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Time Series Analysis in
Molecular Dynamics

Dataset: Multiple trajectories with a lot of conformations.
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Recall

* Build up Microstates:

— k-center

— cover-tree (CHEN, Ying: last lecture)
e Build up Macrostates:

— Lumpability of Markov chains

— Spectral clustering for lumping

— Nystrom method for denoising

e Bayesian Inference for MSM (this lecture)



Bayesian Inference for
(reversible)

Markov Models



Reference

* Diaconis and Rolle, Bayesian Analysis for Reversible Markov Chains, Ann.
Stat. 34(3): 1270-1292, 2006.

e Sergio Bacallado, John D. Chodera, and Vijay Pande, Bayesian comparison
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Bayesian Inference in a nutshell

* Let

— M: model

— D: data

— P(D): probability of data D

— P(M): prior probability of model M

— P(D|M): likelihood to generate D by M

— P(M|D): posterior probability of M given Data (evidence)
* Bayesian Theorem:

P(D| M)P(M)
P(D)

P(M D) =



Bayesian Model Comparison

* Given 2 models
— M,, M,: model
— D: data
 Which model better explains the data?

* Bayesian factor:

P(M,1D) P(DIM)P(M,)
P(M,\D)y P(DIM,P(M,)




Bayesian Model Comparison

* |f the model defines a distribution on {M}
parametrized by a random variable B, we can

write this

P(M, | D) f doP(D

6,M)P(O|M,)

P(M,\D) [ dOP(D

0,.M,)P(O|M.)

likelihood prior

All we need is generative models and good priors for M!



Examples

e D: observe a time series
—01110001010001101
—ATACGGCTAGCATCG

* From what model are the sequences
generated?
— M,: Bernoulli model
— M,: a general Markov model P(x,:x, ;)
— Mj;: a reversible Markov model P(x;:x, ), T;P;=TuP;
— M,: high order Markov models...



Markov State Models in
Molecular Dynamics

The configuration space 1s decomposed

into non-overlapping stat Define transition

probabilities between states

Py Do o Dis|
T(t) = p.21 P
| Psi Pss |

We can extract long time dynamics from MSMs built from short simulations

P(nt) =[T ()] P(Q) Ihetimeis coarse-grained

InT



Hidden Markov Models in
Molecular Dynamics

* Define
— X: configuration space

— Y: microstate space

— Z: macrostate space j

— S: X ->Y splitting map of X into
microstate space

— L:Y ->Z lumpping map of Y into 0
macrostate space

— T: ZxZ -> R, Markov transition v
matrix on Z, T; is transition @
probability from macrostate i to
J

— ©:Z->Y, a multinomial choice
of microstate within macrostate

Macrostates

=@

v

-

Microstates
observations

1. Given a microstate sequence, which lumping L is the best?
2. Are high order Markov Chains better in explaining the data?



Models Parameters

* For an observed microstate sequence:
— Y Yy Yz Yo oo
* The generative model parameters are
— T(z, =L(Y,4), z,=L(y,)): markov transition matrix
— O: multinomial choice of y, in z=L(y,)
* They are independent:
P(M1ly,) = [ dTdoP(y, I7.6,M)P(T.01 M)

likelihood prior
= [dTP(z, IT,M)P(T I M)+ [ dOP(y,1z,.0,M)P(6 | M)

MacrostateMarkovTransition MicrostateSelection




What kind of Priors?

* A good prior should be
— Reflect our prior knowledge about the model

* Every transition is possible

* Reversibility (detailed balance, i.e., mT;=mT;)
— Easy to compute posterior

P01 D,M) « P(D10,M)P(6,M)
— Analytic form for P(D| M), e.g.

P(M1y,) = [dTP(z, \T,M)P(T1M)* [ dOP(y, z,,0,M)P(O|M)

' '
MacrostateMarkovTransition MicrostateSelection




Dirichlet Prior for
Multinomial Models

* For the multinomial models 6, Dirichlet Prior is
the perfect prior,
— Conjugacy: The posterior P(B|D,M) is also a
Dirichlet distribution, straightforward to obtain
from prior and data.

— Analytical integration: The integral for P(D| M) is a
simple function of the data and the prior, e.g.

P(y,1z,.M) = [dOP(y, |z,.0,M)P(0 | M)



Markov Models

* For simplicity, below we only discuss
— first order Markov models
— General Markov models (M,)
— Reversible Markov models (M,)



Why Reversible?

