Laplace Operator and Heat Kernel for Shape Analysis

Jian Sun

Mathematical Sciences Center, Tsinghua University

Laplace Operator

• on \mathbb{R}^k , the standard Laplace operator:

$$\circ \ \Delta_{\mathbb{R}^k} f := \frac{\partial^2 f}{\partial x_1^2} + \dots + \frac{\partial^2 f}{\partial x_k^2}$$

 $\circ \ \Delta_{\mathbb{R}^k} f := {\rm div} \nabla f$

Laplace Operator

• on \mathbb{R}^k , the standard Laplace operator:

$$\circ \ \Delta_{\mathbb{R}^k} f := \frac{\partial^2 f}{\partial x_1^2} + \dots + \frac{\partial^2 f}{\partial x_k^2}$$

- $\circ \ \Delta_{\mathbb{R}^k} f := {\rm div} \nabla f$
- on a Riemannian manifold (M, g), Laplace-Beltrami operator:

$$\circ \ \Delta_M f := \operatorname{div} \nabla f$$

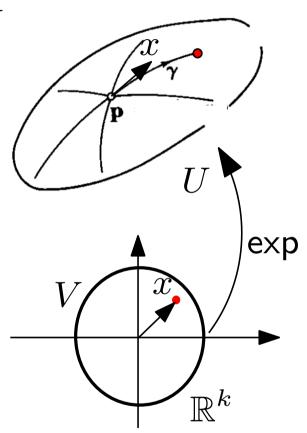
$$\circ \ \Delta_M f := \frac{1}{\sqrt{\det g}} \sum_{i,j} \frac{\partial}{\partial x^j} (g^{ij} \sqrt{\det g} \frac{\partial f}{\partial x^i})$$

Laplace Operator

- on a Riemannian manifold, Laplace-Beltrami operator:
 - $\circ\;$ Exponential map: $\exp:V\subset \mathbb{R}^k \to U$ by $\exp(x)=\gamma(p,x,1)$
 - $\circ \ \widetilde{f}(x) = f(\exp(x))$

$$\circ \ \Delta_M f := \Delta_{\mathbb{R}^k} \tilde{f} = \frac{\partial^2 \tilde{f}}{\partial x_1^2} + \dots + \frac{\partial^2 \tilde{f}}{\partial x_k^2}$$

 Laplace-Beltrami operator is invariant under the map preserving geodesics



Eigenvalues and eigenfunctions

- $\Delta_M \phi = \lambda \phi$
 - $\circ~$ For compact manifold, Δ_M is compact
 - $\circ~0\leq\lambda_0\leq\lambda_1\leq\lambda_2\leq\cdots$, ∞ is the only accumulating point

Eigenvalues and eigenfunctions

- $\Delta_M \phi = \lambda \phi$
 - $\circ~$ For compact manifold, Δ_M is compact
 - $\circ~0\leq\lambda_0\leq\lambda_1\leq\lambda_2\leq\cdots$, ∞ is the only accumulating point
- Spectrum: eigenvalues

•
$$\lambda_n \sim 4\pi^2 (\frac{n}{w_d Vol(M)})^{2/d}$$
 as $n \uparrow \infty$

• heat trace:
$$\sum_{i} e^{\lambda_i t} = \frac{1}{(4\pi t)^{d/2}} \sum_{i} c_i t.$$

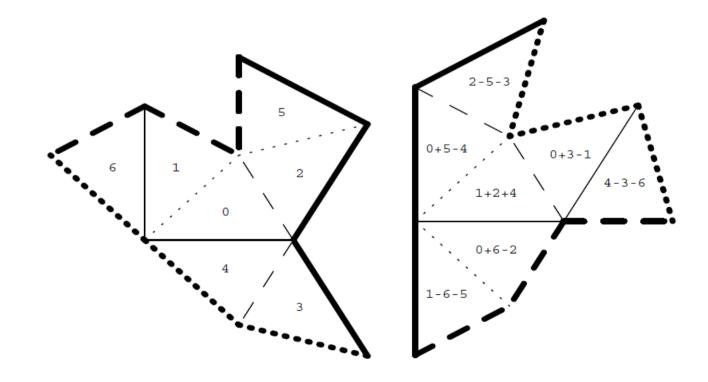
-
$$c_0 = vol(M), c_1 = \frac{1}{3} \int s.$$

Spectrum

- isospectrality
 - $\circ~$ "Can you hear the shape of a drum" [Kac 1966]
 - \circ "Does the spectrum determines the shape upto isometry

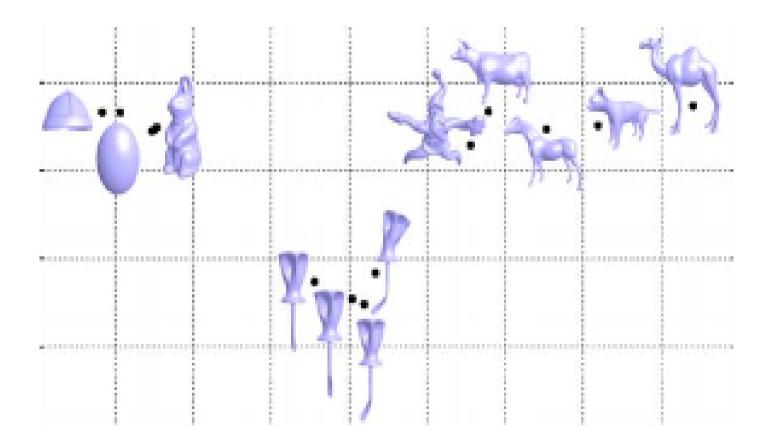
Spectrum

- isospectrality
 - $\circ~$ "Can you hear the shape of a drum" [Kac 1966]
 - \circ "Does the spectrum determines the shape upto isometry
 - negative [Gordon et al. 1992, Buser et al. 1992]



