Mathematics for Data Sciences October 23,2011

Lecture 9. Lumpability (Metastability) and MNcut

Instructor: Yuan Yao, Peking University Scribe:  Hong Cheng, Ping Qin

1 Review of Diffusion Map

Recall z; e R%,i=1,2,--- ,n,

Cl(l‘i, .%‘j)Q
2¢ ’

Wij = exp (—
W is a symmetrical n X n matrix.

Let di = Z?:l Wij and
D = diag(d;), P=D"'W

and
S=D'?wpYV2=1-r, L=DY*D-w)D Y2
Then
1) S is symmetrical, has n orthogonal eigenvectors V = [v1,va, -+ ,vy],

S=VAVT A =diag(\)? e R VIV =1
Here we assume that 1 = \g > Ay > Aa... > A\,_1 due to positivity of W.
2) & = DV2V = [$1, ¢o,- - - , ¢y] are right eigenvectors of P, P® = A.
3) W = DY2V = [hy, 4, - ,9,] are left eigenvectors of P, W7 P = AUT. Note that ¢9 = 1 € R™ and

Yo(i) = di/ >, d?. Thus 1) is the same eigenvector as the stationary distribution 7(i) = d;/ 3, d;
(771 = 1) up to a scaling factor.

® and ¥ are bi-orthogonal basis, i.e., d);ferj = ;5 or simply oTDY = 1.

Define diffusion map
(I)t(l'z) = [)\iﬁbl(z)v e 7>\£L—1¢77.—1(i):|? t>0.

A central question in this section is:
Why we choose right eigenvectors ¢; in diffusion map?

To answer this we will introduce the concept of lumpability in this lecture.
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2 Lumpability of Markov Chain

P is row stochastic matrix on V = {1,2,--- ,n}. V has a partition :
V=U_Q, QnNQ =0 i#j.
Q={Qs:s=1,---,k}.

Observe a sequence{xg, 1, - ,2:} sampled from a Markov chain whose transition matrix Prob{z; = j :
x4—1 =1} = P;;. Relabel 2, — y € {1,--- ,k} by

k

Yt = Z s&Xq, (l“t)

s=1
Thus we obtain a sequence (y;) which is a coarse-grained representation of original sequence.

Definition (Lumpability, Kemeny-Snell 1976). P is lumpable with respect to partition €2 if the sequence {y;}
is Markovian. In other words, the transition probabilities do not depend on the choice of initial distribution
mo and history, i.e.

Prob {y: = k¢ : ye—1 = ke—1,--- ,y0 = ko} = Prob{ys = ks 1 ys—1 = ks 1} (1)

Theorem 2.1.  I. (Kemeny-Snell 1976) P is lumpable with respect to partition Q < VQs, € € Q, Vi, j €
QS, PiQt = 1L5Q, Where PZ'Qt = EjGQt Pij-

Figure 1: Lumpability condition P, = Pjo,

II. (Meila-Shi 2001) P is lumpable with respect to partition Q and P (s = > icq. jeq, Pij) is nonsingular
< P has k independent piecewise constant right eigenvectors in span{xq. : s = 1, -+ ,k}, x is the
characteristic function.

Example 1. Consider a linear chain with 2n nodes (Figure 2) whose adjacency matrix and degree matrix
are given by

A= ; D:dlag{LZaaQ?l}

So the transition matrix is P = D~!A which is illustrated in Figure 2. The spectrum of P includes two
eigenvalues of magnitude 1, i.e. Ag = 1 and A\,,—; = —1. Although P is not a primitive matrix here, it is
lumpable. Let ;3 = {odd nodes}, Q3 = {even nodes}. We can check that I and II are satisfied.
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Figure 2: A linear chain of 2n nodes with a random walk.

To see I, note that for any two even nodes, say ¢ = 2 and j = 4, If’mQ = AjQQ =1 as their neighbors are
all odd nodes, whence I is satisfied. To see II, note that ¢g (associated with A\g = 1) is a constant vector
while ¢; (associated with A\,,_1 = —1) is constant on even nodes and odd nodes respectively. Figure 3 shows

the lumpable states when n = 4 in the left.

