聚类分析与生物分子动力学 五

姚 远 2011.3.22

Time Series Analysis in Molecular Dynamics

Dataset: Multiple trajectories with a lot of conformations.

Trajectory 2

Trajectory 3

Conformation

RoadMap

Conformations

Microstates

Macrostates

General Reversible

$$T(\tau) = \begin{bmatrix} p_{11} & p_{12} & \cdots & p_{15} \\ p_{21} & p_{22} & & & \\ \vdots & & \ddots & & \\ p_{51} & & & p_{55} \end{bmatrix}$$

Chodera. et. al. *J. Chem. Phys.* 2007
Noé. et.al. *J. Chem. Phys.* 2007
Deuflhard and Weber, *ZIB-report*, 2003
Weber, *ZIB-report*, 2004
Bowman, Huang, and Pande. *Methods* 2009.
Barcalado, et al. *J. Chem. Phys.* 2009

Recall

- Build up Microstates:
 - k-center
 - cover-tree (CHEN, Ying: last lecture)
- Build up Macrostates:
 - Lumpability of Markov chains
 - Spectral clustering for lumping
 - Nystrom method for denoising
- Bayesian Inference for MSM (this lecture)

Bayesian Inference for (reversible) Markov Models

Reference

- Diaconis and Rolle, *Bayesian Analysis for Reversible Markov Chains*, Ann. Stat. 34(3): 1270-1292, 2006.
- Sergio Bacallado, John D. Chodera, and Vijay Pande, Bayesian comparison of Markov models of molecular dynamics with detailed balance constraint.
 J. of Chem. Phys. 131:045106, 2009
- Bacallado, Bayesian Analysis of Variable-order, Reversible Markov Chains, submitted to Ann. Stat., 2010

Acknowledgement

 Part of the slides are from Sergio Bacallado in Pande group meeting at Stanford University, July 6, 2009

Outline

- 1 Bayesian Inference in a nutshell
- 2 Hidden Markov Models in MD
- 3 Polya Urn and Dirichlet Prior for Multinomial Models
- 4 Edge Reinforcement Random Walk and a Conjugate Prior for reversible Markov models
- 5 Projects

Bayesian Inference in a nutshell

- Let
 - M: model
 - D: data
 - P(D): probability of data D
 - P(M): prior probability of model M
 - P(D|M): likelihood to generate D by M
 - P(M|D): posterior probability of M given Data (evidence)
- Bayesian Theorem:

$$P(M \mid D) = \frac{P(D \mid M)P(M)}{P(D)}$$

Bayesian Model Comparison

- Given 2 models
 - $-M_1, M_2$: model
 - D: data
- Which model better explains the data?
- Bayesian factor:

$$\frac{P(M_1 \mid D)}{P(M_2 \mid D)} = \frac{P(D \mid M_1)P(M_1)}{P(D \mid M_2)P(M_2)}$$

Bayesian Model Comparison

• If the model defines a distribution on $\{M\}$ parametrized by a random variable θ , we can write this

$$\frac{P(M_1 \mid D)}{P(M_2 \mid D)} = \frac{\int d\theta P(D \mid \theta, M_1) P(\theta \mid M_1)}{\int d\theta P(D \mid \theta, M_2) P(\theta \mid M_2)}$$
likelihood

All we need is generative models and *good* priors for M!

Examples

- D: observe a time series
 - -01110001010001101
 - ATACGGCTAGCATCG
- From what model are the sequences generated?
 - M₁: Bernoulli model
 - $-M_2$: a general Markov model $P(x_t:x_{t-1})$
 - M_3 : a reversible Markov model $P(x_t:x_{t-1})$, $\pi_i P_{ij} = \pi_j P_{ji}$
 - M₄: high order Markov models...