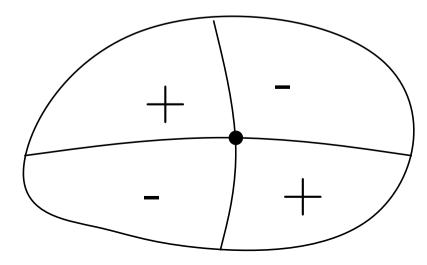
Spectrum

• Spectrum: shape DNA [Reuter et al. 2006]



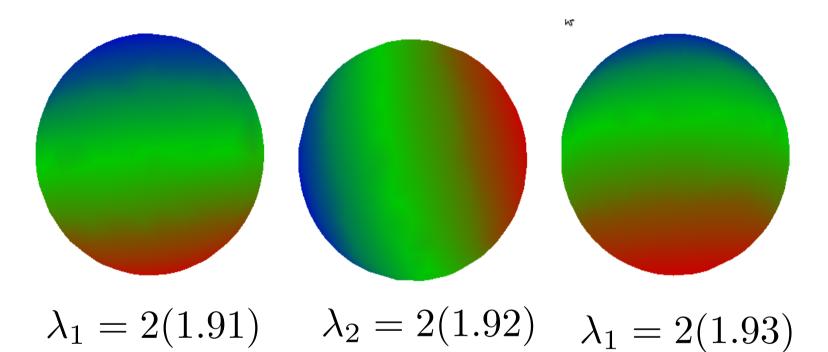
Eigenfunctions

- $\Delta_M \phi = \lambda \phi$, (M,g) is C^{∞} -manifold
 - $\circ\,$ nodal set: $\phi^{-1}(0),$ nodal domain: the connected component of $M\setminus\phi^{-1}(0)$
 - $\circ\,$ Nodal domain theorem [Courant and Hilbert 1953, Cheng 1976]: # of nodal domains of the i-th eigenfunction $\leq i+1$
 - Properties of Nodal Set [Cheng 1976]: Except on a closed set of lower dimension(i.e., dim < d 1) the nodal set off forms an (d 1)-dim C^{∞} -manifold.



