
level for eight of the villages.

(d) Compare the fit of the models in (a) and (b).

3. Three-level logistic regression: the folder rodents contains data on rodents in a
sample of New York City apartments.

(a) Build a varying intercept logistic regression model (varying over buildings) to
predict the presence of rodents (the variable rodent2 in the dataset) given
indicators for the ethnic groups (race) as well as other potentially relevant
predictors describing the apartment and building. Fit this model using lmer()

and interpret the coefficients at both levels.

(b) Now extend the model in (b) to allow variation across buildings within com-
munity district and then across community districts. Also include predictors
describing the community districts. Fit this model using lmer() and interpret
the coefficients at all levels.

(c) Compare the fit of the models in (a) and (b).

4. Item-response model: the folder exam contains data on students’ success or failure
(item correct or incorrect) on a number of test items. Write the notation for an
item-response model for the ability of each student and level of difficulty of each
item.

5. Multilevel logistic regression with non-nested groupings: the folder speed.dating
contains data from an experiment on a few hundred students that randomly as-
signed each participant to 10 short dates with participants of the opposite sex
(Fisman et al., 2006). For each date, each person recorded several subjective
numerical ratings of the other person (attractiveness, compatibility, and some
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other characteristics) and also wrote down whether he or she would like to meet
the other person again. Label

yij =

{
1 if person i is interested in seeing person j again
0 otherwise

and rij1, . . . , rij6 as person i’s numerical ratings of person j on the dimensions
of attractiveness, compatibility, and so forth.

(a) Fit a classical logistic regression predicting Pr(yij = 1) given person i’s 6
ratings of person j. Discuss the importance of attractiveness, compatibility,
and so forth in this predictive model.

(b) Expand this model to allow varying intercepts for the persons making the
evaluation; that is, some people are more likely than others to want to meet
someone again. Discuss the fitted model.

(c) Expand further to allow varying intercepts for the persons being rated. Discuss
the fitted model.

6. Varying-intercept, varying-slope logistic regression: continuing with the speed-
dating example from the previous exercise, you will now fit some models that
allow the coefficients for attractiveness, compatibility, and the other attributes
to vary by person.

(a) Fit a no-pooling model: for each person i, fit a logistic regression to the data
yij for the 10 persons j whom he or she rated, using as predictors the 6
ratings rij1, . . . , rij6 . (Hint: with 10 data points and 6 predictors, this model
is difficult to fit. You will need to simplify it in some way to get reasonable
fits.)

(b) Fit a multilevel model, allowing the intercept and the coefficients for the 6
ratings to vary by the rater i.

(c) Compare the inferences from the multilevel model in (b) to the no-pooling
model in (a) and the complete-pooling model from part (a) of the previous
exercise.





CHAPTER 15

Multilevel generalized linear models

As with linear and logistic regressions, generalized linear models can be fit to mul-
tilevel structures by including coefficients for group indicators and then adding
group-level models. We illustrate in this chapter with three examples from our
recent applied research: an overdispersed Poisson model for police stops, a multi-
nomial logistic model for storable voting, and an overdispersed Poisson model for
social networks.

15.1 Overdispersed Poisson regression: police stops and ethnicity

We return to the New York City police example introduced in Sections 1.2 and 6.2,
where we formulated the problem as an overdispersed Poisson regression, and here
we generalize to a multilevel model. In order to compare ethnic groups while control-
ling for precinct-level variation, we perform multilevel analyses using the city’s 75
precincts. Allowing precinct-level effects is consistent with theories of policing such
as the “broken windows” model that emphasize local, neighborhood-level strategies.
Because it is possible that the patterns are systematically different in neighborhoods
with different ethnic compositions, we divide the precincts into three categories in
terms of their black population: precincts that were less than 10% black, 10%–
40% black, and more than 40% black. We also account for variation in stop rates
between the precincts within each group. Each of the three categories represents
roughly one-third of the precincts in the city, and we perform separate analyses for
each set.

Overdispersion as a variance component

As discussed in Chapter 6, data that are fit by a generalized linear model are
overdispersed if the data-level variance is higher than would be predicted by the
model. Binomial and Poisson regression models are subject to overdispersion be-
cause these models do not have variance parameters to capture the variation in the
data. This was illustrated at the end of Section 6.2 for the Poisson model of police
stops.

As discussed at the end of Section 14.4, overdispersion can be directly modeled
using a data-level variance component in a multilevel model. For example, we can
extend the classical Poisson regression of Section 6.2,

Poisson regression: yi ∼ Poisson
(
uie

Xiβ
)
,

to the multilevel model,

overdispersed Poisson regression: yi ∼ Poisson
(
uie

Xiβ+εi
)

εi ∼ N(0, σ2
ε ).

The new hyperparameter σε measures the amount of overdispersion, with σε = 0
corresponding to classical Poisson regression. We shall use this model for the police
stops.

325
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Section 15.3 illustrates the use of the negative binomial model, which is a different
overdispersed extension of the Poisson.

Multilevel Poisson regression model

For each ethnic group e = 1, 2, 3 and precinct p, we model the number of stops
yep using an overdispersed Poisson regression with indicators for ethnic groups, a
multilevel model for precincts, and using nep, the number of arrests recorded by
the Department of Criminal Justice Services (DCJS) for that ethnic group in that
precinct in the previous year (multiplied by 15/12 to scale to a 15-month period),
as a baseline, so that log(15

12nep) is an offset:

yep ∼ Poisson
(

15
12

nepe
μ+αe+βp+εep

)
αe ∼ N(0, σ2

α)

βp ∼ N(0, σ2
β)

εep ∼ N(0, σ2
ε ), (15.1)

where the coefficients αe control for ethnic groups, the βp’s adjust for variation
among precincts, and the εep’s allow for overdispersion (see Chapter 6). The pa-
rameter σβ represents variation in the rates of stops among precincts, and σε rep-
resents variation in the data beyond that explained by the Poisson model. We are
not particularly interested in the other variance parameter, σα; instead we work
with the individual coefficients, αe.

Constraining a batch of coefficients to sum to 0. When comparing ethnic groups,
we can look at the ethnicity coefficients relative to their mean:

αadj
e = αe − ᾱ, for e = 1, 2, 3. (15.2)

We examine the exponentiated coefficients exp(αadj
e ), which represent relative rates

of stops compared to arrests, after controlling for precinct. Having done this, we
also adjust the intercept of the model accordingly:

μadj = μ + ᾱ. (15.3)

Now μadj + αadj
e = μ + αe for each ethnic group e, and so we can use μadj and αadj

in place of μ and α without changing the model for the data.
In multilevel modeling, it makes sense to fit the full model (15.1) and then define

the constrained parameters of interest as in (15.2) and (15.3), rather than trying
to fit a model in which the original α parameters are constrained. We discuss this
issue further in Section 19.4.

Separately fitting the model to different subsets of the data. By comparing to arrest
rates, we can also separately analyze stops associated with different sorts of crimes.
We do a separate comparison for each of four types of offenses (“suspected charges”
as characterized on the official form): violent crimes, weapons offenses, property
crimes, and drug crimes. For each, we model the number of stops yep by ethnic
group e and precinct p for that crime type, using as a baseline the DCJS arrest
rates nep for that crime type.

We thus estimate model (15.1) for twelve separate subsets of the data, corre-
sponding to the four crime types and the three categories of precincts (less than
10% black population, 10–40% black, and more than 40% black). An alternative
approach would be to fit a single model to all the data with interactions between
crime types and precinct categories, and the other predictors in the model. It is
simpler, however, to just fit the model separately to each of the twelve subsets.
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Proportion
black in Crime type
precinct Parameter Violent Weapons Property Drug

< 10% intercept, μadj
−0.85 (0.07) 0.13 (0.07) −0.58 (0.21) −1.62 (0.16)

αadj
1 [blacks] 0.40 (0.06) 0.16 (0.05) −0.32 (0.06) −0.08 (0.09)

αadj
2 [hispanics] 0.13 (0.06) 0.12 (0.04) 0.32 (0.06) 0.17 (0.10)

αadj
3 [whites] −0.53 (0.06) −0.28 (0.05) 0.00 (0.06) −0.08 (0.09)

σβ 0.33 (0.08) 0.38 (0.08) 1.19 (0.20) 0.87 (0.16)
σε 0.30 (0.04) 0.23 (0.04) 0.32 (0.04) 0.50 (0.07)

10–40% intercept, μadj
−0.97 (0.07) 0.42 (0.07) −0.89 (0.16) −1.87 (0.13)

αadj
1 [blacks] 0.38 (0.04) 0.24 (0.04) −0.16 (0.06) −0.05 (0.05)

αadj
2 [hispanics] 0.08 (0.04) 0.13 (0.04) 0.25 (0.06) 0.12 (0.06)

αadj
3 [whites] −0.46 (0.04) −0.36 (0.04) −0.08 (0.06) −0.07 (0.05)

σβ 0.49 (0.07) 0.47 (0.07) 1.21 (0.17) 0.90 (0.13)
σε 0.24 (0.03) 0.24 (0.03) 0.38 (0.04) 0.32 (0.04)

> 40% intercept, μadj
−1.58 (0.10) 0.29 (0.11) −1.15 (0.19) −2.62 (0.12)

αadj
1 [blacks] 0.44 (0.06) 0.30 (0.07) −0.03 (0.07) 0.09 (0.06)

αadj
2 [hispanics] 0.11 (0.06) 0.14 (0.07) 0.04 (0.07) 0.09 (0.07)

αadj
3 [whites] −0.55 (0.08) −0.44 (0.08) −0.01 (0.07) −0.18 (0.09)

σβ 0.48 (0.10) 0.47 (0.11) 0.96 (0.18) 0.54 (0.11)
σε 0.24 (0.05) 0.37 (0.05) 0.42 (0.07) 0.28 (0.06)

Figure 15.1 Estimates and standard errors for the intercept μadj, ethnicity parameters
αadj

e , and the precinct-level and precinct-by-ethnicity-level variance parameters σβ and σε,
for the multilevel Poisson regression model (15.1), fit separately to three categories of
precinct and four crime types. The estimates of eμ+αe are displayed graphically in Figure
15.2, and alternative model specifications are shown in Figure 15.5.
It would be preferable to display these results graphically. We show them in tabular form
here to give a sense of the inferences that result from the 12 multilevel models that were
fit to these data.

Figure 15.1 shows the estimates from model (15.1) fit to each of four crime types
in each of three categories of precinct. The standard-deviation parameters σβ and
σε are substantial,1 indicating the relevance of multilevel modeling for these data.

The parameters of most interest are the rates of stop (compared to previous year’s
arrests) for each ethnic group, eμ+αe , for e = 1, 2, 3. We display these graphically
in Figure 15.2. Stops for violent crimes and weapons offenses were the most con-
troversial aspect of the stop-and-frisk policy (and represent more than two-thirds
of the stops), but for completeness we display all four categories of crime here.

Figure 15.2 shows that, for the most frequent categories of stops—those asso-
ciated with violent crimes and weapons offenses—blacks and hispanics were much
more likely to be stopped than whites, in all categories of precincts. For violent
crimes, blacks and hispanics were stopped 2.5 times and 1.9 times as often as
whites, respectively, and for weapons crimes, blacks and hispanics were stopped 1.8
times and 1.6 times as often as whites. In the less common categories of stop, whites
were slightly more often stopped for property crimes and more often stopped for
drug crimes, in proportion to their previous year’s arrests in any given precinct.

1 Recall that these effects are all on the logarithmic scale, so that an effect of 0.3, for example,
corresponds to a multiplicative effect of exp(0.3) = 1.35, or a 35% increase in the probability
of being stopped.



328 MULTILEVEL GENERALIZED LINEAR MODELS

Violent crimes (25% of all stops)
剡
瑥
⁯
映
獴
潰
猠
捯
浰
慲
敤
⁴
漠
慲
牥
獴
猀

〮
㄀

　⸲
〮
㔀

㄀⸰
㈮
　

灲散楮捴猠†††††灲散楮捴猠†††††⁰牥捩湣瑳
㰠㄰┠扬慣欠††㄰−㐰┠扬慣欠††㸠㐰┠扬慣欀

䉬慣歳
䡩獰慮楣猀

坨楴敳

Weapons crimes (44% of all stops)

剡
瑥
⁯
映
獴
潰
猠
捯
浰
慲
敤
⁴
漠
慲
牥
獴
猀

〮
㄀

　⸲
〮
㔀

㄀⸰
㈮
　

灲散楮捴猠†††††灲散楮捴猠†††††⁰牥捩湣瑳
㰠㄰┠扬慣欠††㄰−㐰┠扬慣欠††㸠㐰┠扬慣欀

䉬慣歳
䡩獰慮楣猀

坨楴敳

Property crimes (20% of all stops)
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Figure 15.2 Estimated rates eμ+αe at which people of different ethnic groups were stopped
for different categories of crime, as estimated from multilevel regressions (15.1) using pre-
vious year’s arrests as a baseline and controlling for differences between precincts. Separate
analyses were done for the precincts that had less than 10%, 10%–40%, and more than
40% black population. For the most common stops—violent crimes and weapons offenses—
blacks and hispanics were stopped about twice as often as whites. Rates are plotted on a
logarithmic scale. Numerical estimates and standard errors appear in Figure 15.1.

Alternative model specifications

In addition to fitting model (15.1) as described above, we consider two forms of
alternative specifications: first, fitting the same model but changing the batching of
precincts; and, second, altering the role played in the model by the previous year’s
arrests. We compare the fits under these alternative models to assess the sensitivity
of our findings to the details of model specification.

Modeling variability across precincts

The batching of precincts into three categories is convenient and makes sense—
neighborhoods with different levels of minority populations differ in many ways,
and fitting the model separately to each group of precincts is a way to include
contextual effects. However, there is an arbitrariness to the division. We explore
this by portioning the precincts into different numbers of categories and seeing how
the model estimates change.

Including precinct-level predictors. Another approach to controlling for system-
atic variation among precincts is to include precinct-level predictors, which can be
included along with the individual precinct-level effects in the multilevel model.
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Crime type
Parameter Violent Weapons Property Drug

intercept, μadj
−0.66 (0.08) 0.08 (0.11) −0.14 (0.24) −0.98 (0.17)

αadj
1 [blacks] 0.41 (0.03) 0.24 (0.03) −0.19 (0.04) −0.02 (0.04)

αadj
2 [hispanics] 0.10 (0.03) 0.12 (0.03) 0.23 (0.04) 0.15 (0.04)

αadj
3 [whites] −0.51 (0.03) −0.36 (0.03) −0.05 (0.04) −0.13 (0.04)

ζ1 [coeff for prop. black] −1.22 (0.18) 0.10 (0.19) −1.11 (0.45) −1.71 (0.31)
ζ2 [coef for prop. hispanic] −0.33 (0.23) 0.71 (0.27) −1.50 (0.57) −1.89 (0.41)

σβ 0.40 (0.04) 0.43 (0.04) 1.04 (0.09) 0.68 (0.06)
σε 0.25 (0.02) 0.27 (0.02) 0.37 (0.03) 0.37 (0.03)

Figure 15.3 Estimates and standard errors for the parameters of model (15.4) that includes
proportion black and hispanic as precinct-level predictors, fit to all 75 precincts. The results
for the parameters of interest, αadj

e , are similar to those obtained by fitting the basic model
separately to each of three categories of precincts, as displayed in Figures 15.1 and 15.2.
As before, the model is fit separately to the data from four different crime types.

As discussed earlier, the precinct-level information that is of greatest interest, and
also that has greatest potential to affect our results, is the ethnic breakdown of
the population. Thus we consider as regression predictors the proportion black and
hispanic in the precinct, replacing model (15.1) by

yep ∼ Poisson
(

15
12

nepe
μ+αe+ζ1z1p+ζ2z2p+βp+εep

)
, (15.4)

where z1p and z2p represent the proportion of the people in precinct p who are black
and hispanic, respectively. We also considered variants of model (15.4) including
the quadratic terms, z2

1p, z2
2p, and z1pz2p, to examine sensitivity to nonlinearity.

Figure 15.3 shows the results from model (15.4), which is fit to all 75 precincts
but controls for the proportion black and proportion hispanic in precincts. The
inferences are similar to those obtained from the main analysis presented earlier.
Including quadratic terms and interactions in the precinct-level model (15.4), and
including the precinct-level predictors in the models fit to each of the three subsets
of the data, similarly had little effect on the parameters of interest, αadj

e .

Changing the number of precinct categories. Figure 15.4 displays the estimated
rates of stops for violent crimes, compared to the previous year’s arrests, for each
of the three ethnic groups, for analyses dividing the precincts into 5, 10, and 15
categories ordered by percent black population in precinct. For simplicity, we only
give results for violent crimes; these are typical of the alternative analyses for all four
crime types. For each of the three graphs in Figure 15.4, the model was separately
estimated for each batch of precincts, and these estimates are connected in a line for
each ethnic group. Compared to the upper-left plot in Figure 15.2, which shows the
results from dividing the precincts into three categories, we see that dividing into
more groups adds noise to the estimation but does not change the overall pattern
of differences between the groups.

Modeling the relation of stops to previous year’s arrests

We also consider different ways of using the number of DCJS arrests nep in the
previous year, which plays the role of a baseline (or offset, in generalized linear
models terminology) in model (15.1).
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Figure 15.4 Estimated rates eμ+αe at which people of different ethnic groups were stopped
for violent crimes, as estimated from models dividing precincts into 5, 10, and 15 cate-
gories. For each graph, the top, middle, and lower lines correspond to blacks, hispanics,
and whites, respectively. These plots show the same general patterns as the model with 3
categories (the upper-left graph in Figure 15.2) but with increasing levels of noise.

Using a linear predictor instead of an offset. Including the past arrest rate as an
offset makes sense because we are interested in the rate of stops per crime, and we
are using past arrests as a proxy for crime rate and for police expectations about the
demographics of perpetrators. However, another option is to include the logarithm
of the number of past arrests as a linear predictor instead:

yep ∼ Poisson
(

15
12

eγ log nep+μ+αe+βp+εep
)
. (15.5)

Model (15.5) reduces to the offset model (15.1) if γ = 1. We can thus fit (15.5) and
see if the inferences for αadj

e change compared to the earlier model that implicitly
fixes γ to 1.

Two-stage models of arrest and stop rates. We can take this idea further by mod-
eling past arrests as a proxy rather than the actual crime rate. We try this in two
ways, for each labeling the true crime rate for each ethnicity in each precinct as
θep, with separate multilevel Poisson regressions for this year’s stops and last year’s
arrests (as always, including the factor 15

12 to account for our 15 months of stop
data). In the first formulation, we model last year’s arrests as Poisson distributed
with mean θ:

yep ∼ Poisson
(

15
12

θepe
μ+αe+βp+εep

)
nep ∼ Poisson(θep)

log θep = log Nep + α̃e + β̃p + ε̃ep. (15.6)

Here we are using Nep, the population of ethnic group e in precinct p, as a baseline

for the model of crime frequencies. The second-level error terms β̃ and ε̃ are given
normal hyperprior distributions as with model (15.1).

Our second two-stage model is similar to (15.6) but moving the new error term
ε̃ to the model for nep:

yep ∼ Poisson
(

15
12

θepe
μ+αe+βp+εep

)
nep ∼ Poisson(θepe

ε̃ep)

log θep = log Nep + α̃e + β̃p. (15.7)

Under this model, arrest rates nep are equal to the underlying crime rates, θep, on
average, but with overdispersion compared to the Poisson error distribution.

Figure 15.5 displays parameter estimates from the models that differently incor-
porate the previous year’s arrest rates nep. For conciseness we display results for
violent crimes only, for simplicity including all 75 precincts in the models. (Similar
results are obtained when fitting the model separately in each of three categories
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Model for previous year’s arrests
Parameter offset (15.1) regression (15.5) 2-stage (15.6) 2-stage (15.7)

intercept, μadj
−1.08 (0.06) −0.94 (0.16) −1.07 (0.06) −1.13 (0.07)

αadj
1 [blacks] 0.40 (0.03) 0.41 (0.03) 0.40 (0.03) 0.42 (0.08)

αadj
2 [hispanics] 0.10 (0.03) 0.10 (0.03) 0.10 (0.03) 0.14 (0.09)

αadj
3 [whites] −0.50 (0.03) −0.51 (0.03) −0.50 (0.03) −0.56 (0.09)

γ [coef for log nep] 0.97 (0.03)

σβ 0.51 (0.05) 0.51 (0.05) 0.51 (0.05) 0.27 (0.12)
σε 0.26 (0.02) 0.26 (0.02) 0.24 (0.02) 0.67 (0.04)

Figure 15.5 Estimates and standard errors for parameters under model (15.1) and three
alternative specifications for the previous year’s arrests nep: treating log(nep) as a predictor
in the Poisson regression model (15.5), and the two-stage models (15.6) and (15.7). For
simplicity, results are displayed for violent crimes only, for the model fit to all 75 precincts.
The three αadj

e parameters are nearly identical under all four models, with the specification
affecting only the intercept.

of precincts, and for the other crime types.) The first two columns of Figure 15.5
show the result from our main model (15.1) and the alternative model (15.5), which
includes log nep as a regression predictor. The two models differ only in that the
first restricts γ to be 1, but as we can see, γ is estimated very close to 1 in the
regression formulation, and the coefficients αadj

e are essentially unchanged. (The
intercept changes a bit because log nep does not have a mean of 0.)

The last two columns in Figure 15.5 show the estimates from the two-stage regres-
sion models (15.6) and (15.7). The models differ in their estimates of the variance
parameters σβ and σε, but the estimates of the key parameters αadj

e are essentially
the same as in the original model.

We also performed analyses including indicators for the month of arrest. Rates
of stops were roughly constant over the 15-month period and did not add anything
informative to the comparison of ethnic groups.

15.2 Ordered categorical regression: storable votes

At the end of Section 6.5, we described data on “storable votes” from a study
in experimental economics. Each student in the experiment played a voting game
30 times, in each play receiving an input x between 1 and 100 and then giving a
response of 1, 2, or 3. As described in Section 6.5, we fit an ordered multinomial
logistic regression to these outcomes, fitting the model separately for each student.

We now return to these data and fit a multilevel model. With only 30 data points
on each student, there is some uncertainty in the estimate for the parameters for
each student, and a multilevel model should allow more precise inferences—at least
if the students are similar to each other. (As discussed in Section 12.7, multilevel
modeling is most effective when the parameters in a batch are similar to each other.)

In our multilevel model for the storable votes study, we simply expand the model
(6.11) allowing each of the parameters to vary by student j:

cj 1.5 ∼ N(μ1.5, σ
2
1.5)

cj 2.5 ∼ N(μ2.5, σ
2
2.5)

log σj ∼ N(μlog σ, σ2
log σ),

with the hyperparameters σ1.5, σ2.5, μlog σ, σlog σ estimated from the data. The un-
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Figure 15.6 Estimated cutpoints cj 1.5, cj 2.5 for students j in three experiments on storable
voting. Each set of parameters was estimated using a multilevel ordered logistic regression
model. The dots all fall above the diagonal line because the 2–3 cutpoint is restricted to
be at least as high as the 1–2 cutpoint. The large circle on each graph corresponds to
a theoretically optimal cutpoint for each game. Deviations of actual strategies from the
theoretical optimum are of interest.

pooled model, estimating the parameters separately for each student, corresponds
to hyperparameters set to σ1.5 =∞, σ1.5 =∞, σlog σ =∞. (The log transformation
is used for σj so that its distribution is restricted to be positive.)

Having fit the multilevel model, we can now examine how the parameters vary
among the students in the experiment. The parameters c1.5 and c2.5 correspond to
the cutpoints for voting 1, 2, 3; variation in these two parameters thus corresponds
to variation in the monotonic strategies used by the students in the voting game.
The parameter σ represents the variation in the model, with higher values indicating
a less purely monotonic strategy.

Figure 15.6 shows estimated cutpoints cj 1.5, cj 2.5 for students j in three different
storable voting experiments. The general distribution of the cutpoints is similar in
the three games, despite the different positions of the theoretically optimal cutpoints
(indicated by a solid circle in each plot). This suggests that students are following
a range of approximately monotonic strategies that are determined more by the
general structure of the game than by detailed strategic reasoning. For the practical
implementation of storable votes, this finding is somewhat encouraging, in that the
“players” are using storable votes to express their preferences on individual issues
without feeling the need to manipulate the voting game.

15.3 Non-nested negative-binomial model of structure in social

networks

Understanding the structure of social networks, and the social processes that form
them, is a central concern of sociology for both theoretical and practical reasons.
Networks have been found to have important implications for social mobility, getting
a job, the dynamics of fads and fashion, attitude formation, and the spread of
infectious disease.

This section discusses how we used an overdispersed Poisson regression model to
learn about social structure. We fit the model to a random-sample survey of Ameri-
cans who were asked,2 “How many X’s do you know?” for a variety of characteristics
X, defined by name (Michael, Christina, Nicole, . . . ), occupation (postal worker,

2 The respondents were told, “For the purposes of this study, the definition of knowing someone
is that you know them and they know you by sight or by name, that you could contact them,
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pilot, gun dealer, . . . ), ethnicity (Native American), or experience (prisoner, auto
accident victim, . . . ). For a complete list of the groups, see Figure 15.10 on page
338.

Background

The original goals of the survey were (1) to estimate the distribution of individuals’
network size, defined to be the number of acquaintances, in U.S. population and
(2) to estimate the sizes of certain subpopulations, especially those that are hard
to count using regular survey results.

Before describing our regression modeling, we explain how these two estimates
can be roughly computed from the data. First, to estimate the social network size of
a single individual, one can use his or her total response for a set of subpopulations
with known sizes, and then scale up using the sizes of these groups in the population.

To illustrate, suppose you know 2 persons named Nicole. At the time of the
survey, there were 358,000 Nicoles out of 280 million Americans. Thus, your 2
Nicoles represent a fraction 2

358,000 of all the Nicoles. Extrapolating to the entire

country yields an estimate of 2
358,000 · (280 million) = 1560 people known by you. A

more precise estimate can be obtained by averaging these estimates using a range
of different groups. This is only a crude inference since it assumes that everyone
has equal propensity to know someone from each group. However, as an estimation
procedure, it has the advantage of not requiring a respondent to recall his or her
entire network, which typically numbers in the hundreds.

The second use for which this survey was designed is to estimate the size of certain
hard-to-count populations. To do this, one can combine the estimated network
size information with the responses to the questions about how many people the
respondents know in the hard-to-count population.

For example, the survey respondents know, on average, 0.63 homeless people. If it
is estimated that the average network size is 750, then homeless people represent a
fraction of 0.63

750 of an average person’s social network. The total number of homeless
people in the country can then be estimated as 0.63

750 · (280 million) = 0.24 million.
This estimate relies on idealized assumptions (most notably, that homeless persons
have the same social network size, on average, as Americans as a whole) but can
be used as a starting point for estimating the sizes of groups that are difficult to
measure directly.

Our regression model performs more precise versions of these estimates but, more
interestingly, uses overdispersion in the data to reveal information about social
structure in the acquaintanceship network. We use the variation in response data
to study the heterogeneity of relative propensities for people to form ties to people
in specific groups.

that they live within the United States, and that there has been some contact (either in person,
by telephone or mail) in the past two years.”
In addition, the data have some minor problems. For the fewer than 0.4% of responses that
were missing, we followed the usual practice with this sort of unbalanced data of assuming
an ignorable model (that is, constructing the likelihood using the observed data). Sometimes
responses were categorized, and then we use the central value in the bin (for example, imputing
7.5 for the response “5–10”). In addition, to correct for some responses that were suspiciously
large (for example, a person claiming to know more than 50 Michaels), we truncate all responses
at 30. (As a sensitivity analysis, we tried changing the truncation point to 50; this had essentially
no effect on our results.) We also inspected the data using scatterplots of responses, which
revealed a respondent who was coded as knowing 7 persons of every category. We removed this
case from the dataset.
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Modeling the data

For respondent i = 1, . . . , 1370 and subpopulations k = 1, . . . , 32 (see Figure 15.10
for the list of groups asked about in the survey), we use the notation yik for the
number of persons in group k known by person i. We consider three increasingly
complicated models for these data.

Most simply, the Erdos-Renyi model is derived from the assumption that any per-
son in the population is equally likely to know any other person, so that social links
occur completely at random. A consequence of this assumption is that yik should
have a Poisson distribution with mean proportional to the size of subpopulation k.

More generally, one could consider a null model in which individuals i have vary-
ing levels of gregariousness or popularity, so that the expected number of persons
in group k known by person i will be proportional to this gregariousness parame-
ter, which we label ai. Departure from this model—patterns not simply explained
by differing group sizes or individual popularities—can be viewed as evidence of
structured social acquaintance networks.

As we shall see, the null model (and its special case, the Erdos-Renyi model)
fails to account for much of social reality, including the “How many X’s do you
know?” survey data. In fact, some individuals are much more likely to know people
of some groups. To capture this aspect of social structure, we set up a new model
in which, for any individual, the relative propensities to know people from different
groups vary. We call this the overdispersed model since this variation results in
overdispersion in the count data yik.

Figure 15.7 shows some of the data—the distributions of responses to the ques-
tions, “How many people named Nicole do you know?” and “How many Jaycees do
you know?” along with the expected distributions under the Erdos-Renyi model,
our null model, and our overdispersed model. We chose these two groups to plot
because they are close in average number known (0.9 Nicoles, 1.2 Jaycees) but have
much different distributions. The distribution for Jaycees has much more variation,
with more zero responses and more responses in the upper tail.3

Comparing the models, the Erdos-Renyi model implies a Poisson distribution for
the responses to each question, whereas the other models allow for more dispersion.
The distributions under the null model are more dispersed to reflect that social
network sizes vary greatly among individuals. The distributions under the overdis-
persed model are even more spread out—especially for the Jaycees—reflecting esti-
mated variation in relative propensities for people to know members of the Jaycees.
As we shall see, both these sources of variation—variation in social network sizes
and variations in relative propensities to form ties to specific groups—can be esti-
mated from the data in the survey.

The three models can be written as follows in statistical notation as yik ∼
Poisson(λik), with increasingly general forms for λik:

Erdos-Renyi model: λik = abk

our null model: λik = aibk

our overdispersed model: λik = aibkgik.

The null model goes beyond the Erdos-Renyi model by allowing the gregari-
ousness parameters to differ between individuals (ai) and prevalence parameters

3 “Jaycees” are members of the Junior Chamber of Commerce, a community organization of
people between the ages of 21 and 39. Because the Jaycees are a social organization, it makes
sense that not everyone has the same propensity to know one—people who are in the social
circle of one Jaycee are particularly likely to know others.
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Figure 15.7 Distributions of responses to “How many persons do you know named Nicole?”
and “How any Jaycees do you know?” from survey data and from random simulations
under three fitted models: the Erdos-Renyi model (completely random links), our null model
(some people more gregarious than others, but uniform relative propensities for people to
form ties to all groups), and our overdispersed model (variation in gregariousness and
variation in propensities to form ties to different groups). The four models are listed in
order of increasing dispersion than the one above, with the overdispersed model fitting the
data reasonably well. The propensities to form ties to Jaycees show much more variation
than the propensities to form ties to Nicoles, and hence the Jaycees counts are much
more overdispersed. (The data also show minor idiosyncrasies such as small peaks at the
responses 10, 15, 20, and 25. All values greater than 30 have been truncated at 30.)

between groups (bk). The overdispersed model generalized further by allowing dif-
ferent individuals to differ in their relative propensities to form ties to people in
specific groups (gik). When fitting the overdispersed model, we will not attempt
to estimate all the individual gik’s; rather, we estimate certain properties of their
distributions.

The overdispersed model

Overdispersion in these data can arise if the relative propensity for knowing someone
in prison, for example, varies from respondent to respondent. We can write this in
the generalized linear model framework as

yik ∼ Poisson(eαi+βk+γik), (15.8)

where each γik = log(gik) ≡ 0 in the null model. For each subpopulation k, we let
the multiplicative factors gik = eγik follow a gamma distribution with a value of 1
for the mean and a value of 1/(ωk − 1) for the shape parameter.4 This distribution

4 If we wanted, we could allow the mean of the gamma distribution to vary also; however, this
would be redundant with a location shift in βk; see model (15.8). The mean of the gamma dis-
tribution for the eγik ’s cannot be identified separately from βk, which we are already estimating
from data.
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is convenient because then the γ’s can be integrated out of model (15.8) to yield

yik ∼ negative-binomial(mean = eαi+βk , overdispersion = ωk). (15.9)

(The usual parametrization of this distribution is y ∼ Negative-binomial(A, B),
but for this example it is more convenient to express in terms of the mean λ =
A/B and overdispersion ω = 1 + 1/B.) Setting ωk = 1 corresponds to setting
the shape parameter in the gamma distribution to ∞, which in turn implies that
the gik’s have zero variance, reducing to the null model with no overdispersion.
Higher values of ωk correspond to overdispersion—that is, more variation in the
distribution of connections involving group k than would be expected under the
Poisson regression, as would be expected if there is variation among respondents in
the relative propensity to know someone in group k.

Our primary goal in fitting model (15.9) is to estimate the overdispersions ωk

and thus learn about biases that exist in the formation of social networks. As
a byproduct, we also estimate the gregariousness parameters αi and the group
prevalence parameters βk. As we have discussed, ai = eαi represents the expected
number of persons known by respondent i, and bk = eβk is the proportion of
subgroup k in the social network, counting each link in the network in proportion
to the probability that it will be recalled by a random respondent in the survey.

We estimate the α’s, β’s, and ω’s with a multilevel model. The respondent pa-
rameters αi are assumed to follow a normal distribution with unknown mean μα

and standard deviation σα. We similarly fit the subgroup parameters βk with a
normal distribution N(μβ , σ2

β), with these hyperparameters also estimated from the
data. For simplicity, we assign independent Uniform(0,1) prior distributions to the
overdispersion parameters on the inverse scale: p(1/ωk) ∝ 1. (The overdispersions
ωk are constrained to the range (1,∞), and so it is convenient to put a model on
the inverses 1/ωk, which fall in the interval (0, 1).)

Nonidentifiability

The model as given is not fully identified. Any constant C can be added to all the
αi’s and subtracted from all the βk’s, and the likelihood will remain unchanged
(since it depends on these parameters only through sums of the form αi +βk). If we
also add C to μα and subtract C from μβ , then the prior density also is unchanged
as well. It would be possible to identify the model by anchoring it at some arbitrary
point—for example, setting μα to zero—but we prefer to let all the parameters float,
since including this redundancy can allow the iterative computations to converge
more quickly (a point we discuss more generally in Section 19.4).

We choose a constant C so that the parameters eβk correspond to the proportion
of the entire social network associated with subpopulation k. We perform this renor-
malization using the known population sizes of the named subgroups (the number
of Michaels, Nicoles, and so forth, in the population), which can be obtained from
the U.S. Census. The choice of C is somewhat elaborate, including adjustments for
the rare and common male and female names, and we do not present the details
here.

Computation

We would like to fit the model in Bugs, but with more than 1400 parameters (an αj

for each of the 1370 survey respondents, a βk for each of the 32 subgroups, and some
hyperparameters), it runs too slowly. Instead, we use a more efficient program called
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Figure 15.8 Estimated distributions of “gregariousness” or expected number of acquain-
tances, ai = eαi from the fitted model. Men and women have similar distributions (with
medians of about 610 and means about 750), with a great deal of variation among persons.
The overlain lines are posterior simulation draws indicating inferential uncertainty in the
histograms.
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Figure 15.9 Coefficients of the regression of estimated log gregariousness parameters αi on
personal characteristics. Because the regression is on the logarithmic scale, the coefficients
(with the exception of the constant term) can be interpreted as proportional differences:
thus, with all else held constant women have social network sizes 11% smaller than men,
persons over 65 have social network sizes 14% lower than others, and so forth. The R2 of
the model is only 10%, indicating that these predictors explain very little of the variation
in gregariousness in the population.

Umacs (Universal Markov Chain sampler) which requires the posterior distribution
to be specified as an R function. Details appear in Section 18.7.

We fit the model first using all the data and then separately for the male and
female respondents (582 men and 784 women, with 4 individuals excluded due to
missing gender information). Fitting the models separately for men and women
makes sense since many of the subpopulations under study are single-sex groups.
As we shall see, men tend to know more men and women tend to know more women,
and more subtle sex-linked patterns also occur.

The distribution of social network sizes ai

Figure 15.8 displays estimated distributions of the gregariousness parameters ai =
eαi for the survey respondents, showing separate histograms of the posterior simu-
lations from the model estimated separately to the men and the women.

The spread in each of the histograms of Figure 15.8 almost entirely represents
population variability. The model allows us to estimate the individual ai’s to within
a coefficient of variation of about ±25%. When taken together this allows us to
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Figure 15.10 For each group k in the “How many X’s do you know?” survey, we plot the
estimate (and 95% interval) of bk and ωk. The estimates and uncertainty lines are clustered
in groups of three; for each group, the top, middle, and bottom dots/lines correspond to
men, all respondents, and women, respectively. The groups are listed in categories—female
names, male names, female, male (or primarily male), and mixed-sex groups—and in
increasing average overdispersion within each category.

estimate the distribution very precisely. This precision can be seen in the solid lines
that are overlaid on Figure 15.8 and represent inferential uncertainty.

Figure 15.9 presents a simple regression analysis estimating some of the factors
predictive of αi = log(ai), using questions asked of the respondents in the survey.
These explanatory factors are relatively unimportant in explaining social network
size: the regression summarized in Figure 15.9 has an R2 of only 10%. The largest
effects are that persons with a college education, a job outside the home, and high
incomes know more people, and persons over 65 and those having low incomes know
fewer people. These factors all have effects in the range of 10%–20%.

Relative sizes bk of subpopulations

We now consider the parameters describing the 32 subpopulations. The left panels
of Figure 15.10 show the 32 subpopulations k and the estimates of bk = eβk , the
proportion of links in the network that go to a member of group k. The right panel
displays the estimated overdispersions ωk. The sample size is large enough that the
95% error bars are tiny for the βk’s and reasonably small for the ωk’s as well. (It is
a general property of statistical estimation that mean parameters, such as the β’s
in this example, are easier to estimate than dispersion parameters such as the ω’s.)
The figure also displays the separate estimates from the men and women.

Considering the β’s first, the clearest pattern in Figure 15.10 is that respondents
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Figure 15.11 Log-log plot of estimated prevalence of groups in the population (as estimated
from the “How many X’s do you know?” survey) plotted versus actual group size (as
determined from public sources). Names and other groups are plotted separately, on a
common scale, with fitted regression lines shown. The solid lines have slopes 0.53 and
0.42, compared to a theoretical slope of 1 (as indicated by the dotted lines) that would be
expected if all groups were equally popular, on average, and equally recalled by respondents.

of each sex tend to know more people in groups of their own sex. We can also
see that the 95% intervals are wider for groups with lower β’s, which makes sense
because the data are discrete and, for these groups, the counts yik are smaller and
provide less information.

Another pattern in the estimated bk’s is the way that they scale with the size
of group k. One would expect an approximate linear relation between the number
of people in group k and our estimate for bk: that is, on a graph of log bk versus
log(group size), we would expect the groups to fall roughly along a line with slope 1.
As can be seen in Figure 15.11, however, this is not the case. Rather, the estimated
prevalence increases approximately with square root of population size, a pattern
that is particularly clean for the names. This relation has also been observed by
earlier researchers.

Discrepancies from the linear relation can be explained by difference in aver-
age degrees (for example, as members of a social organization, Jaycees would be
expected to know more people than average, so their bk should be larger than an-
other group of equal numbers), inconsistency in definitions (for example, what is
the definition of an American Indian?), and ease or difficulty of recall (for example,
a friend might be a twin without you knowing it, whereas you would probably know
whether she gave birth in the past year).

This still leaves unanswered the question of why square root (that is, a slope of 1/2
in the log-log plot) rather than linear (a slope of 1). It is easier to recall rare persons
and events, whereas more people in more common categories are easily forgotten.
You will probably remember every Ulysses you ever met, but it can be difficult to
recall all the Michaels and Roberts you know even now. The recall process for rarer
names reaches deeper into one’s personal network of acquaintances.

Another pattern in Figure 15.11 is that the line for the names is higher than for
the other groups. We suppose that is because, for a given group size, it is easier
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Figure 15.12 Correlations of the residuals rik among the survey respondents: people who
know more HIV-positive persons know more AIDS patients, etc. The groups other than
the names are listed based on a clustering algorithm that maximizes correlations between
nearby groups.

to recall names than characteristics. After all, you know the name of almost all
your acquaintances, but you could easily be unaware that a friend has diabetes, for
example.

Overdispersion parameters ωk for subpopulations

Recall that we introduced the overdispersed model to attempt to estimate the
variability in respondents’ relative propensities to form ties to members of different
groups. For groups where ωk = 1, we can conclude that there is no variation in these
relative propensities, so that persons in group k appear to be randomly distributed
in the social network. However, for groups where ωk is much greater than 1, the
null model is a poor fit to the data, and persons in group k do not appear to be
uniformly distributed in the social network. Rather, overdispersion implies that the
relative propensity to know persons of group k varies in the general population.

The right panel of Figure 15.10 displays the estimated overdispersions ωk, and
they are striking. First, we observe that the names have overdispersions of between 1
and 2—that is, indicating very little variation in relative propensities. In contrast,
the other groups have a wide range of overdispersions, with the highest values
for Jaycees and American Indians (two groups with dense internal networks) and
homeless persons, who are both geographically and socially localized.

These results are consistent with our general understanding and also potentially
reveal patterns that would not be apparent without this analysis. For example, it
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Figure 15.13 Coefficients of the regression of residuals for the “How many males in federal
prison do you know?” question on personal characteristics. Being male, nonwhite, young,
unmarried, etc., are associated with knowing more people than expected in federal prison.
However, the R2 of the regression is only 11%, indicting that most of the variation in the
data is not captured by these predictors.

is no surprise that there is high variation in the propensity to known someone who
is homeless, but it is perhaps surprising that AIDS patients are less overdispersed
than HIV-positive persons, or that new business owners are no more overdispersed
than new mothers.

Analysis of residuals

Further features of these data can be studied using residuals from the overdispersed
model. A natural object of study is correlation: for example, do people who know
more Anthonys tend to know more gun dealers (after controlling for the fact that
social network sizes differ, so that anyone who knows more X’s will tend to know
more Y’s)? For each survey response yik, we can define the standardized residual
as

residual: rik =
√

yik −
√

aibk, (15.10)

the excess people known after accounting for individual and group parameters. (It
is standard to compute residuals of count data on the square root scale to stabilize
the variance.)

For each pair of groups k1, k2, we can compute the correlation of their vectors
of residuals; Figure 15.12 displays the matrix of these correlations. Care must be
taken when interrupting the figure. At first, it may appear that the correlations are
quite small. However, this is in some sense a natural result of our model. That is,
if the correlations where all positive for a specific group, then the popularity b of
that group would increase.

Several patterns can be seen in Figure 15.12. First, there is a slight positive cor-
relation within male and female names. Second, perhaps more interesting sociolog-
ically, there is a positive correlation between the categories that can be considered
negative experiences—homicide, suicide, rape, died in a car accident, homelessness,
and being in prison. That is, someone with a higher relative propensity to know
someone with one bad experience is also likely to have a higher propensity to know
someone who had a different bad experience.

Instead of correlating the residuals, we could have examined the correlations
of the raw data. However, these would be more difficult to interpret because we
would find positive correlations everywhere, for the uninteresting reason that some
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respondents know many more people than others, so that if you know more of any
category of person, you are likely to know more in just about any other category.

One can also model the residuals based on individual-level predictors. For exam-
ple, Figure 15.13 shows the estimated coefficients of a regression model fit to the
residuals of the null model for the “How many males do you know in state or federal
prison?” question. It is no surprise that being male, nonwhite, young, unmarried,
less educated, unemployed, and so forth are associated with knowing more men
than expected in state or federal prison. However, the R2 of the regression model
is only 11%.

As with the correlation analysis, by performing this regression on the residuals
and not the raw data, we are able to focus on the relative number of prisoners known,
without being distracted by the total network size of each respondent (which we
have separately analyzed in Figure 15.9).

15.4 Bibliographic note

Examples of hierarchical generalized linear modeling in the literature include Novick,
Lewis, and Jackson (1973), Clayton and Kaldor (1987), Karim and Zeger (1992),
Barry et al. (2003), and many others. Johnson (1996, 1997) applies multilevel or-
dered discrete regression models to student grades.

The New York City police analysis comes from Gelman, Fagan, and Kiss (2006).
Some references on neighborhoods and crime include Wilson and Kelling (1982),
Skogan (1990), and Sampson, Raudenbush, and Earls (1997). The storable votes
experiment and model are described in Casella, Gelman, and Palfrey (2006). The
social network example comes from Zheng, Salganik, and Gelman (2006), with the
analysis based on survey data of Killworth et al. (1998) and McCarty et al. (2000).
For more on statistical models for network data, see Newman (2003), Hoff, Raftery,
and Handcock (2002), and Hoff (2003, 2005).

15.5 Exercises

1. Multilevel ordered logit: using the National Election Study data from the year
2000 (data available in the folder nes), set up an ordered logistic regression
predicting the response to the question on vote intention (0 = Gore, 1 =
no opinion or other, 2 = Bush), given the predictors shown in Figure 5.4 on
page 84, and with varying intercepts for states. (You will fit the model using
Bugs in Exercise 17.10.)

2. Using the same data as the previous exercise:

(a) Formulate a model to predict party identification (which is on a five-point
scale) using ideology and demographics with a multilevel ordered categorical
model allowing both the intercept and the coefficient on ideology to vary over
state.

(b) Fit the model using lmer() and discuss your results.

3. Multinomial choice models: fit and evaluate a multilevel model to the Academy
Awards data from Exercise 6.11.



Part 2B: Fitting multilevel models

We next explain how to fit multilevel models in Bugs, as called from R. We illustrate
with several examples and discuss some general issues in model fitting and tricks
that can help us estimate multilevel models using less computer time. We also
present the basics of Bayesian inference (as a generalization of the least squares
and maximum likelihood methods used for classical regression), which is the ap-
proach used in problems such as multilevel models with potentially large numbers
of parameters.

Appendix C discusses some software that is available to quickly and approxi-
mately fit multilevel models. We recommend using Bugs for its flexibility in model-
ing; however, these simpler approaches can be useful to get started, explore models
quickly, and check results.





CHAPTER 16

Multilevel modeling in Bugs and R: the
basics

In this chapter we introduce the fitting of multilevel models in Bugs as run from
R. Following a brief introduction to Bayesian inference in Section 16.2, we fit a
varying-intercept multilevel regression, walking through each step of the model.
The computations in this chapter parallel Chapter 12 on basic multilevel models.
Chapter 17 presents computations for the more advanced linear and generalized
linear models of Chapters 12–15.

16.1 Why you should learn Bugs

As illustrated in the preceding chapters, we can quickly and easily fit many mul-
tilevel linear and generalized linear models using the lmer() function in R. Func-
tions such as lmer(), which use point estimates of variance parameters, are useful
but can run into problems. When the number of groups is small or the multilevel
model is complicated (with many varying intercepts, slopes, and non-nested compo-
nents), there just might not be enough information to estimate variance parameters
precisely. At that point, we can get more reasonable inferences using a Bayesian
approach that averages over the uncertainty in all the parameters of the model.

We recommend the following strategy for multilevel modeling:

1. Start by fitting classical regressions using the lm() and glm() functions in R.
Display and understand these fits as discussed in Part 1 of this book.

2. Set up multilevel models—that is, allow intercepts and slopes to vary, using non-
nested groupings if appropriate—and fit using lmer(), displaying as discussed
in most of the examples of Part 2A.

3. As described in this part of the book, fit fully Bayesian multilevel models, using
Bugs to obtain simulations representing inferential uncertainty about all the
parameters in a model. Use these simulations to summarize uncertainty about
coefficients, predictions, and other quantities of interest.

4. Finally, for some large or complicated models, it is necessary to go one step
further and do some programming in R, as illustrated in Section 18.7.

For some analyses, it will not be necessary to go through all four steps. In fact, as
illustrated in the first part of this book, often step 1 is enough.

In multilevel settings, the speed and convenience of lmer() allow us to try many
specifications in building a model, and then the flexibility of Bugs gives us a chance
to understand any particular model more fully. Also, as we discuss in Section 16.10,
Bugs has an open-ended format that allows models to be expanded more generally
than can be done using standard multilevel modeling packages.

16.2 Bayesian inference and prior distributions

The challenge in fitting a multilevel model is estimating the data-level regression
(including the coefficients for all the group indicators) along with the group-level

345
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model. The most direct way of doing this is through Bayesian inference, a statisti-
cal method that treats the group-level model as “prior information” in estimating
the individual-level coefficients. Chapter 18 discusses Bayesian inference as a gen-
eralization of least squares and maximum likelihood estimation. Here we briefly
characterize the prior distributions that are commonly used in multilevel models.

In a Bayesian framework, all parameters must have prior distributions, and in the
models of this book the prior distributions almost all fall into one of two categories:
group-level models and noninformative uniform distributions. The group-level mod-
els themselves are either normal distributions (whose mean and standard deviation
are themselves typically given noninformative prior distributions) or linear regres-
sions (whose coefficients and error standard deviations are again typically modeled
noninformatively).

Classical regression

Classical regression and generalized linear models represent a special case of multi-
level modeling in which there is no group-level model—in Bayesian terms, no prior
information. For the classical regression model, yi = Xiβ + εi, with independent er-
rors εi ∼ N(0, σ2

y), the corresponding prior distribution is a uniform distribution on
the entire range (−∞,∞) for each of the components of β, and uniform on (0,∞)
for σy as well.1 That is, the classical model ascribes no structure to the parameters.
Similarly, a classical logistic regression, Pr(yi = 1) = logit−1(Xiβ), has a uniform
prior distribution on the components of β.

Simplest varying-intercept model

The simplest multilevel regression is a varying-intercept model with normally dis-
tributed individual and group-level errors: yi ∼ N(αj[i]+βxi, σ

2
y) and αj ∼ N(μα, σ2

α).
The normal distribution for the αj ’s can be thought of as a prior distribution for
these intercepts. The parameters of this prior distribution, μα and σα, are called
hyperparameters and are themselves estimated from the data. In Bayesian infer-
ence, all the hyperparameters, along with the other unmodeled parameters (in this
case, β and σy) also need a prior distribution which, as in classical regression, is
typically set to a uniform distribution.2 The complete prior distribution can be
written in probability notation as p(α, β, μα, σy, σα) ∝∏J

j=1 N(αj |μα, σ2
α)—that is,

independent normal distributions for the αj ’s so that their probability densities are
multiplied to create the joint prior density.

Varying-intercept, varying-slope model

The more complicated model, yi = αj[i] + βj[i]xi + εi, has 2J modeled parameters,
which are modeled as J pairs, (αj , βj). Their “prior distribution” is the bivariate
normal distribution (13.1) on page 279, once again with independent uniform prior
distributions on the hyperparameters.

1 Technically, the classical least squares results are reproduced with a prior distribution that is
uniform on log σy , that is, the prior distribution p(log σy) ∝ 1, which is equivalent to p(σy) ∝
1/σy . The distinction between p(σy) ∝ 1 and p(σy) ∝ 1/σy matters little in practice, and
for convenience we work with the simpler uniform distribution on σy itself. See Gelman et al.
(2003) for further discussion of such points.

2 The inverse-gamma distribution is often used as a prior distribution for variance parameters;
however, this model creates problems for variance components near zero, and so we prefer the
uniform or, if more information is necessary, the half-t model; see Section 19.6.
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Multilevel model with group-level predictors: exchangeability and prior distributions

We typically do not assign a model to coefficients of group-level predictors, or of
individual-level predictors that do not vary by group. That is, in Bayesian termi-
nology, we assign noninformative uniform prior distributions to these coefficients.
More interestingly, a group-level regression induces different prior distributions on
the group coefficients.

Consider a simple varying-intercept model with one predictor at the individual
level and one at the group level:

yi = αj[i] + βxi + εi, εi ∼ N(0, σ2
y), for i = 1, . . . , n

αj = γ0 + γ1uj + ηj , ηj ∼ N(0, σ2
α), for j = 1, . . . , J. (16.1)

The first equation, for the yi’s, is called the data model or the likelihood (see Sections
18.1–18.2). The second equation, for the αj ’s, is called the group-level model or the
prior model. (The choice of name does not matter except that it draws attention
either to the grouped structure of the data or to the fact that the parameters αj

are given a probability model.)
The αj ’s in (16.1) have different prior distributions. For any particular group j,

its αj has a prior distribution with mean α̂j = γ0 + γ1uj and standard deviation
σα. (As noted, this prior distribution depends on unknown parameters γ0, γ1, σα,
which themselves are estimated from the data and have noninformative uniform
prior distributions.) These prior estimates of the αj ’s differ because they differ in
the values of their predictor uj; the αj ’s thus are not “exchangeable” and have
different prior distributions.

An equivalent way to think of this model is as an exchangeable prior distribution
on the group-level errors, ηj . From this perspective, the αj ’s are determined by
the group-level predictors uj and the ηj ’s, which are assigned a common prior
distribution with mean 0 and standard deviation σα. This distribution represents
the possible values of ηj in a hypothetical population from which the given J groups
have been sampled.

Thus, a prior distribution in a multilevel model can be thought of in two ways:
as models that represent a “prior,” or group-level, estimate for each of the αj ’s;
or as a single model that represents the distribution of the group-level errors, ηj .
When formulating models with group-level predictors in Bugs, the former approach
is usually more effective (it avoids the step of explicitly defining the ηj ’s, thus
reducing the number of variables in the Bugs model and speeding computation).

Noninformative prior distributions

Noninformative prior distributions are intended to allow Bayesian inference for
parameters about which not much is known beyond the data included in the anal-
ysis at hand. Various justifications and interpretations of noninformative priors
have been proposed over the years, including invariance, maximum entropy, and
agreement with classical estimators. In our work, we consider noninformative prior
distributions to be “reference models” to be used as a standard of comparison or
starting point in place of the proper, informative prior distributions that would be
appropriate for a full Bayesian analysis.

We view any noninformative prior distribution as inherently provisional—after
the model has been fit, one should look at the posterior distribution and see if it
makes sense. If the posterior distribution does not make sense, this implies that
additional prior knowledge is available that has not been included in the model,
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and that contradicts the assumptions of the prior distribution (or some other part
of the model) that has been used. It is then appropriate to go back and alter the
model to be more consistent with this external knowledge.

16.3 Fitting and understanding a varying-intercept multilevel model

using R and Bugs

We introduce Bugs by stepping through the varying-intercept model for log radon
levels described in Section 12.3. We first fit classical complete-pooling and no-pool-
ing models in R using lm(), then perform a quick multilevel fit using lmer() as
described in Section 12.4, then fit the multilevel model in Bugs, as called from R.

Setting up the data in R

We begin by loading in the data: radon measurements and floors of measurement for
919 homes sampled from the 85 counties of Minnesota. (The dataset also contains
several other measurements at the house level that we do not use in our model.)
Because it makes sense to assume multiplicative effects, we want to work with the
logarithms of radon levels; however, some of the radon measurements have been
recorded as 0.0 picoCuries per liter. We make a simple correction by rounding
these up to 0.1 before taking logs.

R code srrs2 <- read.table ("srrs2.dat", header=TRUE, sep=",")

mn <- srrs2$state=="MN"

radon <- srrs2$activity[mn]

y <- log (ifelse (radon==0, .1, radon))

n <- length(radon)

x <- srrs2$floor[mn] # 0 for basement, 1 for first floor

County indicators. We must do some manipulations in R to code the counties
from 1 to 85:

R code srrs2.fips <- srrs2$stfips*1000 + srrs2$cntyfips

county.name <- as.vector(srrs2$county[mn])

uniq.name <- unique(county.name)

J <- length(uniq.name)

county <- rep (NA, J)

for (i in 1:J){

county[county.name==uniq.name[i]] <- i

}

There may very well be a better way to create this sort of index variable; this is
just how we did it in one particular problem.

Classical complete-pooling regression in R

We begin with simple classical regression, ignoring the county indicators (that is,
complete pooling):

R code lm.pooled <- lm (y ~ x)

display (lm.pooled)

which yields

R output coef.est coef.se

(Intercept) 1.33 0.03

x -0.61 0.07

n = 919, k = 2

residual sd = 0.82, R-Squared = 0.07



FITTING A MULTILEVEL MODEL USING R AND BUGS 349

Classical no-pooling regression in R

Including a constant term and 84 county indicators. Another alternative is to
include all 85 indicators in the model—actually, just 84 since we already have a
constant term:

R codelm.unpooled.0 <- lm (formula = y ~ x + factor(county))

which yields

R outputcoef.est coef.se

(Intercept) 0.84 0.38

x -0.72 0.07

factor(county)2 0.03 0.39

factor(county)3 0.69 0.58

. . .

factor(county)85 0.35 0.66

n = 919, k = 86

residual sd = 0.76, R-Squared = 0.29

This is the no-pooling regression. Here, county 1 has become the reference con-
dition. Thus, for example, the log radon levels in county 2 are 0.03 higher, and so
unlogged radon levels are approximately 3% higher in county 2, on average, than
those in county 1, after controlling for the floor of measurement. The model in-
cluding county indicators fits quite a bit better than the previous regression (the
residual standard deviation has declined from 0.82 to 0.76, and R2 has increased
from 7% to 29%)—but this is no surprise since we have added 84 predictors. The
estimates for the individual counties in this new model are highly uncertain (for ex-
ample, counties 2, 3, and 85 shown above are not statistically significantly different
from the default county 1).

Including 85 county indicators with no constant term. For making predictions
about individual counties, it it slightly more convenient to fit this model without a
constant term, so that each county has its own intercept:

R codelm.unpooled <- lm (formula = y ~ x + factor(county) - 1)

(adding “−1” to the linear model formula removes the constant term), to yield

R outputcoef.est coef.se

x -0.72 0.07

factor(county)1 0.84 0.38

factor(county)2 0.87 0.10

. . .

factor(county)85 1.19 0.53

n = 919, k = 86

residual sd = 0.76, R-Squared = 0.77

These estimates are consistent with the previous parameterization—for example,
the estimate for county 1 is 0.84 with a standard error of 0.38, which is identical to
the inference for the intercept from the previous model. The estimate for county 2
is 0.87, which equals the intercept from the previous model, plus 0.03, which was
the estimate for county 2, when county 1 was a baseline. The standard error for
county 2 has declined because the uncertainty about the intercept for county 2 is
less than the uncertainty about the difference between counties 1 and 2. Moving
to the bottom of the table, the residual standard deviation is unchanged, as is
appropriate given that this is just a shifting of the constant term within an existing
model. Oddly, however, the R2 has increased from 29% to 77%—this is because the
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lm() function calculates explained variance differently for models with no constant
term, an issue that does not concern us. (For our purposes, the correct R2 for this
model is 29%; see Section 21.5.)

Setting up a multilevel regression model in Bugs

We set up the following Bugs code for a multilevel model for the radon problem,
saving it in the file radon.1.bug (in the same working directory that we are using
for our R analyses). Section 16.4 explains this model in detail.

Bugs code model {

for (i in 1:n){

y[i] ~ dnorm (y.hat[i], tau.y)

y.hat[i] <- a[county[i]] + b*x[i]

}

b ~ dnorm (0, .0001)

tau.y <- pow(sigma.y, -2)

sigma.y ~ dunif (0, 100)

for (j in 1:J){

a[j] ~ dnorm (mu.a, tau.a)

}

mu.a ~ dnorm (0, .0001)

tau.a <- pow(sigma.a, -2)

sigma.a ~ dunif (0, 100)

}

Calling Bugs from R

Our R environment has already been set up to be ready to call Bugs (see Ap-
pendix C). We execute the following R code to set up the data, initial values, and
parameters to save for the Bugs run:

R code radon.data <- list ("n", "J", "y", "county", "x")

radon.inits <- function (){

list (a=rnorm(J), b=rnorm(1), mu.a=rnorm(1),

sigma.y=runif(1), sigma.a=runif(1))}

radon.parameters <- c ("a", "b", "mu.a", "sigma.y", "sigma.a")

Once again, these details will be explained in Section 16.4. The R code continues
with a call to Bugs in “debug” mode:

R code radon.1 <- bugs (radon.data, radon.inits, radon.parameters,

"radon.1.bug", n.chains=3, n.iter=10, debug=TRUE)

Here, we have run Bugs for just 10 iterations in each chain. We can look at the
output in the Bugs window. When we close the Bugs window, R resumes. In the R
window, we can type

R code plot (radon.1)

print (radon.1)

and inferences for a, b, mu.a, sigma.y, sigma.a (the parameters included in
the radon.parameters vector that was passed to Bugs) are displayed in a graphics
window and in the R console. Having ascertained that the program will run, we
now run it longer:

R code radon.1 <- bugs (radon.data, radon.inits, radon.parameters,

"radon.1.bug", n.chains=3, n.iter=500)
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Figure 16.1 Summary of Bugs simulations for the multilevel regression with varying in-
tercepts and constant slope, fit to the Minnesota radon data. R-hat is near 1 for all pa-
rameters, indicating approximate convergence. The intervals for the county intercepts αj

indicate the uncertainty in these estimates (see also the error bars in Figure 12.3a on page
256).

A Bugs window opens, and after about a minute, it closes and the R window
becomes active again. Again, we can plot and print the fitted Bugs object, yielding
the display shown in Figure 16.1, and the following text in the R window:

R outputInference for Bugs model at "radon.1.bug"

3 chains, each with 500 iterations (first 250 discarded)

n.sims = 750 iterations saved

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff

a[1] 1.2 0.3 0.7 1.0 1.2 1.3 1.7 1 230

a[2] 0.9 0.1 0.7 0.9 0.9 1.0 1.1 1 750

. . .

a[85] 1.4 0.3 0.8 1.2 1.4 1.6 1.9 1 750

b -0.7 0.1 -0.8 -0.7 -0.7 -0.6 -0.5 1 750

mu.a 1.5 0.1 1.3 1.4 1.5 1.5 1.6 1 240

sigma.y 0.8 0.0 0.7 0.7 0.8 0.8 0.8 1 710

sigma.a 0.3 0.0 0.3 0.3 0.3 0.4 0.4 1 95

deviance 2093.4 12.5 2069.0 2085.0 2093.0 2101.7 2119.0 1 510

pD = 77.7 and DIC = 2171 (using the rule, pD = var(deviance)/2)

DIC is an estimate of expected predictive error (lower deviance is better).
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For each parameter, n.eff is a crude measure of effective sample size,

and Rhat is the potential scale reduction factor (at convergence, Rhat=1).

The first seven columns of numbers give inferences for the model parameters.
For example, α1 has a mean estimate of 1.2 and a standard error of 0.3. The
median estimate of α1 is 1.2, with a 50% uncertainty interval of [1.0, 1.3] and a
95% interval of [0.7, 1.7]. Moving to the bottom of the table, the 50% interval for
the floor coefficient, β, is [−0.7,−0.6], and the average intercept, μα, is estimated
at 1.5 (see Figure 12.4 on page 257). The within-county standard deviation σy is
estimated to be much larger than the between-county standard deviation σα. (This
can also be seen in Figure 12.4—the scatter between points within each county is
much larger than the county-to-county variation among the estimated regression
lines.)

At the bottom of the table, we see pD, the estimated effective number of pa-
rameters in the model, and DIC, the deviance information criterion, an estimate of
predictive error. We return to these in Section 24.3.

Finally, we consider the rightmost columns of the output from the Bugs fit.
Rhat gives information about convergence of the algorithm. At convergence, the
numbers in this column should equal 1; before convergence, it should be larger
than 1. If Rhat is less than 1.1 for all parameters, then we judge the algorithm
to have approximately converged, in the sense that the parallel chains have mixed
well (see Section 18.6 for more context on this). The final column, n.eff, is the
“effective sample size” of the simulations, also discussed in Section 18.6.

Summarizing classical and multilevel inferences graphically

We can use R to summarize our inferences obtained from Bugs. For example, to
display individual-level regressions as in Figure 12.4 on page 257, we first choose
the counties to display, construct jittered data, and compute the range of the data
(so that all eight counties will be displayed on a common scale):

R code display8 <- c (36, 1, 35, 21, 14, 71, 61, 70) # choose 8 counties

x.jitter <- x + runif(n,-.05,.05)

x.range <- range (x.jitter)

y.range <- range (y[!is.na(match(county,display8))])

We then pull out the appropriate parameter estimates from the classical fits:

R code a.pooled <- coef(lm.pooled)[1] # complete-pooling intercept

b.pooled <- coef(lm.pooled)[2] # complete-pooling slope

a.nopooled <- coef(lm.unpooled)[2:(J+1)] # no-pooling intercepts

b.nopooled <- coef(lm.unpooled)[1] # no-pooling slope

and summarize the parameters in the fitted multilevel model by their median esti-
mates, first attaching the Bugs object and then computing the medians, component
by component:

R code attach.bugs (radon.1)

a.multilevel <- rep (NA, J)

for (j in 1:J){

a.multilevel[j] <- median (a[,j])

}

b.multilevel <- median (b)
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The computation for a is more complicated;3 because a is a vector of length J , its
n.sims simulations are saved as a matrix with dimensions n.sims × J.

We can now make the graphs in Figure 12.4:

R codepar (mfrow=c(2,4))

for (j in display8){

plot (x.jitter[county==j], y[county==j], xlim=c(-.05,1.05),

ylim=y.range, xlab="floor", ylab="log radon level", main=uniq[j])

curve (a.pooled + b.pooled*x, lwd=.5, lty=2, col="gray10", add=TRUE)

curve (a.nopooled[j] + b.nopooled*x, lwd=.5, col="gray10", add=TRUE)

curve (a.multilevel[j] + b.multilevel*x, lwd=1, col="black", add=TRUE)

}

(This can be compared with the code on page 261 for making this graph using the
point estimates from lmer().)

To display the estimates and uncertainties versus sample size as in Figure 12.3b
on page 256, we first set up the sample size variable,

R codesample.size <- as.vector (table (county))

sample.size.jitter <- sample.size*exp(runif(J,-.1,.1))

and then plot the estimates and standard errors:

R codeplot (sample.size.jitter, a.multilevel, xlab="sample size in county j",

ylim=range(y), ylab=expression (paste ("intercept, ", alpha[j],

" (multilevel inference)")), pch=20, log="x")

for (j in 1:J){

lines (rep(sample.size.jitter[j],2), median(a[,j])+c(-1,1)*sd(a[,j]))

}

abline (a.pooled, 0, lwd=.5)

The last line of code above places a thin horizontal line at the complete-pooling
estimate, as can be seen in Figure 12.3b.

16.4 Step by step through a Bugs model, as called from R

A Bugs model must include a specification for every data point, every group-level
parameter, and every hyperparameter. We illustrate here for the radon model shown
in the previous section. For help in programming models in Bugs in general, open
the Bugs window and click on Help, then Examples. Chapter 19 discusses some
methods for running Bugs faster and more reliably.

The individual-level model

The varying-intercept model on page 350 starts with a probability distribution for
each data point; hence the looping from 1 to n:

Bugs codemodel {

for (i in 1:n){

y[i] ~ dnorm (y.hat[i], tau.y)

y.hat[i] <- a[county[i]] + b*x[i]

}

3 The three lines computing a.multilevel could be compressed into the single command,
a.multilevel <- apply (a, 2, median), but we find it clearer to compute the components
one at a time.
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The Bugs code is abstracted in several steps from the model

yi ∼ N(αj[i] + βxi, σ
2
y). (16.2)

First, Bugs does not allow composite expressions in its distribution specifications
(we cannot write y[i] ~ dnorm (a[county[i]] + b*x[i], tau.y) because the
first argument to dnorm is too complex), and so we split (16.2) into two lines:

yi ∼ N(ŷi, σ
2
y)

ŷi = αj[i] + βxi. (16.3)

In the notation of our variables in R, this second line becomes

ŷi = acounty[i] + b · xi. (16.4)

(In the program we use a, b rather than α, β to make the code easier to follow.)
Second, as noted above, we replace the subscripts j[i] in the model with the

variable county[i] in R and Bugs, thus freeing j to be a looping index.
Finally, Bugs parameterizes normal distributions in terms of the inverse-variance,

τ = 1/σ2, a point we shall return to shortly.

The group-level model

The next step is to model the group-level parameters. For our example here, these
are the county intercepts αj , which have a common mean μα and standard deviation
σα:

αj ∼ N(μα, σ2
α).

This is expressed almost identically in Bugs:

Bugs code for (j in 1:J){

a[j] ~ dnorm (mu.a, tau.a)

}

The only difference from the preceding statistical formula is the use of the inverse-
variance parameter τα = 1/σ2

α.

Prior distributions

Every parameter in a Bugs model must be given either an assignment (as is done
for the temporary parameters y.hat[i] defined within the data model) or a dis-
tribution. The parameters a[j] were given a distribution as part of the group-level
model, but this still leaves b and tau.y from the data model and mu.a and tau.a

from the group-level model to be defined.
The specifications for these parameters are called prior distributions because they

must be specified before the model is fit to data. In the radon example we follow
common practice and use noninformative prior distributions:

Bugs code b ~ dnorm (0, .0001)

mu.a ~ dnorm (0, .0001)

The regression coefficients μα and β are each given normal prior distributions
with mean 0 and standard deviation 100 (thus, they each have inverse-variance
1/1002 = 10−4). This states, roughly, that we expect these coefficients to be in the
range (−100, 100), and if the estimates are in this range, the prior distribution is
providing very little information in the inference.
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Bugs codetau.y <- pow(sigma.y, -2)

sigma.y ~ dunif (0, 100)

tau.a <- pow(sigma.a, -2)

sigma.a ~ dunif (0, 100)

We define the inverse-variances τy and τα in terms of the standard-deviation
parameters, σy and σα, which are each given uniform prior distributions on the
range (0, 100).

Scale of prior distributions

Constraining the absolute values of the parameters to be less than 100 is not a
serious restriction—the model is on the log scale, and there is no way we will see
effects as extreme as −100 or 100 on the log scale, which would correspond to
multiplicative effects of e−100 or e100.

Here are two examples where the prior distributions with scale 100 would not be
noninformative:

• In the regression of earnings (in dollars) on height, the coefficient estimate is
1300 (see model (4.1) on page 53). Fitting the model with a N(0, 1002) prior
distribution (in Bugs, dnorm(0,.0001)) would pull the coefficient toward zero,
completely inappropriately.

• In the model on page 88 of the probability of switching wells, given distance
to the nearest safe well (in 100-meter units), the logistic regression coefficient
of distance is −0.62. A normal prior distribution with mean 0 and standard
deviation 100 would be no problem here. If, however, distance were measured in
100-kilometer units, its coefficient would become −620, and its estimate would
be strongly and inappropriately affected by the prior distribution with scale 100.

Noninformative prior distributions

To summarize the above discussion: for a prior distribution to be noninformative,
its range of uncertainty should be clearly wider than the range of reasonable values
of the parameters. Our starting point is regression in which the outcome y and the
predictors x have variation that is of the order of magnitude of 1. Simple examples
are binary variables (these are 0 or 1 by definition), subjective measurement scales
(for example, 1–5, or 1–10, or −3 to +3), and proportions. In other cases, it makes
sense to transform predictors to a more reasonable scale—for example, taking a
0–100 score and dividing by 100 so the range is from 0 to 1, or taking the logarithm
of earnings or height. One of the advantages of logarithmic and logistic regressions
is that these automatically put the outcomes on scales for which typical changes are
0.1, or 1, but not 10 or 100. As long as the predictors are also on a reasonable scale,
one would not expect to see coefficients much higher than 10 in absolute value, and
so prior distributions with scale 100 are noninformative.

At this point one might ask, why not simply set a prior distribution with mean 0
and a huge standard deviation such as 100,000 (this would be dnorm(0,1.E-10) in
Bugs) to completely ensure noninformativeness? We do not do this for two reasons.
First, Bugs can be computationally unstable when parameters have extremely wide
ranges. It is safer to keep the values near 1. (This is why we typically use N(0, 1)
and Uniform(0, 1) distributions for initial values, as we shall discuss.)

The second reason for avoiding extremely wide prior distributions is that we do
not actually want to work with coefficients that are orders of magnitude away from
zero. Part of this is for ease of interpretation (just as we transformed to dist100 in
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the arsenic example on page 88). This can also be interpreted as a form of model
checking—we set up a model so that parameters should not be much greater than
1 in absolute value; if they are, this indicates some aspect of the problem that we
do not understand.

Data, initial values, and parameters

To return to the implementation of the radon example, we set up and call Bugs
using the following sequence of commands in R:

R code radon.data <- list ("n", "J", "y", "county", "x")

radon.inits <- function (){

list (a=rnorm(J), b=rnorm(1), mu.a=rnorm(1),

sigma.y=runif(1), sigma.a=runif(1))}

radon.parameters <- c ("a", "b", "mu.a", "sigma.y", "sigma.a")

radon.1 <- bugs (radon.data, radon.inits, radon.parameters,

"radon.1.bug", n.chains=3, n.iter=500)

The first argument to the bugs() function lists the data—including outcomes,
inputs, and indexing parameters such as n and J—that are written to a file to be
read by Bugs.

The second argument to bugs() is a function that returns a list of the start-
ing values for the algorithm. Within the list are random-number generators—for
example, rnorm(J) is a vector of length J of random numbers from the N(0, 1)
distribution, and these random numbers are assigned to α to start off the Bugs
iterations. In this example, we follow our usual practice and assign random num-
bers from normal distributions for all the parameters—except those constrained to
be positive (here, σy and σα), to which we assign uniformly distributed random
numbers (which, by default in R, fall in the range [0, 1]). For more details on the
random number functions, type ?rnorm and ?runif in R.

We generally supply initial values (using random numbers) for all the parameters
in the model. (When initial values are not specified, Bugs generates them itself;
however, Bugs often crashes when using its self-generated initial values.)

The third argument to the bugs() function is a vector of the names of the
parameters that we want to save from the Bugs run. For example, the vector of αj

parameters is represented by "a".

Number of sequences and number of iterations

Bugs uses an iterative algorithm that runs several Markov chains in parallel, each
starting with some list of initial values and endlessly wandering through a distri-
bution of parameter estimates. We would like to run the algorithm until the sim-
ulations from separate initial values converge to a common distribution, as Figure
16.2 illustrates. Specifying initial values using random distributions (as described
above) ensures that different chains start at different points.

We assess convergence by checking whether the distributions of the different
simulated chains mix; we thus need to simulate at least 2 chains. We also need
to run the simulations “long enough,” although it is generally difficult to know
ahead of time how long is necessary. The bugs() function is set up to run for
n.iter iterations and discard the first half of each chain (to lose the influence of
the starting values). Thus, in the example presented here, Bugs ran n.chains = 3
sequences, each for n.iter = 500 iterations, with the first 250 from each sequence
discarded.
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Figure 16.2 Illustration of convergence for the parameter μα from the Bugs simulations
for the radon model. The three chains start at different (random) points and, for the first
50 iterations or so, have not completely mixed. By 200 iterations, the chains have mixed
fairly well. Inference is based on the last halves of the simulated sequences. Compare to
Figure 16.3, which shows poor mixing.
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Figure 16.3 Illustration of poor convergence for the parameter φ from a slowly converging
Bugs simulation. Compare to Figure 16.2, which shows rapid mixing.

We offer the following general advice on how long to run the simulations.

1. When first setting up a model, set n.iter to a low value such as 10 or 50—the
model probably will not run correctly at first, so there is no need to waste time
waiting for computations.

2. If the simulations have not reached approximate convergence (see Section 16.4),
run longer—perhaps 500 or 1000 iterations—so that running Bugs takes between
a few seconds and a few minutes.

3. If your Bugs run is taking a long time (more than a few minutes for the examples
of the size presented in this book, or longer for larger datasets or more elaborate
models), and the simulations are still far from convergence, then play around
with your model to get it to converge faster; see Chapter 19 for more on this.

