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Lecture 9. Lumpability (Metastability) and MNcut

Instructor: Yuan Yao, Peking University Scribe: Hong Cheng, Ping Qin

1 Review of Diffusion Map

Recall xi ∈ Rd, i = 1, 2, · · · , n,

Wij = exp

(
−d(xi, xj)

2

2ε

)
,

W is a symmetrical n× n matrix.

Let di =
∑n
j=1Wij and

D = diag(di), P = D−1W

and

S = D−1/2WD−1/2 = I − L, L = D−1/2(D −W )D−1/2.

Then

1) S is symmetrical, has n orthogonal eigenvectors V = [v1, v2, · · · , vn],

S = V ΛV T , Λ = diag(λi)
T ∈ Rn−1, V TV = I.

Here we assume that 1 = λ0 ≥ λ1 ≥ λ2 . . . ≥ λn−1 due to positivity of W .

2) Φ = D−1/2V = [φ1, φ2, · · · , φn] are right eigenvectors of P , PΦ = ΦΛ.

3) Ψ = D1/2V = [ψ1, ψ2, · · · , ψn] are left eigenvectors of P , ΨTP = ΛΨT . Note that φ0 = 1 ∈ Rn and
ψ0(i) = di/

∑
i d

2
i . Thus ψ0 is the same eigenvector as the stationary distribution π(i) = di/

∑
i di

(πT 1 = 1) up to a scaling factor.

Φ and Ψ are bi-orthogonal basis, i.e., φTi Dψj = δij or simply ΦTDΨ = I.

Define diffusion map

Φt(xi) = [λt1φ1(i), · · · , λtn−1φn−1(i)], t > 0.

A central question in this section is:

Why we choose right eigenvectors φi in diffusion map?

To answer this we will introduce the concept of lumpability in this lecture.
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2 Lumpability of Markov Chain

P is row stochastic matrix on V = {1, 2, · · · , n}. V has a partition Ω:

V = ∪ki=1Ωi, Ωi ∩ Ωj = ∅, i 6= j.

Ω = {Ωs : s = 1, · · · , k}.

Observe a sequence{x0, x1, · · · , xt} sampled from a Markov chain whose transition matrix Prob{xt = j :
xt−1 = i} = Pij . Relabel xt 7→ yt ∈ {1, · · · , k} by

yt =

k∑
s=1

sXΩs(xt).

Thus we obtain a sequence (yt) which is a coarse-grained representation of original sequence.

Definition (Lumpability, Kemeny-Snell 1976). P is lumpable with respect to partition Ω if the sequence {yt}
is Markovian. In other words, the transition probabilities do not depend on the choice of initial distribution
π0 and history, i.e.

Probπ0
{yt = kt : yt−1 = kt−1, · · · , y0 = k0} = Prob{yt = kt : yt−1 = kt−1} (1)

Theorem 2.1. I. (Kemeny-Snell 1976) P is lumpable with respect to partition Ω⇔ ∀Ωs,Ωt ∈ Ω, ∀i, j ∈
Ωs, P̂iΩt = P̂jΩt , where P̂iΩt =

∑
j∈Ωt

Pij .

Figure 1: Lumpability condition P̂iΩt = P̂jΩt

II. (Meila-Shi 2001) P is lumpable with respect to partition Ω and P̂ (p̂st =
∑
i∈Ωs,j∈Ωt

pij) is nonsingular
⇔ P has k independent piecewise constant right eigenvectors in span{χΩs : s = 1, · · · , k}, χ is the
characteristic function.

Example 1. Consider a linear chain with 2n nodes (Figure 2) whose adjacency matrix and degree matrix
are given by

A =


0 1
1 0 1

. . .
. . .

. . .

1 0 1
1 0

 , D = diag{1, 2, · · · , 2, 1}

So the transition matrix is P = D−1A which is illustrated in Figure 2. The spectrum of P includes two
eigenvalues of magnitude 1, i.e. λ0 = 1 and λn−1 = −1. Although P is not a primitive matrix here, it is
lumpable. Let Ω1 = {odd nodes}, Ω2 = {even nodes}. We can check that I and II are satisfied.
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Figure 2: A linear chain of 2n nodes with a random walk.

To see I, note that for any two even nodes, say i = 2 and j = 4, P̂iΩ2
= P̂jΩ2

= 1 as their neighbors are
all odd nodes, whence I is satisfied. To see II, note that φ0 (associated with λ0 = 1) is a constant vector
while φ1 (associated with λn−1 = −1) is constant on even nodes and odd nodes respectively. Figure 3 shows
the lumpable states when n = 4 in the left.

