Lecture 8
Mathematics of Data:
ISOMAP and LLE
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Johin Dewey

If knowledge comes from the impressions
made upon us by natural objects, it is
impossible to procure knowledge without
the use of objects which impress the
mind.

Democracy and Education: an introduction to
the philosophy of education, 1916




Matlab Dimensionality
Reduction Toolbox

 http://homepage.tudelft.nl/19j49/

Matlab Toolbox for Dimensionality Reduction.html

* Math.pku.edu.cn/teachers/yaoy/Spring2011/matlab/drtoolbox

Principal Component Analysis (PCA), Probabilistic PC

Factor Analysis (FA), Sammon mapping, Linear Discriminant Analysis (LDA)
Multidimensional scaling (MDS), Isomap, Landmark Isomap

Local Linear Embedding (LLE), Laplacian Eigenmaps, Hessian LLE, Conformal Eigenmaps
Local Tangent Space Alignment (LTSA), Maximum Variance Unfolding (extension of LLE)
Landmark MVU (LandmarkMVU), Fast Maximum Variance Unfolding (FastMVU)

Kernel PCA

Diffusion maps



Recall: PCA

* Principal Component Analysis (PCA)
X,.=[X X, .. X,
EigenValue Decomposition of X X7
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One Dimensional
Manifold




Recall: MDS

* Given pairwise distances D, where D; = duz, the

squared distance between point i andj
— Convert the pairwise distance matrix D (c.n.d.) into the dot
product matrix B (p.s.d.)
* B;(a) =-.5H(a) D H'(a), Holder matrix H(a) = I-1a’;
* a=1: B;=-5(D;-Dy—Dy)
Pesin $p0280,

t=1 s,t=1
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— Eigendecomposition of B = YY?

If we preserve the pairwise Euclidean
distances do we preserve the structure??



Nonlinear Manifolds..

PCA and MDS see the Euclidean
distance

What is important is the geodesic distance

»
»

Unfold the manifold

'




Intrinsic Description..

* To preserve
structure, preserve
the geodesic
distance and not the

Euclidean distance.




Two Basic Geometric Embedding
Methods

« Tenenbaum-de Silva-Langford Isomap Algorithm
— Global approach.
— On a low dimensional embedding

» Nearby points should be nearby.
« Faraway points should be faraway.

« Roweis-Saul Locally Linear Embedding Algorithm

— Local approach
* Nearby points nearby



Isomap

« Estimate the geodesic distance between faraway points.
« For neighboring points Euclidean distance is a good
approximation to the geodesic distance.
« For faraway points estimate the distance by a series of short hops
between neighboring points.
— Find shortest paths in a graph with edges connecting
neighboring data points

Once we have all pairwise

geodesic distances use classical
metric MDS




Isomap - Algorithm

Determine the neighbors.
— All points in a fixed radius.
— K nearest neighbors
Construct a neighborhood graph.
— Each point is connected to the other if it is a K nearest neighbor.
— Edge Length equals the Euclidean distance
Compute the shortest paths between two nodes
— Floyd’s Algorithm (O(N?))
— Dijkstra’s Algorithm (O(kN?logN))
Construct a lower dimensional embedding.
— Classical MDS



Isomap
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Residual Variance

Residual variance
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ISOMAP on Alanine-dipeptide

(JoXé) Figure 1
File Edit View Insert Tools Desktop Window Help
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3-D Isomap Embedding of 3900 Landmarks with k=10 NN
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Isomap dimensionality

ISOMAP 3D embedding with RMSD metric on 3900 Kcenters



Theory of ISOMAP

ISOMAP has provable convergence guarantees;

Given that {x;} is sampled sufficiently dense, ISOMAP
will approximate closely the original distance as
measured in manifold M;

In other words, actual geodesic distance
approximations using graph G can be arbitrarily
good;

Let’s examine these theoretical guarantees in more
detail ...



Possible Issues

» It is not immediately obvious that G should give a good
approximation to geodesic distances.

» Degenerate cases could lead to zig-zagging behavior that could
add a significant amount of overhead.




Two step approximations

» Convergence proof hinges on the idea that we can approximate
geodesic distance in M by short Euclidean distance hops.