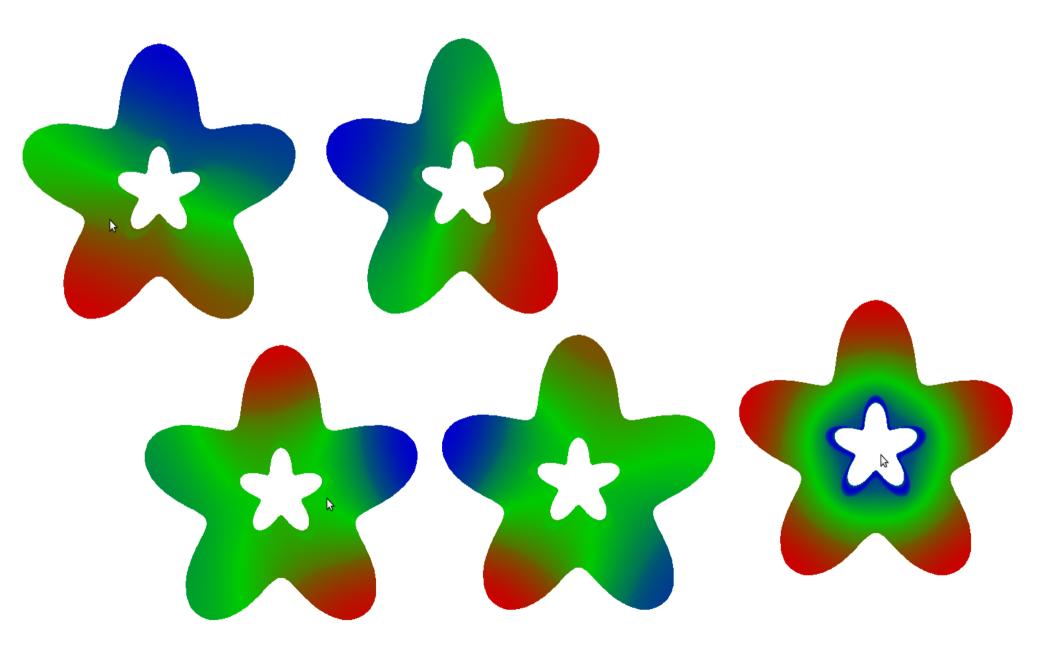
Examples

• sphere $(x^2 + y^2 + z^2 = 1)$



Examples

• star



Examples

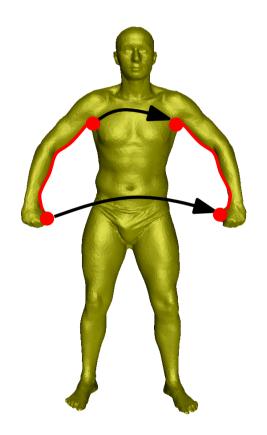
• human

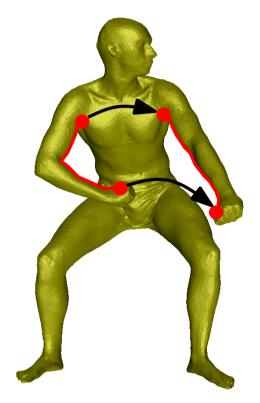


Intrinsic Symmetry Detection

Intrinsic Symmetry

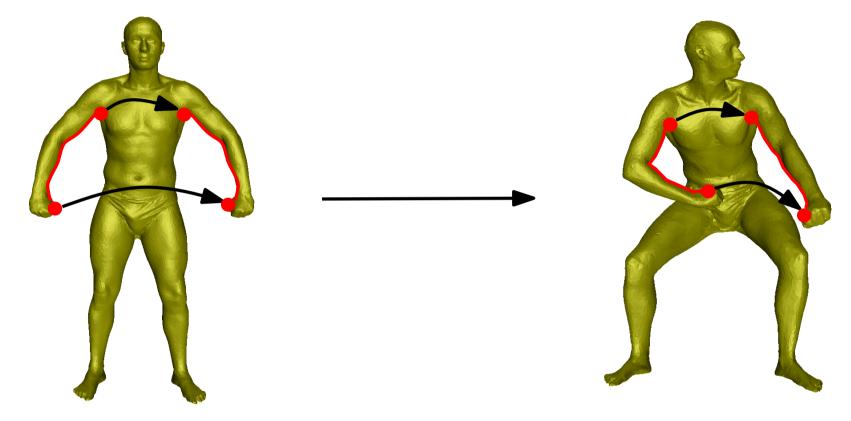
• intrinsic symmetry: a self map preserving geodesic distances





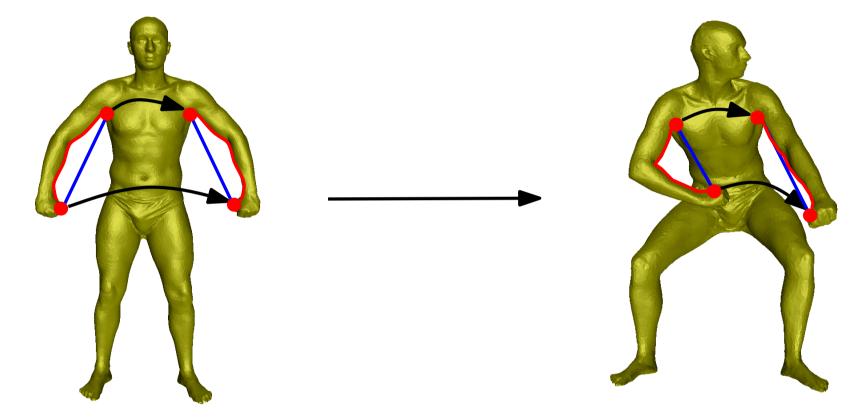
Intrinsic Symmetry

intrinsic symmetry: a self map preserving geodesic distances
 invariant under non-rigid transformations



Intrinsic Symmetry

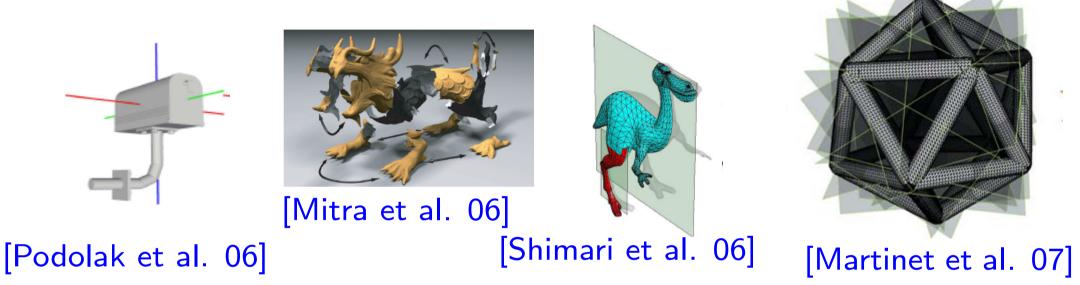
intrinsic symmetry: a self map preserving geodesic distances
 invariant under non-rigid transformations



- extrinsic symmetry: rotation and reflection
 - preserve Euclidean distances
 - invariant only under rigid transformations

Related Work

• extrinsic symmetry



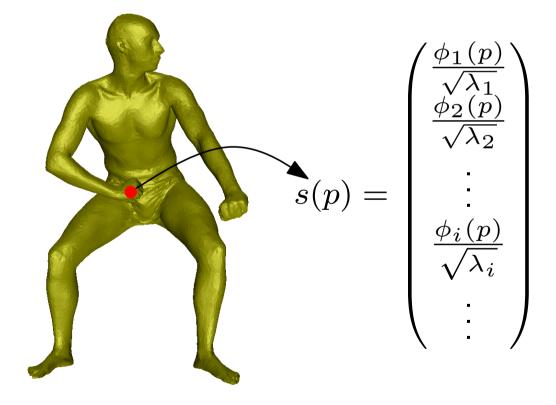
- intrinsic symmetry
 - difficulty: no simple characterization

Global Point Signature

- our strategy: reduce intrinsic to extrinsic
- our tool: eigenfunctions ϕ_i and eigenvalues λ_i of Δ_M

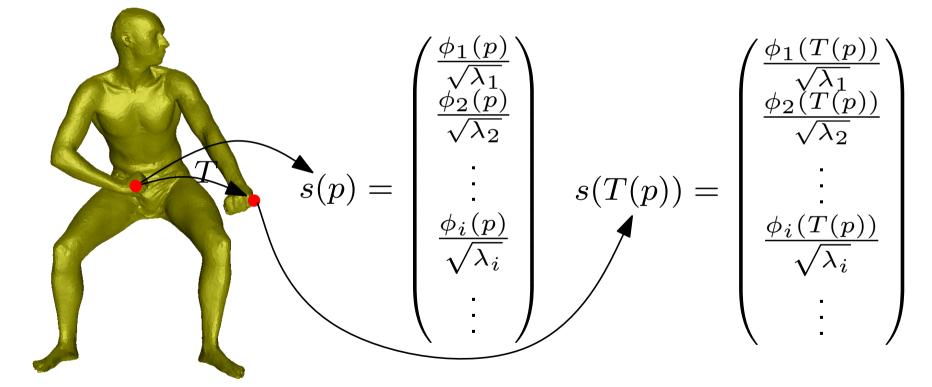
Global Point Signature

- our strategy: reduce intrinsic to extrinsic
- our tool: eigenfunctions ϕ_i and eigenvalues λ_i of Δ_M
- for each point p on M, its GPS [Rustamov 07]