Reversibility greatly reduces the complexity of second-order models

Approximate number of parameters
N 1st order rev. 1st order 2nd order rev. 2nd order

2 3 1 5! 8

3 15 25 65 125
10 29 100 005 1000
15 120 225 1695 3375

20 210 400 4010 8000



General Markov Models

* General Markov Models
— For each row, T(i,*) is a multinomial distribution
— Independent Dirichlet Prior for each row

— However, this may violates the reversible Markov
chain assumption

— So we need a prior restricted on reversible Markov
chains

P. Diaconis and S. Rolles. Bayesian Analysis of Reversible Markov Chains.
Annals of Statistics, no. 3, 1270-1292, 2006.



Reversible Markov Models

* Apply the conjugate prior for reversible Markov chains to compute
Bayesian factors between different models {M1, M2, ...}.

* Numerical trick when the data are parallel trajectories.
* Pros:
— Can compare models with different numbers of macrostates
— Easier to interpret than heuristics.
— Can find best model among bad models (adaptive sampling).
* Cons:
* Not an absolute validation of Markovity.

* Can find the best model in {M1, M2, ...}, but all models might be
poor.

S. Bacallado, J. Chodera, and V. Pande. Bayesian comparison of Markov models of molecular
dynamics with detailed balance constraint. J. of Chem. Phys. 131:045106, 2009.



de Finetti's Theorem

Let x = {xy, 29, ...} be an infinite sequence of
random variables valued 0 or 1. Let two
sequences be equivalen, x ~ y, if one is a finite
permutation of the other. Then the probability of
a sequence is invariant for all equivalence classes:

r~y = P(x)=P(y) : FEzxchangeability

‘ if and only if P(zy,...,x,) is a mixture of i.i.d.

coln tosses, or

Bruno de Finetti

(1906-1985). P(:z:l, ooy L) = /dq (ql{izri=1}|(1 . q)|{z':m.,-_=0}|zw(q)

-

-
Bernoulli likelihood



Polya Urn Scheme

Texts in Seatistical Science e We have an urn with n blue balls, and m

P6|ya Ura- white balls. We pick a ball from the urn at
Mod random, and then return it along with

| another ball of the same color. What is the

distribution of this process?

e [t is easy to show that the process is
exchangeable. By de Finetti’'s theorem, it is a
mixture of Bernoulli distributions. If there
are more than 2 colors, it is a mixture of
multinomial distributions. But what is the

Hosam M. Mahmoud

)

mixing density?



The mixing density is Dirichelet
Distribution

e The probability Ppg)y, 1s a mixture of multinomials with a
Dirichlet density on the parameters:

7

Ppolya(T1,...;xp) = /d9 \f(;r.l,...,rn|9) Dir(6).

"
multinomial likelihood

e [f we are doing Bayesian inference with a multinomial likelihood,
and we choose a Dirichlet prior, then the evidence is of the form of
P Polya-

e Conclusion: The Dirichlet distribution is convenient for computing
the evidence because it is the mixing measure of an exchangeable
process.



de Finetti Theorem for Markov Chain
(Diaconis-Freeman 1980)

Let = be a recurrent process. Two sequences are equivalent, x ~ y, if
they have the same transition count matrix and initial state. Then
partial exchangeability:

r~y = P(x)= P(y)

holds if and only if the process is a mixture of Markov chains:

P(xy,...,x,) = /de(;r.l, | T) o(T).

>

"

Markov likelihood



Random Walk on Undirected Graphs:
Reversible Mark Chains

8 e A reversible Markov chain is

equivalent to a random walk on an
undirected, edge-weighted graph.

11 e The normalized edge-weights, x, can
0 Jf—4 be related to the transition matrix by:

P. Diaconis and S. Rolles. Bayesian Y T
i1

Analysis of Reversible Markov

Chains. Annals of Statistics, no. 3,

1270-1292, 2006.



Random Walk on Undirected Graphs:
Reversible Mark Chains

a \7
5 b d c
/ e An edge-reinforced random walk
d 9 1 (ERW) proceeds as follows: We take
(,\ 11 random walk on a weighted graph,
’ y— but every time we cross an edge, we
increase its weight by 1.
P. Diaconis and S. Rolles. Bayesian e Generalization of a Polya-urn scheme.
Analysis of Reversible Markov

Chains. Annals of Statistics, no. 3,

1270-1292, 2006.



Random Walk on Undirected Graphs:
Reversible Mark Chains

v

e An edge-reinforced random walk
(ERW) proceeds as follows: We take
11 random walk on a weighted graph,

6 .
f g but every time we cross an edge, we
increase its weight by 1.
P. Diaconis and S. Rolles. Bayesian e Generalization of a Polya-urn scheme.