4. Another useful trick to speed computations, especially when in the exploratory
model-fitting stage, is to work with a subset of your data—perhaps half, or a fifth,
or a tenth. For example, analyze the radon data from a sample of 20 counties,
rather than the full set of 85. Bugs will run faster with smaller datasets and
fewer parameters.
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Summary and convergence

From a Bugs run, you will see means, standard deviations, and quantiles for all the
parameters that are saved. You also get, for each parameter, a convergence statistic,
R̂, and an effective number of independent simulation draws, neff . We typically
monitor convergence using R̂, which we call the potential scale reduction factor—
for each parameter, the possible reduction in the width of its confidence interval,
were the simulations to be run forever. Our usual practice is to run simulations
until R̂ is no greater than 1.1 for all parameters.

For example, here was the output after n.iter = 50 iterations:

R output Inference for Bugs model at "radon.1.bug"

3 chains, each with 50 iterations (first 25 discarded)

n.sims = 75 iterations saved

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff

. . .

mu.a 1.1 0.1 1.4 1.5 1.6 1.7 1.8 1.7 6

. . .

R̂ = 1.7 indicates that the simulations were still far from convergence.
After n.iter = 500 iterations, however, we achieved approximate convergence

with the radon model, with R̂ < 1.1 for all parameters.

R̂ and neff

For each parameter that is saved, R̂ is, approximately, the square root of the vari-
ance of the mixture of all the chains, divided by the average within-chain variance.
If R̂ is much greater than 1, the chains have not mixed well. We usually wait un-
til R̂ ≤ 1.1 for all parameters, although, if simulations are proceeding slowly, we
might work provisionally with simulations that have still not completely mixed, for
example, with R̂ = 1.5 for some parameters.

Printing a Bugs object also reports neff , the “effective number of simulation
draws.” If the simulation draws were independent, then neff would be the number
of saved draws, which is nchains · niter/2 (dividing by 2 because our programs auto-
matically discard the first half of the simulations from each chain). Actual Markov
chain simulations tend to be autocorrelated and so the effective number of simu-
lation draws is smaller. We usually like to have neff to be at least 100 for typical
estimates and confidence intervals.

Accessing the simulations

We can use the simulations for predictions and uncertainty intervals for any func-
tions of parameters, as with the propagation of error in classical regressions in
Chapters 2 and 3. To access the simulations, we must first attach them in R. In
the example above, we saved the Bugs output into the R object radon.1 (see page
356), and we can load in the relevant information with the command

R code attach.bugs (radon.1)

Each variable that was saved in the Bugs computation now lives as an R object,
with its 750 simulation draws (3 chains × 500 iterations × last half of the iterations
are saved = 750). Each of the scalar parameters β, μα, σy , and σα is represented
by a vector of length 750, and the vector parameter α is saved as a 750×85 matrix.
Extending this, a 10×20 matrix parameter would be saved as a 750×10×20 array,
and so forth.
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We can access the parameters directly. For example, a 90% interval for β would
be computed by

R codequantile (b, c(0.05,0.95))

For another example, what is the probability that average radon levels (after con-
trolling for floor-of-measurement effects) are higher in county 36 (Lac Qui Parle)
than in county 26 (Hennepin)?

R codemean (a[,36] > a[,26])

Fitted values, residuals, and other calculations

We can calculate fitted values and residuals from the multilevel model:

R codey.hat <- a.multilevel[county] + b.multilevel*x

y.resid <- y - y.hat

and then plot them:

R codeplot (y.hat, y.resid)

Alternatively, we can add y.hat to the vector of parameters to save in the Bugs
call, and then access the simulations of y.hat after the Bugs run and the call to
attach.bugs.

We can also perform numerical calculations, such as the predictions described
in Section 12.8 or anything that might be of interest. For example, what is the
distribution of the difference in absolute (not log) radon level in a house with no
basement in county 36 (Lac Qui Parle), compared to a house with no basement in
county 26 (Hennepin)?

R codelqp.radon <- rep (NA, n.sims)

hennepin.radon <- rep (NA, n.sims)

for (s in 1:n.sims){

lqp.radon[s] <- exp (rnorm (1, a[s,36] + b[s], sigma.y[s]))

hennepin.radon[s] <- exp (rnorm (1, a[s,26] + b[s], sigma.y[s]))

}

radon.diff <- lqp.radon - hennepin.radon

hist (radon.diff)

print (mean(radon.diff))

print (sd(radon.diff))

The expected difference comes to 2.0 picoCuries per liter, with a standard devia-
tion of 4.6 and a wide range of uncertainty. Here we have compared two randomly
selected houses, not the two county averages. If we wanted inference for the dif-
ference between the two county averages, we could simply take exp(a[,36]+b) -

exp(a[,26]+b).
We further discuss multilevel predictions in Section 16.6.

16.5 Adding individual- and group-level predictors

Classical complete-pooling and no-pooling regressions

Classical regressions and generalized linear models can be fit easily enough using R,
but it can sometimes be useful also to estimate them using Bugs—often as a step
toward fitting more complicated models. We illustrate with the radon example.
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Complete pooling. The complete-pooling model is a simple linear regression of log
radon on basement status and can be written in Bugs as

Bugs code model {

for (i in 1:n){

y[i] ~ dnorm (y.hat[i], tau.y)

y.hat[i] <- a + b*x[i]

}

a ~ dnorm (0, .0001)

b ~ dnorm (0, .0001)

tau.y <- pow(sigma.y, -2)

sigma.y ~ dunif (0, 100)

}

No pooling. The no-pooling model can be fit in two ways: either by fitting the
above regression separately to the data in each county (thus, running a loop in R
for the 85 counties), or else by allowing the intercept α to vary but with a nonin-
formative prior distribution for each αj (so that this is still a classical regression):

Bugs code model {

for (i in 1:n){

y[i] ~ dnorm (y.hat[i], tau.y)

y.hat[i] <- a[county[i]] + b*x[i]

}

b ~ dnorm (0, .0001)

tau.y <- pow(sigma.y, -2)

sigma.y ~ dunif (0, 100)

for (j in 1:J){

a[j] ~ dnorm (0, .0001)

}

}

Classical regression with multiple predictors

The Bugs model can easily include multiple predictors in y.hat. For example, we
can add an indicator for whether the measurement was taken in winter (when
windows are closed, trapping radon indoors):

Bugs code y.hat[i] <- a + b.x*x[i] + b.winter*winter[i]

and add an interaction:

Bugs code y.hat[i] <- a + b.x*x[i] + b.winter*winter[i] +

b.x.winter*x[i]*winter[i]

In each case, we would set up these new coefficients with dnorm(0,.0001) prior
distributions.

As the number of predictors increases, it can be simpler to set up a vector β of
regression coefficients:

Bugs code y.hat[i] <- a + b[1]*x[i] + b[2]*winter[i] + b[3]*x[i]*winter[i]

and then assign these noninformative prior distributions:

Bugs code for (k in 1:K){

b[k] ~ dnorm (0, .0001)

}

with K added to the list of data in the call of bugs() from R.



PREDICTIONS FOR NEW OBSERVATIONS AND NEW GROUPS 361

Vector-matrix notation in Bugs. One can go further by creating a matrix of pre-
dictors in R:

R codeX <- cbind (x, winter, x*winter)

K <- ncol (X)

and then in the Bugs model, using the inner-product function:

Bugs codey.hat[i] <- a + inprod(b[],X[i,])

Finally, one could include the intercept in the list of β’s, first including a constant
term in the predictor matrix:

R codeones <- rep (1, n)

X <- cbind (ones, x, winter, x*winter)

K <- ncol (X)

and then simplify the expression for y.hat in the Bugs model:

Bugs codey.hat[i] <- inprod(b[],X[i,])

with the coefficients being b[1], . . . , b[4].
In a varying-intercept model, it can be convenient to keep the intercept α separate

from the other coefficients β. However, in model with a varying intercept and several
varying slopes, it can make sense to use the unified notation including all of them
in a matrix B, as we discuss in Sections 17.1 and 17.2.

Multilevel model with a group-level predictor

Here is the Bugs code for model (12.15) on page 266, which includes a group-level
predictor, uj (the county-level uranium measure in the radon example):

Bugs codemodel {

for (i in 1:n){

y[i] ~ dnorm (y.hat[i], tau.y)

y.hat[i] <- a[county[i]] + b*x[i]

}

b ~ dnorm (0, .0001)

tau.y <- pow(sigma.y, -2)

sigma.y ~ dunif (0, 100)

for (j in 1:J){

a[j] ~ dnorm (a.hat[j], tau.a)

a.hat[j] <- g.0 + g.1*u[j]

}

g.0 ~ dnorm (0, .0001)

g.1 ~ dnorm (0, .0001)

tau.a <- pow(sigma.a, -2)

sigma.a ~ dunif (0, 100)

}

16.6 Predictions for new observations and new groups

We can simulate predictions in two ways: directly in Bugs, by adding additional
units or groups to the model, or in R, by drawing simulations based on the model
fit to existing data. We demonstrate both approaches for the radon example, in
each case demonstrating how to forecast for new houses in existing counties and for
new houses in new counties.
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Predicting a new unit in an existing group using Bugs

Bugs automatically makes predictions for modeled data with NA values. Thus, to
predict the log radon level for a new house in county 26 with no basement, we
merely need to extend the dataset by one point. We first save the current dataset
to an external file and then extend it:

R code save ("n", "y", "county", "x", file="radon.data")

n <- n + 1

y <- c (y, NA)

county <- c (county, 26)

x <- c (x, 1)

For convenience, we then add a line at the end of the Bugs model to flag the
predicted measurement:

Bugs code y.tilde <- y[n]

and rename this file as a new model, radon2a.bug. We now fit this Bugs model,
after alerting it to save the inferences for the additional data point:

R code radon.parameters <- c (radon.parameters, "y.tilde")

radon.2a <- bugs (radon.data, radon.inits, radon.parameters,

"radon.2a.bug", n.chains=3, n.iter=500)

The prediction, ỹ, now appears if radon.2a is printed or plotted, or we can access
it directly; for example,

R code attach.bugs (radon.2a)

quantile (exp (y.tilde), c(.25,.75))

gives a 50% confidence interval for the (unlogged) radon level in this new house.
We can similarly make predictions for any number of new houses by adding

additional NA’s to the end of the data vector. It is necessary to specify the predictors
for these new houses; if you set county or x to NA for any of the data, the Bugs
model will not run. Bugs allows missing data in modeled, but not unmodeled, data
(a distinction we discuss further in Section 16.8).

Predicting a new unit in a new group using Bugs

The same approach can be used to make predictions for houses in unmeasured coun-
ties (ignoring for the moment that this particular survey included all the counties
in Minnesota, or else considering an unmeasured county in a similar neighboring
state). We merely need to extend the number of counties in the hypothetical dataset
and specify the group-level predictor uj (in this case, the county uranium measure-
ment) for this new county. For simplicity we here consider a hypothetical new county
with uranium measurement equal to the average of the 85 existing counties:

R code u.tilde <- mean (u)

We now load back the original data, save everything, and extend to a new house in
a new county:

R code load ("radon.data")

save ("n", "y", "county", "x", "J", "u", file="radon.data")

n <- n + 1

y <- c (y, NA)

county <- c (county, J+1)

x <- c (x, 1)

J <- J + 1

u <- c (u, u.tilde)
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We can then run the model as before, again using the simulations of ỹ to summarize
the uncertainty about the radon level in this new house, this time in a new county.

Prediction using R

The other approach to prediction is to use R to simulate from the distribution of
the new data, conditional on the estimated parameters from the model. Section
12.8 laid out how to do this using estimates from lmer(); here we do the same
thing using Bugs output. The only difference from before is that instead of working
with functions such as coef() and sim() applied to objects created from lmer(),
we work directly with simulated parameters after attaching Bugs fits.

For a new house with no basement in county 26:

R codeattach.bugs (radon.2)

y.tilde <- rnorm (n.sims, a[,26] + b*1, sigma.y)

This creates a vector of nsims simulations of ỹ. The only tricky thing here is that
we need to use matrix notation for a (its 26th column contains the simulations for
a26), but we can write b and sigma.y directly, since as scalar parameters these are
saved as vectors of simulations. The simplest way to understand this is to perform
the calculations on your own computer, running Bugs for just 10 iterations so that
the saved objects are small and can be understood by simply typing a, b, and so
forth in the R console.

Continuing, prediction for a new house with no basement in a new county with
uranium level ũ requires simulation first of the new α̃j , then of the radon measure-
ment in the house within this county:

R codea.tilde <- rnorm (n.sims, g.0 + g.1*u.tilde, sigma.a)

y.tilde <- rnorm (n.sims, a.tilde + b*1, sigma.y)

16.7 Fake-data simulation

As discussed in Sections 8.1–8.2, a good way to understand a model-fitting proce-
dure is by simulating and then fitting a model to fake data:

1. Specify a reasonable “true” value for each of the parameters in the model. Label
the vector of specified parameters as θtrue; these values should be reasonable and
be consistent with the model.

2. Simulate a fake dataset yfake using the model itself along with the assumed θtrue.

3. Fit the model to the fake data, and check that the inferences for the parameters
θ are consistent with the “true” θtrue.

We illustrated this process for classical regression with numerical checks in Section
8.1 and graphical checks in Section 8.2. Here we demonstrate fake-data checking
for the varying-intercept radon model (12.15) on page 266 with floor and uranium
as individual- and county-level predictors, respectively.

Specifying “true” parameter values

For a classical regression, one must simply specify the coefficients β and residual
standard deviation σ to begin a fake-data simulation. Multilevel modeling is more
complicated: one must first specify the hyperparameters, then simulate the modeled
parameters from the group-level distributions.
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Specifying the unmodeled parameters. We start by specifying βtrue, γtrue
0 , γtrue

1 ,
σtrue

y , and σtrue
α : these are the parameters that do not vary by group, and they get

the simulation started.
We do not want to choose round numbers such as 0 or 1 for the parameters, since

these can mask potential programming errors. For example, a variance is specified
as σ rather than σ2 would not show up as an inconsistency if σ were set to 1.

There are two natural ways to set the parameters. The first approach is just to
pick values that seem reasonable; for example, βtrue = −0.5, γtrue

0 = 0.5, γtrue
1 = 2.0,

σtrue
y = 3.0, σtrue

α = 1.5. (Variation among groups is usually less than variation
among individuals within a group, and so it makes sense to set σtrue

α to a smaller
value than σtrue

y . The model is on the log scale, so it would not make sense to choose
numbers such as 500 or −400 that are high in absolute value; see the discussion on
page 355 on the scaling of prior distributions.)

The other way to choose the parameters is to use estimates from a fitted model.
For this example, we could set βtrue = −0.7, γtrue

0 = 1.5, γtrue
1 = 0.7, σtrue

y = 0.8,
σtrue

α = 0.2, which are the median estimates of the parameters from model (12.15)
as fitted in Bugs (see code at the very end of Section 16.5). Supposing we have
labeled this bugs object as radon.2, then we can set the “true” values in R:

R code attach.bugs (radon.2)

b.true <- median (b)

g.0.true <- median (g.0)

g.1.true <- median (g.1)

sigma.y.true <- median (sigma.y)

sigma.a.true <- median (sigma.a)

Simulating the varying coefficients. We now simulate the αj ’s from the group-level
model given the “true” parameters using a loop:4

R code a.true <- rep (NA, J)

for (j in 1:J){

a.true[j] <- rnorm (1, g.0.true + g.1.true*u[j], sigma.a.true)

}

Simulating fake data

We can now simulate the dataset yfake:5

R code y.fake <- rep (NA, n)

for (i in 1:n){

y.fake[i] <- rnorm (1, a.true[county[i]] + b.true*x[i], sigma.y.true)

}

Inference and comparison to “true” values

We can now fit the model in Bugs using the fake data. The fitting procedure is the
same except that we must pass y.fake rather than y to Bugs, which we can do by
explicitly specifying the data to be passed:6

4 Or, more compactly but perhaps less clearly, in vector form:
a.true <- rnorm (J, g.0.true + g.1.true*u, sigma.a.true).

5 Again, an experienced R programmer would use the vector form:
y.fake <- rnorm (n, a.true[county] + b.true*x, sigma.y.true).

6 Alternatively, we could use the existing data object after saving the real data and renaming
the fake data:
y.save <- y; y <- y.fake.
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R coderadon.data <- list (n=n, J=J, y=y.fake, county=county, x=x, u=u)

We can then specify the rest of the inputs, run Bugs, and save it into a new R
object:

R coderadon.inits <- function (){

list (a=rnorm(J), b=rnorm(1), g.0=rnorm(1), g.1=rnorm(1),

sigma.y=runif(1), sigma.a=runif(1))}

radon.parameters <- c ("a", "b", "g.0", "g.1", "sigma.y", "sigma.a")

radon.2.fake <- bugs (radon.data, radon.inits, radon.parameters,

"radon.2.bug", n.chains=3, n.iter=500)

We are now ready to compare the inferences to the true parameter values. To start,
we can display the fitted model (print(radon.2.fake)) and compare inferences
to the true values. Approximately half the 50% intervals and approximately 95% of
the 95% intervals should contain the true values; about half of the median estimates
should be above the true parameter values and about half should be below. In our
example, the output looks like:

R outputmean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff

a[1] 1.0 0.2 0.7 0.9 1.0 1.1 1.4 1.0 280

a[2] 0.9 0.1 0.7 0.8 0.9 0.9 1.0 1.0 190

. . .

a[85] 1.8 0.2 1.4 1.7 1.8 1.9 2.2 1.0 470

b -0.6 0.1 -0.7 -0.6 -0.6 -0.6 -0.5 1.0 750

g.0 1.5 0.0 1.4 1.4 1.5 1.5 1.5 1.0 140

g.1 0.8 0.1 0.6 0.7 0.8 0.9 1.0 1.0 68

sigma.y 0.8 0.0 0.7 0.7 0.8 0.8 0.8 1.0 240

sigma.a 0.2 0.0 0.1 0.2 0.2 0.2 0.3 1.1 36

In the particular simulation we ran, the 85 values of αtrue were 1.2, 0.9, . . . , 1.8
(as we can see by simply typing a.true in the R console), and the “true” values
of the other parameters, are βtrue = −0.7, γtrue

0 = 1.5, γtrue
1 = 0.7, σtrue

y = 0.8,
σtrue

α = 0.2, as noted earlier. About half of these fall within the 50% intervals, as
predicted.

Checking coverage of 50% intervals

For a more formal comparison, we can measure the coverage of the intervals. For
example, to check the coverage of the 50% interval for α1:

R codeattach.bugs (radon.2.fake)

a.true[1] > quantile (a[,1], .25) & a.true[1] < quantile (a[,1], .75)

which, for our particular simulation, yields the value FALSE. We can write a loop
to check the coverage for all 85 αj ’s:

7

R codecover.50 <- rep (NA, J)

for (j in 1:J){

cover.50[j] <- a.true[j] > quantile (a, .25) &

a.true[j] < quantile (a, .75)

}

mean (cover.50)

which comes to 0.51 in our example—well within the margin of error for a random
simulation.

Other numerical and graphical checks are also possible, following the principles
of Chapter 8.

7 Again, we could write the calculation more compactly in vectorized form as
cover.50 <- a.true > quantile (a, .25) & a.true < quantile (a, .75).
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Category List of objects

Modeled data y

Unmodeled data n, J, county, x, u
Modeled parameters a

Unmodeled parameters b, g.0, g.1, sigma.y, sigma.a
Derived quantities y.hat, tau.y, a.hat, tau.a
Looping indexes i, j

Figure 16.4 Classes of objects in the Bugs model and R code of Section 16.8. Data are
specified in the list of data sent to Bugs, parameters are nondata objects that are given
distributions (“∼” statements in Bugs), derived quantities are defined deterministically
(“<-” statements in Bugs), and looping indexes are defined in for loops in the Bugs
model.

16.8 The principles of modeling in Bugs

Data, parameters, and derived quantities

Every object in a Bugs model is data, parameter, or derived quantity. Data are
specified in the bugs() call, parameters are modeled, and derived quantities are
given assignments. Some but not all data are modeled.

We illustrate with the varying-intercept Bugs model on page 361, stored in the
file radon3.bug:

Bugs code model {

for (i in 1:n){

y[i] ~ dnorm (y.hat[i], tau.y)

y.hat[i] <- a[county[i]] + b*x[i]

}

b ~ dnorm (0, .0001)

tau.y <- pow(sigma.y, -2)

sigma.y ~ dunif (0, 100)

for (j in 1:J){

a[j] ~ dnorm (a.hat[j], tau.a)

a.hat[j] <- g.0 + g.1*u[j]

}

g.0 ~ dnorm (0, .0001)

g.1 ~ dnorm (0, .0001)

tau.a <- pow(sigma.a, -2)

sigma.a ~ dunif (0, 100)

}

as called from R as follows:

R code radon.data <- list ("n", "J", "y", "county", "x", "u")

radon.inits <- function (){

list (a=rnorm(J), b=rnorm(1), g.0=rnorm(1), g.1=rnorm(1),

sigma.y=runif(1), sigma.a=runif(1))}

radon.parameters <- c ("a", "b", "sigma.y", "sigma.a")

radon.3 <- bugs (radon.data, radon.inits, radon.parameters,

"radon.3.bug", n.chains=3, n.iter=500)

This model has the following classes of objects, which we summarize in Figure 16.4.

• The data are the objects that are specified by the data input to the bugs() call:
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– Modeled data: These are the data objects that are assigned probability distri-
butions (that is, they are to the left of a “∼” in a line of Bugs code). In our
example, the only modeled data are the components of y.

– Unmodeled data: These are the data that are not assigned any distribution in
the Bugs code. The unmodeled data objects in our example are n, J, county,
x, u.

• Next come the parameters, which are assigned probability distributions (that is,
they are to the left of a “∼” in a line of Bugs code) but are not specified as data
in the bugs() call:

– Modeled parameters: We label parameters as “modeled” if they are assigned
informative prior distributions that depend on hyperparameters (which typi-
cally are themselves estimated from the data). The only modeled parameters
in our example are the elements of a, whose distribution depends on a.hat

and tau.a.

– Unmodeled parameters: These are the parameters with noninformative prior
distributions (typically dnorm(0,.0001) or dunif(0,100)); in our example,
these are b, g.0, g.1, sigma.y, sigma.a. Strictly speaking, what we call
“unmodeled parameters” are actually modeled with wide, “noninformative”
prior distributions. What is important here is that their distributions in the
Bugs model are specified not based on other parameters in the model but
rather based on constants such as .0001.

• Derived quantities: These are objects that are defined deterministically (that is,
with “<-” in the Bugs code); in our example: y.hat, tau.y, a.hat, tau.a.

• Looping indexes: These are integers (in our example, i and j) that are defined
in for loops in the Bugs model.

To figure out whether an object is a parameter or a derived quantity, it can be
helpful to scan down the code to see how it is defined. For example, reading the
model on page 361 from the top, it is not clear at first whether tau.y is a parameter
or a derived quantity. (We know it is not data since it is not specified in the data

list supplied in the call to bugs().) But reading through the model, we see the line
tau.y <- ..., so we know it is a derived quantity.

Missing data

Modeled data can have elements with NA values, in which case these elements are
implicitly treated as parameters by the Bugs model—that is, they are estimated
stochastically along with the other uncertain quantities in the model. Bugs will
not accept unmodeled data (for example, the regression predictors x and u in our
example) with NA values, because these objects in the model have no distributions
specified and thus cannot be estimated stochastically. If predictors have missing
data, they must either be imputed before being entered into the Bugs model, or
they must themselves be modeled.

Changing what is included in the data

Any combination of data, parameters, or derived quantities can be saved as param-
eters in the bugs() call. But only parameters and missing data, not observed data
and not derived quantities, can be given initial values.
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Conversely, the status of the objects in a given Bugs model can change by chang-
ing the corresponding call in R. For example, we can call the model without speci-
fying y:

R code radon.data <- list ("n", "J", "county", "x", "u")

and the components of y become modeled parameters—they are specified by dis-
tributions in the Bugs model and not included as data. Bugs then draws from the
“prior predictive distribution”—the model unconditional on y. Alternatively, if b,
g.0, g.1, sigma.y, sigma.a are included in the data list but y is not, Bugs will
perform “forward simulation” for y given these specified parameters.

We cannot remove the other objects—n, J, county, x, u—from the data list,
because these are not specified in the Bugs model. For example, there is no line
in the model of the form, n ∼ ... If we did want to remove any of these data
objects, we would need to include them in the model, either as parameters (defined
by ∼) or derived quantities (defined by <-).

We can, however, specify the values of parameters in the model. For example,
suppose we wanted to fit the model with the variance parameters set to known
values, for example, σy = 0.7 and σα = 0.4. We can simply define them in the R
code and include them in the data:

R code sigma.y <- .7

sigma.alpha <- .4

radon.data <- list("n","J","y","county","x","u","sigma.y","sigma.alpha")

and remove them from the inits() function.

Each object can be defined at most once

Every object is modeled or defined at most once in a Bugs model (except that
certain transformations can be done by declaring a variable twice). For example,
the example we have been discussing includes the lines

Bugs code for (i in 1:n){

y[i] ~ dnorm (y.hat[i], tau.y)

y.hat[i] <- a[county[i]] + b*x[i]

}

It might seem more compact to express this as

Bugs code for (i in 1:n){

y[i] ~ dnorm (y.hat, tau.y)

y.hat <- a[county[i]] + b*x[i]

}

thus “overwriting” the intermediate quantity y.hat at each step of the loop. Such
code would work in R but is not acceptable in Bugs. The reason is that lines of Bugs
code are specifications of a model, not instructions to be executed. In particular,
these lines define the single variable y.hat multiple times, which is not allowed in
Bugs.

For another example, we have been coding the inverse-variance in terms of the
standard-deviation parameter:

Bugs code tau.y <- pow(sigma.y, -2)

sigma.y ~ dunif (0, 100)

It might seem natural to write this transformation as
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Bugs codesigma.y <- sqrt(1/tau.y)

sigma.y ~ dunif (0, 100)

but this will not work: in this model, sigma.y is defined twice and tau.y is defined
not at all. We must use the earlier formulation in which tau.y (which is specified
in the data model) is defined in terms of sigma.y, which is then given its own prior
distribution.

16.9 Practical issues of implementation

In almost any application, a good starting point is to run simple classical models
in R (for example, complete-pooling and no-pooling regressions) and then replicate
them in Bugs, checking that the estimates and standard errors are approximately
unchanged. Then gradually complexify the model, adding multilevel structures,
group-level predictors, varying slopes, non-nested structures, and so forth, as ap-
propriate.

We suggest a simple start for both statistical and computational reasons. Even
in classical regression, it is a good idea to include the most important predictors
first and then see what happens when further predictors and interactions are added.
Multilevel models can be even more difficult to understand, and so it makes sense
to build up gradually. In addition, it is usually a mistake in Bugs to program a
complicated model all at once; it typically will not run, and then you have to go
back to simpler models anyway until you can get the program working.

If a model does not run, you can use the debug=TRUE option in the call to bugs().
Then the Bugs window will stay open and you might be able to figure out what’s
going wrong, as we discuss in Section 19.1.

How many chains and how long to run?

We usually run a small number of chains such as 3. This is governed by the n.chains
argument of the bugs() function.

In deciding how long to run the simulations, we balance the goals of speed and
convergence. We start by running Bugs for only a few iterations in debug mode
until we can get our script to run without crashing. Once it works, we will do a
fairly short run—for example, n.iter = 100 or 500. At this point:

• If approximate convergence has been reached (R̂ < 1.1 for all parameters), we
stop.

• If the sequences seem close to convergence (for example, R̂ < 1.5 for all param-
eters), then we repeat, running longer (for example, 1000 or 2000 iterations).

• If our Bugs run takes more than a few minutes, and the sequences are still far
from convergence, we step back and consider our options, which include:

– altering the Bugs model to run more efficiently (see the tips in Chapter 17),

– fitting the Bugs model to a sample of the data (see Section 19.2),

– fitting a simpler model.

In some settings with complicated models, it may be necessary to run Bugs for a
huge number of iterations, but in the model-building stage, we generally recom-
mend against the “brute force” approach of simply running for 50,000 or 100,000
iterations. Even if this tactic yields convergence, it is typically not a good long-run
solution, since it ensures long waits for fitting the inevitable alterations of the model
(for example, from adding new predictors).
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Initial values

The bugs() function takes an inits argument, which is a function that must be
written for creating starting points. It is not too important exactly what these
starting points are, as long as they are dispersed (so the different chains start at
different points; see Figure 16.2 on page 357) and reasonable. If parameters get
started at values such as 10−4 or 106, Bugs can drift out of range and crash.

It is convenient to specify initial values as a function using random numbers, so
that running it for several chains will automatically give different starting points.
Typically we start parameters from random N(0, 1) distributions, unless they are
restricted to be positive, in which case we typically use random numbers that are
uniformly distributed between 0 and 1 (the Uniform(0, 1) distribution). Vector and
matrix parameters must be set up as vectors and matrices; for example, if a is a
scalar parameter, b is a vector of length J , C is a J × K matrix, and σ is a scalar
parameter constrained to be positive:

R code inits <- function() {list (a=rnorm(1), b=rnorm(J),

C=array(rnorm(J*K), c(J,K)), sigma=runif(1))}

Here we have used the defaults of the rnorm() and runif() functions. If instead,
for example, we want to use N(0, 22) and Uniform(0.1, 10) distributions, we can
write

R code inits <- function() {list (a=rnorm(1,0,2), b=rnorm(J,0,2),

C=array(rnorm(J*K,0,2), c(J,K)), sigma=runif(1,.1,10))}

16.10 Open-ended modeling in Bugs

This book focuses on the most standard models, beginning with linear regression
and then adding various complications one step at a time. From this perspective,
Bugs is useful because it accounts for uncertainty in all parameters when fitting
multilevel models. However, a quite different advantage of Bugs is its modular
structure, which allows us to fit models of nearly arbitrary complexity.

We demonstrate here by considering a hypothetical study of a new teaching
method applied in J different classrooms containing a total of n students. Our data
for this example will be the treatment indicator T (defined at the school level)
and, for each student, a pre-treatment assessment, x (on a 1–10 scale, say) and a
post-treatment test score, y (on a 0–100 scale).

The minimal model for such data is a hierarchical regression with varying inter-
cepts for schools:

Bugs code model {

for (i in 1:n){

y[i] ~ dnorm (y.hat[i], tau.y)

y.hat[i] <- a[school[i]] + b*x[i]

}

b ~ dnorm (0, .0001)

tau.y <- pow(sigma.y, -2)

sigma.y ~ dunif (0, 100)

for (j in 1:J){

a[j] ~ dnorm (a.hat[j], tau.a)

a.hat[j] <- g.0 + g.1*T[j]

}

g.0 ~ dnorm (0, .0001)
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g.1 ~ dnorm (0, .0001)

tau.a <- pow(sigma.a, -2)

sigma.a ~ dunif (0, 100)

}

The natural extension here is to allow the coefficient β for the pre-treatment as-
sessment to vary by group. This is a varying-intercept, varying-slope model, the
implementation of which we shall discuss in Sections 17.1–17.2. Here, however, we
shall consider some less standard extensions, to demonstrate the flexibility of Bugs.

Nonlinear and nonadditive models

The relation between inputs and regression predictor need not be linear. From
classical regression we are already familiar with the inclusion of interactions and
transformed inputs as additional predictors, for example, altering the expression
for ŷ:

Bugs codey.hat[i] <- a[school[i]] + b[1]*x[i] + b[2]*pow(x[i],2) +

b[3]*T[school[i]]*x[i]

Another option is to define transformed variables in R and then include them as
predictors in the Bugs model; for example, for the squared term

R codex.sq <- x^2

and then, in the Bugs model:

Bugs codey.hat[i] <- a[school[i]] + b[1]*x[i] + b[2]*x.sq[i]

Nonlinear functions of data and parameters. More interesting are models that
cannot simply be expressed as regressions. For example, suppose we wanted to
fit a model with diminishing returns for the pre-treatment assessment, such as
y = α− βe−γx. We can simultaneously estimate the linear parameters α, β and the
nonlinear γ in a Bugs model:

Bugs codey.hat[i] <- a[school[i]] + b*exp(-g*x[i])

and also add a noninformative prior distribution for γ. The parameters β and γ
could also be allowed to vary by group. More complicated expressions are also
possible, for example,

Bugs codey.hat[i] <- a + b[1]*exp(-g[1]*x1[i]) + b[2]*exp(-g[2]*x2[i])

or

Bugs codey.hat[i] <- (a + b*x1[i])/(1 + g*x2[i])

or whatever. The point here is not to try an endless variety of models but to be
able to fit models that might be suggested by theoretical considerations, and to
have the flexibility to alter functional forms as appropriate.

Unequal variances

Perhaps the data-level variance should be different for students in the treated and
control groups. (The variance in the treatment group could be higher, for example,
if the treatment worked very well on some students and poorly on others. Or, in
the other direction, the treated students could show lower variance if the effect of
the treatment is to pull all students up to a common level of expertise.)
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Different variances for treated and control units. We can allow for either of these
possibilities by changing the data distribution to

Bugs code y[i] ~ dnorm (y.hat[i], tau.y[T[school[i]+1]])

(Adding 1 to T allows the index to take on the values 1 and 2.) The specification
of tau.y in the model is then expanded to

Bugs code for (k in 1:2){

tau.y[k] <- pow(sigma.y[k], -2)

sigma.y[k] ~ dunif (0, 100)

}

Different variance within each group. Similarly, we can simply let the data variance
vary by school by changing the data model to,

Bugs code y[i] ~ dnorm (y.hat[i], tau.y[school[i]])

and then specifying the distribution of tau.y within the for (j in 1:J) loop:

Bugs code tau.y[j] <- pow(sigma.y[j], -2)

sigma.y[j] ~ dunif (0, 100)

Modeling the varying variances. Once we have a parameter that varies by group,
it makes sense to model it, for example using a lognormal distribution:

Bugs code tau.y[j] <- pow(sigma.y[j], -2)

sigma.y[j] ~ dlnorm (mu.lsigma.y, tau.lsigma.y)

This extra stage of modeling allows us to better adjust for unequal variances when
the sample size within groups is small (so that within-group variances cannot be
precisely estimated individually). We also must specify noninformative prior distri-
butions for these hyperparameters, outside the for (j in 1:j) loop:

Bugs code mu.lsigma.y ~ dnorm (0, .0001)

tau.lsigma.y <- pow(sigma.lsigma.y, -2)

sigma.lsigma.y ~ dunif (0, 100)

Variances that also differ systematically between treatment and control. We can
extend the hierarchical model for the variances to include treatment as a group-level
predictor for the variance model:

Bugs code tau.y[j] <- pow(sigma.y[j], -2)

sigma.y[j] ~ dlnorm (log.sigma.hat[j], sigma.log.sigma.y)

log.sigma.hat[j] <- d.0 + d.1*T[j]

and again specifying noninformative prior distributions outside the loop.

Other distributional forms

There is no need to restrict ourselves to the normal distribution. For example, the
t distribution allows for occasional extreme values. Here is how it can be set up in
Bugs with degrees of freedom νy estimated from the data:

Bugs code y[i] ~ dt (y.hat[i], tau.y, nu.y)

and then, outside the loop, we must put in a prior distribution for νy. Bugs restricts
this degrees-of-freedom parameter to be at least 2, so it is convenient to assign a
uniform distribution on its inverse:

Bugs code nu.y <- 1/nu.inv.y

nu.inv.y ~ dunif (0, .5)

The t model could similarly be applied to the group-level model for the αj ’s as well.
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16.11 Bibliographic note

Details on Bugs are in Appendix C. For fitting models in Bugs, the two volumes of
examples in the online help are a good starting point, and the textbooks by Lan-
caster (2004) and Congdon (2001, 2003) are also helpful because they use Bugs for
all their examples. Gelman and Rubin (1992) and Brooks and Gelman (1998) dis-
cuss the use of multiple chains to monitor the convergence of iterative simulations.
Kass et al. (1998) present a lively discussion of practical issues in implementing
iterative simulation.

16.12 Exercises

1. Elements of a Bugs model: list the elements of the model on page 370 by category:
modeled data, unmodeled data, modeled parameters, unmodeled parameters,
derived quantities, and looping indexes (as in Figure 16.4).

2. Find all the errors in the following Bugs model:

Bugs codemodel {

for (i in 1:n){

y[i] ~ dnorm (a[state[i]] + theta*treat[i] + b*hispanic, tau.y)

}

theta ~ dnorm (0, .0001)

b ~ dnorm (0, 1000)

for (j in 1:J){

a[j] ~ rnorm (mu.a, tau.a^2)

}

mu.a ~ dnorm (0, .0001)

tau.a <- pow (sigma.a, -2)

sigma.a ~ dunif (0, 100)

tau.y <- pow (sigma.y, -2)

sigma.y <- dunif (0, 100)

}

3. Using the data in folder cd4 regarding CD4 percentages for young children with
HIV, we shall revisit Exercise 12.2.

(a) Use Bugs to fit the model in Exercise 12.2(a). Interpret the results.

(b) Use Bugs to fit the model in Exercise 12.2(b). Interpret the results.

(c) How do the results from these models compare to the fits from lmer()?

(d) Summarize the results graphically as in Section 16.3.

4. Repeat the predictions described in Exercise 12.3 using the output from the Bugs
fits from Exercise 16.3 instead.

5. Scaling of coefficients: again using the data in folder cd4, fit the model you
formulated in Exercise 12.2(b), just as you did in Exercise 16.3(b). What happens
if you rescale time so that it is in units of days rather than years? How does this
influence your prior distributions and starting values?

6. Convergence of iterative simulation: return to the beauty and teaching evalu-
ations example introduced in Exercise 3.5 and revisited in Exercises 12.6 and
13.1.

(a) Write a varying-intercept model for these data with no group-level predictors.

Fit this model using Bugs but allow for only 10 iterations. What do the R̂
values look like?
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(b) Now fit the model again allowing for enough iterations to achieve convergence.
How many iterations were required? Interpret the results from this model.

(c) Write a varying-intercept model that you would like to fit to these data that
includes three group-level predictors. Fit this model using Bugs. How many
iterations were required for convergence for this model? Interpret the results
of the model.

(d) Create fake-data simulations to check the fit of the models in (b) and (c).

7. This exercise will use the data you found for Exercise 4.7. This time, rather than
repeating the same analysis across each year, or country (or whatever group the
data vary across), fit a multilevel model using Bugs instead. Compare the results
to those obtained in your earlier analysis.

8. Impact of the prior distribution: you will use Bugs to fit several versions of the
varying-intercept model to the radon data using floor as a house-level predictor
and uranium as a county-level predictor.

(a) How do the inferences change if you assign normal prior distributions with
mean 5 and standard deviation 1000 to the coefficients for floor and uranium.

(b) How do the inferences change if you switch to normal prior distributions with
mean 0 and standard deviation 0.1?

(c) Now try normal prior distributions with mean 5 and standard deviation 1.

(d) Now try t prior distributions with mean 5, standard deviation 1, and 4 degrees
of freedom.

(e) Now try Uniform(−100,100) prior distributions, then Uniform(−1,1) prior
distributions.

(f) Discuss the impact of the prior distributions on the inferences.



CHAPTER 17

Fitting multilevel linear and generalized
linear models in Bugs and R

This chapter presents Bugs code for some of the multilevel models from Chapters
13–15, including varying intercepts and slopes, non-nested groupings, and multilevel
versions of logistic regression and other generalized linear models.

17.1 Varying-intercept, varying-slope models

Simple model with no correlation between intercepts and slopes

We start with the varying-intercept, varying-slope radon model of Section 13.1,
temporarily simplifying by ignoring the possible correlation between intercepts and
slopes—that is, we model the intercepts and slopes as independent. Ignoring the
multilevel correlation is inappropriate but can be helpful in getting started with
the Bugs modeling.

Bugs codemodel {

for (i in 1:n){

y[i] ~ dnorm (y.hat[i], tau.y)

y.hat[i] <- a[county[i]] + b[county[i]]*x[i]

}

tau.y <- pow(sigma.y, -2)

sigma.y ~ dunif (0, 100)

for (j in 1:J){

a[j] ~ dnorm (a.hat[j], tau.a)

b[j] ~ dnorm (b.hat[j], tau.b)

a.hat[j] <- mu.a

b.hat[j] <- mu.b

}

mu.a ~ dnorm (0, .0001)

mu.b ~ dnorm (0, .0001)

tau.a <- pow(sigma.a, -2)

tau.b <- pow(sigma.b, -2)

sigma.a ~ dunif (0, 100)

sigma.b ~ dunif (0, 100)

}

This model looks a little more complicated than it needs to, in that we could have
simply inserted mu.a and mu.b into the expressions for a[j] and b[j]. We include
the intermediate quantities a.hat[j] and b.hat[j] because they become useful
when the model includes correlations and group-level predictors, as we discuss in
Section 17.2.

375
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Modeling the correlation

We can write model (13.1) on page 279—which allows a correlation ρ between the
varying intercepts and slopes—as follows:

Bugs code model {

for (i in 1:n){

y[i] ~ dnorm (y.hat[i], tau.y)

y.hat[i] <- a[county[i]] + b[county[i]]*x[i]

}

tau.y <- pow(sigma.y, -2)

sigma.y ~ dunif (0, 100)

for (j in 1:J){

a[j] <- B[j,1]

b[j] <- B[j,2]

B[j,1:2] ~ dmnorm (B.hat[j,], Tau.B[,])

B.hat[j,1] <- mu.a

B.hat[j,2] <- mu.b

}

mu.a ~ dnorm (0, .0001)

mu.b ~ dnorm (0, .0001)

Tau.B[1:2,1:2] <- inverse(Sigma.B[,])

Sigma.B[1,1] <- pow(sigma.a, 2)

sigma.a ~ dunif (0, 100)

Sigma.B[2,2] <- pow(sigma.b, 2)

sigma.b ~ dunif (0, 100)

Sigma.B[1,2] <- rho*sigma.a*sigma.b

Sigma.B[2,1] <- Sigma.B[1,2]

rho ~ dunif (-1, 1)

}

Here we are using capital letters (B, Tau, Sigma) for matrix parameters and lower-
case for vectors and scalars.

Scaled inverse-Wishart model

Another approach is to model the covariance matrix for the intercepts and slopes
directly using the scaled inverse-Wishart distribution described at the end of Section
13.3. A useful trick with the scaling is to define the coefficients αj , βj in terms
of multiplicative factors, ξα, ξβ , with unscaled parameters αraw

j , βraw
j having the

inverse-Wishart distribution. We first give the Bugs model, then explain it:

Bugs code model {

for (i in 1:n){

y[i] ~ dnorm (y.hat[i], tau.y)

y.hat[i] <- a[county[i]] + b[county[i]]*x[i]

}

tau.y <- pow(sigma.y, -2)

sigma.y ~ dunif (0, 100)

for (j in 1:J){

a[j] <- xi.a*B.raw[j,1]

b[j] <- xi.b*B.raw[j,2]

B.raw[j,1:2] ~ dmnorm (B.raw.hat[j,], Tau.B.raw[,])

B.raw.hat[j,1] <- mu.a.raw
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B.raw.hat[j,2] <- mu.b.raw

}

mu.a <- xi.a*mu.a.raw

mu.b <- xi.b*mu.b.raw

mu.a.raw ~ dnorm (0, .0001)

mu.b.raw ~ dnorm (0, .0001)

xi.a ~ dunif (0, 100)

xi.b ~ dunif (0, 100)

Tau.B.raw[1:2,1:2] ~ dwish (W[,], df)

df <- 3

Sigma.B.raw[1:2,1:2] <- inverse(Tau.B.raw[,])

sigma.a <- xi.a*sqrt(Sigma.B.raw[1,1])

sigma.b <- xi.b*sqrt(Sigma.B.raw[2,2])

rho <- Sigma.B.raw[1,2]/sqrt(Sigma.B.raw[1,1]*Sigma.B.raw[2,2])

}

The quantities that must be initialized—the parameters, in the terminology of Fig-
ure 16.4—include Braw, the ξ’s, the μraw’s, and T raw

B . But we are actually interested
in the derived quantities α, β, the μ’s, the σ’s, and ρ.

In the specification of the Wishart distribution for the inverse-variance Tau.B.raw,
the matrix W is the prior scale, which we set to the identity matrix (in R, we write W
<- diag(2)), and the degrees of freedom, which we set to 1 more than the dimen-
sion of the matrix (to induce a uniform prior distribution on ρ, as discussed near
the end of Section 13.3). The call to the above model in R then looks something
like

R codeW <- diag (2)

radon.data <- list ("n", "J", "y", "county", "x", "W")

radon.inits <- function (){

list (B.raw=array(rnorm(2*J),c(J,2)), mu.a.raw=rnorm(1),

mu.b.raw=rnorm(1), sigma.y=runif(1), Tau.B.raw=rwish(3,diag(2)),

xi.a=runif(1), xi.b=runif(1))}

radon.parameters <- c ("a", "b", "mu.a", "mu.b", "sigma.y",

"sigma.a", "sigma.b", "rho")

M1 <- bugs (radon.data, radon.inits, radon.parameters,

"wishart1.bug", n.chains=3, n.iter=2000)

The advantage of this model, as compared to the simple model of σα, σβ , and ρ
presented on page 376, is that it generalizes more easily to models with more than
two varying coefficients, as we discuss next. In addition, the extra parameters ξα, ξβ

can actually allow the computations to converge faster, an issue to which we shall
return in Section 19.5 in the context of using redundant multiplicative parameters
to speed computations for multilevel models.

Modeling multiple varying coefficients

As discussed in Section 13.3, when more than two coefficients are varying (for
example, a varying intercept and two or more varying slopes), it is difficult to
model the group-level correlations directly because of constraints involved in the
requirement that the covariance matrix be positive definite. With more than two
varying coefficients, it is simplest to just use the scaled inverse-Wishart model
described above, using a full matrix notation to allow for an arbitrary number K
of coefficients that vary by group.
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Bugs code model {

for (i in 1:n){

y[i] ~ dnorm (y.hat[i], tau.y)

y.hat[i] <- inprod(B[county[i],],X[i,])

}

tau.y <- pow(sigma.y, -2)

sigma.y ~ dunif (0, 100)

for (j in 1:J){

for (k in 1:K){

B[j,k] <- xi[k]*B.raw[j,k]

}

B.raw[j,1:K] ~ dmnorm (mu.raw[], Tau.B.raw[,])

}

for (k in 1:K){

mu[k] <- xi[k]*mu.raw[k]

mu.raw[k] ~ dnorm (0, .0001)

xi[k] ~ dunif (0, 100)

}

Tau.B.raw[1:K,1:K] ~ dwish (W[,], df)

df <- K+1

Sigma.B.raw[1:K,1:K] <- inverse(Tau.B.raw[,])

for (k in 1:K){

for (k.prime in 1:K){

rho.B[k,k.prime] <- Sigma.B.raw[k,k.prime]/

sqrt(Sigma.B.raw[k,k]*Sigma.B.raw[k.prime,k.prime])

}

sigma.B[k] <- abs(xi[k])*sqrt(Sigma.B.raw[k,k])

}

}

And here is how the model could be called in R, assuming that the predictors
(including the constant term) have already been bundled into a n × K matrix X :

R code W <- diag (K)

data <- list ("n", "J", "K", "y", "county", "X", "W")

inits <- function (){

list (B.raw=array(rnorm(J*K),c(J,K)), mu.raw=rnorm(K),

sigma.y=runif(1), Tau.B.raw=rwish(K+1,diag(K)), xi=runif(K))}

parameters <- c ("B", "mu", "sigma.y", "sigma.B", "rho.B")

M2 <- bugs (radon.data, radon.inits, radon.parameters,

"wishart2.bug", n.chains=3, n.iter=2000)

This reduces to our earlier model when K = 2.

Adding unmodeled individual-level coefficients

The above model allows all the coefficients B to vary. In practice it can be convenient
to leave some regression coefficients unmodeled and let others vary by group. The
simplest way to do this in the Bugs model is to add a vector β0 of unmodeled
coefficients for a matrix X0 of predictors; the model is then yi = X0

i β0+XiBj[i]+εi,
with the fourth line of the Bugs model being written as

Bugs code y.hat[i] <- inprod(b.0[],X.0[i,]) + inprod(B[county[i],],X[i,])

or, in one of the simpler models with only two varying coefficients,

Bugs code y.hat[i] <- inprod(b.0[],X.0[i,]) + a[county[i]] + b[county[i]]*x[i]
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In either case, if we define K0 as the number of unmodeled coefficients (that is, the
number of columns of X0), we can specify a noninformative prior distribution at
the end of the Bugs model:

Bugs codefor (k in 1:K.0){

b.0[k] ~ dnorm (0, .0001)

}

17.2 Varying intercepts and slopes with group-level predictors

We can add group-level predictors to the varying-intercept, varying-slope Bugs
models of the previous section by replacing mu.a and mu.b by group-level regres-
sions.

Simplest varying-intercept, varying-slope model. For example, we can add a group-
level predictor u to the very first model of this chapter by replacing the expressions
for a.hat[j] and b.hat[j] with

Bugs codea.hat[j] <- g.a.0 + g.a.1*u[j]

b.hat[j] <- g.b.0 + g.b.1*u[j]

and then removing the prior distributions for mu.a and mu.b and replacing with
dnorm (0, .0001) prior distributions for each of g.a.0, g.a.1, g.b.0, and g.b.1.

Model in which intercepts and slopes are combined into a matrix, B. A similar
operation works with the model on page 376 also, except that a.hat[j], b.hat[j]
become B.hat[j,1], B.hat[j,2].

Scaled inverse-Wishart model. In the scaled model on page 376, we add a group-
level predictor by replacing mu.a.rawwith g.a.0.raw + g.a.1.raw*u[j] and sim-
ilarly for mu.b.raw. We continue by multiplying the raw parameters for a and b by
xi.a and xi.b, respectively to get g.a.0, g.a.1, g.b.0, g.b.1.

Multiple group-level predictors

If we have several group-level predictors (expressed as a matrix U with J rows, one
for each group), we use notation such as

Bugs codea.hat[j] <- inprod (g.a[], U[j,])

b.hat[j] <- inprod (g.b[], U[j,])

with a loop setting up the prior distribution for the elements of g.a and g.b.

Multiple varying coefficients with multiple group-level predictors

In a more general notation, we can express both the individual-level and group-level
regression using matrices, generalizing the model on page 377 to:

Bugs codemodel {

for (i in 1:n){

y[i] ~ dnorm (y.hat[i], tau.y)

y.hat[i] <- inprod(B[county[i],],X[i,])

}

tau.y <- pow(sigma.y, -2)

sigma.y ~ dunif (0, 100)

for (k in 1:K){

for (j in 1:J){
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B[j,k] <- xi[k]*B.raw[j,k]

}

xi[k] ~ dunif (0, 100)

}

for (j in 1:J){

B.raw[j,1:K] ~ dmnorm (B.raw.hat[j,], Tau.B.raw[,])

for (k in 1:K){

B.raw.hat[j,k] <- inprod(G.raw[k,],U[j,])

}

}

for (k in 1:K){

for (l in 1:L){

G[k,l] <- xi[k]*G.raw[k,l]

G.raw[k,l] ~ dnorm (0, .0001)

}

}

Tau.B.raw[1:K,1:K] ~ dwish (W[,], df)

df <- K+1

Sigma.B.raw[1:K,1:K] <- inverse(Tau.B.raw[,])

for (k in 1:K){

for (k.prime in 1:K){

rho.B[k,k.prime] <- Sigma.B.raw[k,k.prime]/

sqrt(Sigma.B.raw[k,k]*Sigma.B.raw[k.prime,k.prime])

}

sigma.B[k] <- abs(xi[k])*sqrt(Sigma.B.raw[k,k])

}

}

Adding unmodeled individual-level coefficients

One can further extend these models by adding a matrix of predictors X0 with
unmodeled coefficients β0 as described at the end of Section 17.1. In Bugs, this is
done by adding inprod(b.0[],X.0[i,]) to the expression for y.hat[i].

17.3 Non-nested models

Here is the Bugs code for model (13.9) on page 289, in which the data are grouped
in two different ways (by treatment and airport in the flight simulator example):

Bugs code model {

for (i in 1:n){

y[i] ~ dnorm (y.hat[i], tau.y)

y.hat[i] <- mu + gamma[treatment[i]] + delta[airport[i]]

}

mu ~ dnorm (0, .0001)

tau.y <- pow(sigma.y, -2)

sigma.y ~ dunif (0, 100)

for (j in 1:n.treatment){

gamma[j] ~ dnorm (0, tau.gamma)

}

tau.gamma <- pow(sigma.gamma, -2)

sigma.gamma ~ dunif (0, 100)

for (k in 1:n.airport){
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delta[k] ~ dnorm (0, tau.delta)

}

tau.delta <- pow(sigma.delta, -2)

sigma.delta ~ dunif (0, 100)

}

With non-nested models, there is a choice of where to put the intercept or constant
term: here we have included it as μ in the data model, with zero means for the group
effects, but another option would be to include a mean parameter for the γj ’s or δk’s.
Including a constant term in more than one place would lead to nonidentifiability. As
we discuss in Section 19.4, it can be useful for both conceptual and computational
reasons to include redundant mean parameters and then reparameterize the model
to regain identifiability.

17.4 Multilevel logistic regression

Multilevel generalized linear models have the same structure as linear models, alter-
ing only the data model. To illustrate, we show the logistic regression for state-level
opinions from Section 14.1. The model as written in Bugs looks more complicated
than it really is, because we must explicitly specify distributions for all the pa-
rameters and we must transform from standard-deviation parameters σ to inverse-
variances τ . Here is the model:

Bugs codemodel {

for (i in 1:n){

y[i] ~ dbin (p.bound[i], 1)

p.bound[i] <- max(0, min(1, p[i]))

logit(p[i]) <- Xbeta[i]

Xbeta[i] <- b.0 + b.female*female[i] + b.black*black[i] +

b.female.black*female[i]*black[i] + b.age[age[i]] + b.edu[edu[i]] +

b.age.edu[age[i],edu[i]] + b.state[state[i]]

}

b.0 ~ dnorm (0, .0001)

b.female ~ dnorm (0, .0001)

b.black ~ dnorm (0, .0001)

b.female.black ~ dnorm (0, .0001)

for (j in 1:n.age) {b.age[j] ~ dnorm (0, tau.age)}

for (j in 1:n.edu) {b.edu[j] ~ dnorm (0, tau.edu)}

for (j in 1:n.age) {for (k in 1:n.edu){

b.age.edu[j,k] ~ dnorm (0, tau.age.edu)}}

for (j in 1:n.state) {

b.state[j] ~ dnorm (b.state.hat[j], tau.state)

b.state.hat[j] <- b.region[region[j]] + b.v.prev*v.prev[j]}

b.v.prev ~ dnorm (0, .0001)

for (j in 1:n.region) {b.region[j] ~ dnorm (0, tau.region)}

tau.age <- pow(sigma.age, -2)

tau.edu <- pow(sigma.edu, -2)

tau.age.edu <- pow(sigma.age.edu, -2)

tau.state <- pow(sigma.state, -2)

tau.region <- pow(sigma.region, -2)

sigma.age ~ dunif (0, 100)

sigma.edu ~ dunif (0, 100)
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sigma.age.edu ~ dunif (0, 100)

sigma.state ~ dunif (0, 100)

sigma.region ~ dunif (0, 100)

}

The “logistic regression” part of this model is at the beginning. The data dis-
tribution, dbin, is the binomial distribution with N = 1, meaning that yi = 1
with probability pi and 0 otherwise. The quantity p.bound is defined to restrict
the probability to lie between 0 and 1, a trick we use to keep Bugs from crashing.
The model continues with a usual multilevel formulation, with the only new feature
being the nested loops for the matrix parameter b.age.edu. The model is actually
slow to converge under this parameterization, but in improving it we shall keep this
basic structure (see Section 19.4 for details).

17.5 Multilevel Poisson regression

Poisson models are straightforward to code in Bugs. Here we show model (15.1)
from page 326 for the analysis of the police stops. This model includes crossed
multilevel predictors and overdispersion:

Bugs code model {

for (i in 1:n){

stops[i] ~ dpois (lambda[i])

log(lambda[i]) <- offset[i] + mu +

b.eth[eth[i]] + b.precinct[precinct[i]] + epsilon[i]

epsilon[i] ~ dnorm (0, tau.epsilon)

}

mu ~ dnorm (0, .0001)

mu.adj <- mu + mean(b.eth[]) + mean(b.precinct[])

tau.epsilon <- pow(sigma.epsilon, -2)

sigma.epsilon ~ dunif (0, 100)

for (j in 1:n.eth){

b.eth[j] ~ dnorm (0, tau.eth)

b.eth.adj[j] <- b.eth[j] - mean(b.eth[])

}

tau.eth <- pow(sigma.eth, -2)

sigma.eth ~ dunif (0, 100)

for (j in 1:n.precinct){

b.precinct[j] ~ dnorm (0, tau.precinct)

b.precinct.adj[j] <- b.precinct[j] - mean(b.precinct[])

}

tau.precinct <- pow(sigma.precinct, -2)

sigma.precinct ~ dunif (0, 100)

}

As in (15.1), the εi’s represent overdispersion, and σε is a measure of the amount
of overdispersion in the data. We computed the offset term in R (as log(15

12n)) and
included it in the data in the bugs() call. (Alternatively, we could have computed
the offset directly within the initial loop of the Bugs model.) Finally, the adjusted
parameters mu.adj and b.eth.adj correspond to μ′ and α′

e in equations (15.2) and
(15.3). For completeness we have adjusted the precinct intercepts to sum to zero
also. (This adjustment is less important because there are 75 of them, so their mean
will be close to zero in any case.)
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17.6 Multilevel ordered categorical regression

Sections 6.5 and 15.2 describe an ordered categorical logistic regression. Here we
show the model as written in Bugs. The data-level model is adapted from an ex-
ample from the online Bugs manual, and the rest of the Bugs code describes the
particular model we fit to the storable-votes data. In this model, dcat is the Bugs
notation for the distribution defined by probabilities p[i,1], p[i,2], p[i,3] of
observation yi falling in each of the 3 categories, and these probabilities p are defined
in terms of the cumulative probabilities Q, which follow a logistic regression.

Bugs codemodel {

for (i in 1:n){

y[i] ~ dcat(P[i,])

P[i,1] <- 1 - Q[i,1]

for (i.cut in 2:n.cut){

P[i,i.cut] <- Q[i,i.cut-1] - Q[i,i.cut]

}

P[i,n.cut+1] <- Q[i,n.cut]

for (i.cut in 1:n.cut){

logit(Q[i,i.cut]) <- z[i,i.cut]

Z[i,i.cut] <- (x[i] - C[player[i],i.cut])/s[player[i]]

}

}

for (i.player in 1:n.player){

C[i.player,1] ~ dnorm (mu.c[1], tau.c[1])I(0,C[i.player,2])

C[i.player,2] ~ dnorm (mu.c[2], tau.c[2])I(C[i.player,1],100)

s[i.player] ~ dlnorm (mu.log.s, tau.log.s)I(1,100)

}

for (i.cut in 1:n.cut){

mu.c[i.cut] ~ dnorm (0, 1.E-6)

tau.c[i.cut] <- pow(sigma.c[i.cut], -2)

sigma.c[i.cut] ~ dunif (0, 1000)

}

mu.log.s ~ dnorm (0, .0001)

tau.log.s <- pow(sigma.log.s, -2)

sigma.log.s ~ dunif (0, 1000)

}

We continue with the notation in which matrices (in this case, P, Q, Z, and C) are
written as capital letters, with lowercase used for vectors and scalars.

The above model uses bounds (the I(,) notation) for two purposes. First, the
bounds c[i.player,1] and c[i.player,2] constrain these two parameters for
each player to fall between 0 and 100 (see the discussion following model (6.11) on
page 121), and to be in increasing order, which is necessary so that the probability
for each category is nonnegative.

The second use of bounds in the Bugs model is to constrain each s[i.player]

to fall between 1 and 100, which we do for purely computational reasons. When we
allowed these parameters to float freely, Bugs would crash. We suspect that Bugs
was crashing because the ratios calculated for the logistic distribution were too
extreme, and constraining the parameters s stopped this problem. Another way to
constrain this in Bugs would be to parameterize in terms of 1/s.



384 FITTING MULTILEVEL MODELS IN BUGS AND R

17.7 Latent-data parameterizations of generalized linear models

Logistic regression

As discussed in Section 5.3, logistic regression can be expressed directly or using
latent parameters. We can similarly implement both formulations in Bugs.

Section 17.4 shows an example of the direct parameterization. The equivalent
latent-data version begins as follows:

Bugs code model {

for (i in 1:n){

z.lo[i] <- -100*equals(y[i],0)

z.hi[i] <- 100*equals(y[i],1)

z[i] ~ dlogis (Xbeta[i], 1) I(z.lo[i], z.hi[i])

After this, the two models are the same. For each data point, we have simply defined
the latent variable zi and restricted it to be positive if yi = 1 and negative if yi = 0.
(For a logistic model, restricting zi to the range (0, 100) is essentially equivalent to
restricting to (0,∞).)

In calling the model from R, it is helpful to initialize the zi’s along with the other
parameters in the model. We want to use random numbers, but they must respect
the restriction that z be positive if and only if y = 1. We can do this by adding the
following, within the list inside the inits() function:

R code z=runif(n)*ifelse(y==1,1,-1)

This gives initial values for z in the range (0, 1) if y = 1, or the range (−1, 0) if
y = 0.

Robit regression

Section 6.6 describes a robust alternative to logistic regression constructed by re-
placing the logistic latent-data distribution with the t. We can implement robit
regression in Bugs in three steps. First, within the data model (in the for (i in

1:n) loop, we use the t distribution:

Bugs code z[i] ~ dt (z.hat[i], tau.z, df) I(z.lo[i], z.hi[i])

Second, outside the data loop, we scale the t distribution as indicated in (6.15)
on page 125, so that its variance equals 1 for any value of the degrees-of-freedom
parameter:

Bugs code tau.z <- df/(df-2)

Third, we give the inverse-variance parameter a uniform prior distribution from
0 to 0.5, which has the effect of restricting the degrees of freedom to be at least 2
(a constraint required by Bugs):

Bugs code df <- 1/df.inv

df.inv ~ dunif (0, .5)

In addition, we must initialize z within the inits() function as described previ-
ously for latent-data logistic regression. The probit model can be implemented in a
similar way.
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17.8 Bibliographic note

The Gibbs sampler and Metropolis algorithm were first presented by Metropolis et
al. (1953), for applications in statistical physics. Tanner and Wong (1987), Gelfand
and Smith (1990), and Gelfand et al. (1990) demonstrated the application of these
computational ideas to general statistical models, including hierarchical linear re-
gression. Zeger and Karim (1991), Karim and Zeger (1992), Albert and Chib (1993),
Dellaportas and Smith (1993), and others developed Gibbs sampler and Metropo-
lis algorithms for hierarchical generalized linear models. Chen, Shao, and Ibrahim
(2000) and Liu (2002) review more advanced work on iterative simulation.

The augmented-data formulation of multilevel regression appears in Lindley and
Smith (1972) and Hodges (1998). Gelman et al. (2003) derive the algebra of Bayesian
multilevel modeling and discuss partial pooling and the Gibbs sampler in detail;
chapters 11 and 15 of that book discuss computation for multilevel models. The
general references on multilevel modeling (see the note at the end of Chapter 12)
are relevant here. See appendix C of Gelman et al. (2003) for more on programming
the Gibbs sampler and related simulation algorithms in R.

17.9 Exercises

1. Parameterizing varying-intercept, varying-slope models: the folder nes contains
data from the National Election Study surveys. Set up a model for party identi-
fication (as a continuous outcome, as in Section 4.7), given the predictors shown
in Figure 4.6 on page 74, and also allowing the intercept and the coefficient for
ideology to vary by state. You will fit various versions of this model (using data
from the year 2000) in Bugs.

(a) Fit the model with no correlation between the intercepts and the slopes (the
coefficients for ideology).

(b) Fit the model with a uniform prior distribution on the correlation between
the intercepts and slopes.

(c) Fit the scaled inverse-Wishart model.

(d) Compare the inferences from the three models.

2. Understanding and summarizing varying-intercept, varying-slope models: con-
tinue the example from the previous exercise.

(a) Add, as a group-level predictor, the average income by state. Discuss how the
parameter estimates change when this predictor has been added.

(b) Graph the fitted model as in Figures 13.1–13.2 on page 281.

3. Multiple varying coefficients:

(a) Repeat the previous exercise, this time allowing the coefficient for income to
vary by state as well.

(b) Repeat, allowing all the coefficients to vary by state.

(c) Summarize your inferences from these models graphically.

4. Fitting non-nested models: use Bugs to fit the model for Olympic judging from
Exercises 13.3.

5. Models with unequal variances: use Bugs to fit the model you set up for the
age-guessing data in Exercise 13.4.

6. Multilevel logistic regression: use Bugs to fit the model for the well-switching
data from Exercise 14.2.
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7. Fitting a choice model: set up a model for the arsenic decision problem, as
described near the end of Section 6.8, modeling a distribution for the parameters
(ai, bi, ci) in the population.

8. Elements of a Bugs model:

(a) List the elements of the model on page 379 by category: modeled data, un-
modeled data, modeled parameters, unmodeled parameters, derived quanti-
ties, and looping indexes (as in Figure 16.4).

(b) Do the same for the model on page 381.

(c) Do the same for the model on page 383.

9. Ordered logit: consider the ordered logistic regression for vote intention in Ex-
ercise 15.1.

(a) Fit a classical ordered logistic regression (without the coefficients for states)
using lmer().

(b) Fit the classical ordered logistic regression using Bugs. Compare to the esti-
mate from (a).

10. Multilevel ordered logit:

(a) Take the previous exercise and allow the intercepts to vary by state.

(b) Plot the fitted model from (a), along with the model from Exercise 17.9(a), for
a set of eight states (as in Figure 14.2 on page 307, but for this three-category
model) and discuss how they differ.

(c) Discuss whether it is worth fitting this model, as compared to a logistic model
that includes only two categories, discarding the respondents who express no
opinion or support other candidates.

11. Multilevel ordered logit, probit, and robit models: the folder storable has data
from the storable-votes experiment described in Sections 6.5, 15.2, and 17.6.

(a) Fit an ordered logistic regression for the three categories, with a different
intercept for each person.

(b) Fit the same model but using the probit link.

(c) Fit the same model but using the robit link.

(d) Compare the estimates from the three models. The coefficients might not be
comparable, so you have to plot the fitted models as in Figure 6.4 on page
121.

12. Multivariate outcomes: the folder beta.blockers contains data from a meta-
analysis of 22 clinical trials of beta-blockers for reducing mortality after myocar-
dial infarction (from Yusuf et al., 1985; see also Carlin, 1992, and Gelman et al.,
2003, chapter 5).

(a) Set up and fit a logistic regression model to estimate the effect of the treatment
on the probability of death, allowing different death rates and different treat-
ment effects for the different studies. Summarize by the estimated treatment
average effect and its standard error.

(b) Make a graph or graphs displaying the data and fitted model.



CHAPTER 18

Likelihood and Bayesian inference and
computation

Most of this book concerns the interpretation of regression models, with the un-
derstanding that they can be fit to data fairly automatically using R and Bugs.
However, it can be useful to understand some of the theory behind the model fit-
ting, partly to connect to the usual presentation of these models in statistics and
econometrics.

This chapter outlines some of the basic ideas of likelihood and Bayesian inference
and computation, focusing on their application to multilevel regression. One point
of this material is to connect multilevel modeling to classical regression; another is
to give enough insight into the computation to allow you to understand some of
the practical computational tips presented in the next chapter.

18.1 Least squares and maximum likelihood estimation

We first present the algebra for classical regression inference, which is then gener-
alized when moving to multilevel modeling. We present the formulas here without
derivation; see the references listed at the end of the chapter for more.

Least squares

The classical linear regression model is yi = Xiβ + εi, where y and ε are (column)
vectors of length n, X is a n × k matrix, and β is a vector of length k. The vector
β of coefficients is estimated so as to minimize the errors εi. If the number of data
points n exceeds the number of predictors1 k, it is not generally possible to find
a β that gives a perfect fit (that would be yi = Xiβ, with no error, for all data

points i = 1, . . . , n), and the usual estimation goal is to choose the estimate β̂ that

minimizes the sum of the squares of the residuals ri = yi − Xiβ̂. (We distinguish

between the residuals ri = yi − Xiβ̂ and the errors εi = yi − Xiβ.) The sum of

squared residuals is SS =
∑n

i=1(yi − Xiβ̂)2; the β̂ that minimizes it is called the
least squares estimate and can be written in matrix notation as

β̂ = (XtX)−1Xty. (18.1)

We rarely work with this expression directly, since it can be computed directly in
the computer (for example, using the lm() command in R).

The errors ε come from a distribution with mean 0 and variance σ2. This standard
deviation can be estimated from the residuals, as

σ̂2 =
1

n − k
SS =

1

n − k

n∑
i=1

(yi − Xiβ̂)2, (18.2)

with n−k rather than n−1 in the denominator to adjust for the estimation of the

1 The constant term, if present in the model, counts as one of the predictors; see Section 3.4.

387
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k-dimensional parameter β. (Since β is estimated to minimize the sum of squared
residuals, SS will be, on average, lower by a factor of n−k

n than the sum of squared
errors.)

Maximum likelihood

As just described, least squares estimation assumes linearity of the model and inde-
pendence of the errors. If we further assume that the errors are normally distributed,
so that yi ∼ N(Xiβ, σ2) for each i, the least squares estimate β̂ is also the maximum
likelihood estimate. The likelihood of a regression model is defined as the probability
of the data given the parameters and inputs; thus, in this example,

p(y|β, σ, X) =

n∏
i=1

N(yi|Xiβ, σ2), (18.3)

where N(·|·, ·) represents the normal probability density function, N(y|m, σ2) =
1√
2πσ

exp
(
− 1

2

(
y−m

σ

)2)
. The model can also be written in vector-matrix notation as

y ∼ N(Xβ, σ2In), where In is the n-dimensional identity matrix. Giving a diagonal
covariance matrix to this multivariate normal distribution implies independence of
the errors.

Expression (18.3) is a special case of the general expression for the likelihood of
n independent measurements given a vector parameter θ and predictors X :

p(y|θ, X) =

n∏
i=1

p(yi|θ, Xi). (18.4)

The maximum likelihood estimate is the vector θ for which this expression is max-
imized, given data X, y. (In classical least squares regression, θ corresponds to the
vector of coefficients β, along with the error scale, σ.) In general, we shall use the
notation p(y|θ) for the likelihood as a function of parameter vector θ, with the
dependence on the predictors X implicit.

The likelihood can then be written as

p(y|β, σ, X) = N(y|Xβ, σ2In). (18.5)

Using the standard notation for the multivariate normal distribution with mean
vector m and covariance matrix Σ, this becomes

N(y|m, Σ) = (2π)−n/2|Σ|−1/2 exp

(
−1

2
(y − m)tΣ−1(y − m)

)
.

Expressions (18.3) and (18.5) are equivalent and are useful at different times when
considering generalizations of the model.

A careful study of (18.3) or (18.5) reveals that maximizing the likelihood is
equivalent to minimizing the sum of squared residuals; hence the least squares
estimate β̂ can be viewed as a maximum likelihood estimate under the normal
model.

There is a small twist in fitting regression models, in that the maximum likelihood

estimate of σ is
√

1
n

∑n
i=1(yi − Xiβ̂)2, with 1

n instead of 1
n−k . The estimate with

1
n−k is generally preferred: the maximum likelihood estimate of (β, σ) simply takes
the closest fit and needs to be adjusted to account for the fitting of k regression
coefficients.
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Weighted least squares

The least squares estimate counts all n data points equally in minimizing the sum
of squares. If some data are considered more important than others, this can be
captured in the estimation by minimizing a weighted sum of squares, WSS =∑n

i=1 wi(yi − Xiβ̂)2, so that points i with larger weights wi count more in the
optimization. The weighted least squares estimate is

β̂WLS = (XtWX)−1XtWy, (18.6)

where W is the diagonal matrix whose elements are the weights wi.
Weighted least squares is equivalent to maximum likelihood estimation of β in

the normal regression model

yi ∼ N(Xiβ, σ2/wi), (18.7)

with independent errors with variances inversely proportional to the weights. Points
with high weights have low error variances and are thus expected to lie closer to
the fitted regression function.

Weighted least squares can be further generalized to fit data with correlated
errors; if the data are fit by the model y ∼ N(Xβ, Σ), then the maximum like-

lihood estimate is β̂ = (XtΣ−1X)−1XtΣ−1y and minimizes the expression (y −
Xβ)tΣ−1(y − Xβ), which can be seen as a generalization of the “sum of squares”
concept.

Generalized linear models

Classical linear regression can be motivated in a purely algorithmic fashion (as
“least squares”) or as maximum likelihood inference under a normal model. With
generalized linear models, the algorithmic justification is usually set aside, and
maximum likelihood is the starting point. We illustrate with the two most important
examples.

Logistic regression. For binary logistic regression with data yi = 0 or 1, the likeli-
hood is

p(y|β, X) =

n∏
i=1

{
logit−1(Xiβ) if yi = 1

1 − logit−1(Xiβ) if yi = 0,

which can be written more compactly, but equivalently, as

p(y|β, X) =

n∏
i=1

(
logit−1(Xiβ)

)yi
(
1 − logit−1(Xiβ)

)1−yi
.

To find the β that maximizes this expression, we can compute the derivative
dp(y|β, X)/dβ of the likelihood (or, more conveniently, the derivative of the log-
arithm of the likelihood), set this derivative equal to 0, and solve for β. There is
no closed-form solution, but the maximum likelihood estimate can be found us-
ing an iteratively weighted least squares algorithm, each step having the form of a
weighted least squares computation, with the weights changing at each step.

Not just a computational trick, iteratively weighted least squares can be under-
stood statistically as a series of steps approximating the logistic regression like-
lihood by a normal regression model applied to transformed data. We shall not
discuss this further here, however. We only mentioned the algorithm to give a sense
of how likelihood functions are used in classical estimation.
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Figure 18.1 (a) Likelihood function for the parameter β0 in the trivial linear regression y =
β0 + error, of log earnings yi. (b) Mode of the likelihood function and range indicating ±1
standard error as computed from the inverse-second-derivative-matrix of the log likelihood
at the mode. (c) 1000 random simulation draws from the normal distribution with this
mean and standard deviation, representing the distribution of uncertainty in the inference
for β0. The simulations have been vertically jittered to make them visible. (For this one-
dimensional problem it would be better to display the simulations as a histogram; we use
a dotplot here for compatability with the scatterplot of the two-dimensional simulations in
Figures 18.2–18.3.)

Poisson regression. For Poisson regression (6.3), the likelihood is

p(y|β, X, u) =
n∏

i=1

Poisson
(
yi

∣∣uie
Xiβ
)
,

where each factor has the Poisson probability density function: Poisson(y|m) =
1
y!m

ye−m.

18.2 Uncertainty estimates using the likelihood surface

In maximum likelihood estimation, the likelihood function can be viewed as a “hill”
with β̂ identifying the location of the top of the hill—that is, the mode of the
likelihood function. We illustrate with two simple regression examples.

One-parameter example: linear regression with just a constant term

Figure 18.1 demonstrates likelihood estimation for the simple problem of regression
with only a constant term; that is, inference for β0 in the model yi = β0 + εi, i =
1, . . . , n, for the earnings data from Chapter 2. In this example, β0 corresponds to
the average log earnings in the population represented by the survey. For simplicity,
we shall assume that σ, the standard deviation of the errors εi, is known and equal
to the sample standard deviation of the data.