Markov State Models in Molecular Dynamics

The configuration space is decomposed into non-overlapping states

Define transition probabilities between states

$$T(\tau) = \begin{bmatrix} p_{11} & p_{12} & \cdots & p_{15} \\ p_{21} & p_{22} & & & \\ \vdots & & \ddots & & \\ p_{51} & & & p_{55} \end{bmatrix}$$

We can extract long time dynamics from MSMs built from short simulations

$$P(n\tau) = [T(\tau)]^n P(0)$$
 The time is coarse-grained in τ

Hidden Markov Models in Molecular Dynamics

Define

- X: configuration space
- Y: microstate space
- Z: macrostate space
- S: X -> Y splitting map of X into microstate space
- L: Y -> Z lumpping map of Y into macrostate space
- T: ZxZ -> R, Markov transition matrix on Z, T_{ij} is transition probability from macrostate i to j
- Θ: Z -> Y, a multinomial choice of microstate within macrostate

- 1. Given a microstate sequence, which lumping *L* is the best?
- 2. Are high order Markov Chains better in explaining the data?

Models Parameters

For an observed microstate sequence:

$$-y_1, y_2, y_3, ..., y_t, ...$$

- The generative model parameters are
 - $-T(z_{t-1}=L(y_{t-1}), z_t=L(y_t))$: markov transition matrix
 - $-\Theta$: multinomial choice of y_t in z_t=L(y_t)
- They are independent:

$$P(M \mid y_n) = \int dT d\theta P(y_n \mid T, \theta, M) P(T, \theta \mid M)$$

$$= \int dT P(z_n \mid T, M) P(T \mid M) \bullet \int d\theta P(y_n \mid z_n, \theta, M) P(\theta \mid M)$$

$$= \int dT P(z_n \mid T, M) P(T \mid M) \bullet \int d\theta P(y_n \mid z_n, \theta, M) P(\theta \mid M)$$

$$= \int dT P(z_n \mid T, M) P(T \mid M) \bullet \int d\theta P(y_n \mid z_n, \theta, M) P(\theta \mid M)$$

$$= \int dT P(z_n \mid T, M) P(T \mid M) \bullet \int d\theta P(y_n \mid z_n, \theta, M) P(\theta \mid M)$$

$$= \int dT P(z_n \mid T, M) P(T \mid M) \bullet \int d\theta P(y_n \mid z_n, \theta, M) P(\theta \mid M)$$

$$= \int dT P(z_n \mid T, M) P(T \mid M) \bullet \int d\theta P(y_n \mid z_n, \theta, M) P(\theta \mid M)$$

$$= \int dT P(z_n \mid T, M) P(T \mid M) \bullet \int d\theta P(y_n \mid z_n, \theta, M) P(\theta \mid M)$$

What kind of Priors?

- A good prior should be
 - Reflect our prior knowledge about the model
 - Every transition is possible
 - Reversibility (detailed balance, i.e., $\pi_i T_{ij} = \pi_i T_{ji}$)
 - Easy to compute posterior

$$P(\theta \mid D, M) \propto P(D \mid \theta, M)P(\theta, M)$$

Analytic form for P(D|M), e.g.

$$P(M \mid y_n) = \underbrace{\int dT P(z_n \mid T, M) P(T \mid M)}_{Macrostate Markov Transition} \bullet \underbrace{\int d\theta P(y_n \mid z_n, \theta, M) P(\theta \mid M)}_{Microstate Selection}$$

Dirichlet Prior for Multinomial Models

- For the multinomial models θ , Dirichlet Prior is the perfect prior,
 - Conjugacy: The posterior $P(\theta|D,M)$ is also a Dirichlet distribution, straightforward to obtain from prior and data.
 - Analytical integration: The integral for P(D|M) is a simple function of the data and the prior, e.g.

$$P(y_n \mid z_n, M) = \int d\theta P(y_n \mid z_n, \theta, M) P(\theta \mid M)$$

Markov Models

- For simplicity, below we only discuss
 - first order Markov models
 - General Markov models (M₁)
 - Reversible Markov models (M₂)

Why Reversible?