Analysis of Reversible Markov
Chains. Annals of Statistics, no. 3,

1270-1292, 2006.



de Finetti's Theorem

e [t is easy to show that the probability
Pirw of an edge-reinforced random

a 7 walk is partially exchangeable.
5\ b é c e By de Finetti’s theorem, it is a
/ mixture of Markov chains:
a_ " 2 I
r\ 11 PERV\"'(II:\"'?I'H) -
) f [7] |
/dT\f(:m, ...,'r.n|T)lcp(T).

Markov likelihood

P. Diaconis and S. Rolles. Bayesian

Analysis of Reversible Markov e If we do inference on a reversible
Chains. Annals of Statistics, no. 3, Markov chain, with a pI‘iOI‘ @(T) on
1270-1292, 2006. the transition matrix, then the

evidence is of the form Prrw.



A Conjugate Prior for Reversible
Markov Chains

« P(T) is a conjugate prior over reversible
Markov Chains

* ®(T) is characterized by a initial vertex v,, and
initial weight assignment on G=(V,E), a:E->
[0,°°) P S

(@, +1)/2

a3 Jdet(A(x))
Xy ::t.v : ].-5 Vil X,

— det(A(x)) and normalization factor Z , , both have
closed forms



A Conjugate Prior for Reversible
Markov Chains

» Posterior of ¢, ,(x) after observing
(Xg=Vg, Xy, X, =V,,) Will be

cI)vn,a+ k(e)(X)

* where k(e) counts the number of visits on e

* We could extend this to higher order Markov
chains



Python codes: msmBayes

Sergio Bacallado, Stanford

Not publically available

For class purpose, at our subdirectory

e ./msmBayes/

| translate a few matlab codes

— ./mat
— ./mat
— ./mat

d
d
d

o/MultinomialLogLik.m
v/MarkovChainLogLik.m

n/RevChainLogLik.m



Software: MSMBuilder

Simtk.org: MSMBuilder: Overview

. <[ » | [ + [EInttps://simtk.org/home/msmbuilder 3 ¢ | (Q- Bournoulli
I e e O I I O O OX @softonic ~ | Q- Bournoull CEEENTED - { ) LocaiNews @Iy A% @ [ Loain [+ T Sl o7 m—p— | » | [+
Appletl  FEBR SEEM WMy AIv
== ——

Search S|

T ——
Roout simtcors | I €D
How & Contributa | Advanced Search

 Greg Bowman, et. al. I

Geography of use

Team

Downloads Undersianding a Peopet
o . molecuie’s

i Gnamics requires
° Wiki e oot the f’v
et metastable, i3
. [ ] Publications or long lived, states 4
ot Woceupios and
News then determining the Greg Bowman *
° ° Advanced rates for transitioning Contact

between these states.
Markov State Models ( oo
Downloads & (MSMs) provide a o°

natural framework for
Source Code accomplishing this
msmbuilder objective. To facilitate

This project us of MSMs we have Kyle Beauchamp

L]
SMs we hav
Simti's Subversion  developed the Contact
code repository, but  MSMBuilder package. .
has restricted access to  Besides building MSMs, the code includes tools for verifying that  Driving Biological
project members. the resulting model is Markovian as well as analyzing and Probl,

ems
visualizing the model. For example, it is possible to determine the  This project is part of

populations of each state with error-bars and to extract Protein Foldin.

News representative conformations for each state so that the systems  Coc-id0d
dynamics may be visualized. The code is written in object oriented RNA Folding

MSMBuilder 1.0 C++ and Python 50 new developments may be incorporate

released rapidly.

Greq Bowman awarded
the 2010 Kuhn
Paradiam Shift Award

* Implements =

The video embedded below provides a more thorough introduction
to the motivation for and use of MSMBuilder.

— Kcenter, Kmeans splitting
— Spectral lumping
— Bayesian Factor



Projects

* Design a time series
 Molecular Dynamics
— ./data/alanine_dipeptide_phi-psi.mat
— ./data/confs_3D.txt
— ./data/alanine_dipeptide_traj coords.mat
— ./data/T5000.mat
* Molecular Motor

— ./data/motor_stepsize.txt



Molecular Motor

a
* Reference /
— Sun et al. Single-molecule stepping and : A
structural dynamics of myosin X. Nature S e 7T
Structural & Molecular Biology, 17(4): Bl ) .
485-491, 2010. (/Myosin X nsmb.pdf) J\/\/\/\/\N\
— ./data/motor_stepsize.txt records the step Co s W
sizes in Figure 3a, distributed approximately e A
by 2-mode Gaussian mixture. Is the data g j{
from 2—state Markov Model, reversible ) oLa

Markov model, or just purely random?