Figure 18.1a plots the likelihood function for β0. The peak of the function is
the maximum likelihood estimate, which in this case is simply ȳ, the average log
earnings reported in the sample. The range of the likelihood function tells us that it
would be extremely unlikely for these data to occur if the true β0 were as low as 9.6
or as high as 9.8. Figure 18.1b shows the maximum likelihood estimate ±1 standard
error, and Figure 18.1c displays 1000 random draws from the normal distribution
representing uncertainty in β0.

Two-parameter example: linear regression with two coefficients

Figure 18.2 illustrates the slightly more complicated case of a linear regression
model with two coefficients (corresponding to a constant term and a linear predic-
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Figure 18.2 (a) Likelihood function for the parameters β0, β1 in the linear regression
y = β0 + β1x + error, of log earnings, yi, on heights, xi. (The spiky pattern of the three-
dimensional plot is an artifact of the extreme correlation of the distribution.) (b) Mode of
the likelihood function (that is, the maximum likelihood estimate (β̂0, β̂1)) and ellipse sum-
marizing the inverse-second-derivative-matrix of the log likelihood at the mode. (c) 1000
random simulation draws from the normal distribution centered at (β̂0, β̂1) with variance
matrix equal to the inverse of the negative second derivative of the log likelihood.
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Figure 18.3 (a) Likelihood function, (b) mode and uncertainty ellipse, and (c) 1000 sim-
ulation draws of the regression coefficients for the model y = β0 + β1z + error, of log
earnings, yi, on mean-centered heights, zi = xi − x̄. The inferences for the parameters
β0, β1 are now independent. Compare to Figure 18.2.

tor). (Strictly speaking this model has three parameters—β0, β1, and σ—but for
simplicity we display the likelihood of β0, β1 conditional on the estimated σ̂.)

Figure 18.2a shows the likelihood as a function of (β0, β1). The area with highest
likelihood surrounding the peak can be represented by an ellipse as is shown in
Figure 18.2b. Figure 18.2c displays 1000 random draws from the normal distribution
with covariance matrix represented by this ellipse. The shape of the uncertainty
ellipse, or equivalently the correlation of the simulation draws, tells us something
about the information available about the two parameters. For example, the data
are consistent with β0 being anywhere between 4.5 and 7.2, and with β1 being
anywhere between 0.04 and 0.08. However, the inferences for these two parameters
are correlated: if β0 is 4.5, then β1 must be near 0.08, and if β0 is 7, then β1 must
be near 0.04. To understand this inferential correlation, see Figure 4.1 on page 54:
the regression line must go through the cloud of points, which is far from the y-axis.
Lines of higher slope (for which β1 is higher) intersect the y-axis at a lower value
(and thus have lower values of β0), and vice versa.

It is convenient to reparameterize the model so that the inferences for the in-
tercept and slope coefficients are uncorrelated. We can do this by replacing the
predictor xi by its mean-centered values, zi = xi − x—that is, height relative to
the average height in the sample. Figure 18.3 shows the likelihood function and
simulations for the coefficients in the regression of y = β0 + β1z + error.
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Nonidentified parameters and the likelihood function

In maximum likelihood inference, parameters in a model are nonidentified if they
can be changed without affecting the likelihood. Continuing with the “hill” analogy,
nonidentifiability corresponds to a “ridge” in the likelihood—that is, a direction in
parameter space in which the likelihood is flat. This occurs, for example, when
predictors in a classical regression are collinear.

Summarizing uncertainty about β and σ using the variance matrix from a fitted
regression

We summarize the fit of a model y = Xβ + ε by a least squares estimate β̂ =
(XtX)−1Xty and a variance matrix (or covariance matrix) of estimation,

Vβ = (XtX)−1σ2. (18.8)

We represent the uncertainty in the estimated β vector using the normal distribution
with mean β̂ and variance matrix Vβ . Figures 18.1–18.3 show examples of the

estimated N(β̂, Vβ) distribution in one and two dimensions.
Expression (18.8) depends on the unknown σ2, which we can estimate most sim-

ply with σ̂2 from (18.2) on page 387. To better capture uncertainty, we first compute
σ̂2 and then sample σ2 = σ̂2(n− k)/X2

n−k, where X2
n−k represents a random draw

from the χ2 distribution with n− k degrees of freedom. These steps are performed
by the sim() function we have written in R, as we describe next.

18.3 Bayesian inference for classical and multilevel regression

Bayesian inference for classical regression

In Bayesian inference, the likelihood is multiplied by a prior distribution, and infer-
ences are typically summarized by random draws from this product, the posterior
distribution.

The simplest form of Bayesian inference uses a uniform prior distribution, so that
the posterior distribution is the same as the likelihood function (when considered
as a function of the parameters), as pictured, for example, in the left graphs in Fig-
ures 18.1–18.3. The random draws shown in the rightmost graphs in these figures
correspond to random draws from the posterior distribution, assuming a uniform
prior distribution. In this way, informal Bayesian inference is represented as dis-
cussed in Section 7.2, using the simulations obtained from the sim() function in
R (which draws from the normal distribution with mean β̂ and standard deviation
Vβ). This is basically a convenient way to summarize classical regression, especially
for propagating uncertainty for predictions.

Informative prior distributions in a single-level regression

Bayesian inference can also be used to add numerical information to a regression
model. Usually we shall do this using a multilevel model, but we illustrate here with
the simpler case of a specified prior distribution—the regression of log earnings on
height, shown in Figures 18.2 and 18.3. Suppose we believed that β1 was probably
between 0 and 0.05—that is, a predicted difference of between 0 and 5% in earnings
per inch of height. We could code this as a normal prior distribution with mean
2.5% and standard deviation 2.5%, that is, β1 ∼ N(0.025, 0.0252).

Mathematically, this prior distribution can be incorporated into the regression
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by treating it as an additional “data point” of 0.025, measured directly on β2,
with a standard deviation of 0.025. This in turn can be computed using a weighted
regression of an augmented data vector y∗ on an augmented predictor matrix X∗
with augmented weight vector w∗. These are defined as follows:

y∗ =

⎛⎜⎜⎜⎜⎜⎝
y1

y2

...
yn

0.025

⎞⎟⎟⎟⎟⎟⎠ , X∗ =

⎛⎜⎜⎜⎜⎜⎝
1 x1

1 x2

...
...

1 xn

0 1

⎞⎟⎟⎟⎟⎟⎠ , w∗ =

⎛⎜⎜⎜⎜⎜⎝
1
1
...
1

σ2
y/0.0252

⎞⎟⎟⎟⎟⎟⎠ . (18.9)

We have added the prior information as a new data point and given it a weight of
the data variance (which can be estimated from the classical regression) divided by
the prior variance. This weighting makes sense:

• If σy > 0.025, then the prior distribution is more informative than any data
point, and so the prior “data point” will be given a high weight.

• If σy = 0.025, then the prior distribution has the same information as one data
point and so is given equal weight.

• If σy < 0.025, then the prior distribution has less information than a single data
point and so gets a lower weight.

We rarely use formulation (18.9) directly, but similar ideas apply with multilevel
models, in which the group-level model for parameters αj and βj can be interpreted
as prior information.

Collinearity and Bayesian regression

In the matrix-algebra language of (18.1) and (18.6), the Bayesian estimate—the
least squares estimate of the augmented regression based on (18.9)—contains the
expression Xt

∗Diag(w∗)X∗, which is simply XtX with an added term corresponding
to the prior information. With collinear predictors, the original XtX is noninvert-
ible, but the new Xt

∗Diag(w∗)X∗ might be invertible, depending on the structure
of the new information.

For example, in a classical varying-intercept model, we would include only J−1
group indicators as predictors, because a regression that included the constant term
along with indicators for all J groups would be collinear and nonidentifiable. But the
multilevel model has the effect of adding a prior distribution for the J coefficients
of the group indicators, thus adding a term to XtX which makes the new matrix
invertible, even with the constant term included as well.

Simple multilevel model with no predictors

Bayesian inference achieves partial pooling for multilevel models by treating the
group-level model as defining prior distributions for varying intercepts and slopes.

We begin by working through the algebra for the radon model with no individual-
or group-level predictors, simply measurements within counties:

yi ∼ N(αj[i], σ
2
y) for i = 1, . . . , n

αj ∼ N(μα, σ2
α) for j = 1, . . . , J. (18.10)

We label the number of houses in county j as nj (so that Lac Qui Parle County
has nj = 2, Aitkin County has nj = 4, and so forth; see Figure 12.2 on page 255).
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Sample size in group, nj Estimate, α̂j

nj = 0 α̂j = μα (complete pooling)
nj < σ2

y/σ2
α α̂j closer to μα

nj = σ2
y/σ2

α α̂j = 1
2 ȳj + 1

2μα

nj > σ2
y/σ2

α α̂j closer to ȳj

nj = ∞ α̂j = ȳj (no pooling)

Figure 18.4 Summary of partial pooling of multilevel estimates as a function of group size.

Complete-pooling and no-pooling estimates. As usual, we begin with the classical
estimates. In complete pooling, all counties are considered to be equivalent, so that
α1 = α2 = · · · = αJ = μα, and the model reduces to yi ∼ N(μα, σ2

y) for all
measurements y. The estimate of μα, and thus of all the individual αj ’s, is then
simply ȳ, the average of the n measurements in the data.

In the no-pooling model, each county is estimated alone, so that each αj is
estimated by ȳj , the average of the measurements in county j.

Multilevel inference if the hyperparameters were known. The multilevel model
(18.10) has data-level regression coefficients α1, . . . , αJ and hyperparameters μα,
σy , and σα. In multilevel estimation, we perform inference for both sets of param-
eters. To explain how to do this, we first work out the inferences for each set of
parameters separately.

The key step of multilevel inference is estimation of the data-level regression
coefficients given the data and hyperparameters—that is, acting as if the hyperpa-
rameters were known. As discussed in the regression context in Section 12.2, the
estimate of each αj will be a compromise between ȳj and μα, the unpooled estimate
in county j and the average over all the counties.

Given the hyperparameters, the inferences for the αj ’s follow independent normal
distributions, which we can write as

αj |y, μα, σy, σα ∼ N(α̂j , Vj), for j = 1, . . . , J, (18.11)

where the estimate and variance of estimation are

α̂j =

nj

σ2
y
ȳj + 1

σ2
α
μα

nj

σ2
y

+ 1
σ2

α

, Vj =
1

nj

σ2
y

+ 1
σ2

α

. (18.12)

The notation “αj|y, μα, σy , σα ∼” in (18.11) can be read as, “αj , given data, μα,
σy , and σα, has the distribution . . . ,” indicating that this is the estimate with the
hyperparameters assumed known.

The estimate α̂j in (18.12) can be interpreted as a weighted average of ȳj and μα,
with relative weights depending on the sample size in the county and the variance
at the data and group levels. As shown in Figure 18.4, the key parameter is the
variance ratio, σ2

y/σ2
α. For counties j for which nj = σ2

y/σ2
α, then the weights in

(18.12) are equal, and α̂j = 1
2 ȳj + 1

2μα. If nj is greater than the variance ratio, then
α̂j is closer to ȳj ; and if nj is less then the variance ratio, then α̂j is closer to μα.

Crude inference for the hyperparameters. Given the data-level regression coeffi-
cients αj , how can we estimate the hyperparameters, σy, μα, σα in the multilevel
model (18.10)?
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Figure 18.5 Likelihood, prior distribution, and posterior distribution for the intercept pa-
rameter αj for the simple radon model (with no county-level predictors) in four different
counties j in Minnesota with a range of sample sizes in the data. As the sample size in the
county increases, the likelihood becomes more informative (see Figure 12.4 on page 257).

• The natural estimate of the data variance σ2
y is simply the residual variance:

σ̂2
y =

1

n

n∑
i=1

(yi − αj[i])
2. (18.13)

• The mean μα from the group-level model in (18.10) can be estimated by the
average of the county intercepts αj :

μ̂α =
1

J

J∑
j=1

αj , (18.14)

with an estimation variance of 1
J σ2

α.

• The group-level variance σ2
α can be estimated by

σ̂2
α =

1

J

J∑
j=1

(αj − μα)2. (18.15)

Unfortunately, the county parameters αj are not themselves known, so we cannot
directly apply the above formulas. We can, however, use an iterative algorithm that
alternately estimates the αj ’s and the hyperparameters, as we describe next.

Individual predictors but no group-level predictors

We next consider the varying-intercept model (12.2) from page 256: yi ∼ N(αj[i] +
βxi, σ

2
y), where j[i] is the county containing house i. The basic varying-intercept

model (12.3) is αj ∼ N(μα, σ2
α)—that is, a normal prior distribution for each αj

that is common to all counties j. (The hyperparameters μα, σα must themselves be
estimated from the data, but we shall set this issue aside for a moment and just
treat them as known.)

The top row of Figure 18.5 shows the likelihood for αj in four of the counties.
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Figure 18.6 Likelihood, prior distribution, and posterior distribution for the intercept pa-
rameter αj in four counties for the radon model that includes uranium as a county-level
predictor. The prior distributions for the counties now differ because of their varying ura-
nium levels (see Figure 12.6 on page 266). Compare to Figure 18.5.

For each county j, the likelihood indicates the range of values of αj that are most
consistent with the data in that county. The four counties are displayed in increasing
order of sample size; the likelihood is more informative as sample size increases. The
second row of Figure 18.5 shows the N(μα, σ2

α) prior distribution, which is the same
for the four counties. In this context the “prior distributions” do not represent
information occurring before the data have been seen; rather, they convey the
information about the distribution of the αj ’s among the counties, which is relevant
for estimating each individual αj .

The bottom row of Figure 18.5 displays the posterior distributions, which com-
bine the information from the likelihoods and prior distributions. The posterior
distribution for each county is centered at a point between the maximum likelihood
estimate and the maximum of the prior distribution—a weighted average of likeli-
hood and prior estimates—falling closer to the prior distribution when sample sizes
are small and closer to the likelihood when sample sizes are large.

Including group-level predictors

We now move to the radon model including uranium as a county-level predictor.
Figure 18.6 displays the likelihood, prior distributions, and posterior distributions
for four counties. In this case, the prior distributions for county j is normal with
mean γ0 + γ1uj and variance σ2

α. The county uranium levels uj vary, and so the
prior distributions vary also, as can be seen in the second row of Figure 18.6.

Multilevel regression as least squares with augmented data

To understand the matrix algebra of multilevel regression, we continue with the
data-augmentation idea illustrated in (18.9) on page 393. Starting with classical
weighted least squares with data vector y = (y1, . . . , yn), an n× k predictor matrix
X , and data weights w = (w1, . . . , wn), we define Wy = Diag(w1, . . . , wn), which is



GIBBS SAMPLER FOR MULTILEVEL LINEAR MODELS 397

a matrix proportional to the inverse data variances in the model. The model is

y ∼ N(Xβ, Σy),

where Σy = σ2W−1
y . The vector of regression coefficients is estimated by weighted

least squares as β̂wls = (XtWyX)−1XtWyy, and the corresponding variance matrix
is Vβ = (XtWyX)−1σ2. We refer to this as “the regression of y on X with weight
matrix Wy .” (This reduces to classical unweighed regression if the weights are all
equal to 1, so that Wy is the identity matrix.)

To fit multilevel models in this framework, we work with the formulation as
a large regression model, as in the discussion following (12.10) on page 264. We
illustrate with the flight simulator model (13.9) on page 289. Here, β is a vector
of length 14: the mean parameter, followed by 5 treatment effects and 8 airport
effects. In the notation of (13.9), β = (α0, γ1, . . . , γ5, δ1, . . . , δ8). We define μβ and
Σβ as the mean and variance of β in the prior distribution: β ∼ N(μβ , Σβ). Finally,
we define the weight matrix Wβ as the inverse-variance of β, scaled by the data
variance: Wβ = σ2

yΣ−1
β .

For the flight simulator example, μβ is a vector of 14 zeroes, and Wβ is a diagonal
matrix with diagonal entries , followed by σ2

y/σ2
γ five times, followed by σ2

y/σ2
δ eight

times. The first element of the diagonal of Wβ is zero because our model specifies no
information about the parameter α0; the other elements indicate the information
in the model about each multilevel parameter, compared to the information in each
data point.

The multilevel model can be expressed as a least squares regression of y∗ on X∗
with weight matrix W∗, where

y∗ =

(
y
μβ

)
, X∗ =

(
X
Ik

)
, W∗ =

(
Wy 0
0 Wβ

)
. (18.16)

The augmented data correspond to the extra information in the model for β. The
augmentation has the effect of partially pooling the least squares estimate of β in
the direction of its mean vector μβ , and can be viewed as a matrix generalization
of (18.12).

18.4 Gibbs sampler for multilevel linear models

Gibbs sampling is the name given to a family of iterative algorithms that are used
by Bugs (“Bayesian inference using Gibbs sampling”) and other programs to fit
Bayesian models. The basic idea of Gibbs sampling is to partition the set of unknown
parameters and then estimate them one at a time, or one group at a time, with
each parameter or group of parameters estimated conditional on all the others. The
algorithm is effective because, in a wide range of problems, estimating separate
parts of a model is relatively easy, even if it is difficult to see how to estimate all
the parameters at once.

Figure 18.7 illustrates the Gibbs sampler for a simple example. In general, the
algorithm proceeds as follows:

1. Choose some number nchains of parallel simulation runs (typically a small number
such as 3). For each of the chains:

(a) Start with initial values for all the parameters. These should be dispersed
(as pictured by the solid squares in Figure 18.7); for convenience we typically
use simple random numbers, as discussed in Chapter 16 in the context of
implementing models in Bugs.
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Figure 18.7 Four independent sequences of the Gibbs sampler for a simple example with
two parameters. Initial values of the nchains = 4 sequences are indicated by solid squares.
(a) First 10 iterations, showing the component-by-component updating of the Gibbs itera-
tions. (b) After 500 iterations, when the sequences have reached approximate convergence.
(c) The points from the second halves of the sequences.

(b) Choose some number niter of iterations (typically a somewhat large number
such as 1000). For each iteration:

Update the parameters, or batches of parameters, one at a time. For each
parameter or batch, take a random simulation draw given the data and the
current estimate of all the other parameters. (We illustrate with some exam-
ples below.)

2. Evaluate the mixing of the simulated chains using the R̂ summary, which we
have already discussed in Section 16.4 in the context of interpreting the output
from Bugs models.

3. If convergence is poor, run longer or alter the model, following the advice in
Section 16.9.

The key part of this algorithm is the sequential updating step. Bugs performs it
automatically, but here we will show how to compute Gibbs updates “manually” in
R for multilevel linear regressions. Our purpose is not to set you up to program these
yourself but rather to give enough insight that you can understand roughly how
Bugs works, and thus better diagnose and fix problems when Bugs is not working
so well.

We present in this section the steps of Gibbs sampling for a series of multilevel
linear regressions: first a model with no predictors, then including a predictor at
the individual level, then adding one at the group level.

The basic Gibbs sampler structure described here works for multilevel regres-
sions, with the new twist that the regression coefficients can be estimated using an
adaptation of classical least squares regression. (Model (18.10) can be considered
as a special case of regression with only an intercept and no slope parameters, but
this case is so simple that least squares matrix computations were not required.)

Gibbs sampler for a multilevel model with no predictors

We first go through the steps of the Gibbs sampler—mathematically and as pro-
grammed in R—for the multilevel model (18.10) with data in groups and no pre-
dictors.

The Gibbs sampler starts with initial values for all the parameters and then
updates the parameters in turn, giving each a random estimate based on the data
and the current guess of the other parameters in the model. For the simple model
we are considering here, the Gibbs updating steps are:
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1. Update α: For j = 1, . . . , J , compute α̂j and Vj from (18.12) and then draw αj

from the normal distribution with mean α̂j and variance Vj .

2. Update μα: Compute μ̂α from (18.14) and then draw μα from the normal dis-
tribution with mean μ̂α and variance σ2

α/J .

3. Update σy: Compute σ̂2
y from (18.13) and then draw σ2

y = σ̂2
y/X2

n−1, where X2
n−1

is a random draw from a χ2 distribution with n − 1 degrees of freedom.

4. Update σα: Compute σ̂2
α from (18.15) and then draw σ2

α = σ̂2
α/X2

J−1, where
X2

J−1 is a random draw from a χ2 distribution with J − 1 degrees of freedom.

Each of these steps should seem reasonable; however, the details (such as the χ2

distributions and their degrees of freedom) are not particularly intuitive and must be
derived using probability calculations that are beyond the scope of this book. Each
step uses random simulations rather than point estimates so that the procedure
captures the inferential uncertainty about the parameters.

Iterating the above four steps produces a “chain” of simulation draws—a sequence
of simulations α1, . . . , αJ ; σy; μα; α1, . . . , αJ ; σy ; μα; and so forth. Looking at any
single one of these parameters, we have a sequence of simulations that, if the chain
is run long enough, captures the range of uncertainty in the estimation of that
parameter. We start several chains with random initial values and then run until
the chains have mixed (see Figure 16.2 on page 357).

Programming the Gibbs sampler in R

When Bugs fits model (18.10), it performs a series of computations that are similar
to the steps just given. To understand in more detail, we program them here in R.
For many applications, we can simply use Bugs, but when computational speed is
a concern (for example, with large datasets), or for some complicated models (for
example, the social networks model in Section 15.3), it can be necessary to code
the Gibbs sampler directly.

We program the Gibbs sampler in three steps: setting up the data, writing func-
tions for the individual parameter updates, and writing a loop for the actual com-
putation. For the radon example, we have already set up the data vector y and
the vector of county indexes county, and we are ready to program the parameter
updates.

R codea.update <- function() {

a.new <- rep (NA, J)

for (j in 1:J){

n.j <- sum (county==j)

y.bar.j <- mean (y[county==j])

a.hat.j <- ((n.j/sigma.y^2)*ybar.j + (1/sigma.a^2)*mu.a)/

(n.j/sigma.y^2 + 1/sigma.a^2)

V.a.j <- 1/(n.j/sigma.y^2 + 1/sigma.a^2)

a.new[j] <- rnorm (1, a.hat.j, sqrt(V.a.j))

}

return (a.new)

}

mu.a.update <- function() {

mu.a.new <- rnorm (1, mean(a), sigma.a/sqrt(J))

return (mu.a.new)

}

sigma.y.update <- function() {

sigma.y.new <- sqrt(sum((y-a[county])^2)/rchisq(1,n-1))
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return (sigma.y.new)

}

sigma.a.update <- function() {

sigma.a.new <- sqrt(sum((a-mu.a)^2)/rchisq(1,J-1))

return (sigma.a.new)

}

These functions have empty argument lists (for example, sigma.a.update uses
α, μα, and J , but these variables are not passed to as arguments in the function
call) because we find it convenient to define all variables globally when putting
the functions together. Passing functions through argument lists is cleaner in a
programming sense but in this context can lead to confusion when models get
altered, with parameters added and removed.

Another approach to programming these Gibbs updates would be to write general
updating functions for the normal and inverse-χ2 distributions and to call these by
passing arguments through the functions.

In any case, having created the updating functions, we now create the space for
three independent chains of length 1000 and give names to the parameters that
will be saved in a large array, sims, that will contain posterior simulation draws for
α, μα, σy, σα:

R code n.chains <- 3

n.iter <- 1000

sims <- array (NA, c(n.iter, n.chains, J+3))

dimnames (sims) <- list (NULL, NULL,

c (paste ("a[", 1:J, "]", sep=""), "mu.a", "sigma.y", "sigma.a"))

This last bit looks confusing; after running the command in R, it is helpful to type
dimnames(sims) to see what this name object looks like, and to type sims[1:5,1,]
to see how the names attach themselves to the sims object (or, in this case, the
first five steps of the first chain of the sims object).

We are now ready to run the Gibbs sampler, first initializing μα, σy , σα with
random values set crudely based on the range of the data—we need not initialize α
because it is updated in the first step in the loop—and then simulating three chains
for 1000 iterations each:

R code for (m in 1:n.chains){

mu.a <- rnorm (1, mean(y), sd(y))

sigma.y <- runif (1, 0, sd(y))

sigma.a <- runif (1, 0, sd(y))

for (t in 1:n.iter){

a <- a.update ()

mu.a <- mu.a.update ()

sigma.y <- sigma.y.update ()

sigma.a <- sigma.a.update ()

sims[t,m,] <- c (a, mu.a, sigma.y, sigma.a)

}

}

We then summarize the simulations—view the inferences and check convergence—
by using the as.bugs.array function to convert them to a Bugs object:

R code sims.bugs <- as.bugs.array (sims)

plot (sims.bugs)
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Gibbs sampler for a multilevel model with regression predictors

We can easily adapt the above algorithm to include predictors at the individual
and group levels. Consider the model

yi ∼ N(αj[i] + Xiβ, σ2
y) for i = 1, . . . , n

αj ∼ N(Ujγ, σ2
α) for j = 1, . . . , J,

where X is a matrix of individual-level predictors (without a constant term), U
is a matrix of group-level predictors (including a constant term), and β and γ are
vectors of coefficients.

After initializing the parameters α, β, γ, σy , σα with random numbers (constrain-
ing the σ parameters to be positive), the Gibbs sampler can be implemented as
follows:

1. Update α: It is simplest to use the reexpression, αj = Uj +ηj; the ηj ’s are group-
level errors that are partially pooled toward their mean of 0. We apply (18.12)
to suitably adjusted data y, correcting for individual- and group-level predictors.
For each data point, compute ytemp

i = yi − Xiβ − Uj[i]γ. Then for j = 1, . . . , J ,
compute η̂j and Vj from (18.12)—but using ytemp in place of y—and draw ηj

from the normal distribution with mean η̂j and variance Vj . We complete the
updating step by setting each αj to Ujγ + ηj .

2. Update β: For each data point, compute ytemp
i = yi − αj[i]. Then regress ytemp

on X to obtain an estimate β̂ and covariance matrix Vβ , inserting σy for σ in

equation (18.8). Now draw β from the N(β̂, Vβ) distribution.

3. Update γ: Regress α on U (this is a regression with J data points) to obtain an
estimate γ̂ and covariance matrix Vγ , inserting σα for σ in (18.8). Now draw γ
from the N(γ̂, Vγ) distribution.

4. Update σy: Compute σ̂2
y = 1

n

∑n
i=1(yi − αj[i] − Xiβ)2 and then draw σ2

y =
σ̂2

y/X2
n−1, where X2

n−1 is a random draw from a χ2 distribution with n − 1
degrees of freedom.

5. Update σα: Compute σ̂2
α = 1

J

∑J
i=1(αj − Ujγ)2 and then draw σ2

α = σ̂2
α/X2

J−1,
where X2

J−1 is a random draw from a χ2 distribution with J − 1 degrees of
freedom.

This algorithm combines partial pooling (step 1) with classical regression estima-
tion of coefficients (steps 2 and 3) and standard errors (steps 4 and 5). It all works
to summarize uncertainty because the parameters are updated iteratively, leading
to an inference that includes all aspects of the model.

Programming in R involves writing functions for each of the five steps:

R codea.update <- function() {

y.temp <- y - X%*%b - U[county]%*%g

eta.new <- rep (NA, J)

for (j in 1:J){

n.j <- sum (county==j)

y.bar.j <- mean (y.temp[county==j])

eta.hat.j <- ((n.j/sigma.y^2)*y.bar.j/

(n.j/sigma.y^2 + 1/sigma.a^2))

V.eta.j <- 1/(n.j/sigma.y^2 + 1/sigma.a^2)

eta.new[j] <- rnorm (1, eta.hat.j, sqrt(V.eta.j))

}

a.new <- U%*%g + eta.new

return (a.new)
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}

b.update <- function() {

y.temp <- y - a[county]

lm.0 <- lm (y.temp ~ X)

b.new <- sim (lm.0, n.sims=1)

return (b.new)

}

g.update <- function() {

lm.0 <- lm (a ~ U)

g.new <- sim (lm.0, n.sims=1)

return (g.new)

}

sigma.y.update <- function() {

sigma.y.new <- sqrt(sum((y-a[county]-X%*%b)^2)/rchisq(1,n-1))

return (sigma.y.new)

}

sigma.a.update <- function() {

sigma.a.new <- sqrt(sum((a-U%*%g)^2)/rchisq(1,J-1))

return (sigma.a.new)

}

(In the calls to lm() in the b.update and g.update functions, we have specified the
predictors in matrix form rather than as a formula listing the individual predictor
names.)

Now that the updating functions have been written, the Gibbs sampler can be
programmed and run as in the example earlier in this section, simply expanding to
include the new parameters.

The Gibbs sampler as a general way of working with multilevel models

On page 239 we discussed the simple two-step procedure of first regressing y on X
and group indicators to estimate β and the αj ’s, then regressing the estimated αj ’s
on U to estimate γ. Multilevel modeling, in its Gibbs implementation, can be seen
as a generalization of two-step regression in which the αj ’s are estimated more ac-
curately using partial pooling. Similarly, in more complicated multilevel structures,
it often makes sense to program a Gibbs sampler in a way that alternately performs
group-level regressions and separate inferences within each group.

If we were to start with a simple no-pooling, complete-pooling, or two-step analy-
sis, and then gradually improve it to account for estimation uncertainty in each step,
iterating to allow inferences to be based on the latest estimate for each parameter,
then we would end up with a Gibbs sampler.

18.5 Likelihood inference, Bayesian inference, and the Gibbs sampler:

the case of censored data

We illustrate some of the ideas of likelihood and Bayesian inference for a censored-
data model. We begin with a regression of weight (in pounds) on height (in inches),
using data from a random sample of Americans. Before fitting, we center the height
variable (c.height <- height - mean(height)) so that we can better interpret
the intercept as well as the slope of the regression:

R output lm(formula = weight ~ c.height)

coef.est coef.se

(Intercept) 156.1 0.6
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Figure 18.8 (a) Histogram of weights as recorded on a hypothetical scale that censors mea-
surements at 200; (b) Plot of (jittered values of) measured weight versus height in a sample
of adults. The relation between height and weight is clear for low heights but becomes more
difficult to follow at the high end, where the censoring becomes more frequent.

c.height 4.9 0.2

n = 1984, k = 2

residual sd = 28.6, R-Squared = 0.30

Censoring

Now imagine that weights had been measured on a scale that was limited to a
maximum of 200, so that any weights greater than 200 were recorded as “200+”
with the superscript indicating the censoring. We artificially perform this censoring
on the survey data:

R codeC <- 200

censored <- weight >= C

y <- ifelse (censored, C, weight)

From here on, we suppose that the censored variable, y, is what was observed, with
the true weight only known if y < 200. Figure 18.8a shows the measured weights
y, and Figure 18.8b shows weight plotted against height.

Naive regression estimate excluding the censored data

The two simple (but wrong) analyses of these data are to ignore the censored
measurements, or to include them as measurements of 200. Here is the regression
discarding the measurements of 200+:

R outputlm(formula = y ~ c.height, subset = y<200)

coef.est coef.se

(Intercept) 148.7 0.5

c.height 3.8 0.1

n = 1739, k = 2

residual sd = 20.5, R-Squared = 0.31

Both the intercept and slope are too low, which makes sense given Figure 18.8b.
This analysis excludes the largest values of weight and thus underestimates the
average weight in the population. Also, more data are censored at the high end of
heights, so the slope is underestimated too.

Naive regression estimate imputing the censoring point

Another simple but wrong approach is to simply code the 200+ measurements as
200, which yields the following regression fit:
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R output lm(formula = y ~ c.height)

coef.est coef.se

(Intercept) 153.6 0.5

c.height 4.3 0.1

n = 1984, k = 2

residual sd = 23.8, R-Squared = 0.32

Once again, this underestimates both the intercept (by using y = 200 in cases
where we know the true weight is at least 200) and also the slope (because more of
this bias occurs for taller persons).

Likelihood function accounting for the censoring. A better way to account for the
censoring is to include it explicitly in the likelihood function. We write the censoring
formally as

yi =

{
zi if zi ≤ 200
200+ if zi > 200,

(18.17)

with a linear regression for the true weights zi given heights xi:

yi ∼ N(a + bxi, σ
2). (18.18)

For the uncensored data points, the likelihood is simply the normal distribu-
tion, N(yi|a + bxi, σ

2), as in (18.3) on page 388. For a censored measurement, the
likelihood is

Pr(y = 200+) = Pr(zi ≥ 200) =

∫ ∞

200

N(zi | a + bxi, σ
2) = Φ

(
a + bxi − zi

σ

)
,

where Φ is the normal cumulative distribution function (which can be computed
using the pnorm() function in R).

The likelihood of all the data is then

p(y|β, σ, x) =

n∏
i=1

p(yi|β, σ, xi), (18.19)

where the individual factors of the likelihood are

p(yi|β, σ, X) =

{
N(yi|a + bxi, σ

2) if yi < 200
Φ((a + bxi − 200)/σ) if yi = 200+.

(18.20)

We shall clarify this expression (we hope) by programming it in R.

Maximum likelihood estimate using R

We shall first program the likelihood function in R and then call an optimization
routine to find the maximum. In programming the likelihood, it is convenient to
express the unknown parameters (in this case, a, b, and σ) as a vector, and then
include the data and censoring point as additional arguments to the function. The
following function computes the logarithm of the likelihood by evaluating (18.20)
one data point at a time and then adding these values (which, on the log scale, is
equivalent to the multiplication in (18.19)):

R code Loglik <- function (parameter.vector, x, y, C) {

a <- parameter.vector[1]

b <- parameter.vector[2]

sigma <- parameter.vector[3]

ll.vec <- ifelse (y<C, dnorm (y, a + b*x, sigma, log=TRUE),

pnorm ((a + b*x - C)/sigma, log=TRUE))
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return (sum (ll.vec))

}

We have used the log=TRUE options of the dnorm() and pnorm() functions so that
R automatically computes the logarithms of these probabilities. It is more compu-
tationally stable to compute probabilities on the log scale and only exponentiate at
the end of the calculations.

To find the values of a, b, σ that maximize the log likelihood, we use the optim()

function in R, which requires initial values (for which we simply use uniformly
distributed random numbers) and some specifications:2

R codeinits <- runif (3)

mle <- optim (inits, Loglik, lower=c(-Inf,-Inf,1.e-5),

method="L-BFGS-B", control=list(fnscale=-1), x=c.height,

y=weight.censored, C=200)

We check by typing print(optim$convergence) (which should take on the value
0; type ?optim in R for more details) and then typing

R codeoptim$par

to find the vector of maximum likelihood estimates, which in this case are 155, 4.8,
and 26.5 (corresponding to â, b̂, and σ̂, respectively).

Fitting the censored-data model using Bugs

Bugs model. Another way of fitting the censoring model, more consistent with the
general approach of this book, is to write it in Bugs. The trick here is to express
the model in terms of the true weights, zi as defined in (18.17), which follow the
regression model (18.18). For the censored data (the measurements yi = 200+, the
true weights are unobserved but are constrained to fall in the range (200,∞). In
Bugs, we express this constraint as a lower bound of 200 as follows:

Bugs codemodel {

for (i in 1:n){

z.lo[i] <- C*equals(y[i],C)

z[i] ~ dnorm (z.hat[i], tau.y) I(z.lo[i],)

z.hat[i] <- a + b*x[i]

}

a ~ dnorm (0, .0001)

b ~ dnorm (0, .0001)

tau.y <- pow(sigma.y, -2)

sigma.y ~ dunif (0, 100)

}

The I(z.lo[i],) factor constrains the distribution for z[i] to be above z.lo[i],3

and this lower bound has been defined using equals to equal C (that is, 200) for
censored observations and 0 otherwise.4

2 In addition to specifying the vector of initial values and the name of the function to be optimized,
we need to constrain σ to be positive—this is done by assigning a vector of lower limits to all
three parameters, with empty −∞ limits set for a and b. We then must set method="L-BFGS-B",
which is the “box constraint” algorithm that allows for bounds on the parameters. Setting
control=list(fnscale=-1) tells optim() to find a maximum, rather than a minimum, of the
specified function. Finally, we must specify the values of the other inputs to the Loglik()
function, which in this case are x, y, and C.

3 The factor I(,z.hi[i]) would restrict the distribution to be lower than some value z.hi[i],
and I(z.lo[i],z.hi[i]) would constrain to a finite range; see the models in Sections 6.5 and
17.7 for other examples of constrained distributions.

4 A lower bound of zero is fine given that true weights are always positive. If there were no
such natural bound—for example, if we were modeling log(weights)—then one could use an
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Fitting the Bugs model from R. To fit the model in Bugs, we must first define z,
which equals the weight when observed and is missing otherwise:

R code z <- ifelse (censored, NA, weight.censored)

We then set up the bugs() call as usual:

R code data <- list (x=c.height, y=weight.censored, z=z, n=n, C=C)

inits <- function() {

list (a=rnorm(1), b=rnorm(1), sigma.y=runif(1))}

params <- c ("a", "b", "sigma.y")

censoring.1 <- bugs (data, inits, params, "censoring.bug", n.iter=100)

Reproducing some of the output from print(censoring.1):

R output mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff

a 155.3 0.6 154.2 154.9 155.4 155.8 156.4 1 150

b 4.8 0.2 4.5 4.7 4.7 4.9 5.2 1 150

sigma.y 26.5 0.5 25.7 26.1 26.5 26.8 27.3 1 150

This inference is essentially the same as the maximum likelihood estimate—which
makes sense, given that the sample size is large and the number of parameters is
small—but are clearly different from the naive estimates excluding the censored
data (b̂ = 3.8±0.1) and (b̂ = 4.3±0.1). The censoring model appropriately imputes
the missing values, which we know lie above 200.

Gibbs sampler

Yet another way to fit this model is by programming a Gibbs sampler in R, as
follows:

1. Impute crude starting values for the missing data—the true weights zi corre-
sponding to measurements y = 200+.

2. Iterate the following two steps:

(a) Run a regression of z (including the imputed values) on x and take a random
draw from the uncertainty distribution of the parameters a, b, σ.

(b) Use the estimated a, b, σ to create random imputations of the missing data.

For this problem, there is no real reason to program these steps; as we have just
seen, the model is easy to fit in Bugs. This is, however, a good example to illustrate
the way the Gibbs sampler handles uncertainty about missing data. We shall give
the algebra and R code for each of the above steps.

Crude starting values. We simply impute a random value between C and 2C (in
our example, 200 and 400 pounds) for each of the missing weights:

R code n.censored <- sum (censored)

z[censored] <- runif (n.censored, C, 2*C)

Regression if the exact weights were known. We fit a regression and then draw one
simulation value for the parameters a, b, σ:

R code x <- c.height

lm.1 <- lm (z ~ x)

sim.1 <- sim (lm.1, n.sims=1)

a <- sim.1$beta[1]

b <- sim.1$beta[2]

sigma <- sim.1$sigma

assignment such as z.lo[i] <- -1.E5 + (1.E5+C)*equals(y[i],C) to set an extremely low
bound for uncensored cases.
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Imputing the missing values given the fitted regression. The predictive distribution
for any particular censored value i is normal with mean a + bxi and standard
deviation σ, but constrained to be at least 200. We can write an R function to draw
from this constrained distribution:

R codernorm.trunc <- function (n, mu, sigma, lo=-Inf, hi=Inf) {

p.lo <- pnorm (lo, mu, sigma)

p.hi <- pnorm (hi, mu, sigma)

u <- runif (n, p.lo, p.hi)

return (qnorm (u, mu, sigma))

}

This function first locates the constraint points (set by default to (−∞,∞) if no
constraints are given) in the specified distribution, then draws a sample within these
probabilities, and finally transforms back to the original scale. We have written the
function to take n independent draws, by analogy to the rnorm() function (type
?rnorm in R for details); this is not the same n that is the length of the data vector
y.

We can then use this function to sample the missing zi’s given their predictors
xi:

R codez[censored] <- rnorm.trunc (n.censored, a + b*x[censored], sigma, lo=C)

Gibbs sampler: putting it together in a loop. We can now produce a Gibbs sampler.
We first set up a space for 3 chains of 100 iterations each, saving 3 + ncensored

parameters corresponding to a, b, σ, and the unobserved zi’s:

R coden.chains <- 3

n.iter <- 100

sims <- array (NA, c(n.iter, n.chains, 3 + n.censored))

dimnames (sims) <- list (NULL, NULL,

c ("a", "b", "sigma", paste ("z[", (1:n)[censored], "]", sep="")))

We then program a Gibbs sampler, looping over the 3 chains: each chain starts with
random initial values, then a loop through 100 iterations, first updating a, b, σ and
then updating the censored components of z, and saving all these parameters at
the end of each iteration.

R codefor (m in 1:n.chains){

z[censored] <- runif (n.censored, C, 2*C) # random initial values

for (t in 1:n.iter){

lm.1 <- lm (z ~ x)

sim.1 <- sim (lm.1, n.sims=1)

a <- sim.1$beta[1]

b <- sim.1$beta[2]

sigma <- sim.1$sigma

z[censored] <- rnorm.trunc (n.censored, a + b*x[censored], sigma, lo=C)

sims[t,m,] <- c (a, b, sigma, z[censored])

}

}

Finally, we check the convergence:

R codesims.bugs <- as.bugs.array (sims)

print (sims.bugs)

yielding:
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Figure 18.9 Five independent sequences of a Metropolis algorithm, with overdispersed start-
ing points indicated by solid squares. (a) After 50 iterations, the sequences are still far from
convergence. (b) After 1000 iterations, with the sequences nearer to convergence. (c) The
iterates from the second halves of the sequences, jittered so that steps in which the random
walks stood still are not hidden.

R output mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff

a 155.3 0.6 154.1 154.9 155.3 155.7 156.3 1.0 53

b 4.8 0.2 4.5 4.7 4.8 4.9 5.1 1.0 150

sigma 26.5 0.5 25.7 26.2 26.5 26.9 27.6 1.0 69

z[3] 216.9 13.0 200.7 206.1 215.4 223.7 247.7 1.0 87

z[6] 210.9 9.3 200.3 203.5 208.9 214.9 234.1 1.0 150

z[11] 208.5 7.1 200.3 203.4 206.6 211.7 226.2 1.0 150

. . .

which is essentially identical to the results from the Bugs run (as it should be, given
that we are fitting the same model).

Section 25.6 briefly describes a more realistic and complicated example of cen-
soring that arises in a study of reversals of the death penalty, in which cases are
censored that are still under consideration by appellate courts.

18.6 Metropolis algorithm for more general Bayesian computation

Moving to even more general models, the Gibbs sampler is a special case of a larger
class of Markov chain simulation algorithms that can be used to iteratively estimate
parameters in any statistical model. Markov chain simulation in general (and the
Gibbs sampler in particular) can be thought of as iterative imputation of unknown
parameters, or as a random walk through parameter space.

The Gibbs sampler updates the parameters one at a time (or in batches) us-
ing their conditional distributions. It can also be efficient to use the Metropolis
algorithm, which takes a random walk through the space of parameters.

The Gibbs sampler and Metropolis algorithms are special cases of Markov chain
simulation (also called Markov chain Monte Carlo, or MCMC), a general method
based on drawing values of θ from approximate distributions and then correcting
those draws to better approximate the target posterior distribution, p(θ|y). The
samples are drawn sequentially, with the distribution of the sampled draws depend-
ing on the last value drawn; hence, the draws form a Markov chain. (As defined in
probability theory, a Markov chain is a sequence of random variables θ(1), θ(2), . . .,
for which, for any t, the distribution of θ(t) given all previous θ’s depends only on
the most recent value, θ(t−1).) The key to the method’s success, however, is not
the Markov property but rather that the approximate distributions are improved
at each step in the simulation, in the sense of converging to the target distribution.

Figure 18.9 illustrates a simple example of a Markov chain simulation—in this
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case, a Metropolis algorithm in which θ is a vector with only two components,
with a bivariate unit normal posterior distribution, θ ∼ N(0, I). First consider
Figure 18.9a, which portrays the early stages of the simulation. The space of the
figure represents the range of possible values of the multivariate parameter, θ, and
each of the five jagged lines represents the early path of a random walk starting
near the center or the extremes of the target distribution and jumping through
the distribution according to an appropriate sequence of random iterations. Figure
18.9b represents the mature stage of the same Markov chain simulation, in which
the simulated random walks have each traced a path throughout the space of θ,
with a common stationary distribution that is equal to the target distribution. From
a simulation such as 18.9b, we can perform inferences about θ using points from
the second halves of the Markov chains we have simulated, as displayed in Figure
18.9c.

It is useful to have some sense of how the Metropolis algorithm works, because
it is a key part of Bugs and other programs that perform iterative simulation. For
further details on programming the Metropolis algorithm, see Gelman et al. (2003).

18.7 Specifying a log posterior density, Gibbs sampler, and Metropolis

algorithm in R

To compute Markov chain simulation, the posterior density function and Gibbs
sampler steps must be given. Bugs sets up these specification automatically (deter-
mining them from the model file) but for certain applications in which Bugs does
not run or is too slow, it is necessary to program the log posterior density and
Gibbs sampler steps explicitly.

We illustrate for the overdispersed Poisson regression model for social networks
from Section 15.3, in which the large number of parameters (more than 1400)
makes Bugs too slow to be practical. Instead, we use Umacs (universal Markov
chain sampler), a program under development that performs Gibbs and Metropolis
sampling given a specified posterior distribution. We go through the steps here,
partly to complete the fitting of the social network model and partly to illustrate
Markov chain sampling on a relatively complicated example.

The joint posterior density

The joint posterior density of the model in Section 15.3 can be written as

p(α, β, ω, μα, μβ, σα, σβ |y) ∝
n∏

i=1

K∏
k=1

(
yik + ξik − 1

ξik − 1

)(
1

ωk

)ξik
(

ωk − 1

ωk

)yik

×
n∏

i=1

N(αi|μα, σ2
α)

K∏
k=1

N(βk|μβ , σ2
β)

K∏
k=1

γ−2
k , (18.21)

where ξik = eαi+βk/(ωk − 1), from the definition of the negative binomial distri-
bution. The first factor in the posterior density is the likelihood—the probability
density function of data given the parameters—and the remaining factors are the
population distributions for each of the αj ’s, βk’s, and γk’s. The prior p(ωk) ∝ ω−2

k

is equivalent to a uniform prior distribution on 1/ω, using the “Jacobian” from
probability theory to transform from 1/ω to ω.5

In computing, we actually work with the logarithm of the posterior density func-

5 See, for example, Gelman et al. (2003, p. 24) for an explanation of the Jacobian.
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tion because then computations are more stable and less likely to result in overflows
or underflows than when using the density function itself. We typically only specify
the density up to a multiplicative constant (note the proportionality sign in (18.21))
or, equivalently, the log density up to an additive constant—but this is all that is
needed for Gibbs/Metropolis calculations.

The simulation algorithm

Our Markov chain simulation for the social network model requires the following
steps:

• Gibbs sampler on the hyperparameters μα, σα, μβ , σβ .

• Metropolis jumping for each component of α, β, γ. Jump one vector at once for
computational convenience.

• Constraining the components of γ to keep them above 1.

• Renormalization at each step because we are working with an overspecified
model. (As discussed in Section 15.3, the model is unchanged if a constant is
added to all the components of α and β. This constant thus needs to be specified
in some way to stop the simulations from drifting aimlessly.)

• Adaptive Metropolis updating to keep acceptance rates near the target of 44%.

• Simulation of three parallel chains.

• After burn-in: stop adaptation, run awhile, and check convergence.

• Summarize with random simulation draws.

We program the first four of the above items; the others are performed automat-
ically by Umacs.

We obtain posterior simulations using a Gibbs-Metropolis algorithm, iterating
the following steps:

1. For each i, update αi using a Metropolis step with jumping distribution, α∗
i ∼

N(α
(t−1)
i , (jumping scale of αi)

2).

2. For each k, update βk using a Metropolis step with jumping distribution, β∗
k ∼

N(β
(t−1)
i , (jumping scale of βk)2).

3. Update μα ∼ N(μ̂α, σ2
α/n), where μ̂α = 1

n

∑n
i=1 αi.

4. Update σ2
α ∼ Inv-χ2(n−1, σ̂2

α), where σ̂2
α = 1

n

∑n
i=1 (αi − μα)2.

5. Update μβ ∼ N(μ̂β , σ2
β/n), where μ̂β = 1

K

∑K
k=1 βk.

6. Update σ2
β ∼ Inv-χ2(K−1, σ̂2

β), where σ̂2
β = 1

K

∑K
k=1 (βk − μβ)2.

7. For each k, update ωk using a Metropolis step with jumping distribution, ω∗
k ∼

N(ω
(t−1)
k , (jumping scale of ωk)2).

8. Rescale the α’s and β’s by computing the adjustment term C described on page
336 and adding it to all the αi’s and μα and subtracting it from all the βk’s and
μβ .

We construct starting points for the algorithm by fitting a classical Poisson re-
gression (the null model, yik ∼ Poisson(λik), with λik = aibk) and then estimating
the overdispersion for each subpopulation k using the statistic (6.5) on page 114.

Programming in R and Umacs

Setting up the model in Umacs requires several steps, which we include here as
illustration of the details required to fully specify multilevel computation in R.
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Log likelihood function. We take advantage of the matrix representation of the
data y = (yjk) to write a function that computes the log likelihood in parallel for
all data points at once. In these expressions, y is a 1370× 32 matrix; α is a vector
of length 1370; β and ω are vectors of length 32, and data.n= 1370, the number
of survey respondents.

R codef.loglik <- function (y, a, b, o, data.n) {

theta.mat <- exp (outer (a, b, "+"))

O.mat <- outer (rep (1, data.n), o, "*")

A.mat <- theta.mat/(O.mat-1) # the "alpha" and "beta" parameters

B.mat <- 1/(O.mat-1) # of the negative binomial distribution

loglik <- lgamma(y+A.mat) - lgamma(A.mat) - lgamma(y+1) +

(log(B.mat)-log(B.mat+1))*A.mat - log(B.mat+1)*y

return (loglik)

}

The expression for loglik is the logarithm of the negative binomial density func-
tion.

Log posterior density functions. Our next step is to write functions that compute
the log posterior density for each vector of parameters; these log densities are formed
by summing the log likelihood by row or column and then adding the log prior
distribution. We write different log posterior density functions for each parameter
vector in order to make computations more efficient (for example, in updating α,
we only need to include factors that depend on this parameter):

R codef.logpost.a <- function() {

loglik <- f.loglik (y, a, b, o, data.n)

rowSums (loglik, na.rm=TRUE) + dnorm (a, mu.a, sigma.a, log=TRUE)

}

f.logpost.b <- function() {

loglik <- f.loglik (y, a, b, o, data.n)

colSums (loglik, na.rm=TRUE) + dnorm (b, mu.b, sigma.b, log=TRUE)

}

f.logpost.o <- function() {

reject <- !(o>1) # reject if omega is not greater than 1

o[reject] <- 2 # set rejected omega’s to arbitrary value of 2

loglik <- f.loglik (y, a, b, o, data.n)

loglik <- colSums (loglik, na.rm=TRUE) - 2*log(o)

loglik[reject] <- -Inf # set loglik to zero for rejected values

return (loglik)

}

We constrain the components of ω to be greater than 1.01 because the model re-
stricts this parameter to be greater than 1, and we want to avoid potential numerical
difficulties when any ωk is exactly 1.

Data and initial values. Next, we load in the data:

R codelibrary ("foreign")

y <- as.matrix (read.dta ("all.dta"))

and define initial values for the parameters:

R codea.init <- function() {rnorm (data.n)}

b.init <- function() {rnorm (data.j)}

o.init <- function() {runif (data.j, 1.01, 50)}

mu.a.init <- function() {rnorm (1)}

mu.b.init <- function() {rnorm (1)}

sigma.a.init <- function() {runif (1)}

sigma.b.init <- function() {runif (1)}
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The initial values (as well as the log posterior densities defined above) are set up
as functions with no arguments because Umacs uses the variables in the workspace
rather than passing data and parameters back and forth among functions.6

Gibbs sampler steps. Having defined the model, data, and inital values, we write
the functions for the Gibbs samplers for the hyperparameters:

R code mu.a.update <- function() {

rnorm (1, mean(a), sigma.a/sqrt(data.n))

}

mu.b.update <- function() {

rnorm (1, mean(b), sigma.b/sqrt(data.j))

}

sigma.a.update <- function() {

sqrt (sum((a-mu.a)^2)/rchisq(1, data.n-1))

}

sigma.b.update <- function() {

sqrt (sum((b-mu.b)^2)/rchisq(1, data.j-1))

}

Renormalization step. We next write a function for the renormalization of the α’s
and β’s in terms of the frequencies of the names in the population:

R code renorm.network <- function() {

const <- log (sum(exp(b[c(2,4,12)]))/.00357) +

.5*log (sum(exp(b[c(3,7)]))/.00760) -

.5*log (sum(exp(b[c(6,8,10)]))/.00811)

a <- a + const

mu.a <- mu.a + const

b <- b - const

mu.b <- mu.b - const

}

Setting up the Umacs sampler function. We are now ready to set up the series of
steps for Metropolis and Gibbs sampling for the social network model. We update
each of the vectors α, β, and ω using the PSMetropolis() routine, which stands
for “scalar parallel Metropolis”—that is, separately updating each component using
Metropolis jumping, automatically tuning these to jump efficiently.7

R code s.network <- Sampler (

y = y,

data.n = nrow(y),

data.j = ncol(y),

a = PSMetropolis (f.logpost.a, a.init),

b = PSMetropolis (f.logpost.b, b.init),

o = PSMetropolis (f.logpost.o, o.init),

mu.a = Gibbs (mu.a.update, mu.a.init),

mu.b = Gibbs (mu.b.update, mu.b.init),

sigma.a = Gibbs (sigma.a.update, sigma.a.init),

sigma.b = Gibbs (sigma.b.update, sigma.b.init),

renorm.network)

This call to Sampler() creates a function, s.network(), which we can then call to
perform the actual sampling.

6 As discussed on page 400, this “global variable” structure makes it easier for us to expand
models without having to worry about keeping track of the parameters used in each function
call. Other programming strategies are also possible.

7 Umacs also includes vector Metropolis jumping, in which several components of a vector are
altered at once, but in this case the posterior density for each vector of parameters factors into
its components, so these components can be efficiently updated in parallel.
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Running Umacs and saving the simulations. Finally, we run the sampler for three
parallel chains for 2000 iterations, keeping the last 1000. We save the output as a
Bugs object and plot it.

R codenetwork.1 <- s.network (n.iter=2000, n.sims=1000, n.chains=3)

network.1.bugs <- as.bugs (network.1)

plot (network.1)

We can then check convergence (by looking at the values of R̂ in the plot), access
the simulations using attach.bugs(network.1.bugs), and make the plots shown
in Section 15.3.

18.8 Bibliographic note

For a fuller presentation of our perspective on likelihood and Bayesian data analysis,
see Gelman et al. (2003). Other presentations of Bayesian inference include Box and
Tiao (1973), Bernardo and Smith (1994), and Carlin and Louis (2001).

For more on prior distributions, see Jeffreys (1961), Jaynes (1983), Box and Tiao
(1973), and Meng and Zaslavsky (2002). Many of the concerns in this literature are
less urgent in multilevel models, in which most parameters are themselves mod-
eled at the group level—but the prior distribution can still be relevant for the
few remaining hyperparameters of any model. Our approach of prior distributions
as placeholders or “reference models” follows Bernardo (1979); see also Kass and
Wasserman (1996).

Full Bayesian analysis for multilevel models was first performed by Hill (1965),
Tiao and Tan (1965, 1966), and Tiao and Box (1967). Important later work in-
cludes Lindley and Smith (1972), Efron and Morris (1975), Dempster, Rubin, and
Tustakawa (1981), Gelfand and Smith (1990), and Pauler, Wakefield, and Kass
(1999).

See Gilks, Richardson, and Spiegelhalter (1996) for more on the Gibbs sampler
and the Metropolis algorithm. For an introduction to Bayesian inference for cen-
soring and truncation, see Gelman et al. (2003, section 7.8).

The social network example comes from Zheng, Salganik, and Gelman (2006).
Umacs is described by Kerman (2006) and Kerman and Gelman (2006).

18.9 Exercises

1. Linear regression algebra: show that weighted least squares is maximum likeli-
hood estimation for the model (18.7).

2. Bayesian inference: take a multilevel linear model that you have already fit, and
make a graph such as in Figure 18.5 or 18.6 showing likelihood, prior distribution,
and posterior distribution, in each of several groups.

3. Maximum likelihood estimation: consider the logistic regression you set up in
Exercise 5.8(a) for predicting presence of rodents in an apartment given ethnic
group.

(a) Write the likelihood for this model.

(b) Program the likelihood function in R and use optim() to find the maximum
likelihood estimate. Check that your estimate is the same as you obtained in
Exercise 5.8(a).

4. Censored data: take the data on beauty and teaching evaluations data described
in Exercise 3.5 and artificially censor by reporting all course evaluations below
3.0 simply as “*”
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(a) Take one of the models from that earlier exercise and write the likelihood
function given this mix of observed and censored data.

(b) Find the maximum likelihood estimate in R using the optim() function.

(c) Fit the model using Bugs, accounting for the censoring.

(d) Compare the censored-data inferences from the estimates using the complete
data.



CHAPTER 19

Debugging and speeding convergence

Once data and a model have been set up, we face the challenge of debugging or,
more generally, building confidence in the model and estimation. The steps of Bugs
and R as we have described them are straightforward, but cumulatively they re-
quire a bit of effort, both in setting up the model and checking it—adding many
lines of code produces many opportunities for typos and confusion. In Section 19.1
we discuss some specific issues in Bugs and general strategies for debugging and
confidence building. Another problem that often arises is computational speed, and
in Sections 19.2–19.5 we discuss several specific methods to get reliable inferences
faster when fitting multilevel models. The chapter concludes with Section 19.6,
which is not about computation at all, but rather is a discussion of prior distri-
butions for variance parameters. The section is included here because it discusses
models that were inspired by the computational idea described in Section 19.5. It
thus illustrates the interplay between computation and modeling which has often
been so helpful in multilevel data analysis.

19.1 Debugging and confidence building

Our general approach to finding problems in statistical modeling software is to get
various crude models (for example, complete pooling and no pooling, or models
with no predictors) to work and then to gradually build up to the model we want
to fit. If you set up a complicated model and you can’t get it to run—or it will run
but its results don’t make sense—then either build it from scratch, or strip it down
until you can get it to work and make sense. Figure 19.1 illustrates.

It might end up that there was a bug in your original data and model specification,
or maybe the model you wanted to fit is not appropriate for your data, and you will
move to a more reasonable version. Thus, the debugging often serves a statistical
goal too, by motivating the exploration of various approximate and alternative
models.

Getting your Bugs program to work

In R, C, and other command-based languages, if a function or script does not work,
we have various direct debugging tactics, including executing the code line by line
to find where it fails, executing parts of the code separately, and inserting print
statements inside the code to display intermediate results. None of these methods
work with Bugs, because the lines of a Bugs model are not executed sequentially.
Actually, the lines of a Bugs model are not “executed” at all; rather, Bugs parses
the entire model and then runs a process.

If there is a problem with the model, or the data, or the initial values, or the
simulation itself, Bugs will crash (usually by halting and displaying an error message
in the Bugs window—which you will see if you set the debug=TRUE option when
calling from R—or occasionally by simply not responding, in which case you must
close the Bugs window to end the process.

415
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Figure 19.1 Diagram of advice for debugging. The asterisk on the lower right represents
the scenario in which problems arise when trying to fit the desired complex model. The
dots on the upper left represent successes at fitting various simple versions, and the dots
on the lower right represent failures at fitting various simplifications of the full model. The
dotted line represents the idea that the problems can be identified somewhere between the
simple models that fit and the complex models that don’t.

Thus, when Bugs fails, we can try to identify the problem from the error message
in the Bugs window (as discussed below), but the only general approach is to go
back to simpler models that work and then locate the error as indicated in Figure
19.1. Here we briefly list some specific problems that we have encountered in Bugs
modeling.

Model not compiling. Common problems in the compilation include: too much in-
side a distribution argument (for example, y[i]~dnorm(a+b*x[i],tau) should be
two lines: y[i]~dnorm(y.hat[i],tau) and y.hat[i]<-a+b*x[i]; see page 354);
space in the wrong place in an assignment statement (for example, the expression
tau <- pow (sigma,-2) should not have a space after “pow”); undefined parame-
ters (that is, parameters used somewhere in the Bugs model but not modeled (with
“∼”) or assigned (with “<-”) elsewhere in the model or specified as data); and mul-
tiply defined parameters or data (for example, y.hat<-a+b*x[i] defined within a
loop, thus implicitly creating n different definitions of the same variable y.hat).
Many of these errors can be detected from the error messages given by Bugs.

Problems with data. Improper data in Bugs include NA’s in unmodeled data (see
Section 16.8); passing data that are not in the model (this can occur, for example,
if a predictor x is removed from the model but kept in the data list); passing the
wrong data (for example, if a variable name has been changed, or if an R object
containing data has been overwritten); passing empty data vectors (for variables
that you have forgotten to set up in R); subscripting problems (length or dimension
of a data array inconsistent with its use in the Bugs model); and data out of range
(for example, passing a negative value to data modeled by a lognormal distribution,
or passing a fractional value to data modeled by a binomial distribution).

Problems with initial values. The list of initial values can create problems because
of variables that are empty or have missing values (often because of problems in
the R code); and if initial values are of range of the model (this can happen, for
example, with constrained parameters, as well as more obvious scenarios such as
negative variance parameters).

Problems when updating. Bugs sometimes crashes because some of its updating
routines are not so robust, especially when in extreme areas of parameter space,
such as continuous parameters with very large values or probabilities very close to
0 or 1. One reason we like to give moderate initial values to all the parameters
in the model is to avoid these problems. When Bugs updating continues to crash,
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we can sometimes fix the problem by constraining the parameters, as with the line
p.bound[i]<-max(0,min(1,p[i])) in the logistic regression model in Section 17.4.
Other times Bugs crashes or hangs because of problems in the model that were not
detected in the compilation stage, for example, circular definitions (parameter a

defined in terms of b, and vice versa).

Model runs, but results don’t make sense. We have already discussed near the
end of Section 16.9 that, when Bugs is slow to converge, it can make sense to
reparameterize the model to speed the mixing of the Gibbs sampler. We discuss
some such techniques later in this chapter. However, it also happens that Bugs
converges but to an unreasonable answer, or to a surprising result compared to
results from previously fit classical models and simple multilevel models fit using
R. Nonsensical inferences commonly arise from problems in the Bugs model, such
as the misspecification of a distribution (for example, confusing an inverse-variance
parameter τ with a variance or standard-deviation parameter) or when parameters
that should have a group-level model are assigned noninformative distributions (for
example, y[i]~dnorm(y.hat[i],tau[i]), with a separately estimated variance
parameter for each observation). Problems also arise when the data sent to the
model are not what you thought they were.

Comparisons to simpler models

As illustrated in several of the examples of this book, a good way to understand and
build confidence in a multilevel model is to build it up from simpler no-pooling and
complete-pooling models, approximate fits using lmer(), and simpler versions, for
example, excluding some predictors, letting some coefficients vary but not others,
and so forth.

Fake-data simulation

Follow the procedure described in Section 16.7: from the estimated model, take
the estimates of the unmodeled parameters as the “true values,” and from these
simulate “true values” of the modeled parameters and then a fake dataset. Estimate
the model from the fake data, and check that the estimates for the unmodeled and
modeled parameters are close to the true values.

Checking fit of model to data

An important way to build confidence in a model-fitting procedure is to check
that the model fits the data. Model-checking tools include residual plots and, more
generally, predictive checks where the actual data are compared, numerically or
graphically, to replicated data simulated from the fitted model. We discuss this
approach further in Chapter 24.

Unexpected difficulties with Bugs

Sometimes a model will fail in Bugs, even though it is only a slight modification of a
successful fit. We have encountered difficulties even with pure classical regressions,
when there is near-collinearity in the matrix of predictors. Ultimately we believe
Bugs will be improved and these problems will no longer arise, but in the meantime
we can use work-arounds such as centering predictors about their mean levels and
trying different reparameterizations until something works.
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19.2 General methods for reducing computational requirements

There are two ways of speeding an iterative algorithm such as the Gibbs sampler:
taking less time per iteration or reducing the number of iterations to convergence.
Here we briefly discuss some general approaches; then in Sections 19.3–19.5 we
consider some specific methods for improving the mixing of Gibbs samplers for
multilevel models.

Sampling data to speed computation

Bugs can run slowly with large datasets. Computation can be slow even for mo-
derate-sized datasets when the number of parameters in the model is large, as can
easily happen with multilevel models. For example, the polling model in Section
14.1 has more than 70 parameters (a coefficient for each of the 50 states, plus
coefficients for the demographic indicators, plus hyperparameters) and about 1500
respondents. The model can be fit in a reasonable time, but when we extended it
to handle data from seven different polls, totaling about 10,000 respondents, we
had to wait a few minutes for each model fit. In practice, this waiting reduced the
number of models we could conveniently fit, thus actually reducing the flexibility
of our statistical analysis.

In this sort of setting, it can be effective to sample the data, for example, randomly
selecting one-tenth of the respondents and analyzing them first. Once a reasonable
model has been found, we can go back and take the time to fit it to the entire
dataset. Sampling is easy in R; for example,

R code subset <- sample (n, n/10)

n <- length(subset)

y <- y[subset]

X <- X[subset,]

state <- state[subset]

. . .

Computation can be sped even more using cluster sampling, in which we take a
subset of groups, and then a sample of respondents within each group. For example,
in the election poll example, we could include half the states, and one-fifth of the
data within each sampled state. The advantage of cluster sampling is that it reduces
the number of parameters in the model as well as the number of data points. Do not
reduce the number of clusters too far, however, or it will make it difficult to estimate
the group-level regression coefficients and the group-level variance. (As discussed
in Section 12.9, the group-level variance is difficult to estimate if the number of
groups is less than 5.)

Thinning output to save memory

Sometimes Bugs must be run a long time to convergence. This happens when the
simulation draws are highly autocorrelated, so there is very little information in
each draw. In this case, it makes sense to thin the Bugs output—that is, to just
keep every kth simulation draw and discard most of the rest—to save computation
time and memory. We have set up the bugs() function to automatically thin long
simulation runs so as to save approximately 1000 simulation draws.
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Knowing when to give up

If you have to run Bugs for a long time and still don’t reach approximate conver-
gence, then we recommend reformulating the model using the ideas discussed in the
rest of this chapter. In the meantime, you can run simpler versions of the model
and see if they make sense. Our applied research often proceeds on two tracks, with
a series of simple models used to explore data, while we work to get more elabo-
rate models working reliably. Fitting an elaborate model generally becomes more
possible as we get a better sense of what answers we should be expecting, based
on our simpler data analysis. At the end, the more complicated model can answer
questions that we did not even know to ask before we built up to it. An example
is the pattern in Figure 14.11 on page 313 of state-by-state variation in the coeffi-
cient of income on vote preference, which we were only able to learn about after we
succeeded in fitting the varying-intercept, varying-slope model with a group-level
predictor.

19.3 Simple linear transformations

We now discuss some methods for reformulating models to make the Gibbs sampler
converge in fewer iterations. As discussed in Section 18.6, the Gibbs sampler will
run slowly if parameters in the model are highly correlated in their estimation—for
example, if α is large, then β must be small and vice versa. This sort of correlation
can easily occur between regression intercepts and slopes for predictors that are not
centered at zero; see Figure 13.5 on page 288. As illustrated in that example, we
improved the model by centering the predictor x before including it in the model.

Centering typically increases the speed of convergence and can be implemented
easily in R without requiring any changes to the Bugs model. For example, for the
simple regression

yi ∼ N(α + β1Xi1 + β2Xi2, σ2
y),

we can rescale the individual predictors x1 and x2:

R codez1 <- x1 - mean (x1)

z2 <- x2 - mean (x2)

and then express the Bugs model using the z’s rather than x’s as predictors. We
then have two options: we can simply work with the fitted model in terms of the
new, adjusted predictors; or we can adjust the fitted coefficients to work with the
original predictors X . The fitted model is

yi = α + β1Zi1 + β2Zi2 + εi

= α + β1(Xi1 − X̄1) + β2(Xi2 − X̄2) + εi

= (α − β1X̄1 − β2X̄2) + β1Xi1 + β2Xi2 + εi

Thus, the intercept on the original scale is simply α−β1X̄1 −β2X̄2, and the slopes
are unaffected.

19.4 Redundant parameters and intentionally nonidentifiable models

Another way of speeding the convergence of the Gibbs sampler involves adding
redundant coefficients that are collinear with existing predictors in the model.

We have already discussed one connection between multilevel models and identifi-
ability: in a classical regression model, we can include only J−1 of the J group-level
indicators (with the remaining indicator serving as a baseline), whereas in multilevel
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regression, we can include coefficients for all J groups, because they are modeled as
coming from a common distribution with a finite variance. The group-level model
provides information that allows the coefficients to be identified (as expressed math-
ematically by the augmented data vector y∗ in (18.16) on page 397).

Our use of nonidentifiability here is different—it is purely for computational, not
modeling, purposes, and is nonidentified even in the hierarchical model.

Redundant mean parameters for a simple nested model

As a simple example, we return to the radon analysis from Chapter 12, simpli-
fied to measurements within counties, ignoring all individual-level and group-level
predictors. We can write the model as

yi ∼ N(μ + ηj[i], σ
2
y), for i = 1, . . . , n

ηj ∼ N(0, σ2
η), for j = 1, . . . , J.

In Bugs:

Bugs code model {

for (i in 1:n){

y[i] ~ dnorm (y.hat[i], tau.y)

y.hat[i] <- mu + eta[county[i]]

}

mu ~ dnorm (0, .0001)

tau.y <- pow(sigma.y, -2)

sigma.y ~ dunif (0, 100)

for (j in 1:n.county){

eta[j] ~ dnorm (0, tau.eta)

}

tau.eta <- pow(sigma.eta, -2)

sigma.eta ~ dunif (0, 100)

}

With this version of the model, however, the Bugs simulations are slow to con-
verge; see Figure 19.2. It is possible for the simulations to get stuck in a configura-
tion where the entire vector η is far from zero (even though the ηj ’s are assigned a
distribution with mean 0). Ultimately, the simulations will converge to the correct
distribution, but we do not want to have to wait. We can speed the convergence by
adding a redundant parameter for the mean, and then redefining new parameters η
centered at an arbitrary group-level mean μη, thus replacing the loop for (j in

1:n.county) in the above model by

Bugs code mu.adj <- mu + mean(eta[])

for (j in 1:n.county){

eta[j] ~ dnorm (mu.eta, tau.eta)

eta.adj[j] <- eta[j] - mean(eta[])

}

mu.eta ~ dnorm (0, .0001)

}

To fit the new model, we must specify initial values to the redundant parameters,
μη, ηj , but we only need to save the adjusted parameters, μadj, ηadj:

R code radon.data <- list ("n", "y", "n.county", "county")

radon.inits <- function(){

list (mu=rnorm(1), mu.eta=rnorm(1), eta=rnorm(n.county),
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Figure 19.2 Summary of Bugs simulations of the one-way analysis of variance for the
radon data. Convergence is slow, so we used redundant parameters to help the model run
more efficiently.

sigma.y=runif(1), sigma.eta=runif(1))

}

radon.parameters <- c ("mu.adj", "eta.adj", "sigma.y", "sigma.eta")

fit.4 <- bugs (radon.data, radon.inits, radon.parameters,

"M4.bug", n.chains=3, n.iter=100)

Redundant mean parameters for a non-nested model: flight simulator example

We can use the same overparameterization trick for non-nested models. For ex-
ample, we can express the prior distributions for the flight simulator model (13.9)
as

γj ∼ N(μγ , σ2
γ), for j = 1, . . . , J

δk ∼ N(μδ, σ
2
δ ), for k = 1, . . . , K. (19.1)

The means μγ , μδ, and the individual raw treatment and airport effects γj , δk are
not separately identified. However, we can define the parameters of interest by
centering each batch of group-level coefficients around zero and then redefining the
mean. This can all be implemented in Bugs (compare to the model on page 380):

Bugs codemodel {

for (i in 1:n){
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y[i] ~ dnorm (y.hat[i], tau.y)

y.hat[i] <- mu + g[treatment[i]] + d[airport[i]]

}

mu.adj <- mu + mean(g[]) + mean(d[])

mu ~ dnorm (0, .0001)

tau.y <- pow(sigma.y, -2)

sigma.y ~ dunif (0, 100)

for (j in 1:n.treatment){

g[j] ~ dnorm (mu.g, tau.g)

g.adj[j] <- g[j] - mean(g[])

}

mu.g ~ dnorm (0, .0001)

tau.g <- pow(sigma.g, -2)

sigma.g ~ dunif (0, 100)

for (k in 1:n.airport){

d[k] ~ dnorm (mu.d, tau.d)

d.adj[k] <- d[k] - mean(d[])

}

mu.d ~ dnorm (0, .0001)

tau.d <- pow(sigma.d, -2)

sigma.d ~ dunif (0, 100)

}

As with the previous example, the redundant location parameters μγ and μδ can
reduce the number of iterations required for the Gibbs sampler to converge for the
parameters of interest: μadj, the γadj

j ’s, and the δadj
k ’s.

Example: multilevel logistic regression for survey responses

For a more elaborate problem in which redundant parameters are useful, we consider
the example from Section 14.1 of the probability of a Yes response on a survey,
estimated as a function of demographics and state of residence.

We write the model in Bugs by expanding the multilevel logistic regression model
on page 381:

Bugs code mu.adj <- b.0 + mean(b.age[]) + mean(b.edu[]) + mean(b.age.edu[,]) +

mean(b.state[])

for (j in 1:n.age){

b.age[j] ~ dnorm (mu.age, tau.age)

b.age.adj[j] <- b.age[j] - mean(b.age[])

}

for (j in 1:n.edu){

b.edu[j] ~ dnorm (mu.edu, tau.edu)

b.edu.adj[j] <- b.edu[j] - mean(b.edu[])

}

for (j in 1:n.age) {for (k in 1:n.edu){

b.age.edu[j,k] ~ dnorm (mu.age.edu, tau.age.edu)

b.age.edu.adj[j,k] <- b.age.edu[j,k] - mean(b.age.edu[,])

}

for (j in 1:n.state){

b.state[j] ~ dnorm (b.state.hat[j], tau.state)

b.state.hat[j] <- b.region[region[j]] + b.v.prev*v.prev[j]

}

b.v.prev ~ dnorm (0, .0001)
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for (j in 1:n.region){

b.region[j] ~ dnorm (mu.region, tau.region)

b.region.adj[j] <- b.region[j] - mean(b.region[])

}

We assign noninformative prior distributions to the new hierarchical mean pa-
rameters:

Bugs codemu.age ~ dnorm (0, .0001)

mu.edu ~ dnorm (0, .0001)

mu.age.edu ~ dnorm (0, .0001)

mu.region ~ dnorm (0, .0001)

and retain the rest of the model from page 381. The expression for mu.adj does
not include mean(b.region[]) because the parameters b.region are not directly
included in the expression for logit(p[i]); the region coefficients come in through
the state coefficients b.state.

As with the other examples in this section, the redundant mean parameters,
μage, μedu, μage.edu, are not separately identified (except by their prior distributions).
We will not expect them to converge rapidly in the simulations, and similarly we
would expect convergence problems with the multilevel parameters βage, before they
were centered at these μ’s.

A slight complexity arises in that we add a redundant mean to βregion but not to
βstate to be consistent with the regional model that is nested within.

After 500 steps (in the call to bugs() from R, we set n.chains=3 and n.iter=500),
the β’s and σ’s have reached approximate convergence.

(A simpler way to write the model would be to replace the μ parameters in the
model by zeroes, which would leave all the coefficients identifiable and eliminate
the need to center the β’s. However, this model can be slower to converge—setting
the μ’s to zero causes a kind of “gridlock” in the Gibbs sampler with multilevel
coefficients.)

