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1 Diffusion Distance

Recall z; e RP,i =1,2--- ,n,
||zs — ;]2
2e

)

Wij = exp(—
W is a symmetric n X n matrix.
Let d; = X7 Wij, D = diag(d;), and P = D~'W, then P is a row-Markov matrix.
1) W is symmetric= P is reversible, i.e. there is a probability distribution 7, such that
Wipij = 7Tiji,

7 is a stationary distribution. P has n real eigenvalues {);}?_;and n independent eigenvectors {¢;}™ ; such
that
Poi = Nidi.
2) W;; > 0 = P is primitive, i.e.

1=X > |)\2| > > |)‘n|
Define diffusion map

Bi() = (o), - , X, (i)T € RM

and diffusion distance

i (wi,x5) = ||@e(wi) — ol))l

)
_ o Pl
dy; '

k

Diffusion distance depends on time scale parameter ¢ which is hard to select in applications. In this
section we introduce another closely related distance, namely commute time distance, derived from mean
first passage time. For such distances we do not need to choose the time scale t.

2 Commute Time Distance

Definition.
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1. First passage time (or hitting time): 7;; := inf(t > O|x; = j,xo = i);
2. Mean First Passage Time: T;; = ;755

3. T{; := inf(t > O|lz; = j, 7o = i), where 7,1 is also called first return time;

+ _ ot
4. T =Eirt,

where T;f is also called mean first return time.
Here E; denotes the conditional expectation for fixing initial condition zg = .

All the below will show that the (average) commute time between z; and xj, t.e. Ti; +T};, in fact leads
to an Euclidean distance metric which can be used for embedding.

Theorem 2.1. d.(z;,x;) := /T;; + T}; is an Euclidean distance metric, called commute time distance.
Proof. We will give a constructive proof that T;; 4+ T}; is a squared distance of some Euclidean coordinates
for z; and ;.

By definition, we have
Ty =Py-1+ ) Pu(T+1) (1)
k]

Let E=1-17 where 1 € R" is a vector with all elements one, T = diag(7}}). Then 1 becomes

Tt =E+PTt-T). (2)

For stationary distribution =, 77 P = P, whence we have

Tt = 71T+ 2Tt - T))
't = 1T 47Tt - 2TT
1 = T;ﬂ‘
T = L
K12 71—1'

Since T'= T+ — T/, then (1) becomes

T = E+PT-Tf
(I-P)T = E-T,
(I-D'W)T = F
(D-W)T = DF
LT = DF

where FF = E - T (;r and L = D — W is the (unnormalized) graph Laplacian. Since L is symmetric and
irreducible, we have L = Y7 ppvpvl, where 0 = pg < po < -+ < pp,vn = /|1, vy = 6p. Let
Lt =%7, H—lkykl/g, LT is called the pseudo-inverse (or Moore-Penrose inverse) of L. We can test and
verify LT satisfies the following four conditions

LYLL* = L+
LI*L = L
(LLHT = LL*

(L+L)T L+L
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From LT = D(E — T ), multiplying both sides by LT leads to
T=L'DE - LTDTf +1-47,

as 1-uT € ker(L), whence

- 1
Ty = Y Lijdi—Lfd;j- —+u
k=1 T4
wo= =y Lid+ Livol(G), j=i
k=1
T, = ZL;’,;dk - L;;vol(G) + L;'jvol(G) — ZL;kdk
b k

Note that vol(G) =Y, d; and m; = d;/vol(G) for all i.
Then
Tij + Ty = vol(G) (L, + L, —2LF). (3)
To see it is a squared FEuclidean distance, we need the following lemma.

Lemma 2.2. If K is a symmetric and positive semidefinite matrix, then

K(z,2) + K(y,y) — 2K (z,y) = d*(®(z), (y)) = (2(x), ®(2)) + (B(y), B(y)) > —2(D(x), B(y))
where ® = (¢; : i = 1,...,n) are orthonormal eigenvectors with eigenvalues p; > 0, such that K(z,y) =
> i idi(T)di(y)-

Clearly LT is a positive semidefinite matrix and we define the commute time map by its eigenvectors,

U(z;) = (\/%VQ(Z'),-" ,\/%V,L(z‘))T e R L

then L + LT — 2LF = [|W(z;) — ¥(x)))||%, and we call d,(zs,2;) = /L + L]; — 2L}, the resistance

distance.

So we have dc(z, ;) = \/T;; + Tji = \/vol(G)dy (i, x;). O

3 Comparisons between diffusion map and commute time map

Table 1: Comparisons between diffusion map and commute time map. Here x ~ y means that z and y are
in the same cluster and x ~ y for different clusters.

Diffusion Map Commute Time Map
P’s right eigenvectors L’s eigenvectors
scale parameters: t and ¢ scale: €
3, st x~y, di(z,y) = 0and z » y, di(z,y) = 00 | © ~y, de(z,y) small and z = y, d.(z,y) large?




4 Lecture 10. Diffusion Distance and Commute Time Distance

However, recently Radl, von Luxburg, and Hein give a negative answer for the last desired property
of d.(z,y) in geometric random graphs. Their result is as follows. Let X C RP be a compact set and let
k:X xX — (0,4+00) be a symmetric and continuous function. Suppose that (x;);en is a sequence of data
points drawn i.i.d. from X according to a density function p > 0 on X. Define W;; = k(z;,z;), P = D™'W,
and L = D — W. Then Radl et al. shows

1 1
lim nd,(x;,z;) = +
RN = G )
where d(z) = [y k(z,y)dp(y) is a smoothed density at x, d,(z;,z;) = % is the resistance distance.

This result shows that in this setting commute time distance has no information about cluster information
about point cloud data, instead it simply reflects density information around the two points.



