

## Lecture 9. Lumpability (Metastability) and MNcut

Instructor: Yuan Yao, Peking University

Scribe: Hong Cheng, Ping Qin

## 1 Review of Diffusion Map

Recall  $x_i \in \mathbb{R}^d, i = 1, 2, \dots, n$ ,

$$W_{ij} = \exp\left(-\frac{d(x_i, x_j)^2}{2\varepsilon}\right),$$

 $W$  is a symmetrical  $n \times n$  matrix.Let  $d_i = \sum_{j=1}^n W_{ij}$  and

$$D = \text{diag}(d_i), \quad P = D^{-1}W$$

and

$$S = D^{-1/2}WD^{-1/2} = I - \mathcal{L}, \quad \mathcal{L} = D^{-1/2}(D - W)D^{-1/2}.$$

Then

1)  $S$  is symmetrical, has  $n$  orthogonal eigenvectors  $V = [v_1, v_2, \dots, v_n]$ ,

$$S = V\Lambda V^T, \quad \Lambda = \text{diag}(\lambda_i)^T \in \mathbb{R}^{n-1}, \quad V^T V = I.$$

Here we assume that  $1 = \lambda_0 \geq \lambda_1 \geq \lambda_2 \dots \geq \lambda_{n-1}$  due to positivity of  $W$ .2)  $\Phi = D^{-1/2}V = [\phi_1, \phi_2, \dots, \phi_n]$  are right eigenvectors of  $P$ ,  $P\Phi = \Phi\Lambda$ .3)  $\Psi = D^{1/2}V = [\psi_1, \psi_2, \dots, \psi_n]$  are left eigenvectors of  $P$ ,  $\Psi^T P = \Lambda \Psi^T$ . Note that  $\phi_0 = 1 \in \mathbb{R}^n$  and  $\psi_0(i) = d_i / \sum_i d_i^2$ . Thus  $\psi_0$  is the same eigenvector as the stationary distribution  $\pi(i) = d_i / \sum_i d_i$  ( $\pi^T 1 = 1$ ) up to a scaling factor. $\Phi$  and  $\Psi$  are bi-orthogonal basis, i.e.,  $\phi_i^T D \psi_j = \delta_{ij}$  or simply  $\Phi^T D \Psi = I$ .

Define diffusion map

$$\Phi_t(x_i) = [\lambda_1^t \phi_1(i), \dots, \lambda_{n-1}^t \phi_{n-1}(i)], \quad t > 0.$$

A central question in this section is:

*Why we choose right eigenvectors  $\phi_i$  in diffusion map?*To answer this we will introduce the concept of *lumpability* in this lecture.

## 2 Lumpability of Markov Chain

$P$  is row stochastic matrix on  $V = \{1, 2, \dots, n\}$ .  $V$  has a partition  $\Omega$ :

$$V = \bigcup_{i=1}^k \Omega_i, \quad \Omega_i \cap \Omega_j = \emptyset, \quad i \neq j.$$

$$\Omega = \{\Omega_s : s = 1, \dots, k\}.$$

Observe a sequence  $\{x_0, x_1, \dots, x_t\}$  sampled from a Markov chain whose transition matrix  $\text{Prob}\{x_t = j : x_{t-1} = i\} = P_{ij}$ . Relabel  $x_t \mapsto y_t \in \{1, \dots, k\}$  by

$$y_t = \sum_{s=1}^k s \chi_{\Omega_s}(x_t).$$

Thus we obtain a sequence  $(y_t)$  which is a coarse-grained representation of original sequence.