“Adjusted” or “raw” parameters

There are two equivalent ways of labeling in a reparameterization. The method we
have described so far is to start with an existing model, add parameters to it, then
define new “adjusted” parameters that are identified by the data. Thus, for example,
a Bugs model would include an unidentified α and an identified αadj, which is what
would be saved from the fitting of the model. This approach is convenient in that it
begins with an already-working model but is awkward in that the saved parameters
do not have the names that were used in the statistical formulation of the model
(except in cases such as (15.2) on page 326 for the study of police stops, where we
explicitly define adjusted parameters of interest).

An alternative approach is to relabel the parameters in the original model as
“raw” and then give the identified parameters the clean names that would be saved
in the model fit. Thus, instead of a.adj[j]<-a[j]-mean(a[]), the Bugs model
would have a[j]<-a.raw[j]-mean(a.raw[]). When we know ahead of time that
we will be using redundant parameters or models expressed in a compound form
(as in the scaled inverse-Wishart model on page 376), we often start right away
with the formulation in terms of “raw” parameters to simplify the post-processing
of inferences in R.
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19.5 Parameter expansion: multiplicative redundant parameters

We next present a slightly more sophisticated trick involving redundant multiplica-
tive as well as additive parameters, an idea that is a response to a particular kind
of slow convergence of Gibbs samplers for hierarchical models.

The Gibbs sampler can get stuck

Gibbs samplers for multilevel models can get stuck in the following way. Suppose
that a group-level variance parameter σα happens to be estimated near zero. Then,
in the updating step for α1, . . . , αJ , these group-level coefficients will be pooled
strongly toward their common mean (see Figure 18.4: if σα is near zero, then the
ratio σ2

y/σ2
α will be large, and so we will be near the top of the table where there

is more pooling). So the αj ’s will be estimated to be close to each other. But the
updating step for σα is based on the variance of the αj ’s, and so σα will be estimated
to be near zero, and the algorithm can get stuck. Eventually, the simulations will
move through the entire distribution of σα, but this can require many iterations.

Solution using parameter expansion

A good way to get the Gibbs sampler unstuck in the above scenario is to be able
to rescale the αj ’s by multiplying the entire α vector by a constant. We can do
this in a multilevel model by adding a redundant multiplicative parameter for each
variance component.

For example, we can extend the flight simulator model (13.9) with two new
multiplicative parameters, ξγ and ξδ and then assigning them noninformative prior
distributions. The ξ parameters are not identified in the model; their role is to
rescale the existing group-level parameters:

Old New

Treatment effects γj ξγ(γj − γ̄) for j = 1, . . . , J
Airport effects δk ξδ(δk − δ̄) for k = 1, . . . , K
Treatment s.d. σγ |ξγ |σγ

Airport s.d. σδ |ξδ|σδ

Implementing all this in Bugs looks elaborate but can be built gradually as an
expansion of the model on page 380:

Bugs code model {

for (i in 1:n){

y[i] ~ dnorm (y.hat[i], tau.y)

y.hat[i] <- mu + g[treatment[i]] + d[airport[i]]

}

mu ~ dnorm (0, .0001)

tau.y <- pow(sigma.y, -2)

sigma.y ~ dunif (0, 100)

for (j in 1:n.treatment){

g.raw[j] ~ dnorm (mu.g.raw, tau.g.raw)

g[j] <- xi.g*(g.raw[j] - mean(g.raw[]))

}

xi.g ~ dunif (0, 100)

mu.g.raw ~ dnorm (0, .0001)

tau.g.raw <- pow(sigma.g.raw, -2)
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sigma.g.raw ~ dunif (0, 100)

sigma.g <- xi.g*sigma.g.raw

for (k in 1:n.airport){

d.raw[k] ~ dnorm (mu.d.raw, tau.d.raw)

d[k] <- xi.d*(d.raw[k] - mean(d.raw[]))

}

xi.d ~ dnorm (0, .0001)

mu.d.raw ~ dnorm (0, .0001)

tau.d.raw <- pow(sigma.d.raw, -2)

sigma.d.raw ~ dunif (0, 100)

sigma.d <- abs(xi.d)*sigma.d.raw

}

Example: multilevel logistic regression for survey responses

We next apply multiplicative redundant parameters to a model with individual- and
group-level predictors: the logistic regression for state-level opinions from national
polls. In Bugs, we re-express in terms of “raw” parameters and extend the model
on page 381 to include the new ξ’s:

Bugs codefor (j in 1:n.age){

b.age[j] <- xi.age*(b.age.raw[j] - mean(b.age.raw[]))

b.age.raw[j] ~ dnorm (0, tau.age.raw)

}

for (j in 1:n.edu){

b.edu[j] <- xi.edu*(b.edu.raw[j] - mean(b.edu.raw[]))

b.edu.raw[j] ~ dnorm (0, tau.edu.raw)

}

for (j in 1:n.age){

for (k in 1:n.edu){

b.age.edu[j,k] <- xi.age.edu*(b.age.edu.raw[j,k] -

mean(b.age.edu.raw[,]))

b.age.edu.raw[j,k] ~ dnorm (0, tau.age.edu.raw)

}

}

for (j in 1:n.state){

b.state[j] <- xi.state*(b.state.raw[j] - mean(b.state.raw[]))

b.state.raw[j] ~ dnorm (b.state.raw.hat[j], tau.state.raw)

b.state.raw.hat[j] <- b.region.raw[region[j]]+b.v.prev.raw*v.prev[j]

}

b.v.prev <- xi.state*b.v.prev

b.v.prev.raw ~ dnorm (0, .0001)

for (j in 1:n.region) {

b.region[j] <- xi.state*b.region.raw[j]

b.region.raw[j] ~ dnorm (0, tau.region.raw)

}

tau.age.raw <- pow(sigma.age.raw, -2)

tau.edu.raw <- pow(sigma.edu.raw, -2)

tau.age.edu.raw <- pow(sigma.age.edu.raw, -2)

tau.state.raw <- pow(sigma.state.raw, -2)

tau.region.raw <- pow(sigma.region.raw, -2)

sigma.age.raw ~ dunif (0, 100)

sigma.edu.raw ~ dunif (0, 100)

sigma.age.edu.raw ~ dunif (0, 100)
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sigma.state.raw ~ dunif (0, 100)

sigma.region.raw ~ dunif (0, 100)

xi.age ~ dunif (0, 100)

xi.edu ~ dunif (0, 100)

xi.age.edu ~ dunif (0, 100)

xi.state ~ dunif (0, 100)

sigma.age <- xi.age*sigma.age.raw

sigma.edu <- xi.edu*sigma.edu.raw

sigma.age.edu <- xi.age.edu*sigma.age.edu.raw

sigma.state <- xi.state*sigma.state.raw

sigma.region <- xi.state*sigma.region.raw # not "xi.region"

This model is awkwardly long, but we have attempted to use parallel structure to
write it cleanly.

Application to item-response and ideal-point models

We illustrate a slightly different approach to redundant parameters with the item-
response or ideal-point model with a discrimination parameter (see model (14.13)
on page 316 and the accompanying discussion). Here, we resolve the additive and
multiplicative nonidentifiability by shifting the ability and difficulty parameters
using the mean of the αj ’s and scaling the ability, difficulty, and discrimination
parameters using the standard deviation of the αj ’s. This is equivalent to restricting
the abilities to have a mean of 0 and a standard deviation of 1, but the expression
using redundant parameters allows for faster convergence of the Gibbs sampler.
The Bugs model can be written as

Bugs code model {

for (i in 1:n){

y[i] ~ dbin (p.bound[i], 1)

p.bound[i] <- max(0, min(1, p[i]))

logit(p[i]) <- g[k[i]]*(a[j[i]] - b[k[i]])

}

shift <- mean(a[])

scale <- sd(a[])

for (j in 1:J){

a.raw[j] ~ dnorm (mu.a.raw, tau.a.raw)

a[j] <- (a.raw[j] - shift)/scale

}

mu.a.raw ~ dnorm (0, .0001)

tau.a.raw <- pow(sigma.a.raw, -2)

sigma.a.raw ~ dunif (0, 100)

for (k in 1:K){

b.raw[k] ~ dnorm (b.hat.raw[j], tau.b.raw)

b.hat.raw[j] <- b.0.raw + d.raw*x[j]

b[k] <- (b.raw[k] - shift)/scale

g.raw[k] ~ dnorm (mu.g.raw, tau.g.raw)

g[k] <- g.raw[k]*scale

}

b.0.raw ~ dnorm (0, .0001)

mu.g.raw ~ dnorm (0, .0001)

tau.b.raw <- pow(sigma.b.raw, -2)

tau.g.raw <- pow(sigma.g.raw, -2)
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sigma.b.raw ~ dunif (0, 100)

sigma.g.raw ~ dunif (0, 100)

d.raw ~ dnorm (0, .0001) I(0,)

d <- d.raw*scale

}

The second-to-last line in this Bugs model constrains the group-level regression
coefficient δ to be positive to resolve the reflection invariance in the model, as
discussed in the context of model (14.14) on page 318.

The future of redundant parameterization

Bugs (as linked from R) is currently the best general-purpose tool for multilevel
modeling, but in its flexibility it cannot do everything well, and so it requires
various work-arounds to run effectively in many real problems. In the not-too-
distant future, we expect that Bugs or its successor programs will automatically
implement reparameterizations internally, so that the user can get the benefits in
efficiency without the need to set up the model expansion explicitly.

An analogy could be made to least squares computations fifty years ago, when
users had to program and, if necessary, perform steps such as rescaling and pivoting
to obtain numerically stable results. Now the least squares routines in linpack, R,
and other packages automatically do what is necessary to compute stable least
squares estimates for just about any (noncollinear) data.

19.6 Using redundant parameters to create an informative prior

distribution for multilevel variance parameters

The prior distribution is sometimes said to represent your knowledge about the
parameters before (“prior to”) seeing the data. In practice, however, the prior dis-
tribution, along with the rest of the model, is set up after seeing data, and so we
prefer to think of it as representing any information outside of the data used in the
likelihood.

Here we shall consider in depth the choice of prior distribution for group-level
variance parameters in multilevel models. For simplicity, we work with a basic two-
level normal model of data yij with group-level coefficients αj :

yij ∼ N(μ + αj , σ
2
y), i = 1, . . . , nj , j = 1, . . . , J

αj ∼ N(0, σ2
α), j = 1, . . . , J. (19.2)

We briefly discuss other hierarchical models at the end of this section.
Model (19.2) has three hyperparameters—μ, σy , and σα—but here we concern

ourselves only with the last of these. Typically, enough data will be available to esti-
mate μ and σy that one can use any reasonable noninformative prior distribution—
for example, p(μ, σy) ∝ 1 or p(μ, log σy) ∝ 1.

Various noninformative prior distributions have been suggested in Bayesian lit-
erature and software, including an improper uniform density on σα and proper
distributions such as σ2

α ∼ inverse-gamma(0.001, 0.001). In this section, we explore
and make recommendations for prior distributions for σα. We find that some pur-
portedly noninformative prior distributions can unduly affect inferences, especially
for problems where the number of groups J is small or the group-level standard
deviation σα is close to zero.
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Informative prior distributions

We can construct a rich family of prior distributions by applying a redundant
multiplicative reparameterization to model (19.2):

yij ∼ N(μ + ξηj , σ
2
y)

ηj ∼ N(0, σ2
η). (19.3)

The parameters αj in (19.2) correspond to the products ξηj in (19.3), and the
hierarchical standard deviation σα in (19.2) corresponds to |ξ|ση in (19.3). The
parameters ξ, η, ση are not separately identifiable in this model. As discussed in
Section 19.5, adding the redundant multiplicative parameter ξ can speed the con-
vergence of the Gibbs sampler.

In addition, this expanded model form allows us to construct a family of prior
distributions for the hierarchical variance parameter σα by separately assigning
prior distributions to both ξ and ση, thus implicitly creating a model for σα = |ξ|ση.

For simplicity we restrict ourselves to independent prior distributions on ξ and
ση, with a normal distribution for ξ and inverse-gamma for σ2

η. (These are techni-
cally known as conditionally conjugate prior distributions, for reasons that are not
relevant to us here.)

The implicit conditionally conjugate family for σα is then the set of distribu-
tions corresponding to the absolute value of a normal random variable, divided by
the square root of a gamma random variable. That is, σα has the distribution of
the absolute value of a noncentral-t variate. We call this the folded noncentral t
distribution, with the “folding” corresponding to the absolute value operator. The
noncentral t in this context has three parameters, which can be identified with the
mean of the normal distribution for ξ, and the scale and degrees of freedom for σ2

η.
(Without loss of generality, the scale of the normal distribution for ξ can be set to
1 since it cannot be separated from the scale for ση.)

The folded noncentral t distribution is not commonly used in statistics, and
we find it convenient to understand it through various special and limiting cases.
In the limit that the denominator is specified exactly, we have a folded normal
distribution; conversely, specifying the numerator exactly yields the square-root-
inverse-χ2 distribution for σα.

An appealing two-parameter family of prior distributions is determined by re-
stricting the prior mean of the numerator to zero, so that the folded noncentral t
distribution for σα becomes simply a half-t—that is, the absolute value of a Student-
t distribution centered at zero. We can parameterize this in terms of scale sα and
degrees of freedom ν:

p(σα) ∝
(

1 +
1

ν

(
σα

sα

)2
)−(ν+1)/2

This family includes, as special cases, the improper uniform density (if ν = −1)

and the proper half-Cauchy, p(σα) ∝ (σ2
α + s2

α

)−1
(if ν = 1).

Noninformative prior distributions

Uniform prior distributions. We first consider uniform prior distributions while
recognizing that we must be explicit about the scale on which the distribution is
defined. Various choices have been proposed for modeling variance parameters. A
uniform prior distribution on logσα would seem natural—working with the loga-
rithm of a parameter that must be positive—but it results in an improper posterior
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distribution. An alternative would be to define the prior distribution on a compact
set (for example, in the range [−A, A] for some large value of A), but then the
posterior distribution would depend strongly on −A, the lower bound of the prior
support.

The problem arises because the marginal likelihood, p(y|σα)—after integrating
over α, μ, σy in (19.2)—approaches a finite nonzero value as σα → 0. Thus, if the
prior density for log σα is uniform, the posterior distribution will have infinite mass
integrating to the limit log σα → −∞. To put it another way, in a hierarchical
model the data can never rule out a group-level variance of zero, and so the prior
distribution should not put an infinite mass in this area.

Another option is a uniform prior distribution on σα itself, which has a finite
integral near σα = 0 and thus avoids the above problem. We have generally used
this noninformative density in our applied work, but it has a slightly disagreeable
miscalibration toward positive values (see footnote 1 on page 433), with its infinite
prior mass in the range σα → ∞. With J = 1 or 2 groups, this actually results in an
improper posterior density, essentially concluding σα = ∞ and doing no pooling.
In a sense this is reasonable behavior, since it would seem difficult from the data
alone to decide how much, if any, pooling should be done with data from only one
or two groups. However, from a Bayesian perspective it is awkward for the decision
to be made ahead of time, as it were, with the data having no say in the matter.
In addition, for small J , such as 4 or 5, we worry that the heavy right tail of the
posterior distribution would lead to overestimates of σα and thus result in pooling
that is less than optimal for estimating the individual αj ’s.

We can interpret the various improper uniform prior densities as limits of proper
distributions. The uniform density on log σα is equivalent to p(σα) ∝ σ−1

α or p(σ2
α) ∝

σ−2
α , which has the form of an inverse-χ2 density with 0 degrees of freedom and can

be taken as a limit of proper inverse-gamma densities.

The uniform density on σα is equivalent to p(σ2
α) ∝ σ−1

α , an inverse-χ2 density
with −1 degrees of freedom. This density cannot easily be seen as a limit of proper
inverse-χ2 densities (since these must have positive degrees of freedom), but it can
be interpreted as a limit of the half-t family on σα, where the scale approaches ∞
(and any value of ν). Or, in the expanded notation of (19.3), one could assign any
prior distribution to ση and a normal to ξ, and let the prior variance for ξ approach
∞.

Another noninformative prior distribution sometimes proposed in the Bayesian
literature is uniform on σ2

α. We do not recommend this, as it seems to have the mis-
calibration toward higher values as described above, but more so, and also requires
J ≥ 4 groups for a proper posterior distribution.

Inverse-gamma(ε, ε) prior distributions. The inverse-gamma(ε, ε) prior distribu-
tion is an attempt at noninformativeness within the conditionally conjugate family,
with ε set to a low value such as 1 or 0.01 or 0.001 (the latter value being used in
some of the examples in Bugs). A difficulty of this prior distribution is that in the
limit of ε → 0 it yields an improper posterior density, and thus ε must be set to a
reasonable value. Unfortunately, for datasets in which low values of σα are possi-
ble, inferences become very sensitive to ε in this model, and the prior distribution
hardly looks noninformative, as we illustrate next. So we do not recommend the
use of this inverse-gamma model as a noninformative prior distribution.
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Figure 19.3 Histograms of posterior simulations of the between-school standard deviation,
σα, from models with three different prior distributions: (a) uniform prior distribution
on σα, (b) inverse-gamma(1, 1) prior distribution on σ2

α, (c) inverse-gamma(0.001, 0.001)
prior distribution on σ2

α. Overlain on each is the corresponding prior density function for
σα. (For models (b) and (c), the density for σα is calculated using the gamma density
function multiplied by the Jacobian (see the footnote on page 409) of the 1/σ2

α transfor-
mation.) We prefer the uniform prior distribution shown in the left plot. In the center and
right plots, posterior inferences are strongly constrained by the prior distribution. Adapted
from Gelman et al. (2003, appendix C).

Example: educational testing experiments in 8 schools

We demonstrate the properties of some proposed noninformative prior densities
with a simple example of data from J = 8 educational testing experiments. Here,
the parameters α1, . . . , α8 represent the relative effects of Scholastic Aptitude Test
coaching programs in 8 different schools, and σα represents the between-school
standard deviations of these effects. The effects are measured as points on the test,
which was scored from 200 to 800; thus the largest possible range of effects could
be 600 points, with a realistic upper limit on σα of 100, say.

Here is the Bugs code for the model with half-Cauchy prior distribution:

Bugs code model {

for (j in 1:J){ # J = the number of schools

y[j] ~ dnorm (theta[j], tau.y[j]) # data model: the likelihood

theta[j] <- mu.theta + xi*eta[j]

tau.y[j] <- pow(sigma.y[j], -2)

}

xi ~ dnorm (0, tau.xi)

tau.xi <- pow(prior.scale, -2)

for (j in 1:J){

eta[j] ~ dnorm (0, tau.eta) # hierarchical model for theta

}

tau.eta ~ dgamma (.5, .5) # chi^2 with 1 d.f.

sigma.theta <- abs(xi)/sqrt(tau.eta) # cauchy = normal/sqrt(chi^2)

mu.theta ~ dnorm (0, .0001) # noninformative prior on mu

}

When running this model from R, we set prior.scale <- 25; give y, sigma.y,

J, prior.scale as data for the bugs() call; and initialize the parameters eta,

xi, mu.theta, tau.eta.
Figure 19.3 shows the posterior distributions for the 8-schools model resulting

from three different choices of prior distributions that are intended to be noninfor-
mative.

The leftmost histogram of Figure 19.3 displays the posterior distribution for σα

(as represented by 6000 simulation draws from a model fit using Bugs) for the
model with uniform prior density. The data show support for a range of values
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below σα = 20, with a slight tail after that, reflecting the possibility of larger
values, which are difficult to rule out given that the number of groups J is only
8—that is, not much more than the J = 3 required to ensure a proper posterior
density with finite mass in the right tail.

In contrast, the middle histogram in Figure 19.3 shows the result with an inverse-
gamma(1, 1) prior distribution for σ2

α. This new prior distribution leads to changed
inferences. In particular, the posterior mean and median of σα are lower and pooling
of the αj ’s is greater than in the previously fitted model with a uniform prior
distribution on σα. To understand this, it helps to graph the prior distribution
in the range for which the posterior distribution is substantial. The graph shows
that the prior distribution is concentrated in the range [0.5, 5], a narrow zone in
which the likelihood is close to flat compared to this prior (as we can see because the
distribution of the posterior simulations of σα closely matches the prior distribution,
p(σα)). By comparison, in the left graph, the uniform prior distribution on σα seems
closer to “noninformative” for this problem, in the sense that it does not appear to
be constraining the posterior inference.

Finally, the rightmost histogram in Figure 19.3 shows the corresponding result
with an inverse-gamma(0.001, 0.001) prior distribution for σ2

α. This prior distribu-
tion is even more sharply peaked near zero and further distorts posterior inferences,
with the problem arising because the marginal likelihood for σα remains high near
zero.

In this example, we do not consider a uniform prior density on log σα, which would
yield an improper posterior density with a spike at σα = 0, like the rightmost graph
in Figure 19.3, but more so. We also do not consider a uniform prior density on σ2

α,
which would yield a posterior distribution similar to the leftmost graph in Figure
19.3, but with a slightly higher right tail.

This example is a gratifying case in which the simplest approach—the uniform
prior density on σα—seems to perform well. This model is also straightforward
to program directly using the Gibbs sampler or in Bugs, using either the ba-
sic model (19.2) or using the expanded parameterization (19.3), which converges
slightly faster.

The appearance of the histograms and density plots in Figure 19.3 is crucially
affected by the choice to plot them on the scale of σα. If instead they were plotted on
the scale of log σα, the inverse-gamma(0.001, 0.001) prior density would appear to
be the flattest. However, the inverse-gamma(ε, ε) prior is not at all “noninformative”
for this problem since the resulting posterior distribution remains highly sensitive
to the choice of ε. The hierarchical model likelihood does not constrain log σα in
the limit log σα → −∞, and so a prior distribution that is noninformative on the
log scale will not work.

Weakly informative prior distribution for the 3-schools problem

The uniform prior distribution seems fine for the 8-schools analysis, but problems
arise if the number of groups J is much smaller, in which case the data supply little
information about the group-level variance, and a noninformative prior distribution
can lead to a posterior distribution that is improper or is proper but unrealistically
broad.

We demonstrate by reanalyzing the 8-schools example using the data from just
3 of the schools.

Figure 19.4 displays the inferences for σα from two different prior distributions.
First we continue with the default uniform distribution that worked well with J = 8
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Figure 19.4 Histograms of posterior simulations of the between-school standard deviation,
σα, from models for the 3-schools data with two different prior distributions on σα: (a)
uniform (0,∞), (b) half-Cauchy with scale 25, set as a weakly informative prior distribu-
tion given that σα was expected to be well below 100. The histograms are not on the same
scales. Overlain on each histogram is the corresponding prior density function. With only
J = 3 groups, the noninformative uniform prior distribution is too weak, and the proper
Cauchy distribution works better, without appearing to distort inferences in the area of
high likelihood.

(as seen in Figure 19.3). Unfortunately, as the left histogram of Figure 19.4 shows,
the resulting posterior distribution for the 3-schools dataset has an extremely long
right tail, containing values of σα that are too high to be reasonable. This heavy
tail is expected since J is so low (if J were any lower, the right tail would have
an infinite integral). Using this posterior distribution for σα will have the effect of
undershrinking the estimates of the school effects αj . Better estimates should be
obtained by including some information about σα that will restrict it to a more
realistic range.

The right histogram of Figure 19.4 shows the posterior inference for σα resulting
from a half-Cauchy prior distribution with scale parameter 25. As the line on the
graph shows, this prior distribution is close to flat over the plausible range of σα <
50, falling off gradually beyond this point. We call this prior distribution “weakly
informative” on this scale because, even at its tail, it has a gentle slope (unlike, for
example, a half-normal distribution) and can let the data dominate if the likelihood
is strong in that region. This prior distribution performs well in this example,
reflecting the marginal likelihood for σα at its low end but removing much of the
unrealistic upper tail.

This half-Cauchy prior distribution would also perform well in the 8-schools prob-
lem, but it was unnecessary because the default uniform prior gave reasonable re-
sults. With only 3 schools, we went to the trouble of using a weakly informative
prior, a distribution that was not intended to represent our actual prior state of
knowledge about σα but rather to constrain the posterior distribution, to an extent
allowed by the data.

General comments

Prior distributions for variance parameters. In fitting hierarchical models, we rec-
ommend starting with a noninformative uniform prior density on standard-devia-
tion parameters σα. We expect this will generally work well unless the number of
groups J is low (below 5, say). If J is low, the uniform prior density tends to lead
to high estimates of σα, as discussed above. This miscalibration is an unavoidable
consequence of the asymmetry in the parameter space, with variance parameters re-
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stricted to be positive. Similarly, there are no always-nonnegative classical unbiased
estimators of σα or σ2

α in the hierarchical model.1

For a noninformative but proper prior distribution, we recommend approximating
the uniform density on σα by a uniform on a wide range (for example, uniform from
0 to 100 in the SAT coaching example) or a half-normal centered at 0 with standard
deviation set to a high value such as 100. The latter approach is particularly easy
to program as a N(0, 1002) prior distribution for ξ in (19.3).

When more prior information is desired, for instance to restrict σα away from very
large values, we recommend working within the half-t family of prior distributions,
which are more flexible and have better behavior near 0, compared to the inverse-
gamma family. A reasonable starting point is the half-Cauchy family, with scale set
to a value that is high but not off the scale, for example, 25 in the SAT coaching
example.

We do not recommend the inverse-gamma(ε, ε) family of noninformative prior
distributions because, as discussed in Sections 3.3 and 4.1, in cases where σα is es-
timated to be near zero, the resulting inferences will be sensitive to ε. The setting of
near-zero variance parameters is important partly because this is where uncertainty
in the variance parameters is particularly relevant for multilevel inference.

Figure 19.3 illustrates the generally robust properties of the uniform prior density
on σα. Many Bayesians have preferred the inverse-gamma prior family, possibly be-
cause its conditional conjugacy suggested clean mathematical properties. However,
by writing the hierarchical model in the form (19.3), we see conditional conjugacy
in the wider class of half-t distributions on σα, which include the uniform and half-
Cauchy densities on σα (as well as inverse-gamma on σ2

α) as special cases. From this
perspective, the inverse-gamma family has nothing special to offer, and we prefer
to work on the scale of the standard deviation parameter σα, which is typically
directly interpretable in the original model.

Application to other models. The reasoning in this paper should apply to multi-
level models in general. The key idea is that parameters αj—in general, group-level
exchangeable parameters—have a common distribution with some scale parame-
ter, which we label σα. In addition, when group-level regression predictors must
be estimated, more than J = 3 groups may be necessary to estimate σα from a
noninformative prior distribution, thus requiring at least weakly informative prior
distributions for the regression coefficients, the variance parameters, or both.

1 More formally, we can evaluate the inferences using the concept of calibration of the posterior
mean, the Bayesian analogue to the classical notion of “bias.” For any parameter θ, we label the

posterior mean as θ̂ = E(θ|y) and define the miscalibration of the posterior mean as E(θ|θ̂, y)−θ̂,

for any value of θ̂. If the prior distribution is true—that is, if the data are constructed by first
drawing θ from p(θ), then drawing y from p(y|θ)—then the posterior mean is automatically

calibrated; that is its miscalibration is 0 for all values of θ̂.
For improper prior distributions, however, things are not so simple, since it is impossible for θ to
be drawn from an unnormalized density. To evaluate calibration in this context, it is necessary
to posit a “true prior distribution” from which θ is drawn along with the “inferential prior
distribution” that is used in the Bayesian inference.
For the hierarchical model discussed here, we can consider the improper uniform density on
σα as a limit of uniform prior densities on the range (0, A), with A → ∞. For any finite value
of A, we can then see that the improper uniform density leads to inferences with a positive
miscalibration—that is, overestimates (on average) of σα.
We demonstrate this miscalibration in two steps. First, suppose that both the true and infer-
ential prior distributions for σα are uniform on (0, A). Then the miscalibration is trivially zero.
Now keep the true prior distribution at U(0, A) and let the inferential prior distribution go to

U(0,∞). This will necessarily increase θ̂ for any data y (since we are now averaging over values
of θ in the range [A,∞)) without changing the true θ, thus causing the average value of the
miscalibration to become positive. Similar issues are discussed by Meng and Zaslavsky (2002).
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Further work needs to be done in developing the next level of hierarchical models,
in which there are several batches of exchangeable parameters, each with their own
variance parameter; we present a simple sort of hierarchical model in Section 22.6
in the context of the analysis of variance.

19.7 Bibliographic note

Gelfand, Sahu, and Carlin (1995), Boscardin (1996), Roberts and Sahu (1997),
Gelfand and Sahu (1999), and Sargent, Hodges, Carlin (2000) discuss additive trans-
formations (also called hierarchical centering) and related ideas for speeding Gibbs
sampler convergence. The properties of redundant multiplicative parameters have
been studied by Liu, Rubin, and Wu (1998), Liu and Wu (1999), van Dyk and
Meng (2001), and Gelman, Huang, et al. (2006). Gelman et al. (2003, appendix C)
present R and Bugs implementations of redundant multiplicative parameterization
for a simple multilevel model. Geweke (2004) and Cook, Gelman, and Rubin (2006)
present some methods for using fake-data simulation to validate Bayesian software.

The treatment in Section 19.6 of prior distributions for multilevel variance pa-
rameters comes from Gelman (2006). The 8-schools example is discussed in detail
in Gelman et al. (2003, chapter 5).

19.8 Exercises

1. Fake-data simulation: take an example of a multilevel model from an exercise in
one of the previous chapters. Check the fitting using a fake-data simulation:

(a) Specify the unmodeled parameters (that is, those with noninformative prior
distributions in the Bugs model; see Figure 16.4 on page 366), then simulate
the modeled parameters, then simulate a fake dataset.

(b) Fit the model to the fake data and check numerically that the inferences for
the unmodeled parameters are consistent with their “true values” you chose
in part (a). Check graphically that the inferences for the modeled parameters
are consistent with their “true values” you simulated in part (a).

2. Redundant parameterization: take a varying-intercept model from an exercise in
one of the previous chapters.

(a) Fit the model without redundant parameterization.

(b) Include redundant additive parameters.

(c) Include redundant additive and multiplicative parameters.

(d) Check that the different forms of the model give the same inferences. Compare
how long (in actual time, not just number of iterations) it takes for each of
the simulations to reach approximate convergence.

3. Prior distributions for multilevel variance parameters: consider the varying-in-
tercept radon model with floor of measurement as an individual-level predictor
and log uranium as a county-level predictor. Data are in the folder radon.

(a) Fit the model in Bugs using the different prior distributions for the group-level
variance parameter discussed in Section 19.6. Compare the inferences for the
group-level standard deviation and for a selection of the intercept parameters.

(b) Repeat (a) but just analyzing the subset of the data corresponding to the first
eight counties.

(c) Repeat just using the data from the first three counties.



Part 3: From data collection to model
understanding to model checking

We now go through the steps of understanding and working with multilevel re-
gressions, including designing studies, summarizing inferences, checking the fit of
models to data, and imputing missing data.





CHAPTER 20

Sample size and power calculations

20.1 Choices in the design of data collection

Multilevel modeling is typically motivated by features in existing data or the object
of study—for example, voters classified by demography and geography, students in
schools, multiple measurements on individuals, and so on. Consider all the examples
in Part 2 of this book. In some settings, however, multilevel data structures arise
by choice from the data collection process. We briefly discuss some of these options
here.

Unit sampling or cluster sampling

In a sample survey, data are collected on a set of units in order to learn about a larger
population. In unit sampling, the units are selected directly from the population. In
cluster sampling, the population is divided into clusters: first a sample of clusters
is selected, then data are collected from each of the sampled clusters.

In one-stage cluster sampling, complete information is collected within each sam-
pled cluster. For example, a set of classrooms is selected at random from a larger
population, and then all the students within each sampled classroom are inter-
viewed. In two-stage cluster sampling, a sample is performed within each sampled
cluster. For example, a set of classrooms is selected, and then a random sample of
ten students within each classroom is selected and interviewed. More complicated
sampling designs are possible along these lines, including adaptive designs, strati-
fied cluster sampling, sampling with probability proportional to size, and various
combinations and elaborations of these.

Observational studies or experiments with unit-level or group-level treatments

Treatments can be applied (or can be conceptualized as being applied in the case
of a purely observational study) at individual or group levels; for example:

• In a medical study, different treatments might be applied to different patients,
with patients clustered within hospitals that could be associated with varying
intercepts or slopes.

• As discussed in Section 9.3, the Electric Company television show was viewed
by classes, not individual students.

• As discussed in Section 11.2, child support enforcement policies are set by states
and cities, not individuals.

• In the radon study described in Chapter 12, we can compare houses with and
without basements within a county, but we can only study uranium as it varies
between counties.

We present a longer list of such designs in the context of experiments in Section
22.4.

437
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Typically, coefficients for factors measured at the individual level can be esti-
mated more accurately than for group-level factors because there will be more indi-
viduals than groups; so 1/

√
n is more effective than 1/

√
J at reducing the standard

error.

Meta-analysis

The sample size of a study can be increased in several ways:

• Gathering more data of the sort already in the study,

• Including more observations either in a nonclustered setting, as new observations
in existing clusters, or new observations in new clusters

• Finding other studies performed under comparable (but not identical) conditions
(so new observations in effect are like observations from a new “group”).

• Finding other studies on related phenomena (again new observations from a
different “group”).

For example, in the study of teenage smoking in Section 11.3, these four options
could be: (a) surveying more Australian adolescents about their smoking behav-
ior, (b) taking more frequent measurements (for example, asking about smoking
behavior every three months instead of every six months), (c) performing a sim-
ilar survey in other cities or countries, or (d) performing similar studies of other
unhealthy behaviors.

The first option is most straightforward—increasing n decreases standard errors
in proportion to 1/

√
n. The others involve various sorts of multilevel models and

are made more effective by collecting appropriate predictors at the individual and
group levels. (As discussed in Section 12.3, the more that the variation is explained
by external predictors, the more effective the partial pooling will be.) A challenge
of multilevel design is to assess the effectiveness of these various strategies for
increasing sample size. Finding data from other studies is often more feasible than
increasing n in an existing study, but then it is important to either find other studies
that are similar, or to be able to model these differences.

Sample size, design, and interactions

Sample size is never large enough. As n increases, we estimate more interactions,
which typically are smaller and have relatively larger standard errors than main
effects (for example, see the fitted regression on page 63 of log earnings on sex,
standardized height, and their interaction). Estimating interactions is similar to
comparing coefficients estimated from subsets of the data (for example, the co-
efficient for height among men, compared to the coefficient among women), thus
reducing power because the sample size for each subset is halved, and also the
differences themselves may be small. As more data are included in an analysis, it
becomes possible to estimate these interactions (or, using multilevel modeling, to
include them and partially pool them as appropriate), so this is not a problem. We
are just emphasizing that, just as you never have enough money, because perceived
needs increase with resources, your inferential needs will increase with your sample
size.
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20.2 Classical power calculations: general principles, as illustrated by

estimates of proportions

Questions of data collection can typically be expressed in terms of estimates and
standard errors for quantities of interest. This chapter follows the usual focus on
estimating population averages, proportions, and comparisons in sample surveys;
or estimating treatment effects in experiments and observational studies. However,
the general principles apply for other inferential goals such as prediction and data
reduction. The paradigmatic problem of power calculation is the estimation of a
parameter θ (for example, a regression coefficient such as would arise in estimating
a difference or treatment effect), with the sample size determining the standard
error.

Effect sizes and sample sizes

In designing a study to maximize the power of detecting a statistically significant
comparison, it is generally better, if possible, to double the effect size θ than to
double the sample size n, since standard errors of estimation decrease with the
square root of the sample size. This is one reason, for example, why potential
toxins are tested on animals at many times their exposure levels in humans; see
Exercise 20.3.

Studies are designed in several ways to maximize effect size:

• In drug studies, setting doses as low as ethically possible in the control group
and as high as ethically possible in the experimental group.

• To the extent possible, choosing individuals that are likely to respond strongly
to the treatment. For example, the Electric Company experiment described in
Section 9.3 was performed on poorly performing classes in each grade, for which
it was felt there was more room for improvement.

In practice, this advice cannot be followed completely. In the social sciences, it
can be difficult to find an intervention with any noticeable positive effect, let alone
to design one where the effect would be doubled. Also, when treatments in an
experiment are set to extreme values, generalizations to more realistic levels can be
suspect; in addition, missing data in the control group may be more of a problem
if the control treatment is ineffective. Further, treatment effects discovered on a
sensitive subgroup may not generalize to the entire population. But, on the whole,
conclusive effects on a subgroup are generally preferred to inconclusive but more
generalizable results, and so conditions are usually set up to make effects as large
as possible.

Power calculations

Before data are collected, it can be useful to estimate the precision of inferences
that one expects to achieve with a given sample size, or to estimate the sample size
required to attain a certain precision. This goal is typically set in one of two ways:

• Specifying the standard error of a parameter or quantity to be estimated, or

• Specifying the probability that a particular estimate will be “statistically signif-
icant,” which typically is equivalent to ensuring that its confidence interval will
exclude the null value.

In either case, the sample size calculation requires assumptions that typically cannot
really be tested until the data have been collected. Sample size calculations are thus
inherently hypothetical.
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Figure 20.1 Illustration of simple sample size calculations.
Top row: (a) distribution of the sample proportion p̂ if the true population proportion is
p = 0.6, based on a sample size of 96; (b) several possible 95% intervals for p based on
a sample size of 96. The power is 50%—that is, the probability is 50% that a randomly
generated interval will be entirely to the right of the comparison point of 0.5.
Bottom row: corresponding graphs for a sample size of 196. Here the power is 80%.

Sample size to achieve a specified standard error

To understand these two kinds of calculations, consider the simple example of es-
timating the proportion of the population who support the death penalty (un-
der a particular question wording). Suppose we suspect the population propor-
tion is around 60%. First, consider the goal of estimating the true proportion p
to an accuracy (that is, standard error) of no worse than 0.05, or 5 percentage
points, from a simple random sample of size n. The standard error of the mean is√

p(1 − p)/n. Substituting the guessed value of 0.6 for p yields a standard error

of
√

0.6 · 0.4/n = 0.49/
√

n, and so we need 0.49/
√

n ≤ 0.05, or n ≥ 96. More
generally, we do not know p, so we would use a conservative standard error of√

0.5 · 0.5/n = 0.5/
√

n, so that 0.5/
√

n ≤ 0.05, or n ≥ 100.

Sample size to achieve a specified probability of obtaining statistical significance

Second, suppose we have the goal of demonstrating that more than half the pop-
ulation supports the death penalty—that is, that p > 1/2—based on the estimate
p̂ = y/n from a sample of size n. As above, we shall evaluate this under the hypoth-
esis that the true proportion is p = 0.60, using the conservative standard error for
p̂ of

√
0.5 · 0.5/n = 0.5/

√
n. The 95% confidence interval for p is [p̂±1.96 ·0.5/

√
n],

and classically we would say we have demonstrated that p > 1/2 if the interval lies
entirely above 1/2; that is, if p̂ > 0.5+1.96 · 0.5/

√
n. The estimate must be at least

1.96 standard errors away from the comparison point of 0.5.
A simple, but not quite correct, calculation, would set p̂ to the hypothesized value
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Figure 20.2 Sketch illustrating that, to obtain 80% power for a 95% confidence interval,
the true effect size must be at least 2.8 standard errors from zero (assuming a normal
distribution for estimation error). The top curve shows that the estimate must be at least
1.96 standard errors from zero for the 95% interval to be entirely positive. The bottom
curve shows the distribution of the parameter estimates that might occur, if the true effect
size is 2.8. Under this assumption, there is an 80% probability that the estimate will exceed
1.96. The two curves together show that the lower curve must be centered all the way at
2.8 to get an 80% probability that the 95% interval will be entirely positive.

of 0.6, so that the requirement is 0.6 > 0.5+1.96 ·0.5/
√

n, or n > (1.96 ·0.5/0.1)2 =
96. This is mistaken, however, because it confuses the assumption that p = 0.6
with the claim that p̂ > 0.6. In fact, if p = 0.6, then p̂ depends on the sample, and
it has an approximate normal distribution with mean 0.6 and standard deviation√

0.6 · 0.4/n = 0.49/
√

n; see Figure 20.1a.
To determine the appropriate sample size, we must specify the desired power—

that is, the probability that a 95% interval will be entirely above the comparison
point of 0.5. Under the assumption that p = 0.6, choosing n = 96 yields 50% power:
there is a 50% chance that p̂ will be more than 1.96 standard deviations away from
0.5, and thus a 50% chance that the 95% interval will be entirely greater than 0.5.

The conventional level of power in sample size calculations is 80%: we would like
to choose n such that 80% of the possible 95% confidence intervals will not include
0.5. When n is increased, the estimate becomes closer (on average) to the true value,
and the width of the confidence interval decreases. Both these effects (decreasing
variability of the estimator and narrowing of the confidence interval) can be seen
in going from the top half to the bottom half of Figure 20.1.

To find the value of n such that exactly 80% of the estimates will be at least 1.96
standard errors from 0.5, we need

0.5 + 1.96 s.e. = 0.6 − 0.84 s.e.

Some algebra then yields (1.96 + 0.84) s.e. = 0.1. We can then substitute s.e. =
0.5/

√
n and solve for n.

2.8 standard errors from the comparison point

In summary, to have 80% power, the true value of the parameter must be 2.8
standard errors away from the comparison point: the value 2.8 is 1.96 from the
95% interval, plus 0.84 to reach the 80th percentile of the normal distribution. The
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bottom row of Figure 20.1 illustrates: with n = (2.8 · 0.49/0.1)2 = 196, and if
the true population proportion is p = 0.6, there is an 80% chance that the 95%
confidence interval will be entirely greater than 0.5, thus conclusively demonstrating
that more than half the people support the death penalty.

These calculations are only as good as their assumptions; in particular, one would
generally not know the true value of p before doing the study. Nonetheless, power
analyses can be useful in giving a sense of the size of effects that one could reasonably
expect to demonstrate with a study of given size. For example, a survey of size 196
has 80% power to demonstrate that p > 0.5 if the true value is 0.6, and it would
easily detect the difference if the true value were 0.7; but if the true p were equal to
0.56, say, then the difference would be only 0.06/(0.5/

√
196) = 1.6 standard errors

away from zero, and it would be likely that the 95% interval for p would include
1/2, even in the presence of this true effect. Thus, if the primary goal of the survey
were to conclusively detect a difference from 0.5, it would probably not be wise to
use a sample of only n = 196 unless we suspect the true p is at least 0.6. Such a
small survey would “not have the power to” reliably detect differences of less than
0.1.

Estimates of hypothesized proportions

The standard error of a proportion p, if it is estimated from a sample of size n,
is
√

p(1 − p)/n, which has an upper bound of 0.5/
√

n. This upper bound is very
close to the actual standard error for a wide range of probabilities p near 1/2: for
example, for p̂ = 0.5,

√
0.5 · 0.5 = 0.5 exactly; for p̂ = 0.6 or 0.4,

√
0.6 · 0.4 = 0.49,;

and for p̂ = 0.7 or 0.3,
√

0.7 · 0.3 = 0.46.

If the goal is a specified standard error, then a conservative required sample
size is determined by s.e.= 0.5/

√
n, so that n = (0.5/s.e.)2 or, more precisely,

n = p(1 − p)/(s.e.)2, given a hypothesized p near 0 or 1.

If the goal is 80% power to distinguish p from a specified value p0, then a
conservative required sample size is n = (2.8 · 0.5/(p − p0))

2 or, more precisely,
n = p(1 − p)(2.8/(p− p0))

2.

Simple comparisons of proportions: equal sample sizes

The standard error of a difference between two proportions is, by a simple prob-
ability calculation,

√
p1(1 − p1)/n1 + p2(1 − p2)/n2, which has an upper bound of

0.5
√

1/n1 + 1/n2. If we make the restriction n1 = n2 = n/2 (equal sample sizes in
the two groups), the upper bound on the standard error becomes simply 1/

√
n. A

specified standard error can then be attained with a sample size of n = 1/(s.e.)2.

If the goal is 80% power to distinguish between hypothesized proportions p1 and
p2 with a study of size n, equally divided between the two groups, a conservative
sample size is n = [2.8/(p1−p2)]

2 or, more precisely, n = 2[p1(1−p1) + p2(1−p2)] ·
[2.8/(p1−p2)]

2.

For example, suppose we suspect that the death penalty is 10% more popular in
the United States than in Canada, and we plan to conduct surveys in both countries
on the topic. If the surveys are of equal sample size, n/2, how large must n be so
that there is an 80% chance of achieving statistical significance, if the true difference
in proportions is 10%? The standard error of p̂1 − p̂2 is approximately 1/

√
n, so for

10% to be 2.8 standard errors from zero, we must have n > (2.8/0.10)2 = 784, or a
survey of 392 persons in each country.
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Simple comparisons of proportions: unequal sample sizes

In observational epidemiology, it is common to have unequal sample sizes in com-
parison groups. For example, consider a study in which 20% of units are “cases”
and 80% are “controls.”

First, consider the goal of estimating the difference between the treatment and
control groups, to some specified precision. The standard error of the difference is√

p1(1 − p1)/(0.2n) + p2(1 − p2)/(0.8n), and this expression has an upper bound

of 0.5
√

1/(0.2n) + 1/(0.8n) = 0.5
√

1/(0.2) + 1/(0.8)/
√

n = 1.25/
√

(n). A specified
standard error can then be attained with a sample size of n = (1.25/s.e.)2.

Second, suppose we want have sufficient total sample size n to achieve 80% power
to detect a difference of 10%, again with 20% of the sample size in one group and
80% in the other. Again, the standard error of p̂1− p̂2 is bounded by 1.25/

√
n, so for

10% to be 2.8 standard errors from zero, we must have n > (2.8·1.25/0.10)2 = 1225,
or 245 cases and 980 controls.

20.3 Classical power calculations for continuous outcomes

Sample size calculations proceed much the same way with continuous outcomes,
with the added difficulty that the population standard deviation must also be spec-
ified along with the hypothesized effect size. We shall illustrate with a proposed
experiment adding zinc to the diet of HIV-positive children in South Africa. In
various other populations, zinc and other micronutrients have been found to reduce
the occurrence of diarrhea, which is associated with immune system problems, as
well as to slow the progress of HIV. We first consider the one-sample problem—
how large a sample size would we expect to need to measure various outcomes to a
specified precision—and then move to two-sample problems comparing treatment
to control groups.

Estimates of means

Suppose we are trying to estimate a population mean value θ from data y1, . . . , yn,
a random sample of size n. The quick estimate of θ is the sample mean, ȳ, which has
a standard error of σ/

√
n, where σ is the standard deviation of y in the population.

So if the goal is to achieve a specified s.e. for ȳ, then the sample size must be at
least n = (σ/s.e.)2.

If the goal is 80% power to distinguish θ from a specified value θ0, then a con-
servative required sample size is n = (2.8σ/(θ − θ0))

2.

Simple comparisons of means

The standard error of ȳ1 − ȳ2 is
√

σ2
1/n1 + σ2

2/n2. If we make the restriction n1 =
n2 = n/2 (equal sample sizes in the two groups), the standard error becomes simply
s.e. =

√
2(σ2

1 + σ2
2)/

√
n. A specified standard error can then be attained with a

sample size of n = 2(σ2
1 + σ2

2)/(s.e.)2. If we further suppose that the variation is
the same within each of the groups (σ1 = σ2 = σ), then s.e. = 2σ/

√
n, and the

required sample size is n = (2σ/s.e.)2.
If the goal is 80% power to detect a difference of Δ, with a study of size n,

equally divided between the two groups, then the required sample size is n =
2(σ2

1 + σ2
2)(2.8/Δ)2. If σ1 = σ2 = σ, this simplifies to (5.6σ/Δ)2.

For example, consider the effect of zinc supplements on young children’s growth.
Results of published studies suggest that zinc can improve growth by approximately
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Rosado et al. (1997), Mexico

Sample Avg. # episodes
Treatment size in a year ± s.e.

placebo 56 1.1 ± 0.2
iron 54 1.4 ± 0.2
zinc 54 0.7 ± 0.1
zinc + iron 55 0.8 ± 0.1

Ruel et al. (1997), Guatemala

Sample Avg. # episodes
Treatment size per 100 days [95% c.i.]

placebo 44 8.1 [5.8, 10.2]
zinc 45 6.3 [4.2, 8.9]

Lira et al. (1998), Brazil

Sample % days with Prevalence ratio
Treatment size diarrhea [95% c.i.]

placebo 66 5% 1
1 mg zinc 68 5% 1.0 [0.72, 1.4]
5 mg zinc 71 3% 0.68 [0.49, 0.95]

Muller et al. (2001), West Africa

Sample # days with diarrhea/
Treatment size total # days

placebo 329 997/49021 = 0.020
zinc 332 869/49086 = 0.018

Figure 20.3 Results from various experiments studying the effects of zinc supplements on
diarrhea in children. We use this information to hypothesize the effect size Δ and within-
group standard deviation σ for our planned experiment.

0.5 standard deviations. That is, Δ = 0.5σ in the our notation. To have 80%
power to detect an effect size, it would be sufficient to have a total sample size of
n = (5.6/0.5)2 = 126, or n/2 = 63 in each group.

Estimating standard deviations using results from previous studies

Sample size calculations for continuous outcomes are based on estimated effect
sizes and standard deviations in the population—that is, Δ and σ. Guesses for
these parameters can be estimated or deduced from previous studies. We illustrate
with the design of a study to estimate the effects of zinc on diarrhea in children.
Various experiments have been performed on this topic—Figure 20.3 summarizes
the results, which we shall use to get a sense of the sample size required for our
study.

We consider the studies reported in Figure 20.3 in order. For Rosado et al. (1997),
we shall estimate the effect of zinc by averaging over the iron and no-iron cases,
thus an estimated Δ of 1

2 (1.1 + 1.4) − 1
2 (0.7 + 0.8) = 0.5 episodes in a year, with

a standard error of
√

1
4 (0.22 + 0.22) + 1

4 (0.12 + 0.12) = 0.15. From this study, it

would be reasonable to hypothesize that zinc reduces diarrhea in that population
by an average of about 0.3 to 0.7 episodes per year. Next, we can deduce the within-
group standard deviations σ using the formula s.e.= σ/

√
n; thus the standard

deviations are 0.2 · √56 = 1.5 for the placebo group, and similarly for the other
three groups are 1.5, 0.7, and 0.7, respectively. (Since the number of episodes is
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bounded below by zero, it makes sense that when the mean level goes down, the
standard deviation decreases also.)

Assuming an effect size of Δ = 0.5 episodes per year and within-group standard
deviations of 1.5 and 0.7 for the control and treatment groups, we can evaluate the
power of a future study with n/2 children in each group. The estimated difference
would have a standard error of

√
1.52/(n/2) + 0.72/(n/2) = 2.4/

√
n, and so for the

effect size to be at least 2.8 standard errors away from zero (and thus to have 80%
power to attain statistical significance), n would have to be at least (2.8·2.4/0.5)2 =
180 persons in the two groups.

Now turning to the Ruel et al. (1997) study, we first see that rates of diarrhea—
for control and treated children both—are much higher than in the previous study:
8 episodes per hundred days, which corresponds to 30 episodes per year, more than
20 times the rate in the earlier group. We are clearly dealing with much different
populations here. In any case, we can divide the confidence interval widths by 4
to get standard errors—thus, 1.1 for the placebo group and 1.2 for the treated
group—yielding an estimated treatment effect of 1.8 with standard error 1.6, which
is consistent with a treatment effect of nearly zero or as high as about 4 episodes
per 100 days. When compared to the average observed rate in the control group,
the estimated treatment effect from this study is about half that of the Rosado et
al. (1997) experiment: 1.8/8.1 = 0.22, compared to 0.5/1.15 = 0.43, which suggests
a higher sample size might be required. However, the wide confidence bounds of
the Ruel et al. (1997) study make it consistent with the larger effect size.

Next, Lira et al. (1998) report the average percent of days with diarrhea of
children in the control and two treatment groups corresponding to a low (1 mg)
or high (5 mg) dose of zinc. We shall consider only the 5 mg condition as this
is closer to the treatment we are considering in our experiment. The estimated
effect of the treatment is to multiply the number of days with diarrhea by 68%—
that is, a reduction of 32%, which again is consistent with the approximate 40%
decrease found in the first study. To make a power calculation, we first convert
the confidence interval [0.49, 0.95] for this multiplicative effect to the logarithmic
scale—thus, an additive effect of [−0.71,−0.05] on the logarithm—then divide by
4 to get an estimated standard error of 0.16 on this scale. The estimated effect of
0.68 is −0.38 on the log scale, thus 2.4 standard errors away from zero. For this
effect size to be 2.8 standard errors from zero, we would need to increase the sample
size by a factor of (2.8/2.4)2 = 1.4, thus moving from approximately 70 children to
approximately 100 in each of the two groups.

Finally, Muller et al. (2001) compare the proportion of days with diarrhea, which
declined from 2.03% in the controls to 1.77% among children who received zinc.
Unfortunately, no standard error is reported for this 13% decrease, and it is not
possible to compute it from the information in the article. However, the estimates of
within-group variation σ from the other studies would lead us to conclude that we
would need a very large sample size to be likely to reach statistical significance, if
the true effect size were only 10%. For example, from the Lira et al. (1998) study, we
estimate a sample size of 100 in each group is needed to detect an effect of 32%; thus
to detect a true effect of 13% we would need a sample size of 100(0.32/0.13)2 = 600.

These calculations are necessarily speculative; for example, to detect an effect of
10% (instead of 13%), the required sample size would be 100(0.32/0.10)2 = 1000 per
group, a huge change considering the very small change in hypothesized treatment
effects. Thus, it would be misleading to think of these as “required sample sizes.”
Rather, these calculations tell us how large the effects are that we could expect to
have a good chance of discovering, given any specified sample size.
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The first two studies in Figure 20.3 report the frequency of episodes, whereas the
last two studies give the proportion of days with diarrhea, which is proportional to
the frequency of episodes multiplied by the average duration of each episode. Other
data (not shown here) show no effect of zinc on average duration, and so we treat
all four studies as estimating the effects on frequency of episodes.

In conclusion, a sample size of about 100 per treatment group should give ad-
equate power to detect an effect of zinc on diarrhea, if its true effect is to reduce
the frequency, on average, by 30%–50% compared to no treatment. A sample size
of 200 per group would have the same power to detect effects a factor

√
2 smaller,

that is, effects in the 20%–35% range.

Including more regression predictors

Now suppose we are comparing treatment and control groups with additional pre-
treatment data available on the children (for example, age, height, weight, and
health status at the start of the experiment). These can be included in a regression.
For simplicity, we consider a model with no interactions—that is, with coefficients
for the treatment indicator and the other inputs—in which case, the treatment
coefficient represents the causal effect, the comparison between the two groups
after controlling for pre-treatment differences.

Sample size calculations for this new study are exactly as before, except that the
within-group standard deviation σ is replaced by the residual standard deviation
of the regression. This can be hypothesized in its own right or in terms of the
added predictive power of the pre-treatment data. For example, if we hypothesize a
within-group standard deviation of 0.2, then a residual standard deviation of 0.14
would imply that half the variance within any group is explained by the regression
model, which would actually be pretty good.

Adding predictors tends to decrease the residual standard deviation and thus
reduce the required sample size for any specified level of precision or power.

Estimation of regression coefficients more generally

More generally, sample sizes for regression coefficients and other estimands can
be calculated using the rule that standard errors are proportional to 1/

√
n; thus,

if inferences exist under a current sample size, effect sizes can be estimated and
standard errors extrapolated for other hypothetical samples.

We illustrate with the example of the survey earnings and height discussed in
Chapter 4. The coefficient for the sex-earnings interaction in model (4.2) on page
63 is plausible (a positive interaction, implying that an extra inch of height is
worth 0.7% more for men than for women), but it is not statistically significant—
the standard error is 1.9%, yielding a 95% interval of [−3.1, 4.5], which contains
zero.

Simple sample size and power calculations. How large a sample size would be
needed for the coefficient on the interaction to be statistically significant? A simple
calculation uses the fact that standard errors are proportional to 1/

√
n. For a

point estimate of 0.7% to achieve statistical significance, it would need a standard
error of 0.35%, which would require the sample size to be increased by a factor
of (1.9%/0.35%)2 = 29. The original survey had a sample of 1192; this implies a
required sample size of 29 · 1192 = 35,000.

To extend this to a power calculation, we suppose that the true β for the interac-
tion is equal to 0.7% and that the standard error is as we have just calculated. With
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a standard error of 0.35%, the estimate from the regression would then be statis-
tically significant only if β̂ > 0.7% (or, strictly speaking, if β̂ < −0.7%, but that
latter possibility is highly unlikely given our assumptions). If the true coefficient is
β, we would expect the estimate from the regression to possibly take on values in
the range β ± 0.35% (that is what is meant by “a standard error of 0.35%”), and

thus if β truly equals 0.7%, we would expect β̂ to exceed 0.7%, and thus achieve
statistical significance, with a probability of 1/2—that is, 50% power. To get 80%
power, we need the true β to be 2.8 standard errors from zero, so that there is an
80% probability that β̂ is at least 2 standard errors from zero. If β = 0.7%, then
its standard error would have to be no greater than 0.7%/2.8 = 0.25%, so that the
survey would need a sample size of (1.9%/0.25%)2 · 1192 = 70,000.

This power calculation is only provisional, however, because it makes the very
strong assumption that the β is equal to 0.7%, the estimate that we happened to
obtain from our survey. But the estimate from the regression is 0.7%±1.9%, which
implies that these data are consistent with a low, zero, or even negative value of
the true β (or, in the other direction, a true value that is greater than the point
estimate of 0.7%). If the true β is actually less than 0.7%, then even a sample size
of 70,000 will be insufficient for 80% power.

This is not to say the power calculation is useless but just to point out that, even
when done correctly, it is based on an assumption that is inherently untestable from
the available data (hence the need for a larger study). So we should not necessarily
expect statistical significance from a proposed study, even if the sample size has
been calculated correctly.

20.4 Multilevel power calculation for cluster sampling

With multilevel data structures and models, power calculations become more com-
plicated because there is the option to set the sample size at each level. In a cluster
sampling design, one can choose the number of clusters to sample and the num-
ber of units to sample within each cluster. In a longitudinal study, one can choose
the number of persons to study and the frequency of measurement of each person.
Options become even more involved for more complicated designs, such as those
involving treatments at different levels. We illustrate here with examples of quick
calculations for a survey and an experiment and then in Section 20.5 discuss a
general approach for power calculations using simulations.

Standard deviation of the mean of clustered data

Consider a survey in which it is desired to estimate the average value of y in some
population, and data are collected from J equally sized clusters selected at random
from a larger population, with m units measured from each sampled cluster, so
that the total sample size is n = Jm.1 In this symmetric design, the estimate for
the population total is simply the sample mean, ȳ. If the number of clusters in the
population is large compared to J , and the number of units within each cluster is
large compared to m, then the standard error of ȳ is

standard error of ȳ =
√

σ2
y/n + σ2

α/J. (20.1)

1 In the usual notation for survey sampling, one might use a and A for the number of clusters
in the sample and population, respectively. Here we use the capital letter J to indicate the
number of selected clusters to be consistent with our general multilevel-modeling notation of J
for the number of groups in the data.
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Figure 20.4 Margin of error for inferences for a proportion as estimated from a cluster
sample, as a function of cluster size and intraclass correlation, for two different proposed
values of total sample size. The lines on the graphs do not represent a fitted model; they
are based on analytical calculations using the variance formulas for cluster sampling.

(The separate variance parameters σ2
y and σ2

α, needed for the power calculations,
can be estimated from the cluster-sampled data using a multilevel model.)

This formula can also be rewritten as

standard error of ȳ =

√
σ2

total

Jm
[1 + (m − 1)ICC], (20.2)

where σtotal represents the standard deviation of all the data (mixing all the groups;
thus σ2

total = σ2
y + σ2

α for this simple model), and ICC is the intraclass correlation,

intraclass correlation: ICC =
σ2

α

σ2
α + σ2

y

, (20.3)

the fraction of total variation in the data that is accounted for by between-group
variation. The intraclass correlation can also be thought of as the correlation among
units within the same group. Formulas (20.1) and (20.2) provide some intuition
regarding the extent to which clustering can affect our standard errors. The greater
the correlation among units within a group (that is, the bigger ICC is) the greater
the impact on the standard error. If there is no intraclass correlation (that is,
ICC = 0) the standard error of ȳ is simply σtotal/

√
n.

Example of a sample size calculation for cluster sampling

We illustrate sample size calculations for cluster sampling with a design for a pro-
posed study of residents of New York City. The investigators were planning to
study approximately 300 or 400 persons sampled for convenience from 10 or 20
U.S. Census tracts, and they wanted to get a sense of how much error the cluster-
ing was introducing into the estimation. The number of census tracts in the city
and the population of each tract are large enough that (20.1) was a reasonable
approximation.

Figure 20.4 shows the margin of error for ȳ from this formula, as a function of the
sample size within clusters, for several values of the intraclass correlation. When
the correlation is zero, the clustering is irrelevant and the margin of error only
depends on the total sample size, n. For positive values of intraclass correlation (so
that people within a census tract are somewhat similar to each other, on average),
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the standard error increases as the number of clusters decreases with fixed sample
size. For the higher values of intraclass correlation shown in the graphs, it seems
that it would be best to choose enough clusters so that no more than 20 persons
are selected within each cluster.

But why, in Figure 20.4, do we think that interclass correlations between 0 and
15% are plausible? To start with, for binary data, the denominator of (20.3) can
be reasonably approximated by 0.25 (since p(1 − p) ≈ 0.25 if p is not too close to
0 or 1). Now suppose that the clusters themselves differ in some particular average
outcome with a standard error of 0.2—this is a large value of σα, with, for example,
the percentages of Yes responses in some clusters as low as 0.3 and in others as
high as 0.7. The resulting intraclass correlation is 0.22/0.25 = 0.16. If, instead,
σα = 0.1 (so that, for example, the average percentage of Yes in clusters varies
from approximately 0.4 to 0.6), the intraclass correlation is 0.04. Thus, it seems
reasonable to consider correlations ranging from 0 to 5% to 15% as in Figure 20.4.

20.5 Multilevel power calculation using fake-data simulation

Figure 20.5a shows measurements of the immune system (CD4 percentage, trans-
formed to the square root scale to better fit an additive model) taken over a two-year
period on a set of HIV-positive children who were not given zinc. The observed noisy
time series can be fitted reasonably well by a varying-intercept, varying-slope model
of the form, yjt ∼ N(αj +βjt, σ2

y), where j indexes children, t indexes time, and the
data variance represents a combination of measurement errors, short-term variation
in CD4 levels, and departures from a linear trend within each child. This model
can also be written more generally as yi ∼ N(αj[i] + βj[i]ti, σ2

y), where i indexes
measurements taken at time ti on person j[i]. Here is the result of the quick model
fit:

R outputlmer(formula = y ~ time + (1 + time | person))

coef.est coef.se

(Intercept) 4.8 0.2

time -0.5 0.1

Error terms:

Groups Name Std.Dev. Corr

person (Intercept) 1.3

time 0.7 0.1

Residual 0.7

# of obs: 369, groups: person, 83

Of most interest are the time trends βj , whose average is estimated at −0.5 with a
standard deviation of 0.7 (we thus estimate that most, but not all, of the children
have declining CD4 levels during this period). The above display also gives us
estimates for the intercepts and the residual standard deviation.

We then fit the model in Bugs to get random simulations of all the parameters.
The last three panels of Figure 20.5 show the results: the estimated trend line for
each child, a random draw of the set of 83 trend lines, and a random replicated
dataset (following the principles of Section 8.3) with measurements at the time
points observed for the actual data. The replicated dataset looks generally like the
actual data, suggesting that the linear-trend-plus-error model is a reasonable fit.

Modeling a hypothetical treatment effect

We shall use these results to perform a power calculation for a proposed new study
of dietary zinc. We would like the study to be large enough that the probability is
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Figure 20.5 (a) Progression of CD4 percentage over time (on the square root scale) for 83
untreated children j in the HIV study; (b) individual trend lines α̂j + β̂jt (posterior mean
estimates from multilevel model); (c) a single posterior draw from the set of individual
trend lines αj + βjt; (d) a replicated dataset (ỹjt) simulated from the posterior predictive
distribution.

at least 80% that the average estimated treatment effect is statistically significant
at the 95% level.

A hypothesized model of treatment effects. To set up this power calculation we need
to make assumptions about the true treatment effect and also specify all the other
parameters that characterize the study. Our analysis of the HIV-positive children
who did not receive zinc found an average decline in CD4 (on the square root scale)
of 0.5 per year. We shall suppose in our power calculation that the true effect of
the treatment is to reduce this average decline to zero.

We now set up a model for the hypothetical treatment and control data. So
far, we have fitted a model to “controls,” but that model can be used to motivate
hypotheses for effects of treatments applied after the initial measurement (t =
0). To start with, the parameters αj , βj cleanly separate into an intercept that is
unaffected by the treatment (and can thus be interpreted as an unobserved unit-
level characteristic) and a slope βj that is potentially affected. A model of linear
trends can then be written as

yi ∼ N(αj[i] + βj[i]ti, σ2
y), for i = 1, . . . , n(

αj

βj

)
∼ N

((
γα
0

γβ
0 + γβ

1 zj

)
,

(
σ2

α ρσασβ

ρσασβ σ2
β

))
, for j = 1, . . . , J,

where

zj =

{
1 if child i received the treatment
0 otherwise.

The treatment zj affects the slope βj but not the intercept αj because the treatment

can have no effect at time zero. As noted, we shall suppose γβ
0 , the slope for controls,
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to be −0.5, with a treatment effect of γβ
1 = 0.5. We complete the model by setting

the other parameters to their estimated values from the control data: μα = 4.8,
σα = 1.3, σy = 0.7, σβ = 0.7. For simplicity, we shall set ρ, the correlation between
intercepts and slopes, to zero, although it was estimated at 0.1 from the actual
data.

Design of the study. The next step in the power analysis is to specify the design
of the study. We shall assume that J HIV-positive children will be randomly as-
signed into two treatments, with J/2 receiving regular care and J/2 receiving zinc
supplements as well. We further assume that the children’s CD4 percentages are
measured every two months over a year (that is, seven measurements per child).
We will now determine the J required for 80% power, if the true treatment effect
is 0.5, as assumed above.

Quick power calculation for classical regression

We first consider a classical analysis, in which a separate linear regression is fitted
for each child: yjt = αj +βjt+error. The trend estimates β̂j would then be averaged
for the children in the control and treatment groups, with the difference between the
group mean trends being an estimated treatment effect. For simplicity, we assume
the model is fitted separately for each child—that is, simple least squares, not a
multilevel model.

This problem then has the structure of a simple classical sample size calculation,
with the least squares estimate β̂j being the single “data point” for each child j and
an assumed effect size Δ = 0.5. We must merely estimate σ, the standard deviation
of the β̂j ’s within each group, and we can determine the required total sample size
as J = (2 · 2.8σ/Δ)2.

If β̂j were a perfect estimate of the child’s trend parameter, then σ would
simply be the standard deviation of the βj ’s, or 0.7 from the assumptions we
have made. However, we must also add the variance of estimation, which in this
case (from the formula for least squares estimation with a single predictor) is

1√
(−3/6)2+(−2/6)2+···+(3/6)2

σy = 1.13σy = 0.8 (based on the estimate of σy = 0.7

from our multilevel model earlier). The total standard deviation of β̂j is then√
σ2

β + 1.132σ2
y =

√
0.72 + 0.82 = 1.1. The sample size required for 80% power

to find a statistically significant difference in trends between the two groups is then
J = (2 · 2.8 · 1.1/0.5)2 = 150 children total (that is, 75 per group).

This sample size calculation is based on the assumption that the treatment would,
on average, eliminate the observed decline in CD4 percentage. If instead we were to
hypothesize that the treatment would cut the decline in half, the required sample
size would quadruple, to a total of 600 children.

Power calculation for multilevel estimate using fake-data simulation

Power calculations for any model can be performed by simulation. This involves
repeatedly simulating data from the hypothetical distribution that we expect our
sampled data to come from (once we perform the intended study) and then fitting
a multilevel model to each dataset. This can be computer-intensive, and practical
compromises are sometimes needed so that the simulation can be performed in a
reasonable time. Full simulation using Bugs is slow because it involves nested loops
(100 or 1000 sets of fake data; for each, the looping of a Gibbs sampler required to
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fit a model in Bugs). Instead, we fit the model to each fake dataset quickly using
lmer(). We illustrate with the zinc treatment example.

Simulating the hypothetical data. The first step is to write a function in R that
will generate data from the distribution assumed for the control children (based on
our empirical evidence) and the distribution for the treated children (based on our
assumptions about how their change in CD4 count might be different were they
treated). This function generates data from a sample of J children (half treated,
half controls), each measured K times during a 1-year period.

R code CD4.fake <- function (J, K){

time <- rep (seq(0,1,length=K), J) # K measurements during the year

person <- rep (1:J, each=K) # person ID’s

treatment <- sample (rep (0:1, J/2))

treatment1 <- treatment[person]

# # hyperparameters:

mu.a.true <- 4.8 # more generally, these could

g.0.true <- -.5 # be specified as additional

g.1.true <- .5 # arguments to the function

sigma.y.true <- .7

sigma.a.true <- 1.3

sigma.b.true <- .7

# # person-level parameters

a.true <- rnorm (J, mu.a.true, sigma.a.true)

b.true <- rnorm (J, g.0.true + g.1.true*treatment, sigma.b.true)

# # data

y <- rnorm (J*K, a.true[person] + b.true[person]*time, sigma.y.true)

return (data.frame (y, time, person, treatment1))

}

The function returns a data frame with the simulated measurements along with
the input variables needed to fit a model to the data and estimate the average
treatment effect, γ1. We save treatment as a data-level predictor (which we call
treatment1) because this is how it must be entered into lmer().

Fitting the model and checking the power. Next we can embed the fake-data sim-
ulation CD4.fake() in a loop to simulate 1000 sets of fake data; for each, we fit the
model and obtain confidence intervals for the parameter of interest:

R code CD4.power <- function (J, K, n.sims=1000){

signif <- rep (NA, n.sims)

for (s in 1:n.sims){

fake <- CD4.fake (J, K)

lme.power <- lmer (y ~ time + time:treatment1 +

(1 + time | person), data=fake)

theta.hat <- fixef(lme.power)["time:treatment1"]

theta.se <- se.fixef(lme.power)["time:treatment1"]

signif[s] <- (theta.hat - 2*theta.se) > 0 # returns TRUE or FALSE

}

power <- mean (signif) # proportion of TRUE

return (power)

}

This function has several features that might need explaining:

• The function definition sets the number of simulations to the default value of
1000. So if CD4.power() is called without specifying the n.sims argument, it
will automatically run 1000 simulations.
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Figure 20.6 Power (that is, the probability that estimated treatment effect is statistically
significantly positive) as a function of number of children, J, for the hypothetical zinc study,
as computed using fake-data simulation with multilevel inference performed by lmer().
The simulations are based on particular assumptions about the treatment effect and the
variation among children and among measurements within children. We also have assumed
K = 7 measurements for each child during the year of the study, a constraint determined
by the practicalities of the experiment. Reading off the curve, 80% power is achieved at
approximately J = 130.

• The lmer() call includes the interaction time:treatment1 and the main effect
time but not the main effect treatment1. This allows the treatment to affect the
slope but not the intercept, which is appropriate since the treatment is performed
after time 0.

• The data frame fake is specified as an argument to lmer() so that the analysis
knows what dataset to use.

• We assume the estimated treatment effect of the hypothetical study is statisti-
cally significantly positive if the lower bound of its 95% interval exceeds zero.

• The function returns the proportion of the 1000 simulations where the result is
statistically significant; thus, the power (as computed via simulation) for a study
with J children measured at K equally spaced times during the year.

Putting it all together to compute power as a function of sample size. Finally,
we put the above simulation in a loop and compute the power at several different
values of J , running from 20 to 400, and plot a curve displaying power as a function
of sample size; the result is shown in Figure 20.6. Our quick estimate based on
classical regression was that 80% power is achieved with J = 150 children (75 in
each treatment group) also applies to the multilevel model in this case. The classical
computation works in this case because the treatment is at the group level (in this
example, persons are the groups, and CD4 measurements are the units) and the
planned study is balanced.

At the two extremes:

• The power is 0.025 in the limit J→0. With a small enough sample, the treatment
effect estimate is essentially random, and so there is a 2.5% chance that it is more
than 2 standard errors above zero.

• Under the assumption that the true effect is positive, the power is 1 in the limit
J →∞, at which point there are enough data to estimate the treatment effect
perfectly.

Using simulation for power analyses allows for greater flexibility in study design.
For instance, besides simply calculating how power changes as sample size increases,
we might also have investigated a different kind of change in study design such as
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changes in the percentage of study participants allocated to treatment versus control
groups. This aspect of study design might be particularly relevant if treatment
participants are more costly than control participants, for instance (see Exercise
20.6). Another design feature that could be varied is the number of measurements
per person, and the simulation can also include missing data, nonlinearity, unequal
variance, and other generalizations of the model.

20.6 Bibliographic note

Scott and Smith (1969), Cochran (1977), Goldstein and Silver (1989), and Lohr
(1999) are standard and useful references for models used in survey sampling, and
Groves et al. (2004) goes over the practical aspects of survey design. Montgomery
(1986) and Box, Hunter, and Hunter (2005) review the statistical aspects of ex-
perimental design; Trochim (2001) is a more introductory treatment with useful
practical advice on research methods.

Hoenig and Heisey (2001) and Lenth (2001) provide some general warnings and
advice on sample size and power calculations. Design issues and power calculations
for multilevel studies are discussed by Snijders and Bosker (1993), Raudenbush
(1997), Snijders, Bosker, and Guldemond (1999), Raudenbush and Xiaofeng (2000),
and Raudenbush and Bryk (2002).

20.7 Exercises

1. Sample size calculations for estimating proportions:

(a) How large a sample survey would be required to estimate, to within a standard
error of ±3%, the proportion of the U.S. population who support the death
penalty?

(b) About 14% of the U.S. population is Latino. How large would a national
sample of Americans have to be in order to estimate, to within a standard error
of ±3%, the proportion of Latinos in U.S. who support the death penalty?

(c) How large would a national sample of Americans have to be in order to esti-
mate, to within a standard error of ±1%, the proportion who are Latino?

2. Consider an election with two major candidates, A and B, and a minor candidate,
C, who are believed to have support of approximately 45%, 35%, and 20% in the
population. A poll is to be conducted with the goal of estimating the difference
in support between candidates A and B. How large a sample would you estimate
is needed to estimate this difference to within a standard error of 5%? (Hint:
consider an outcome variable that is coded as +1, −1, and 0 for supporters of
A, B, and C, respectively.)

3. Effect size and sample size: consider a toxin that can be tested on animals at
different doses. Suppose a typical exposure level for humans is 1 (in some units),
and at this level the toxin is hypothesized to introduce a risk of 0.01% of death
per person.

(a) Consider different animal studies, each time assuming a linearity in the dose-
response relation (that is, 0.01% risk of death per animal per unit of the
toxin), with doses of 1, 100, and 10,000. At each of these exposure levels,
what sample size is needed to have 80% power of detecting the effect?

(b) This time assume that response is a logged function of dose and redo the
calculations in (a).
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4. Cluster sampling with equal-sized clusters: a survey is being planned with the
goal of interviewing n people in some number J of clusters. For simplicity, assume
simple random sampling of clusters and a simple random sample of size n/J
(appropriately rounded) within each sampled cluster.

Consider inferences for the proportion of Yes responses in the population for
some question of interest. The estimate will be simply the average response for
the n people in the sample. Suppose that the true proportion of Yes responses is
not too far from 0.5 and that the standard deviation among the mean responses
of clusters is 0.1.