Note that lumpable states might not be optimal bi-partitions in NCUT = Cut(S)/min(vol(S), vol(S̄)).
In this example, the optimal bi-partition by Ncut is given by S = {1, . . . , n}, shown in the right of Figure 3.
In fact the second largest eigenvalue λ1 = 0.9010 with eigenvector

v1 = [0.4714, 0.4247, 0.2939, 0.1049,−0.1049,−0.2939,−0.4247,−0.4714],

give the optimal bi-partition.

Figure 3: Left: two lumpable states; Right: optimal-bipartition of Ncut.

Example 2. Uncoupled Markov chains are lumpable, e.g.

P0 =

 Ω1

Ω2

Ω3

 , P̂it = P̂jt = 0.

A markov chain P̃ = P0 + O(ε) is called nearly uncoupled Markov chain. Such Markov chains can be ap-
proximately represented as uncoupled Markov chains with metastable states, {Ωs}, where within metastable
state transitions are fast while cross metastable states transitions are slow. Such a separation of scale
in dynamics often appears in many phenomena in real lives, such as protein folding, your life transitions
primary schools 7→ middle schools 7→ high schools 7→ college/university 7→ work unit, etc.

Before the proof of the theorem, we note that condition I is in fact equivalent to

V UPV = PV, (2)
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where U is a k-by-n matrix where each row is a uniform probability that

Uk×nis =
1

|Ωs|
χΩs

(i), i ∈ V, s ∈ Ω,

and V is a n-by-k matrix where each column is a characteristic function on Ωs,

V n×ksj = χΩs
(j).

With this we have P̂ = UPV and UV = I. Such a matrix representation will be useful in the derivation of
condition II. Now we give the proof of the main theorem.

Proof. I. “⇒” To see the necessity, P is lumpable w.r.t. partition Ω, then it is necessary that

Probπ0{x1 ∈ Ωt : x0 ∈ Ωs} = Probπ0{y1 = t : y0 = s} = p̂st

which does not depend on π0. Now assume there are two different initial distribution such that π
(1)
0 (i) = 1

and π
(2)
0 (j) = 1 for ∀i, j ∈ Ωs. Thus

p̂iΩt = Prob
π
(1)
0
{x1 ∈ Ωt : x0 ∈ Ωs} = p̂st = Prob

π
(2)
0
{x1 ∈ Ωt : x0 ∈ Ωs} = p̂jΩt .

“⇐” To show the sufficiency, we are going to show that if the condition is satisfied, then the probability

Probπ0{yt = t : yt−1 = s, · · · , y0 = k0}

depends only on Ωs,Ωt ∈ Ω. Probability above can be written as Probπt−1
(yt = t) where πt−1 is a distribution

with support only on Ωs which depends on π0 and history up to t− 1. But since Probi(yt = t) = p̂iΩt ≡ p̂st
for all i ∈ Ωs, then Probπt−1(yt = t) =

∑
i∈Ωs

πt−1p̂iΩt = p̂st which only depends on Ωs and Ωt.

II.

“⇒”

Since P̂ is nonsingular, let {ψi, i = 1, · · · , k} are independent right eigenvectors of P̂ , i.e., P̂ψi = λiψi.
Define φi = V ψi, then φi are independent piecewise constant vectors in span{χΩi , i = 1, · · · , k}. We have

Pφi = PV ψi = V UPV ψi = V P̂ψi = λiV ψi = λiφi,

i.e. φi are right eigenvectors of P .

“⇐”

Let {φi, i = 1, · · · , k} be k independent piecewise constant right eigenvectors of P in span{XΩi
, i =

1, · · · , k}. There must be k independent vectors ψi ∈ Rk that satisfied φi = V ψi. Then

Pφi = λiφi ⇒ PV ψi = λiV ψi,

Multiplying V U to the left on both sides of the equation, we have

V UPV ψi = λiV UV ψi = λiV ψi = PV ψi, (UV = I),

which implies
(V UPV − PV )Ψ = 0, Ψ = [ψ1, . . . , ψk].

Since Ψ is nonsingular due to independence of ψi, whence we must have V UPV = PV .
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3 Algorithm of Multiple Spectral Clustering

Meila-Shi (2001) calls the following algorithm as MNcut, standing for modified Ncut. Due to the theory
above, perhaps we’d better to call it multiple spectral clustering.

1) Find top k right eigenvectors PΦi = λiΦi, i = 1, · · · , k, λi = 1− o(ε).

2) Embedding Y n×k = [φ1, · · · , φk] → diffusion map when λi ≈ 1.

3) k-means (or other suitable clustering methods) on Y to k-clusters.


