Mathematics for Data Sciences October 20, 2011
Lecture 08. Random Walk on Graphs: Fiedler Vector, Cheeger inequality

Instructor: Yuan Yao, Peking University Scribe: Wang, Zhiming; Lin, Feng

Introduction

In this class, we introduced the random walk on graphs. The last lecture shows Perron-Frobenius theory to
the analysis of primary eigenvectors which is the stationary distribution. In this lecture we will study the
second eigenvector. To analyze the properties of the graph, we construct two matrices: one is (unnormalized)
graph Laplacian and the other is normalized graph Laplacian. In the first part, we introduce Fiedler Theory
for the unnormalized graph Laplacian, which shows the second eigenvector can be used to bipartite the graph
into two connected components. In the second part, we study the eigenvalues and eigenvectors of normalized
Laplacian matrix to show its relations with random walks or Markov chains on graphs. In the third part,
we will introduce the Cheeger Inequality for second eigenvector of normalized Laplacian, which leads to an
approximate algorithm for Normalized graph cut (NCut) problem, an NP-hard problem itself.

1 Fiedler Theory

Let G = (V, E) be an undirected, unweighted simple! graph. Although the edges here are unweighted, the
theory below still holds when weight is added. We can get a similar conclusion with the weighted adjacency
matrix. However the extension to directed graphs will lead to different pictures.

We use i~j to denote that node i € V is a neighbor of node j € V.

1 i~
Aij:{ J

0 otherwise

Definition (Adjacency Matrix).

Remark. We can use the weight of edge i ~ j to define A;; if the graph is weighted. That indicates A;; € R™.
We can also extend A;; to R which involves both positive and negative weights, like correlation graphs. But
the theory below can not be applied to such weights being positive and negative.

The degree of node i is defined as follows.

di = ZAij.

Define a diagonal matrix D = diag(d;). Now let’s come to the definition of Laplacian Matrix L.

Definition (Graph Laplacian).
Lij=<¢ —1 1~ ]
0 otherwise

1Simple graph means for every pair of nodes there are at most one edge associated with it; and there is no self loop on each
node.
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This matrix is often called unnormalized graph Laplacian in literature, to distinguish it from the nor-
malized graph Laplacian below. In fact, L = D — A.

Example 1. V ={1,2,3,4}, E = {{1,2},{2,3},{3,4}}. This is a linear chain with four nodes.

Example 2. A complete graph of n nodes, K,,. V = {1,2,3...n}, every two points are connected, as the
figure above with n = 5.

n—1 -1 -1 -1

-1 n-1 -1 -1

L= -1 -1 n-1 -1
-1 -1 -1 n-1

From the definition, we can see that L is symmetric, so all its eigenvalues will be real and there is an
orthonormal eigenvector system. Moreover L is positive semi-definite (p.s.d.). This is due to the fact that

Ty = Z Z vi(v; —vj) = Z div? — Z V05
i@ i i Gijevi
= Z(Ui — ;)% >0, Yv € R".
inj

In fact, L admits the decomposition L = BB where B € RIVI*IEl is called incidence matriz (or boundary
map in algebraic topology) here, for any 1 < j < k <mn,

1, =7,
B(i, {j,k}) = ¢ —1, 1=k,
0, otherwise

These two statements imply the eigenvalues of L can’t be negative. That is to say A(L) > 0.

Theorem 1.1 (Fiedler theory). Let L has n eigenvectors
Lvi:)\ivi, vi#O, ’L:O,,nfl
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where 0 = A\g < \; < --- < A\,_1. For the second smallest eigenvector vy, define
N_={i:v1(i) <0},
Ny ={i:v1(i) > 0},
No=V —N_— N,.

We have the following results.

1. #{i, \; = 0} = #{connected components of G};

2. If G is connected, then both N_ and N, are connected. N_ U Ny and N4 U Ny might be disconnected
if No # 0.

This theorem tells us that the second smallest eigenvalue can be used to tell us if the graph is connected,
i.e. G is connected iff \; # 0, i.e.

A1 = 0 < there are at least two connected components.
A1 > 0 < the graph is connected.

Moreover, the second smallest eigenvector can be used to bipartite the graph into two connected components
by taking N_ and N, when Ny is empty. For this reason, we often call the second smallest eigenvalue \; as
the algebraic connectivity.

We can calculate eigenvalues by using Rayleigh Quotient. This gives a sketch proof of the first part of
the theory.

Proof of Part I. Let (A, v) be a pair of eigenvalue-eigenvector, i.e. Lv = Av. Since L1 = 0, so the constant
vector 1 € R" is always the eigenvector associated with Ag = 0. In general,

2
Vi — s
)\_'UTL'U_lgj(l i)
Ty > w2
i

Note that
0=\ & v; =v; (j is path connected with 7).

Therefore v is a piecewise constant function on connected components of G. If G has k components, then there
are k independent piecewise constant vectors in the span of characteristic functions on those components,
which can be used as eigenvectors of L. In this way, we proved the first part of the theory. O

2 Normalized graph Laplacian

Definition (Normalized Graph Laplacian).

1 1 =7,

Lij=14— T d. i~ ]

0 otherwise.
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In fact £L = DY%(D — A)D~'Y/? = D='2LD~'/? = [ — D=Y2(D — A)D~'/2. From this one can see
the relations between eigenvectors of normalized £ and unnormalized L. For eigenvectors Lv = Av, we have

(I—D7Y2LD Y%y = X< Lu= ADu, u= D%,

1/2

whence eigenvectors of L, v after rescaling by D~"/“v, become generalized eigenvectors of L.