(a) Suppose the total sample size is n = 1000. What is the standard error for the
sample average if J = 1000? What if J = 100, 10, 1?

(b) Suppose the cost of the survey is $50 per interview, plus $500 per cluster.
Further suppose that the goal is to estimate the proportion of Yes responses
in the population with a standard error of no more than 2%. What values of
n and J will achieve this at the lowest cost?

5. Simulation for power analysis: the folder electric.company contains data from
the Electric Company experiment analyzed in Chapter 9. Suppose you wanted
to perform a new experiment under similar conditions, but for simplicity just
for second-graders, with the goal of having 80% power to find a statistically
significant result (at the 95% level) in grade 2.

(a) State clearly the assumptions you are making for your power calculations.
(Hint: you can set the numerical values for these assumptions based on the
analysis of the existing Electric Company data.)

(b) Suppose that the new data will be analyzed by simply comparing the average
scores for the treated classrooms to the average scores for the controls. How
many classrooms would be needed for 80% power?

(c) Repeat (b), but supposing that the new data will be analyzed by comparing
the average gain scores for the treated classrooms to the average gain scores
of the controls.

(d) Repeat (b), but supposing that the new data will be analyzed by regression,
controlling for pre-test scores as well as the treatment indicator.

6. Optimal design:

(a) Suppose that the zinc study described in Section 20.5 would cost $150 for
each treated child and $100 for each control. Under the assumptions given
in that section, determine the number of control and treated children needed
to attain 80% power at minimal total cost. You will need to set up a loop of
simulations as illustrated for the example in the text. Assume that the number
of measurements per child is fixed at K = 7 (that is, measuring every two
months for a year).

(b) Make a generalization of Figure 20.6 with several lines corresponding to dif-
ferent values of the design parameter K, the number of measurements for each
child.





CHAPTER 21

Understanding and summarizing the
fitted models

Now that we can fit multilevel models, we should consider how to understand and
summarize the parameters (and important transformations of these parameters)
thus estimated.

Inferences from classical regression are typically summarized by a table of co-
efficient estimates and standard errors, sometimes with additional information on
residuals and statistical significance (see, for example, the R output on page 39).
With multilevel models, however, the sheer number of parameters adds a challenge
to interpretation. The coefficient list in a multilevel model can be arbitrarily long
(for example, the radon analysis has 85 county-level coefficients for the varying-
intercept model, or 170 coefficients if the slope is allowed to vary also), and it is
unrealistic to expect even the person who fit the model to be able to interpret each
number separately. We prefer graphical displays such as the generic plot of a Bugs
object or plots of fitted multilevel models such as displayed in the examples in Part
2A of this book.

Our general plan is to follow the same structures when plotting as when modeling.
Thus, we plot data with data-level regressions (as in Figure 12.5 on page 266),
and estimated group coefficients with group-level regressions (as in Figure 12.6).
More complicated plots can be appropriate for non-nested models (for example,
Figure 13.10 on page 291 and Figure 13.12 on page 293). More conventional plots
of parameter estimates and standard errors (such as Figure 14.1 on page 306) can
be helpful in multilevel models too. It is also sometimes feasible to display between-
group and within-group information on the same graph (see Figure 14.11 on page
313). Finally, specific models can inspire new ideas for graphs, as in Figure 15.4 on
page 330.

21.1 Uncertainty and variability

Uncertainty reflects lack of complete knowledge about a parameter; variability refers
to underlying differences among individuals or groups. As sample size goes to infin-
ity, uncertainty goes to zero (more precisely, in a well-designed study, uncertainty
about key parameters goes to zero), but variability will always be present.

Distinguishing between uncertainty and variability in a multilevel model

For example, consider the varying-intercept radon model, yi ∼ N(αj[i] + βxi, σ
2
y).

Here is a subset of the Bugs inferences for the parameters (more details appear on
page 351):

R outputmean sd

a[1] 1.2 0.3

a[2] 0.9 0.1

. . .
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a[85] 1.4 0.3

b -0.7 0.1

mu.a 1.5 0.1

sigma.y 0.8 0.05

sigma.a 0.3 0.05

The numbers in the last column of this table show the uncertainty about each
parameter. For example, we estimate the intercept for county 1 to be 1.2 with an
uncertainty of 0.3. The parameters σy and σα represent variability among houses
within a county and variability among counties. Thus, the unexplained variation of
radon levels of houses within a county (after controlling for floor of measurement),
is estimated at 0.8, and the unexplained variation among county-average radon
levels is estimated at 0.3.

As we get more data within existing counties, uncertainty about individual αj ’s
would be expected to decline. If data from more counties were added, uncertainty
about the group-level parameters μα and σα would be expected to decline. But
under either (or both) of these scenarios, there is no reason to expect the estimates
of σy and σα to change.

A varying-intercept, varying-slope example

For another example, consider the model from page 449 of variation in time trends
of CD4 counts in a sample of children. The model is yi ∼ N(αj[i] + βj[i]ti, σ2

y).
The lmer display includes both uncertainty and variation, and they can easily be
confused:

R output lmer(formula = y ~ time + (1 + time | person))

coef.est coef.se

(Intercept) 4.8 0.2

time -0.5 0.1

Error terms:

Groups Name Std.Dev. Corr

person (Intercept) 1.3

time 0.7 0.1

Residual 0.7

# of obs: 369, groups: person, 83

There is no confusion about the coefficient estimates: 4.8 and −0.5 are the estimates
of the average αj , βj in the population, so the “average person,” in some sense,
has a time trend of 4.8 − 0.5t. But care must be taken in interpreting standard
errors and standard deviations. We will focus here on the time trend (the slope in
the model) because it is of more substantive interest. The standard error of the
time coefficient is 0.1, which tells us the precision of the “−0.5” estimate: we are
essentially certain that the population-average slope is negative, that is, that CD4
counts are on average declining in this population. The estimated standard deviation
of the slopes is 0.7, which implies that the individual slopes vary greatly, with some
being very negative and some being moderately positive. In this example, both the
uncertainty in the mean and the variation in the population are important.

Variability can be interesting in itself

In some cases, the magnitude of variation can be substantively relevant. For ex-
ample, Kane et al. (2006) estimate the “value added” by teachers in elementary
and middle schools in New York City. They fit regression models of students’ test



SUPERPOPULATION AND FINITE-POPULATION VARIANCES 459

scores, given previous test scores, background information on students, classes, and
schools, and varying intercepts for teachers.

The models were actually fit with classical regression using an indicator variable
for each teacher, and then the estimates were post-processed to distinguish infer-
ential variability and consistent teacher effects, with the latter identified based on
correlations between the estimated teacher effects in successive years and in dif-
ferent classes taught by the same teacher within a year. For our purposes we can
imagine that a multilevel varying-intercept model was fit. We have no particular
interest in thousands of individual teacher effects, but we do care about the group-
level coefficients (in this case, the “groups” are the teachers, and the predictors
describe teacher certification and experience) and the residual standard deviation
of teacher effects.

The analysis found the teacher characteristics to be weak predictors of value
added—in particular, teachers with formal certifications and better college grades
did essentially the same (as measured by the test scores of the students they taught),
on average, compared to seemingly less-well-qualified teachers. In contrast, the un-
explained teacher-level variation was large, with students of the best teachers scor-
ing about 0.2 to 0.4 better than students of the worst teachers (after controlling
for previous test scores and other covariates). This unexplained variation in teacher
effects (on a scale in which 1 unit represents the standard deviation of scores of
all students within a grade) is moderately large, and it led the researchers to con-
clude that “policies that enable districts to attract and retain high quality teachers
(or screen-out less effective teachers) have potentially large benefits for student
achievement.”

21.2 Superpopulation and finite-population variances

Each factor in a multilevel model corresponds to a set of linear parameters or
coefficients. Label the coefficients in a particular factor as α1, . . . , αJ , where J is
the number of groups or categories of this factor. The variation among the αj ’s can
be summarized in two ways:

• The superpopulation standard deviation σα, which represents the variation among
the modeled probability distribution from which the αj ’s were drawn, is relevant
for determining the uncertainty about the value of a new group not in the original
set of J .

• The finite-population standard deviation sα of the particular J values αj de-
scribes variation within the existing data.

Example of a non-nested model

We illustrate with the simple model (13.9) for the flight simulator example intro-
duced in Section 13.5. The model has three (non-nested) levels:

yi ∼ N(γj[i] + δk[i], σ2
y), for i = 1, . . . , n

γj ∼ N(μγ , σ2
γ), for j = 1, . . . , J

δk ∼ N(μδ, σ
2
δ ), for k = 1, . . . , K.

with diffuse normal prior distributions specified for μγ and μδ. When we specify the
model this way, μγ and μδ are not separately identified; however we can compute
summaries of interest using the ideas of redundant additive parameterization as
described in Section 19.4.
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The superpopulation standard deviations at each level are simply σγ , σδ, σy. The
finite-population standard deviations are

sγ =

√√√√ 1

J − 1

J∑
j=1

(γj − γ̄)2

sδ =

√√√√ 1

K − 1

K∑
k=1

(δk − δ̄)2

sy =

√√√√ 1

n − 1

n∑
i=1

(εi − ε̄)2. (21.1)

In defining sy, we work with the data-level errors

εi = yi − ŷi = yi − (μ + γj[i] + δk[i]).

Computation

In Bugs, the superpopulation standard deviations σy, σγ , σδ are already defined in
the model (see the model at the beginning of Section 17.3). To define the finite-
population standard deviations, we add the lines

Bugs code for (i in 1:n){

e.y[i] <- y[i] - y.hat[i]

}

s.y <- sd(e.y[])

s.g <- sd(g[])

s.d <- sd(d[])

When group-level predictors are present, they must be subtracted before com-
puting the standard deviations as defined above. Suppose, for example, the airport
coefficients γj had a group-level model with two predictors, u1 and u2:

Bugs code for (i in 1:J){

g[j] ~ dnorm (g.hat[j], tau.g)

g.hat[j] <- a.0 + a.1*u.1[j] + a.2*u[2]

}

tau.g <- pow(sigma.g, -2)

Then sigma.gamma is the superpopulation standard deviation, and the corre-
sponding finite-population standard deviation is defined by

Bugs code for (j in 1:J){

e.g[j] <- g[j] - g.hat[j]

}

s.g <- sd(e.g[])

When using the convenient γj ∼ N(γ̂j , σ
2
γ) notation, we can simply subtract γ̂j

to define the group-level error; we need not worry about how γ̂ is constructed. (For
example, the model for γ could itself include group-level parameters.)

The finite-population standard deviation is estimated more precisely than the
superpopulation standard deviations

The superpopulation and finite-population standard deviations are not two differ-
ent statistical “estimators” of a common quantity; rather, they are two different
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Figure 21.1 Median estimates, 50% intervals, and 95% intervals for (a) superpopulation
and (b) finite-population standard deviations of the treatment-level, airport-level, and data-
level errors in the flight simulator example. The two sorts of standard-deviation parameters
have essentially the same estimates, but the finite-population quantities are estimated much
more precisely.

quantities that can both be estimated from the multilevel model. We can get a
point estimate and uncertainty intervals for both. In general, the point estimates
of σ and s will be similar to each other, but s will have less uncertainty than σ.
That is, the variation is more precisely estimated for the finite population than the
superpopulation. This makes sense because we have more information about the
units we observe than the full population from which they are sampled.

More generally, consider a hypothetical group-level model,

αj = Ujγ + ηj , ηj ∼ N(0, σ2
α), for j = 1, . . . , J.

The superpopulation standard deviation is simply σα, and the finite-population

standard deviation is sα = sdJ
j=1ηj =

√
1

J−1

∑J
j=1(ηj − η̄)2.

Example with only two groups. Both measures of variation are important. To see
how they differ, consider the extreme case in which J = 2 and there are no group-
level predictors (so that, in classical estimation, there would be a constraint such as
α1 + α2 = 0) and a large amount of data are available in both groups. In that case,
almost nothing can be said about the superpopulation standard deviation, but the
finite-population standard deviation can be still be estimated well if the sample size
within groups is large. The two parameters α1 and α2 will be estimated accurately
(in either a classical or a multilevel model) and so will s2

α = 1
2−1 ((α1 − ᾱ)2 + (α2 −

ᾱ)2) = (α1 − α2)
2/2. The superpopulation variance σ2

α, on the other hand, is only
being estimated by a measurement from a distribution that is proportional to a χ2

with 1 degree of freedom. We know much about the two parameters α1, α2 but can
say little about others from their batch.

Fixed and random effects

As we discussed in Section 11.4, we believe that much of the statistical literature on
fixed and random effects can be fruitfully reexpressed in terms of finite-population
and superpopulation inferences. In some contexts (for example, collecting data on
the 50 states of the United States), the finite population seems more meaningful;
whereas in others (for example, subject-level effects in a psychological experiment),
interest clearly lies in the superpopulation.

Chapter 22 applies finite-population standard deviations to the analysis of vari-
ance.
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Finite-population standard deviations for regression coefficients that are not part
of a multilevel model

A key idea in analysis of variance, as we discuss in Chapter 22, is to summarize
each factor in a regression model by its finite-population standard deviation. As we
have seen above, this is typically straightforward for batches of varying coefficients.
For an unmodeled coefficients we can define finite-population standard deviations
as the standard deviation of the coefficients in the population of predicted values.

We illustrate with some examples:

• Binary predictor. Suppose sex is included in a model as an indicator x that equals
1 for men and 0 for women. Label the proportion of men in the sample is λ. If
the coefficient for x is β, then the finite-population standard deviation is simply
the standard deviation of a random variable that equals β with probability λ
and 0 with probability 1−λ; this comes to

√
λ(1−λ)|β|.

• Unmodeled categorical predictor. Suppose age is included using three indicator
variables corresponding to the categories 18–29, 30–44, and 45–64 (with the final
category, 65+, being the baseline), and label the proportion of the sample in each
category as λ1, λ2, λ3, and λ4 = 1−λ1−λ2−λ3. If the coefficients for the three
indicators are β1, β2, β3, and (implicitly) β4 = 0, then the finite-sample standard
deviation is the standard deviation of a random variable that takes on these four
values with these four probabilities. This can be easily computed in R from the
vectors λ and β:

R code b.mean <- sum (b*lambda)

b.sd <- sqrt (sum (lambda*(b-b.mean)^2))

Alternatively, we can perform the calculation directly using indexing:

R code b.sd <- sd (b[x])

assuming x is the index variable for age that takes on the values 1, 2, 3, 4.

• Continuous linear predictor. Suppose age is simply included as a linear predictor
x with coefficient β. The corresponding finite-population standard deviation is
simply the standard deviation of x in the sample, multiplied by the absolute
value of β.

• Continuous nonlinear predictor. Suppose age is included as a continuous pre-
dictor x with linear and quadratic coefficients, β1 and β2. The finite-population
standard deviation is then the standard deviation of β1 + β2x in the data, and
can simply be calculated in R as sd(b[1]+b[2]*x), using the data vector x.

These examples do not cover all cases. For example, it is not clear how to define
the standard deviation of variables that are also included as interactions.

21.3 Contrasts and comparisons of multilevel coefficients

A key difference between classical and multilevel models is the treatment of cate-
gorical or discrete inputs. As discussed in Section 11.4, in a classical regression it is
possible to include group indicators or group-level predictors, but it is difficult to do
both. (It is possible to perform two-level regression, first including group indicators
and then regressing the estimated group indicators on group-level predictors—but
this approach runs into difficulties when within-group sample sizes are small.)
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Contrasts: including an input both numerically and categorically

Fortunately, including group indicators and also group-level predictors is straight-
forward and often useful in multilevel modeling. The only challenge comes in the
interpretation of the group-level coefficients. We illustrate with an example from
education.

Advanced Placement (AP) tests are taken by students in high school and are
used by colleges to place students in introductory courses. As part of a study of
the relevance of AP tests to the college curriculum, we performed a regression
predicting the grades in introductory calculus classes for students who had taken
the AP Calculus exam. The outcome of the regression was course grade,1 and the
inputs were AP score (which took on the discrete values 1, 2, 2.5, 3, 3.5, 4, 4.5,
5, 5.5, and 6.5; we label these as uj, j = 1, . . . , 10)2 and Scholastic Aptitude Test
(SAT) score (which we treated as a continuous predictor).

There are two natural ways to code AP score as regression predictors: as a single
continuous predictor taking on numerical values uj from 1 through 6.5, or as 10
indicators corresponding to its 10 different levels. Either of these approaches could
make sense: on one hand, the AP grades are ordered, and it is reasonable, at least
as a starting point, to consider the jump from a score of 1 to 2, or 2 to 3, and
so forth, as corresponding to roughly equal jumps in course grade. On the other
hand, nonlinear patterns are possible: for example, perhaps scores of 4 and 5 are
both high enough to assure a good grade in the calculus class, so that little benefit
would be seen beyond a score of 4.

Classical regression. In a classical regression, we can include AP score as a con-
tinuous predictor (and also, for example, include the square of AP score to model
nonlinearity)—or we could include indicators for four of the five AP scores, for ex-
ample, treating a score of 1 as the baseline category. But it would not be possible
to do both, because the linear trend is collinear with the set of indicators.

That is, we can model the coefficients for the AP scores, αj , j = 1, . . . , 5, as
αj = γ0 + γ1uj (the linear model), or αj = γ0 + γ1uj + γ2u

2
j (the quadratic model),

or simply as 10 different αj ’s—but there is no way in a classical model to include
the linear or quadratic trend and the separate coefficients for each level.

Multilevel regression. In a multilevel model we can include AP both as a contin-
uous predictor and as indicators: αj ∼ N(γ0 + γ1uj, σ

2
α) or, equivalently,

αj = γ0 + γ1uj + ηj , (21.2)

with group-level errors ηj ∼ N(0, σ2
α). This model allows the αj ’s to have arbitrary

levels, but with the group-level model (21.2) pulling the estimates toward linearity
to the extent supported by the data.

The two classical models (linearity at one extreme or 10 separate coefficients
at the other extreme) are special cases of the multilevel model, corresponding to
σα = 0 or ∞, respectively.

For another example of this sort of multilevel model, see Figure 13.12 on page
293. We further discuss contrasts in the context of the analysis of variance in Section
22.5.

1 Grades of A+, A, A-, B+, . . . were coded as 4.3, 4.0, 3.7, 3.3, . . . . For simplicity we treated
the grades as continuous measurements.

2 The AP Calculus test had two different forms, each on its own 1–5 scale. We performed a
preliminary analysis to equate the two tests and put them on a common scale by adding 1.5 to
scores on the more difficult test form.
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The finite-population group-level coefficient. A challenge remains in interpreting
the group-level slope, γ1 in model (21.2). The difficulty is in the partial nonidenti-
fiability between γ1 and the ηj ’s—more precisely, between γ1 and whatever linear
trend there is in the ηj ’s. This is only a partial nonidentifiability, because the ηj ’s
are pooled toward zero by the multilevel model—but with only 10 groups, it creates
practical problems.

In this particular example, the estimated slope among the 10 groups was clearly
positive—αj increased with j, roughly linearly with the score uj. But the inference
for the group-level slope γ1 had a wide standard error—the point estimate of γ1 was
positive but its 95% confidence interval actually included zero and negative values.
The problem arose because there was a possibility, with only J = 10 groups, that
the finite-sample regression of the ηj ’s was strongly positive or negative.

Thinking about the problem, we realized that what we really wanted was the
finite-population slope, that is, the linear regression of the αj ’s on the uj ’s for these
10 groups. This finite-population quantity will be estimated more precisely than
the superpopulation slope γ1.

Having fit the model in Bugs, one can quickly compute a 95% interval, for exam-
ple, for the finite-population slope in R:

R code attach.bugs (AP.fit)

finite.slope <- rep (NA, n.sims)

for (s in 1:n.sims){

finite.pop <- lm (a[s,] ~ u)

finite.slope[s] <- coef(finite.pop)["u"]

}

quantile (finite.slope, c(.025,.975))

This can be compared, for example, to the 95% interval for γ1, which will be wider.
Performing this regression on the multilevel coefficients is equivalent to constraining
the group-level errors ηj in (21.2) to have a mean of 0 and a slope of 0. The step can
thus be thought of as a generalization of the additive redundant parameterization
of Section 19.4.

Inferences for multilevel parameters defined relative to their finite-population
average

Sometimes each individual coefficient is not of intrinsic interest but we are interested
in comparisons among the coefficients. Moreover, defining predictors relative to
each other yields much more stable estimates when sample sizes are small. We
here discuss both the finite-population and superpopulation contrasts that can be
estimated using multilevel models.

Consider the flight simulator data in Section 13.5, where the airport coefficients
δk come from a distribution with common mean μδ. The left panel of Figure 21.2
shows the estimates and standard errors for these parameters. These reflect super-
population contrasts because they measure the position of each airport relative to
the population mean μδ.

Alternatively, we can define the varying airport intercepts relative to the mean of
these coefficients in our sample, computing an adjusted coefficient δadj

k = δk − δ̄ for
each airport k. This sort of mean shift is motivated in Section 19.4 for computational
purposes—to help the Gibbs sampler converge faster—but it also gives us more
precise inferences about the relative values of the airport coefficients for this sample.
The right panel of Figure 21.2 shows the estimates and standard errors for the
mean-centered airport coefficients. The point estimates are in the same place but
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Figure 21.2 Estimates and standard errors for the airport coefficients in the flight simula-
tor example: (a) parameters with population mean subtracted out, δk − μδ; (b) parameters
centered around the sample mean δadj

k = δk − δ̄. The point estimates are the same for
the two sets of parameters, but the centered versions have smaller, finite-sample standard
errors. The airports have been ordered in increasing average response (see Figure 13.8 on
page 290).
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Figure 21.3 Estimates and standard errors for the airport coefficients in the flight simula-
tor example, after adding in the average values of the other terms in the regression model,
thus moving to the scale of the data. The small dots in the graphs show the data. (It makes
sense that many of the data fall outside the standard-error bounds, which represent infer-
ential uncertainty about the airport coefficients but do not include the data-level error that
is in the model.)

the finite-population standard errors are smaller than the superpopulation standard
errors used in the δk − μδ contrast.

Adding the average value of the other predictors back in. Another way of summa-
rizing the differences across airports is to add the average values of the other terms
in the regression, to create coefficients that are on the scale of the original data.
For the flight simulator example, the other terms in the regression model are the
mean level μ and the treatment effects γj :

yi ∼ N(μ + γj[i] + δk[i], σ2
y).

The average value of the other coefficients is μ plus the average of the γj ’s, and so
the shifted-to-the-data-scale airport coefficients are μ + γ̄ + δk for the airports k =
1, . . . , K. Figure 21.3 shows the inference for these shifted parameters, with the data
displayed also. In essence, then, these parameters represent the predicted success
rates for each airport for the average treatment. (The plot reveals some potential
poor fit of the linear model as fit to the data yi, which in fact are success rates that
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are bounded between 0 and 1. But here we are simply focusing on the mechanics
of displaying and understanding the coefficients in a non-nested multilevel model.)

This is the method we used to display the fitted model and data in the various
plots in Chapters 12–15.

21.4 Average predictive comparisons

Section 5.7 discusses how to calculate average predictive differences for logistic re-
gressions. The challenge is that the model is on the logistic scale but we would like
to interpret changes on the probability scale. Further complications arise with mul-
tilevel models, and we discuss the general issue of average predictive comparisons
here.

Notation and basic definition of predictive comparisons

Assume you have fit a probability model predicting a numerical outcome y based on
vectors x of inputs and θ of parameters. As in Section 3.4, we denote the separate
sources of information in x that are used in the predictive model as inputs or input
variables, as distinguished from the linear predictors that form the columns of the
design matrix of a linear or generalized linear model. For example, consider a logistic
regression of some individual outcome on age, sex, an age × sex interaction, and
age2. There are two inputs (age and sex) but five linear predictors (including the
constant term).

In any model, we consider the scalar inputs one at a time, using the notation

u : the input of interest,

v : all the other inputs.

Thus, x = (u, v). We focus on the expected predictive difference in y per unit
difference in the input of interest, u, with v (the other components of x) held
constant:

bu(u(lo), u(hi), v, θ) =
E(y|u(hi), v, θ) − E(y|u(lo), v, θ)

u(hi) − u(lo)
(21.3)

and the average predictive difference per unit of u:

Bu(u(lo), u(hi)) =
1

n

n∑
i=1

bu(u(lo), u(hi), vi, θ). (21.4)

We assume that E(y|x, θ) is a known function (such as the inverse-logit) that can
be computed directly. For a linear model with no interactions, bu does not depend
on u(1), u(2), or v, and is simply the regression coefficient associated with u. More
generally, however, bu varies as a function of these inputs, and it can be useful to
summarize the predicted difference with some sort of weighted average as in (21.4).
In practice, one must also average over θ (or plug in a point estimate).

Expressions (21.3) and (21.4) are similar to (5.8) and (5.9) on page 103 except
in dividing by u(hi) − u(lo). For some settings the total difference is relevant; other
times we are interested in the difference per unit of u.3 As we shall see, options also
arise in the definition and estimation of average predictive changes with continuous
inputs u. This section presents one particular set of choices and illustrates with an
example.

3 We use the notation δ for predictive differences and Δ for their averages, and the notation b, B
for ratio comparisons of the form (21.3) and (21.4), by analogy to regression coefficients β.
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Figure 21.4 Hypothetical examples illustrating the need for averaging over the distribution
of v (rather than simply working with a central value) in computing the predictive com-
parison. Each graph shows a hypothesized logistic regression model for an outcome y given
a binary input of interest, u, and a continuous input variable, v. The vertical lines on the
x-axis indicate the values of v in the hypothetical dataset. (a) In the left plot, data v are
concentrated near the ends of the predictive range. Hence the average predictive comparison
is small. In contrast, E(v) is near the center of the range; hence the predictive compari-
son at this average value is large, even though this is not appropriate for any of the data
points individually. (b) Conversely, in the right plot, the average predictive comparison is
reasonably large, but this would not be seen if the predictive comparison were evaluated at
the average value of v.

Problems with evaluating predictive comparisons at a central value

A rough approach that is sometimes used is to evaluate E(y|u, v) at a central value
v0—perhaps the mean or the median of the data—and then estimate predictive
comparisons by holding v constant at this value. Evaluating differences about a
central value can work well in practice, but one can run into problems when the
space of inputs is very spread out (in which case no single central value can be
representative) or if many of the inputs are binary or bimodal (in which case the
concept of a “central value” is less meaningful). In addition, this approach is hard
to automate since it requires choices about how to set up the range for each input
variable. In fact, our research in this area was motivated by practical difficulties
that can arise in trying to implement this central-value approach.

We illustrate some challenges in defining predictive comparisons with a simple
hypothetical example of a logistic regression model of data y on a binary input of
interest, u, and a continuous input variable, v. The curves in each plot of Figure 21.4
show the assumed predictive relationship. In this example, u has a constant effect
on the logit scale but, on the scale of E(y), the predictive comparison bu (as defined
in (21.3), with u(lo) = 0 and u(hi) = 1) is high for v in the middle of the plotted
range and low at the extremes. As a result, the average predictive comparison Bu,
defined in (21.4), depends on the distribution of the other input, v.

The two plots in Figure 21.4 show two examples in which the average predictive
comparison differs from the predictive comparison evaluated at a central value. In
the first plot, the data are at the extremes, so the average predictive comparison
is small—but the predictive comparison evaluated at E(v) is misleadingly large.
The predictive comparison in y corresponding to a difference in u is small, because
switching u from 0 to 1 typically has the effect of switching E(y|u, v) from, say, 0.02
to 0.05 or from 0.96 to 0.99. In contrast, the predictive comparison if evaluated at
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Figure 21.5 Diagram illustrating differences in the input of interest u, with the other inputs
v held constant. The ellipse in (u, v)-space represents the joint distribution p(u, v), and as
the arrows indicate, we wish to consider differences in u in the region of support of this
distribution.

the mean of the data is large, where switching u from 0 to 1 switches E(y|u, v) from
0.36 to 0.60.

The second plot in Figure 21.4 shows a similar example, but where the centrally
computed predictive comparison is too low compared to the population-average
predictive comparison. Here, the centrally located value of v is already near the edge
of the curve, at which point a difference in u corresponds to only a small difference in
E(y|u, v) of only 0.03. In comparison, the average predictive comparison, averaging
over the data locations, has the larger value of 0.11, which appropriately reflects
that many of the sample data are in the range where a difference in u can correspond
to a large difference in E(y).

General approach to defining population predictive comparisons

The basic predictive comparison bu defined in (21.3) depends in general on u(lo)

and u(hi) (the beginning and end points of the hypothesized difference in the input
of interest), v (the values of the other inputs), and θ (the parameters of the model).
We define the average predictive comparison bu as the mean value of bu over some
specified distribution of the inputs and parameters. We apply this idea to various
sorts of inputs u, starting with numerical input variables, including continuous
and binary inputs as special cases, and moving to unordered categorical variables,
interactions, and constraints.

It turns out that the form of the input of interest u, not the form of data y or other
predictors v, is crucial in deciding how to define average predictive comparisons. In
any application, we would compute the average predictive comparison of each of
the inputs to a model one at a time—that is, treating each component of x in turn
as the “input of interest.” This is often a goal of regression modeling: estimating
the predictive comparison of each input with all other inputs held constant.

Averaging over u(lo), u(hi), and v in this way is equivalent to counting all pairs of
transitions of (u(lo), v(1)) to (u(hi), v(2)) in which v(1) = v(2)—that is, differences in
u with v held constant. Figure 21.5 illustrates. We average over θ using simulations



AVERAGE PREDICTIVE COMPARISONS 469

from the fitted model (as obtained, for example, in Bugs), which in a Bayesian
context is the posterior distribution, or classically could be a point estimate or
an uncertainty distribution defined by simulations (as discussed at the end of the
previous section). The distributions of (u, v) and θ are independent because we are
working in a regression context in which θ represents the parameters of the model
for y conditional on u and v.

In the special case in which u is a binary input, the average predictive compar-
ison is a simple average of the differences (E(y|u(hi), v, θ) − E(y|u(lo), v, θ)). More
generally, the average predictive comparison has the form of a ratio of averages.

Models with interactions

These definitions automatically apply to models with interactions. The key is that
u represents a single input, and x = (u, v) represents the vector of inputs to the
predictive model. As discussed throughout this book, the vector of inputs is not
in general the same as the vector of linear predictors. For example, in the simple
example at the beginning of this section, sex is included on its own and also inter-
acted with age. When defining the predictive comparison for sex, we must alter this
input wherever it occurs in the model—that is, both the “sex” predictor and the
“sex × age” predictor must be changed. For another example, the constant term
in a regression is not an input in our sense and has no corresponding predictive
comparison, since it can take on only one possible value.

From a computational perspective, it is important that the model be coded in
terms of its separate inputs. Thus, to compute predictive comparisons, it is not
enough simply to specify the design matrix of a regression model; one must be able
to evaluate E(y) as a function of the original inputs.

Inputs that are not always active

A model will sometimes have inputs that are involved in prediction for only some
of the data. For example, consider an experiment in which some units are given the
control (no treatment) and others are given the treatment, in doses ranging from 10
to 20 (on some meaningful scale). Suppose the data are fit by a generalized linear
model with treatment indicator, dose, and some pre-treatment measurements as
predictors.

Now consider how to define the average predictive comparison for dose. One
approach is to consider treatment and dose to be a single input with value 0 for
control units and the dose for treated units. This will not be appropriate, however, if
we are particularly interested in the effect of dose in the range 10 to 20, conditional
on treatment. We can define the predictive comparison for dose, restricting all
integrals over v to the subspace in which dose is defined (in this case, the treated
units).

We can formally define the average predictive comparison for a partially active
input u by introducing a function ζu(v) that equals 1 wherever u is defined and 0
elsewhere. Then all the earlier definitions hold, as long as we insert the factor ζu(v)
in all the integrals.
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Average predictive comparisons for multilevel models

In a linear multilevel model, one might use the standard deviation of a batch of
coefficients as a measure of their importance for predicting the outcome variable.
But in a nonlinear model, this does not directly transfer to the scale of measurement.

For the purpose of defining average predictive comparisons, we can treat a batch
of K parameters φk, k = 1, . . . , K, as an unordered categorical input variable with
K levels u(k). The essence of a variance components model is that the parameters
φk in a batch are considered to have been drawn from a continuous population
distribution. In the following example we consider vector φk’s.

Example: a multilevel logistic regression of prison sentences

We illustrate average predictive comparisons in multilevel models with a model of
the geographic variation of the severity of prison sentences in the United States. A
study was performed of the sentences of 8446 convicted felons in 39 of the 75 most
populous counties in the United States during May 1998. The outcome variable for
this study was “sentence severity,” defined as yij = 1 if the offender i in county
j received a prison sentence, or 0 for a jail or noncustodial sentence (considered
to be much less severe than prison). A multilevel logistic regression model was
fit with 12 individual-level variables from the State Court Processing Statistics
program of the Bureau of Justice Statistics, linked to six county-level variables
using the Federal Information Processing Standards code. Information collected
in this program includes demographic characteristics, criminal history, details of
pretrial processing, disposition, and sentencing of felony defendants.

Under the model, the outcomes are independent with probabilities

Pr(yi = 1) = logit−1
(
XiGj[i]η + Xiαj[i]

)
, (21.5)

where Xi represents a vector of measurements on K individual-level variables and
Gj is a K ×M block-diagonal matrix of measurements on L county-level variables.
In particular, interactions between individual- and county-level variables account
for dependence of individual-level comparisons across counties, so that M = KL if
all county-level variables are used to explain these individual-level comparisons. The
coefficients η in (21.5) represent main effects and interactions of the predictors and
are constant across counties, and the unmodeled coefficients in the vector α have a
j-subscript and represent varying coefficients across counties, or can be viewed as
interactions between the predictors X and the county indicators j.

Applying average predictive comparisons to a single model

Fitting this two-level multilevel model is straightforward; however, the presence
of individual-county interactions and varying county coefficients complicates the
interpretation of the parameters η and αj . In contrast, average predictive com-
parisons provide a clear indication of the overall contribution of each variable to
the probability of receiving a prison sentence (rather than a jail or noncustodial
sentence).

Figure 21.6 displays the average predictive comparison for each variable in the
model, together with a average predictive comparison for the county indicators.
Horizontal bars indicate ± 1 standard error for each average predictive comparison,
calculated as described earlier in this section. Due to computational limitations, we
based all calculations on a randomly drawn subset of L = 100 posterior samples,
with n = 4500 data points for the binary inputs, n = 450 for the continuous inputs,
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Figure 21.6 Estimated average predictive comparisons Bu for the probability of a prison
sentence (rather than a jail or noncustodial sentence), for each input variable u in the
prison example. Horizontal lines show ±1 standard-error bounds. The first set of inputs,
with initial letters I, are at the level of the individual offender; the second set, with initial
letters C, are county-level inputs; and the last corresponds to the differences associated
with varying the county indicator, keeping all other inputs constant. Many of the individual
predictors are associated with large differences and county itself predicts a fair amount of
variability, but the county-level variables are associated with relatively small differences
(recall that these average predictive comparisons correspond to differences of one standard
deviation in each input).

and n = 4000 for the varying county coefficients. Results varied little on repeating
the calculations with different random subsets.

Individual-level variables in Figure 21.6 are denoted with an initial “I,” and
county-level variables are denoted with an initial “C.” The five individual-level
variables for “most serious conviction charge” (ICVIOL1, ICTRAF, ICVIOL2,
ICPROP, and ICDRUG) are relative to a reference category of weapons, driving-
related, and other public order offenses. The 12 individual-level variables and 2 of
the county-level variables are binary, and the remaining 4 county-level variables are
continuous. Finally, the county indicators are a batch of parameters in a multilevel
model.

The individual-level predictor associated with the largest difference in the prob-
ability of receiving a prison sentence is ICVIOL1 (murder, rape, or robbery), with
an estimated average predictive comparison of 0.38 (and standard error 0.03). That
is, the expected difference in the probability of receiving a prison sentence between
a randomly chosen individual in the population charged with murder, rape, or rob-
bery and a similar individual charged with a reference category offense is 0.38.
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Other charges are less highly associated with a prison sentence, with decreasing
probability: drug trafficking (with an estimated average predictive comparison of
0.21), then assault (0.19), then property offenses (0.14), and finally drug posses-
sion offenses (0.05). Other individual-level variables can be interpreted similarly,
as can the two binary county-level variables (which compare individuals in south-
ern and non-southern counties, and individuals in counties with and without state
sentencing guidelines).

Predictive comparisons for the continuous input variables correspond to changes
of 1 standard deviation in each, one at a time. Standard deviations for the four vari-
ables (CCONS, CCRIME, CBLPCT, and CUNEMP) are 13%, 220 per 10,000, 12%,
and 1.8%, respectively. The positive average predictive comparisons for CCONS and
CCRIME suggest that, comparing otherwise-similar cases, those in counties with
higher conservative populations or higher crime rates have slightly higher proba-
bilities of receiving a prison sentence. Conversely, the negative average predictive
comparison for CUNEMP suggests lessened sentence severity in high-unemployment
counties, with all other inputs fixed. Taking into account all other factors, the pro-
portion of the county’s population that is African American (CBLPCT) has little
bearing by itself on sentence severity. (However, this factor does play a role in re-
ducing or increasing the contributions of various individual-level variables, as can
be seen in more detailed analysis.)

The average predictive comparison for the county indicators differs from the
other average predictive comparisons in this example in that it considers just the
magnitude, rather than the sign, of the comparisons. This is because “county” is
the only unordered categorical variable in the model. To understand its average
predictive comparison, consider the probabilities of receiving a prison sentence for
two individuals who are identical in all respects except that they are in different
counties. So, the two individuals will share the same values for individual-level
variables but have different values for county-level variables (and county indicators).
The county average predictive comparison of 0.37 represents the root mean square
of the difference in the probability of receiving a prison sentence between a randomly
chosen individual in one county and a similar individual in another county.

Using average predictive comparisons to compare models

The multilevel logistic regression model (21.5) has varying coefficients for the within-
county intercepts as well as for each individual predictor. We also fit a multilevel
model with varying intercepts only, as well as a non-multilevel complete pooling
model that ignores the multilevel nature of the data and excludes county indicators.
Whereas the regression coefficients have different interpretations for the different
models, predictive comparisons allow for direct comparison.

Figure 21.7 displays the average predictive comparison for each variable across
all three models. The average predictive comparisons and standard errors are very
similar across the two multilevel models, perhaps suggesting that the additional
variation for each individual predictor may be redundant. The individual-level com-
parisons are also very similar for the non-multilevel model. However, the county-
level comparisons tend to be smaller in magnitude and have smaller standard errors
for the non-multilevel model; the average predictive comparison for unemployment,
CUNEMP, even has the opposite sign. The non-multilevel model did not fit this
dataset well, and the average predictive comparisons displayed here suggest that
while individual-level comparisons may be robust to model misspecification of this
nature, higher-level comparisons can clearly be adversely affected.
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Figure 21.7 Estimated average predictive comparisons for the probability of a prison sen-
tence for each input variable across three models in the prison example. Horizontal lines
show ±1 standard-error bounds. Estimates and standard errors are very similar across the
two multilevel models. However, although the individual-level comparisons are similar for
the non-multilevel model, the county-level comparisons tend to be smaller in magnitude
and have smaller standard errors.

Predictive summaries in practice

Predictive comparisons, like any other automatic summary of a model, cannot be
universally applicable, because the best approach in any problem must be tailored
to the specifics of the application. We agree with this point but note that the
overwhelming current practice in applied statistics of regression models is simply to
report coefficient estimates (and standard errors), with no sense of their implications
on the original scale of the data. Average predictive comparisons are not intended
to be a replacement for regression coefficients; rather, they summarize a model in
a way that can complement the coefficient estimates in order to make their scale
more interpretable. Thus, we agree that there is no such thing as a “one size fits
all” method—but that is what the current standard approach implicitly assumes.

The example illustrates the effectiveness and convenience of predictive compar-
isons. In this multilevel dataset with a binary outcome measure, the comparisons
clarify the overall role of each individual- and group-level predictor in the presence
of multiple interactions, as well as illustrate the relative size of the varying coeffi-
cients. They can also be used to understand and compare models directly, in a way
that is difficult to do using logistic regression coefficients.

21.5 R2 and explained variance

As discussed in the context of the examples in Chapters 3 and 4, it can be helpful to
understand a model through R2, the proportion of variance explained by its linear
predictors. Although explained variance can be misleading (as illustrated in Figure
3.9 on page 42), it can be a useful measure of the relative importance of different
sources of variation in a particular dataset. Here we discuss how to generalize R2

to multilevel models.
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Explained variation in linear models

Consider a linear regression written as yi = Xiβ + εi, i = 1, . . . , n. One way to
summarize the fit of the regression is by the proportion of variance explained:

R2 = 1 −
V
n

i=1
εi

V
n

i=1
yi

, (21.6)

where V represents the finite-sample variance operator, V
n

i=1
xi = 1

n−1

∑n
i=1(xi− x̄)2.

In a multilevel model, the predictors “explain” the data at different levels, and R2

can be generalized in a variety of ways.
One sort of definition of “explained variance,” which we do not want to use, is

R2 = 1 − residual variance under the larger model
residual variance under the null model , with various choices of the null

model corresponding to predictions at different levels. This definition is not so
helpful to us because our goal is to understand a particular model being fit on its
own terms.

Here we present a slightly different approach, computing (21.6) at each level of
the model and thus coming up with several R2 values for any particular multilevel
model. This approach has the virtue of summarizing the fit at each level and requir-
ing no additional null models to be fit. In defining this summary, our goal is not to
dismiss other definitions of R2 but rather to add another tool to the understanding
of multilevel models.

We introduce notation (to which we shall return in the next chapter in the context
of the analysis of variance) for a multilevel model with M error terms. (For example,
M = 2 in the varying-intercept model of radon in houses within counties. For the
varying-intercept, varying-slope model, M = 3, with regression models for house
radon levels, county intercepts, and county slopes.) For convenience, in this section
and the next, we shall refer to each error term—that is, the data and each batch of
modeled parameters—as a “level” of the model.

For each level m, we write the model as

θ
(m)
k = θ̂

(m)
k + ε

(m)
k , for k = 1, . . . , K(m), (21.7)

where the θ̂
(m)
k ’s are the linear predictors (that is, the linear combination of coef-

ficients and predictors) at that level of the model, and the errors ε
(m)
k come from

a distribution with mean zero and standard deviation σ(m). At the lowest (data)

level of the model, the θ
(m)
k ’s correspond to the individual data points (the yi’s in

the radon model). At higher levels of the model, the θ
(m)
k ’s represent batches of

comparisons or regression coefficients (county intercepts αj and slopes βj in the
radon model). Because we work with each batch of parameters separately, we shall
suppress the superscripts (m) for the rest of this section.

Proportion of variance explained at each level

For each level (21.7) of the model, we first consider the variance explained by the

linear predictors θ̂k. Generalizing from the classical expression (21.6), we define

R2 = 1 −
E

(
V
K

k=1
εk

)
E

(
V
K

k=1
θk

) , (21.8)
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where the expectations average over the uncertainty in the fitted model (using the
posterior simulations). Any particular multilevel model will then have more than
one R2: one for the data level and one for each batch of modeled parameters.
In our simulation-based approach to inference, the expectations in the numerator
and denominator of (21.8) can be evaluated by averaging over posterior simulation
draws, as we discuss later in this section.

R2 will be close to 0 when the average residual error variance is approximately
equal to the average variance of the θk’s. R2 will be close to 1 when the residual
errors εk are close to zero for each posterior sample. Thus, R2 is larger when the
θ̂k’s more closely approximate the θk’s.

In classical least squares regression, (21.8) reduces to the usual definition of R2:
the numerator of the ratio becomes the residual variance, and the denominator is
simply the variance of the data. Averaging over uncertainty in the regression coef-
ficients leads to a lower value for R2, as with the classical “adjusted R2” measure.
We shall discuss this connection further. It is possible for our measure (21.8) to be
negative, much like adjusted R2, if a model predicts so poorly that, on average, the
residual error variance is larger than the variance of the data.

As a model improves (by adding better predictors and thus improving the θ̂k’s),
we would generally expect both R2 and the amount of pooling (discussed more
thoroughly in the next section) to increase for all levels of the model. Increasing R2

corresponds to more of the variation being explained at that level of the regression
model, and a high level of pooling implies that the model is pulling the εk’s strongly
toward the population mean for that level.

Adding a predictor at one level does not necessarily increase R2 and the amount of
pooling at other levels of the model, however. In fact, it is possible for an individual-
level predictor to improve prediction at the data level but decrease R2 at the group
level (see Section 21.7). Here we merely note that a model can have different ex-
planatory power at different levels.

Connections to classical definitions

Our general expression for explained variance reduces to classical R2 for simple
linear regression with the least squares estimate for the vector of coefficients. We
present this correspondence here, together with the less frequently encountered
explained variance for the basic multilevel model.

The classical normal linear regression model can be written as yi = Xiβ + εi, i =
1, . . . , n, with a n × p matrix X of predictors and errors εi that are normal with
zero mean and constant variance σ2.

If we plug in the least squares estimate, β̂ = (XtX)−1Xty, then the proportion
of variance explained (21.8) simply reduces to the classical definition

R2 = 1 −
E
(

V
n

i=1
εi

)
E
(

V
n

i=1
yi

) = 1 − yt(I − H) y

ytIc y
,

where I is the n×n identity matrix, H = X(XtX)−1Xt, and Ic is the n×n matrix
with 1−1/n along the diagonal and 1/n off the diagonal.

In a simulation-based context, to fully evaluate our expression (21.8) for R2,
one would also average over posterior uncertainty in β and σ. Under the standard
noninformative prior density that is uniform on (β, log σ), the proportion of variance
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explained (21.8) becomes

R2 = 1 −
(

n − 3

n − p − 2

)
yt(I − H) y

ytIc y
,

where p is the number of columns of X .
This is remarkably similar to the classical adjusted R2. In fact, if we plug in the

classical estimate, σ̂2 = yt(I−H) y/(n−p), rather than averaging over the marginal
posterior distribution for σ2, then (21.8) becomes

R2 = 1 −
(

n − 1

n − p

)
yt(I − H) y

ytIc y
,

which is exactly classical adjusted R2. Because n−3
n−p−2 > n−1

n−p for p>1, our Bayesian

adjusted R2 leads to a lower measure of explained variance than the classical ad-
justed R2. This makes sense, since the classical adjusted R2 could be considered
too high because it does not account for uncertainty in σ.

Setting up the computations in R and Bugs

We can add the R2 computation to a multilevel model in three steps:

1. For each level of the model, add one line in the Bugs code to define the residual
error: e.y[i]<-y[i]-y.hat[i], and so forth.

2. Add the errors to the list of parameters saved in the bugs() call from R.

3. For each level of the model, compute R2 as defined in (21.8) in R.

We illustrate with the varying-intercept, varying-slope model for the radon data.
We take the Bugs model from Sections 17.1–17.2 and add lines at each level to
compute the error terms:

Bugs code model {

for (i in 1:n){

y[i] ~ dnorm (y.hat[i], tau.y)

y.hat[i] <- a[county[i]] + b[county[i]]*x[i]

e.y[i] <- y[i] - y.hat[i] # data-level errors

}

tau.y <- pow(sigma.y, -2)

sigma.y ~ dunif (0, 100)

for (j in 1:J){

a[j] <- B[j,1]

b[j] <- B[j,2]

B[j,1:2] ~ dmnorm (B.hat[j,], Tau.B[,])

B.hat[j,1] <- g.a.0 + g.a.1*u[j]

B.hat[j,2] <- g.b.0 + g.b.1*u[j]

for (k in 1:2){ # group-level errors

E.B[j,k] <- B[j,k] - B.hat[j,k]

}

}

. . .

In the call to bugs(), the parameters e.y and E.B must be saved4 (along with a,

b, and any other parameters of interest). We can then compute explained variance
in R as follows:

4 The label E.B follows our general convention of labeling matrices with capital letters.
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R codersquared.y <- 1 - mean (apply (e.y, 1, var)) / var (y)

e.a <- E.B[,,1]

e.b <- E.B[,,2]

rsquared.a <- 1 - mean (apply (e.a, 1, var)) / mean (apply (a, 1, var))

rsquared.b <- 1 - mean (apply (e.b, 1, var)) / mean (apply (b, 1, var))

Alternatively, we could define e.a and e.b by name in the Bugs model.
The inner variances (within the above apply() calls) represent variation across

the K items at each level (in the radon example, these items are the n data points,
the J slopes, and the J intercepts). The outer means represent averages over the
simulations representing the uncertainty distributions. The denominator of the ex-
pression for R2

y has a simpler format because y is an observed vector and does not
have any simulation uncertainty.

21.6 Summarizing the amount of partial pooling

When fitting a multilevel model, it can be useful to get a sense of how much pooling
is being performed for each group of parameters. The amount of pooling depends
on the group-level variance and the information available within each group. Here
we define a simple numerical summary of the amount of pooling of a set of group
effects αj , j = 1, . . . , J . These could be varying intercepts in a simple nested model
or a batch of varying parameters in a more complicated model with varying slopes
and non-nested levels.

Consider the basic multilevel model with data yi ∼ N(αj[i], σ
2
y), with population

distribution αj ∼ N(μα, σ2
α) and hyperparameters μα, σy , σα known. Let nj be the

number of measurements in each group j, and label ȳj as the average of the yi’s
within the group. For each group j, the multilevel estimate of the parameter αj is

α̂multilevel
j = ωjμα + (1 − ωj)ȳj , (21.9)

where

ωj = 1 − σ2
α

σ2
α + σ2

y/nj
(21.10)

is a “pooling factor” that represents the degree to which the estimates are pooled
together (that is, based on μα) rather than estimated separately (based on the
raw data ȳj). The extreme possibilities, ω = 0 and 1, correspond to no pooling
(α̂j = ȳj) and complete pooling (α̂j = μα), respectively. The (posterior) variance
of the parameter αj is

var(αj) = (1 − ωj)σ
2
y/nj. (21.11)

The statistical literature sometimes labels 1−ω as the “shrinkage” factor, a no-
tation we find confusing since a shrinkage factor of zero corresponds to complete
shrinkage toward the population mean. To avoid ambiguity, we use the “pooling
factor” terminology instead. The form of expression (21.10) matches the form of
the definition (21.6) of R2 in Section 21.5.

The concept of pooling is used to help understand multilevel models in two
distinct ways: comparing the estimates of different parameters in a group, and
summarizing the pooling of the model as a whole. When comparing, it is usual
to consider several parameters αj with a common population (prior) distribution
but different data variances; thus, ȳj ∼ N(αj , σ

2
y j). Then ωj can be defined as in

(21.10), with σy j in place of σy. Then each group is associated with a different
pooling factor that is larger if the amount of information (1/σ2

y j) in the data for
that group is small.
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Pooling factors for individual coefficients in a multilevel model

The pooling factor for an individual coefficient captures the weighted averaging
between the within-group data and the group-level model:

α̂multilevel
j = ωjα̂

complete pooling
j + (1 − ωj)α̂

no pooling
j . (21.12)

The pooling factor ωj can range from 0 (no pooling) to 1 (complete pooling).
Coefficients with higher values of ω are estimated more from the group-level model
and less from the within-group data.

Computing the pooling factor. It can be helpful to use ωj to summarize the amount
of pooling of a multilevel parameter; however, it is generally impractical to compute
it using the implicit definition in (21.12). The difficulty is that additional compu-
tations would be required to determine the “no pooling” and “complete pooling”
estimates.

Instead, we make use of the following formula from the linear model for a param-
eter αj = α̂j + εj , where εj has a N(0, σ2

α) prior distribution:

pooling factor λj =
(standard error of εj)

2

σ2
α

. (21.13)

Computation in Bugs. To apply formula (21.13), we must perform inferences about
the group-level errors εj , which can be defined easily enough in the Bugs model. For
example, the varying intercepts for the counties j in the radon example have the
model, αj ∼ N(α̂j , σ

2
α), where the α̂j ’s are the linear predictors at the group level.

In the Bugs code, we simply add this sort of line inside the “for (j in 1:J)” loop:

Bugs code e.a[j] <- a[j] - a.hat[j]

In the R code, we must then add e.a to the list of parameters to be saved, and
then we can calculate the vector of J pooling factors. For example,

R code omega <- (sd(e.a)/sigma.a)^2

omega <- pmin (omega, 1)

The second line above5 is needed to keep the estimated pooling factors below 1,
which occasionally happens due to simulation variability (and can also happen with
non-normal models).

Figure 21.8a illustrates with a plot of the pooling factors versus sample sizes for
the varying intercepts for the 85 counties in the radon model with the floor predictor
and county effects but no county-level predictors. The counties with small sample
sizes have pooling factors ωj near 1 (that is, nearly complete pooling), whereas the
larger counties have pooling factors near 0, close to the no-pooling estimates.

Figure 21.8b displays pooling factors for the radon model with floor of mea-
surement as an individual-level predictor and uranium as a county-level predictor.
Adding the county-level predictor increases the pooling, which is appropriate since
the new model has a lower group-level error. (As discussed in Section 12.6, σα de-
clines from 0.34 to 0.13 when county uranium is added to the model.) There is more
pooling to this better-fitting model, yielding more precise estimates of the county
effects.

5 The R function pmin() performs parallel minimization, in this case computing, for each element
of ω, the minimum of itself and 1.
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Figure 21.8 Pooling factors for county intercepts in two versions of the radon model,
(a) with no county-level predictors and (b) including the county-level uranium predictor.
For each model, ωj decreases with sample size—that is, the most pooling occurs with the
small counties. There is more pooling in the second model, which makes sense—adding the
county-level predictor reduces the variance of the group-level errors.

Summary pooling factor for each batch of parameters

We can define a summary measure, λ, for the average amount of pooling at each
level of a multilevel model, summarizing the extent to which the variance of the
residuals εk is reduced by the pooling of the multilevel model:

λ = 1 −
V
K

k=1
E(εk)

E

(
V
K

k=1
εk

) . (21.14)

The denominator in this expression is the numerator in expression (21.8)—the
average variance in the εk’s, that is, the unexplained component of the variance
of the θk’s. The numerator in the ratio term of (21.14) is the variance among the
point estimates (the partial-pooling estimators) of the εk’s. If this variance is high
(close to the average variance in the εk’s), then λ will be close to 0 and there is little
pooling. If this variance is low, then the estimated εk’s are pooled closely together,
and the pooling factor λ will be close to 1.

The striking similarity of expressions (21.6) and (21.14), which define R2 and
λ, respectively, suggests that the two concepts can be understood in a common
framework. We consider each to represent the fraction of variance explained, first
by the linear predictor μ and then by the multilevel model for ε.

Setting up the computation in R and Bugs

We can compute λ at each level using the errors e.y, e.a, e.b defined at the end
of Section 21.5 for computing R2. Once the Bugs model has been fit, the pooling
factors can be computed in R as follows:

R codelambda.y <- 1 - var (apply (e.y, 2, mean)) / mean (apply (e.y, 1, var))

lambda.a <- 1 - var (apply (e.a, 2, mean)) / mean (apply (e.a, 1, var))

lambda.b <- 1 - var (apply (e.b, 2, mean)) / mean (apply (e.b, 1, var))

Discussion

The proportion of variance explained (21.8) and the pooling factor (21.14) can
be easily calculated at each stage of a multilevel model. In general, R2 will be
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informative wherever regression predictors (including group indicators) are present,
and λ will be relevant at the hierarchical stages of the model. The measures of
explained variance and partial pooling conveniently summarize the fit at each level
of the model and the degree to which estimates are pooled toward their population
models. Together, they clarify the role of predictors at different levels of a multilevel
model. They can be derived from a common framework of comparing variances at
each level of the model, which also means that they do not require the fitting of
additional null models.

Expressions (21.8) and (21.14) are closely related to the usual definitions of ad-
justed R2 in simple linear regression and pooling in balanced one-way hierarchical
models. From this perspective, they unify the data-level concept of R2 and the
group-level concept of pooling or shrinkage, and also generalize these concepts to
account for uncertainty in the variance components. Further, as illustrated for the
radon application, they can help us understand more complex multilevel models.

Other challenges include defining explained variance and partial pooling factors
for generalized linear models, either on the scale of the data or of the latent param-
eters.

21.7 Adding a predictor can increase the residual variance!

Multilevel models can behave in ways that are unexpected from the perspective of
classical statistics. We illustrate with the radon model from Chapter 12. We first fit
a stripped-down multilevel model for the home radon levels, including the county-
level uranium predictor but no individual-level predictors (not even the floor of
measurement); thus,

model 1:
yi ∼ N(αj[i], σ

2
y)

αj ∼ N(γ0 + γ1uj , σ
2
α).

Fitting this model to the Minnesota radon data yields estimated variance compo-
nents σy = 0.80, σα = 0.12.

We then add the house-level floor indicator xi:

model 2:
yi ∼ N(αj[i] + βxi, σ2

y)
αj ∼ N(γ0 + γ1uj , σ

2
α),

yielding new estimates of σy = 0.76, σα = 0.16. The house-level standard deviation
has decreased—which makes sense since we have added a predictor at that level—
but the variation at the county level has increased, which is a surprise. In classical
regression models, the residual variance can only go down, not up, when a predictor
is added.6

What is going on? After some thought, we realized that in model 2, the counties
with more basements happened to have higher county coefficients αj . In model 1,
some of the variation in county radon levels was canceled by an opposite variation
in the proportion of basements. The increased between-county variance in model 2
indicates true variation among counties that happened to be masked by the first
model.

Figure 21.9 shows a hypothetical extreme version of this situation: the three
counties have identical average radon levels (thus, σα = 0 for model 1, which has
no basement predictor), but only because the naturally low-radon county has many
basements and the naturally high-radon county has few basements. (Such a pattern

6 We ignore the minor increase in the variance estimate that corresponds to reducing the degrees
of freedom by 1 and thus dividing by n − k − 1 instead of n − k in the variance calculation.
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Figure 21.9 Hypothetical data from three counties illustrating how adding an individual-
level predictor can decrease the group-level variance. In each county, radon levels are higher
in homes with basements. The county with low natural radon levels has more homes with
basements, and the county with high natural radon levels has fewer homes with basements.
As a result, the average radon level in the three counties is identical, but when floor of
measurement is (appropriately) included as a predictor, the counties appear more different.

can happen, for example, if low-radon areas have sandy soil in which basements
are easy to dig, with high-radon areas having rocky soil where basements are less
commonly built.) Model 2, which controls for basements, reveals the true underlying
variation among the counties, and thus σα increases.

This pattern, caused by correlation between individual-level variables and group-
level errors, does not occur in classical regression. When it occurs in multilevel
regression, the model fit can be improved by including the average of x as a group-
level predictor (in this example, the proportion of houses in the county that have
basements). When the county-level basement proportion is added as a group-level
predictor, its coefficient is estimated at −0.41 (with a standard error of 0.2), and
the estimated residual standard deviations at the data and county levels are 0.76
and 0.14.

For the radon problem, the county-level basement proportion is difficult to in-
terpret directly but rather serves as a proxy for underlying variables (for example,
the type of soil that is prevalent in the county).

In other settings, especially in social science, individual averages that are used as
group-level predictors are often interpreted as “contextual effects.” For example, in
the police stops example in Section 15.1, one might suspect that police behavior in
a precinct is influenced by the ethnic composition of the local residents. However,
we must be suspicious of this sort of conclusion without further information. As the
radon example illustrates, it is possible to have between-level correlations without
the need for a “contextual” story. As usual in these models, we try to be careful
to state the regression results in a predictive rather than causal manner (“the
counties with more basements tend to have lower radon levels, after controlling for
the basement statuses of the individual houses”).

21.8 Multiple comparisons and statistical significance

A meta-analysis of a set of randomized experiments

In the wake of concerns about the health effects of low-frequency electric and mag-
netic fields, an experiment was performed to measure the effect of electromagnetic
fields at various frequencies on the functioning of chick brains. At each of several
frequencies of electromagnetic fields (1 Hz, 15 Hz, 30 Hz, . . . , 510 Hz), a random-
ized experiment was performed to estimate the effect of exposure, compared to a
control condition of no electromagnetic field. The researchers reported, for each fre-
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Figure 21.10 (a) Estimated effects of electromagnetic fields on calcium efflux from chick
brains, shaded to indicate different levels of statistical significance, adapted from Blackman
et al. (1988). A separate experiment was performed at each frequency. (b) Same results
presented as estimates ± standard errors. As discussed in the text, the first plot, with its
emphasis on statistical significance, is misleading.

quency, the estimated treatment effect (the average difference between treatment
and control measurements) and the standard error (that is,

√
σ2

T /nT + σ2
C/nC ; see

Section 2.3).
In the article reporting this study, the estimates at the different frequencies were

summarized by their statistical significance, as we illustrate in Figure 21.10a by
using different shading for results that are more than 2.3 standard errors from zero
(that is, statistically significant at the 99% level), between 2.0 and 2.3 standard
errors from zero (statistically significant at the 95% level), and so forth. The re-
searchers used this sort of display to hypothesize that one process was occurring at
255, 285, and 315 Hz (where effects were highly significant), another at 135 and 225
Hz (where effects were only moderately significant), and so forth. The estimates
are all of relative calcium efflux, so that an effect of 0.1, for example, corresponds
to a 10% increase compared to the control condition.

In the chick brain experiment, the researchers made the common mistake of using
statistical significance as a criterion for separating the estimates of different effects.
As we discuss in Section 2.5, this approach does not make sense. At the very least,
it is more informative to show the estimated treatment effect and standard error
at each frequency, as in Figure 21.10b.

Multilevel model

The confidence intervals at different frequencies in Figure 21.10b overlap substan-
tially, which implies that the estimates could be usefully pooled using a multilevel
model. The raw data from these experiments were not available,7 so we analyzed
the estimates, which we shall label as yj for each subexperiment j. Because the
chicken brains were randomly assigned to the treatment and control groups, we can
assume the yj ’s are unbiased estimates of the treatment effects θj ; and because the
sample sizes were not tiny, it is reasonable to assume that the estimation errors are
approximately normally distributed; thus,

yj ∼ N(θj , σ
2
j ).

7 When we asked the experimenter to share the data with us, he refused. This was disturbing
considering this was a government-funded study of public health interest, but we did not feel
like putting in the effort to wrest the data from him.
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Figure 21.11 Multilevel estimates and standard errors for the effects of magnetic fields,
partially pooled from the separate estimates displayed in Figure 21.10. The standard errors
of the original estimates were large, and so the multilevel estimates are pooled strongly
toward the common mean estimate of 0.1.

Our default model for the treatment effects is simply

θj ∼ N(μθ, σ
2
θ).

If we assume each σj is known and equal to the standard error of the estimate
yj , we can easily perform inference about the θj ’s (as well as the hyperparameters
μθ, σθ) using Bugs, supplying y, σ, and J as data:

Bugs codemodel {

for (j in 1:J){

y[j] ~ dnorm (theta[j], tau.y[j])

tau.y[j] <- pow(sigma.y[j], -2)

}

for (j in 1:J){

theta[j] ~ dnorm (mu.theta, tau.theta)

e.theta[j] <- theta[j] - mu.theta

}

tau.theta <- pow(sigma.theta, -2)

mu.theta ~ dnorm (0, .0001)

sigma.theta ~ dunif (0, 100)

}

(The line defining e.theta is there to allow the computation of the partial pooling
factor λ, which turns out to be 0.49, implying that the estimates are pooled, on
average, halfway toward the group-level model, which in this case is simply the
average of all the treatment effects.)

Figure 21.11 displays the inferences for the treatment effects θj , as estimated
from the multilevel model. The inferences shown here represent partial pooling of
the separate estimates yj toward the grand mean μθ.

More generally, the multilevel model can be seen as a way to estimate the effects
at each frequency j, without setting “nonsignificant” results to zero. Some of the
apparently dramatic features of the original data as plotted in Figure 21.10a—for
example, the negative estimate at 480 Hz and the pair of statistically significant
estimates at 405 Hz—do not stand out so much in the multilevel estimates, indi-
cating that these features could be easily explained by sampling variability and do
not necessarily represent real features of the underlying parameters.
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Potential criticisms of the multilevel model

The above multilevel model can be criticized because it pools all the estimates
toward their common mean of 0.1 with an assumed normal distribution for the true
θj ’s. This would not be appropriate if, for example, the treatment had a positive
effect at some frequencies and a zero effect at others. Or, as hypothesized by the
authors of the original study, that the true treatment effects could fall into three
groups: a set of large effects near 0.3, a set of moderate effects near 0.15, and a set
of zero effects.

We could explore this possibility by fitting a mixture model for the θj ’s. But the
resulting inferences would not differ much from our multilevel analysis that used
a normal distribution. The reason that changing the model would not do much is
that the uncertainty bounds for the individual estimates are so high. Even if, for
example, we fit a model with three clusters of effects, it would not be so clear which
points correspond to which cluster. The estimates at 255, 285, and 315 Hz appear to
be one cluster, but in fact the point at 255 Hz has a high standard error (see Figure
21.10b) and could very well belong to a lower cluster, whereas the estimates at 45,
135, 225, and other points are consistent with being in the higher group. Similarly,
several of the estimates are not statistically significant (see Figure 21.10a) but they
are almost all positive, and in aggregate they do not appear to be zero. There is
certainly no sharp dividing line between the “low” and the “moderate” estimates.

To put it another way: we do not “believe” the estimates in Figure 21.11 in
the same way as we trust the estimated county radon levels in Chapters 12 and
13. The difference is that the lognormal distribution for county radon levels seems
reasonable enough (in that radon in a house is affected by many small multiplicative
factors), whereas it seems more plausible that the effect of electromagnetic fields
on calcium efflux could be concentrated at a few frequencies. However, given the
variability in the parameter estimates, we believe the unpooled estimates in Figure
21.10 even less, and we would recommend using the multilevel model and estimates
as a starting point for further analysis of these data.

Relevance to multiple comparisons

One of the risks in statistical analysis of complex data is overinterpretation of pat-
terns that could be explained by random variation. Multilevel modeling is some-
times viewed with skepticism as just one more kind of model that can be fit without
the evidence of the data. Actually, though, multilevel modeling can reduce overin-
terpretation. For example, Figure 21.10 shows a dramatic pattern of three points
that stand apart from all the others, but the multilevel estimates in Figure 21.11
show these to be part of a larger group of relatively large effects for frequencies up
to 300 Hz or so. The partial pooling has revealed the fragility of the patterns in
the raw data (or in the no-pooling estimates), which can be explained by sampling
variability.

21.9 Bibliographic note

Achen (1982), Aitkin and Longford (1986), and Kiss (2003) present some methods
for understanding multilevel models. Textbooks such as Ramsey and Schafer (2001)
and Fox (2002) are useful places to start.

The distinction between finite-population and superpopulation variances is fun-
damental in multilevel models and has been considered by many researchers, in-
cluding Searle, Casella, and McCulloch (1992) and Gelman (2005). The different
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definitions of “fixed” and “random” effects, with references, appear in Gelman
(2005). See also Kreft and De Leeuw (1998, section 1.3.3) for a discussion of the
multiplicity of definitions of fixed and random effects and coefficients, and Robinson
(1998) for a historical overview. See Rosenthal, Rosnow, and Rubin (2000) for more
on contrasts in linear models.

The material on average predictive comparisons is from Gelman and Pardoe
(2007); the prison example appears in Pardoe and Weidner (2006) along with a
lively discussion. See also Graubard and Korn (1999), King, Tomz, and Wittenberg
(2000), Pardoe (2001), and Pardoe and Cook (2002) for related work on numerical
and graphical summaries of marginal predictive comparisons. The measures of R2

and partial pooling for multilevel models come from Gelman and Pardoe (2006);
see Wherry (1931), Pratt (1987), Bentler and Raykov (2000), Goldstein, Browne,
and Rasbash (2002), Afshartous and De Leeuw (2002), Xu (2003), Gustafson and
Clarke (2004), and Browne et al. (2005) for related ideas.

Kane, Rockoff, and Staiger (2006) describe the study of value added in teaching;
some important earlier work in this area includes Hanushek (1971), Summers and
Wolfe (1977), and Ehrenberg and Brewer (1994). The Advanced Placement study
is described by Wainer, Gelman, and Wang (2000). The example of the increasing
residual variance comes from Gelman and Price (1998). The chick brain studies,
along with the inappropriate analysis based on statistical significance, come from
Blackman et al. (1988). For more on multiple comparisons in hierarchical models,
see Gelman and Tuerlinckx (2000).

21.10 Exercises

1. Uncertainty and variability: for the radon model in Section 21.1, give examples
of how the parameter estimates and standard deviations might look if the sample
size is increased in the following ways:

(a) 4 times as many houses measured within each existing county.

(b) 4 times as many counties, but the same number of houses measured in each
county.

(c) 4 times as many counties, with 4 times the number of houses measured in
each county (thus, 16 times as many houses in total).

2. Superpopulation and finite-population standard deviations: fit a non-nested mul-
tilevel model to the Winter Olympics data (see Exercises 11.3 and 13.3).

(a) Fit the model using lmer() to get quick estimates of the standard-deviation
parameters (at the levels of data, judge, and skater).

(b) Fit the model in Bugs and get point estimates and 50% intervals for the
superpopulation standard-deviation parameters and the corresponding finite-
sample standard deviations.

3. Superpopulation and finite-population standard deviations:

(a) Fit a varying-intercept, varying-slope model to the data in the folder radon.
Get point estimates and 50% intervals for the superpopulation and finite-
population standard deviations.

(b) Repeat step (a) but just using a sample of 10 counties. The inference for the
superpopulation standard deviation should now be much more uncertain than
the finite-population standard deviation.
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(c) Repeat but just using a sample of 5 counties. The inferences should be even
more different now.

4. Contrasts: fit in Bugs a varying-intercept model to the radon data with log
uranium as a group-level predictor. You will compare inferences for the super-
population contrast (that is, the slope for log uranium in the county-level model)
and the corresponding finite-population contrast (that is, the coefficient of log
uranium for the intercepts for the particular counties in the data). You will need
to postprocess the simulations in R in order to get simulations for the finite-
population contrast.

(a) Compare the inferences (estimates and standard errors) for the superpopula-
tion and finite-population contrasts.

(b) Repeat part (a), but fitting the model just to the first three counties in the
dataset.

5. Average predictive comparisons:

(a) Take the model of well switching from Exercise 14.2 and estimate average
predictive comparisons for the input variables in the model (including the
index variable for villages).

(b) Take the model of rodent infestation from Exercise 14.3 and estimate average
predictive comparisons for the input variables in the model (including the
index variables for buildings and for community districts).

6. Explained variance and partial pooling: go to the model you fit to the one-fifth
sample of the radon data in Exercise 12.9. Fit the model in Bugs and compute
the percentage of explained variance and partial pooling factor at each of the
two levels of the model.



CHAPTER 22

Analysis of variance

Analysis of variance (ANOVA) refers to a specific set of methods for data analysis
and to a way of summarizing multilevel models:

• As a tool for data analysis, ANOVA is typically used to learn the relative im-
portance of different sources of variation in a dataset. For example, Figure 13.8
displays success rates of pilots at a flight simulator under five different treatments
at eight different airports. How much of the variation in the data is explained
by treatments, how much by airports, and how much remains after these factors
have been included in a linear model?

• If a multilevel model has already been fit, it can be summarized by the variation
in each of its batches of coefficients. For example, in the radon modeling in Chap-
ter 12, how much variation in radon levels is explained by floor of measurement
and how much by geographical variation? Or, in the analysis of public opinion
by state in Section 14.1, how much of the variation is explained by demographic
factors (sex, age, ethnicity, education), and how much by states and regions?

These “analysis of variance” questions can be of interest even for models that
are primarily intended for prediction, or for estimating particular regression co-
efficients.

The sections of this chapter address the different roles of ANOVA in multilevel
data analysis. We begin in Section 22.1 with a brief review of the goals and methods
of classical analysis of variance, outlining how they fit into our general multilevel
modeling approach. Sections 22.2 and 22.3 explain how ANOVA (or, more pre-
cisely, a set of computations that are inspired by classical ANOVA) can be used to
summarize inferences from multilevel models.

Having showed how to compute the ANOVA corresponding to a given multilevel
model, we discuss the converse in Section 22.4: if an ANOVA decomposition is
desired, how to set up and interpret the corresponding model. We start with simple
one-way and two-way structures and move to more complicated designs such as
latin squares and split plots.

In Section 22.5, we discuss two statistical methods associated with ANOVA—
the analysis of covariance and contrast analysis—and interpret them as multilevel
models with individual-level and group-level predictors, respectively. We cannot
cover all the topics of the analysis of variance in this chapter, but we hope to
show the connections with multilevel modeling to make it clear how to construct
appropriate models for the highly structured data that arise in many application
areas, especially those with designed experiments.

22.1 Classical analysis of variance

In classical statistics, ANOVA refers either to a family of additive data decomposi-
tions, or to a method of testing the statistical significance of added predictors in a
linear model. We shall discuss each of these interpretations in turn and then explain

487



488 ANALYSIS OF VARIANCE

> summary (aov (y ~ factor (treatment) + factor(airport)))

Df Sum Sq Mean Sq F value Pr(>F)

factor(treatment) 4 0.0783 0.0196 0.3867 0.8163

factor(airport) 7 3.9437 0.5634 11.1299 1.187e-06 ***

Residuals 28 1.4173 0.0506

Figure 22.1 Classical analysis of variance (as computed in R) for the flight simulator data.
The usual focus of this sort of analysis is on the p-values, which indicate that the variation
among treatments is not statistically significant (that is, it could be explained by chance
alone), but the airport variation cannot be plausibly attributed to chance. Compare to the
multilevel ANOVA display in Figure 22.5 on page 495.

what parts of classical ANOVA we will keep and what parts we will discard when
moving to multilevel analysis.

Classical ANOVA as additive data decomposition

In many examples with multilevel structure, it is helpful to perform a simple “data
decomposition.” For the flight simulator data indexed by treatments i and airports
j, we can write

yi = μ + γj[i] + δk[i] + εi,

or, equivalently,
yjk = μ + γj + δk + εjk,

in either case decomposing the data y into treatment effects, airport effects, and
residuals. In this case, with one observation i per cell (j, k), the residuals are equiv-
alent to treatment × airport interactions.

In general, additive decompositions are equivalent to regressions on index vari-
ables and their interactions, and the classical analysis of variance can be viewed as a
summary of an additive decomposition. In classical ANOVA, the model is estimated
using least squares, with the estimate of each batch of coefficients (except for the
mean level μ) constrained to sum to 0. However, the focus of interest is typically
not the coefficient estimates but rather their variances, as we discuss next, in the
context of the ANOVA table.

Sources of variation and degrees of freedom. Figure 22.1 illustrates for the flight
simulator data. Each row of the table represents a set of index variables: the treat-
ments j, airports k, and residuals i, with degrees of freedom (Df) defined as the
number of coefficients in that group, minus the number of constraints required for
the coefficients to be identifiable in a classical regression. Thus,

• 5 treatment effects minus 1 constraint = 4 degrees of freedom

• 8 airport effects minus 1 constraint = 7 degrees of freedom

• 40 residuals minus 12 constraints (1 mean, 4 treatment effects, and 7 airport
effects) = 28 degrees of freedom.

The degrees of freedom can be more formally defined in the language of matrix
algebra, but we shall not go into such details here.

Sums of squares. To continue with the description of Figure 22.1, the sum of
squares for each row of the table is derived from the classical coefficient estimates
(recall that these are constrained to sum to 0 in the least squares estimate). Thus,

the sums of squares for treatments, airports, and residuals are
∑40

i=1 γ̂2
j[i],
∑40

i=1 δ̂2
k[i],

and
∑40

i=1 ε̂2i , respectively.
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Balance. If the data are balanced, then the sums of squares in the table add up
to the “total sum of squares” of the data,

∑40
i=1(yi − μ̂)2. Roughly speaking, in a

balanced design there are the same number of observations in each row and each
column of the data. The flight simulator example is trivially balanced because the
data are complete, with 8 observations for each treatment, 5 for each airport, and
1 for each treatment × airport interaction. The data would be unbalanced if, for
example, we were missing the data from the YN condition for Nagoya (recall Figure
13.8 on page 290), or if we had replications for some cells and not for others. Balance
is much less important in multilevel modeling than in classical ANOVA, and we do
not discuss it further here.

