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Introduction

In this class, we introduced the random walk on graphs. The last lecture shows Perron-Frobenius theory to
the analysis of primary eigenvectors which is the stationary distribution. In this lecture we will study the
second eigenvector. To analyze the properties of the graph, we construct two matrices: one is (unnormalized)
graph Laplacian and the other is normalized graph Laplacian. In the first part, we introduce Fiedler Theory
for the unnormalized graph Laplacian, which shows the second eigenvector can be used to bipartite the graph
into two connected components. In the second part, we study the eigenvalues and eigenvectors of normalized
Laplacian matrix to show its relations with random walks or Markov chains on graphs. In the third part,
we will introduce the Cheeger Inequality for second eigenvector of normalized Laplacian, which leads to an
approximate algorithm for Normalized graph cut (NCut) problem, an NP-hard problem itself.

1 Fiedler Theory

Let G = (V,E) be an undirected, unweighted simple1 graph. Although the edges here are unweighted, the
theory below still holds when weight is added. We can get a similar conclusion with the weighted adjacency
matrix. However the extension to directed graphs will lead to different pictures.

We use i∼j to denote that node i ∈ V is a neighbor of node j ∈ V .

Definition (Adjacency Matrix).

Aij =

{
1 i ∼ j
0 otherwise

.

Remark. We can use the weight of edge i ∼ j to define Aij if the graph is weighted. That indicates Aij ∈ R+.
We can also extend Aij to R which involves both positive and negative weights, like correlation graphs. But
the theory below can not be applied to such weights being positive and negative.

The degree of node i is defined as follows.

di =

n∑
j=1

Aij .

Define a diagonal matrix D = diag(di). Now let’s come to the definition of Laplacian Matrix L.

Definition (Graph Laplacian).

Lij =

 di i = j,
−1 i ∼ j
0 otherwise

1Simple graph means for every pair of nodes there are at most one edge associated with it; and there is no self loop on each
node.
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This matrix is often called unnormalized graph Laplacian in literature, to distinguish it from the nor-
malized graph Laplacian below. In fact, L = D −A.

Example 1. V = {1, 2, 3, 4}, E = {{1, 2}, {2, 3}, {3, 4}}. This is a linear chain with four nodes.

L =


1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1

 .

Example 2. A complete graph of n nodes, Kn. V = {1, 2, 3...n}, every two points are connected, as the
figure above with n = 5.

L =


n− 1 −1 −1 ... −1
−1 n− 1 −1 ... −1
−1 ... −1 n− 1 −1
−1 ... −1 −1 n− 1

 .

From the definition, we can see that L is symmetric, so all its eigenvalues will be real and there is an
orthonormal eigenvector system. Moreover L is positive semi-definite (p.s.d.). This is due to the fact that

vTLv =
∑
i

∑
j:j∼i

vi(vi − vj) =
∑
i

div2
i −

∑
j:j∼i

vivj


=

∑
i∼j

(vi − vj)2 ≥ 0, ∀v ∈ Rn.

In fact, L admits the decomposition L = BBT where B ∈ R|V |×|E| is called incidence matrix (or boundary
map in algebraic topology) here, for any 1 ≤ j < k ≤ n,

B(i, {j, k}) =

 1, i = j,
−1, i = k,
0, otherwise

These two statements imply the eigenvalues of L can’t be negative. That is to say λ(L) ≥ 0.

Theorem 1.1 (Fiedler theory). Let L has n eigenvectors

Lvi = λivi, vi 6= 0, i = 0, . . . , n− 1
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where 0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1. For the second smallest eigenvector v1, define

N− = {i : v1(i) < 0},

N+ = {i : v1(i) > 0},

N0 = V −N− −N+.

We have the following results.

1. #{i, λi = 0} = #{connected components of G};

2. If G is connected, then both N− and N+ are connected. N− ∪N0 and N+ ∪N0 might be disconnected
if N0 6= ∅.

This theorem tells us that the second smallest eigenvalue can be used to tell us if the graph is connected,
i.e. G is connected iff λ1 6= 0, i.e.

λ1 = 0⇔ there are at least two connected components.
λ1 > 0⇔ the graph is connected.

