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e on a Riemannian manifold (M, g), Laplace-Beltrami operator:
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Laplace Operator

e on a Riemannian manifold, Laplace-Beltrami operator:

o Exponential map: exp:V C RF - U
by exp(z) = (p, @, 1)

o f(x) = f(exp(x))
0 AMf::Aka:%f+..._|_5
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o Laplace-Beltrami operator is invariant V/
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under the map preserving geodesics \ >
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o For compact manifold, As is compact

o 0< Ao < A1 < A2 <--+, 00 is the only accumulating point

e Spectrum: eigenvalues

O Ap ~ 47T2(deZl(M))2/d as n 1T oo

_ Nt 1 |
o heat trace: )  ei" = )T > . Cit.

- co =vol(M),c1 = 3 [ s.
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Spectrum
e Isospectrality

o “Can you hear the shape of a drum” [Kac 1966]
o “Does the spectrum determines the shape upto isometry

o negative [Gordon et al. 1992, Buser et al. 1992]




Spectrum
e Spectrum: shape DNA [Reuter et al. 2006]



Eigenfunctions
o Ay = Ao, (M, g) is C'°°-manifold

o nodal set: ¢~ (0),
nodal domain: the connected component of M \ ¢~ *(0)

o Nodal domain theorem [Courant and Hilbert 1953, Cheng
1976]: # of nodal domains of the i-th eigenfunction < i+ 1

o Properties of Nodal Set [Cheng 1976]: Except on a closed set
of lower dimension(i.e., dim < d — 1) the nodal set off forms

an (d - 1)-dim C°°-manifold.



Examples
e sphere (2% + y* + 2% = 1)

A =2(1.91) A2 =2(1.92) ) =2(1.93)
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e intrinsic symmetry: a self map preserving geodesic distances
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e intrinsic symmetry: a self map preserving geodesic distances
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Intrinsic Symmetry

e intrinsic symmetry: a self map preserving geodesic distances
o invariant under non-rigid transformations

e extrinsic symmetry: rotation and reflection
o preserve Euclidean distances

o invariant only under rigid transformations



Related Work

e extrinsic symmetry

) [Mitra et al. 06] N
[Podolak et al. 06] [Shimari et al. 06]  [Martinet et al. 07]

e Intrinsic symmetry
o difficulty: no simple characterization
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Global Point Signature

e our strategy: reduce intrinsic to extrinsic
e our tool: eigenfunctions ¢; and eigenvalues \; of Ay,

e for each point p on M, its GPS [Rustamov 07]
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o relation between s(p) and s(T'(p))?



Transforming Theorem

Theorem: For a compact manifold M, T' is an intrinsic symmetry if
and only if there is a transformation R such that R(s(p)) = s(T'(p))
for each point p € M and R restricting to any eigenspace is a rigid
transformation.



Transforming Theorem

Theorem: For a compact manifold M, T' is an intrinsic symmetry if
and only if there is a transformation R such that R(s(p)) = s(T'(p))
for each point p € M and R restricting to any eigenspace is a rigid
transformation.

o “only if" part



Eigenfunctions and Intrinsic Symmetry

1. ¢ = ¢ o1': positive eigenfunction
2. ¢ = —¢ oI': negative eigenfunction
3. A is a repeated eigenvalue

o(T'(p)) = ¢(p)
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Eigenfunctions and Intrinsic Symmetry

1. ¢ = ¢ oT': positive eigenfunction
2. ¢ = —¢ o'l negative eigenfunction
3. A is a repeated eigenvalue
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Eigenfunctions and Intrinsic Symmetry

1. ¢ = ¢ oT': positive eigenfunction

2. ¢ = —¢ ol negative eigenfunction
3. A lis a repeated eigenvalue

T'(p) A P2

(#1(p), P2(p))
o

P ¢(p)

0 |
®1
rotation

(¢1(T(p)), d2(T(p)))
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Transforming Theorem

Theorem: For a compact manifold M, T' is an intrinsic symmetry if
and only if there is a transformation R such that R(s(p)) = s(T'(p))
for each point p € M and R restricting to any eigenspace is a rigid
transformation.

o one to one correspondence between T and R

- I"1s an identity < R is an identity

o detection of intrinsic symmetry reduced to that of extrinsic
rigid transformation