Mean squares, F ratios, and p-values. For each source of variation in the ANOVA
table, the mean square is defined as the sum of squares divided by the degrees of
freedom. The mean square is important in classical ANOVA because it can be used
for hypothesis testing. If a given row in the table actually has zero variation, then
its mean square will, on average, equal the mean square of the residuals in the
model. The ratios of mean squares are called the F statistics, and the usual goal of
classical ANOVA is to find F-ratios that are significantly greater than 1.

In the flight simulator example, the treatment mean square is less than the resid-
ual mean square, indicating no evidence for variation between treatments. Airport
effects, however, seem to be present—their mean square is 11.1 times greater than
the residual mean square. The discrepancy of a mean square from the “null hy-
pothesis” value of 1 is tested using the Fν1,ν2 , where ν1 and ν2 are the degrees of
freedom of the numerator and denominator, respectively. The p-values in the table
indicate the statistical significance of the F-tests. As usual, the p-values are only
considered significant if they are close to 0 or 1 (typically, if less than 0.05 or greater
than 0.95). Thus, that the treatment mean square is not statistically significantly
less than what would be expected under the null hypothesis, but the airport mean
square is statistically significant, indicating that we can reject the hypothesis that
the “airport” factor has no effect on the outcome. Equivalently, we can say that the
between-airport variation is greater than what could be expected by chance, given
the variation in the data.

Classical ANOVA for model comparison

We have just illustrated how ANOVA is used to summarize data, and how this
ANOVA corresponds to a “default” linear model with indicator variables. We now
discuss the other classical role of the analysis of variance, which is to summarize
hypothesis tests within an existing family of models. The basic idea is that an
analyst has fit a linear regression model and is considering fitting a larger model
formed by adding predictors to the first model. (The two models are said to be
nested, with this term having a different meaning from its use in multilevel models
as in Chapters 12 and 13.)

When comparing nested models, ANOVA is related to the classical test of the
hypothesis that the smaller model is true, which is equivalent to the hypothesis that
the additional predictors all have coefficients of zero when included in the larger
model. Suppose the smaller model has k1 predictors, the larger model has k1 + k2

predictors, and each model is fit to n data points. If the predictions from the smaller
and larger regressions are X1β̂1 and X2β̂2, respectively, then the classical ANOVA
for testing the model expansion can be written as
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Df SS MS

Model expansion k2

P
i(yi − X1β̂1)

2
−

P
i(yi − X2β̂2)

2 SS/k2

Residuals n−k1−k2

P
i(yi − X2β̂2)

2 SS/(n−k1−k2)

If the ratio of these sums of squares is statistically significantly greater than 1 (as
compared to the Fk2,n−k1−k2 distribution), then the improvement in fit from the
model expansion cannot be reasonably explained by chance.

22.2 ANOVA and multilevel linear and generalized linear models

When moving to multilevel modeling, the key idea we want to take from the analy-
sis of variance is the estimation of the importance of different batches of predictors
(“components of variation” in ANOVA terminology). As usual, we focus on esti-
mation rather than testing: instead of testing the null hypothesis that a variance
component is zero, we estimate the standard deviation of the corresponding batch
of coefficients. If this standard deviation is estimated to be small, then the source of
variation is minor—we do not worry about whether it is exactly zero. In the social
science and public health examples that we focus on, it can be a useful research
goal to identify important sources of variation, but it is rare that anything is truly
zero.

Notation

As always, any multilevel model can be expressed in several ways. For ANOVA, we
write the models to emphasize the grouping of regression coefficients into “sources
of variation,” with each batch corresponding to one row of the ANOVA table. We
use the notation m = 1, . . . , M for the rows of the table. Each row m represents

a batch of Jm regression coefficients β
(m)
j , j = 1, . . . , Jm. We denote the mth

subvector of coefficients as β(m) = (β
(m)
1 , . . . , β

(m)
Jm

) and the corresponding classical

least squares estimate as β̂(m). These estimates are subject to cm linear constraints,
yielding (df)m = Jm − cm degrees of freedom. We label the constraint matrix as

C(m), so that C(m)β̂(m) = 0 for all m. For notational convenience, we label the

grand mean as β
(0)
1 , corresponding to the (invisible) zeroth row of the ANOVA

table and estimated with no linear constraints.
In classical ANOVA, a linear model is fit to the data points yi, i = 1, . . . , n, and

can be written as

yi =

M∑
m=0

β
(m)
jm
i

(22.1)

where jm
i indexes the appropriate coefficient j in batch m corresponding to data

point i. Thus, each data point pulls one coefficient from each row in the ANOVA
table. Equation (22.1) could also be expressed as a linear regression model with a
design matrix composed entirely of 0’s and 1’s. The coefficients βM

j of the last row
of the table correspond to the residuals or error term of the model.

ANOVA can also be applied more generally to regression models, in which case
we can have any design matrix X , and (22.1) would be generalized to

yi =

M∑
m=0

Jm∑
j=1

X
(m)
ij β

(m)
j . (22.2)

The essence of analysis of variance is in the structuring of the coefficients into
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batches—hence the notation β
(m)
j —going beyond the usual linear model formula-

tion that has a single indexing of coefficients βj . We assume that the structure
(22.1), or the more general regression parameterization (22.2), has already been
constructed using knowledge of the data structure. To use ANOVA terminology, we
assume the sources of variation have already been set, and our goal is to perform
inference for each variance component.

We shall follow our usual practice and model each batch of regression coefficients
as a sample from a normal distribution with mean 0 and superpopulation standard
deviation σm:

β
(m)
j ∼ N(0, σ2

m), for j = 1, . . . , Jm, for each batch m = 1, . . . , M. (22.3)

With factors that have only a finite number of levels (for example, 50 states), the
superpopulation is difficult to intepret in itself except as a tool that allows better
inferences for the individual coefficients.

We model the underlying coefficients β as unconstrained (unlike the least squares
estimates) but in many cases will summarize them by subtracting off their averages,
as in Section 19.4. The mean of 0 for each batch in (22.3) comes naturally from
the ANOVA decomposition structure (pulling out the grand mean, main effects,
interactions, and so forth), and the standard deviations represent the magnitudes
of the variance components corresponding to each row of the table.

The finite-population standard deviation

One measure of the importance of each row or “source” in the ANOVA table is the
standard deviation of its constrained regression coefficients, the finite-population
standard deviation

sm =

√√√√ 1

Jm − 1

Jm∑
j=1

(
β

(m)
j − β̄(m)

)2

, (22.4)

where β̄(m) =
∑Jm

j=1 β
(m)
j /Jm. As discussed in the context of definitions (21.1) on

page 460, sm captures the variation in the existing Jm levels of factor m in the
data, in comparison to σm, which reflects the potential uncertainty in the super-
population.

Variance estimation is often presented in terms of the superpopulation standard
deviations σm, but in our ANOVA summaries, we focus on the finite-population
quantities sm. However, for computational reasons, the parameters σm are some-
times useful intermediate quantities to estimate.

Generalized linear models

The multilevel ANOVA framework does not require the normal distribution or, for
that matter, even linearity. All that is needed is that the parameters β can be
grouped into reasonable batches, with the magnitude of each batch summarized by
a standard deviation. We illustrate this process in the next section with a logistic
regression. For generalized linear models, coefficients and variance parameters on
the logarithmic or logit scales can be interpreted as discussed in Chapters 5–6 and
14–15.
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Figure 22.2 ANOVA display for the World Wide Web data. The bars indicate 50% and
95% intervals for the finite-population standard deviations sm. The display makes apparent
the magnitudes and uncertainties of the different components of variation. Since the data
are on the logarithmic scale, the standard-deviation parameters can be interpreted directly.
For example, sm = 0.20 corresponds to a coefficient of variation of exp(0.2) − 1 ≈ 0.2 on

the original scale, and so the exponentiated coefficients exp(β
(m)
j ) in this batch correspond

to multiplicative increases or decreases in the range of 20%. (The dots on the bars show
simple classical estimates of the variance components that were used as starting points in
the multilevel analysis.)

22.3 Summarizing multilevel models using ANOVA

It can be helpful to graph the estimates of variance components, especially for
complex data structures with many levels of variation. In basic multilevel models
(that is, the models covered in this book), each variance parameter corresponds to
a set of coefficients—for example, y ∼ N(Xβ, σ2

y), or α ∼ N(μα, σ2
α). As discussed

in Section 21.2, the standard deviation of a set of coefficients gives a sense of their
predictive importance in the model. An analysis-of-variance plot, which shows the
relative scale of different variance components, can be a useful tool in understanding
a model.

A five-way factorial analysis: internet connect times

We illustrate the analysis of variance with an example of a linear model fitted for
exploratory purposes to a highly structured dataset.
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Figure 22.3 Analysis of variance (ANOVA) display for two logistic regression models of
the probability that a survey respondent prefers the Republican candidate for the 1988 U.S.
presidential election, based on data from seven CBS News polls. Point estimates and er-
ror bars show median estimates, 50% intervals, and 95% intervals of the finite-population
standard deviations sm. The demographic factors are those used by CBS to perform non-
response adjustments, and states and regions are included because we were interested in
estimating average opinions by state. The large coefficients for ethnicity, region, and state
suggest that it might make sense to include interactions, hence the inclusion of the ethnicity
× region and ethnicity × state coefficients in the second model.

Data were collected by an internet infrastructure provider on connect times for
messages processed by two different companies. Messages were sent every hour for
25 consecutive hours, from each of 45 locations to 4 different destinations, and the
study was repeated one week later. It was desired to quickly summarize these data
to learn about the importance of different sources of variation in connect times.

Figure 22.2 shows the Bayesian ANOVA display for an analysis of logarithms
of connect times on the five factors: destination (“to”), source (“from”), service
provider (“company”), time of day (“hour”), and week. The data have a full fac-
torial structure with no replication, so the full five-way interaction at the bottom
represents the “error” or lowest-level variability.

Each row of the plot shows the estimated finite-population standard deviation
of the corresponding group of parameters, along with 50% and 95% uncertainty
intervals. We can immediately see that the lowest-level variation is more important
in variance than any of the factors except for the main effect of the destination.
Company has a large effect on its own and, perhaps more interestingly, in interaction
with to, from, and in the three-way interaction. (By comparison, a classical analysis
of variance reveals that all the main effects and almost all the interactions are
statistically significant, but it does not give a good sense of the relative magnitudes
of the different variance components.)

Figure 22.2 would not normally represent the final statistical analysis for this
sort of problem. The ANOVA plot represents a default model and is a tool for
data exploration—for learning about which factors are important in predicting the
variation in the data—and can be used to construct more focused models or design
future data collection.

A multilevel logistic regression: vote preference broken down by state and
demographics

We illustrate the use of ANOVA for understanding an existing model with the
vote preference study described in Section 14.1. There, we focused on hierarchical
modeling as a tool for estimating state opinions; here, we examine the fitted models
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Figure 22.4 One-way analysis of variance for the radon data. The dots, thick lines, and
thin lines represent medians, 50% intervals, and 95% intervals for the finite-population
standard deviation s, for each source of variation.

themselves to see the relative importance of different inputs in predicting vote
preferences. The left plot of Figure 22.3 displays the analysis of variance from the
basic model, which shows that ethnicity is by far the most important demographic
factor, with state also explaining quite a bit of variation.

The natural next step is to consider interactions among the most important
factors, as shown in the plot on the right side of Figure 22.3. The ethnicity ×
state × region interactions are surprisingly large: the differences between African
Americans and others vary dramatically by state.

22.4 Doing ANOVA using multilevel models

Our general solution to the ANOVA problem is simple: we treat every row in the
table as a batch of “varying coefficients”—that is, a set of regression coefficients
drawn from a distribution with mean 0 and some standard deviation to be estimated
from the data. We illustrate in the rest of this chapter with several examples of basic
data structures to which the analysis of variance is often applied.

One-way ANOVA: radon measurements within counties

Some of the essential elements of multilevel analysis of variance can be seen in the
simplest case of a one-way structure. We illustrate with the radon example from
Chapter 12, simplified to measurements within counties, ignoring all individual-level
and group-level predictors. The model is then

yi ∼ N(αj[i], σ
2
y), for i = 1, . . . , n

αj ∼ N(μα, σ2
α), for j = 1, . . . , J.

As discussed in Section 19.4, we use redundant parameters to speed the compu-
tation. We also add lines in the Bugs model to define the finite-population standard
deviations, sε and sα:

Bugs code for (i in 1:n){

e.y[i] ~ y[i] - y.hat[i]

}

s.y <- sd(e[])

s.a <- sd(a[])

Figure 22.4 shows the result of fitting this model to the Minnesota radon data.
The variation among houses within counties is much larger than the variation of
county mean radon levels. The between-county variation is estimated to be about
0.3; the analysis is on the log scale, so this corresponds to a multiplicative variation
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Figure 22.5 Two-way analysis of variance for the flight simulator data. The dots, thick
lines, and thin lines represent medians, 50% intervals, and 95% intervals for the finite-
population standard deviation s, for each source of variation.

of exp(0.3) ≈ 1.3. That is, average radon levels vary by about 30% among Minnesota
counties. Although this variation is small, it is clearly “statistically significant”: its
95% confidence interval in Figure 22.4 shows that we are fairly certain that the
between-county standard deviation falls between 0.2 and 0.4. (The within-county
standard deviation is estimated much more accurately, which makes sense given its
larger degrees of freedom.)

Two-way ANOVA: flight simulator data

We illustrate two-way analysis of variance with the flight simulator experiment
described in Section 13.5. The data, displayed in Figure 13.8, are the success rates
of pilots in flight simulators, under five different experimental treatments at eight
different airports. Figure 22.1 on page 488 displays the classical two-way ANOVA
for these data. The corresponding multilevel model is (13.9) on page 289, a model
we can also write as

yi = μ + γj[i] + δk[i] + εi, for i = 1, . . . , n

γj ∼ N(0, σ2
γ), for j = 1, . . . , J

δk ∼ N(0, σ2
δ ), for k = 1, . . . , K

εi ∼ N(0, σ2
ε ), for i = 1, . . . , n. (22.5)

In the terminology of the analysis of variance, the data have n − 1 = 39 degrees of
freedom, which can be decomposed into:

• J − 1 = 4 degrees of freedom for γ

• K − 1 = 7 degrees of freedom for δ

• The remaining 28 degrees of freedom for ε.

The multilevel ANOVA is performed by fitting model (22.5) and summarizing by
the estimated variance components. We could use the superpopulation variance
parameters σy, σγ , σδ, but, for reasons described in Section 21.2, we prefer to work
with the finite-population variance parameters sy, sγ , sδ defined in (21.1) on page
460. Each of these standard deviations is defined in terms of the model parameters
and thus varies across the simulations produced by the multilevel inference in Bugs.

Figure 22.5 summarizes the inference for the variance components for the flight
simulator data. Treatment effects are small (with coefficients estimated to be less
than 0.05 in absolute value), airport effects are on the order of 0.3 (which is large,
considering that the outcomes y are proportions and thus fall between 0 and 1),
and the scale of the errors is moderately large, at about 0.2.
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Two-way ANOVA with replication

When replications are present, it is possible to estimate the two-way interactions
separately from the measurement error. The additive model can be expanded to

yi = μ + γj[i] + δk[i] + ηj[i],k[i] + εi,

with separate variance components for the γj ’s, δk’s, ηj,k’s, and εi’s. For example,
if the flight simulator data had four replications per cell (thus, 5 × 8 × 4 = 160
observations), the ANOVA would look like

Source df

treatment 4
airport 7
treatment × airport 28
error 120

The 120 degrees of freedom for error correspond to the 160 data points, minus
the 40 cell means. Each row of the table would correspond to a single variance
component.

Unbalanced designs

Multilevel analysis of variance works the same for unbalanced as for balanced de-
signs. For example, in the flight simulator analysis, if we had 160 observations in
the 40 cells, but not necessarily evenly distributed at 4 per cell, then the ANOVA
table would have the same structure.

Nested designs

Consider an experiment on 4 treatments for an industrial process applied to 20
machines (randomly divided into 4 groups of 5), with each treatment applied 6 times
independently on each of its 5 machines. For simplicity, we assume no systematic
time effects, so that the 6 measurements on each machine are replications. The
ANOVA table is then

Source df

treatment 3
machine 16
error 100

Because the design is nested, it does not make sense to consider treatment × ma-
chine interactions. If expressed in terms of measurements i, machines j, and treat-
ments k, the nested model can be written identically as the two-way non-nested
model (22.5). The multilevel analysis automatically accounts for the nesting.

22.5 Adding predictors: analysis of covariance and contrast analysis

Individual-level predictors and analysis of covariance

Analysis of covariance is a decomposition of the sources of variation of a dataset
(as in ANOVA), after adjusting for a predictor or set of predictors. In the multilevel
modeling context, analysis of covariance corresponds to an ANOVA-like decompo-
sition of a model that includes individual-level predictors.

For example, Figure 22.4 on page 494 displays the one-way analysis of variance
for the Minnesota radon data, showing the estimated county-level and house-level
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Figure 22.6 ANOVA displays for a 5× 5 latin square experiment (an example of a crossed
three-way structure) for the data shown on page 292: (a) with no group-level predictors,
(b) contrast analysis including linear trends for rows, columns, and treatments. See also
the plots of coefficient estimates and trends on page 293.

variation. Suppose we are interested in estimating these sources of variation, after
controlling for the floor of measurement (recall from Chapter 12 that radon levels
tends to be higher in houses with basements). We then fit the model

yi ∼ N(αj[i] + xiβ, σ2
y), for i = 1, . . . , n

αj ∼ N(μα, σ2
α), for j = 1, . . . , J,

and display the estimated variance components σβ , σy (or their finite-sample coun-
terparts, sβ , sy). In this particular example, the estimated variance parameters are
not much changed from the simple ANOVA, and so we do not display the analysis
of covariance table here.

Group-level predictors and contrast analysis

Adding predictors at the group level in a multilevel model corresponds to the clas-
sical method of contrasts in the analysis of variance. We illustrate with the latin
square data displayed in Figure 13.11 on page 292. First we perform the analysis
of variance for the three-level model with no additional predictors; then we add
group-level predictors and show the contrast analysis.

Multilevel ANOVA with no contrasts. In Section 13.5, we fit a model including row
effects, column effects, treatment effects, and linear trends for each of these factors.
We shall first fit the model without the linear trends and simply estimate the
magnitudes of the row, column, and treatment effects. The model is the following
stripped-down version of (13.10):

yi ∼ N(μ + βrow
j[i] + βcolumn

k[i] + βtreat
l[i] , σ2

y), for i = 1, . . . , 25

βrow
j ∼ N(0, σ2

β,row), for j = 1, . . . , 5

βcolumn
k ∼ N(0, σ2

β,column), for k = 1, . . . , 5

βtreat
l ∼ N(0, σ2

β,treat), for l = 1, . . . , 5, (22.6)

and we summarize by the finite-sample standard deviations. Figure 22.6a shows the
results: none of the effects are large compared to residual variation, and the sample
size is small enough that it is difficult to distinguish column and treatment effects
from zero.

Multilevel ANOVA with contrasts. We next add linear contrasts for the rows,
columns, and treatments, expanding the model by replacing the group-level models
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in (22.6) with

βrow
j ∼ N(γrow · (j − 3), σ2

β row)

βcolumn
k ∼ N(γcolumn · (k − 3), σ2

β column)

βtreat
l ∼ N(γtreat · (l − 3), σ2

β treat).

Figure 22.6b shows the new ANOVA, with each factor decomposed into a linear
contrast and residuals from the contrast. The column and treatment effects are
mostly captured by the linear contrasts, whereas the variation in the row effects
does not follow a linear trend.

These ANOVA displays give a reasonable quick summary, but in this particular
application it is probably more useful to simply display each group of parameter
estimates, along with the estimated linear contrasts, directly, as in Figure 13.12 on
page 293. We have shown the ANOVA here to connect to classical contrast analysis.

22.6 Modeling the variance parameters: a split-plot latin square

Multilevel data structures can be characterized by the number of grouping factors
(that is, rows of the ANOVA table) and the number of groups in each. For example,
the radon example has one grouping factor—counties—which takes on 85 values.
The latin square example of the previous section had three factors—row, column,
and treatment—each of which took on five levels. Designed experiments sometimes
go even further in this direction: for example, a so-called 26 design has six factors,
each of which can take on two different values (thus a total of 64 data points in a
complete design, or more if there is replication).

Different models are appropriate for differently shaped data structures. With few
grouping factors and many levels per factor, the models discussed so far in this
book—modeling the coefficients but leaving the variance components unmodeled
(in Bayesian terms, to be estimated using noninformative prior distributions)—are
appropriate. At the other extreme, when the number of levels per grouping factor is
small, it can be helpful to model the variance parameters, and when there are many
factors, it is possible to use partial pooling to do this estimation. We illustrate with
a hierarchical data structure with two treatment factors and nine grouping factors
(including interactions).

Crossed and nested ANOVA: a split-plot design

In a split-plot design, units are clustered, and there are two treatment factors,
with one factor applied to groups and the other to individual units. For example,
in an educational experiment with students within classrooms, several teaching
methods might be applied at the classroom level, with individual interventions
applied to individual students. In this sort of design, the individual-level treatments
are typically estimated with higher precision than the group-level treatments, and
part of the goal of ANOVA is to assess the importance of both factors. (The term
“split-plot” refers to agricultural experiments, where the groups are large plots that
are split into subplots, which play the role of individual units in our analysis.)

For example, here are the variance components for a 5 × 5 × 2 split-plot latin
square:
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Figure 22.7 ANOVA display for a split-plot latin square experiment: posterior medians,
50%, and 95% intervals for finite-population standard deviations sk. (a) The left plot
shows inferences given uniform prior distributions on the σk’s; (b) the right plot shows
inferences given a hierarchical half-Cauchy model with scale fit to the data. The half-
Cauchy model gives sharper estimates, indicating the power of hierarchical modeling for
these highly uncertain quantities.

Source df

row 4
column 4
(A,B,C,D,E) 4
plot 12

(1,2) 1
row × (1,2) 4
column × (1,2) 4
(A,B,C,D,E) × (1,2) 4
plot × (1,2) 12

In this example, there are 25 plots with five full-plot treatments (labeled A, B,
C, D, E), and each plot is divided into two subplots with subplot varieties (labeled
1 and 2). The horizontal line in the table separates the main-plot from the subplot
effects. In a classical analysis, it is easy enough to decompose the 49 degrees of
freedom to the rows in the ANOVA table; the tricky part of the analysis is to know
which residuals are to be used for which comparisons.

The analysis is straightforward using multilevel models. We first present the
results (using data from an agricultural experiment) with a simple multilevel model
that leaves the variance parameters unmodeled, then with an expanded model that
includes a hierarchical model for the variance parameters themselves.

Multilevel model with noninformative prior distributions for the variance
parameters

To perform ANOVA using multilevel analysis, we simply set up a linear model with
a batch of coefficients corresponding to each source of variation; thus,

yi = α0 + αrow
j[i] + αcol

k[i] + αABCDE
l[i] + αplot

m[i] + α12
n[i] + αcol×12

j[i],n[i] + αABCDE×12
k[i],n[i] + αplot×12

l[i],n[i] .

Here the data i run from 1 to 50, and we have used the variables j, k, l, m, n to index
rows, columns, group-level treatments, plots, and individual-level treatments. There
is no replication in the study (that is, there is only one measurement per subplot),

and so the last term in the additive model, αplot×12
l,n , corresponds to data-level

errors.
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Figure 22.8 Posterior medians, 50%, and 95% intervals for standard-deviation parameters
σk estimated from a split-plot latin square experiment. (a) The left plot shows inferences
given uniform prior distributions on the σk’s; and (b) the right plot shows inferences given
a hierarchical half-Cauchy model with scale fit to the data. The half-Cauchy model gives
much sharper inferences, using the partial pooling that comes with fitting a hierarchical
model. Compare to Figure 22.7 (which is on a different scale).

Each batch of coefficients α is then assigned its own normal distribution with
mean 0 and standard deviation estimated from the data: αrow

j ∼ N(0, (σrow)2), and
so forth. We can then fit the model and summarize using finite-population standard
deviations. Figure 22.7a illustrates.

Multilevel model with noninformative prior distributions for the variance
parameters

Each row of the ANOVA table corresponds to a different variance component,
and the split-plot ANOVA can be understood as a linear model with nine variance
components, σ1, . . . , σ9—one for each row of the table. The default performed earlier
assigns a uniform prior distribution to each of the parameters σk.

More generally, we can set up a hierarchical model, where the variance parameters
have a common distribution with hyperparameters estimated from the data. We
consider a half-Cauchy prior distribution with peak 0 and scale A, and with a
uniform prior distribution on A. The hierarchical half-Cauchy model allows most of
the variance parameters to be small but with the occasionally large σα, which seems
reasonable in the typical settings of analysis of variance, in which most sources of
variation are small but some are large. See Section 19.6 for further discussion of the
half-Cauchy model for multilevel variance parameters.

Figure 22.7b shows inferences for the finite-population standard-deviation pa-
rameters sα for each row of the latin square split-plot ANOVA under this new
model. The inferences from the half-Cauchy prior distribution are slightly more
precise than with the uniform, with the most pooling occurring for the variance
component that has just one degree of freedom. The Cauchy scale parameter A was
estimated at 1.8, with a 95% interval of [0.5, 5.1].

Superpopulation and finite-population standard deviations

As discussed in Section 21.2, finite-population inferences can be much more precise
than superpopulation inferences when the number of groups is small. We illustrate
here by displaying, in Figure 22.8, the inferences for the superpopulation standard
deviations in the split-plot latin square example, again separately for the uniform
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and hierarchical half-Cauchy prior distributions for the standard-deviation param-
eters σk.

As the left plot shows, the uniform prior distribution does not rule out the po-
tential for some extremely high values of the variance components—the degrees of
freedom are low, and the interlocking of the linear parameters in the latin square
model results in difficulty in estimating any single variance parameter. In contrast,
the hierarchical half-Cauchy model performs a great deal of shrinkage, especially of
the high ranges of the intervals. (For most of the variance parameters, the posterior
medians are similar under the two models, but the 75th and 97.5th percentiles are
shrunk by the hierarchical model.) This is an ideal setting for hierarchical modeling
of variance parameters in that it combines separately imprecise estimates of each
of the individual σk’s.

22.7 Bibliographic note

Searle, Casella, and McCulloch (1992) review classical analysis of variance and
variance-component models. Kirk (1995) provides an introductory treatment from
the perspective of experimental psychology.

The multilevel ANOVA approach described in this chapter comes from Gelman
(2005), and is based on earlier work of Green and Tukey (1960), Nelder (1965a,
b), Yates (1967), and Lane and Nelder (1982). The hierarchical model for variance
parameters appears in Gelman (2006). See also many of the references in Section
21.9 for related ideas.

McCullagh (2005) points out that ANOVA can be applied more generally to non-
exchangeable models such as arise in genetics or, more generally, in models with
structured interactions.

22.8 Exercises

1. Take a varying-intercept model from one of the exercises in Part 2 of this book
and construct the corresponding ANOVA plot as in Section 22.3.

2. Analysis of variance for meta-analysis: consider the magnetic-fields experiments
from Section 21.8 (data in the folder chicks) as an analysis-of-variance prob-
lem. Identify the sources of variation and construct the ANOVA plot, making
whatever assumptions are necessary to do this using the available data.

3. Three-way designs: perform the analysis of variance as described in Section 22.4
for the data in the folder olympics, which are figure-skating ratings classified
by judges, skaters, and measurement criterion (see Exercise 11.3). You will need
to identify the sources of variation, then fit the model and display the estimated
standard-deviation parameters and their uncertainties.

4. Hierarchical modeling of variance parameters: consider the model for height and
earnings shown in Figure 13.10 on page 291.

(a) Start with a varying-intercept model (with intercepts varying by ethnicity, age,
and ethnicity × age), with a hierarchical model for the variance parameters
as in Section 22.6. Make plots similar to Figures 22.7 and 22.8 to compare the
inferences under flat and hierarchical prior distributions.

(b) Repeat (a) for a varying-intercept, varying slope model (with both intercepts
and slopes varying by ethnicity, age, and their interaction).

5. Multivariate analysis of variance for multilevel models: consider how the models
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and displays of this chapter could be generalized to varying-intercept, varying-
slope models.



CHAPTER 23

Causal inference using multilevel models

Causal inference using regression has an inherent multilevel structure—the data
give comparisons between units, but the desired causal inferences are within units.
Experimental designs such as pairing and blocking assign different treatments to
different units within a group. Observational analyses such as pairing or panel
study attempt to capture groups of similar observations with variation in treatment
assignment within groups.

23.1 Multilevel aspects of data collection

Hierarchical analysis of a paired design

Section 9.3 describes an experiment applied to school classrooms with a paired
design: within each grade, two classes were chosen within each of several schools,
and each pair was randomized, with the treatment assigned to one class and the
control assigned to the other. The appropriate analysis then controls for grade and
pair.

Including pair indicators in the Electric Company experiment. As in Section 9.3,
we perform a separate analysis for each grade, which could be thought of as a model
including interactions of treatment with grade indicators. Within any grade, let n
be the number of classes (recall that the treatment and measurements are at the
classroom, not the student, level) and J be the number of pairs, which is n/2 in this
case. (We use the general notation n, J rather than simply “hard-coding” J = n/2
so that our analysis can also be used for more general randomized block designs
with arbitrary numbers of units within each block.)

The basic analysis has the form

yi ∼ N(αj[i] + Tiθ, σ
2
y), for i = 1, . . . , n

αj ∼ N(μα, σ2
α), for j = 1, . . . , J.

By including the pair indicators, this model controls for all information used in the
design.

Here is the Bugs code for this model, as fit to classrooms from a single grade,
and using pair[i] to index the pair to which classroom i belongs:

Bugs codemodel {

for (i in 1:n){

y[i] ~ dnorm (y.hat[i], tau.y)

y.hat[i] <- a[pair[i]] + theta*treatment[i]

}

for (j in 1:n.pair){

a[j] ~ dnorm (mu.a, tau.a)

}

theta ~ dnorm (0, .0001)

tau.y <- pow(sigma.y, -2)

sigma.y ~ dunif (0, 100)

503



504 CAUSAL INFERENCE USING MULTILEVEL MODELS

mu.a ~ dnorm (0, .0001)

tau.a <- pow(sigma.a, -2)

sigma.a ~ dunif (0, 100)

}

}

Fitting all four grades at once. We can fit the above model to each grade sepa-
rately, or we can expand it by allowing each of the parameters to vary by grade.
For convenience, we use two index variables: grade, which indexes the grades of the
classrooms, and grade.pair, which indexes the grades of the pairs. (This particular
experiment involves n = 192 classrooms clustered into J = 96 pairs, so grade is a
vector of length 192 and grade.pair has length 96. The entries of both vectors are
1’s, 2’s, 3’s, and 4’s.) Here is the Bugs model:

Bugs code model {

for (i in 1:n){

y[i] ~ dnorm (y.hat[i], tau.y[grade[i]])

y.hat[i] <- a[pair[i]] + theta[grade[i]]*treatment[i]

}

for (j in 1:n.pair){

a[j] ~ dnorm (mu.a[grade.pair[j]], tau.a[grade.pair[j]])

}

for (k in 1:n.grade){

theta[k] ~ dnorm (0, .0001)

tau.y[k] <- pow(sigma.y[k], -2)

sigma.y[k] ~ dunif (0, 100)

mu.a[k] ~ dnorm (0, .0001)

tau.a[k] <- pow(sigma.a[k], -2)

sigma.a[k] ~ dunif (0, 100)

}

}

Writing the model this way has the advantage that the Bugs output (not shown
here) displays inferences for all the parameters at once. The treatment effects θ are
large for the first two grades and closer to zero for grades 3 and 4; the intercepts
αj are highly variable for the first 11 pairs (which correspond to classes in grade
1), vary somewhat for the next bunch of pairs (which are grade 2 classes), and vary
little for the classes in higher grades. The residual data variance and the between-
pair variance both decrease for the higher grades, all of which are consistent with
the compression of the scores for higher grades at the upper end of the range of
data (see Figure 9.4 on page 174).

Controlling for pair indicators and pre-test score. As discussed in Section 9.3,
the next step is to include pre-test class scores as an input in the regression. The
treatments are assigned randomly within each grade and pair, so it is not necessary
to include other pre-treatment information, but adding pre-test to the analysis can
improve the precision of the estimated treatment effects.

For simplicity, we return to the model on page 503 that fits one grade at a
time. We need to alter this Bugs model only slightly, by simply adding the term
+ b.pre.test*pre.test[i] to the expression for y.hat[i], and then at the end
of the model, placing the prior distribution, b.pre.test ~ dnorm(0,.0001).

Figure 23.1 displays the estimated treatment effects for the models controlling
for pairing, with and without pre-test score. The final analysis, including pairing
and pre-test as inputs, clearly shows a positive treatment effect in all grades, with
narrower intervals than the corresponding estimates without including the pairing
information (see Figure 9.5 on page 176).
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Figure 23.1 Estimates, 50%, and 95% intervals for the effect of the Electric Company
television show in each grade as estimated from hierarchical models that account for the
pairing of classrooms in the experimental design. Displayed are regression coefficients for
the treatment indicator: (a) also controlling for pair indicators, (b) also controlling for pair
indicators and pre-test scores. Compare to Figure 9.5 on page 176, which shows estimates
not including the pairing information. The most precise estimates are those that control
for both pairing and pre-test.
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Figure 23.2 Standard errors for estimated treatment effects in each grade for each of four
models: (−−) with no other predictors in the model, (pre) controlling for pre-test, (pair)
controlling for indicators for pairing, (pre, pair) controlling for pre-test and pair indicators.
Unsurprisingly, controlling for more pre-test information tends to reduce estimation errors.
Figures 9.5 and 23.1 display the estimated treatment effects and uncertainty bounds for
the four models in each grade.

To show more clearly the improvements from including more pre-treatment data
in the model, Figure 23.2 displays the standard deviations of the estimated treat-
ment effect in each grade as estimated from models excluding or including the
pairing and pre-test information. In this case, the pre-test appears to contain more
information than the pairing, and it is most effective to include both inputs, espe-
cially in grade 1, where there appears to be wide variation among classes.

Hierarchical analysis of randomized-block and other structured designs

More generally, pre-treatment information used in the design should be included
as inputs so that the coefficients for the treatment indicators correspond to causal
effects. For example, consider designs such as randomized blocks (in which data are
partitioned into groups or “blocks,” with random treatment assignment within each
block) or latin squares (in which experimental units in a row × column data struc-
ture are assigned treatments randomly with constraints on the randomization so
that treatment assignments are balanced within each row and column), the blocks,
or the rows and columns, represent pre-treatment factors that can be accounted
for using a multilevel model. This combines our general advice for causal inference
in Chapter 9 with the idea from Chapter 12 of multilevel modeling as a general
approach for handling categorical variables as regression predictors.
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23.2 Estimating treatment effects in a multilevel observational study

In Section 10.1 we introduced the example of estimating the effect of the Infant
Health and Development Program in the context of a (constructed) observational
study. In that classical regression analysis, we included indicator variables for the
8 sites in order to control for unobserved site-specific characteristics that might be
associated with both selection into treatment as well as the outcome (test scores).
Here we extend to a multilevel model.

Varying intercepts

The simplest extension is just to allow for varying intercepts across site. If we
denote post-treatment outcomes by y, treatment assignment by T , and the vector
of confounding covariates for person i as Xi, we can write

yi ∼ N(αj[i] + Tiθ + Xiβ, σ2
y), for i = 1, . . . , n,

αj ∼ N(μα, σ2
α), for j = 1, . . . , J.

Here, the matrix of predictors X does not include a constant term, since we have
included a constant in the model for the αj ’s. The treatment effect θ is estimated
at 9.1 with a standard error of 2.1. (By comparison, our estimate from the clas-
sical regression with site indicators was 8.8 with standard error of 2.1, and the
experimental benchmark is 7.4.)

Assumptions satisfied? The original justification for including site information
when estimating the causal effect of the treatment was that it is plausible that un-
observed site characteristics may be associated with both selection into treatment
and subsequent test scores. However, the model above implicitly assumes that the
intercepts (which capture unobserved characteristics of the sites) are independent
of the other predictors in the model.

How can we resolve this conceptual inconsistency? One approach is to allow the
intercepts to be correlated with the treatment variable. We can accomplish this by
creating an aggregated version T agg of the treatment variable, defined so that T agg

j

is the average value of Ti for the members of group j—in this case, the proportion
who received the treatment, among the people in the dataset in site j. We then add
this measure as a group-level predictor:

αj ∼ N(γ0 + γ1T
agg
j , σ2

α).

In our example, this changes the estimate of the treatment effect to 9.0, with the
standard error virtually unchanged at 2.1. Addition of aggregated measures of the
other predictors brings the estimate to 8.9.

Varying treatment effects

The demographic composition of the sample varied across sites, as did treatment
implementation to some degree. Therefore we might expect treatment effects to
vary also. A perhaps more interesting use of multilevel models in this example is
to investigate variation in treatment effects across sites: we fit the model

yi ∼ N(αj(i) + Tiθj(i) + Xiβ, σ2
y), for i = 1, . . . , n,(

αj

θj

)
∼ N

((
μα

μθ

)
,

(
σ2

α ρσασθ

ρσασθ σ2
θ

))
, for j = 1, . . . , J.

Figure 23.3 displays the inferences for the treatment effects θj for each site from
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Figure 23.3 Comparison of observational treatment effects (dark dots) and 95% intervals
(dark vertical lines) across sites from multilevel models against the experimental bench-
mark (solid line with slope 1) and corresponding 95% confidence band (dotted curves).
All observational intervals cover the corresponding experimental estimates; they all reflect
greater uncertainty as compared to the experimental intervals as well.

the multilevel model fit to observational data. The experimental estimates for each
site (also calculated using a multilevel model) are referenced by the line with slope
1. A 95% interval for each observational estimate has been plotted (dark vertical
line) for each site. The dotted curves display an approximate 95% confidence band
for the experimental estimates. The observational intervals all cover the correspond-
ing experimental estimate (our best comparison point for this example), but with
greater uncertainty than the experimental estimates.1

23.3 Treatments applied at different levels

As noted in Section 20.1, treatments are sometimes implemented on groups of in-
dividuals (experimental units) rather than the individual units themselves. The
choice of experimental design may be motivated by several concerns.

Suppose, for instance, that we want to evaluate a new method for teaching long
division by teaching a random sample of third-grade students and then evaluating
outcomes on math tests six months later. Sampling and logistical considerations
would motivate a nested design such as including students in 40 classrooms across
20 schools in the study. It is easier and cheaper to train half the teachers (20
rather than 40) to implement the new method. Moreover, even if all teachers were
trained, it would be inconvenient to divide each classroom into two parts, teaching
the old method to half the students and the new method to the others. Finally if
some of the students in a classroom were taught the new method and others the
old, it is possible that the students would share information about the methods
they were taught. This could influence their subsequent test scores and violate the
assumption of independent outcomes which is standard in regression modeling (for
further discussion of this principle of stable unit treatment values, see the end of
Section 9.3). These are all motivations for randomizing classrooms rather than the
students within classrooms (they might even motivate randomizing schools rather
than classrooms). This is called a group- or cluster-randomized experimental design.

As with many of the other sampling and experimental designs discussed in this
book, it is appropriate to analyze data from a grouped experiment using multilevel

1 The displayed inferences actually come from a simpler version of the model in which the corre-
lation ρ of the group-level errors was set to zero. For our example, the estimation with the full
model including ρ was unstable, and there was no evidence that the correlation differed from
zero.
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models. In an extreme sense, it is as if we have only randomized J experimental
units (where J is the number of groups) rather than the n individual units.

Analysis of an educational-subsidy program

In 1997 the Mexican federal government implemented Progresa (Programa de Edu-
cacion, Salud y Alimentacion), a program that provides cash subsidies to low-income
families if they send their children to school (rather than, for instance, having them
leave school to go to work at an early age) and visit health clinics. This program
was randomly assigned to 506 eligible localities.2

Here we analyze a convenience subsample of the Progresa data that includes 81
localities and approximately 7000 households. The primary goal for this analysis is
to determine if there was an effect of the program on enrollment in school.

A standard analysis that ignores the grouping might be to simply run a logistic
regression of post-program enrollment on the treatment indicator and possibly some
additional predictors to increase efficiency (baseline enrollment, work status, age,
sex, and poverty status). This analysis yields an estimated treatment effect of 0.51
with standard deviation 0.09—a highly statistically significant result. This estimate
implies that program availability increased the probability of enrollment by (at
most) about 13%.

In contrast, we can build a multilevel logistic regression model of the form,

Pr(yi = 1) = logit−1(αj[i] + Xiβ), for i = 1, . . . , n

αj ∼ N(Ujγ, σ2
α), for j = 1, . . . , J,

where X is the matrix of individual-level predictors just described, and U is the ma-
trix of group-level predictors, in this case simply a constant term and the treatment
indicator.

Here is the corresponding Bugs model:3

Bugs code model {

for (i in 1:n){

y[i] ~ dbin (p.bound[i], 1)

p.bound[i] <- max(0, min(1, p[i]))

logit(p[i]) <- Xbeta[i]

Xbeta[i] <- a[village[i]] + b.1*enroll97[i] + b.2*work97[i] +

b.3*poor[i] + b.4*male[i] + b.5*age97[i]

}

b.1 ~ dnorm (0, .0001)

b.2 ~ dnorm (0, .0001)

b.3 ~ dnorm (0, .0001)

b.4 ~ dnorm (0, .0001)

b.5 ~ dnorm (0, .0001)

for (j in 1:J){

a[j] ~ dnorm (a.hat[j], tau.a)

a.hat[j] <- g.0 + g.1*program[j]

}

g.0 ~ dnorm (0, .0001)

g.1 ~ dnorm (0, .0001)

2 Localities not assigned to receive the program immediately were given the program a few years
later.

3 An alternative parameterization would store X as a matrix and express the linear predictor as
Xbeta[i] <- a[village[i]] + inprod(b[],X[i,]), which would allow us to model the coeffi-
cients b more conveniently.
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tau.a <- pow(sigma.a, -2)

sigma.a ~ dunif (0, 100)

}

The multilevel analysis yields a treatment coefficient estimate of 0.17 with a
standard error of 0.20. In this case, correctly accounting for our uncertainty has a
substantial impact on the results.4

Unmodeled varying intercepts? One strategy sometimes used (inappropriately) to
account for the type of clustering observed in this experiment is to include indicator
variables for each group—here each village. In this example such a model would
yield a treatment effect estimate of 0.6 with standard error 1.4. While this estimate
is also statistically insignificant, the uncertainty here is more than six times the
uncertainty in the varying-intercept multilevel model.

A split-plot experiment

Figure 22.7 on page 499 shows the analysis of variance for a split-plot experiment: a
design in which one set of treatments is applied at the individual level, and another
set of treatments is applied at the group level. This is a randomized experiment
with the probabilities of treatment assignment based on observed pre-treatment
variables, and so the analysis is straightforward:

• Regress the outcome on the treatment indicators (these are treatments 1, 2 at
the subplot (individual) level, A, B, C, D, E at the main-plot (group) level, and
the 10 interactions A*1, A*2, . . . , E*1, E*2.

• Also include in the regression the indicators for the 5 rows, the 5 columns, and
the 25 main plots (groups).

For causal inference we should look at the coefficient estimates, which we display
in Figure 23.4.

23.4 Instrumental variables and multilevel modeling

Section 10.5 discussed how instrumental variables can be used to identify causal
effects in certain prescribed situations (when a valid instrument exists). We re-
turn to this same example, the randomized Sesame Street experiment, to illustrate
extensions of the standard model to a multilevel framework.

The basic model can be written as(
yi

Ti

)
∼ N

((
α + βTi

γ + δzi

)
,

(
σ2

y ρσyσT

ρσyσT σ2
T

))
, for i = 1, . . . , n,

where in this example z represents the randomized encouragement to watch Sesame
Street, T represents whether the child subsequently watched or not (the desired
“treatment” variable which in other contexts might be called the “compliance”
variable), and y is the outcome measure, a post-treatment score on a letter recog-
nition test. In this model, β is the causal effect of watching the show.

Recall that this experiment was randomized within combinations of site and
setting. Therefore we first extend to include varying intercepts for each equation,

4 We are analyzing here a nonrandom subset of the data and do not intend the results of this
analysis to represent effects of the treatment over the entire experiment.
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Figure 23.4 Coefficient estimates for a split-plot experiment: an example of causal in-
ference for a design with treatments at individual and group levels. The ANOVA table
summarizing this analysis appears in Figure 22.7 on page 499. (This plot omits the five
interactions A*2, . . . , E*2, since, with only two levels of the numerical factor, these are
simply the opposites of A*1, . . . , E*1.)

and we allow those intercepts to be correlated:(
yi

Ti

)
∼ N

((
αj[i] + βTi

γj[i] + δzi

)
,

(
σ2

y ρyT σyσT

ρσyσT σ2
T

))
, for i = 1, . . . , n,(

αj

γj

)
∼ N

((
μα

μγ

)
,

(
σ2

α ραγσασγ

ρσασγ σ2
γ

))
, for j = 1, . . . , J. (23.1)

After creating a variable called siteset that represents the 9 existing combinations
of site and setting (school or home), and bundling the outcome y and encouragement
T into a single n × 2 data matrix yt, we fit the following Bugs model:

Bugs code model {

for (i in 1:n){

yt[i,1:2] ~ dmnorm (yt.hat[i,], Tau.yt[,]) # data model

yt.hat[i,1] <- a[siteset[i]] + b*yt[i,2]

yt.hat[i,2] <- g[siteset[i]] + d*z[i]

}

for (j in 1:J){

ag[j,1:2] ~ dmnorm (mu.ag[1:2], Tau.ag[1:2,1:2])

a[j] <- ag[j,1]

g[j] <- ag[j,2]

}

# data level

Tau.yt[1:2,1:2] <- inverse(Sigma.yt[,])

Sigma.yt[1,1] <- pow(sigma.y,2)

sigma.y ~ dunif (0, 100) # noninformative prior on sigma.a

Sigma.yt[2,2] <- pow(sigma.t,2)

sigma.t ~ dunif (0, 100) # noninformative prior on sigma.b

Sigma.yt[1,2] <- rho.yt*sigma.y*sigma.t

Sigma.yt[2,1] <- Sigma[1,2] # noninformative prior on rho

rho.yt ~ dunif(-1,1)
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d ~ dnorm (0, .0001)

b ~ dnorm (0, .0001)

# group level

Tau.ag[1:2,1:2] <- inverse(Sigma.ag[,])

Sigma[1,1] <- pow(sigma.a,2)

sigma.a ~ dunif (0, 100)

Sigma[2,2] <- pow(sigma.g,2)

sigma.g ~ dunif (0, 100)

Sigma[1,2] <- rho.ag*sigma.a*sigma.g

Sigma[2,1] <- Sigma[1,2]

rho.ag ~ dunif(-1,1)

mu.ag[1] ~ dnorm(0, .0001)

mu.ag[2] ~ dnorm(0, .0001)

}

The causal parameter of interest is b.
One advantage of Bugs is that it allows us to model the standard form of this

model directly, but it turns out that modeling the reduced form of the model is more
efficient and the algorithm will converge much more quickly. This just requires a
simple change to the fourth line of the above model:

Bugs codeyt.hat[i,1] <- a[siteset[i]] + b*d*z[i]

Conditioning on pre-treatment variables

The instrumental variables model can be augmented by conditioning on pre-treatment
scores as well, changing the fourth and fifth lines of the model to:

Bugs codeyt.hat[i,1] <- a[siteset[i]] + b*d*z[i] + phi.y*pretest[i]

yt.hat[i,2] <- g[siteset[i]] + d*z[i] + phi.t*pretest[i]

and specifying prior distributions for phi.y and phi.t.
The results from this model indicate a treatment effect distribution centered at

13.5 with a standard error of about 3.8. Results from two-stage least squares were
similar with an estimate of 14.1 and standard error of 3.9, although in general the
two approaches can give different answers.

Varying treatment effects

Because randomization occurred at the individual level, we could also extend this
model to include varying treatment effects (similar to the coding for the varying
intercepts). In this example, however, the sample sizes in each group were too small
to estimate varying treatment effects reliably.

Group-level randomization

It is common to see an instrument that was assigned at the group level. This occurs
in the case of a group-randomized experiment or, for example, when state policies
are used as instruments in an analysis of individual outcomes. In these settings, the
varying intercept model presented here is appropriate; however, varying treatment
effects cannot be identified.
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23.5 Bibliographic note

The books and articles referred to in Sections 9.9 and 10.8 include many examples
with treatments at different levels, but we have few specific references for causal
inference and multilevel models. Oakes (2004) and the accompanying discussion
consider the challenges of interpreting multilevel coefficients causally, and Sobel
(2006) considers the assumptions involved in estimating treatment effects in the
presence of interactions between individuals and groups.

For discussion of prior distributions for Bayesian instrumental variables models,
see, for instance, Dreze (1976), Maddala (1976), Kleibergen and Zivot (2003), and
Hoogerheide, Kleibergen, and van Dijk (2006).

23.6 Exercises

1. Fit a varying-intercept model (without varying slopes) to the Sesame Street data
(in folder sesame) and compare to the results in Section 23.4.

2. Simulate data from a group randomized experiment and then fit using a classical
and then a multilevel model. The confidence intervals from the classical fit should
be too narrow.

3. Generate data from an instrumental variables model randomized at the group
level where differences exist between groups. Fit a varying-intercept model to
these data. Compare these results to results from a classical two-stage least
squares fit as described in Section 10.5.

4. Generate data from an instrumental variables model randomized at the indi-
vidual level where treatment effects vary across groups. Fit a varying-intercept,
varying-slope model to these data. Compare these results to results from a clas-
sical two-stage least squares model.

5. Explain why varying treatment effects can be identified when the instrument is
randomized at the individual level but not when the instrument is randomized
at the group level.



CHAPTER 24

Model checking and comparison

There are generally many options available when modeling a data structure, and
once we have successfully fit a model, it is important to check its fit to data. It is
also often necessary to compare the fits of different models.

Our basic approach for checking model fit is—as we have described in Sections
8.3–8.4 for simple regression models—to simulate replicated datasets from the fitted
model and compare these to the observed data. We discuss the general approach
in Section 24.1 and illustrate in Section 24.2 with an extended example of a set
of models fit to an experiment in animal learning. The methods we demonstrate
are not specific to multilevel models but become particularly important as models
become more complicated.

Although the methods described here are quite simple, we believe that they are
not used as often as they could be, possibly because standard statistical techniques
were developed before the use of computer simulation. In addition, fitting multilevel
models is a challenge, and users are often so relieved to have successfully fit a model
with convergence that there is a temptation to stop and rest rather than check the
model fit. Section 24.3 discusses some tools for comparing different models fit to
the same data.

Posterior predictive checking is a useful direct way of assessing the fit of the
model to various aspects of the data. Our goal here is not to compare or choose
among models but rather to explore the ways in which any of the models being
considered might be lacking.

24.1 Principles of predictive checking

Monitoring the quality of a statistical model implies the detection of systematic
differences between the model and observed data. Posterior predictive checks set this
up by generating replicated datasets from the predictive distribution of the fitted
model; these replicated datasets are then compared to the observed dataset with
respect to any features of interest. The functions of data and model parameters that
we use to compare to the model are called test summaries or discrepancy variables;
we also consider the special case of test statistics, which depend on the (replicated)
data only. This is the formal treatment of the simulation-based model-checking
introduced in Section 8.3.

We use the notation y = (y1, . . . , yn) for discrete observed data, X for the matrix
of predictor variables, and θ for the vector of all parameters. We assume that a
model has been fit and that we have a set of simulations, θ(s), s = 1, . . . , nsims.

We further assume that, for each of these draws, a replicated dataset, yrep (s),
has been simulated from the predictive distribution of the data p(yrep|X, θ = θ(s));
the ensemble of simulated datasets (yrep (s), . . . , yrep (nsims)) thus represents the pos-
terior predictive distribution, p(yrep|X, y). For simplicity, we suppress the condi-
tioning on X in the notation that follows, but in some examples we shall allow X
to vary and simulate Xrep as well (see Section 24.2). Predictive simulation of the
replicated datasets yrep, conditional on θ, is usually extremely easy—typically re-
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quiring nothing more than simulation from known independent distributions—even
though obtaining posterior simulations of θ usually requires complicated Markov
chain simulation methods.

We check the model by means of discrepancy variables T (y, θ). If θ were known,
one could perform a goodness-of-fit test by comparing the observed T (y, θ) to the
distribution of the discrepancy variables in the replications, T (yrep, θ), with the
statistical significance of the test summarized by a p-value, p = Pr(T (yrep, θ) >
T (y, θ)|y, θ). (Here, we consider only one-sided tests, with the understanding that
the corresponding two-sided p-value is 2 · min(p, 1−p).) In the more usual case
of unknown θ, the test comparison is averaged over the uncertainty in θ (that
is, the posterior distribution), with a posterior predictive p-value, Pr(T (yrep, θ) >
T (y, θ)|y) =

∫
Pr(T (yrep, θ) > T (y, θ)|y, θ)p(θ|y)dθ, which can be estimated from

the simulations by
∑nsims

s=1 1T (yrep (s),θ(s))>T (y,θ(s))/nsims, where 1A is the indicator
function that is 1 if the condition A is true and 0 otherwise.

As to the choice of discrepancy variables, we focus here on methods for detecting
systematic discrepancies between model and data, not on the related problem of
discovering outliers in otherwise-reasonable mdels. Some of the discrepancy vari-
ables we develop have been used in Bayesian methods for outlier detection but
there with a focus on individual observations rather than on larger patterns. By
comparison, the discrepancy variables we consider often average over sections of the
data. In addition, we seek discrepancy variables that are easy to interpret and are
also generally applicable to a wide range of problems. In many cases, this means
that we would like to check qualitative features of the model (for example, indepen-
dence, monotonicity, and unimodality) to give a better understanding of directions
of model improvement.

Classical residual plots and binned residual plots can be viewed as particular
examples of graphical discrepancy variables. If T (y, θ) is a graph, rather than a
number, it would not make sense to compute a p-value, but we still could compare
the plot, explicitly or implicitly, with what would be obtained under replications
from the model. This is the approach illustrated in Sections 8.3–8.4.

The application of the predictive check method goes as follows. Several discrep-
ancy variables are chosen to reveal interesting features of the data or discrepancies
between the model and the data. For each discrepancy variable, each simulated re-
alized value T (y, θ(s)) is compared to the corresponding simulated replicated value
T (yrep (s), θ(s)). Large and systematic differences between realized and replicated
values indicate a misfit of the model to the data, in the sense that the observed
data do not look typical, in this respect, of the data predicted under the model. In
some cases, differences between the realized data and replications are apparent vi-
sually; other times, it can be useful to compute the p-value of a realized discrepancy
to see whether it could plausibly have arisen by chance under the model.

In any applied problem, it is appropriate to check aspects of the data and model
that are of particular substantive interest. By their nature, such diagnostics can
never be routine or automatic, but we can give some general suggestions. First, it
is often useful to display the entire dataset (or, if that is not possible for a highly
multivariate problem, various data-rich summaries) and compare to some predictive
replications of the data to get an idea of what would be expected under the model.
Patterns seen in this sort of exploratory check can be used as the basis for more
systematic model checks. As in exploratory data analysis in general, the reference
distribution of replicated datasets provides a standard of comparison by which
the observed discrepancies can be measured—the goal is not to find statistical
significance but rather to reveal areas where the data look different from what
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would have been expected under the model. Second, one can directly compute the
predictive distribution of any function of data and parameters using the posterior
simulations of (θ, yrep)—and thus directly check the fit with respect to any easily
computable discrepancy variable of interest. Third, it often makes sense to set up
discrepancy variables with an eye toward how the model might be improved—
for example, summarizing between-group variability if one is considering fitting a
random effects model.

24.2 Example: a behavioral learning experiment

Experimental data and historical context

We investigate the effectiveness of various model checks for an analysis of a logis-
tic regression model applied to data from a well-known experiment on behavioral
learning conducted around 1950. In this experiment, each of 30 dogs was given a
sequence of 25 trials; in each trial, a light was switched on for ten seconds and then
an electric shock was applied to the metal cage in which the dog was sitting. In each
trial, the dog had an opportunity, once the light went on, to jump into an adjoining
cage and thus avoid the shock. In the initial trial, all the dogs received the shock
(since they did not know the meaning of the signal), and in the succeeding 24 trials
they learned to avoid it. The left side of Figure 24.1 displays the experimental data
for the 30 dogs, ordered by the time of the last trial in which they were shocked.
(This ordering has nothing to do with the order in which the experiment was per-
formed on the dogs; we choose it simply to make the between-dog variation in the
data more visible.) Interest lies in the factors that affected the dogs’ learning; in
particular, did they learn more from successful avoidances than from shocks? An-
other question is: can the variation in responses among the 30 dogs be explained by
a single stochastic learning model, or is there evidence in the data for underlying
between-dog variation?

We choose this example to study model-checking methods because the data and
the associated stochastic learning model have an interesting structure, with repli-
cations over dogs and the probability of avoidance of an electric shock dependent
on previous outcomes. As we shall see, the sequential nature of the model has im-
portant implications for some of the predictive distributions used to calibrate the
model checks. Specifically, the logistic regression model fits these data reasonably
well but has interesting systematic patterns of misfit. These data are also of histor-
ical interest because the analysis by Bush and Mosteller in 1955 includes an early
example of simulation-based model checking: they compared the observed data to
simulations of 30 dogs from their model (with parameters fixed at their maximum
likelihood estimates, which was reasonable in this case since they are accurately
estimated from this dataset).

Setting up the logistic regression model and estimating its parameters

We use the notation yjt = 1 or 0 to indicate a shock or avoidance for trial t on dog
j, for t = 0, . . . , 24 and j = 1, . . . , 30. We fit a logistic regression model,

Pr(yjt = 1) = logit−1(β0 + β1X1jt + β2X2jt), (24.1)
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REAL DOGS FAKE DOGS (logit model) FAKE DOGS (log model)

trial number trial number trial number

0 5 10 15 20 24 0 5 10 15 20 24 0 5 10 15 20 24
SS.S.S................... ..SS.SSS................. S.SS.....................

SSSS.S................... SSSSS.SS................. SSS.S....................
SSSSSSS.................. S.SSS...S................ SSSSS....................

SSSSSSS.................. SSSS.SS.S................ SS.SS.S..................
SSSSSSSS................. .SSSS.SSS.S.............. SSS.S.S..................
SSS.S..S................. S...SS..S.S.............. SSSSSSS..................

SSSS.S.S................. SSSSSS.SSSS.............. SSSS.S.S.................
SSS..S.SS................ SSS..SSS.S.S............. SSS.SSS.S................

SSSS.S..S................ SSSSSS..SSSS............. SSSS..S.S................
SSS.....S................ SSS.S.SS..SS............. SSSSSSSSS................
S.SSSS.SSS............... SSSSSSS...SS............. SSSSSSSS.S...............

SSSSSSS..SS.............. SSSSSSS.SS.SS............ SS...S...S.S.............
SS.S...S..S.............. SSSS.S.S....S............ SSSSSSSS..SS.............

SSSSS.SSSSSS............. .SSSSSSSS.S.S............ SSSSS.SSS..S.............
SSSS.SS..S.S............. SSSSSSSS.SSSSS........... SSS..S.....S.............

SSSSS.....SS............. SS.SSSSSSSSS.SS.......... SS.S.SSS.S.S.............
SSS.S.S...S.S............ SSS.S.SS..SS....S........ SSSSSS.SSS..S............
SSSS......S.S............ SSSSS...SS.SS.SSS........ SSSS..S.S...S............

SSSSSSS.SSSSSS........... SSSSSS..S..SS...S........ SSSSS....S...S...........
S..SS....S.S.S........... SSSSSS.SS.S......S....... SSSSSSSSSS..SSS..........

SSSSSS....SS.S........... SSSSSSSS......S..S....... SSSSSSSSS..S..S..........
S.S.SSS.S....S........... SSSSSSS..SSSSS...S....... SS.SSS..S......S.........
SSSS..S.S..S.S........... .SSSSSSSSS...S....S...... SSSSSSS.S.SS.S..S........

SSSSSS.S....S.S.......... SSSSSSS.S....S....S...... SSSSS.S.S.S.S...S........
SSSSS..S..SS..S.S........ SSSS.SSSS...SS..S.S...... SSSSSSSSSS......S........

SSSSSSSSSS......S........ SSSSS.....S..S......S.... SSSSSS..S...S...SS.......
SS.S.S..........SS....... SSSSSSS.SSSSSSS..S.SS.... SSSSSSS.S.S.S.SS.S.......

SSSS..SS...S.S.S.S....... SSSSSSSS.SSS.S.S...S.S... SSSSSS.S.S.........S.....
SSSSSSSS...S.SSS..S...... SS.SSSS..S.............S. SSSSSSSSSSS.SS.....S.....
SSSSS.S.S..S.SSS.....S..S SSSSSS.SSS...S.........S. SSSSS.....S.............S

Figure 24.1 On the left, sequence of shocks (“S”) and avoidances (“.”) for 25 trials on
each of 30 dogs. The dogs here are ordered by the time of the last shock, with ties broken
randomly. In the middle and right, similar displays for 30 dogs simulated from the (clas-
sical) logistic and logarithmic regression models conditional on the estimated parameters
for each model. See also Figure 24.5.

where

X1jt =
t−1∑
k=0

(1 − yjk) = number of previous avoidances

X2jt =

t−1∑
k=0

yjk = number of previous shocks. (24.2)

Upon reflection, we can realize that this model is not ideal for these data. In par-
ticular, the experiment is designed so that all dogs get shocked on trial 0 (which
in fact happens, as is shown in the leftmost column of Figure 24.1), whereas the
logistic regression model is structured to always have a nonzero probability of both
outcomes. This problem could be addressed in many ways, for example, by fitting
a logarithmic instead of a logistic link or simply by fitting the model to the data
excluding trial 0.

To start with, however, we fit the logistic regression model to the entire dataset
and examine what aspects of model misfit are uncovered by various predictive
checks. We believe this is an interesting question because it is standard practice
to fit a logistic regression model to binary data without seriously considering its
appropriateness. (One reason for this is that for many problems there is no clearly
preferable alternative to logistic regression, and simple tricks like changing the link
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function or discarding noninformative data are not generally sufficient to allow a
simple model to fit.) In these cases of routine use, we would like to have routine
model checks (by analogy to residual plots in normal regressions) that would give
the user some idea of the model’s problems. The goal of such methods is not to
“accept” or “reject” a model, but rather to highlight important areas where it does
not fit the data.

The model is easy to fit in Bugs, and the posterior medians of β0, β1, and β2 are
1.80, −0.35, and −0.21, respectively. The negative coefficients β1, β2 imply that the
probability of shock declines after either an avoidance or a shock, with |β1| > |β2|
implying that avoidances have a larger effect.

We can write the Bugs model in three parts: first, calculation of the number of
previous shocks and avoidances recursively in terms of y[j,t], the indicator for a
shock of dog j at time t; second, the classical logistic regression model; and, third,
the noninformative prior distributions: For convenience, we enclose both of the first
two parts in the same for (j in 1:n.dogs) loop:

Bugs codemodel {

for (j in 1:n.dogs){

n.avoid[j,1] <- 0

n.shock[j,1] <- 0

for (t in 2:n.trials){

n.avoid[j,t] <- n.avoid[j,t-1] + 1 - y[j,t-1]

n.shock[j,t] <- n.shock[j,t-1] + y[j,t-1]

}

for (t in 1:n.trials){

y[j,t] ~ dbin (p[j,t], 1)

logit(p[j,t]) <- b.0 + b.1*n.avoid[j,t] + b.2*n.shock[j,t]

}

}

b.0 ~ dnorm (0, .0001)

b.1 ~ dnorm (0, .0001)

b.2 ~ dnorm (0, .0001)

}

Defining predictive replications for the dog example

To perform model checks, the data must be compared to a reference distribution
of possible replicated datasets. In a usual logistic regression model, this would
be performed by fixing the matrix X of predictors and then, for each simulated

parameter vector βl, drawing the 25 × 30 responses y
rep (s)
jt independently,

Pr(y
rep (s)
jt ) = logit−1(Xjtβ

(s)), (24.3)

to yield a simulated dataset yrep (s). (The notation Xjt indicates the vector of predic-
tors, (1, X1jt, X2jt) defined in (24.2).) Computing this for nsims parameter vectors
yields nsims simulated datasets.

A stochastic learning model is more complicated, however, because the predictor
variables X depend on previous outcomes y. Simulation of replicated data for a
new dog must thus be performed sequentially. For each simulated parameter vector
β(s):

• For each dog, j = 1, . . . , 30:

– For trial t = 0, . . . , 24:
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1. Compute the vector of predictors, X
rep (s)
jt , based on the previous t trials

for dog j.

2. Simulate y
rep (s)
jt as in (24.3).

Predictive replications in Bugs. We can create the simulations in Bugs or di-
rectly in R. The Bugs model has two parts: recursive definition of the number
of shocks/avoidances, and the probability model for the individual outcomes.

Bugs code for (j in 1:n.dogs){

n.avoid.rep[j,1] <- 0

n.shock.rep[j,1] <- 0

for (t in 2:n.trials){

n.avoid.rep[j,t] <- n.avoid.rep[j,t-1] + 1 - y.rep[j,t-1]

n.shock.rep[j,t] <- n.shock.rep[j,t-1] + y.rep[j,t-1]

}

for (t in 1:n.trials){

y.rep[j,t] ~ dbin (p.rep[j,t], 1)

logit(p.rep[j,t]) <- b.0+b.1*n.avoid.rep[j,t]+b.2*n.shock.rep[j,t]

}

}

Once this is set up in Bugs, we can save yrep along with everything else. The
only difficulty is that we are now saving 750 additional parameters, and if we save
thousands of iterations, we will run into computer storage problems. (Nowadays,
750,000 bytes are nothing on the computer, but in R, computations with a matrix
of this size can be slow.) We set up and call the Bugs model as follows, using the
n.thin option in Bugs to save only every 100th iteration:

R code n.dogs <- nrow(y)

n.trials <- ncol(y)

data <- list ("y", "n.dogs", "n.trials")

inits <- function (){

list (b.0=rnorm(1), b.1=rnorm(1), b.2=rnorm(1))

}

parameters <- c ("b.0", "b.1", "b.2", "y.rep", "y.mean.rep")

fit.logit.1 <- bugs (data, inits, parameters, "dogs.logit.1.bug",

n.chains=3, n.iter=2000, n.thin=100)

With 3 chains of 2000 iterations each, saving every 100th iteration of the last half of
each chain, we are left with 30 simulation draws, which are enough for reasonable
estimates, standard errors, and predictive checks.

Predictive replications in R. Alternatively, we can write an R function to simulate
predictive replications, given the simulations of β0, β1, β2 from the Bugs model. We
first set up an empty array for the nsims replicated datasets and then fill it up, one
dog at a time and one trial at a time. All the computations are done in vector form,
simulating all nsims random replications at once.

R code y.rep <- array (NA, c(n.sims, n.dogs, n.trials))

for (j in 1:n.dogs){

n.avoid.rep <- rep (0, n.sims)

n.shock.rep <- rep (0, n.sims)

for (t in 1:n.trials){

p.rep <- invlogit (b.0 + b.1*n.avoid.rep + b.2*n.shock.rep)

y.rep[,j,t] <- rbinom (n.sims, 1, p.rep)

n.avoid.rep <- n.shock.rep + 1 - y.rep[,j,t]

n.shock.rep <- n.shock.rep + y.rep[,j,t]

}

}
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Figure 24.2 (a) The proportion of avoidances among the dogs in the shock-avoidance ex-
periment, as a function of the trial number. The solid line shows the data, and the light
lines represent 20 simulated replications from the model. This plot can be seen as a pre-
dictive check of a vector test statistic, T (y), compared to replications T (yrep).
(b) Plots of T (yrep)−T (y) for the 20 simulations of yrep. The systematic differences from
the horizontal line represent aspects of the data that are not captured by the model.

Direct comparison of simulated to real data

The most basic predictive check is a visual comparison of the observed data to a
replication under the assumed model. Figure 24.1 shows the observed data (in the
left part of the figure), along with a single replicated dataset, yrep (in the center
part; ignore the right part of the figure for now). The visual display shows some
interesting differences between the real and simulated dogs.

The visual comparison is aided by ordering the 30 dogs in each dataset in order
of the time of their last shock. We program this as a function in R:

R codedogsort <- function (y){

n.dogs <- nrow(y)

n.trials <- ncol(y)

last.shock <- rep (NA, n.dogs)

for (j in 1:n.dogs){

last.shock[j] <- max ((1:n.trials)[y[j,]==1])}

y[order(last.shock),]

}

To make the left and center displays in Figure 24.1, we then simply print y and
y.rep[1,,], with the latter being the first of the nsims random replications of the
data. (Since the simulations from the Bugs output are randomly ordered before
being returned to R, the first simulated replication matrix is as good as any other.)

Strictly speaking, a posterior predictive check should compare y to several draws
of yrep, but in this case a single draw is informative because of the internal replica-
tion of 30 independent dogs in a single dataset.

More focused model checks

The graphical comparison in Figure 24.1 can be used to suggest more focused
diagnostics. For example, the replicated dogs appear to have too few shocks in
the early trials, compared to the real dogs. This is substantively relevant because
the purpose of the model is to understand the learning behavior of the dogs. To
check this pattern more formally, we display in Figure 24.2a the proportion of
avoidances among the 30 dogs (that is, 1− ȳ.t) versus time t. Overlain on the graph
are the corresponding time series for 20 random draws yrep (s) from the predictive
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distribution under the estimated model. Compared to the data, the model predicts
too many avoidances in the first two trials and too slow an improvement in the first
five trials. The model thus does not capture the rate of learning at the beginning
of the experiment.

We programmed this model check in R by first writing a function to generate
the test variable (in this case, the mean number of avoidances over time) and then
displaying it for the replications and observed data:

R code test <- function (data){

colMeans (1-data)

}

plot (c(0,n.trials-1), c(0,1), xlab="Time",

ylab="Proportion of avoidances", type="n")

mtext ("data and replicated data\n(logit link)", 3)

for (s in 1:20){

lines (0:(n.trials-1), test (y.sim[s,,]), lwd=.5, col="gray")

}

lines (0:(n.trials-1), test (y), lwd=3)

To sharpen the contrast between replications and data, we display in Figure 24.2b
the difference between the replicated and observed proportions of avoidances over
time. In R, we first create the function for the difference of the test variables,

R code test.diff <- function (data, data.rep){

test (data) - test (data.rep)

}

then determine the range of these differences (to use in scaling the plot),

R code diff.range <- NULL

for (s in 1:20){

diff.range <- range (diff.range, test.diff (y, y.rep[s,,]))

}

and then set up the plot, graph the differences between the data and each of 20
simulations, and graph the zero line, which shows the standard of comparison.

R code plot (c(0,24), diff.range, xlab="Time", ylab="Proportion of avoidances",

type="n")

mtext ("data minus replicated data\n(logit link)", 3)

for (s in 1:20){

lines (0:(n.trials-1), test.diff (y, y.sim[s,,]), lwd=.5, col="gray")

}

abline (0, 0, lwd=3)

Figure 24.2b shows the data to be consistently lower than the simulations at some
points and higher at others, indicating a statistically significant discrepancy between
model and data.

Numerical test statistics. For another example, Figure 24.3 displays predictive
checks for two simple test statistics: the mean and standard deviation of the num-
ber of shocks per dog. In each plot, the observed value of T (y) is shown as a vertical
bar in a histogram representing 1000 draws of T (yrep) from the posterior distribu-
tion. From Figure 24.3a, we see that the mean number of shocks is fit well by the
model. Figure 24.3b shows that the observed standard deviation is a bit higher than
expected under the model, but the discrepancy is not statistically significant; that
is, we could expect to see such discrepancies occasionally just by chance, even if
the model were correct.
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Figure 24.3 Predictive checks for the (a) mean and (b) standard deviation of the number
of shocks among the 30 dogs. The vertical bars indicate the observed values of the test
statistics T (y), and the histograms display T (yrep) from 1000 draws of yrep under the
logistic model.

Thus, these two aspects of the data are fit reasonably well; however, the sys-
tematic problem we have found in the early trials indicates a problem with the
model.

Fitting and checking a logarithmic regression model

We now move to a more reasonable logarithmic regression model for the same data
(which was in fact fit by the psychologists who performed the early data analyses):

Pr(yjt = 1) = exp(β1X1jt + β2X2jt), (24.4)

with X1jt and X2jt the number of previous avoidances and shocks, respectively, as
defined in (24.2). Unlike the logistic model (24.1), this model has no constant term
because the probability of shock is fixed at 1 at the beginning of the experiment.
In addition, β1 and β2 are restricted to be negative.

The Bugs model is similar to the logistic regression on page 517 except with the
logit(p[j,t]) line changed to:

Bugs codelog(p[j,t]) <- b.1*n.avoid[j,t] + b.2*n.shock[j,t]

The log model omits the intercept term, b0, so that the probability of a shock is
1 for the first trial. In addition, the coefficients β1, β2 must be constrained to be
negative, so we give them the following noninformative distributions:

Bugs codeb.1 ~ dunif (-100, 0)

b.2 ~ dunif (-100, 0)

The median estimates of the parameters β1 and β2 in the logarithmic model
are −0.24 and −0.08, with standard errors of 0.02 and 0.01, respectively. The co-
efficient for avoidances, β1, is estimated to be more negative than β2, indicating
that avoidances have a larger effect than shocks in reducing the probability of fu-
ture shocks. Transforming back to the probability scale, the median estimates for
(eβ1 , eβ2) are (0.79, 0.92), indicating that an avoidance or a shock multiplies the
predicted probability of shock by an estimated factor of 0.79 or 0.92, respectively.

Having fit this improved model, we check its fit using predictive replications,
which we simulate from the model as described earlier in this section (except us-
ing the logarithmic rather than the logistic link). A single random draw from the
predictive distribution of 30 new dogs is displayed on the right side of Figure 24.1.
A check of the average number of avoidances over time—Figure 24.4, replicating
Figure 24.2—shows no apparent discrepancies with this aspect of the data: the
logarithmic link has fixed the problem with the early trials.
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Figure 24.4 Replication of Figure 24.2 for the logarithmic regression model. Under this
estimated model, the simulated patterns of the rate of avoidances over time fit reasonably
well to the data.

Fitting and checking a multilevel model with no additional learning from
avoidances

The logarithmic regression model fits the data reasonably well, but a key issue not
addressed so far is separating between-dog variability from stochastic learning. The
data from the 30 dogs vary quite a bit. In the stochastic learning model this is
explained by the fact that dogs learn more from avoidances than from shocks (that
is, β1 < β2 < 0) so that a dog that gets lucky at the beginning of the experiment
is likely to perform well throughout, even in the absence of any real differences
between dogs. However, one may consider an alternative explanation that the dogs
indeed differ and, perhaps, there may be no additional learning associated with
avoidances.

These two hypotheses—extra learning from avoidances, or between-dog varia-
bility—can be distinguished by a multilevel model of the form (24.4) but with
parameters that vary by dog:

Pr(yjt = 1) = exp(β1jX1jt + β2jX2jt), (24.5)

with the parameters β1, β2 both constrained to be negative for each dog (to ensure
that Pr(yjt = 1) is always less than 1).