Note that lumpable states might not be optimal bi-partitions in NCUT = Cut(S)/ min(vol(S), vol(S)).
In this example, the optimal bi-partition by Ncut is given by S = {1,...,n}, shown in the right of Figure 3.
In fact the second largest eigenvalue A\; = 0.9010 with eigenvector

vy = [0.4714,0.4247,0.2939, 0.1049, —0.1049, —0.2939, —0.4247, —0.4714],
give the optimal bi-partition.
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Figure 3: Left: two lumpable states; Right: optimal-bipartition of Ncut.

Example 2. Uncoupled Markov chains are lumpable, e.g.

O R .
Py = 92} , Piw=P; =0.
Q3

A markov chain P = P, + O(e) is called nearly uncoupled Markov chain. Such Markov chains can be ap-
proximately represented as uncoupled Markov chains with metastable states, {5}, where within metastable
state transitions are fast while cross metastable states transitions are slow. Such a separation of scale
in dynamics often appears in many phenomena in real lives, such as protein folding, your life transitions
primary schools — middle schools — high schools — college/university — work unit, etc.

Before the proof of the theorem, we note that condition I is in fact equivalent to

VUPV = PV, (2)
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where U is a k-by-n matrix where each row is a uniform probability that

1
Uiksxn: |Q |XQS(Z.)7 ’i€‘/" S€Q,

and V is a n-by-k matrix where each column is a characteristic function on €,
Ve = xa, ()-

With this we have P = UPV and UV = I. Such a matrix representation will be useful in the derivation of
condition II. Now we give the proof of the main theorem.

Proof. 1. “=" To see the necessity, P is lumpable w.r.t. partition 2, then it is necessary that
Prob, {1 € Q : 9 € Qs} = Prob,,{y1 =t :yo = s} = Pst

which does not depend on 7. Now assume there are two different initial distribution such that wél)(z’) =1
and 71'(()2)(]') =1 for Vi, j € Q5. Thus

ﬁiﬂt = Probﬂ_[()n{l‘l S Qt X € QS} = ﬁst = Probﬂém{ml S Qt X € QS} = ﬁjgt.

“«<" To show the sufficiency, we are going to show that if the condition is satisfied, then the probability

Probr{y: =t :y—1=s5,--- ,y0 = ko}

depends only on €2, Q; € Q. Probability above can be written as Prob,,_, (y; = t) where m;_1 is a distribution
with support only on Q5 which depends on 7y and history up to ¢ — 1. But since Prob;(y; = t) = piq, = Dst
for all ¢ € g, then Prob,, ,(y: =1t) = Zieﬂs Ti—1Piq, = Pst which only depends on Q and €.

II.
“:>77

Since P is nonsingular, let {¢;, ¢ = 1,--- ,k} are independent right eigenvectors of ]5, ie., p%‘ = \j;.
Define ¢; = Vi);, then ¢; are independent piecewise constant vectors in span{xgq,,? =1, -+, k}. We have

Po; = PV = VUPVihi = V Py = NV = iy,
i.e. ¢; are right eigenvectors of P.
“<:77

Let {¢;,4 = 1,---,k} be k independent piecewise constant right eigenvectors of P in span{Xg,,i =
1,---,k}. There must be k independent vectors 1; € R¥ that satisfied ¢; = V¢;. Then

Po; = XNigi = PVipi = \iVi,
Multiplying VU to the left on both sides of the equation, we have
VUPV; = \\VUV Y, = \Vp; = PV, (UV =1),

which implies
(VUPV — PV =0, U =][,..., 9.

Since ¥ is nonsingular due to independence of v;, whence we must have VUPV = PV. O
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3 Algorithm of Multiple Spectral Clustering

Meila-Shi (2001) calls the following algorithm as MNcut, standing for modified Ncut. Due to the theory
above, perhaps we’d better to call it multiple spectral clustering.

1) Find top k right eigenvectors P®; = \;®;, i =1,--- ,k, A; =1 — o(e).

2) Embedding Y"*¥ = [¢1,--- , ¢] — diffusion map when ); ~ 1.

3) k-means (or other suitable clustering methods) on Y to k-clusters.