Let’s define the following for two points x,y € M:
du(x, y) = inf{/ength(~)}
da(X,y) = m,in(||x0 = X[+ .. A [[Xp—1 — Xpl])

ds(x,y) = m,ln(dM(Xoa)ﬁ) + o du(Xp—1, Xp))

where ~ varies over the set of smooth arcs connecting xtoy in M and
P varies over all paths along the edges of G starting at data point
X = Xp and ending at y = x,.

» We will show dy =~ dg and ds =~ dg, which will imply the desired
result that dg ~ d.



Proposition 1. We have the inequalities:

du(z,y) < ds(z,y)
da(z,y) < ds(z,y)

Proof. The first expression is just the triangle inequality for the metric d,,.
The second inequality holds because the Euclidean distances ||z; — x;;1|| are
smaller than the arc-length distances dys(z;, z;+1). O



Dense-sampling Theorem
[Bernstein, de Silva, Langford, and
Tenenbaum 2000]

Theorem 1: Let ¢, > 0 with 46 < ¢. Suppose G contains all
edges e = (x, y) for which dy(x, y) < e. Furthermore, assume
for every point m € M there is a data point x; such that

du(m, x;) < ¢ (6-sampling condition).

Then for all pairs of data points x,y we have:

du(x,y) < ds(x,y) < (1+46/e)du(x,y)



Proof

Proof of Theorem 1

du(x,y) < ds(x,y) < (1+46/e)du(x,y)
Proof:

» The left hand side of the inequality follows directly from the
triangle inequality.

» Let v be any piecewise-smooth arc connecting x to y with
¢ = length(~).

» If £ < e — 26 then x and y are connected by an edge in G
which we can use as our path.



Proof

Proof (cont'd)

» If / > ¢ — 26 then we can write ¢ = {p + ({1 + ...+ 1) + {o Where
(1t=ec—20and e — 20 > ly > (e — 20)/2.

» This splits up arc ~ into a sequence of points
Y0 = X.71....,7p = Y. Each point ~; lies within a distance ¢ of a
sample data point x;. Claim: The path xx1xz ... xp_1y satisfies
our requirements.

am(Xi, Xiv1) < dm(Xi,vi) + dm(vis viet) + dm(Fiets Xie1)
<o+t +0
=

= l1¢/(e — 26)



Proof

Proof (contd)

» Similarly du(x, x1) < foe/(e — 26) < ¢ and the same holds for
dM(xp—1 ) y)

du(Xo, X1) + ... + du(Xp—1, Xp) < le/(e — 20)
< (1 +4d/¢)

» The last inequality utilizes the fact that 1/(1 — t) < 1 + 2t for
0<t</2

» Finally, we take the inf over all v giving ¢ = du(x, y).

» Thus, we see that dg =~ dj arbitrarily well given both the graph
construction and j-sampling conditions.



The Second Approximation

d‘g%d(;

» We would like to now show the other approximate equality:
ds =~ dg. First let’'s make some definitions:

1. The minimum radius of curvature ry = ro(M) is defined by

L = max, ¢ ||7"(t)|| where v varies over all unit-speed

p
goeodesics in M and t is in the domain D of ~.
> Intuitively, geodesics in M curl around ’less tightly’ than
circles of radius less than rp(M).
2. The minimum branch separation sy = sp(M) is the largest
positive number for which ||x — y|| < sp implies

du(x,y) < nry forany x,y € M.

Lemma: If v is a geodesic in M connecting points x and y, and if
¢ = length(vy) < 7ry, then:

2rpsin(4/2n) < ||x —y| < ¢



Remarks

» We will take this Lemma without proof as it is somewhat
technical and long.

» Using the fact that sin(t) > t — t3/6 for t > 0 we can write
down a weakened form of the Lemma:

(1 - £2/24r5)0 < [|Ix — y|| < ¢

» We can also write down an even more weakened version
valid for ¢ < 7 ry:

(2/m)e < |lx—y| < ¢

» We can now show dg ~ ds.



Theorem 2 [Bernstein, de Silva,
Langford, and Tenenbaum 2000]

Theorem 2: Let A\ > 0 be given. Suppose data points
Xi, Xji11 € M satisfy:

Suppose also there is a geodesic arc of length ¢ = dy(x;, Xj1.1)
connecting x; to x;. 1. Then:

(T =A< X = Xia]] < £



Proof

Proof of Theorem 2

» By the first assumption we can directly conclude ¢ < 7rp.