We can easily fit this model all at once, but we fit it in stages in order to un-
derstand the workings of each part. The model we have already fit corresponds to
extra learning from avoidances. The other extreme is to allow no extra learning
from avoidances but to allow dogs to vary in their ability to perform the task. This
model could be written as

Pr(yjt = 1) = exp(βj(X1jt + X2jt)), (24.6)

where X1jt + X2jt is the number of previous trials, or simply t − 1.
In Bugs, we write the model as before, but applying the same coefficient β to

both shocks and avoidances, and allowing it to vary by dog. The parameters βj

are restricted to be negative (so that the probabilities pjt fall below 1). To form
a multilevel model, we work with the negative of the βj ’s, which we assign a log-
normal distribution (that is, the values of log(−βj)’s are modeled with a normal
distribution) with hyperparameters μβ and σβ . Here is the rewritten fragment of
the Bugs model:

Bugs code log(p[j,t]) <- b[j]*(n.avoid[j,t]+n.shock[j,t])

}
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REAL DOGS FAKE (simple multilevel model) FAKE (full multilevel model)

trial number trial number trial number

0 5 10 15 20 24 0 5 10 15 20 24 0 5 10 15 20 24
SS.S.S................... S.S...................... SS.S.....................

SSSS.S................... SSSSS.................... SSSS.....................
SSSSSSS.................. SSSSS.................... SSSSS....................

SSSSSSS.................. S.S....S................. SSSSS....................
SSSSSSSS................. SSS.S..S................. SSS.S....................
SSS.S..S................. SSSSS..S................. SSS.S.S..................

SSSS.S.S................. SSSSS.SS................. SSS.SSS..................
SSS..S.SS................ SSSSSS..S................ SSSSSS.S.................

SSSS.S..S................ S.SS.....S............... SSS...S.S................
SSS.....S................ SS.SSSS...S.............. SSS.....S................
S.SSSS.SSS............... SS.SS.S.S..S............. SSSSSS...S...............

SSSSSSS..SS.............. SS..S.S....S............. SSSSSSSSSS...............
SS.S...S..S.............. SSSS.......S............. S.SSSS..S.S..............

SSSSS.SSSSSS............. SSSSS.S.SS..S............ SSS.S..S..S..............
SSSS.SS..S.S............. SSS....S.S...S........... SSS........S.............

SSSSS.....SS............. SSS.S.SS.S.S.S........... SSSSS.SS.SSS.............
SSS.S.S...S.S............ SS..SS...S.....S......... SSS.SSS.....S............
SSSS......S.S............ SSS.SS.S.......S......... SSSSSSSSSSS.S............

SSSSSSS.SSSSSS........... S.S...S.SSS....S......... SSSSSS.......S...........
S..SS....S.S.S........... SS..S....S......S........ SSS..SSSS.....S..........

SSSSSS....SS.S........... SS..SSS.SS......S........ SSSSS..S.S.S..S..........
S.S.SSS.S....S........... SSSSSS.SS..SS..SS........ SSSS.SSSSS.S....S........
SSSS..S.S..S.S........... SS.SS..S...SS.S..S....... SSSSSSSSS.SS.SSSS........

SSSSSS.S....S.S.......... SSS.S.......S....S....... SSS.....S.....SS.S.......
SSSSS..S..SS..S.S........ SSSS.....S..S....S....... SSS..SS.S.S.S....S.......

SSSSSSSSSS......S........ SSSS..SSSS.S......S...... SSSS.SS.S........S.......
SS.S.S..........SS....... SSSSS.....SSS....S.S..... SSSSS.S...........S......

SSSS..SS...S.S.S.S....... SSSS..S..S...........S... SSSSSSS.S.S..S.....S.....
SSSSSSSS...S.SSS..S...... SSS.SS................S.. SSSS................S....
SSSSS.S.S..S.SSS.....S..S S.SSS..S..........S....S. SSSSSSSS.........S.SS....

Figure 24.5 On the left, sequence of shocks (“S”) and avoidances (“.”) for 25 trials on
each of 30 dogs, copied from the left panel of Figure 24.1. The dogs here are ordered by the
time of the last shock, with ties broken randomly. In the middle and right, similar displays
for 30 dogs simulated from the multilevel model, with and without no extra learning from
avoidances. Compare to Figure 24.1 on page 516.

b[i] <- -b.neg[i]

b.neg[i] ~ dlnorm (mu.b, tau.b)

}

mu.b ~ dnorm (0, .0001)

tau.b <- pow(sigma.b, -2)

sigma.b ~ dunif (0, 100)

When this model is fit to the dog data, the average of the 30 estimated values
of eβj is 0.86—thus, the probability of a shock is multiplied by about 0.86 after
each trial. This estimate is broadly consistent with our previous results: it falls
between the estimates of eβ1 and eβ2 in the classical logarithmic regression model
with differential learning. The standard deviation of the 30 dog parameters eβj

in the multilevel model is estimated to be 0.04, indicating a fairly small range of
variation in the “abilities” of the dogs.

The left and middle panels of Figure 24.5 show the data y (repeated from the
left panel of Figure 24.1) and a simulated replicated dataset yrep from the multi-
level model (24.6) with no differential learning. The model clearly does not fit the
data—the actual data show many cases of a dense series of shocks with no further
avoidances, whereas the fake data shows many dogs with a long series of avoidances
followed by a single late shock.
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Fitting and checking the full multilevel model

Thus, it appears that the variation between dogs in the data is not simply explained
by varying abilities; rather, there is evidence that the experience of avoidances in-
troduces additional learning. We combine the features of between-dog variation and
differential learning with the multilevel model (24.5), in which both the learning-
after-avoidance and learning-after-shock parameters vary by dog. The regression
part of the Bugs model becomes

Bugs code log(p[j,t]) <- b.1[j]*n.avoid[j,t] + b.2[j]*n.shock[j,t])

with a normal distribution for (log(−β1j), log(−β2j)), a bivariate version of the
lognormal distribution in the Bugs model on page 522.

The average of the 30 estimated values of eβ1j and eβ2j are 0.78 and 0.91 (with
estimated between-dog standard deviations of 0.05 and 0.03, respectively). Hence,
as with the non-multilevel log model, the probability of a shock is multiplied by
about 0.8 following each avoidance and 0.9 following each shock, with relatively
little between-dog variation in the parameters.

The group pooling factor (21.14) from page 479 is 0.73 for the parameters β1j

and 0.77 for the parameters β2j—thus, the estimates are shrunk approximately
three-fourths toward the group-level model, or to put it another way, the estimates
are close to complete pooling.

Having fit the model, we can as usual check its fit by displaying a replicated
dataset, which is displayed in the rightmost panel of Figure 24.5. The replications
look generally comparable to the real dogs, and, as with Figure 24.4, plots of average
avoidances over time show no systematic discrepancies between model and data.
Given the relatively small size of this dataset, it is difficult to say much more about
this comparison.

Review of example

We have fit several models to the dog data and found that the variation between
the response patterns of the dogs can largely be explained by learning more from
avoidances than from shocks. This path-dependence or positive-feedback pattern
implies that when a dog gets lucky and avoids the shock early, learning, and hence
further avoidances, will proceed faster. There is evidence for a small amount of
between-dog variation, but less than the difference between the effects of shocks
and avoidances.

We used predictive simulations to check the fit of the different models to data,
using raw data displays and also summaries of the rate of avoidances over time. The
predictive checks do not automatically lead us to an appropriate model and will not
necessarily “reject” a poorly fitting model—for example, the mean and standard-
deviation summaries in Figure 24.3 on page 521 do not point out the serious failings
of the logistic model. Rather, predictive checking can be a useful tool in revealing
aspects of disagreement between model and data, which can motivate a search for
more reasonable models.

24.3 Model comparison and deviance

When fitting several models to the same dataset, it can be helpful to compare them
using summary measures of fit. A standard summary that is programmed in Bugs is
the deviance, which is −2 times the log-likelihood; that is, −2 times the logarithm
of the probability of the data given the estimated model parameters.
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Deviance and AIC in classical generalized linear models

In classical generalized linear models, adding a parameter to a model is expected to
increase the fit—even if the new parameter represents pure noise. Adding a noise
predictor is expected to reduce the deviance by 1, and adding k predictors that are
pure noise is expected to reduce the deviance by k. More precisely, adding k noise
predictors will reduce the deviance by an amount corresponding to a χ2 distribution
with k degrees of freedom.

Thus, if k predictors are added and the deviance declines by significantly more
than k, then we can conclude that the observed improvement in predictive power
is statistically significant. Thus,

adjusted deviance = deviance + number of predictors (24.7)

can be used as an adjusted measure that approximately accounts for the increase in
fit attained simply by adding predictors to a model. (The analogy in simple linear
regression is the adjusted R2.)

The next step, beyond checking whether an improvement in deviance is statis-
tically significant, is to see if it is estimated to increase out-of-sample predictive
power. On average, a predictor needs to reduce the deviance by 2 in order to im-
prove the fit to new data. The Akaike information criterion is defined as

AIC = deviance + 2 · (number of predictors)

= adjusted deviance + number of predictors. (24.8)

In classical regression or generalized linear modeling, a new model is estimated to
reduce out-of-sample prediction error if the AIC decreases.

Deviance and DIC in multilevel models

The ideas of deviance and AIC apply to multilevel models also, but with the diffi-
culty that the “number of parameters” is not so clearly defined. Roughly speaking,
the number of parameters in a multilevel model depends on the amount of pooling—
a batch of J parameters corresponds to one parameter if there is complete pooling,
J independent parameters if there is no pooling, and something in between with
partial pooling. For example, with the varying-intercept radon models, the coeffi-
cients for the 85 county indicators represent something fewer than 85 independent
parameters. Especially for the counties with small sample sizes, the group-level re-
gression explains much of the variation in the intercepts, so that in the multilevel
model they are not estimated independently. When the model is improved and the
group-level variance decreases, the effective number of independent parameters also
decreases.

In multilevel models, the mean deviance (that is, the deviance averaged over
all the nsims simulated parameter vectors) plays the role of the adjusted deviance
(24.7). The effective number of parameters is called pD, and the measure of out-of-
sample predictive error is the deviance information criterion,

DIC = mean deviance + 2pD, (24.9)

which plays the role of the Akaike information criterion in (24.8). We shall not
further discuss the computation of pD here, except to say that it is unstable to
estimate—even from Bugs simulations that have otherwise converged—and so we
currently use it only in a provisional sense.

We illustrate the use of deviance and DIC by comparing the fit of the models
fit to the dog data in Section 24.2. Figure 24.6 shows the mean deviance, effective
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Mean Effective #
Model deviance params, pD DIC

Classical logistic 570 4 574
Classical logarithmic 550 5 555
Simple multilevel 544 21 565
Full multilevel 533 29 562

Figure 24.6 Average deviance, estimated effective number of parameters, and deviance
information criterion (DIC) for each of four models fit to the dog data in Section 24.2.
Model fit improves as we go down the table, as can be seen from the decreasing values
of mean deviance. However, the effective number of parameters increases for the larger
models. The best model for out-of-sample predictions, as measured by DIC, is the classical
logarithmic model.
We would still prefer the full multilevel model here, since we expect the dogs to vary in their
underlying parameters. But the improvement in fit, compared to the classical logarithmic
regression, is not estimated to result in more accurate predictions.

number of parameters, and DIC for each. As the models get more complicated, the
mean deviance decreases, which makes sense—with more structure, we can fit the
data better. The largest jump is from the logit to the log model, which makes sense,
since as we saw in Section 24.2, the logarithmic link fit the data much better.

However, the improvement in fit when moving to the multilevel models is coun-
terbalanced by the increase in pD, the effective number of parameters. As a result,
the estimated out-of-sample prediction error, DIC, actually increases slightly for
these models. The multilevel models do fit the data better, an improvement greater
than would be expected by chance—as we can see from the mean deviances—but
the DIC values suggest that they would not actually do as well in predicting for
new dogs.

In summary, we are not saying that the classical logarithmic model is “best” here.
We prefer the full multilevel model as a more complete description of the data.
However, the DIC results are interesting in suggesting that further improvement is
possible, perhaps constraining the β1j and β2j parameters more than is done by
the multilevel model we have fit so far.

Finally, the values of pD in Figure 24.6 illustrate the instability of the estimates
of this quantity: the classical models are estimated to have 4 and 5 “effective pa-
rameters” each, even though they only have 3 and 2 parameters, respectively. The
multilevel models are estimated to have 21 (out of a possible 30) and 29 (out of a
possible 60) parameters each, even though we have seen that their pooling factors
are close to 1 (that is, the models are close to complete pooling). So we treat these
pD and DIC results as suggestive rather than definitive.

24.4 Bibliographic note

The simulation-based model checking approach presented in Chapter 8 and here
is based on ideas of Box (1980), Rubin (1984), Gelman, Meng, and Stern (1996),
Gelman et al. (2003, chapter 6), and Gelman (2003); see also Stone (1974) and
Gelfand, Dey, and Chang (1992) for related ideas. Sinharay and Stern (2003) apply
predictive checks to hierarchical models. See Cook and Weisberg (1999) for a com-
prehensive overview of classical regression diagnostics. Pardoe (2001) and Pardoe
and Cook (2002) extend these ideas to simulation-based inference.

The logarithmic model for the dog data comes from Bush and Mosteller (1955),
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who also performed simulation-based model checking. Further analyses of these
data were considered by Sternberg (1963) and Gelman et al. (2000).

AIC comes from Akaike (1973) and is related to Cp (Mallows, 1973); DIC comes
from Spiegelhalter et al. (2002); see also Hodges and Sargent (2001), Vaida and
Blanchard (2002), and Spiegelhalter (2006) for related work and discussion.

24.5 Exercises

1. Download the data in the folder dogs and fit some other models, for example
using as a predictor the result from the previous trial, or the previous two trials,
rather than the total number of shocks and avoidances.

(a) Fit this model, as usual building up from simpler versions (first a single-
level model, then varying intercepts, then varying slopes, then adding other
predictors as appropriate). Plot the data and fitted model to make sure that
your model makes sense.

(b) Use Bugs to simulate replicated datasets from your model, and make various
plots to compare the replicated with the actual data.

2. Model checking with non-nested levels: the folder supreme.court contains data
regarding U.S. Supreme Court votes for all justices across several issues.

(a) Fit an ideal-point model to these data (see Section 14.3) and then use repli-
cated data and graphical displays to check the model fit. (This is a huge
dataset, and so the model will certainly not fit in many ways. Your goal here
is not simply to “reject” the model but rather to understand the ways in which
it does not fit.)

(b) How might you expand the model to fix these problems?

3. Model checking for multilevel logistic regression:

(a) Do some simulation-based graphical checking for the logistic regression model
that you fit in Exercises 14.5–14.6 to the data from the speed-dating experi-
ment.

(b) How might you expand the model to fix the problems you have found?

4. Model checking for ordered categorical regression:

(a) Do some simulation-based graphical checking for the ordered logistic regres-
sion model that you fit in Exercise 17.11 to the data from the storable-voting
experiment.

(b) How might you expand the model to fix the problems you have found?





CHAPTER 25

Missing-data imputation

Missing data arise in almost all serious statistical analyses. In this chapter we
discuss a variety of methods to handle missing data, including some relatively simple
approaches that can often yield reasonable results. We use as a running example the
Social Indicators Survey, a telephone survey of New York City families conducted
every two years by the Columbia University School of Social Work. Nonresponse
in this survey is a distraction to our main goal of studying trends in attitudes and
economic conditions, and we would like to simply clean the dataset so it could be
analyzed as if there were no missingness. After some background in Sections 25.1–
25.3, we discuss in Sections 25.4–25.5 our general approach of random imputation.
Section 25.6 discusses situations where the missing-data process must be modeled
(this can be done in Bugs) in order to perform imputations correctly.

Missing data in R and Bugs

In R, missing values are indicated by NA’s. For example, to see some of the data
from five respondents in the data file for the Social Indicators Survey (arbitrarily
picking rows 91–95), we type

R codecbind (sex, race, educ_r, r_age, earnings, police)[91:95,]

and get

R outputsex race educ_r r_age earnings police

[91,] 1 3 3 31 NA 0

[92,] 2 1 2 37 135.00 1

[93,] 2 3 2 40 NA 1

[94,] 1 1 3 42 3.00 1

[95,] 1 3 1 24 0.00 NA

In classical regression (as well as most other models), R automatically excludes
all cases in which any of the inputs are missing; this can limit the amount of
information available in the analysis, especially if the model includes many inputs
with potential missingness. This approach is called a complete-case analysis, and
we discuss some of its weaknesses below.

In Bugs, missing outcomes in a regression can be handled easily by simply in-
cluding the data vector, NA’s and all. Bugs explicitly models the outcome variable,
and so it is trivial to use this model to, in effect, impute missing values at each
iteration.

Things become more difficult when predictors have missing values. For example,
if we wanted to model attitudes toward the police, given earnings and demographic
predictors, then the model would not automatically account for the missing values
of earnings. We would have to remove the missing values, impute them, or model
them. In Bugs, regression predictors are typically unmodeled and so Bugs does not
know how to draw from a predictive distribution for them. To handle missing data
in the predictors, Bugs regression models such as those in Part IIB need to be
extended by modeling (that is, supplying distributions for) the input variables.

529
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25.1 Missing-data mechanisms

To decide how to handle missing data, it is helpful to know why they are missing.
We consider four general “missingness mechanisms,” moving from the simplest to
the most general.

1. Missingness completely at random. A variable is missing completely at random
if the probability of missingness is the same for all units, for example, if each
survey respondent decides whether to answer the “earnings” question by rolling
a die and refusing to answer if a “6” shows up. If data are missing completely at
random, then throwing out cases with missing data does not bias your inferences.

2. Missingness at random. Most missingness is not completely at random, as can
be seen from the data themselves. For example, the different nonresponse rates
for whites and blacks (see Exercise 25.1) indicate that the “earnings” question
in the Social Indicators Survey is not missing completely at random.

A more general assumption, missing at random, is that the probability a variable
is missing depends only on available information. Thus, if sex, race, education,
and age are recorded for all the people in the survey, then “earnings” is missing
at random if the probability of nonresponse to this question depends only on
these other, fully recorded variables. It is often reasonable to model this process
as a logistic regression, where the outcome variable equals 1 for observed cases
and 0 for missing.

When an outcome variable is missing at random, it is acceptable to exclude the
missing cases (that is, to treat them as NA’s), as long as the regression controls
for all the variables that affect the probability of missingness. Thus, any model
for earnings would have to include predictors for ethnicity, to avoid nonresponse
bias.

This missing-at-random assumption (a more formal version of which is some-
times called the ignorability assumption) in the missing-data framework is the
basically same sort of assumption as ignorability in the causal framework. Both
require that sufficient information has been collected that we can “ignore” the
assignment mechanism (assignment to treatment, assignment to nonresponse).

3. Missingness that depends on unobserved predictors. Missingness is no longer “at
random” if it depends on information that has not been recorded and this in-
formation also predicts the missing values. For example, suppose that “surly”
people are less likely to respond to the earnings question, surliness is predictive
of earnings, and “surliness” is unobserved. Or, suppose that people with college
degrees are less likely to reveal their earnings, having a college degree is predic-
tive of earnings, and there is also some nonresponse to the education question.
Then, once again, earnings are not missing at random.

A familiar example from medical studies is that if a particular treatment causes
discomfort, a patient is more likely to drop out of the study. This missingness is
not at random (unless “discomfort” is measured and observed for all patients).

If missingness is not at random, it must be explicitly modeled, or else you must
accept some bias in your inferences.

4. Missingness that depends on the missing value itself. Finally, a particularly dif-
ficult situation arises when the probability of missingness depends on the (po-
tentially missing) variable itself. For example, suppose that people with higher
earnings are less likely to reveal them. In the extreme case (for example, all per-
sons earning more than $100,000 refuse to respond), this is called censoring, but
even the probabilistic case causes difficulty.
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Censoring and related missing-data mechanisms can be modeled (as discussed in
Section 18.5) or else mitigated by including more predictors in the missing-data
model and thus bringing it closer to missing at random. For example, whites
and persons with college degrees tend to have higher-than-average incomes, so
controlling for these predictors will somewhat—but probably only somewhat—
correct for the higher rate of nonresponse among higher-income people. More
generally, while it can be possible to predict missing values based on the other
variables in your dataset, just as with other missing-data mechanisms, this situ-
ation can be more complicated in that the nature of the missing-data mechanism
may force these predictive models to extrapolate beyond the range of the ob-
served data.

General impossibility of proving that data are missing at random

As discussed above, missingness at random is relatively easy to handle—simply
include as regression inputs all variables that affect the probability of missing-
ness. Unfortunately, we generally cannot be sure whether data really are missing
at random, or whether the missingness depends on unobserved predictors or the
missing data themselves. The fundamental difficulty is that these potential “lurk-
ing variables” are unobserved—by definition—and so we can never rule them out.
We generally must make assumptions, or check with reference to other studies (for
example, surveys in which extensive follow-ups are done in order to ascertain the
earnings of nonrespondents).

In practice, we typically try to include as many predictors as possible in a model
so that the “missing at random” assumption is reasonable. For example, it may
be a strong assumption that nonresponse to the earnings question depends only
on sex, race, and education—but this is a lot more plausible than assuming that
the probability of nonresponse is constant, or that it depends only on one of these
predictors.

25.2 Missing-data methods that discard data

Many missing data approaches simplify the problem by throwing away data. We
discuss in this section how these approaches may lead to biased estimates (one of
these methods tries to directly address this issue). In addition, throwing away data
can lead to estimates with larger standard errors due to reduced sample size.

Complete-case analysis

A direct approach to missing data is to exclude them. In the regression context, this
usually means complete-case analysis: excluding all units for which the outcome
or any of the inputs are missing. In R, this is done automatically for classical
regressions (data points with any missingness in the predictors or outcome are
ignored by the regression). In Bugs, missing values in unmodeled data are not
allowed, so these cases must be excluded in R before sending the data to Bugs, or
else the variables with missingness must be explicitly modeled (see Section 25.6).

Two problems arise with complete-case analysis:

1. If the units with missing values differ systematically from the completely ob-
served cases, this could bias the complete-case analysis.

2. If many variables are included in a model, there may be very few complete cases,
so that most of the data would be discarded for the sake of a simple analysis.
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Available-case analysis

Another simple approach is available-case analysis, where different aspects of a
problem are studied with different subsets of the data. For example, in the 2001
Social Indicators Survey, all 1501 respondents stated their education level, but
16% refused to state their earnings. We could thus summarize the distribution of
education levels of New Yorkers using all the responses and the distribution of
earnings using the 84% of respondents who answered that question. This approach
has the problem that different analyses will be based on different subsets of the
data and thus will not necessarily be consistent with each other. In addition, as
with complete-case analysis, if the nonrespondents differ systematically from the
respondents, this will bias the available-case summaries. For example in the Social
Indicators Survey, 90% of African Americans but only 81% of whites report their
earnings, so the “earnings” summary represents a different population than the
“education” summary.

Available-case analysis also arises when a researcher simply excludes a variable
or set of variables from the analysis because of their missing-data rates (sometimes
called “complete-variables analyses”). In a causal inference context (as with many
prediction contexts), this may lead to omission of a variable that is necessary to
satisfy the assumptions necessary for desired (causal) interpretations.

Nonresponse weighting

As discussed previously, complete-case analysis can yield biased estimates because
the sample of observations that have no missing data might not be representative of
the full sample. Is there a way of reweighting this sample so that representativeness
is restored?

Suppose, for instance, that only one variable has missing data. We could build
a model to predict the nonresponse in that variable using all the other variables.
The inverse of predicted probabilities of response from this model could then be
used as survey weights to make the complete-case sample representative (along
the dimensions measured by the other predictors) of the full sample. This method
becomes more complicated when there is more than one variable with missing data.
Moreover, as with any weighting scheme, there is the potential that standard errors
will become erratic if predicted probabilities are close to 0 or 1.

25.3 Simple missing-data approaches that retain all the data

Rather than removing variables or observations with missing data, another ap-
proach is to fill in or “impute” missing values. A variety of imputation approaches
can be used that range from extremely simple to rather complex. These methods
keep the full sample size, which can be advantageous for bias and precision; however,
they can yield different kinds of bias, as detailed in this section.

Whenever a single imputation strategy is used, the standard errors of estimates
tend to be too low. The intuition here is that we have substantial uncertainty about
the missing values, but by choosing a single imputation we in essence pretend that
we know the true value with certainty.

Mean imputation. Perhaps the easiest way to impute is to replace each missing
value with the mean of the observed values for that variable. Unfortunately, this
strategy can severely distort the distribution for this variable, leading to complica-
tions with summary measures including, notably, underestimates of the standard
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deviation. Moreover, mean imputation distorts relationships between variables by
“pulling” estimates of the correlation toward zero.

Last value carried forward. In evaluations of interventions where pre-treatment
measures of the outcome variable are also recorded, a strategy that is sometimes
used is to replace missing outcome values with the pre-treatment measure. This is
often thought to be a conservative approach (that is, one that would lead to un-
derestimates of the true treatment effect). However, there are situations in which
this strategy can be anticonservative. For instance, consider a randomized evalua-
tion of an intervention that targets couples at high risk of HIV infection. From the
regression-to-the-mean phenomenon (see Section 4.3), we might expect a reduction
in risky behavior even in the absence of the randomized experiment; therefore, car-
rying the last value forward will result in values that look worse than they truly
are. Differential rates of missing data across the treatment and control groups will
result in biased treatment effect estimates that are anticonservative.

Using information from related observations. Suppose we are missing data regard-
ing the income of fathers of children in a dataset. Why not fill these values in with
mother’s report of the values? This is a plausible strategy, although these impu-
tations may propagate measurement error. Also we must consider whether there
is any incentive for the reporting person to misrepresent the measurement for the
person about whom he or she is providing information.

Indicator variables for missingness of categorical predictors. For unordered cate-
gorical predictors, a simple and often useful approach to imputation is to add an
extra category for the variable indicating missingness.

Indicator variables for missingness of continuous predictors. A popular approach
in the social sciences is to include for each continuous predictor variable with miss-
ingness an extra indicator identifying which observations on that variable have
missing data. Then the missing values in the partially observed predictor are re-
placed by zeroes or by the mean (this choice is essentially irrelevant). This strategy
is prone to yield biased coefficient estimates for the other predictors included in the
model because it forces the slope to be the same across both missing-data groups.
Adding interactions between an indicator for response and these predictors can help
to alleviate this bias (this leads to estimates similar to complete-case estimates).

Imputation based on logical rules. Sometimes we can impute using logical rules:
for example, the Social Indicators Survey includes a question on “number of months
worked in the previous year,” which all 1501 respondents answered. Of the persons
who refused to answer the earnings question, 10 reported working zero months
during the previous year, and thus we could impute zero earnings to them. This
type of imputation strategy does not rely on particularly strong assumptions since,
in effect, the missing-data mechanism is known.

25.4 Random imputation of a single variable

When more than a trivial fraction of data are missing, however, we prefer to perform
imputations more formally. In order to understand missing-data imputation, we
start with the relatively simple setting in which missingness is confined to a single
variable, y, with a set of variables X that are observed on all units. We shall consider
the case of imputing missing earnings in the Social Indicators Survey.
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Figure 25.1 Histogram of earnings (in thousands of dollars) in the Social Indicators Sur-
vey: (a) for the 988 respondents who answered the question and had positive earnings, (b)
deterministic imputations for the 241 missing values from a regression model, (c) random
imputations from that mode. All values are topcoded at 100, with zero values excluded.

Simple random imputation

The simplest approach is to impute missing values of earnings based on the observed
data for this variable. We can write this as an R function:

R code random.imp <- function (a){

missing <- is.na(a)

n.missing <- sum(missing)

a.obs <- a[!missing]

imputed <- a

imputed[missing] <- sample (a.obs, n.missing, replace=TRUE)

return (imputed)

}

(To see how this function works, take a small dataset and evaluate the function line
by line.) We use random.imp to create a completed data vector of earnings:

R code earnings.imp <- random.imp (earnings)

imputing into the missing values of the original earnings variable. This approach
does not make much sense—it ignores the useful information from all the other
questions asked of these survey responses—but these simple random imputations
can be a convenient starting point. A better approach is to fit a regression to the
observed cases and then use that to predict the missing cases, as we show next.

Zero coding and topcoding

We begin with some practicalities of the measurement scale. We shall fit the re-
gression model to those respondents whose earnings were observed and positive
(since, as noted earlier, the respondents with zero earnings can be identified from
their zero responses to the “months worked” question). In addition, we shall “top-
code” all earnings at $100,000—that is, all responses above this value will be set
to $100,000—before running the regression. Figure 25.1a shows the distribution of
positive earnings after topcoding.

R code topcode <- function (a, top){

return (ifelse (a>top, top, a))

}

earnings.top <- topcode (earnings, 100) # earnings are in $thousands

hist (earnings.top[earnings>0])

The topcoding reduces the sensitivity of the results to the highest values, which
in this survey go up to the millions. By topcoding we lose information, but the
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main use of earnings in this survey is to categorize families into income quantiles,
for which purpose topcoding at $100,000 has no effect.

Similarly, we topcoded number of hours worked per week at 40 hours. The purpose
of topcoding was not to correct the data—we have no particular reason to disbelieve
the high responses—but rather to perform a simple transformation to improve the
predictive power of the regression model.

Using regression predictions to perform deterministic imputation

A simple and general imputation procedure that uses individual-level information
uses a regression to the nonzero values of earnings. We begin by setting up a data
frame with all the variables we shall use in our analysis:

R codesis <- data.frame (cbind (earnings, earnings.top, male, over65, white,

immig, educ_r, workmos, workhrs.top, any.ssi, any.welfare, any.charity))

and then fit a regression to positive values of earnings:

R codelm.imp.1 <- lm (earnings ~ male + over65 + white + immig + educ_r +

workmos + workhrs.top + any.ssi + any.welfare + any.charity,

data=SIS, subset=earnings>0)

We shall describe these predictors shortly, but first we go through the steps needed
to create deterministic and then random imputations. We first get predictions for
all the data:

R codepred.1 <- predict (lm.imp.1, SIS)

To get predictions for the entire data vector, we must include the data frame, sis,
in the predict() call. Simply writing predict(lm.imp.1) would give predictions
only for the data used in the fitting, which in this case are the subset of cases
for which earnings are positive and for which none of the variables used in the
regression are missing.

Next we write a little function to create a completed dataset by imputing the
predictions into the missing values:

R codeimpute <- function (a, a.impute){

ifelse (is.na(a), a.impute, a)

}

and use this to impute missing earnings:

R codeearnings.imp.1 <- impute (earnings, pred.1)

Transforming and topcoding. For the purpose of predicting incomes in the low and
middle range (where we are most interested), we can do better by working on the
square root scale of income, topcoded to 100 (in thousands of dollars):

R codelm.imp.2.sqrt <- lm (I(sqrt(earnings.top)) ~ male + over65 + white +

immig + educ_r + workmos + workhrs.top + any.ssi + any.welfare +

any.charity, data=SIS, subset=earnings>0)

display (lm.imp.2.sqrt)

pred.2.sqrt <- predict (lm.imp.2.sqrt, SIS)

pred.2 <- topcode (pred.2.sqrt^2, 100)

earnings.imp.2 <- impute (earnings.top, pred.2)

Here is the fitted model:
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R output coef.est coef.se

(Intercept) -1.67 0.44

male 0.32 0.13

over65 -1.44 0.58

white 0.96 0.15

immig -0.62 0.14

educ_r 0.79 0.07

workmos 0.33 0.03

workhrs.top 0.06 0.01

any.ssi -0.97 0.55

any.welfare -1.35 0.37

any.charity -1.17 0.60

n = 988, k = 11

residual sd = 1.96, R-Squared = 0.44

Figure 25.1b shows the deterministic imputations:

R code hist (earnings.imp.2[is.na(earnings)])

From this graph, it appears that most of the nonrespondents have incomes in the
middle range (compare to Figure 25.1a). Actually, the central tendency of Figure
25.1b is an artifact of the deterministic imputation procedure. One way to see this
is through the regression model: its R2 is 0.44, which means that the explained
variance from the regression is only 44% of the total variance. Equivalently, the
explained standard deviation is

√
0.44 = 0.66 = 66% of the data standard deviation.

Hence, the predicted values from the regression will tend to be less variable than the
original data. If we were to use the resulting deterministic imputations, we would
be falsely implying that most of these nonrespondents had incomes in the middle
of the scale.

Random regression imputation

We can put the uncertainty back into the imputations by adding the prediction
error into the regression, as discussed in Section 7.2. For this example, this involves
creating a vector of random predicted values for the 241 missing cases using the
normal distribution, and then squaring, as before, to return to the original dollar
scale:

R code pred.4.sqrt <- rnorm (n, predict (lm.imp.2.sqrt, SIS),

sigma.hat (lm.imp.2.sqrt))

pred.4 <- topcode (pred.4.sqrt^2, 100)

earnings.imp.4 <- impute (earnings.top, pred.4)

Figure 25.1c shows the resulting imputed values from a single simulation draw.
Compared to Figure 25.1b, these random imputations are more appropriately spread
across the range of the population.

The new imputations certainly do not look perfect—in particular, there still seem
to be too few imputations at the topcoded value of $100,000—suggesting that the
linear model on the square root scale, with normal errors, is not quite appropriate
for these data. (This makes sense given the spike in the data from the topcoding.)
The results look much better than the deterministic imputations, however.

Figure 25.2 illustrates the deterministic and random imputations in another way.
The left plot in the figure shows the deterministic imputations as a function of the
predicted earnings from the regression model. By the definition of the imputation
procedure, the values are identical and so the points fall along the identity line.
The right plot shows the random imputations, which follow a generally increasing
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Figure 25.2 Deterministic and random imputations for the 241 missing values of earnings
in the Social Indicators Survey. The deterministic imputations are exactly at the regression
predictions and ignore predictive uncertainty. In contrast, the random imputations are
more variable and better capture the range of earnings in the data. See also Figure 25.1.

pattern but with scatter derived from the unexplained variance in the model. (The
increase in variance as a function of predicted value arises from fitting the model
on the square root scale and squaring at the end.)

Predictors used in the imputation model

We fit a regression of earnings on sex, age, ethnicity, nationality, education, the
number of months worked in the previous year and hours worked per week, and
indicators for whether the respondent’s family receives each of three forms of income
support (from disability payments, welfare, and private charities).

It might seem strange to model earnings given information on income support—
which is, in part, a consequence of earnings—but for the purposes of imputation this
is acceptable. The goal here is not causal inference but simply accurate prediction,
and it is acceptable to use any inputs in the imputation model to achieve this goal.

Two-stage modeling to impute a variable that can be positive or zero

In the Social Indicators Survey, we only need to impute the positive values of
earnings: the “hours worked” and “months worked” questions were answered by
everyone in the survey, and these variables are a perfect predictor of whether the
value of earnings (more precisely, employment income) is positive. For the missing
cases of earnings, we can impute 0 if workhrs = 0 and workmos = 0, and impute a
continuous positive value when either of these is positive. This imputation process
is what was described above, with the regression based on n = 988 data points
and displayed in Figure 25.2. The survey as a whole included 1501 families, of
whom 272 reported working zero hours and months and were thus known to have
zero earnings. Of the 1229 persons reporting positive working hours or months, 988
responded to the earnings question and 241 did not.

Now suppose that the workhrs and workmos variables were not available, so that
we could not immediately identify the cases with zero earnings. We would then
impute missing responses to the earnings question in two steps: first, imputing an
indicator for whether earnings are positive, and, second, imputing the continuous
positive values of earnings.

Mathematically, we would impute earnings y given regression predictors X in a
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two-step process, defining
y = Iyypos,

where Iy = 1 if y > 0 and 0 otherwise, and ypos = y if y > 0. The first model is a
logistic regression for Iy:

Pr(Iy
i = 1) = logit−1(Xiα),

and the second part is a linear regression for the square root of ypos:√
ypos

i ∼ N(Xiβ, σ2).

The first model is fit to all the data for which y is observed, and the second model
is fit to all the data for which y is observed and positive.

We illustrate with the earnings example. First we fit the two models:

R code glm.sign <- glm (I(earnings>0) ~ male + over65 + white +

immig + educ_r + any.ssi + any.welfare + any.charity,

data=SIS, family=binomial(link=logit))

display (glm.sign)

lm.ifpos.sqrt <- lm (I(sqrt(earnings.top)) ~ male + over65 + white +

immig + educ_r + any.ssi + any.welfare + any.charity,

data=SIS, subset=earnings>0) # (same as lm.imp.2 from above)

display (lm.ifpos.sqrt)

Then we impute whether missing earnings are positive:

R code pred.sign <- rbinom (n, 1, predict (glm.sign, data, type="response"))

pred.pos.sqrt <- rnorm (n, predict (lm.ifpos.sqrt, SIS),

sigma.hat(lm.ifpos.sqrt))

and then impute the earnings themselves:

R code pred.pos <- topcode (pred.pos.sqrt^2, 100)

earnings.imp <- impute (earnings, pred.sign*pred.pos)

Matching and hot-deck imputation

A different way to impute is through matching: for each unit with a missing y,
find a unit with similar values of X in the observed data and take its y value. This
approach is also sometimes called “hot-deck” imputation (in contrast to “cold deck”
methods, where the imputations come from a previously collected data source).
Matching imputation can be combined with regression by defining “similarity” as
closeness in the regression predictor (for example, 0.32 ·male−1.44 ·over65+0.96 ·
white+· · · for the model on page 536). Matching can be viewed as a nonparametric
or local version of regression and can also be useful in some settings where setting
up a regression model can be challenging.

For example, the New York City Department of Health has the task of assigning
risk factors to all new HIV cases. The risk factors are assessed from a reading of each
patient’s medical file, but for a large fraction of the cases, not enough information
is available to determine the risk factors. For each of these “unresolved” cases,
we proposed taking a random imputation from the risk factors of the five closest
resolved cases, where “closest” is defined based on a scoring function that penalizes
differences in sex, age, the clinic where the HIV test was conducted, and other
information that is available on all or most cases.

More generally, one could estimate a propensity score that predicts the missing-
ness of a variable conditional on several other variables that are fully observed, and
then match on this propensity score to impute missing values.
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25.5 Imputation of several missing variables

It is common to have missing data in several variables in an analysis, in which
case one cannot simply set up a model for a single partially observed variable y
given a set of fully observed X variables. In fact, even in the Social Indicators
Survey example, some of the predictor variables (ethnicity, interest income, and
the indicators for income supplements) had missing values in the data, which we
crudely imputed before running the regression for the imputations. More generally,
we must think of the dataset as a multivariate outcome, any components of which
can be missing.

Routine multivariate imputation

The direct approach to imputing missing data in several variables is to fit a mul-
tivariate model to all the variables that have missingness, thus generalizing the
approach of Section 25.4 to allow the outcome Y as well as the predictors X to be
vectors. The difficulty of this approach is that it requires a lot of effort to set up a
reasonable multivariate regression model, and so in practice an off-the-shelf model
is typically used, most commonly the multivariate normal or t distribution for con-
tinuous outcomes, and a multinomial distribution for discrete outcomes. Software
exists to fit such models automatically, so that one can conceivably “press a button”
and impute missing data. These imputations are only as good as the model, and so
they need to be checked in some way—but this automatic approach is easy enough
that it is a good place to start, in any case.

Iterative regression imputation

A different way to generalize the univariate methods of the previous section is to
apply them iteratively to the variables with missingness in the data. If the variables
with missingness are a matrix Y with columns Y(1), . . . , Y(K) and the fully observed
predictors are X , this entails first imputing all the missing Y values using some
crude approach (for example, choosing imputed values for each variable by randomly
selecting from the observed outcomes of that variable); and then imputing Y(1)

given Y(2), . . . , Y(K) and X ; imputing Y(2) given Y(1), Y(3), . . . , Y(K) and X (using
the newly imputed values for Y(1)), and so forth, randomly imputing each variable
and looping through until approximate convergence.

For example, the Social Indicators Survey asks about several sources of income.
It would be helpful to use these to help impute each other since they have non-
overlapping patterns of missingness. We illustrate for the simple case of imputing
missing data for two variables—interest income and earnings—using the same fully
observed predictors used to impute earnings in the previous section.

We create random imputations to get the process started:

R codeinterest.imp <- random.imp (interest)

earnings.imp <- random.imp (earnings)

and then we write a loop to iteratively impute. For simplicity in demonstrating the
programming, we set up the function on the original (non-square-root) scale of the
data:

R coden.sims <- 10

for (s in 1:n.sims){

lm.1 <- lm (earnings ~ interest.imp + male + over65 + white +

immig + educ_r + workmos + workhrs.top + any.ssi + any.welfare +
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any.charity)

pred.1 <- rnorm (n, predict(lm.1), sigma.hat(lm.1))

earnings.imp <- impute (earnings, pred.1)

lm.2 <- lm (interest ~ earnings.imp + male + over65 + white +

immig + educ_r + workmos + workhrs.top + any.ssi + any.welfare +

any.charity)

pred.2 <- rnorm (n, predict(lm.2), sigma.hat(lm.2))

interest.imp <- impute (interest, pred.2)

}

This code could be easily elaborated to handle topcoding, transformations, and
two-stage modeling for variables that could be zero or positive (see Exercise 25.4).
These operations should be done within the imputation loop, not merely tacked on
at the end.

Iterative regression imputation has the advantage that, compared to the full mul-
tivariate model, the set of separate regression models (one for each variable, Y(k))
is easier to understand, thus allowing the imputer to potentially fit a reasonable
model at each step. Moreover, it is easier in this setting to allow for interactions
(difficult to do using most joint model specifications).

The disadvantage of the iterative approach is that the researcher has to be more
careful in this setting to ensure that the separate regression models are consistent
with each other. For instance, it would not make sense to impute age based on
income but then to later ignore age when imputing income.

Moreover, even if such inconsistencies are avoided, the resulting specification will
not in general correspond to any joint probability model for all of the variables
being imputed. It is an open research project to develop methods to diagnose prob-
lems with multivariate imputations, by analogy to the existing methods such as
residual plots for finding problems in regressions. In the meantime, it makes sense
to examine histograms and scatterplots of observed and imputed data to check that
the imputations are reasonable.

25.6 Model-based imputation

Missing data can be handled in Bugs by modeling the input variables that have
missingness. This requires some work, however: with multiple missing input vari-
ables, a multivariate model is required, and this can be particularly tricky when
some of the variables are discrete. So in practice it can be helpful to do some simple
imputation in R, as we have described, before then analyzing completed datasets.
When more is known about the missing-data mechanism (for example, with cen-
sored or truncated data; see the model on page 405), it can make more sense to
explicitly model the missingness in Bugs.

Nonignorable missing-data models

Realistic censored-data problems often have particular complications. For example,
in the study of death penalty appeals described in Section 6.3, we are interested
in the duration of the appeals process for individual cases. For example, if a death
sentence is imposed in 1983 and its final appeal is decided in 1994, then the process
lasted 11 years. It is challenging to estimate the distribution of these waiting times,
and to model them based on case-level predictors, because our dataset includes
appeals only up to the year 1995. Figure 25.3 illustrates. The censoring model, by
analogy to model (18.17) on page 404, looks like:
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Figure 25.3 Delays in state appeals court for death penalty cases, plotted versus year of
sentencing (jittered to allow individual data points to be visible). We only have results up
to the year 1995. The data show a steady increase in delay times for the first decade, but
after that, the censoring makes the graph difficult to interpret directly.

yi =

{
zi if zi ≤ 1995 − ti
censored otherwise,

where yi is the observed waiting time for case i, zi is the ultimate waiting time,
and ti is the year of sentencing. We shall not analyze these data further here; we
have introduced this example just to illustrate the complexities that arise in realis-
tic censoring situations. The actual analysis for this problem is more complicated
because death sentences have three stages of review, and cases can be waiting at
any of these stages.

Imputation in multilevel data structures

Imputing becomes more complicated with clustered data. Suppose, for instance,
that we have individual-level observations on children grouped within schools (for
instance, test scores and demographics), and then measurements pertaining to the
schools themselves (for instance, school policies and characteristics such as public
versus private). We would not want to impute on a standard individual-level dataset
where the school-level measurements are just repeated over each individual in the
same school because, if a given school measurement is missing, such an approach
would not be likely to impute the same value of this variable for each member of
the group (as it should).

Our general advice in this situation is to create two datasets, as in Figure 11.3
on page 239, one with only individual-level data, and one with group-level data
and do separate imputations within each dataset while using results from one in
the other (perhaps iterating back and forth). For instance, one could first impute
individual-level variables using individual-level data and observed group-level mea-
surement. Then in the group-level dataset one could include aggregated forms of
the individual-level measurements when imputing missingness at this level.
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25.7 Combining inferences from multiple imputations

Rather than replacing each missing value in a dataset with one randomly imputed
value, it may make sense to replace each with several imputed values that reflect
our uncertainty about our imputation model. For example, if we impute using a
regression model we may want our imputations to reflect not only sampling vari-
ability (as random imputation should) but also our uncertainty about the regression
coefficients in the model. If these coefficients themselves are modeled, we can draw
a new set of missing value imputations for each draw from the distribution of the
coefficients.

Multiple imputation does this by creating several (say, five) imputed values for
each missing value, each of which is predicted from a slightly different model and
each of which also reflects sampling variability. How do we analyze these data? The
simple idea is to use each set of imputed values to form (along with the observed
data) a completed dataset. Within each completed dataset a standard analysis can
be run. Then inferences can be combined across datasets.

For instance, suppose we want to make inferences about a regression coefficient,
β. We obtain estimates β̂m in each of the M datasets as well as standard errors,
s1, . . . , sM . To obtain an overall point estimate, we then simply average over the
estimates from the separate imputed datasets; thus, β̂ = 1

m

∑M
m=1 β̂m. A final

variance estimate Vβ reflects variation within and between imputations:

Vβ = W +

(
1 +

1

m

)
B,

where W = 1
m

∑M
m=1 s2

m, and B = 1
m−1

∑M
m=1(β̂m − β̂)2.

If missing data have been included in the main data analysis (as when variables X
and y are given distributions in a Bugs model), the uncertainty about the missing-
data imputations is automatically included in the Bayesian inference, and the above
steps are not needed.

25.8 Bibliographic note

Little and Rubin (2002) provide an overview of methods for analysis with missing
data. For more on multiple imputation in particular, see Rubin (1987, 1996). “Miss-
ing at random” and related concepts were formalized by Rubin (1976). A simple
discrete-data example appears in Rubin, Stern, and Vehovar (1995). King et al.
(2001) review many of the practical costs and benefits of multiple imputation.

For routine imputation of missing data, Schafer (1997) presents a method based
on the multivariate normal distribution, Liu (1995) uses the t distribution, and
Van Buuren, Boshuizen, and Knook (1999) use interlocking regressions. Abayomi,
Gelman, and Levy (2005) discuss methods for checking the fit of imputation mod-
els, and Troxel, Ma, and Heitjan (2004) present a method to assess sensitivity of
inferences to missing-data assumptions.

Software for routine imputation in R and SAS has been developed by Van Buuren
and Oudshoom (2000), Raghunathan, Van Hoewyk, and Solenberger (2001), and
Raghunathan, Solenberger, and Van Hoewyk (2002). An overview of some imputa-
tion software is at www.missing-data.com.

Specialized imputation models have been developed for particular problems, with
multilevel models used to adjust for discrete predictors. Some examples include
Clogg et al. (1991), Belin et al. (1993), and Gelman, King, and Liu (1998). See also
David et al. (1986).

Meng (1994), Fay (1996), Rubin (1996), Clayton et al. (1998), and Robins and
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Wang (2000) discuss situations in which the standard rules for combining multiple
imputations have problems. Barnard and Meng (1994) and Robins and Wang (2000)
propose alternative variance estimators and reference distributions.

For more on the Social Indicators Survey, see Garfinkel and Meyers (1999). The
death-sentencing example is discussed by Gelman, Liebman, et al. (2004) and Gel-
man (2004a); see also Finkelstein et al. (2006).

25.9 Exercises

1. Based on the summaries at the very end of Section 25.2, show that the response
rates for the “earnings” question in the Social Indicators Survey are statistically
significantly different for whites and blacks.

2. Take a complete dataset (with no missingness) of interest to you with two vari-
ables, x and y. Call this the “full data.”

(a) Write a program in R to cause approximately half of the values of x to be
missing. Design this missingness mechanism to be at random but not com-
pletely at random; that is, the probability that x is missing should depend on
y. Call this new dataset, with missingness in x, the “available data.”

(b) Perform the regression of x on y (that is, with y as predictor and x as outcome)
using complete-case analysis (that is, using only the data for which both
variables are observed) and show that it is consistent with the regression on
the full data.

(c) Perform the complete-case regression of y on x and show that it is not con-
sistent with the corresponding regression on the full data.

(d) Using just the available data, fit a model in R for x given y, and use this
model to randomly impute the missing x data. Perform the regression of y on
x using this imputed dataset and compare to your results from (c).

3. Nonignorable missing data: in Exercise 9.13, you estimated the effects of incum-
bency in U.S. congressional elections, discarding uncontested elections.

(a) Construct three “bad” imputation procedures and one “good” imputation
procedure for these uncontested elections.

(b) Define clearly how to interpret these imputations. (These election outcomes
are not actually “missing”—it is known that they were uncontested.)

(c) Fit the model to the completed dataset under each of the imputation proce-
dures from (a) and compare the results.

4. Use iterative regression to impute missing data for all the income components
in the Social Indicators Survey (data at folder sis).
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APPENDIX A

Six quick tips to improve your regression
modeling

A.1 Fit many models

Think of a series of models, starting with the too-simple and continuing through
to the hopelessly messy. Generally it’s a good idea to start simple. Or start com-
plex if you’d like, but prepare to quickly drop things out and move to the simpler
model to help understand what’s going on. Working with simple models is not a
research goal—in the problems we work on, we usually find complicated models
more believable—but rather a technique to help understand the fitting process.

A corollary of this principle is the need to be able to fit models relatively quickly.
Realistically, you don’t know what model you want to be fitting, so it’s rarely a
good idea to run the computer overnight fitting a single model. At least, wait until
you’ve developed some understanding by fitting many models.

A.2 Do a little work to make your computations faster and more

reliable

This sounds like computational advice but is really about statistics: if you can
fit models faster, you can fit more models and better understand both data and
model. But getting the model to run faster often has some startup cost, either in
data preparation or in model complexity.

Data subsetting

Related to the “multiple model” approach are simple approximations that speed
the computations. Computers are getting faster and faster—but models are getting
more and more complicated! And so these general tricks might remain important.
A simple and general trick is to break the data into subsets and analyze each subset
separately. For example, break the 85 counties of radon data randomly into three
sets of 30, 30, and 25 counties, and analyze each set separately.

The advantage of working with data subsets is that computation is faster on data
subsets, for two reasons: first, the total data size n is smaller, so each regression
computation is faster; and, second, the number of groups J is smaller, so there are
fewer parameters, and the Gibbs sampling requires fewer updates per iteration.

The two disadvantages of working with data subsets are: first, the simple incon-
venience of subsetting and performing separate analyses; and, second, the separate
analyses are not as accurate as would be obtained by putting all the data together
in a single analysis. If computation were not an issue, we would like to include all
the data, not just a subset, in our fitting.

In practice, when the number of groups is large, it can be reasonable to perform
an analysis on just one random subset, for example one-tenth of the data, and
inferences about the quantities of interest might be precise enough for practical
purposes.
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Redundant parameterization

Sections 19.4–19.5 discuss redundant additive and multiplicative parameterizations.
These steps add extra parameters to a Bugs model, and can be confusing at first,
but can really pay off in speed of computation. In addition, the recentering and scal-
ing required in defining the adjusted parameters can have a convenient statistical
interpretation in terms of finite-population inference for the groups in the dataset.

Fake-data and predictive simulation

When computations get stuck, or a model does not fit the data, it is usually not
clear at first if this is a problem with the data, the model, or the computation. Fake-
data and predictive simulation (discussed in general in Chapter 8 and for multilevel
models in Sections 16.7 and 24.1–24.2) are effective ways of diagnosing problems.
First use fake-data simulation to check that your computer program does what it
is supposed to do, then use predictive simulation to compare the data to the fitted
model’s predictions.

A.3 Graphing the relevant and not the irrelevant

Graphing the fitted model

Graphing the data is fine (see Appendix B) but it is also useful to graph the
estimated model itself (see lots of examples of regression lines and curves throughout
this book). A table of regression coefficients does not give you the same sense
as graphs of the model. This point should seem obvious but can be obscured in
statistical textbooks that focus so strongly on plots for raw data and for regression
diagnostics, forgetting the simple plots that help us understand a model.

Don’t graph the irrelevant

Are you sure you really want to make those quantile-quantile plots, influence dia-
grams, and all the other things that spew out of a statistical regression package?
What are you going to do with all that? Just forget about it and focus on something
more important. A quick rule: any graph you show, be prepared to explain.

A.4 Transformations

Consider transforming every variable in sight:

• Logarithms of all-positive variables (primarily because this leads to multiplicative
models on the original scale, which often makes sense)

• Standardizing based on the scale or potential range of the data (so that coeffi-
cients can be more directly interpreted and scaled); an alternative is to present
coefficients in scaled and unscaled forms

• Transforming before multilevel modeling (thus attempting to make coefficients
more comparable, thus allowing more effective second-level regressions, which in
turn improve partial pooling).

Plots of raw data and residuals can also be informative when considering transfor-
mations (as with the log transformation for arsenic levels in Section 5.6).

In addition to univariate transformations, consider interactions and predictors
created by combining inputs (for example, adding several related survey responses
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to create a “total score”). The goal is to create models that could make sense (and
can then be fit and compared to data) and that include all relevant information.

A.5 Consider all coefficients as potentially varying

Don’t get hung up on whether a coefficient “should” vary by group. Just allow it
to vary in the model, and then, if the estimated scale of variation is small (as with
the varying slopes for the radon model in Section 13.1), maybe you can ignore it if
that would be more convenient.

Practical concerns sometimes limit the feasible complexity of a model—for exam-
ple, we might fit a varying-intercept model first, then allow slopes to vary, then add
group-level predictors, and so forth. Generally, however, it is only the difficulties of
fitting and, especially, understanding the models that keeps us from adding even
more complexity, more varying coefficients, and more interactions.

A.6 Estimate causal inferences in a targeted way, not as a byproduct of

a large regression

Don’t assume that a regression coefficient can be interpreted causally. If you are
interested in causal inference, consider your treatment variable carefully and use the
tools of Chapters 9, 10, and 23 to address the difficulties of comparing comparable
units to estimate a treatment effect and its variation across the population. It can
be tempting to set up a single large regression to answer several causal questions
at once; however, in observational settings (including experiments in which certain
conditions of interest are observational), this is not appropriate, as we discuss at
the end of Chapter 9.





APPENDIX B

Statistical graphics for research and
presentation

Statistical graphics are sometimes summarized as “exploratory data analysis” or
“presentation” or “data display.” But these only capture part of the story. Graphs
are a way to communicate graphical and spatial information to ourselves and others.
Long before worrying about how to convince others, you first have to understand
what’s happening yourself.

Why to graph

Going back through the dozens of examples in this book, what are our motivations
for graphing data and fitted models? Ultimately, the goal is communication (to self
or others). More immediately, graphs are comparisons (to zero, to other graphs, to
horizontal lines, and so forth). We “read” a graph both by pulling out the expected
(for example, the slope of a fitted regression line, the comparisons of a series of
confidence intervals to zero and each other) and the unexpected.

In our experience, the unexpected is usually not an “outlier” or aberrant point
but rather a systematic pattern in some part of the data. For example, consider
the binned residual plots in Section 5.6 for the well-switching models. There was
an unexpectedly low rate of switching from wells that were just barely over the
dangerous level for arsenic, possibly suggesting that people were moderating their
decisions when in this ambiguous zone, or that there was other information not
included in the model that could explain these decisions.

Often the most effective graphs simply show us what a fitted model is doing.
Consider, for example, the graphs in Section 6.5 of the ordered regression and the
data for the storable voting experiment or in Section 14.1 of the data-level logistic
model and state-level linear model for political opinions.

We consider three uses of graphics in statistical analysis:

1. Displays of raw data, often called “exploratory analysis.” These don’t have to
look pretty; the goal is to see things you did not expect or even know to look
for.

2. Graphs of fitted models and inferences, sometimes overlaying data plots in order
to understand model fit, sometimes structuring or summarizing inference for
many parameters to see a larger pattern. In addition, we can plot simulations
of replicated data from fitted models and compare them to comparable plots of
raw data.

3. Graphs presenting your final results—a communication tool. Often your most
important audience here is yourself—in presenting all of your results clearly on
the page, you’ll suddenly understand the big picture.
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Control
classes

Treated
classes

Grade 1

㔰 㜵 ㄰　

㔰 㜵 ㄰　

Grade 2

㔰 㜵 ㄰　

㔰 㜵 ㄰　

Grade 3

㔰 㜵 ㄰　

㔰 㜵 ㄰　

Grade 4

㔰 㜵 ㄰　

㔰 㜵 ㄰　

Figure B.1 Data from the Electric Company experiment, from Figure 9.4 on page 174,
displayed in a different orientation to allow easier comparison between treated and control
groups in each grade. For each histogram, the average is indicated by a vertical line.

B.1 Reformulating a graph by focusing on comparisons

Creative thinking might be needed to display numerical data effectively, but your
creativity can sometimes be enhanced by carefully considering your goals. Just as
in writing, you have to rearrange your sentences sometimes to make yourself clear.
For example, consider the graph of the Electric Company data in Figure 9.4 on page
174. Rather than try to cleverly put all the points on a single plot, we arrange them
on a 4 × 2 grid, using a common scale for all the graphs to facilitate comparisons
among grades and between treatment and control. We also extend the axis all the
way to zero, which is not strictly necessary, in the interest of clarity of presentation.
In the Electric Company example, as in many others, we are not concerned with
the exact counts in the histogram; thus, we simplify the display by eliminating y-
axes, and we similarly clarify the x-axis by removing tick marks and using minimal
labeling.

Graphs as comparisons

All graphical displays can be considered as comparisons. When making a graph,
line things up so that the most important comparisons are clearest. Comparisons
are clearest when scales are lined up. Considering Figure 9.4: for each of the two
treatments, the histograms for the four grades are lined up and can be directly
compared.

In Figure 9.4, we primarily want to compare treatment to control. The comparison
of grades is useful—if for no other reason than to ground ourselves and confirm
that scores are higher in the higher grades—but we are really more interested in
the comparison of treatment to control within each grade.

Thus, it might be more helpful to arrange the histograms as shown in Figure B.1,
with treatment and control aligned for each grade. With four histograms arranged
horizontally on a page, we need to save some space and so we restrict the x-axes to
the combined range of the data. We also indicate the average value in each group
with a vertical line to allow easier comparisons of control to treatment in each
grade.

No single graph does it all

Sometimes it makes sense to withhold information in order to present a clearer
picture. Figure 9.4 (or Figure B.1) shows the outcomes for each classroom in the
Electric Company experiment. The scatterplots in Figure 9.6 show pre-test data
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as well, revealing a high correlation between pre-test and post-test in each grade.
The scatterplots certainly show important information, and we are glad to be able
to show them, but we prefer the histograms as a starting point for seeing the com-
parison between treatment and control—at least for this randomized experiment in
which the two groups are well balanced.

Graphs of fitted models

It can be helpful to graph a fitted model and data on the same plot, as we have
done throughout the book. See Chapters 3–5 for many simple examples, Figure 6.3
on page 120 for a more elaborate example, and Chapters 12–13 for similar plots of
multilevel models.

We also like to graph sets of estimated parameters (see, for example, in Figure 4.6
on page 74). Graphs of parameter estimates can be thought of as proto-multilevel
models in that the graph suggests a relation between the y-axis (the parameter
estimates being displayed) and the x-axis (often time, or some other index of the
different data subsets being fit by a model). These graphs contain an implicit model,
or a comparison to an implicit model, the same way that any scatterplot contains
the seed of a regression or correlation model.

Another use of graphics with fitted models is to plot predicted datasets and
compare them visually to actual data, as discussed in Sections 8.3–8.4. For data
structures more complicated than simple exchangeable batches or time series, plots
can be tailored to specific aspects of the models being checked, as in Section 24.2.
As a special case, plots of residuals and binned residuals can be seen as visual
comparisons to the hypothesis that the errors from a model are independent with
zero mean.

B.2 Scatterplots

Units

When describing or designing a scatterplot, the first thing to decide is the unit of
analysis. That is “each dot represents a student” or “each dot represents a county”
or whatever. The x and y values have no interpretation until you define the units.

The x and y axes

To get yourself up to speed, start by applying to scatterplots everything you know
about linear regression. There’s an x variable and a y variable defined on a bunch
of units, and you’re trying to summarize the average relation between x and y or
alternatively to predict y from x where “prediction” includes uncertainty as well as
point estimation. This issue is well covered in many recent introductory textbooks
which introduce scatterplots first and then move to regression.

Let’s start with some bad ideas. First, there is something called a scatterplot
matrix for multivariate data, which is a set of scatterplots of all pairs of variables.
This can be informative, but it’s like regressing every variable versus every other
variable. As with regression, we often learn more from scatterplots that are more
carefully chosen. For example, if two variables have a time or causal order, we
usually prefer to put “before” on the x-axis and “after” on the y-axis.

A common strategy that particularly disturbs us is plotting by index number,
for example, plotting data from the 50 states in alphabetical order. In this case the
x variable contains little or no information, and the plot is comparable to running
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Figure B.2 Length of longest run (sequence of successive heads or successive tails) versus
number of runs (sequences of heads or tails) in each of 2000 independent simulations of
100 coin flips. Each dot on the graph represents a sequence of 100 coin flips; the points
are jittered so they do not overlap. When plotted on this graph, the results from an actual
sequence of 100 coin flips will most likely fall on a square with a large number of dots.
In contrast, a sequence of heads and tails that is artificially created to look “random” will
probably have too many runs that are not long enough, and hence will fall on the lower
right of this graph.

a regression on random numbers. An example that is not necessarily bad is using,
as the x variable, the order of entry of units into the study. This can make sense
if one expects or fears time trends (but it would probably be better to plot versus
time itself rather than merely order). If there are no major time patterns, however,
the choice of x variable might better be spent elsewhere.

You can make as many plots as you want (or as your paper budget allows), but
it is useful to think a bit about each plot, just as it is useful to think a bit about
each regression you run. This is as good a time as any to recommend that along
with every regression you run, you should make a scatterplot. And, in addition, you
should be making residual plots where necessary. We’ll get to that later.

Jittering

If several data points have the same data values, add a small random number to
each so that they do not fall on top of each other. This is called jittering. Jitter
just enough so that the discrete nature of the data is still clear. For example, if
data points are integers, we might add a random uniform number between −0.3
and +0.3 to each x and y value (see Figure B.2). Methods such as plotting 2’s,
3’s, or cute symbols for multiple data points can be misleading visually, and from a
theoretical perspective are unsatisfying in that the display of any unit then depends
too strongly on the other data values.

Symbols and auxiliary lines

The symbols of a scatterplot are important because they correspond to the units of
analysis in your studies. It can be appropriate to use more than one scatterplot for
multilevel data structures. At least in theory you can display five variables easily
with a scatterplot: x, y, symbol, symbol size, and symbol color.

Symbols are best for discrete variables, and it’s worth putting a little effort into
making these symbols distinguishable and also appropriate. For example, we used
open circles to indicate open seats in Figure 7.4. In plotting data from an experiment
or observational study, you can use different large symbols for treated units and
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Figure B.3 Effect of redistricting on partisan bias. Each symbol represents a state and
election year, solid circles, open circles, and crosses representing Democratic, bipartisan,
and Republican redistricting. The small dots are the control cases—state-years that did not
immediately follow a redistricting. Lines show fit from a regression model.

dots for controls (see Figure B.3). Symbol size can be useful, but it is not always
as flexible as one might hope, and we have not had much success in using symbol
size for continuous variables.

Color is just great and you should use it as much as possible, even though for
printing reasons we do not use color in this book.

We sometimes have had success using descriptive symbol names (for example,
two-letter state abbreviations). But if there are only two or three categories, we’re
happier with visually distinct symbols. For example, to distinguish men and women,
we would not use M and W or even M and F. In genealogical charts, men and
women are often indicated by open squares and open circles, respectively, but even
these symbols are hard to tell apart in a group. We prefer clearly distinguishable
symbols—for example, in Figure B.5, open circles for men and solid circles for
women.

These suggestions are all based on our subjective experience and attempts at
logical reasoning; as far as we know, they have not been validated (or disproved) in
any systematic study. We think such a study would be a good idea.

Figure B.3 shows an example of one of the most common regressions: a compari-
son of treatments to control with a before and after measurement. In this case, the
units are state legislative elections, and the plot displays a measure of “partisan
bias” in two successive election years. The “treatments” are different kinds of redis-
tricting plans, and the “control” points (indicated by dots on the figure) indicate
pairs of elections with no intervening redistricting. We display all the data and also
show the regression lines on the same scale. As a matter of fact, we did not at first
think of fitting nonparallel regression lines; it was only after making the figure and
displaying parallel lines that we realized that nonparallel lines (that is, an interac-
tion between the treatment and the “before” measurement) are appropriate. The
interaction is, in fact, crucial to the interpretation of these data: (1) when there is
no redistricting, partisan bias is not systematically changed; (2) the largest effect of
any kind of redistricting is to bring partisan bias, on average, to near zero. The lines
and points together show this much more clearly than any numerical summary.
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Another useful kind of line to display is a “default line,” which is usually a
horizontal line at 0 or a 45-degree line indicating equality of x and y.

When a graph has multiple lines, label them directly, not using symbol codes and
a key (which requires the reader—and you—to go back and forth between graph
and key). Examples of our recommended approach include Figure 5.11 on page 91,
Figure 14.11 on page 313, and Figure 15.2 on page 328.

Shape of the plotting region

The shape of a plot conveys information implicitly. When x and y are the same units
on the same scale, we use a square plot with the same scale on the two axes even
if that means that large parts of the plot are blank (see Figure B.3). Conversely,
if x and y are not the same variable, we are careful not to use a square plot so as
not to implicitly send the wrong message. When we are presenting several plots of
different variables, we sometimes use dimensions for the different plots as a visual
cue that they have different meanings.

Displaying the results of model fitting

In a regression with one or two inputs, it is possible to display essentially all the
information (all the information if one of the variables is discrete) in a single plot.
When additional predictors are present, we have to summarize the data in some
way. Ideally, the outcome variable is displayed on the y-axis, symbols indicate the
input variable of interest (think of treatments and control here), and the x-axis
displays predicted values or some other combination of all the variables that are
being controlled for.

When there is more than one control variable, one approach is to plot on the
x-axis the linear predictor created from all the control variables with coefficients
estimated from their regression models. For example, with a regression model of the
form yi = β0+β1Xi1+β2Xi2+β3Xi3 +εi, one can plot yi versus β0+β2Xi2+β3Xi3

with different symbols for different values of Xi1. In that plot one would plot dotted
lines of y = c + x, for c = β1x1 for the different values for x1, to illustrate the
expected relationship. Figure B.3 shows an example with one predictor that plays
the role of “treatment” and other “background” predictors which are combined in
the x-axis.

More generally we can overlay the model on a plot of data (conversely when
plotting a modeled relationship, we try to include data on this plot appropriately),
even if it takes a bit of work to figure out how to do this reasonably. In our own
work such plots have been crucial to our understanding, as illustrated by Figure
B.3.

Maps

Often when you have a map, you’re better off with a scatterplot (but of course
there’s no reason to throw away the map). For example, if you have data on the
occurrence of some medical condition by location and you map it to see whether
it’s clustered in low-income areas, it might make more sense to plot rates versus
income. But the map might be useful in suggesting which variables to consider
plotting.

With this use of maps as an explanatory tool in mind, we focus on mapping
methods that will reveal unexpected patterns but only when something real is
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Figure B.4 Summary of a forecast of the 1992 U.S. presidential election performed one
month before the election. (a) States that Bill Clinton was forecasted to win are shaded.
(b) For each state, the proportion of the box that is shaded represents the probability of
Clinton winning the state; the width of the box is proportional to the number of electoral
votes for the state. The second map conveys more information and is also less misleading.

going on. Maps are often tricky to read because they can show spurious patterns.
For example, a map of the United States shading in different counties with different
colors inevitably draws attention to the counties that are geographically larger and
perhaps also those that are unusually shaped. At the very least one could replace
the shading by a small colored circle in each county, perhaps with larger circles for
more populous counties. (However, this would not be appropriate for a geological
map of oil reserves: we are usually thinking about social statistics here.) Another
approach is to plot “thermometers” within a geographic unit (see Figure B.4).

The problem of unequal population density is sometimes attacked by distorted
maps that approximately preserve the shapes of, for example, states, while making
their areas proportional to population. We find these maps more distracting than
useful because they draw attention to the shapes, which are usually nothing that
anybody cares about.

In addition to any possible distorted geographical effects, there are more subtle
difficulties in mapping which relate to problems of summarizing inferences with
point estimates (see, for example, Gelman and Price, 1999).

Calibration plots

A calibration plot is a plot of observed values on the y-axis versus expected (fore-
casted) values on the x-axis. If all is well, the expected value of y given x in such
a plot is just x. So we make this a square plot with identical axes and a compari-
son line at y = x. See, for example, Figure B.5, which evaluates the calibration of
students’ guesses of their exam scores.

In general, a forecast supplies a distribution, not just a point estimate, for each
data point. In this case, the “expected” or “forecasted” value for any datum is just
the mean (or expectation) of the forecast distribution for the datum. The desired
relation is E(y|x) = x.

When forecasting discrete outcomes, however, the problem gets more compli-
cated: the expected values are continuous but the observed values are discrete (for
example, for binary data, the observed values are 0’s and 1’s, and the expected
values are proportions between 0 and 1). The calibration plot is then virtually un-
readable, as the points cluster in discrete values on the y-axis. (See Figure B.6a
for an example.) So instead, it is standard practice to order the x values and then
divide them into categories or bins j = 1, . . . , J . In each category we compute the
averages x̄j and ȳj and then plot the J values of (x̄j , ȳj). Figure B.6b shows an
example in which the data can take on 5 possible outcomes.
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Figure B.5 Actual versus guessed midterm exam scores for a class of 53 students. Each
symbol represents a student; empty circles are men, solid circles are women, and ? has
unknown sex. The 45◦ line represents perfect guessing, and the dotted line is the linear
regression of actual score on guessed score. (The separate regression lines for men and
women were similar.) Both men and women tended to perform worse than their guesses.
That the slope of the regression line is less than 1 is an instance of the “regression effect”
(see Section 4.3): if a student’s guessed score is x points higher than the mean guess, then
his or her actual score is, on average, only about 0.6x higher than the mean score. A square
scatterplot is used because the horizontal and vertical axes are on the same scale.
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Figure B.6 (a) Observed versus expected pain relief scores (0 = no pain relief, . . ., 5
= complete pain relief) for data from the analysis of Sheiner, Beal, and Dunne (1997).
Observed pain relief scores are jittered. (b) Average observed versus averaged expected pain
relief scores, with data divided into 20 equally sized bins defined by ranges of expected pain
relief scores.

Whether in the continuous or discrete case, we prefer to put “observed” on the
y-axis and “expected” on the x-axis (rather than the reverse), because in the cal-
ibration context, the expected value is the predictor and the observed value is the
outcome. See Section 8.2 for related discussion of residual plots.

Residual plots

If all is going well, the points on the calibration plot will mostly fall near the 45-
degree line, meaning there will be much empty space on the plot. A natural next step
is to plot y−x versus x; that is, “deviation from predicted” versus “predicted.” This
is the residual plot. In fact “deviation from predicted” can be plotted versus just
about anything, not just predicted values (see Figure B.7). Residual plots should
not be square and should have a dotted line at y = 0 rather than y = x.
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Figure B.7 Difference between actual and guessed midterm exam scores, plotted against
the order of finishing the exam. The exact order is only relevant for the first 20 or 25
students, who finished early; the others all finished within five minutes of each other at
the end of the class period. Each symbol represents a student; empty circles are men, solid
circles are women, and ? has unknown sex. The horizontal line represents perfect guessing.
The students who finished early were highly overconfident, whereas the other students were
less biased in their predictions.

