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Laplace Operator

• on a Riemannian manifold, Laplace-Beltrami operator:

◦ Laplace-Beltrami operator is invariant
under the map preserving geodesics

U

exp

Rk

V x

x

◦ f̃(x) = f(exp(x))

◦ ∆Mf := ∆Rk f̃ = ∂2f̃

∂x21
+ · · ·+ ∂2f̃

∂x2
k

◦ Exponential map: exp : V ⊂ Rk → U
by exp(x) = γ(p, x, 1)
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Eigenvalues and eigenfunctions
• ∆Mφ = λφ

◦ For compact manifold, ∆M is compact

◦ 0 ≤ λ0 ≤ λ1 ≤ λ2 ≤ · · · , ∞ is the only accumulating point

• Spectrum: eigenvalues

◦ λn ∼ 4π2( n
wdV ol(M)

)2/d as n ↑ ∞

◦ heat trace:
∑
i e
λit = 1

(4πt)d/2

∑
i cit.

- c0 = vol(M), c1 = 1
3

∫
s.
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◦ “Can you hear the shape of a drum” [Kac 1966]

◦ “Does the spectrum determines the shape upto isometry

◦ negative [Gordon et al. 1992, Buser et al. 1992]



Spectrum

• Spectrum: shape DNA [Reuter et al. 2006]



Eigenfunctions

• ∆Mφ = λφ, (M, g) is C∞-manifold

◦ nodal set: φ−1(0),
nodal domain: the connected component of M \ φ−1(0)

◦ Nodal domain theorem [Courant and Hilbert 1953, Cheng
1976]: # of nodal domains of the i-th eigenfunction ≤ i+ 1

+ -

+-

◦ Properties of Nodal Set [Cheng 1976]: Except on a closed set
of lower dimension(i.e., dim < d − 1) the nodal set off forms
an (d - 1)-dim C∞-manifold.



Examples

• sphere (x2 + y2 + z2 = 1)

λ1 = 2(1.91) λ2 = 2(1.92) λ1 = 2(1.93)



Examples
• star



Examples
• human
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Intrinsic Symmetry

• extrinsic symmetry: rotation and reflection

◦ invariant only under rigid transformations

◦ preserve Euclidean distances

• intrinsic symmetry: a self map preserving geodesic distances

◦ invariant under non-rigid transformations



Related Work

• extrinsic symmetry

• intrinsic symmetry
◦ difficulty: no simple characterization

[Mitra et al. 06]

[Podolak et al. 06] [Shimari et al. 06] [Martinet et al. 07]
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• for each point p on M , its GPS [Rustamov 07]
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• our strategy: reduce intrinsic to extrinsic

• for each point p on M , its GPS [Rustamov 07]

s(p) =
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s(T (p)) =
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φ1(T (p))√
λ1

φ2(T (p))√
λ2

...
φi(T (p))√

λi

...


T

◦ relation between s(p) and s(T (p))?

• our tool: eigenfunctions φi and eigenvalues λi of ∆M



Transforming Theorem

Theorem: For a compact manifold M , T is an intrinsic symmetry if
and only if there is a transformation R such that R(s(p)) = s(T (p))
for each point p ∈ M and R restricting to any eigenspace is a rigid
transformation.



Transforming Theorem

Theorem: For a compact manifold M , T is an intrinsic symmetry if
and only if there is a transformation R such that R(s(p)) = s(T (p))
for each point p ∈ M and R restricting to any eigenspace is a rigid
transformation.

◦ “only if” part



1. φ = φ ◦ T : positive eigenfunction
2. φ = −φ ◦ T : negative eigenfunction
3. λ is a repeated eigenvalue

oq T (q)

φ(T (p)) = φ(p)

p T (p)

φ

Eigenfunctions and Intrinsic Symmetry



1. φ = φ ◦ T : positive eigenfunction
2. φ = −φ ◦ T : negative eigenfunction
3. λ is a repeated eigenvalue

p T (p)

oq T (q)

φ(T (p))φ(p)

φ

Eigenfunctions and Intrinsic Symmetry

reflection



1. φ = φ ◦ T : positive eigenfunction
2. φ = −φ ◦ T : negative eigenfunction
3. λ is a repeated eigenvalue

p

o

T (p)

(φ1(T (p)), φ2(T (p)))

(φ1(p), φ2(p))

φ1

φ1

φ2

φ(p)

φ2

Eigenfunctions and Intrinsic Symmetry

rotationp

T (p)
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- T is an identity ⇔ R is an identity



Transforming Theorem

Theorem: For a compact manifold M , T is an intrinsic symmetry if
and only if there is a transformation R such that R(s(p)) = s(T (p))
for each point p ∈ M and R restricting to any eigenspace is a rigid
transformation.