Reversibility greatly reduces the complexity of second-order models

Approximate number of parameters

Ν	1st order rev.	1st order	2nd order rev.	2nd order
2	3	4	5	8
5	15	25	65	125
10	55	100	505	1000
15	120	225	1695	3375
20	210	400	4010	8000

General Markov Models

- General Markov Models
 - For each row, T(i,*) is a multinomial distribution
 - Independent Dirichlet Prior for each row
 - However, this may violates the reversible Markov chain assumption
 - So we need a prior restricted on reversible Markov chains

P. Diaconis and S. Rolles. Bayesian Analysis of Reversible Markov Chains. Annals of Statistics, no. 3, 1270-1292, 2006.

Reversible Markov Models

- Apply the conjugate prior for reversible Markov chains to compute Bayesian factors between different models {M1, M2, ...}.
- Numerical trick when the data are parallel trajectories.
- Pros:
 - Can compare models with different numbers of macrostates
 - Easier to interpret than heuristics.
 - Can find best model among bad models (adaptive sampling).
- Cons:
 - Not an absolute validation of Markovity.
 - Can find the best model in {M1, M2, ...}, but all models might be poor.
- S. Bacallado, J. Chodera, and V. Pande. Bayesian comparison of Markov models of molecular dynamics with detailed balance constraint. J. of Chem. Phys. 131:045106, 2009.

de Finetti's Theorem

Bruno de Finetti (1906-1985).

Let $x = \{x_1, x_2, ...\}$ be an infinite sequence of random variables valued 0 or 1. Let two sequences be equivalen, $x \sim y$, if one is a finite permutation of the other. Then the probability of a sequence is invariant for all equivalence classes:

$$x \sim y \implies P(x) = P(y)$$
: Exchangeability

if and only if $P(x_1,...,x_n)$ is a mixture of i.i.d. coin tosses, or

$$P(x_1, ..., x_n) = \int dq \underbrace{(q^{|\{i:x_i=1\}|}(1-q)^{|\{i:x_i=0\}|})}_{\text{Bernoulli likelihood}} \psi(q)$$

Polya Urn Scheme

- We have an urn with n blue balls, and m white balls. We pick a ball from the urn at random, and then return it along with another ball of the same color. What is the distribution of this process?
- It is easy to show that the process is exchangeable. By de Finetti's theorem, it is a mixture of Bernoulli distributions. If there are more than 2 colors, it is a mixture of multinomial distributions. But what is the mixing density?

The mixing density is Dirichelet Distribution

• The probability P_{Polya} is a mixture of multinomials with a Dirichlet density on the parameters:

$$P_{\text{Polya}}(x_1, ..., x_n) = \int d\theta \underbrace{f(x_1, ..., x_n | \theta)}_{\text{multinomial likelihood}} \text{Dir}(\theta).$$

- If we are doing Bayesian inference with a multinomial likelihood, and we choose a Dirichlet prior, then the evidence is of the form of P_{Polya}.
- Conclusion: The Dirichlet distribution is convenient for computing the evidence because it is the mixing measure of an exchangeable process.

de Finetti Theorem for Markov Chain (Diaconis-Freeman 1980)

Let x be a recurrent process. Two sequences are equivalent, $x \sim y$, if they have the same transition count matrix and initial state. Then partial exchangeability:

$$x \sim y \implies P(x) = P(y)$$

holds if and only if the process is a mixture of Markov chains:

$$P(x_1, ..., x_n) = \int dT \underbrace{f(x_1, ..., x_n | T)}_{\text{Markov likelihood}} \phi(T).$$

Random Walk on Undirected Graphs: Reversible Mark Chains

P. Diaconis and S. Rolles. Bayesian Analysis of Reversible Markov Chains. Annals of Statistics, no. 3, 1270-1292, 2006.

- A reversible Markov chain is equivalent to a random walk on an undirected, edge-weighted graph.
- The normalized edge-weights, x, can be related to the transition matrix by:

$$T_{i,j} = \frac{x_{i,j}}{x_i}.$$

Random Walk on Undirected Graphs: Reversible Mark Chains

P. Diaconis and S. Rolles. Bayesian Analysis of Reversible Markov Chains. Annals of Statistics, no. 3, 1270-1292, 2006.

- An edge-reinforced random walk (ERW) proceeds as follows: We take random walk on a weighted graph, but every time we cross an edge, we increase its weight by 1.
- Generalization of a Polya-urn scheme.