數灥捴敤⁰慩渠獣潲攀

⡯
扳
敲
癥
搠
ⴠ
數
灥
捴
敤
⤠
灡
楮
⁳
捯
牥

〱 ㈳ 㐀

ⴴ
ⴲ

　
㈀

㐀

销

销

销

销

销
销

销
销

销 销

销

销

销

销

销销

销

销

销

销

销

销 销

销

销

销销

销销销

销销

销

销

销

销

销

销 销

销销

销

销

销

销

销 销

销

销

销销 销

销

销

销

销

销

销

销

销

销

销

销
销销

销

销
销

销

销

销销

销

销

销

销销

销
销

销

销

销

销

销

销

销销

销
销

销
销

销

销

销

销

销销

销
销

销
销

销

销

销

销销

销

销

销

销

销

销
销

销

销

销

销

销

销

销
销

销销

销

销

销

销

销

销

销销

销

销销

销

销
销

销

销

销

销

销销
销

销

销

销

销

销

销销

销

销
销销

销

销

销

销
销

销

销

销

销

销

销销

销

销

销

销

销

销
销

销销

销

销

销
销

销销
销

销销

销

销
销

销

销
销销销

销
销

销

销

销

销

销

销

销

销

销

销

销

销销

销

销
销

销
销

销销销销

销

销

销

销

销

销销

销

销

销

销

销销销销

销

销
销

销

销
销

销

销

销 销

销

销
销销

销销销

销
销

销
销

销

销

销

销

销
销

销
销销销

销
销

销

销

销
销

销销销

销

销

销

销 销销销销

销

销

销

销销销销

销

销 销

销
销销

销销销

销

销

销销销销

销 销

销

销
销

销

销
销

销
销

销

销
销销销

销

销

销

销

销

销

销

销
销

销

销
销

销
销销销

销

销
销

销

销
销

销
销

销
销

销

销

销

销销销销
销 销

销

销
销

销

销

销

销

销

销销销

销

销

销

销

销

销

销
销

销销销销销
销

销销

销
销

销销

销

销
销

销
销

销

销
销

销

销

销

销
销

销
销

销

销
销

销

销
销

销销销

销
销

销销

销

销

销

销
销

销

销
销

销

销

销

销
销销销销

销

销

销

销
销销销

销

销
销

销

销

销
销销

销

销 销

销

销
销

销销
销

销
销 销

销

销
销销

销

销

销

销

销
销销销

销
销

销 销

销

销销销销

销
销

销销

销

销

销

销

销
销销销销

销

销 销

销销销销销

销

销

销

销
销

销销

销销 销

销

销

销销

销
销

销

销

销
销销销销

销

销

销

销
销销

销销

销

销 销

销
销销销销

销

销 销

销 销销销销
销

销

销

销销

销

销
销

销

销

销销销销

销

销

销

销

销

销

销

销

销

销销

销

销

销 销
销销销销

销

销

销

销 销销销销
销

销 销

销

销

销

销 销

销

销
销

销销

销

销 销

销

销
销销

销销

销

销

销

销
销销

销销

销

销

销

销

销销销销销

销

销

销
销

销

销

销

销
销 销

销

销

销

销
销

销

销

销

销

销销销销

销

销

销
销销

销

销
销

销销销

销

销

销
销

销销
销

销

销

销

销

销销销

销

销

销
销

销

销

销销
销

销

销
销

销
销销销

销

销

销

销

销

销销销销

销
销

销

销

销

销销

销

销

销

销
销

销

销

销

销

销销销销

销

销销

销
销

销

销

销
销

销 销

销

销

销

销

销销

销

销销

销
销

销
销

销销销销

销销

销
销

销销

销
销

销销

销

销

销

销

销

销

销

销

销

销

销

销
销

销

销

销

销销

销
销

销销

销

销

销

销
销

销

销

销

销

销销
销销

销销

销 销

销

销
销

销

销
销销

销

销

销

销

销

销

销

销

销 销

销销

销

销 销销
销

销

销

销

销

销

销

销

销

销

销

销

销

销

销

销销

销销

销

销

销

销销 销

销

销销

销

销

销

销

销销销销

销

销

销销销销

销

销

销销销销

销

销

销

销销销销

销

销

销

销销

销
销

销

销

销

销

销

销

销
销

销

销

销

销

销销销销

销

销

销

销

销销
销

销

销

销
销

销
销

销

销
销

销

销

销

销

销

销

销销

销销

销

销

销

销销销销

销

销

销
销

销
销

销

销

销

销

销销

销

销

销

销

销

销

销

销

销
销

销销
销

销

销

销

销

销
销

销

销

销

销
销

销

销

销

销

销
销销销

销

销

销

销

销销

销

销

销

销
销

销

销

销销

销

销

销
销

销

销

销

销

销
销销销销

销

销

销

销
销

销

销

销销销
销

销

销

销
销

销

销

销销销

销

销

销
销

销销

销

销
销

销

销

销

销

销

销

销销

销

销

销

销

销

销

销

销

销 销

销

销

销

销

销

销

销

销

销

销
销

销销销

销
销

销

销

销

销

销

销 销

销

销 销

销

销

销

销

销

销
销销

销

销

销

销

销销

销

销

销

销

销

销销

销销

销

销

销

销

销销

销销

销销

销

销

销

销

销

销

销

销

销

销销

销

销

销

销

销

销 销

销

销

销

销
销

销

销

销

销

销

销

销销

销

销

销

销

销

销

销

销

销

销

销

销

销

销

销

销
销

销

销

销

销
销

销

销

销

销
销

销销销销

销

销

销

销

销

销

销

销销

销
销

销

销

销销

销

销

销

销销

销

销

销
销销

销

销

销

销

销

销

销
销

销
销

销

销

销

销

销

销

销

销

销

销销

销

销

销

销

销

销

销

销
销

销

销

销

销销
销

销销
销

销

销

销销销
销

销
销

销
销

销

销

销

销

销

销

销

销
销

销销

销

销

销

销

销

销

销

销

销

销

销

销销

销

销

销

销销

销

销销
销

销

销销

销
销

销

销
销销

销

销

销
销

销

销

销

销
销

销
销

销

销
销

销
销

销

销

销销

销

销

销
销销销销

销

销

销
销

销

销

销

销

销
销 销

销

閕

销

销
销销销销

销

销

销

销

销

销

销

销

销

销

销销

销

销
销

销

销

销销销

销

销

销

销
销销销销

销

销

销

销
销

销

销销

销

销
销

销

销

销
销

销

销

销

销

销

销

销

销

销
销

销

销

销销销

销

销

销
销销销

销

销

销

销

销销

销
销

销

销

销

销

销

销

销

销
销

销
销

销

销销销

销

销

销

销

销

销

销

销

销

销

销

销销

销
销

销

销
销

销
销

销

销
销

销
销

销

销

销

销

销

销

销
销销销 销

销

销
销

销
销

销销
销

销

销

销

销

销

销

销

销

销

销

销

销

销
销销销

销

销销

销销

销

销

销

销
销销销

销

慶朠數灥捴敤⁰慩渠獣潲攀

慶
朠
⡯
扳
敲
癥
搠
ⴠ
數
灥
捴
敤
⤠
灡
楮
⁳
捯
牥

〱 ㈳ 㐀

ⴰ
⸲

〮
　

　⸲

销

销销

销
销

销

销

销

销

销

销销 销销销
销

销

销
销

销

Figure B.8 (a) Residuals (observed - expected) of pain relief scores versus expected pain
relief scores from Figure B.6. (b) Average residuals versus expected pain scores, with mea-
surements divided into 20 equally sized bins defined by ranges of expected pain scores. The
average prediction errors are relatively small (as can be seen from the scale of the y-axis),
but with a consistent pattern that low predictions are too low and high predictions are too
high.

As with calibration plots, it is generally a good idea to bin the points in a residual
plot if the outcomes are discrete (see Figure B.8).

B.3 Miscellaneous tips

We conclude with some suggestions derived from our experiences using graphs in
data analysis, first presenting a few ideas that have proved generally useful, then
going through a variety of specific techniques through a series of examples.

A display of several time series of opinion polls

Each subgraph of Figure B.9 shows a time series of the support in the polls for the
Republican candidate for U.S. president, as a proportion of the two-party support,
for a given election year, in the months leading up to the election.

Tip: Put many little graphs on the same page. Do it with a slick graphics package
if possible; otherwise, use scissors, tape, and a reducing copy.
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Figure B.9 Presidential trial-heat polls. The solid line in each plot is the proportion who
would vote for the Republican candidate for president, among those who report a preference
for the Democratic or Republican candidates. The 1992 and 1998 graphs include data from
all available nationwide polls; plots for the other years are from the Gallup Report. The
upward arrow marks the time of the Republican convention, and the downward arrow
marks the time of the Democratic convention. The triangle at the end of each time series
indicates what actually happened in the election.

Tip: When you have multiple graphs, use a common scale.

Tip: Put a light line to indicate what “no effect” would be. (There is a dotted
line at 50% in each graph.)

Tip: It’s worth putting in little details and doing it right. For example, each
graph also indicates, with arrows, the times of the political conventions. The Re-
publican conventions are shown with up arrows (because the Republicans improve
in the polls then), and the Democratic conventions are indicated with down arrows
(corresponding to the drop in the Republican poll numbers).
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Tip: Keep the lines on a graph thin, even if each plot has only one line. A fat
line conveys no more information and just makes the information harder to see.

By comparison, we got the data from printed reports from Gallup that had graphs
like ours for each election year, but with two thick lines on each graph displaying the
Democratic and the Republican shares of the polls. For our purposes, we didn’t care
about undecideds and third parties, so we just display the Republican proportion
of the two-party support.

Tip: Repeat axis labels as necessary to make mini-graphs easier to read. Once
you know what they say, your eye easily ignores the labels.

We originally created this graph to help us understand the history of the pre-
election polls at a glance—exploratory data analysis—and later we fixed it up for
final presentation. (In the original, exploratory, stage, we wrote in the arrows by
hand.)

Significant digits and uncertainty

When reporting the output from a statistical analysis, you should always imagine
yourself in the position of the reader of the report. It is important not to overwhelm
the reader with irrelevant material. For the simplest (but still important) example,
consider the reporting of numerical results (either alone or in tables).

Do not include too many significant digits in numbers you report. The relevant
comparison is not to an absolute number of decimal places but to the uncertainty
and variability in the numbers being presented. For example, the confidence interval
[3.276, 6.410] would be more clearly written as [3.3, 6.4]. (An exception is that it
makes sense to save lots of extra digits for intermediate steps in computations. For
example, 51.7643 − 51.7581.) A related issue is that you can often make a list or
table of numbers more clear by first subtracting out the average (or for a table, row
and column averages). The appropriate number of significant digits depends on the
uncertainty. But in practice, three digits are usually enough because if more were
necessary, we would subtract out the mean first.

Maybe the biggest source of too many significant digits is from computer output.
One solution is to set the rounding in the computer program (for example in R,
options(digits=2)).

Titles and captions

All titles and axis labels should be meaningful. In addition, each figure should be
accompanied by a caption so that it makes sense even for the reader who skips the
rest of the article.

Histograms

Histograms are for plotting values of a single variable. Whenever possible, use a
scatterplot, but sometimes it is convenient look at just one variable, especially when
arranged in a grid such as in Figure B.1 on page 552. When looking at one variable,
we prefer histograms to snazzier methods such as density estimation because we
feel more connected to the actual numerical values this way.

There’s some confusion on this point. The purpose of a histogram is to display a
set of numbers, not to approximate an underlying distribution function. It’s a good
idea to divide your histogram into more bins than “necessary” so that you can get
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Figure B.10 Histograms of the forecast proportion of the two-party vote for Bill Clinton
in 1992 in each of the 50 states and the District of Columbia, displayed with two different
choices of bin width: (a) the bin width automatically assigned by R, (b) the bin width set
manually with the R command hist(y,breaks=seq(30,90,5)).

an idea of the variability in the histogram itself. Do not use the default bin width
in R (see Figure B.10).

General advice

Plot numerical data and inferences as graphs, not as tables. A good example is the
multilevel logistic regression of vote preference on demographic and geographic pre-
dictors, with graphs on pages 306–307 that show coefficient estimates and standard
errors, along with curves of the fitted model and data. Or, for a simpler example,
Figure 15.9 on page 337 graphs the inference from a simple regression.

Multiple plots per page. A graph can almost always be made smaller than you
think and still be readable. This then leaves room for more plots on a grid, which
then allows more patterns to be seen at once and compared.

Don’t plot the index numbers. For example, Figure 14.9 on 312 plots estimates for
the 50 states versus average state income, rather than simply listing the states in
alphabetical order. For another example, the dogs in Figure 24.1 are ordered by the
time of their last shock, rather than by their ID numbers, which turn out to have
no meaning in this problem.

Never display a graph you can’t explain. Give a full caption for every graph (as
we try to do in this book). This explains to yourself and others what you are trying
to show and what you have learned from each plot. Avoid displaying graphs that
have been made simply because they are conventional. For example, regressions are
commonly equipped with quantile-quantile plots of residuals, but for most applica-
tions the information in such a plot is irrelevant, and a distraction from the more
relevant results that could be presented.

B.4 Bibliographic note

For statistical graphics in R, the book by Murrell (2005) is an excellent overview
and starting point. Fox (2002) is also helpful in that it focuses on regression models.

On the topic of statistical graphics more generally, much of the most important
and influential work has appeared in books, including Bertin (1967, 1983), Cham-
bers et al. (1983), Cleveland (1985, 1993), Tufte (1983, 1990), and Wainer (1984,
1997).

There are various systematic ways of studying statistical graphics. One useful
approach is to interpret graphs as model checking (for example, if residuals are
not independent of x, then there is some model violation), as we have discussed
in Chapter 24. Another approach is to perform experiments to find out how well
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people can gather information from various graphical displays (for example, are
line plots easier to read than histograms). This is discussed by Cleveland (1985).
More research is needed on both these approaches: relating to probability models is
important for allowing us to understand graphs and devise graphs for new problems;
and effective display is important for communicating to ourselves as well as others.

For some ideas on the connections between statistical theory, modeling, and
graphics, see Tukey (1977), Wilkinson (2005), and (for our own perspective) Gelman
(2004a).

Some of the ideas considered in this chapter are explored by Gelman, Pasarica,
and Dodhia (2002), Wand (1997), Wainer (2001), and Friendly and Kwan (2003).
Ehrenberg (1978) and Tukey (1977) discuss tabular displays in detail. An important
topic not discussed in the present book is dynamic graphics; see Buja et al. (1988)
and Buja, Cook, and Swayne (1999).

B.5 Exercises

1. Find an example of a published article in a statistics or social science journal in
which too many significant digits are used.

2. Find an example of a published article in a statistics or social science journal in
which there is not a problem with too many significant digits being used.

3. Take any data analysis exercise from this book and present the raw data in several
different ways. Discuss the advantages and disadvantages of each presentation.

4. Take any data analysis exercise from this book and present the fitted model in
several different ways. Discuss the advantages and disadvantages of each presen-
tation.





APPENDIX C

Software

C.1 Getting started with R, Bugs, and a text editor

Follow the instructions at www.stat.columbia.edu/∼gelman/arm/software/ to
download, install, and set up R and Bugs on your Windows computer. The web-
page is occasionally updated as the software improves, so we recommend checking
back occasionally. R, OpenBugs, and WinBugs have online help with more infor-
mation available at www.r-project.org, www.math.helsinki.fi/openbugs/, and
www.mrc-bsu.cam.ac.uk/bugs/.

Set up a working directory on your computer for your R work. Every time you en-
ter R, your working directory will automatically be set, and the necessary functions
will be loaded in.

Configuring your computer display for efficient data analysis

We recommend working with three nonoverlapping open windows, as pictured in
Figure C.1: an R console, the R graphics window, and a text editor (ideally a
program such as Emacs or WinEdt that allows split windows, or the script window
in the Windows version of R). When programming in Bugs, the text editor will have
two windows open: a file (for example, project.R) with R commands, and a file
(for example, project.bug) with the Bugs model. It is simplest to type commands
into the text file with R commands and then cut and paste them into the R console.
This is preferable to typing in the R console directly because copying and altering
the commands is easier in the text editor. To run Bugs, there is no need to open
a Bugs window; R will do this automatically when the function bugs() is called
(assuming you have set up your computer as just described, which includes loading
the R2WinBUGS package in R). The only reason to manually open a Bugs window is
to access the manuals and examples in its Help menu.

Software updates

Here we discuss how to set up and run the statistical packages that we use to fit
regressions and multilevel models. All this software is under development, so some
of the details of the code and computer output in the book may change along with
the programs. We recommend periodically checking the websites for R, Bugs, and
other software and updating as necessary.

C.2 Fitting classical and multilevel regressions in R

Using R for classical regression and miscellaneous statistical operations

The lm() and glm() functions fit linear and generalized linear models in R. Many
examples appear in Part 1 of this book; you can see the R documentation and other
references given at the end of this chapter for instructions and further examples.

We have prepared several functions including display(), sim(), se.coef(), and
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Figure C.1 Configuration of a computer screen with R console, R graphics window, and a
text editor (in this case, Xemacs) with two windows, one for R script and one for a Bugs
model. We call Bugs from R, so there is no need to have an open Bugs window on the
screen.

sigma.hat(), for displaying, accessing, and generating simulations summarizing
the inferences from linear and generalized linear models in R. These functions are
currently in the file regression.R (and ultimately will be part of an R package)
and are loaded in automatically if you have followed the instructions in Section
C.1. If you are in R and type the name of any of these functions, instructions will
appear on the screen.

If you are having trouble with any of these functions, we suggest going to the
website, www.stat.columbia.edu/∼gelman/arm/software/ and downloading the
latest versions of everything.

The lmer() function for multilevel modeling

Our starting point for fitting multilevel models is lmer() (“linear mixed effects,” but
it also fits nonlinear models), a function that is currently part of the Matrix package
in R and can fit a variety of multilevel models using point estimation of variance
parameters. We use lmer() for most of the examples in Part 2A of this book; as
discussed in Section 16.1, lmer() is a good way to get quick approximate estimates
before full multilevel modeling using Bugs. Various generalizations of lmer() are un-
der development that would generalize it to perform fully Bayesian simulation-based
inference; check the webpage www.stat.columbia.edu/∼gelman/arm/software/
for our links to the latest updates.
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R packages

Go to the R webpage for information on R packages. To use a package, you must
first install it (which can be done from the R console), then in any session you load
in the package as needed using the library() function. Installation needs to be
done only once, but you must load in the package with every R session. (You can
load in our most frequently used packages automatically by putting lines into the
Rprofile.site file, which is set up in the R directory on your computer if you
follow the instructions in Section C.1.)

The most important packages for our purposes are Matrix (which includes lmer()
in its current form) and R2WinBUGS (which allows us to run Bugs from R, as de-
scribed in the next section).

Other packages are helpful for specific purposes. For example, hett is a pack-
age that fits robust regression using the t model (see Section 6.6). We install
use the install.packages() function in R to download packages from the web.
Then, in any session where we want to fit t regressions, for example, we type
library("hett") (or include this line in any function call) and we are ready to
go. To get help, we can click on Help at the top of the R window, then on “Html
help,” then on Packages, then on the package name (in this case, hett), then on
the name of the function of interest (in this case, tlm). Alternatively, we can simply
type help(tlm) or ?tlm directly from the console.

Other R packages are available, and continue to be developed, to fit various
complex models. The MASS package (which is automatically loaded if you follow
the instructions in Section C.1) includes tools for fitting a variety of models. The
GAMM package fits generalized additive mixed models, an adaptation of regression
and generalized linear models that allows arbitrary nonlinear transformations of
the input variables to be fit by the data (with “mixed” referring to the possibility
of varying coefficients, that is, multilevel models); sem fits models for structural
equations and instrumental variables (as shown in Section 10.6); and MCMCpack fits
a variety of models, including multilevel linear regression for panel data.

C.3 Fitting models in Bugs and R

Calling Bugs from R

Currently, our main tool for fitting multilevel models is Bugs, which can be called
from R using the bugs() function. (Type ?bugs from the R console for more in-
formation.) As described in Part 2B of this book, we can use Bugs to fit models
of essentially arbitrary complexity, but for large datasets or models with many
parameters, Bugs becomes slow to converge.

Programming in R

The flexibility of Bugs makes it the preferred choice for now. If Bugs is too slow,
or if it does not work for a particular model (yes, this happens!), then we program
the Gibbs sampler and Metropolis algorithms directly in R. This will typically be
faster than Bugs in computation time, and also it can converge in fewer iterations,
because in programming the algorithm ourselves we have direct control and can use
updating rules that are tailored to the particular model being fit. See Gelman et al.
(2003, appendix C) for an example and Section 18.7 for an example using the Umacs
package in R. (See www.stat.columbia.edu/∼gelman/arm/software/.) If even R
is too slow, the Gibbs and Metropolis algorithms can be programmed in Fortran
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or C. Researchers are also developing compiled libraries for fast computation of
multilevel models, linkable from R.

C.4 Fitting multilevel models using R, Stata, SAS, and other software

Several other programs are available to fit multilevel models. We shall briefly con-
sider several popular packages, showing how they can be used to fit six prototype
models.

We prefer R and Bugs for their flexibility, both in model fitting and in processing
the resulting inferences, but we recognize that it is helpful to know how to fit
multilevel models in software with which you are already familiar.

In addition to differences in syntax, the different packages display output differ-
ently. For example, we prefer to present estimated variance components in terms
of standard deviations and (for varying-slope models) correlations, but some pro-
grams report variances and covariances. We shall assume that as a user of these
other packages, you will be able to interpret the output and understand its relation
to our notation in Section 2A of this book.

Six prototype models; fitting in R

We briefly present six example models along with the code needed to fit them in
R using lmer(). The models can be fit in Bugs as described in Part 2B of this
book. We follow with code in other packages. These examples do not come close
to exhausting the kinds of multilevel models that we are fitting—but we hope they
will be enough to get you started if you are using software other than R and Bugs.

1. Varying-intercept linear regression with data y, predictor x, and grouping vari-
able group: yi = αgroup[i] + βxi + εi (that is, group is an index variable taking
on integer values 1 through J , where J is the number of groups):

R code lmer (y ~ x + (1 | group))

2. Same as example 1, but with a group-level predictor u (a vector of length J):

R code u.full <- u[group]

lmer (y ~ x + u.full + (1 | group))

(We need to define u.full to make a predictor that is the same length as the
data; currently, the lmer() function in R does not take group-level predictors.)

3. Same as example 2, but with varying intercepts and varying slopes: yi = αgroup[i]+
βgroup[i]xi + εi, where the J pairs (αj , βj) follow a bivariate normal distribution

with mean vector (γα
0 + γα

1 uj , γβ
0 + γβ

1 uj) and unknown 2× 2 covariance matrix,
with all parameters estimated from the data:

R code lmer (y ~ x + u.full + x:u.full + (1 + x | group))

4. Go back to example 1, but with binary data and logistic regression: Pr(yi =1) =
logit−1(αgroup[i] + βxi):

R code lmer (y ~ x + (1 | group), family=binomial(link="logit"))

5. Go back to example 1, but with count data and overdispersed Poisson regression
with offset log(z): yi ∼ overdispersed Poisson(zi exp(αgroup[i]+βxi)). This exam-
ple includes overdispersion and an offset because both are important components
to realistic count-data models. To fit quickly in R:
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R codelog.z <- log(z)

lmer (y ~ x + (1 | group),offset=log.z,family=quasipoisson(link="log"))

6. A two-way data structure with replication: for convenience, label the index
variables for the groupings as state and occupation, so that the model is
yi = μ + αstate[i] + βoccupation[i] + γstate[i], occupation[i] + εi. We want the α’s, the
β’s, and the γ’s to be modeled (each with their own normal distribution); for
simplicity, we assume no other predictors in the model. To fit:

R codestate.occupation <- max(occupation)*(state - 1) + occupation

lmer (y ~ 1 + (1 | state) + (1 | occupation) + (1 | state.occupation))

(The first line was needed to define an index variable that sweeps over all the
states and occupations.)

Fitting in Stata

Stata (www.stata.com) is a statistical package that is particularly popular in social
science and survey research. A wide range of multilevel models can be fit in Stata
as extensions of the basic regression framework.

1. Varying-intercept linear regression:

Stata codextmixed y x || group:

or

Stata codextreg y x, i(group)

or

Stata codegllamm y x, i(group) adapt

2. Varying-intercept linear regression with a group-level predictor:

Stata has no concept of a vector of length shorter than the current dataset, so
we have to create ufull and merge it with the dataset that includes x and y.

Stata codextmixed y x ufull || group:

or

Stata codextreg y x ufull, i(group) re

or

Stata codegen cons = 1

eq grp_c: cons

gllamm y x u, i(group) nrf(1) eqs(grp_c) adapt

3. Varying-intercept, varying-slope linear regression with a group-level predictor:

Stata codextmixed y x ufull || group: x, cov(unstruct)

or
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Stata code gen cons = 1

eq grp_c: cons

eq grp_u: u

gllamm y x u, i(group) nrf(2) eqs(grp_c grp_u) adapt

4. Varying-intercept logistic regression:

Stata code xtlogit y x, i(group)

or

Stata code gllamm y x, i(group)family(binom)link(logit)

5. Varying-intercept overdispersed Poisson regression:

Stata code xtnbreg y x, exposure(z) i(group)

Alternatively,

Stata code xtnbreg y x, i(group) re offset(log.z)

or

Stata code gllamm y x, i(group)offset(log.z) family(poi)link(log)

6. Varying-intercept linear regression with nested and non-nested groupings:

Stata code egen state_occup = group(state occup)

xtmixed y || _all: R.state || _all: R.occup || _all: R.state_occup

Fitting in SAS

SAS (www.sas.com) is a statistical package that is particularly popular in biomedi-
cal research. As with Stata, many multilevel models can be fit in SAS by specifying
grouping of the data.

1. Varying-intercept linear regression:

SAS code proc mixed;

class group;

model y = x;

random intercept / subject=group;

run;

2. Varying-intercept linear regression with a group-level predictor:

SAS has no concept of a vector of length shorter than the current dataset, so we
have to create ufull and merge it with the dataset that includes x and y.

SAS code proc mixed;

class group;

model y = x ufull;

random intercept / subject=group;

run;

3. Varying-intercept, varying-slope linear regression with a group-level predictor:
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SAS codeproc mixed;

class GROUP;

model y = x ufull x*ufull;

random intercept x / subject=group type=un;

run;

4. Varying-intercept logistic regression:

SAS codeproc nlmixed;

parms b0 b1 s2;

t = b0 + b1*x + a;

p = exp(t)/(1+exp(t));

model y ~ binary(p);

random a ~ normal(0,s2) subject = group;

run;

5. Varying-intercept overdispersed Poisson regression:

SAS codeproc nlmixed;

parms b0 b1 s2;

t = b0 + b1*x + a;

p = z*exp(t);

model y ~ poisson(p);

random a ~ normal(0,s2) subject = group;

run;

or

SAS codeproc glimmix;

class group;

model y = x / solution dist = poisson offset = z;

random intercept / subject=group;

run;

However, these are not overdispersed, so this is not really the model we want to
fit.

6. Varying-intercept linear regression with nested and non-nested groupings:

SAS codeproc mixed;

class state occupation

model y = ;

random state occupation state*occupation;

run;

Fitting in SPSS

SAS (www.spss.com) is a statistical package that is particularly popular in psy-
chology and experimental social science. Some multilevel models can be fit in SAS
by specifying grouping in data.

1. Varying-intercept linear regression:

SPSS codemixed

y with x

/fixed = x

/print = solution testcov

/random intercept | subject(group)
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2. Varying-intercept linear regression with a group-level predictor:

SPSS has no concept of a vector of length shorter than the current dataset, so
we have to create ufull and merge it with the dataset that includes x and y.

SPSS code mixed

y with x ufull

/fixed = x ufull

/print = solution testcov

/random intercept | subject(group)

3. Varying-intercept, varying-slope linear regression with a group-level predictor:

SPSS code mixed

y with x ufull

/fixed = x ufull x*ufull

/print = solution testcov

/random intercept | subject(group) covtype(un)

We are not aware how to fit the other three examples (multilevel logistic regres-
sion, multilevel Poisson regression, and non-nested linear regression) in SPSS.

Fitting in AD Model Builder

AD Model Builder (otter-rsch.com/admodel.htm) is a package based on C++
that performs maximum likelihood or posterior simulation given the likelihood or
posterior density function, a flexibility that is particularly helpful for nonlinear
models.

1. Varying-intercept linear regression:

ADMB code g = -0.5*norm2(z);

alpha = gamma_a + s(1)*z;

for (i=1;i<=n;i++)

mu(i) = alpha(group(i)) + beta*x(i);

g += -n*log(s(0)) - 0.5*norm2((y-mu)/s(0));

Here, g is the log-likelihood.

2. Varying-intercept linear regression with a group-level predictor:

ADMB code g = -0.5*norm2(z);

alpha = gamma_a(0) + gamma_a(1)*u + s(1)*z;

for (i=1;i<=n;i++)

mu(i) = alpha(group(i)) + beta*x(i);

g += -n*log(s(0)) - 0.5*norm2((y-mu)/s(0));

3. Varying-intercept, varying-slope linear regression with a group-level predictor:

ADMB code g = -0.5*(norm2(z1)+norm2(z2));

alpha = gamma_a(0) + gamma_a(1)*u + s(1)*z1;

w = sqrt(1.0-square(rho));

beta = gamma_b(0) + gamma_b(1)*u + s(2)*(rho*z1 + w*z2);

for (i=1;i<=n;i++)

mu(i) = alpha(group(i)) + beta(group(i))*x(i);

g += -n*log(s(0)) - 0.5*norm2((y-mu)/s(0));

4. Varying-intercept logistic regression:
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ADMB codeg = -0.5*norm2(z);

alpha = gamma_a + s*z;

for (i=1;i<=n;i++)

eta(i) = alpha(group(i)) + beta*x(i);

g += y*eta - sum(log(1+exp(eta)));

5. Varying-intercept overdispersed Poisson regression:

ADMB codeg = -0.5*norm2(z);

alpha = gamma_a + s*z;

for (i=1;i<=n;i++)

{

lambda = offset(i)*exp(alpha(group(i)) + beta*x(i));

omega = 1.0+lambda/kappa;

g += log_negbinomial_density(y(i),lambda,omega);

}

The negative binomial distribution may be viewed as an overdispersed Poisson
distribution (with omega being the overdispersion coefficient).

6. Varying-intercept linear regression with nested and non-nested groupings:

ADMB codeg = -0.5*(norm2(z_a)+norm2(z_b)+norm2(z_g));

alpha = s(1)*z_a;

beta = s(2)*z_b;

gamma = s(3)*z_g;

for (i=1;i<=n;i++)

eta(i) = mu + alpha(state(i)) + beta(occupation(i)) +

gamma(state_occupation(i));

g += -n*log(s(0)) - 0.5*norm2((y-eta)/s(0));

Fitting in HLM, MLWin, and other software

HLM and MLWin are statistical programs specifically designed to fit multilevel
models. They can fit models such as those in the preceding examples using a menu-
based point-and-click approach.

One can also fit some or all of the models using other statistical packages,
with varying degrees of difficulty. See here for an overview of many packages:
www.mlwin.com/softrev/index.html; the descriptions there are not all up to date
but they should provide a good starting point.

It is also possible to call Bugs using other software, including Stata, SAS, Python,
Excel, and Matlab; go to the link at the Bugs homepage for “running from other
software,” currently at www.mrc-bsu.cam.ac.uk/bugs/winbugs/remote14.shtml

C.5 Bibliographic note

R (R Project, 2000) and Bugs (Spiegelhalter et al., 1994, 2002) have online help.
In addition, Fox (2002) describes how to implement regressions in R, and Murrell
(2005) shows R graphics. Becker, Chambers, and Wilks (1988) describes S, the
predecessor to R. Venables and Ripley (2002) discuss statistical methods in R (or,
essentially equivalently, S), focusing on nonparametric methods that are not covered
here; the functions and examples used in that book are in the MASS package.

The lmer() function for fitting multilevel models is described by Bates (2005a,
b), continuing on earlier work of Pinheiro and Bates (2000). Other R packages have
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been written for specific multilevel models; for example, MCMCpack (Martin and
Quinn, 2002b).

For Bugs code, the books by Congdon (2001, 2003) present a series of examples.
Kerman (2006) presents Umacs, and appendix C of Gelman et al. (2003) has ex-
amples of direct coding of Bayesian inference in R. The implementation of Bugs
using R, as done in this book, is described by Sturtz, Ligges, and Gelman (2004).
An open-source version of Bugs called OpenBugs (Thomas and O’Hara, 2005) is
also under development.

Several software packages for multilevel models are reviewed by Centre for Mul-
tilevel Modelling (2005), including Stata, SAS, MLWin, and HLM. Rabe-Hesketh
and Everitt (2003) is a good introduction to Stata, and Rabe-Hesketh and Skron-
dal (2005) describe how to fit multilevel models in Stata. The methods used by AD
Model Builder are described by Fournier (2001) and Skaug and Fournier (2006).

Finally, various open-source software has been written and is under development
for Bayesian inference and multilevel modeling; see, for example, Graves (2003),
Plummer (2003), and Warnes (2003).
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compared to Poisson, 112

binomial-normal model, 321
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bounding trick for binomial model in
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brlr package, 104
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Bugs, 11, 305, 345–386, 567, 573

bounding parameters, 383
bounding trick for binomial model,
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brute force, why we do not

recommend, 369
calling from R, 350–352
censored data, 405–406
classical regression, 360
compared to lmer(), 386
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current problems with, 417
data, 350, 356, 416
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examples, 353
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help, 353, 373, 565
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individual-level model, 353
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multiple group-level predictors,
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multiple varying coefficients, 378
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no overwriting in model, 368
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sd(), 460
simple multilevel model, 350
slow with large datasets, 418
stochastic learning model

logarithmic link, 521
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multilevel, 522–524

thinning, 418
too slow for looping in power

calculation, 451
unequal variances, 371–372
unmodeled data and parameters, 366,

367, 378
varying-intercept model, 350, 361
varying-intercept, varying-slope

model, 375–379
group-level predictors, 379–380
modeling the correlation, 376
no correlation, 375
scaled inverse-Wishart, 376

why you should learn Bugs, 345
Wishart model, 376–380

bugs(), 350, 565, 567
building generalized linear models,

125–127
building regression models, 68–73

c(), 350
calibration

Bayesian inference, 433
plot, 309, 558

calling Bugs from R, 350–352
Caltech, 332
cancer and nutrients, 294
categorical variables as regression inputs,
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causal inference, 95, 167–198, 549

average causal effect, 173, 180, 205
balance, 181, 184–186, 199–204, 208,
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plot, 202, 229

causes of an effect, 187
confounding covariate, 169, 176, 181,

184, 196, 200, 202–203, 207,
212–213, 215

constructed observational study, 210,
230, 231

continuous treatment, 177
controlling for post-treatment

variable, don’t do it, 177,
187–194, 227, 229

counterfactual, 170, 173, 184, 185,
188, 201, 206, 218

definition, 170

difference-in-differences, 228, 231

direct and indirect effects, 191–194
effect of causes, 187

effect of the treatment on the controls
and treated, 205, 206, 211

exclusion restriction, 216–218

experiment, see randomized
experiment

external validity, 174
fixed effects, 231

fundamental problem, 171–172, 191

hypothetical intervention, 187
ignorability, 182–184, 186, 207, 212,

216–217, 225, 228, 231, 232
infinite regress of causation, 187

instrumental variables, 215–226,
230–231, 233

assumptions, 216–218, 220–221,
225–226, 233

derivation, 218–221

identifiability, 220–221, 224
multilevel model, 509–511

standard error, 222

two-stage least squares, 221
Wald estimate, 219, 221
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intent-to-treat (ITT) effect, 216, 219,
220, 222

internal validity, 174
local average treatment effect

(LATE), 219–220, 229, 233
mapping your study to an ideal
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matching, 206–212

model checking, 208

nearest-neighbor, 207
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R packages for, 230

model extrapolation, 169, 185, 201,
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monotonicity, 216–217
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multiple treatments, 177, 186, 187
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observational study, 172, 181–188

design of, 437
overlap, 184–186, 199–204, 209,
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poststratification, 178, 181, 206
potential outcome, 168, 170, 171, 183,

186, 189, 191, 219
close substitutes, 171–172

predictive comparison, 167, 168
principal stratification, 192
propensity score matching, 207–210,

230, 232
assumptions, 207
model checking, 208
R packages for, 230
standard errors, 212

propensity score weighting, 211, 229
randomized encouragement, 216
randomized experiment, 171–181, 183

completely randomized, 175, 182,
183

design of, 437
paired comparisons, 175
randomized blocks, 175

regression, 167–198
regression discontinuity, 212–215, 232
selection bias, 168
selection model, 231
selection on observables, 183
sensitivity analysis, 231
simultaneous causality, a meaningless

concept?, 188
structural equation model, 226
subclassification, 204–207, 210–211,

229
support of the data, 169
SUTVA, stable unit treatment value

assumption, 178
treatment interaction, 178–180, 189,

205, 214–215
treatment variable, definition, 186
weighting, 205

cbind(), 43, 146, 157, 361, 529
CD4, 249, 277, 373
censored data, 402–408

Bayesian inference, 405–408
Bugs, 405–406
Gibbs sampler, 406–408
imputation for, 540–541
likelihood, 404

maximum likelihood, 404–405
naive regression estimates, 403–404
picture, 541
R, 404–408

Census, 277, 301, 308
centering, 55–57, 419, 464–466

changes the correlation of group-level
intercepts and slopes, 288–289

interactions and, 93
non-nested model, 292

Central Limit Theorem, 13–14, 27
regression coefficients, 14

chick brains, magnetic fields and, 481–484
child care, 189–193, 201, 224
child support enforcement in cities,

237–241
children with HIV, 249, 443–447
children’s test scores, 31–51, 55–57
classical models for regression coefficients,

293
classical regression, as a special case of

multilevel modeling, 258
cluster sampling, 437, 447–449
clustered data, 237–241
cockroaches, 126–127, 161–163
coef(), 43, 156, 260, 267, 280, 352
coin flipping, patterns in, 554
collinearity, 68, 255, 393, see also

identifiability
colMeans(), 520
colochos, canasta de, vii, xxii
colors(), 43
colSums(), 411
combining inferences from multiple

imputations, 542
combining separate local regressions, 263
comparing two surveys, 442
comparisons, graphs as, 552–553
compiling Bugs, 416
complete pooling, 247, 252–259, 270, 348

Bugs model, 360
problems, 256
special case of multilevel modeling,

258
complete-case analysis, 531
compound models

imputing a variable that can be
positive or zero, 537–538

simulation of, 150–151, 537–538
computer display, 565, 566
computing, 9–11, 547, 565–574

debugging, 415–417
instead of matrix algebra, 8
multilevel models, 345–434
practical advice, 415–434

confidence intervals, 18–20
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continuous data, 18

discrete data, 18

proportions, 18

confidence-building, 415–417

confounding covariate, 169, 176, 181, 184,
196, 200, 202–203, 207, 212–213,
215

congressional elections, 76, 144–148, 197,
213, 233

conjunctive item-response or ideal-point
model, 319

connect times on the web, 492–493

Connecticut, what’s the matter with,
310–314

constant term, 251, 349

constraining a batch of coefficients to sum
to zero, 326

constructed observational study, 210

constructive choice models, 127–131

contextual effect, 481

continuous and discrete predictors, 66

continuous probability simulation, 152

contrasts, 462–466

analysis of variance, 496–498

computing in R, 464

convergence of iterative simulations

monitoring, 352

pictures, 357

correlation, 57–59, 265, 389

coefficient estimates, 40

graph, 340

group-level intercepts and slopes, 279,
287–289

individual-level variables and
group-level errors, 481

modeling in Bugs, 376–380

scaled inverse-Wishart model, 287

cost-benefit analysis, 128, 153, 454–455

costs and benefits of multilevel modeling,
246–247

count data and binary data, 117

counterfactual, 170, 173, 184, 185, 188,
201, 206, see also potential
outcome

counterfactual and predictive
interpretations of regression, 34

covariance, see correlation

coverage of confidence intervals, 156

cows, 196

Cp, 527

curve(), 43, 353

cutpoints, for ordered logit or probit,
119–120, 332

estimating in Bugs, 383

data cleaning, for social networks survey,
333

data for examples, 11
data matrix, 37, 238, 239

group-level, 239, 240, 243
imputation, 541
individual-level, 239, 243
non-nested data, 243

data model, 347
data reduction, 209
data sent to Bugs, 350, 356, 416
data subsetting, 326, 357, 547

speeding computation, 418
data.frame(), 48, 140, 452, 535
dbin(), 381
dcat(), 383
death penalty, 19, 116, 243–244, 320–321,

540–541
debugging, 415–417, 434

diagram of general strategy, 416
decision analysis, well-switching example,

127–131
default line in graph, 556, 560
defaults in R functions, 452
degree distribution, estimated for men and

women, 337
degrees of freedom, 41, 372, 488

inverse-Wishart distribution, 286
Democrats and Republicans, 310–314
dependent variable, see outcome
derived quantities, 366, 367
design of sampling and experiments,

437–455
details in graphs, 560
deterministic or random imputation, 534,

537
deterministic part of a regression model, 31
deviance, 100, 105, 113, 524–526
deviance information criterion (DIC), 105,

525–527
instability in computation of, 526

dgamma(), 430
diagnostics

external validation, 48
residuals, 40, 47, 97–101
simulation-based, 155–166, 513–524

diarrhea, zinc, and HIV, 443–447
difference-in-differences estimation, 228,

231
difficulty parameter, in item-response

model, 315–320
dim(), 147
dimnames(), 400
discrepancy variable, 513
discrete and continuous predictors, 66, 107
discrete probability simulation, 152
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discrimination parameter, in item-response
model, 316

disjunctive item, 319
display(), 38–39, 565
distance to the nearest safe well, 88
distribution, 13–16

binomial, 16
bounding trick in Bugs, 382

Cauchy, 428, 430
folded noncentral t, 428
gamma, 335
log=TRUE option in R, 405
logistic, 85

Bugs, 384
lognormal, 15, 383
multivariate normal, 15
negative binomial, 115, 336
normal, 13–15, 263

computing in R, 405
truncated, 407

Poisson, 16, 110–116, 335
scaled inverse-Wishart, 284–287,

376–380
t, 124, 372, 428
truncated normal, 407
Wishart, 284–287, 298, 376–380

divide by 4 rule, for interpreting logistic
regression, 82

dividing by two standard deviations, 56–57
dlnorm(), 383
dlogis(), 384
dmnorm(), 376
dnorm(), 353, 354, 404
dog experiment, 515–524

model comparison, 526
observed and replicated data, 516, 523

Douglas, William, 318
dt(), 372, 384
dummy variable, see indicator
dunif(), 355
dwish(), 377
dynamic graphics, 563

earnings
height and, 50, 53–54, 75, 126, 287,

290–292
logarithmic models, 59–65

mixed discrete/continuous data, 126
econometrics and biostatistics, 231
education as categorical input variable, 95
educational children’s television programs,

see Electric Company and
Sesame Street

educational testing, 317, 430–434
effect size, why more important than

sample size, 439

effective sample size, 352
elasticity, 64, 76
election forecasting, graphs of, 557, 562
election fraud, 23–26
Electric Company experiment, 174–186

graph of data, 552
multilevel model, 503–505

Emacs, 565
equal variance of errors, 46
equals(), 384, 405
Erdos-Renyi model, 334
error rate, 99
errors, distinguished from residuals, 387
exam scores, actual vs. guessed, 558, 559
examples, data for, 11
exchangeability and prior distribution, 347
exclusion restriction, see causal inference,

instrumental variables,
assumptions

expected(), 123
experiment, see causal inference,

randomized experiment
experimental design, 437–455
experimental economics, 331
explained variance, see R2

exploratory data analysis, 551
exposure, in Poisson model, 111–113
expression(), 148, 353
external validation, 48

election polls, 309
external validity, 174

F-test, 489
factor, 68
factor analysis, 296
factor(), 255, 349
fake-data simulation, 50, 155–158

Bayesian inference and, 434
checking coverage of intervals, 365
multilevel model, 363–365
residual plots, 157–158
sample size and power calculations,

449–454
using Bugs, 363–365

feeling thermometer, 86
figure skaters, 248
finite-population variance, 459–462, 499

analysis of variance (ANOVA), 491
Bugs, 460
graph, 461
unmodeled coefficients, 462

fit many models, 547
fitted(), 158
fitting multilevel models, 259–262, 345–434
fitting the wrong model, 165
fixed effects, 231, 244–246, 259, 261
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finite-population inferences and, 461
many definitions, 245, 248
R, 260
why we avoid the term, 2, 226–228,

245
fixef(), 260, 280
flight-simulator experiment, 289–290, 297,

464–466
analysis of variance, 488
Bugs model, 380
superpopulation and finite-population

variance, 459–460
folded noncentral t distribution, 428
forecasting elections, 294–296
Fragile Families study, 238
function(), 350, 401
functions in R, 139, 147, 151, 404, 534, 535
fundamental problem of causal inference,

171–172, 191

gain scores, 177, 195
Gallup Report, 560
GAMM package, 567
gamma distribution, 335
generalized additive model, 298, 567
generalized estimating equations, 248
generalized linear model, 109–133

analysis of variance (ANOVA), 491,
493–494

binomial, 116–117
building, 125–127
cutpoints, 119–120
deviance, 100, 105, 113
latent-data formulation, 384
logistic, 79–108
logistic-binomial, 109, 116–117
multilevel, 325–342
multinomial logit and probit, 110,

119–124
negative binomial, 115
ordered logit, 119–124

Bugs, 383
multilevel, 331–332

others, 127
Poisson, 109–116

Bugs, 382
compared to binomial, 112
exposure, 111–113
overdispersion, 382

prediction, 272
predictive comparisons, 466–473
probit, 109, 118–119
probit or logit, 118
robit as robust alternative to logit

and probit, 124–125
robust, 110

simulation, 148–151
thresholds, 119–120

Gibbs sampler, 385, 397–402
censored data, 406–408
linear transformation to speed

convergence, 419–427
model building and, 402
multilevel model, 398–402
picture, 398
programming in R, 399–402, 412
redundant parameters, 419–427
slow convergence, 424
social networks model, 410
updating functions in R, 399–402

glm(), 79, 110, 565
global variables in R, 400, 412
goodness-of-fit, see model checking
grades, predicting, 157
graphics, 42–45, 548, 551–563

comparisons, 552–553
general advice, 562
instead of tables, 328, 337
jittering, 32
no single graph does it all, 552–553
plotting regression coefficients, 337,

341
plotting symbols, 555
R, 562
scatterplot with regression lines

superimposed, 35, 42–45
shape of the plotting region, 556
showing fitted models, 551, 553
symbols and auxiliary lines, 554
theory of, 562
why, 551

group, 261
group indicators, 264
group- and individual-level data matrices,

239, 243
imputation, 541

group-level predictors, 265–269, 271
along with group indicators, 269, 293,

463–464, 498
Bugs model, 361
varying-intercept, varying-slope

models, 280
group-level standard deviation, 270
guessing ages, 299
guessing, in item-response model, 319

handedness, 66
hard constraint, 257
hazard regression, 298
height, 139

earnings and, 50, 53–54, 75, 126, 287,
290–292
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logarithmic models, 59–65
mixture model for, 14
parents and children, 58
weight and, 41, 74, 402–408

help in Bugs, 565
help in R, 405, 565, 567
heteroscedasticity (unequal variances), 297
hett package for robust regression, 110,

124, 133, 567
hist(), 137, 536, 562
histograms, 561
HLM, multilevel modeling in, 573
holding other predictors constant,

difficulty of, 34
homeless people, 333
hot-deck imputation, 538
how many groups, 275–276
how many observations per group, 275–276
how many x’s survey, 332–342
hyperparameter, 1, 258
hypothesis testing, 20–26

I(), 215, 383, 384, 405, 538
ideal-point model, 314–321

multilevel, 316
picture, 315
redundant parameters in Bugs, 426
two-dimensional, 319

identifiability, 419, 420
Bayesian regression and, 393
categorized predictors and, 68
causal inference, 170
constant term in non-nested models,

381
ideal-point model, 318
instrumental variables, 220–221, 224
item-response model, 315
likelihood and, 392
linear regression, 68
logistic regression, 86, 104, 107
social networks model, 336

ifelse(), 126, 150, 384, 403, 534
ignorability, 182–184, 186, 231, 530, 542,

see also causal inference
imbalance, see causal inference, balance
imputation, see missing data
impute(), 535
income and voting, 79–84, 105, 107,

310–314
incremental cost-effectiveness ratio, 153
incumbency, 197, 233
independence of errors, 46
independent variable, see input variable
index number, don’t graph by, 553
index variable, 67, 238, 252

creating in R, 348

non-nested models, 289
indicator variable, 67, 238, 244–246, 255

default, reference, or baseline
condition, 68

individual- and group-level data matrices,
239, 243

imputation, 541
Infant Health and Development Program,

see child care
inference, see statistical inference
informative prior distribution, 392–393
initial values sent to Bugs, 350, 356,

369–370, 416
restricted parameter space, 384

inprod(), 361, 378, 379
input variables, as distinguished from

predictors, 37, 466
install.packages(), 567
instrumental variables, see causal inference
interactions, 34–36, 242, 453

centering the input variables, 93
graphing, 36, 94, 313
logistic regression, 92–96
predictive comparisons and, 469
sample size and, 438
treatment effects, 178–180, 189, 205
varying slopes as example of, 282–283
when to look for, 36

intercept, 33, 35, see varying intercepts
and slopes

intermediate outcome, see causal
inference, controlling for
post-treatment variable

internal validity, 174
interpreting regression coefficients, see

linear regression, logistic
regression, generalized linear
model, and multilevel model

interquartile range (IQR), 70
intraclass correlation (ICC), 258, 448
inverse variance, used in dnorm() in Bugs,

354–355
inverse(), 377
inverse-gamma distribution, why we do

not use as prior distribution for
variance parameters, 430–434

inverse-logit function, 80
invlogit(), 149
item-response model, 314–321

guessing, 319
multilevel, 316
picture, 315, 317
redundant parameters in Bugs, 426
two-dimensional, 319

iterative regression imputation, 539
iterative simulation, 408–409
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Jacobian for nonlinear transformations,
409, 430

Jaycees, 334, 335, 340
jitter.binary(), 89
jittering, 32, 554

knowing when to give up, 419

Lac Qui Parle County, 253
large regression with correlated errors, 265
latent-data formulation for logistic

regression, 85–86, 120
latin square, 292, 297, 497–501
Latinos, hypothetical survey of, 454
least squares, 39, 387–390

augmented data and multilevel
model, 396–397

weighted, 389
legislative redistricting, 555
length(), 157
level, 68
lgamma(), 411
library(), 567
likelihood, 347, 387–414

censored data, 404
generalized linear model, 389–390
inferential uncertainty and

simulation, 392
logistic regression, 389
picture, 390, 391, 395, 396
Poisson regression, 390
social networks model, 409–413
surface, 390–392

linear predictor, 79, 305
linear regression, 31–77, 387–390

assumptions, 45–47
Bayesian inference, 346
binary predictor, 31
Bugs model, 360
compared to principal component

line, 57–58
continuous predictor, 32
correlation and, 57–59
counterfactual interpretation, 34
diagnostics, 45–47
displaying several, 73–74
fitting in R, 38–39
general principles for building models,

69
inferential uncertainty, 40
interactions, 34–36
interpreting coefficients, 33–34

interactions, 35–36
least squares, 39
matrix notation, 388
missing-data imputation, 533–538

multiple predictors, 32–34
notation, 37–38
one predictor, 31–32
picture of matrix, 37
prediction, 47–49, 70–73, 272
predictive interpretation, 34
sample size and power calculations,

446, 451
simulation, 140–148
standard error, 40
statistical inference, 37–42
transformation, 53–77
validation, 47–49

linear transformation, 14, 53–54, 88, 95,
122, 294

centering a batch of multilevel
coefficients, 464–466

prior distribution and, 355
speeding convergence of Gibbs

sampler, 419–427
linearity, 46
link function, 109
list(), 143, 350
lm(), 38–39, 402, 565
lmer(), 259–262, 266, 267, 277, 566, 573

compared to Bugs, 386
limitations, 262, 304, 345
logistic regression, 302
non-nested model, 289
six quick examples, 568–569
varying intercepts and slopes, 279–289

local average treatment effect (LATE),
219–220, 229, 233

log(), 59
log-log model, 64
log10(), 61
logarithmic transformation, 59–65, 98, 252

even when not necessary, 65
interpreting regression coefficients, 60
interpreting variance parameters, 327
picture, 60
why we usually don’t use base 10,

60–61
logistic distribution, 85

Bugs, 384
close to normal with standard

deviation 1.6, 86, 118, 131
logistic regression, 79–108

binned residual plot, 105
Bugs, 381–382

latent-data formulation, 384
choice models in one and multiple

dimensions, 128–131
compared to probit, 118, 129
computing using lmer(), 302
deviance, 100, 105
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divide by 4 rule for interpreting
coefficients, 82

graph of coefficient estimates, 306
graphs of data and fitted curves, 307
ideal-point model, 314–320
identifiability, 86, 104, 107
inference, 83
interactions, 92–96
interpreting coefficients, 81–84, 89
item-response (Rasch) model,

314–320
latent-data formulation, 85–86, 384
logit and logit−1 functions, 80
missing-data imputation, 533–538
multilevel, 301–323

Bugs, 381–382
formula, 302, 303
graphing, 304–310
interpreting coefficients, 304
non-nested, 302–304, 320–321
overdispersion, 320–321

odds ratios, 82–83
pictures, 80
plotting data and fitted curve, 80, 84
predicntive comparisons, 81
prediction, 272
predictive comparisons, 101–104,

466–473
propensity score, 207–208
separation, 104, 107
simulation, 148
standard error, 83
two predictors, 90–92
varying-intercept, varying-slope

model, 310–314
wells in Bangladesh, 86–92

logistic-binomial model, 109, 116–117
overdispersion, 116

logit, see logistic regression
logit(), 381
lognormal distribution, 15, 383
looping indexes in Bugs, 353, 366, 367
looping, for power calculation, 452
lowess, 298
lurking variable, 169

magnetic fields and brain functioning,
481–484

Mahalanobis distance, 207
many predictors, multilevel models for,

293–296
maps, 556–557
Markov chain Monte Carlo (MCMC),

408–409
MASS package, 122, 567, 573
matching, 206–212

missing-data imputation, 538
propensity score, 207–210, 232
R packages for, 230

matching(), 208
maternal IQ, 32
matrix notation, 37–38, 284–287
matrix of predictors

group-level, 252
individual-level, 251

matrix of simulations, 146, 149, 353, 358
Matrix package, 259, 566
max(), 381
maximum likelihood, 388–390

censored data, 404–405
generalized linear model, 389–390
logistic regression, 389

MCMCpack, 567
mean(), 56, 359, 382, 477
mediator, see causal inference, controlling

for post-treatment variable
men and women, 337
mesquite bushes, 68–73
meta-analysis, 386, 438
Metropolis algorithm, 385, 408–409

picture, 408
social networks model, 410

midterm and final exams, 157
millet crop, 292
millimeters, inches, and miles, 53
min(), 381
missing at random (MAR), 530, 542

impossibility of verifying, 531
missing completely at random (MCAR),

530
missing data in R and Bugs, 529
missing not at random (MNAR), 530
missing values, not allowed in unmodeled

data, 416, 529
missing-data imputation, 333, 529–543

available-case analysis, 532
Bugs, 367
complete-case analysis, 531
congressional elections, 145
deterministic or random, 534, 537
iterative, 539
many variables, 539–540
matching, 538
model-based, 540–541
models, 530–531
multilevel data structures, 541
one variable, 533–538
simple methods, 531–533
topcoding, 534

Mississippi, as poor state, 313
mixed discrete/continuous data, 126, 537
mixed effects, see random effects
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MLWin, multilevel modeling in, 573
mnp package, 110
model checking, see posterior predictive

checks and residuals
using simulation, 158–165, 513–524

model comparison, 524–526
model extrapolation, 169, 185, 201, 209,

213
model-based imputation, 540–541
modeled data and parameters, 367
modeling the coefficients of a large

regression model, 264
monotonicity, see causal inference,

instrumental variables,
assumptions

month of arrest, 21, 331
more than two varying coefficients, 285
mothers and children, 31–51, 55–57
motivations for multilevel modeling, 6–8,

246–247
mtext(), 520
multilevel model, 1, 237–342, 463

alternative to selecting regression
predictors, 294

analysis of variance (ANOVA),
490–502

assumptions, 247
Bayesian inference, 393
Bayesian perspective, 346
building, 293–296

Gibbs sampler, 402
building from classical regression, 270
causal inference, 503–512
combining regression inputs, 293–296
compared to classical regression, 463
comparison to simpler methods, 310
complexity, 246
computing, 345–434
equivalent sample size, 258, 268
factor analysis and, 296
fake-data simulation, 363–365
fitting in Bugs, 345–386
fitting in R, Stata, SAS, and other

software, 568
fitting using lmer(), 259–262
five ways to write, 262–265
generalized linear model, 325–342
Gibbs sampler, 398–402

programming in R, 399–402
graphing, 304–310
group-level predictors, 265–269, 568
group-level variance, superpopulation

and finite-population, 459–462
how many groups needed, 275–276
how many observations per group

needed, 275–276

imputation at different levels, 541
inference for groups with no data, 306
instead of comparing significance

levels, 482
instrumental variables, 509–511
interpreting coefficients, 268
least squares with augmented data,

396–397
logistic regression, 301–323, 568

Bugs, 425
computing using lmer(), 302
non-nested, 302–304, 320–321
overdispersion, 320–321

matrix notation, 284
negative binomial, 332–342
non-nested, 289–293, 569

Bugs, 380–382, 424
identifiability of constant term, 381
negative binomial, 332–342
redundant parameters, 421–423

notation, 251–252
ordered logistic regression, 331–332
plot of group-level estimates and

fitted regression line, 266, 307
Poisson (overdispersed), 332–342,

382, 568
pooling, 252–259
prediction, 272–275, 361–363
predictive comparisons, 470
prior distribution for variance

parameters, 427–434, 499–501
R2, 473–477
redundant parameters, 420
sample size and power calculations,

447–454
six quick examples, 568–569
small number of groups, 431–432, 461
statistical significance, 271
summarizing and displaying, 261
understanding and summarizing,

457–486
variance parameters, 480–481
varying intercepts and slopes,

279–289, 568
varying slopes without varying

intercepts, 283–284
varying the number of groups, 330

multilevel modeling
costs and benefits, 9, 246–247
motivations, 6–8, 246
when most effective, 270

multilevel structures, 237–249
data matrix, 238–240, 243
imputation, 541

multinomial logit and probit models, 110,
119–124
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storable votes, 120–124
multiple chains, necessary to monitor

mixing, 356–358
multiple comparisons, why we do not

worry about, 22, 484–485
multiple imputation, combining inferences,

542
multiplicative model, 59
multivariate imputation, 539–540
multivariate normal distribution, 15
mvrnorm(), 143

n.chains, number of chains when running
Bugs, 356–358, 369

n.eff, effective sample size of Bugs fit, 352,
358

n.iter, number of iterations when running
Bugs, 356–358, 369

n.sims, 143
n.thin option in Bugs, 518
NA, missing value in R and Bugs, 50, 362,

529
naming inputs, 62
National Election Study, 73, 311, 342, 385
National Longitudinal Survey of Youth,

210
National Supported Work, 231
natural log, 60–61
ncol(), 361, 519
negative binomial distribution, 115, 336

multilevel model, 332–342
neighborhoods and crime, 325, 342
nested subscripts in Bugs, 372
networks, 297, 333
New York City schools, 458–459
Newcomb’s speed of light data, 159
Nicoles, 333, 335, 340
nmatch package, 230
no data, multilevel inference for groups

with, 306
no pooling, 247, 252–259, 270, 349

Bugs model, 360
overestimates between-group

variation, 253
picture, 253
problems, 256
special case of multilevel modeling,

258
non-nested models, 241–244, 248–249,

289–293
Bugs, 380–381
varying intercepts and slopes, 291
where to put the intercept or

constant term, 381
nonidentifiability, see identifiability
noninformative prior distribution, 347, 355

Bugs, 354, 355
nonlinear prediction, 147
nonparametric regression, 297
normal distribution, 13–15, 263

computing in R, 405
estimated regression coefficients, 15,

40, 83
inverse-variance parameterization in

Bugs, 354–355
regression errors, 46
truncated, 407

notation, 263
capital letters for matrices, lowercase

for vectors and scalars, 167, 252,
376, 383

cluster sampling, 447
linear regression, 37–38
multilevel model, 251–252
parameters and probability

distributions, 13
varying intercepts and slopes, 284

nrow(), 519
number of iterations when running Bugs,

356–358, 369
number of observations and groups

needed, 275–276, 278
number of sequences when running Bugs,

356–358, 369
numerical optimization in R, 405
nutrients and cancer, 294
NYPD stops, see police stops

O’Connor, Sandra Day, 318
observational study, see causal inference
odds ratios and logistic regression, 82–83
offset, in Poisson regression, 112, 326, 382
Ohio, as intermediate state, 313
Olympics, 248, 485
omitted variable, 169
omniscience, 195
one-way analysis of variance, 494
open-ended modeling in Bugs, 370–372
OpenBugs, 11, 565, 574, see also Bugs
optim(), 405, 413
optimal design, 455
options(), 561
order(), 519
ordered and unordered categorical

outcomes, 119, 123
ordered logistic model, 119–124

fitting in Bugs, 383
multilevel, 331–332
storable votes, 120–124

outcome, 37, 251
outer(), 411
overdispersion, 21, 114–116, 320
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adjusting standard errors, 115, 117
groups in the social network, 338
multilevel Poisson model, 335–336,

382, 409–413
simulation, 150
variance components and, 325

overlap, see causal inference

pain scores, observed vs. expected, 558
panel-corrected standard errors, 248
par(), 305
parameter expansion, see redundant

parameters
parameters saved from Bugs, 350, 356
partial pooling, 252–259, 394, 477–480

Bayesian, 394
formula, 253, 258, 269, 477
graph, 479
group-level predictors and, 269
picture, 253
plotting data and fitted lines, 257, 266
set of regression predictors, 295
summarizing a fitted multilevel

model, 477–480
partisan bias, 555
paste(), 353
pch, 43
pD, effective number of parameters in a

Bayesian inference, 525
phase diagram for decision analysis, 130
plot(), 43, 350
plots of replicated datasets, 160, 163
pmin(), 478
pnorm(), 404
points(), 43
Poisson model, 16, 109–116, 335

checking using simulation, 161–163
compared to binomial, 112
exposure, 111–113
interpreting coefficients, 111
multilevel, 325–331
offset, 326
overdispersion, 114–116
police stops, 112–116
zero-inflated, 126–127

police stops, 5–6, 21, 112–116, 325–331,
342

Bugs model, 382
graph, 328

political ideology, 73
political party identification, 73–74
pollution, 76
polr(), 110, 122
pooling, see complete pooling, no pooling,

partial pooling
pooling factor, 478–480

posterior distribution
picture, 395, 396
programming in R, 411
social networks model, 409

posterior predictive checks, 158–165,
513–515

data display for dog example, 516,
523

numerical summary, 521
time plot, 519, 520, 522
using Bugs, 518
using R, 518

posterior uncertainty, 149
postprocessing Bugs output, 359
poststratification, 178, 181, 206, 301–310

formula, 301, 308
R code, 308

potential outcome, 168, 171, 183, 186, 189,
191, 219

close substitutes, 171–172
interpreting regression coefficients, 34

pow(), 355
power calculation, 437–455

2.8 standard errors, 441
classical, 439–447
general concerns, 439
inference for continuous outcomes,

443–447
inference for linear regression, 451
inference for proportions, 439–443
inference for regression coefficients,

446–447
inherently speculative, 445, 447
multilevel models, 447–454
pictures, 440, 441
unequal sample sizes, 443

pre-election polls, 560
precinct, 325
predict(), 48, 115, 208, 535
prediction, 47–49, 68–73

Bugs, 361–363
interpreting regression coefficients, 34
model checking and, 513–515
multilevel model, 272–275, 361–363
new observations and new groups,

272–275, 361–363
nonlinear, 274

predictive checks, see posterior predictive
checks

predictive comparison, 81, 101–104, 167,
168, 466–473, 485

comparing models, 472–473
formula, 466
general approach, 468
general notation, 103
graph, 467, 468
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interactions and, 103
model summary, 471

predictive simulation, 140, 147–151
binomial distribution, 149
generalized linear models, 148–151
latent logistic distribution, 149
linear regression, 140–148, 152
model checking and, 158–165,

513–524
predictive standard deviation, 274
predictive uncertainty, simulation of, 140
predictors, as distinguished from input

variables, 37, 466
presidential elections, 3–4, 79–84, 294,

301–314, 493, 557, 560
principal component line, 57
principles of modeling in Bugs, 366–369
print(), 350
prior distribution, 143, 345–348, 413,

427–434
Bugs, 354
effect on posterior distribution,

picture, 430, 432
informative, 392–393

scale, 430
inverse-gamma, why we do not use,

430–434
noninformative, 347, 354, 355
picture, 395, 396
provisional nature of, 347
scale, 355
uniform, 428–429
variance parameters, 432–434,

499–501
weakly informative, 431–432
Wishart model, 377

prison sentences, example for predictive
comparisons, 470

probability, see distribution
probability models, simulation of, 137–140
probability of a tied election, 148
probit model, 109, 118–119

compared to logit, 118, 129
programming in R, 567
Progresa, 508–509
propagating uncertainty, 142, 152
propensity score matching, see causal

inference
provisional nature of prior distributions,

347
psychological experiment of pilots on flight

simulators, 289–290

quantile(), 141, 359
quasibinomial family, 117
quasipoisson family, 115

quick tips, 547–549

R, 10–11, 298, 565, 573
abline(), 353, 520
apply(), 44, 353, 477
array(), 308
as.bugs(), 413
as.bugs.array(), 400
as.vector(), 348
attach.bugs(), 305, 352, 358
Bayesian inference for social networks

model, 409–413
brlr package, 104
bugs(), 350, 567
c(), 350
calling Bugs from, 350–352
cbind(), 43, 146, 157, 361, 529
censored data, 404–408
coef(), 43, 156, 260, 267, 280, 352
colMeans(), 520
colors(), 43
colSums(), 411
console, 565
curve(), 43, 353
data.frame(), 48, 140, 452, 535
default values in functions, 452
digits, 561
dim(), 147
dimnames(), 400
display(), 38–39, 565
dnorm(), 404
expected(), 123
expression(), 148, 353
factor(), 255, 349
fitted(), 158
fixef(), 260, 280
function(), 350, 401
GAMM package, 567
Gibbs sampler, 399–402

censored data, 406–408
glm(), 79, 110, 565
global variables, 400, 412
graphics, 562
graphics window, 565
graphing models fit in Bugs, 352
help, 405, 565, 567
hett package for robust regression,

110, 124, 133, 567
hist(), 137, 536, 562
I(), 215, 538
ifelse(), 126, 150, 384, 403, 534
impute(), 535
install.packages(), 567
invlogit(), 149
jitter.binary(), 89
length(), 157
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lgamma(), 411
library(), 411, 567
list(), 143, 350
lm(), 38–39, 402, 565
lmer(), 259–262, 266, 267, 277, 566,

573
limitations, 262, 304, 345
logistic regression, 302
non-nested model, 289
six quick examples, 568–569
varying intercepts and slopes,

279–289
log(), 59
log10(), 61
log=TRUE option, 405
MASS package, 122, 567, 573
matching(), 208
Matrix package, 259, 566
MCMCpack package, 567
mean(), 56, 359, 477
mnp package, 110
mtext(), 520
mvrnorm(), 143
NA, 50
ncol(), 361, 519
nmatch package, 230
nrow(), 519
optim(), 405, 413
options(), 561
order(), 519
outer(), 411
par(), 305
paste(), 353
pch, 43
plot(), 43, 350
pmin(), 478
pnorm(), 404
points(), 43
polr(), 110, 122
predict(), 48, 115, 208, 535
print(), 350
probit family, 118
programming, 567
quantile(), 141, 359
quasibinomial family, 117
quasipoisson family, 115
R2WinBUGS, 565
ranef(), 260, 280
range(), 352, 520
rbinom(), 137, 149
read.dta(), 411
read.table(), 49, 348
rep(), 452
replicate(), 139, 147
replicated data for predictive

checking, 518

return(), 401
rnegbin(), 150
rnorm(), 106, 141, 155, 356, 401, 407

rnorm.trunc(), 407
rowMeans(), 180
rowSums(), 147, 411
rpois(), 150
runif(), 150, 353, 356

rwish(), 377
sample(), 138, 278, 418, 452, 534
sapply(), 151
save(), 362

sd(), 56, 462
se.coef(), 156, 565
se.fixef(), 261
se.ranef(), 261

sem package, 223
sigma.hat(), 273, 565
sim(), 43, 142, 143, 392, 565
sorting, 519
subset option in lm() and glm(), 107,

126, 538
sum(), 147
summary(), why we don’t use, 39
table(), 353

tlm(), 124, 133, 567
tsls(), 223
unique(), 348
updating functions for Gibbs sampler,

399–402
var(), 477

R functions, 44, 139, 147, 151, 404, 534,
535

R2, 41, 49, 62, 485
adjusted, 475
Bayesian definition, 475
classical definition, 474

computation, 476
each level of a model, 474
interpretation for model with no

constant term, 349

multilevel, 473–477
pictures, 42
why we do not define in terms of

model comparison, 474

R2WinBUGS package, 565
R̂ for summarizing convergence of Bugs fit,

352, 358, 369
radon, 3, 36, 252–283, 348–369, 480–481

random effects, 244–246, 259
many definitions, 245, 248
R, 260
superpopulation inferences and, 461
why we avoid the term, 2, 245

random imputation, 534, 537
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randomized experiment, 171–181, 183, see
also causal inference

ranef(), 260, 280
range(), 352, 520
Rasch model, 315–320
ratings, 298
ratio of parameters, 152
raw (unscaled) parameters, 377

compared to adjusted parameters, 423
rbinom(), 137, 149
read.dta(), 411
read.table(), 49, 348
recall, in social networks survey, 339
red states and blue states, 310–314
redundant parameters, 419–427

additive, 316, 326, 336, 382, 412,
419–423, 464–466

future implementations, 427
item-response and ideal-point models,

316
multiplicative, 424–427

Bugs, 424, 425
social network model, 336

reference condition, in classical no-pooling
regression, 349

reference model, 347
regression, see linear regression, logistic

regression, generalized linear
models

regression coefficients, graph, 337, 341
regression discontinuity, 212–215
regression to the mean, 57–59
rejection, not the goal of model checking,

524
rep(), 452
repeated measurements, 241–243

graph, 450
replicate(), 139, 147
replicated data, for predictive checking,

514
replicated datasets, plotted, 160, 163
residuals, 40, 97–101

binned, 97–101, 559
distinguished from errors, 387
plot, 47, 48, 97, 114, 558
plot vs. predicted values, not vs.

observed values, 157, 158
social network model, 341–342
square root, for Poisson model,

341–342
standard deviation of, 41

return(), 401
rnegbin(), 150
rnorm(), 106, 141, 155, 356, 401, 407
rnorm.trunc(), 407
robit regression, 124–125, 133, 320

Bugs, 384
generalization of logit and probit, 125
latent-data formulation, 384
picture, 124

robust regression, 110, 131
rodents, 106, 248, 322
rowMeans(), 180
rowSums(), 147, 411
rpois(), 150
runif(), 150, 353, 356
rwish(), 377

S and S-Plus, see R
sample size and interactions, 438
sample size calculation, 437–455

2.8 standard errors, 441
classical, 439–447
general concerns, 439
inference for continuous outcomes,

443–447
inference for linear regression, 451
inference for proportions, 439–443
inference for regression coefficients,

446–447
inherently speculative, 445, 447
multilevel models, 447–454
pictures, 440, 441
unequal sample sizes, 443

sample(), 138, 278, 418, 452, 534
sampling, design for, 437–455
sapply(), 151
SAS

code for matching, 230
multilevel modeling in, 570–571

save(), 362
scale of prior distribution, 355
scale-up model for estimation in a social

network, 333
scaled inverse-Wishart distribution,

284–287, 298, 376–380
Scalia, Antonin, 318
scaling of predictors, 53
scatterplot

advice, 553–559
data and regression lines

superimposed, 35
sd(), 56, 460, 462
se.coef(), 156, 565
se.fixef(), 261
secret weapon, 73–74

income and voting, 311
pictures, 19, 74, 84

selection bias, 168, 231, see also causal
inference

selection on observables, see ignorability
sem package, 223
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separation in logistic regression, 104, 107
Sesame Street, 196, 216–220, 231, 509–511
sex ratio of births, 27, 137–139
shrinkage and partial pooling, 477
sigma.hat(), 273, 565
significance, see statistical significance
significant digits and uncertainty, 561
sim(), 43, 142, 143, 392, 565
simple and complex models, 416
simulation, 19–20, 137–166

combined with analytic calculations,
148

comparing simulated to actual data,
158–165

compound models, 150–151, 537–538
coverage of confidence intervals, 156
displaying uncertainty in a fitted

model, 149
fake data, 50, 155–158
generalized linear models, 148–151
how many draws are needed, 153
logistic regression, 148
matrix of simulated parameters and

predictions, 146, 149
nonlinear predictions, 144–148
overdispersed models, 150
posterior predictive checks, 158–165,

513–524
predictive, 148–151
probability models, 137–140
regression inferences, 140–148
replicated datasets, plotted, 160, 163
saved as vectors and matrices, 353,

358
why necessary, 141

slope, see varying intercepts and slopes
small multiples plot, 255, 257, 266, 291,

560
logistic regression, 307

small-area estimation, 301–310
smoking, 36, 241–243

data matrix, 242, 243
Social Indicators Survey, 529–543
social networks, 332–342

Bayesian inference, 409–413
graph of data, 335
group sizes, 339
predicted from demographics, 337
residuals, 341–342

soft constraint, 257
software, 565–574, see also R, Bugs, Stata,

SAS, SPSS, AD Model Builder,
HLM, MLWin

data and code for examples, 11
getting started, 565
multilevel modeling, 573

S and S-Plus, see R
WinBugs and OpenBugs, see Bugs

speed dating experiment, 322, 323
speed of light, 159
splines, 298
split-plot latin square, 498–501, 509
SPSS, multilevel modeling in, 571
square root transformation, 249, 535
standard deviation, see variance
standard error, 17, 40

picture, 40
proportions, 17

standardizing predictors, 54–57, 96
Stata

multilevel modeling in, 569–570
reading in data from, 50, 411

state-level opinions from national polls,
4–5, 301–310, 493–494

Bugs model, 381
statistical inference, 16–17, 37–42

graph of uncertainty, 40, 83
measurement error model, 16
sampling model, 16
standard error, 40, 83

statistical significance, 42, 69, 83, 94
limitations of, 481–484
multilevel model, 271
problems with, 22–23
sample size and power, 440

stochastic learning in dogs, 515–524
Bugs model, 517, 521–524
model comparison, 526

stop and frisk, see police stops
storable votes, 120–124, 331–332, 386

Bugs model, 383
data and fitted curves, 121

strategy of debugging, 416
structural equation modeling, 231
subclassification, 206–207, 229
subset option in lm() and glm(), 107, 126,

538
subsetting data, 326, 357, 547

speeding computation, 418
sum of squares

analysis of variance, 488
least squares estimation, 387

sum(), 147
superpopulation, 167, 173

analysis of variance, 491, 500
variance, 459–462

computing in Bugs, 460
graph, 461

Supreme Court voting, ideal-point model
for, 317

survey design, 437
survey weighting, 301–310
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switches, 165

t distribution, 124, 131, 372, 428
table(), 353
tables, 563
teachers, effect of, 459
teaching evaluations and beauty, 51
test summary, 513–515

graphical, 160, 163, 516, 519, 522, 523
numerical, 23, 159, 161, 521

text editor, 565
thinning in Bugs, 418, 518
thresholds, for ordered logit or probit,

119–120
tied election, probability of, 148
time series, 297

checking a fitted model, 163–165
cross-sections, 243–244, 248

tlm(), 124, 133, 567
tobit model, 126, 132
topcoding, for missing-data imputation,

534
traffic accidents, 110–111
transformation, 53–77, 548

idiosyncratic, 65
linear, 53–54
logarithmic, 59–65, 98, 252

interpreting variance parameters,
327

square root, 65, 249, 535
treatment effect, see causal inference
true values in fake-data simulation, 155,

363
truncated normal distribution, 407
tsls(), 223
twins, 138
two-factor experiment, 289–290
two-level classical regression, 240, 248, 270
two-stage least squares, see causal

inference, instrumental variables
two-stage model for mixed discrete/

continuous data, 126, 537
two-way analysis of variance, 495, 496

U.S. Census, 277, 301, 308
UCLA, 332
Ulysses, 339
Umacs, 337, 410–413, 567
uncertainty, as distinguished from

variability, 457–459
uncontested elections, as missing data, 145
underdispersion, 21, 22
unemployment series, graph of data and

replications, 163–165
unexpected patterns, discovering through

graphs, 551

unexplained variance, see R2

unique(), 348

units, 37, 251, 553

unmodeled data and parameters, 364, 367,
378

unordered categorical regression, 124

updating functions in R, 399–402

uranium, as county-level predictor in
radon model, 266

utility theory, 128

validation, 47–49

validity, 45, 174

value added by schools, 458–459, 485

value function, 128

value of a statistical life, 197

var(), 477

variability, as distinguished from
uncertainty, 457–459

variance

explained and unexplained, 41,
473–477

group level, 270

models for, 297

multiple error terms, 264

non-nested models, 290, 291

predictive, 274

ratio of between to within, 258

residual, 41

superpopulation and
finite-population, 459–462

varying intercepts, see multilevel model

varying intercepts and slopes, 1, 237,
279–289, 549

Bayesian perspective, 346

Bugs, 375–379

computing using lmer(), 282

graph, 450

group-level predictors, 280, 379–380

interactions, 282–283

logistic regression, 310–314

non-nested model, 291

notation, 284

pictures, 238

varying slopes without varying intercepts,
283–284

vector of simulations, 353, 358

vector-matrix notation, 37–38, 284–287

Bugs, 361

Vietnam War draft lottery, 225–226, 230

visual and numerical comparisons of
replicated to actual data, 164

voting and income, 79–84, 105, 107,
310–314
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Wald estimate for instrumental variables,
219, 221

wavelets, 298
weight

age and, 75
example of a lognormal distribution,

15
height and, 74, 402–408

weighted average, 19
weighted least squares, 389
wells in Bangladesh, 86–92, 105, 193

arsenic levels, 90
choice models, 127–131
map, 87

when does multilevel modeling make a
difference, 247

WinBugs, see Bugs
WinEdt, 565
Wishart distribution, 284–287, 298,

376–380
world wide web connect times, 492–493

χ2test, 25–26, 114

z-score, 50, 54
zero-inflated Poisson model, 126–127
zinc and HIV, 443–447
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