» This fact allows us to apply the Lemma using the weakest form
combined with the second assumption gives us:

/< (7‘(‘/2) HX,‘ — Xjt1 H < I’o\/24)\

» Solving for ) in the above gives: 1 — X\ < (1 — ¢2/24r5). Applying
the weakened statement of the Lemma then gives us the desired
result.

» Combining Theorem 1 and 2 shows dj, = dg. This leads us then
to our main theorem...



Main Theorem

[Bernstein, de Silva, Langford, and

Tenenbaum 2000]

Theorem 1: Let M be a compact submanifold of R” and let {x;} be a finite set
of data points in M. We are given a graph G on {x;} and positive real
numbers A\, A2 < 1 and 4, e > 0. Suppose:

1.
2.

6.

G contains all edges (x;, x;) of length ||x; — x;|| < e.

The data set {x;} statisfies a 6-sampling condition — for every point
m € M there exists an x; such that dy(m, x;) < ¢.

M is geodesically convex — the shortest curve joining any two points on
the surface is a geodesic curve.

e < (2/m)rv24)\1, where ry is the minimum radius of curvature of M —

L = max,  ||v”(t)|| where ~ varies over all unit-speed geodesics in M.

o

. € < Sp, Where sy is the minimum branch separation of M — the largest

positive number for which ||x — y|| < so implies du(x,y) < 7r.
0 < )\26/4.

Then the following is valid for all x, y € M,

(1 =M)du(x,y) < da(x,y) < (1 + A2)du(x,y)



Probabilistic Result

» So, short Euclidean distance hops along G approximate well actual
geodesic distance as measured in M.

» What were the main assumptions we made? The biggest one was the
d-sampling density condition.

» A probabilistic version of the Main Theorem can be shown where each
point x; is drawn from a density function. Then the approximation
bounds will hold with high probability. Here’s a truncated version of what
the theorem looks like now:

Asymptotic Convergence Theorem: Given A\, A2, u > 0 then for density
function « sufficiently large:

dG(Xa.y)
1T < =22 14\
"= du(x,y) T :

will hold with probability at least 1 — u for any two data points x, v.



A Shortcoming of ISOMAP

* One need to compute pairwise shortest path
between all sample pairs (i,))

— Global
— Non-sparse
— Cubic complexity O(N3)



Locally Linear Embedding

manifold is a topological space which is locally Euclidean.”

Fit Locally, Think Globally




Fit Locally...

We expect each data point and its

‘ ° A @ Select neighbors neighbours to lie on or close
o °° o- 2. to a locally linear patch of the
e o o manifold.
0 ® .
° Xio ) Each point can be written as a
° o linear combination of its
0 neighbors.
0o (6} 0 .
o o The weights choosen to
A minimize the reconstruction
\ @ Error.
Reconstruct with
linear weights
£ 2
° miny | Xi— ) WiiX; | (1)
0 )
=1
o ° Q | ,»"’. ° J

Derivation on board



Important property...

* The weights that minimize the reconstruction errors

are invariant to rotation, rescaling and translation of
the data points.

— Invariance to translation is enforced by adding the
constraint that the weights sum to one.
 The same weights that reconstruct the datapoints in

D dimensions should reconstruct it in the manifold
in d dimensions.

— The weights characterize the intrinsic geometric properties
of each neighborhood.



Think Globally...

‘ oo o. 00..3--@) Select neighbors
o o \'\\ —_—
A . Yaxn = [Y1|Y2l...|YN]
o L
Qo e O o
. o o
Reconstruct with
linear weights

-
-
-
-
-
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-
------

Map to embedded coordinates




Algorithm (K-NN)

* Local fitting step (with centering):
— Consider a point x;
— Choose its K(i) neighbors n; whose origin is at x;

— Compute the (sum-to-one) weights w; which minimizes

K(i)

X, = 2wy,
j=1

* Contruct neighborhood inner product: C; = <77j,77k>

2
W(w) = : Ewij=1, x, =0
J

* Compute the weight vector w;=(w;), where 1 is K-vector of all-
one and A is a regularization parameter

w, =(C+Al)1

* Then normalize w;to a sum-to-one vector.