- detection of extrinsic symmetry
[Rus07, PSG06, MGP06, MSHSO06]



Results

(a)

scans of a real person

(SCAPE dataset)



Limitation of Global Point Signature

e For any z, its GPS [Rus07]:
GPS, = (le(x)/\/)\_la ¢2($)/\/>\_2,'“ ,Cbz(x)/\/)\_z,)

o global

o not unique
- orthonormal transformation within eigenspace

- eigenfunction switching [GVL96]
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Heat Kernel Signature

e define HKS for any point x as a function on R™:
o HKS, : RT™ — R™

® Isometric invariant
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Heat Kernel Signature

define HKS for any point x as a function on R™:
o HKS, : RT™ — R™
Isometric Iinvariant

multi-scale
iInformative

o {HKSy}zenm characterizes almost all shapes up to isometry.
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Heat Diffusion Process

e how heat diffuses over time

f Ht(f) =7
®

e heat kernel ky(z,y) : RT x M x M — RT

o heat transferred from y to = in time ¢
o H'f(x) = [, ke(x,y)f(y)dy

0 kt(x,y) =, e M oi(z)i(y)



Heat Kernel

characterize shape up to isometry
o T : M — N is isometric iff k:(xz,y) = k(T (x), T (y)).
o heat kernel recovers geodesic distances.

- diy(z,y) = —4limy .o tlog ke(x, y)
o heat diffusion process governed by heat equation.

- Apu(t,x) = ——au{(ft’x)

generate a Brownian motion on a manifold.



Heat Kernel

e multi-scale
o for any x, a family of functions {k:(z,-)}.
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o local features in small t's; global summaries in big t's



Heat Kernel

e multi-scale
o for any x, a family of functions {k:(z,-)}.

1N A

T o €T €T o
t =0: 6 funct t — oo: const funct
|
t

o local features in small t's; global summaries in big t's

e however, {k:(x,-)}+'s complexity is extremely high
o difficult to compare {k:(x,-)}: with {k:(2', )}



Heat Kernel Signature

e HKS is the restriction of {k;(x,-)}; to the temporal domain
o HKS, : RT — R" by HKS,(t) = k¢(x, x)
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Heat Kernel Signature

e HKS is the restriction of {k;(x,-)}; to the temporal domain
o HKS, : Rt — R by HKS,(t) = k¢(z, z)
concise and commensurable

multi-scale

Isometric invariant
iInformative?

O O O O



Heat Kernel Signature

o {HKS,},.cn is informative

Informative Theorem. If the eigenvalues of M and N are
not repeated, a homeomorphism 7' : M — N is isometric iff

k' (z,2) = kY (T(2), T (z)) for any z € M and any ¢ > 0.
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Heat Kernel Signature

o {HKS,},.cn is informative

Informative Theorem. If the eigenvalues of M and NN are
not repeated, a homeomorphism 7' : M — N is isometric iff

k' (z,2) = kY (T(2), T (z)) for any z € M and any ¢ > 0.

o almost all shapes have no repeated eigenvalues [BU82]
o the theorem fails if there are repeated eigenvalues
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Relation to Curvature

e the polynomial expansion of HKS at small ¢:

HKS: (t) = ke(z,2) = (4nt) =2 (1 + Ls(z)t + O(t?))

plot of k¢(x,x) for a fixed t



Relation to Diffusion Distance

e diffusion distance [Laf04]
di (2,y) = ki(z, %) + ki (y,y) — 2ke(, )
o eccentricity in terms of diffusion distance
1
ccer(w) = o [ diwy)dy
M J M
2
Anr’
- ecci(x) and k¢(xz,x) have the same level sets,
In particular, extrema points

- shape segmentation [dGGV08]

= ki(z,x) + Hum(t) —



Multi-Scale Matching

| scaled HKS
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Multi-Scale Matching




Multi-Scale Matching
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(a) maxima of k¢(x, z) for a fixed t¢.
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Thank you for your attention

Questions?



Results




Computation

e lLaplace-Beltrami Operator:

o based on its eigenfunctions and eigenvalues
ke (z,y) = 22, e i) i (y)
= HKS,(t) = ku(w,2) = ¥, e 62 ()
e discrete case:

o build the discrete Laplace operator L = A=W [BSWO08]
o solve W = ANAg

o compute HKS, () = Y. e it 7 (x)
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