Global Point Signature

- our strategy: reduce intrinsic to extrinsic
- our tool: eigenfunctions ϕ_i and eigenvalues λ_i of Δ_M
- for each point p on M, its GPS [Rustamov 07]



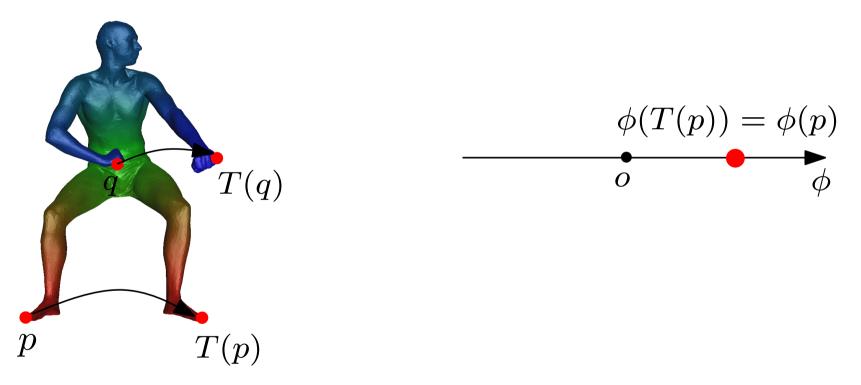
 \circ relation between s(p) and s(T(p))?

Theorem: For a compact manifold M, T is an intrinsic symmetry if and only if there is a transformation R such that R(s(p)) = s(T(p))for each point $p \in M$ and R restricting to any eigenspace is a rigid transformation.

◦ "only if" part

Eigenfunctions and Intrinsic Symmetry

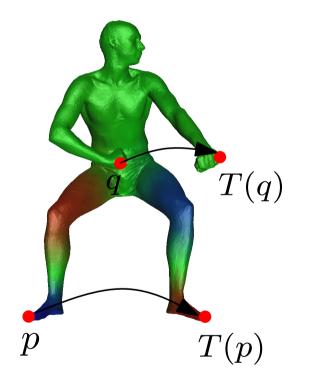
- 1. $\phi = \phi \circ T$: **positive** eigenfunction
- 2. $\phi = -\phi \circ T$: negative eigenfunction
- 3. λ is a repeated eigenvalue

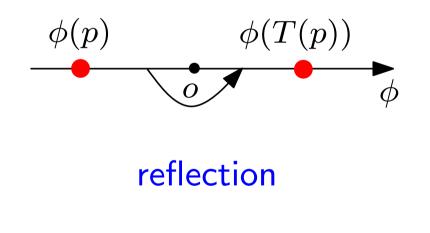


Eigenfunctions and Intrinsic Symmetry

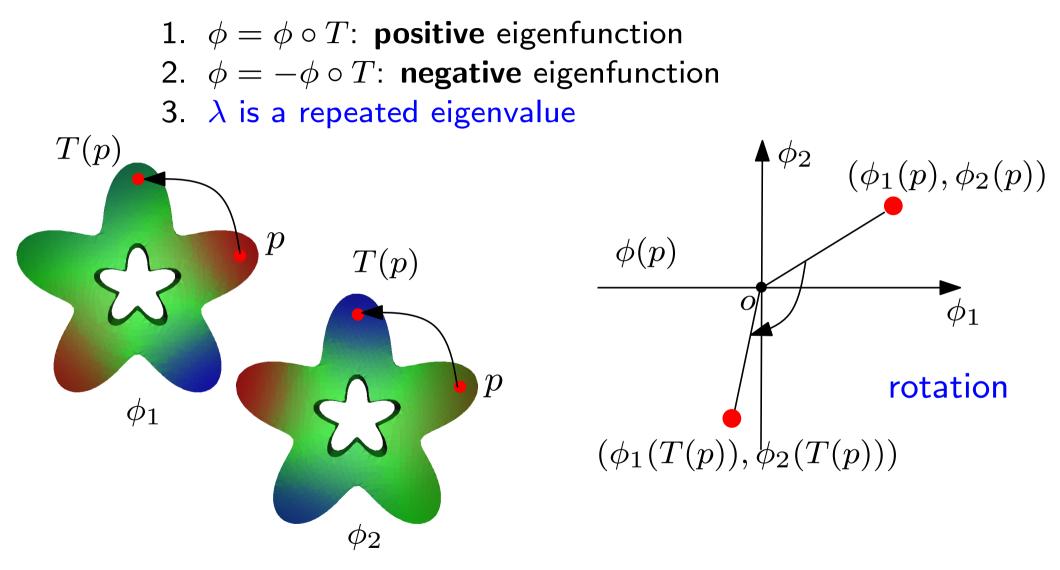
1. $\phi = \phi \circ T$: **positive** eigenfunction

- 2. $\phi = -\phi \circ T$: negative eigenfunction
- 3. λ is a repeated eigenvalue





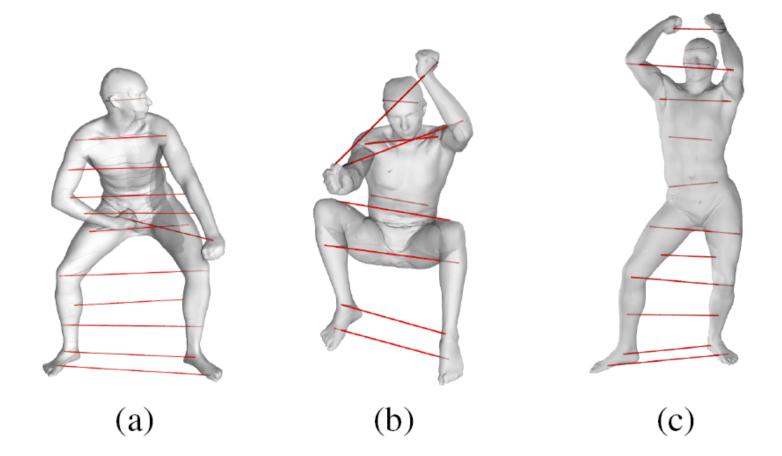
Eigenfunctions and Intrinsic Symmetry



- $\circ~$ one to one correspondence between T~ and R~
 - T is an identity \Leftrightarrow R is an identity