◦ one to one correspondence between T and R

- T is an identity ⇔ R is an identity

◦ detection of intrinsic symmetry reduced to that of extrinsic
rigid transformation

- detection of extrinsic symmetry
[Rus07, PSG06, MGP06, MSHS06]



Results

scans of a real person
(SCAPE dataset)



Limitation of Global Point Signature

• For any x, its GPS [Rus07]:

◦ global

GPSx =
(
φ1(x)/

√
λ1, φ2(x)/

√
λ2, · · · , φi(x)/

√
λi, · · ·

)
◦ not unique

- orthonormal transformation within eigenspace

- eigenfunction switching [GVL96]

courtesy of Jain and Zhang
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Heat Kernel Signature

◦ HKSx : R+ → R+

• isometric invariant

• informative

• multi-scale

◦ {HKSx}x∈M characterizes almost all shapes up to isometry.

• define HKS for any point x as a function on R+:
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∫
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Heat Diffusion Process

• how heat diffuses over time

f
Ht(f) =?

o t

• heat kernel kt(x, y) : R+ ×M ×M → R+

◦ heat transferred from y to x in time t

x y

◦ Htf(x) =
∫
M
kt(x, y)f(y)dy

◦ kt(x, y) =
∑
i e
−λitφi(x)φi(y)



Heat Kernel

• characterize shape up to isometry

◦ T : M → N is isometric iff kt(x, y) = kt(T (x), T (y)).

◦ heat diffusion process governed by heat equation.

- ∆Mu(t, x) = − ∂u(t,x)
∂t

◦ heat kernel recovers geodesic distances.

- d2M (x, y) = −4 limt→0 t log kt(x, y)

• generate a Brownian motion on a manifold.



Heat Kernel

• multi-scale

x x x x x
t = 0: δ funct t→∞: const funct

· · · · · ·

t

◦ for any x, a family of functions {kt(x, ·)}t

◦ local features in small t’s; global summaries in big t’s



Heat Kernel

• multi-scale

x x x x x
t = 0: δ funct t→∞: const funct

· · · · · ·

t

◦ for any x, a family of functions {kt(x, ·)}t

◦ local features in small t’s; global summaries in big t’s

• however, {kt(x, ·)}t’s complexity is extremely high

◦ difficult to compare {kt(x, ·)}t with {kt(x′, ·)}t
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• HKS is the restriction of {kt(x, ·)}t to the temporal domain

◦ HKSx : R+ → R+ by HKSx(t) = kt(x, x)
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Heat Kernel Signature

• HKS is the restriction of {kt(x, ·)}t to the temporal domain

◦ HKSx : R+ → R+ by HKSx(t) = kt(x, x)

◦ informative?

◦ concise and commensurable

◦ multi-scale

◦ isometric invariant
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Informative Theorem. If the eigenvalues of M and N are
not repeated, a homeomorphism T : M → N is isometric iff
kMt (x, x) = kNt (T (x), T (x)) for any x ∈M and any t > 0.

• {HKSx}x∈M is informative
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Informative Theorem. If the eigenvalues of M and N are
not repeated, a homeomorphism T : M → N is isometric iff
kMt (x, x) = kNt (T (x), T (x)) for any x ∈M and any t > 0.

• {HKSx}x∈M is informative

◦ almost all shapes have no repeated eigenvalues [BU82]



Heat Kernel Signature

◦ the theorem fails if there are repeated eigenvalues

Informative Theorem. If the eigenvalues of M and N are
not repeated, a homeomorphism T : M → N is isometric iff
kMt (x, x) = kNt (T (x), T (x)) for any x ∈M and any t > 0.

• {HKSx}x∈M is informative

◦ almost all shapes have no repeated eigenvalues [BU82]

fails! fails?



Relation to Curvature

• the polynomial expansion of HKS at small t:

HKSx(t) = kt(x, x) = (4πt)−d/2(1 + 1
6
s(x)t+O(t2))

plot of kt(x, x) for a fixed t



Relation to Diffusion Distance

• diffusion distance [Laf04]

◦ eccentricity in terms of diffusion distance

d2t (x, y) = kt(x, x) + kt(y, y)− 2kt(x, y)

ecct(x) =
1

AM

∫
M

d2t (x, y)dy

= kt(x, x) +HM (t)− 2

AM
,

- ecct(x) and kt(x, x) have the same level sets,
in particular, extrema points

- shape segmentation [dGGV08]



Multi-Scale Matching

scaled HKS: kt(x,x)∫
M

kt(x,x)dx



Multi-Scale Matching



Multi-Scale Matching

maxima of kt(x, x) for a fixed t.



Thank you for your attention

Questions?



Results



Computation

• Laplace-Beltrami Operator:

◦ based on its eigenfunctions and eigenvalues

kt(x, y) =
∑
i e
−λitφi(x)φi(y)

⇒ HKSx(t) = kt(x, x) =
∑
i e
−λitφ2

i (x)

◦ build the discrete Laplace operator L = A−1W [BSW08]

• discrete case:

◦ solve Wφ = λAφ

◦ compute HKSx(t) =
∑
i e
−λitφ2

i (x)



Page Title

◦ second level bulletin

• first level bulletin

- third level bulletin