**Definition** (Lumpability, Kemeny-Snell 1976).  $P$  is lumpable with respect to partition  $\Omega$  if the sequence  $\{y_t\}$  is Markovian. In other words, the transition probabilities do not depend on the choice of initial distribution  $\pi_0$  and history, *i.e.*

$$\text{Prob}_{\pi_0}\{y_t = k_t : y_{t-1} = k_{t-1}, \dots, y_0 = k_0\} = \text{Prob}\{y_t = k_t : y_{t-1} = k_{t-1}\} \quad (1)$$

**Theorem 2.1.** **I.** (Kemeny-Snell 1976)  $P$  is lumpable with respect to partition  $\Omega \Leftrightarrow \forall \Omega_s, \Omega_t \in \Omega, \forall i, j \in \Omega_s, \hat{P}_{i\Omega_t} = \hat{P}_{j\Omega_t}$ , where  $\hat{P}_{i\Omega_t} = \sum_{j \in \Omega_t} P_{ij}$ .

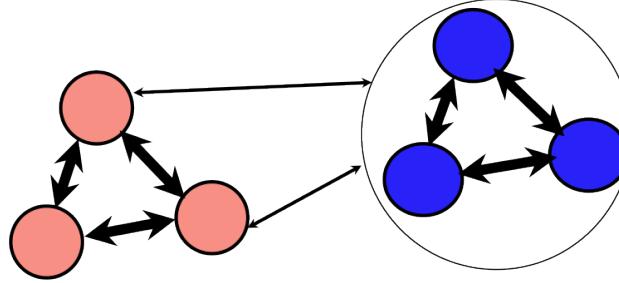


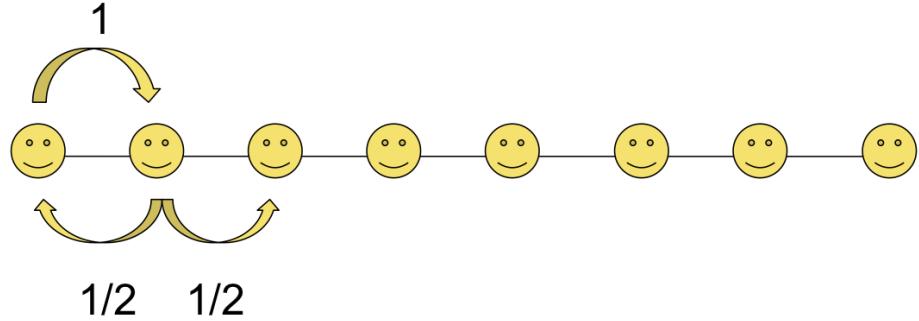
Figure 1: Lumpability condition  $\hat{P}_{i\Omega_t} = \hat{P}_{j\Omega_t}$

**II.** (Meila-Shi 2001)  $P$  is lumpable with respect to partition  $\Omega$  and  $\hat{P}$  ( $\hat{p}_{st} = \sum_{i \in \Omega_s, j \in \Omega_t} p_{ij}$ ) is nonsingular  $\Leftrightarrow P$  has  $k$  independent piecewise constant right eigenvectors in  $\text{span}\{\chi_{\Omega_s} : s = 1, \dots, k\}$ ,  $\chi$  is the characteristic function.

**Example 1.** Consider a linear chain with  $2n$  nodes (Figure 2) whose adjacency matrix and degree matrix are given by

$$A = \begin{bmatrix} 0 & 1 & & & & \\ 1 & 0 & 1 & & & \\ & \ddots & \ddots & \ddots & & \\ & & 1 & 0 & 1 & \\ & & & 1 & 0 & \end{bmatrix}, \quad D = \text{diag}\{1, 2, \dots, 2, 1\}$$

So the transition matrix is  $P = D^{-1}A$  which is illustrated in Figure 2. The spectrum of  $P$  includes two eigenvalues of magnitude 1, *i.e.*  $\lambda_0 = 1$  and  $\lambda_{n-1} = -1$ . Although  $P$  is not a *primitive* matrix here, it is *lumpable*. Let  $\Omega_1 = \{\text{odd nodes}\}$ ,  $\Omega_2 = \{\text{even nodes}\}$ . We can check that I and II are satisfied.

Figure 2: A linear chain of  $2n$  nodes with a random walk.