Algorithm (K-NN)

* Local fitting step (without centering):
— Consider a point x;
— Choose its K(i) neighbors x;

— Compute the (sum-to-one) weights w; which minimizes

K(i) 2

j=1

() -

* Contruct neighborhood inner product: C; = <17j,77k>
» Compute the weight vector w=(w,), where v, =(n,, x,)

_ + _ K (i)
w, =C"v, v, —(vik)ER



Algorithm continued

* Global embedding step:
w,, JENG)

0, otherwise
— Compute d-by-N matrix Y which minimizes

p(Y)=>

i

— Construct N-by-N weight matrix Ww,. =

)

2

=YUI-W)' I-W)Y"

N
Y, - EWUY]‘
j=1

 Compute: B=I-W) (I-W)
* Find d+1 bottom eigenvectors of B, v,v, ,...,V,. 4
* Let d-dimensional embedding Y =[ v, ,v, 5,.-.V, 4]



Remarks on LLE

Searching k-nearest neighbors is of O(kN)

W is sparse, kN/N”A2=k/N nozeros

W might be negative, additional nonnegative
constraint can be imposed

B=(I-W)'(I-W) is positive semi-definite (p.s.d.)

Open Problem: exact reconstruction condition?
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Summary..

ISOMAP

LLE

Do MDS on the geodesic distance
matrix.

Model local neighborhoods as
linear a patches and then embed
in a lower dimensional manifold.

Global approach

Local approach

Might not work for nonconvex
manifolds with holes

Nonconvex manifolds with holes

Extensions: Landmark, Conformal
& Isometric ISOMAP

Extensions: Hessian LLE,
Laplacian Eigenmaps etc.

Both needs manifold finely sampled.




Landmark (Sparse) ISOMAP

ISOMAP out of the box is not scalable. Two bottlenecks:

» All pairs shortest path - O(kN? log N).
» MDS eigenvalue calculation on a full NxN matrix - O(N?).

» For contrast, LLE is limited by a sparse eigenvalue computation -
O(dN?).

» Landmark ISOMAP (L-ISOMAP) Idea:

» Use n << N landmark points from {x;} and compute a n x N
matrix of geodesic distances, D, from each data point to the
landmark points only.

» Use new procedure Landmark-MDS (LMDS) to find a Euclidean
embedding of all the data — utilizes idea of triangulation similar to
GPS.

» Savings: L-ISOMAP will have shortest paths calculation of
O(knNlog N) and LMDS eigenvalue problem of O(n*N).

v



Landmark MDS (Restriction)

1. Designate a set of n landmark points.

2. Apply classical MDS to the n x n matrix A, of the squared distances between
each landmark point to find a d-dimensional embedding of these n points. Let L
be the d x n matrix containing the embedded landmark points constructed by
utilizing the calculated eigenvectors v; and eigenvalues ;.

1
g 3
N —_
<!
N




LMDS (Extension)

3. Apply distance-based triangulation to find a d-dimensional embedding of all N
points.

> Letdy,...,dn be vectors of the squared distances from the i-th landmark
to all the landmarks and let §,, be the mean of these vectors.

> Let 5y be the vector of squared distances between a point x and the

landmark points. Then the i-th component of the embedding vector for yx
is:

1‘7’T(5* 5,)
2V "

> It can be shown that the above embedding of yx is equivalent to projecting
onto the first d principal components of the landmarks.

4. Finally, we can optionally choose to run PCA to reorient our axes.

Yx =



Landmark Choice

How many landmark points should we choose?...

d + 1 landmarks are enough for the triangulation to locate each point uniquely,
but heuristics show that a few more is better for stability.

Poorly distributed landmarks could lead to foreshortening — projection onto the
d-dimensional subspace causes a shortening of distances.

Good methods are random OR use more expensive MinMax method that for
each new landmark added maximizes the minimum distance to the already
chosen ones.

Either way, running L-ISOMAP in combination with cross-validation techniques
would be useful to find a stable embedding.




Further exploration yet...

 Hierarchical landmarks: cover-tree
* Nystrom method



L-TSOMAP Examples

Original points L-lsomap: k=8 L-Isomap: k=8 L-Isomap: k=8 L-lsomap: k=8

20 landmarks 10 landmarks 4 landmarks 3 landmarks
- : b 1
% p ‘ .
Swiss roll embedding LLE: k=18 LLE: k=14 LLE: k=10 LLE: k=6



Generative Models in Manifold Learning

INPUT
N\ N SEEK
f ‘ f THIS
AN
High-dimensional space 4
HIDDEN OUTPUT

B — &7

Low-dimensional space Low-dimensional space



Conformal & Isometric Embedding

Y d-dimensional domain in Euclidean space RP
f:Y—> RP smooth embedding

Recover Y and f based on a given set of z; Iin
RP.

f is an isometric embedding if f preserves in-
finitesimal lengths and angles.

f i1s a conformal embedding if f preserves in-
finitesimal angles.