We can also use the Rayleigh Quotient to calculate the eigenvalues of L.

oLy vID~2(D — A)D"=v
vTy oY
B uT Lu
~ uTDu
> (ui —uy)?
i
T
J

Similarly we get the relations between eigenvalue and the connected components of the graph.

#{ (L) = 0} = #{connected components of G}.

Next we show that eigenvectors of £ are related to random walks on graphs. This will show you why we
choose this matrix to analysis the graph.

We can construct a random walk on G whose transition matrix is defined by
Ay 1

P~ —Y = .
YO Ay ds
J

By easy calculation, we see the result below.
P=D'A=D"Y*I-L)DY?

Hence P is similar to I — £. So their eigenvalues satisfy A\;(P) = 1 — A\;(£). Consider the right eigenvector
¢ and left eigenvector i of P.
uI'P = \u,

Pv = )v.
Due to the similarity between P and L,
u'P =X " oDV - £)DY? = 2T

Let @ = D~'/2u, we will get:
at (I - L£) = xa”

< La=(1- M.
You can see @ is the eigenvector of £, and we can get left eigenvectors of P from @ by multiply it with
D2 on the left side. Similarly for the right eigenvectors v = D~1/24.

If we choose ug = m; ~ %, then:
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u{Dvl = 5kl7
m Py =P ~ Aij = Ay,
where the last identity says the Markov chain is time-reversible.
All the conclusions above show that the normalized graph Laplacian £ keeps some connectivity measure
of unnormalized graph Laplacian L. Furthermore, £ is more related with random walks on graph, through

which eigenvectors of P are easy to check and calculate. That’s why we choose this matrix to analysis the
graph.

3 Cheeger Inequality

Let G be a graph, G = (V, E) and S is a subset of V whose complement is S = V — S. We define Vol(.5),
CUT(S) and NCUT(S) as below.

Vol(S) =Y d;.
i€S
CUT(S)= Y  Aj.
i€S,jes

cUT(S)
min(Vol(S), Vol(S))
NCUT(S) is called normalized-cut. We define the Cheeger constant hg = ming NCUT(S). Finding minimal
normalized graph cut is NP-hard.

NCUT(S) =

Cheeger Inequality says the second smallest eigenvalue provides both upper and lower bounds on the
minimal normalized graph cut. Its proof gives us a constructive polynomial algorithm to achieve such bounds.

Theorem 3.1 (Cheeger Inequality). If G is connected, then

h2
7G < M(L) < 2hg.

Proof. (1) Upper bound:

Assume the following function f realizes the optimal normalized graph cut,

1 .
L) vam tes
f(l)—{ 73 'LES,

By using the Rayleigh Quotient, we get

ZiNj(fi - j)z
= > fidi

(Voll(S) + Voll(g))QCUT(S)

T Vol(S) yagye + Vol(S)
=(

span

1
Vol(3)?
1 1

+ —

Vol(S)  Vol(9)
2CUT(S)

“min(Vol(S), Vol(S))

)OUT(S)

=: 2hg.
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which gives the upper bound.

(2) Lower bound: the proof of lower bound actually gives a constructive algorithm to compute an
approximate optimal cut as follows.

Let \iv = Lv. Then we reorder node set V such that v; < vy < ... < v,. Now consider a series of
particular subsets of V: S; = {v, v9,...v;}, and define

ag = min NCUT(S;).

Clearly finding the optimal value « just requires comparison over n — 1 NCUT values.

Below we shall show that
U
PRI
Denote V_ = {i;v; < 0}, V4 = {4;v; > 0}. Without lose of generality, we assume Vol(V_) < Vol(V).
Define Vol(S) = min(Vol(S), Vol(S)).
We write R(v) for
2
- s \U; — U5
R(v) = —ZWJ( 5 ) .
> vid;
We will get the following results.
)\1 = R(’U)
Zi,j€V+,i~j(vi - Uj)2 + Zi,jEV_,iNj(vi - UJ)Q
Yiev, Vidi + ey vid;
Zi,j€V+,i~j(vi —v;)? a+b > min (& b
> rev. VP cra Mo
(Zi,je\q,mj (v; = Uj)z)(Zi,jeVJr,iwj(vi +v;)?)
(Zi€V+ v?di)(zi,jev+,i~j(vi +v;)?)
> (Zi,jev+,i~j(vi —v;)?)?
- 2 ey, vidi)®
where the numerator is due to the Cauchy-Schwartz inequality |(z,y)|*> < (z, ) - (y,%), and the denominator
is due to }2; ey, (vi + v;)% = D imjev, (v + 02 + 2vv5) < 2 Dinjev, (v} +v3) <2 iev, vZd;. Continued
from the last inequality,

vV

%

(Zi,j€V+,i~j (vi — Uj)2)2
2Ty, v2di)?

> (Zi€V+2|Ui2 - Ui2+12|CUQT(Si))z7 since v < vy < ...
(Cicv, v3d:)

L (Siev, o = vllaclVol(Si))?

- 2T ey, v2di)?

(Ciev, v2(Vol(Si) — Vol(Si-1)))?
(Ziew vid;)?

g (Ciev, vdi)* a2,

2 Moy, v2di)? 2

At

v

< vp

2
el
2
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This completes the proof. O
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