To see I, note that for any two even nodes, say  $i = 2$  and  $j = 4$ ,  $\hat{P}_{i\Omega_2} = \hat{P}_{j\Omega_2} = 1$  as their neighbors are all odd nodes, whence I is satisfied. To see II, note that  $\phi_0$  (associated with  $\lambda_0 = 1$ ) is a constant vector while  $\phi_1$  (associated with  $\lambda_{n-1} = -1$ ) is constant on even nodes and odd nodes respectively. Figure 3 shows the lumpable states when  $n = 4$  in the left.

Note that lumpable states might not be optimal bi-partitions in  $NCUT = Cut(S)/\min(vol(S), vol(\bar{S}))$ . In this example, the optimal bi-partition by Ncut is given by  $S = \{1, \dots, n\}$ , shown in the right of Figure 3. In fact the second largest eigenvalue  $\lambda_1 = 0.9010$  with eigenvector

$$v_1 = [0.4714, 0.4247, 0.2939, 0.1049, -0.1049, -0.2939, -0.4247, -0.4714],$$

give the optimal bi-partition.

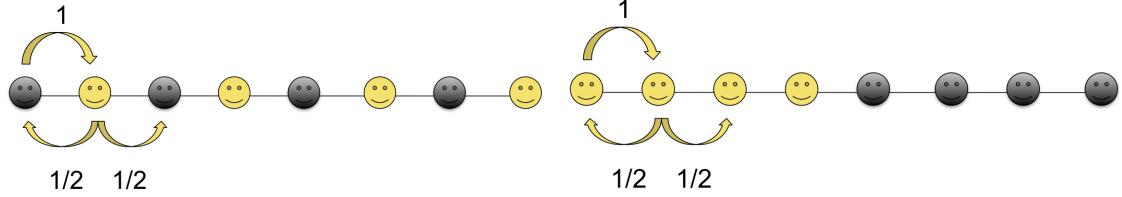


Figure 3: Left: two lumpable states; Right: optimal-bipartition of Ncut.

**Example 2.** Uncoupled Markov chains are lumpable, e.g.

$$P_0 = \begin{bmatrix} \Omega_1 & & \\ & \Omega_2 & \\ & & \Omega_3 \end{bmatrix}, \hat{P}_{it} = \hat{P}_{jt} = 0.$$

A markov chain  $\tilde{P} = P_0 + O(\epsilon)$  is called nearly uncoupled Markov chain. Such Markov chains can be approximately represented as uncoupled Markov chains with *metastable states*,  $\{\Omega_s\}$ , where within metastable state transitions are fast while cross metastable states transitions are slow. Such a separation of scale in dynamics often appears in many phenomena in real lives, such as protein folding, your life transitions *primary schools*  $\mapsto$  *middle schools*  $\mapsto$  *high schools*  $\mapsto$  *college/university*  $\mapsto$  *work unit*, etc.

Before the proof of the theorem, we note that condition I is in fact equivalent to

$$VUPV = PV, \quad (2)$$

where  $U$  is a  $k$ -by- $n$  matrix where each row is a uniform probability that

$$U_{is}^{k \times n} = \frac{1}{|\Omega_s|} \chi_{\Omega_s}(i), \quad i \in V, s \in \Omega,$$

and  $V$  is a  $n$ -by- $k$  matrix where each column is a characteristic function on  $\Omega_s$ ,

$$V_{sj}^{n \times k} = \chi_{\Omega_s}(j).$$

With this we have  $\hat{P} = UPV$  and  $UV = I$ . Such a matrix representation will be useful in the derivation of condition II. Now we give the proof of the main theorem.