Moreover, the second smallest eigenvector can be used to bipartite the graph into two connected components
by taking N− and N+ when N0 is empty. For this reason, we often call the second smallest eigenvalue λ1 as
the algebraic connectivity.

We can calculate eigenvalues by using Rayleigh Quotient. This gives a sketch proof of the first part of
the theory.

Proof of Part I. Let (λ, v) be a pair of eigenvalue-eigenvector, i.e. Lv = λv. Since L1 = 0, so the constant
vector 1 ∈ Rn is always the eigenvector associated with λ0 = 0. In general,

λ =
vTLv

vT v
=

∑
i∼j

(vi − vj)2∑
i

vi2
.

Note that

0 = λ1 ⇔ vi = vj (j is path connected with i).

Therefore v is a piecewise constant function on connected components ofG. IfG has k components, then there
are k independent piecewise constant vectors in the span of characteristic functions on those components,
which can be used as eigenvectors of L. In this way, we proved the first part of the theory.

2 Normalized graph Laplacian

Definition (Normalized Graph Laplacian).

Lij =


1 i = j,

− 1√
didj

i ∼ j,

0 otherwise.
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In fact L = D−1/2(D − A)D−1/2 = D−1/2LD−1/2 = I − D−1/2(D − A)D−1/2. From this one can see
the relations between eigenvectors of normalized L and unnormalized L. For eigenvectors Lv = λv, we have

(I −D−1/2LD−1/2)v = λv ⇔ Lu = λDu, u = D−1/2v,

whence eigenvectors of L, v after rescaling by D−1/2v, become generalized eigenvectors of L.

We can also use the Rayleigh Quotient to calculate the eigenvalues of L.

vTLv
vT v

=
vTD−

1
2 (D −A)D−

1
2 v

vv

=
uTLu

uTDu

=

∑
i∼j

(ui − uj)2∑
j

uj2dj
.

Similarly we get the relations between eigenvalue and the connected components of the graph.

#{λi(L) = 0} = #{connected components of G}.

Next we show that eigenvectors of L are related to random walks on graphs. This will show you why we
choose this matrix to analysis the graph.

We can construct a random walk on G whose transition matrix is defined by

Pij ∼
Aij∑
j

Aij
=

1

di
.

By easy calculation, we see the result below.

P = D−1A = D−1/2(I − L)D1/2.

Hence P is similar to I − L. So their eigenvalues satisfy λi(P ) = 1− λi(L). Consider the right eigenvector
φ and left eigenvector ψ of P .

uTP = λu,

Pv = λv.

Due to the similarity between P and L,

uTP = λuT ⇔ uTD−1/2(I − L)D1/2 = λuT .

Let ū = D−1/2u, we will get:
ūT (I − L) = λūT

⇔ Lū = (1− λ)ū.

You can see ū is the eigenvector of L, and we can get left eigenvectors of P from ū by multiply it with
D1/2 on the left side. Similarly for the right eigenvectors v = D−1/2ū.

If we choose u0 = πi ∼ di∑
di

, then:

ū0(i) ∼
√
di,

ūTk ūl = δkl,
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uTkDvl = δkl,

πiPij = πjPji ∼ Aij = Aji,

where the last identity says the Markov chain is time-reversible.

All the conclusions above show that the normalized graph Laplacian L keeps some connectivity measure
of unnormalized graph Laplacian L. Furthermore, L is more related with random walks on graph, through
which eigenvectors of P are easy to check and calculate. That’s why we choose this matrix to analysis the
graph.

3 Cheeger Inequality

Let G be a graph, G = (V,E) and S is a subset of V whose complement is S̄ = V − S. We define V ol(S),
CUT (S) and NCUT (S) as below.

V ol(S) =
∑
i∈S

di.

CUT (S) =
∑

i∈S,j∈S̄

Aij .

NCUT (S) =
CUT (S)

min(V ol(S), V ol(S̄))
.

NCUT (S) is called normalized-cut. We define the Cheeger constant hG = minS NCUT (S). Finding minimal
normalized graph cut is NP-hard.