- $\circ~$ one to one correspondence between T~ and R~
 - T is an identity \Leftrightarrow R is an identity
- detection of intrinsic symmetry reduced to that of extrinsic rigid transformation
 - detection of extrinsic symmetry [Rus07, PSG06, MGP06, MSHS06]

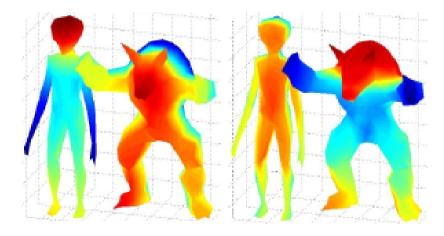
Results



scans of a real person (SCAPE dataset)

Limitation of Global Point Signature

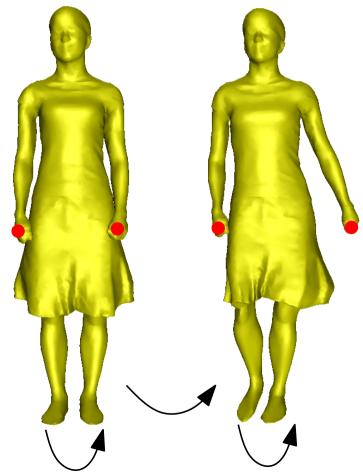
- For any x, its GPS [Rus07]: GPS_x = $(\phi_1(x)/\sqrt{\lambda_1}, \phi_2(x)/\sqrt{\lambda_2}, \cdots, \phi_i(x)/\sqrt{\lambda_i}, \cdots)$
 - \circ global
 - \circ not unique
 - orthonormal transformation within eigenspace
 - eigenfunction switching [GVL96]

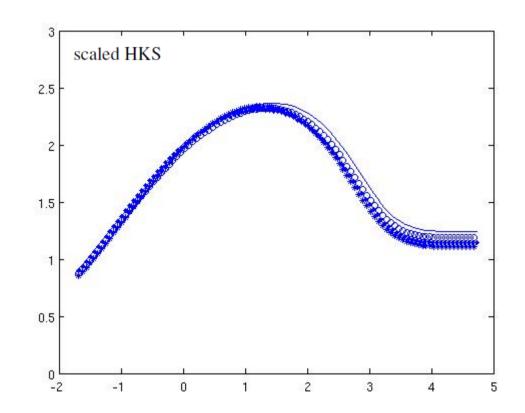


courtesy of Jain and Zhang

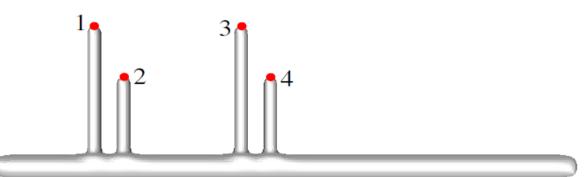
define HKS for any point x as a function on ℝ⁺:
 • HKS_x : ℝ⁺ → ℝ⁺

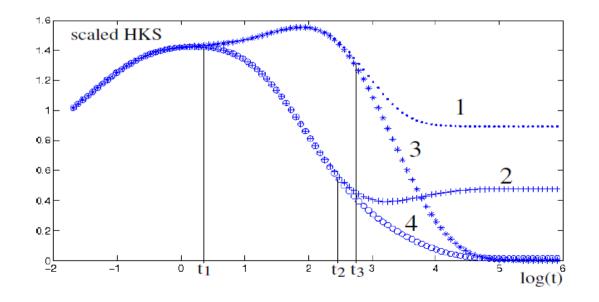
- define HKS for any point x as a function on ℝ⁺:
 HKS_x : ℝ⁺ → ℝ⁺
- isometric invariant





- define HKS for any point x as a function on ℝ⁺:
 HKS_x : ℝ⁺ → ℝ⁺
- isometric invariant
- multi-scale

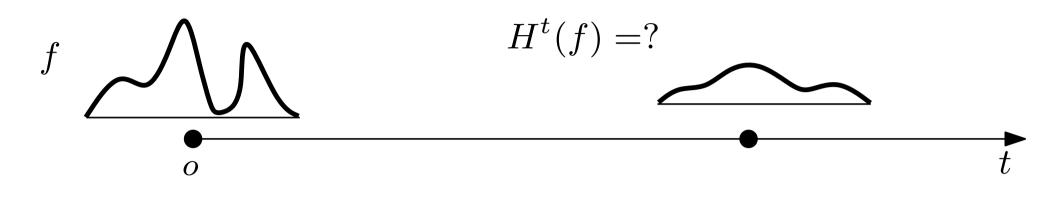




- define HKS for any point x as a function on ℝ⁺:
 HKS_x : ℝ⁺ → ℝ⁺
- isometric invariant
- multi-scale
- informative
 - ${HKS_x}_{x \in M}$ characterizes almost all shapes up to isometry.