Random Walk on Undirected Graphs: Reversible Mark Chains

P. Diaconis and S. Rolles. Bayesian Analysis of Reversible Markov Chains. Annals of Statistics, no. 3, 1270-1292, 2006.

- An edge-reinforced random walk (ERW) proceeds as follows: We take random walk on a weighted graph, but every time we cross an edge, we increase its weight by 1.
- Generalization of a Polya-urn scheme.

de Finetti's Theorem

P. Diaconis and S. Rolles. Bayesian Analysis of Reversible Markov Chains. Annals of Statistics, no. 3, 1270-1292, 2006.

- It is easy to show that the probability P_{ERW} of an edge-reinforced random walk is partially exchangeable.
- By de Finetti's theorem, it is a mixture of Markov chains:

$$P_{\text{ERW}}(x_1, ..., x_n) = \int dT \underbrace{f(x_1, ..., x_n | T)}_{\text{Markov likelihood}} \phi(T).$$

• If we do inference on a reversible Markov chain, with a prior $\phi(T)$ on the transition matrix, then the evidence is of the form P_{ERW} .

A Conjugate Prior for Reversible Markov Chains

- φ(T) is a conjugate prior over reversible Markov Chains
- φ(T) is characterized by a initial vertex v₀, and initial weight assignment on G=(V,E), a:E->
 [0,∞)

$$\phi_{v_0,a}(x) := Z_{v_0,a}^{-1} \frac{\prod_{e \in E \setminus E_{loop}} x_e^{a_e - 1/2} \prod_{e \in E_{loop}} x_e^{(a_e/2) - 1}}{x_{v_0}^{a_{v_0}/2} \prod_{v \in V \setminus \{v_0\}} x_v^{(a_v + 1)/2}} \sqrt{\det(A(x))}$$

– det(A(x)) and normalization factor $Z_{v0,a}$ both have closed forms

A Conjugate Prior for Reversible Markov Chains

• Posterior of $\phi_{v0,a}(x)$ after observing $(X_0=v_0,X_1,...,X_n=v_n)$ will be

$$\Phi_{\text{vn,a+k(e)}}(x)$$

- where k(e) counts the number of visits on e
- We could extend this to higher order Markov chains

Python codes: msmBayes

- Sergio Bacallado, Stanford
- Not publically available
- For class purpose, at our subdirectory
 - ./msmBayes/
- I translate a few matlab codes
 - ./matlab/MultinomialLogLik.m
 - ./matlab/MarkovChainLogLik.m
 - ./matlab/RevChainLogLik.m

Software: MSMBuilder

- Free Python toolbox
- Greg Bowman, et. al.
- https://simtk.org/home/ msmbuilder
- Implements
 - Kcenter, Kmeans splitting
 - Spectral lumping
 - Bayesian Factor

Projects

- Design a time series
- Molecular Dynamics
 - ./data/alanine_dipeptide_phi-psi.mat
 - ./data/confs_3D.txt
 - ./data/alanine_dipeptide_traj_coords.mat
 - ./data/T5000.mat
- Molecular Motor
 - ./data/motor_stepsize.txt

Molecular Motor

Reference

- Sun et al. Single-molecule stepping and structural dynamics of myosin X. Nature Structural & Molecular Biology, 17(4): 485-491, 2010. (./Myosin X nsmb.pdf)
- ./data/motor_stepsize.txt records the step sizes in Figure 3a, distributed approximately by 2-mode Gaussian mixture. Is the data from 2-state Markov Model, reversible Markov model, or just purely random?