At every point y there is a scalar s(y) > 0 such
that the infintesimal vectors at y get magnified
in length by a factor s(y).



Isometric and Conformal

* [sometric mapping
— Intrinsically flat manifold

— Invariants
 Geodesic distances are reserved.
* Metric space under geodesic distance.

 Conformal Embedding
— Locally isometric upto a scale factor s(y)
— Estimate s(y) and rescale.
— C-lsomap
— Original data should be uniformly dense



Isometric Embedding
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Conformal Embedding
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Linear, Isometric, Conformal

» If fis a linear isometry f : R — RP then we can simply use PCA or
MDS to recover the d significant dimensions — Plane.

» If f is an isometric embedding f : Y — RP then provided that data
points are sufficiently dense and Y C R is a convex domain we can
use ISOMAP to recover the approximate original structure — Swiss Roll.

» If f is a conformal embedding f : Y — RP then we must assume the
data is uniformly densein Y and Y C R is a convex domain and then
we can successfuly use C-ISOMAP — Fish Bow!.

(a)




Conformal Isomap

» Idea behind C-ISOMAP: Not only estimate geodesic
distances, but also scalar function s(y).

» Let u(i) be the mean distance from x; to its k-NN.

» Each y; and its k-NN occupy a d-dimensional disk of radius
r —r depends only on d and sampling density.

» f maps this disk to approximately a d-dimensional disk on M
of radius s(y;)r — u(i) o< s(y;).

» u(F) is a reasonable estimate of s(y;) since it will be off by a
constant factor (uniform density assumption).



C-Isomap

» We replace each edge weight in G by ||x; — x;|| /+/p(f)p(j)-
Everything else is the same.

» Resulting Effect: magnify regions of high density and shrink
regions of low density.

» A similar convergence theorem as given before can be shown
about C-ISOMAP assuming that Y is sampled uniformly from a
bounded convex region.



C-Isomap Example I

We will compare LLE, ISOMAP, C-ISOMAP, and MDS on toy datasets.

Conformal Fishbowl: Use stereographic projection to project points
uniformly distributed in a disk in R® onto a sphere with the top removed.

Uniform Fishbowl: Points distributed uniformly on the surface of the
fishbowl.

Offset Fishbowl: Same as conformal fishbow! but points are sampled in
Y with a Gaussian offset from center.

conformal fishbowl uniform fishbowl offset fishbowl




C-Isomap Example I

conformal fishbowl uniform fishbowl offset fishbowl

C-lsomap: k=15 C-lsomap: k=15 C-lsomap: k=15




C-Isomap Example IT

» 2000 face images were randomly generated varying in distance and
left-right pose. Each image is a vector in 16384-dimensional space.

» Below shows the four extreme cases.

» Conformal because changes in orientation at a long distance will have a
smaller effect on local pixel distances than the corresponding change at
a shorter distance.



C-Isomap Example IT

face images

Isomap: k=15 C-lsomap: k=15 LLE: k=15
S - ?Hj;. b
Neft A K h
*::g £ ; 0, Y a' = ‘lﬁ “r
b - P .l'
W

» C-ISOMAP separates the two intrinsic dimensions cleanly.
» ISOMAP narrows as faces get further away.
» LLE is highly distorted.



Remark

e C-Isomap is similar to Isomap, but the
graph weights are renormalised.

 Suitable when observed effect of parameter
variation is not constant over the manifold.




Recap and Problems

LLE ISOMAP
Approach Local Global
Isometry | Most of the time, covariance distortion Yes
Conformal No Guarantees, but sometimes C-ISOMAP
Speed Quadratic in N Cubic in N, but L-ISOMAP

» How do LLE and L-ISOMAP compare in the quality of their output on
real world datasets? — can we develop a quantitative metric to evaluate

them?

» How much improvement in classification tasks do NLDR techniques
really give over traditional dimensionality reduction techniques?

» Is there some sort of heuristic for choosing k? — Possibly could we
utilize heirarchical clustering information in constructing a better graph

G?

» Lots of research potential...
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