*Proof. I.* “ $\Rightarrow$ ” To see the necessity,  $P$  is lumpable w.r.t. partition  $\Omega$ , then it is necessary that

$$\text{Prob}_{\pi_0}\{x_1 \in \Omega_t : x_0 \in \Omega_s\} = \text{Prob}_{\pi_0}\{y_1 = t : y_0 = s\} = \hat{p}_{st}$$

which does not depend on  $\pi_0$ . Now assume there are two different initial distribution such that  $\pi_0^{(1)}(i) = 1$  and  $\pi_0^{(2)}(j) = 1$  for  $\forall i, j \in \Omega_s$ . Thus

$$\hat{p}_{i\Omega_t} = \text{Prob}_{\pi_0^{(1)}}\{x_1 \in \Omega_t : x_0 \in \Omega_s\} = \hat{p}_{st} = \text{Prob}_{\pi_0^{(2)}}\{x_1 \in \Omega_t : x_0 \in \Omega_s\} = \hat{p}_{j\Omega_t}.$$

“ $\Leftarrow$ ” To show the sufficiency, we are going to show that if the condition is satisfied, then the probability

$$\text{Prob}_{\pi_0}\{y_t = t : y_{t-1} = s, \dots, y_0 = k_0\}$$

depends only on  $\Omega_s, \Omega_t \in \Omega$ . Probability above can be written as  $\text{Prob}_{\pi_{t-1}}(y_t = t)$  where  $\pi_{t-1}$  is a distribution with support only on  $\Omega_s$  which depends on  $\pi_0$  and history up to  $t-1$ . But since  $\text{Prob}_i(y_t = t) = \hat{p}_{i\Omega_t} \equiv \hat{p}_{st}$  for all  $i \in \Omega_s$ , then  $\text{Prob}_{\pi_{t-1}}(y_t = t) = \sum_{i \in \Omega_s} \pi_{t-1} \hat{p}_{i\Omega_t} = \hat{p}_{st}$  which only depends on  $\Omega_s$  and  $\Omega_t$ .

## II.

“ $\Rightarrow$ ”

Since  $\hat{P}$  is nonsingular, let  $\{\psi_i, i = 1, \dots, k\}$  are independent right eigenvectors of  $\hat{P}$ , i.e.,  $\hat{P}\psi_i = \lambda_i \psi_i$ . Define  $\phi_i = V\psi_i$ , then  $\phi_i$  are independent piecewise constant vectors in  $\text{span}\{\chi_{\Omega_i}, i = 1, \dots, k\}$ . We have

$$P\phi_i = PV\psi_i = VUUPV\psi_i = V\hat{P}\psi_i = \lambda_i V\psi_i = \lambda_i \phi_i,$$

i.e.  $\phi_i$  are right eigenvectors of  $P$ .

“ $\Leftarrow$ ”

Let  $\{\phi_i, i = 1, \dots, k\}$  be  $k$  independent piecewise constant right eigenvectors of  $P$  in  $\text{span}\{\chi_{\Omega_i}, i = 1, \dots, k\}$ . There must be  $k$  independent vectors  $\psi_i \in \mathbb{R}^k$  that satisfied  $\phi_i = V\psi_i$ . Then

$$P\phi_i = \lambda_i \phi_i \Rightarrow PV\psi_i = \lambda_i V\psi_i,$$

Multiplying  $VU$  to the left on both sides of the equation, we have

$$VUUPV\psi_i = \lambda_i VUV\psi_i = \lambda_i V\psi_i = PV\psi_i, \quad (UV = I),$$

which implies

$$(VUUPV - PV)\Psi = 0, \quad \Psi = [\psi_1, \dots, \psi_k].$$

Since  $\Psi$  is nonsingular due to independence of  $\psi_i$ , whence we must have  $VUUPV = PV$ .  $\square$

### 3 Algorithm of Multiple Spectral Clustering

Meila-Shi (2001) calls the following algorithm as MNcut, standing for *modified Ncut*. Due to the theory above, perhaps we'd better to call it *multiple spectral clustering*.

- 1) Find top  $k$  right eigenvectors  $P\Phi_i = \lambda_i\Phi_i$ ,  $i = 1, \dots, k$ ,  $\lambda_i = 1 - o(\epsilon)$ .
- 2) Embedding  $Y^{n \times k} = [\phi_1, \dots, \phi_k] \rightarrow$  diffusion map when  $\lambda_i \approx 1$ .
- 3)  $k$ -means (or other suitable clustering methods) on  $Y$  to  $k$ -clusters.