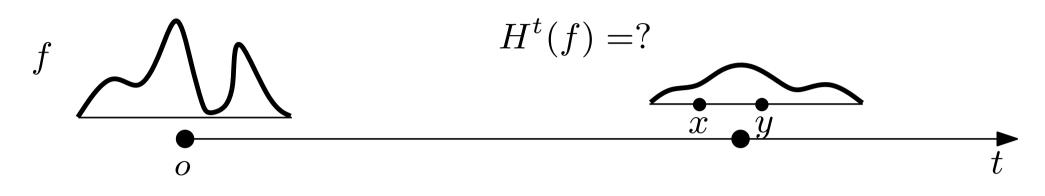
Heat Diffusion Process

• how heat diffuses over time



Heat Diffusion Process

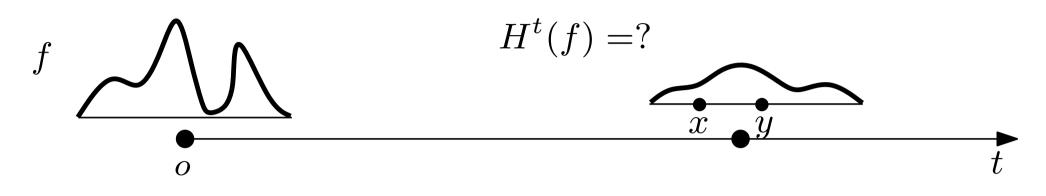
• how heat diffuses over time



- heat kernel $k_t(x,y) : \mathbb{R}^+ \times M \times M \to \mathbb{R}^+$
 - $\circ~$ heat transferred from y to x in time t
 - $H^t f(x) = \int_M k_t(x, y) f(y) dy$

Heat Diffusion Process

• how heat diffuses over time



- heat kernel $k_t(x,y): \mathbb{R}^+ \times M \times M \to \mathbb{R}^+$
 - $\circ~$ heat transferred from y to x in time t
 - $H^t f(x) = \int_M k_t(x, y) f(y) dy$

•
$$k_t(x,y) = \sum_i e^{-\lambda_i t} \phi_i(x) \phi_i(y)$$

Heat Kernel

- characterize shape up to isometry
 - $T: M \to N$ is isometric iff $k_t(x, y) = k_t(T(x), T(y))$.
 - $\circ~$ heat kernel recovers geodesic distances.

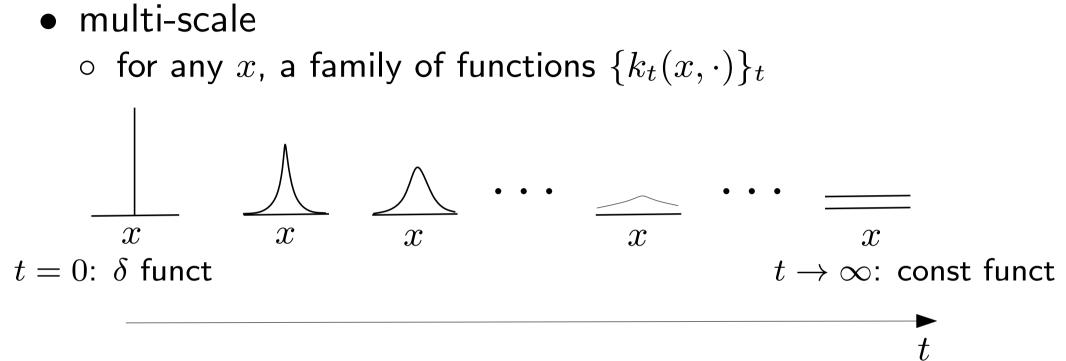
-
$$d_M^2(x,y) = -4 \lim_{t \to 0} t \log k_t(x,y)$$

 $\circ~$ heat diffusion process governed by heat equation.

-
$$\Delta_M u(t,x) = -\frac{\partial u(t,x)}{\partial t}$$

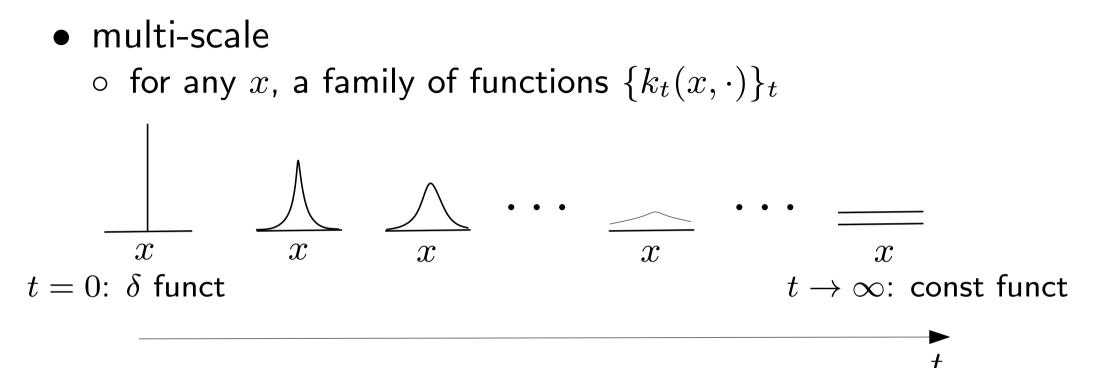
• generate a Brownian motion on a manifold.

Heat Kernel



 \circ local features in small t's; global summaries in big t's

Heat Kernel



- \circ local features in small t's; global summaries in big t's
- however, {k_t(x, ·)}_t's complexity is extremely high
 o difficult to compare {k_t(x, ·)}_t with {k_t(x', ·)}_t

• HKS is the restriction of $\{k_t(x, \cdot)\}_t$ to the temporal domain \circ HKS_x : $\mathbb{R}^+ \to \mathbb{R}^+$ by HKS_x(t) = $k_t(x, x)$

- HKS is the restriction of $\{k_t(x,\cdot)\}_t$ to the temporal domain
 - $\mathsf{HKS}_x : \mathbb{R}^+ \to \mathbb{R}^+$ by $\mathsf{HKS}_x(t) = k_t(x, x)$
 - concise and commensurable
 - multi-scale
 - \circ isometric invariant

- HKS is the restriction of $\{k_t(x,\cdot)\}_t$ to the temporal domain
 - $\mathsf{HKS}_x : \mathbb{R}^+ \to \mathbb{R}^+$ by $\mathsf{HKS}_x(t) = k_t(x, x)$
 - concise and commensurable
 - multi-scale
 - \circ isometric invariant
 - o informative?