Cheeger Inequality says the second smallest eigenvalue provides both upper and lower bounds on the
minimal normalized graph cut. Its proof gives us a constructive polynomial algorithm to achieve such bounds.

Theorem 3.1 (Cheeger Inequality). If G is connected, then

h2
G

2
≤ λ1(L) ≤ 2hG.

Proof. (1) Upper bound:

Assume the following function f realizes the optimal normalized graph cut,

f(i) =

{
1

V ol(S) i ∈ S,
−1

V ol(S̄)
i ∈ S̄,

By using the Rayleigh Quotient, we get

λ1 = inf
g⊥D1/2e

gTLg
gT g

≤
∑

i∼j(fi − fj)2∑
f2
i di

=
( 1
V ol(S) + 1

V ol(S̄)
)2CUT (S)

V ol(S) 1
V ol(S)2 + V ol(S̄) 1

V ol(S̄)2

=(
1

V ol(S)
+

1

V ol(S̄)
)CUT (S)

≤ 2CUT (S)

min(V ol(S), V ol(S̄))
=: 2hG.

span
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which gives the upper bound.

(2) Lower bound: the proof of lower bound actually gives a constructive algorithm to compute an
approximate optimal cut as follows.

Let λ1v = Lv. Then we reorder node set V such that v1 ≤ v2 ≤ ... ≤ vn. Now consider a series of
particular subsets of V : Si = {v1, v2, ...vi}, and define

αG = min
i
NCUT (Si).

Clearly finding the optimal value α just requires comparison over n− 1 NCUT values.

Below we shall show that
h2
G

2
≤ α2

G

2
≤ λ1.

Denote V− = {i; vi ≤ 0}, V+ = {i; vi > 0}. Without lose of generality, we assume V ol(V−) ≤ V ol(V+).

Define Ṽ ol(S) = min(V ol(S), V ol(S̄)).

We write R(v) for

R(v) =

∑
i∼j(vi − vj)2∑

v2
i di

.

We will get the following results.

λ1 = R(v)

≥
∑

i,j∈V+,i∼j(vi − vj)2 +
∑

i,j∈V−,i∼j(vi − vj)2∑
i∈V+

v2
i di +

∑
i∈V−

v2
i di

≥
∑

i,j∈V+,i∼j(vi − vj)2∑
i∈V+

v2
i di

a+ b

c+ d
≥ min

(
a

c
,
b

d

)

=
(
∑

i,j∈V+,i∼j(vi − vj)2)(
∑

i,j∈V+,i∼j(vi + vj)
2)

(
∑

i∈V+
v2
i di)(

∑
i,j∈V+,i∼j(vi + vj)2)

≥
(
∑

i,j∈V+,i∼j(vi − vj)2)2

2(
∑

i∈V+
v2
i di)

2
,

where the numerator is due to the Cauchy-Schwartz inequality |〈x, y〉|2 ≤ 〈x, x〉 · 〈y, y〉, and the denominator
is due to

∑
i∼j∈V+

(vi + vj)
2 =

∑
i∼j∈V+

(v2
i + v2

j + 2vivj) ≤ 2
∑

i∼j∈V+
(v2

i + v2
j ) ≤ 2

∑
i∈V+

v2
i di. Continued

from the last inequality,

λ1 ≥
(
∑

i,j∈V+,i∼j(vi − vj)2)2

2(
∑

i∈V+
v2
i di)

2
,

≥
(
∑

i∈V+
|v2

i − v2
i+1|CUT (Si))

2

2(
∑

i∈V+
v2
i di)

2
, since v1 ≤ v2 ≤ . . . ≤ vn

≥
(
∑

i∈V+
|v2

i − v2
i+1|αG|Ṽ ol(Si)|)2

2(
∑

i∈V+
v2
i di)

2

≥ α2
G

2

(
∑

i∈V+
v2
i (Ṽ ol(Si)− Ṽ ol(Si−1)))2

(
∑

i∈V+
v2
i di)

2

=
α2
G

2

(
∑

i∈V+
v2
i di)

2

(
∑

i∈V+
v2
i di)

2
=
α2
G

2
.
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This completes the proof.
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