• $\{\mathsf{HKS}_x\}_{x \in M}$ is informative

Informative Theorem. If the eigenvalues of M and N are not repeated, a homeomorphism $T: M \to N$ is isometric iff $k_t^M(x, x) = k_t^N(T(x), T(x))$ for any $x \in M$ and any t > 0.

• $\{\mathsf{HKS}_x\}_{x \in M}$ is informative

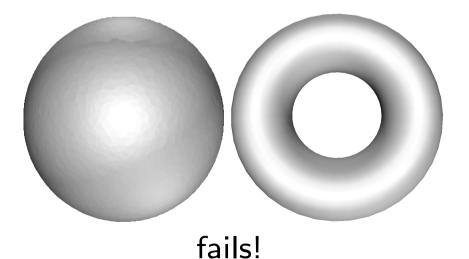
Informative Theorem. If the eigenvalues of M and N are not repeated, a homeomorphism $T: M \to N$ is isometric iff $k_t^M(x,x) = k_t^N(T(x),T(x))$ for any $x \in M$ and any t > 0.

• almost all shapes have no repeated eigenvalues [BU82]

• $\{\mathsf{HKS}_x\}_{x \in M}$ is informative

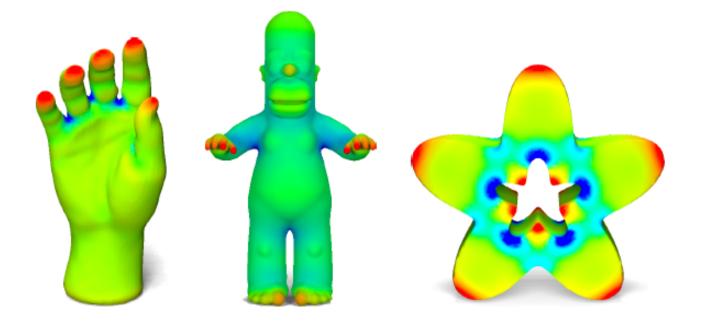
Informative Theorem. If the eigenvalues of M and N are not repeated, a homeomorphism $T: M \to N$ is isometric iff $k_t^M(x, x) = k_t^N(T(x), T(x))$ for any $x \in M$ and any t > 0.

- almost all shapes have no repeated eigenvalues [BU82]
- $\circ\;$ the theorem fails if there are repeated eigenvalues



Relation to Curvature

• the polynomial expansion of HKS at small t: $HKS_x(t) = k_t(x, x) = (4\pi t)^{-d/2} (1 + \frac{1}{6}s(x)t + O(t^2))$



plot of $k_t(x, x)$ for a fixed t

Relation to Diffusion Distance

• diffusion distance [Laf04]

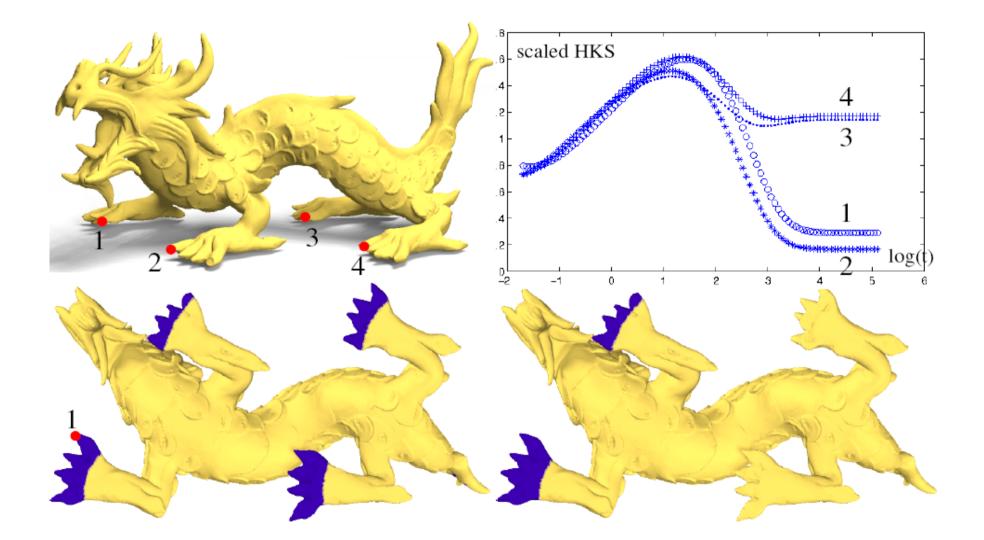
$$d_t^2(x,y) = k_t(x,x) + k_t(y,y) - 2k_t(x,y)$$

 $\circ~$ eccentricity in terms of diffusion distance

$$ecc_t(x) = \frac{1}{A_M} \int_M d_t^2(x, y) dy$$
$$= k_t(x, x) + H_M(t) - \frac{2}{A_M},$$

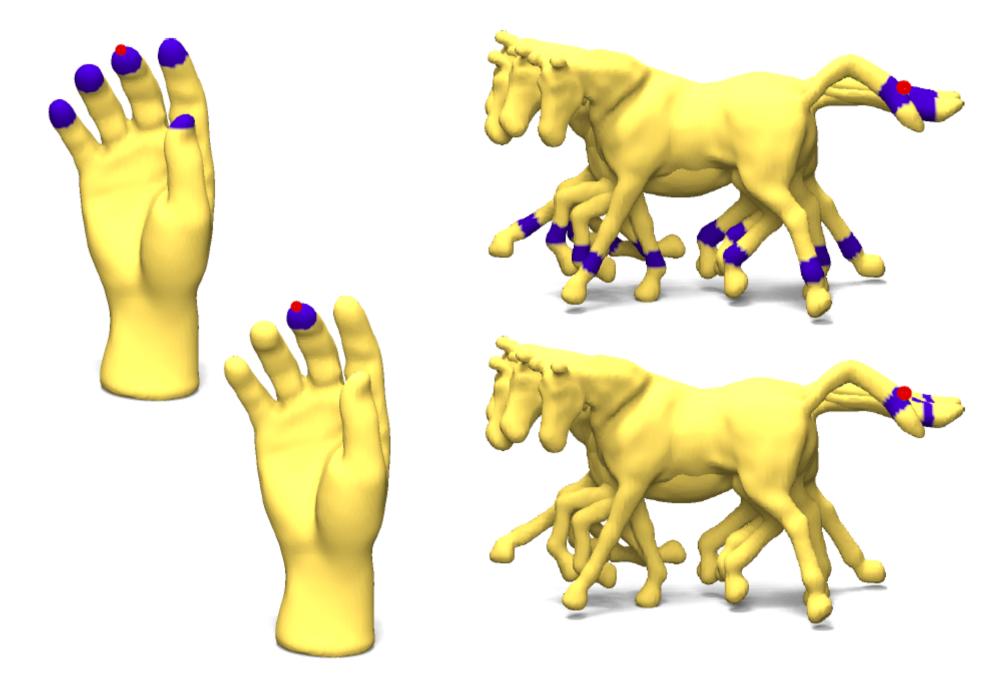
- $ecc_t(x)$ and $k_t(x, x)$ have the same level sets, in particular, extrema points
- shape segmentation [dGGV08]

Multi-Scale Matching



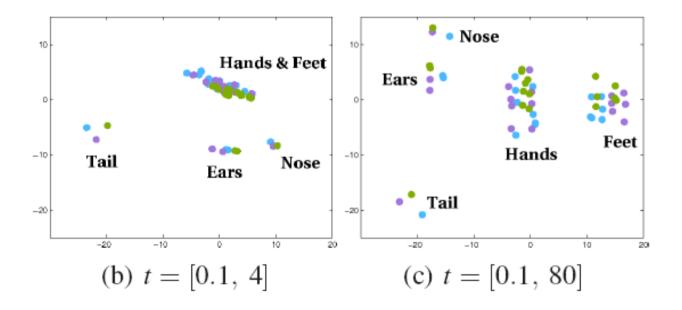
scaled HKS: $\frac{k_t(x,x)}{\int_M k_t(x,x)dx}$

Multi-Scale Matching



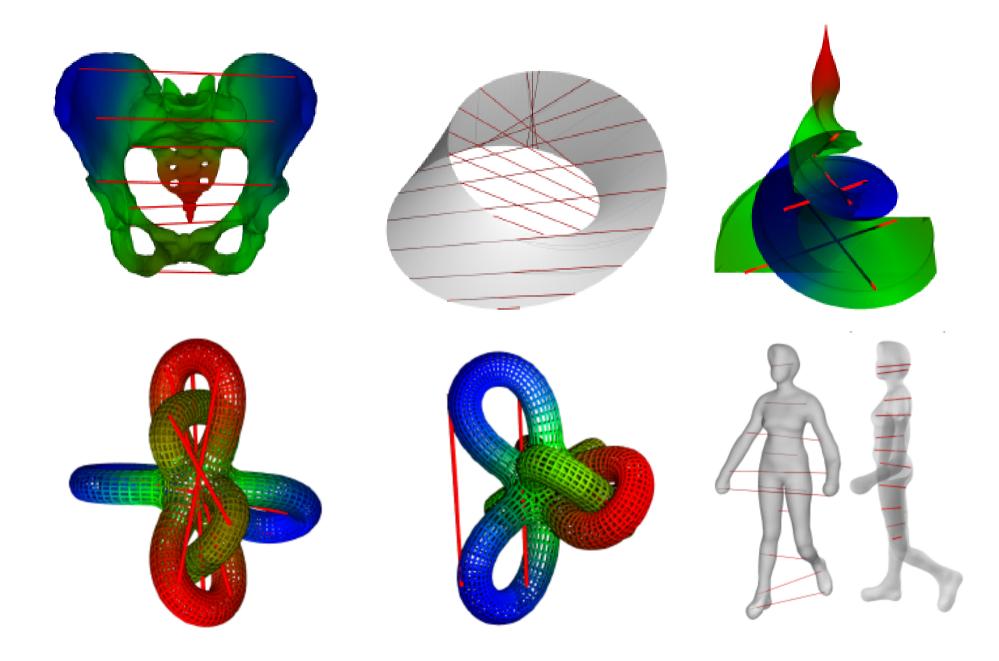
Multi-Scale Matching

(a) maxima of $k_t(x, x)$ for a fixed t.



Thank you for your attention Questions?

Results



Computation

- Laplace-Beltrami Operator:
 - $\circ~$ based on its eigenfunctions and eigenvalues

$$k_t(x,y) = \sum_i e^{-\lambda_i t} \phi_i(x) \phi_i(y)$$

$$\Rightarrow \ \mathsf{HKS}_x(t) = k_t(x,x) = \sum_i e^{-\lambda_i t} \phi_i^2(x)$$

- discrete case:
 - build the discrete Laplace operator $L = A^{-1}W$ [BSW08] • solve $W\phi = \lambda A\phi$
 - compute $\mathsf{HKS}_x(t) = \sum_i e^{-\lambda_i t} \phi_i^2(x)$

Page Title

- first level bulletin
 - $\circ\,$ second level bulletin
 - third level bulletin