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Introduction

Finding meaningful low-dimensional structures hidden in high-dimensional observations is an fundamental
task in high-dimensional statistics. The classical techniques for dimensionality reduction, principal com-
ponent analysis (PCA) and multi-dimensional scaling (MDS), guaranteed to discover the true structure of
data lying on or near a linear subspace of the high-dimensional input space. PCA finds a low-dimensional
embedding of the data points that best preserves their variance as measured in the high-dimensional in-
put space. Classical MDS finds an embedding that preserves the interpoint distances, equivalent to PCA
when those distances are Euclidean [1]. However, these linear techniques cannot adequately handle complex
nonlinear data. Recently more emphasis is put on detecting non-linear features in the data. For example,
ISOMAP [1] etc. extends MDS by incorporating the geodesic distances imposed by a weighted graph. It
defines the geodesic distance to be the sum of edge weights along the shortest path between two nodes.
The top n eigenvectors of the geodesic distance matrix are used to represent the coordinates in the new
n-dimensional Euclidean space. Nevertheless, as mention in [2], in practice robust estimation of geodesic
distance on a manifold is an awkward problem that require rather restrictive assumptions on the sampling.
Moreover, since the MDS step in the ISOMAP algorithm intends to preserve the geodesic distance between
points, it provides a correct embedding if submanifold is isometric to a convex open set of the subspace. If
the submanifold is not convex, then there exist a pair of points that can not be joined by a straight line
contained in the submanifold. Therefore,their geodesic distance can not be equal to the Euclidean distance.
Diffusion maps [3] leverages the relationship between heat diffusion and a random walk (Markov Chain); an
analogy is drawn between the diffusion operator on a manifold and a Markov transition matrix operating on
functions defined on a weighted graph whose nodes were sampled from the manifold. A diffusion map, which
maps coordinates between data and diffusion space, aims to re-organize data according to a new metric. In
this class, we will discuss this very metric-diffusion distance and it’s related properties.

1 Diffusion map, Diffusion distance

Viewing the data points x1,x2,. . . ,xn as the nodes of a weighted undirected graph G = (V,EW )(W = (Wij)),
where the weight Wij is a measure of the similarity between xi and xj . There are many ways to define Wij ,
such as:

1. Heat kernel. If xi and xj are connected, put:

Wij = e
−‖xi−xj‖

2

t (1)

with some positive parameter t ∈ R+
0 .
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2. Cosine Similarity

Wij = cos(∠(xi, xj)) =
xi
‖xi‖

· xj
‖xj‖)

(2)

3. Kullback-Leibler divergence. Assume xi and xj are two nonvanishing probability distribution, i.e.∑
k x

k
i = 1 and xki > 0. Define Kullback-Leibler divergence

D(KL)(xi||xj) =
∑
k

x
(k)
i log

x
(k)
i

x
(k)
j

and its symmetrization D̄ = D(KL)(xi||xj) + DKL(xj ||xi), which measure a kind of ‘distance’ be-
tween distributions; Jensen-Shannon divergence as the symmetrization of KL-divergence between one
distribution and their average,

D(JS)(xi, xj) = D(KL)(xi||(xi + xj)/2) +D(KL)(xj ||(xi + xj)/2)

A similarity kernel can be
Wij = −D(KL)(xi||xj) (3)

or
Wij = −D(JS)(xi, xj) (4)

The similarity functions are widely used in various applications. Sometimes the matrix W is positive
semi-definite (psd), that for any vector x ∈ Rn,

xTWx ≥ 0. (5)

PSD kernels includes heat kernels, cosine similarity kernels, and JS-divergence kernels. But in many other
cases (e.g. KL-divergence kernels), similarity kernels are not necessarily PSD. For a PSD kernel, it can be
understood as a generalized covariance function; otherwise, diffusions as random walks on similarity graphs
will be helpful to disclose their structures.

Define a Markov probability transition matrixA asA = D−1W , D = diag(
n∑
j=1

Wij) , diag(d1, d2, · · · , dn),

We used the right eigenvectors of A and corresponding eigenvalues to define the diffusion map in the following
way: suppose the top right eigenvector of A is φ1, φ2, · · · , φn, i,e,

Aφi = λiφi, λ1 ≥ λ2 ≥ · · · ≥ λn (6)

Then, the diffusion map Φt : V 7→ Rn is defined as

Φt(xi) =


λt1φ1(i)
λt2φ2(i)

...
λtnφn(i)

 (7)

The Euclidean distances ‖Φt(xi)− Φt(xj)‖Rn to which we refer as the diffusion distance denoted dt(xi, xj):

dt(xi, xj) = ‖Φt(xi)− Φt(xj)‖Rn (8)

From the interpretation of the matrix A as a Markov transition probability matrix

Aij = Pr{s(t+ 1) = xj |s(t) = xi} (9)
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it follows that

Atij = Pr{s(t+ 1) = xj |s(0) = xi} (10)

We refer to the i′th row of the matrix At, denoted Ati,∗, as the probability cloud of a random walk that starts
at xi. We can express At using the decomposition of A. Indeed, from

A = ΦΛΨT (11)

we get ΨTΦ = I, since W = WT , therefore D−
1
2WD−

1
2 is a symmetric matrix, assume it’s SVD decomposi-

tion:

D−
1
2WD−

1
2 = V ΛV T , V V T = I (12)

let Φ = D−
1
2V ,Ψ = D

1
2V ,thus

A = D−
1
2D−

1
2WD−

1
2D

1
2 = ΦΛΨT (13)

and ΨTΦ = V TD
1
2D−

1
2V = I. Then,we get

A2 = ΦΛΨTΦΛΨT = ΦΛ2ΨT (14)

and generally,

At = ΦΛtΨT (15)

Written componentwise, this is equivalent to

Atij =

n∑
k=1

λtkφk(i)ψk(j) (16)

Lemma 1 The diffusion distance is equal to a `2 distance between the probability clouds Ati,∗ and Atj,∗
with weights 1/dl,i.e.,

dt(xi, xj) = ‖Ati,∗ −Atj,∗‖`2(Rn,1/d) (17)

Proof

‖Ati,∗ −Atj,∗‖
2

`2(Rn,1/d)
=

n∑
l=1

(Atil −Atjl)2
1

dl

=

n∑
l=1

[

n∑
k=1

λtkφk(i)ψk(l)− λtkφk(j)ψk(l)]2
1

dl

=

n∑
l=1

n∑
k,k′

λtk(φk(i)− φk(j))ψk(l)λtk′(φk′(i)− φk′(j))ψk′(l)
1

dl

=

n∑
k,k′

λtkλ
t
k′(φk(i)− φk(j))(φk′(i)− φk′(j))

n∑
l=1

ψk(l)ψk′(l)

dl

=

n∑
k,k′

λtkλ
t
k′(φk(i)− φk(j))(φk′(i)− φk′(j))δkk′

=

n∑
k=1

λ2tk (φk(i)− φk(j))2

= d2t (xi, xj)
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In practice we usually do not use the mapping Φt but rather the truncate diffusion map Φδt that makes
use of fewer than n coordinates. Specifically, Φδt uses only the eigenvectors for which the eigenvalues satisfy
|λk|t > δ. When t is enough large, we can use the truncated diffusion distance:

dδt (xi, xj) = ‖Φδt (xi)− Φδt (xj)‖ = [
∑

k:|λk|t>δ

λ2tk (φk(i)− φk(j))2]
1
2 (18)

as an approximation of the weighted `2 distance of the probability clouds. We now derive a simple error
bound for this approximation.

Lemma 2 d2t (xi, xj)− 2δ2

dmin
(1−δij) ≤ [dδt (xi, xj)]

2 ≤ d2t (xi, xj), dmin = min1≤i≤n di where di =
∑
jWij

Proof Since, Φ = D−
1
2V , where V is an orthonormal matrix (V V T = V TV = I), it follows that

ΦΦT = D−
1
2V V TD−

1
2 = D−1 (19)

Therefore,
n∑
k=1

φk(i)φk(j) = (ΦΦT )ij =
δij
di

(20)

and
n∑
k=1

(φk(i)− φk(j))2 =
1

di
+

1

dj
− 2δij

di
(21)

clearly,
n∑
k=1

(φk(i)− φk(j))2 ≤ 2

dmin
(1− δij), forall i, j = 1, 2, · · · , n (22)

As a result,

[dδt (xi, xj)]
2 = d2t (xi, xj)−

∑
k:|λk|t<δ

λ2tk (φk(i)− φk(j))2

≥ d2t (xi, xj)− δ2
∑

k:|λk|t<δ

(φk(i)− φk(j))2

≥ d2t (xi, xj)− δ2
n∑
k=1

(φk(i)− φk(j))2

≥ d2t (xi, xj)−
2δ2

dmin
(1− δij)

on the other hand, it is clear that

[dδt (xi, xj)]
2 ≤ d2t (xi, xj) (23)

We conclude that

d2t (xi, xj)−
2δ2

dmin
(1− δij) ≤ [dδt (xi, xj)]

2 ≤ d2t (xi, xj) (24)

Therefore, for small δ the truncated diffusion distance provides a very good approximation to the diffusion
distance. Due to the falloff of the eigenvalues, the number of coordinates used for the truncated diffusion
map is usually much smaller than n, especially when t is large.
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2 Is the diffusion distance really a distance?

A distance function d : X ×X → R must satisfy the following properties:

1. Symmetry: d(x, y) = d(y, x)

2. Non-negativity: d(x, y) ≥ 0

3. Identity of indiscernibles: d(x, y) = 0⇔ x = y

4. Triangle inequality: d(x, z) + d(z, y) ≥ d(x, y)

Since the diffusion map is an embedding into the Euclidean space Rn, the diffusion distance inherits all
the metric properties of Rn such as symmetry, non-negativity and the triangle inequality. The only condition
that is not immediately implied is dt(x, y) = 0⇔ x = y. Cleary, xi = xj implies that dt(xi, xj) = 0. But is
it true that dt(xi, xj) = 0 implies xi = xj? Suppose dt(xi, xj) = 0, Then,

0 = d2t (xi, xj) =

n∑
k=1

λ2tk (φk(i)− φk(j))2 (25)

It follows that φk(i) = φk(j) for all k with λk 6= 0. But there is still the possibility that φk(i) 6= φk(j) for
k with λk = 0. We claim that this can happen only whenever i and j have the exact same neighbors and
proportional weights, that is:

Wik = αWjk, α > 0, for all k = 1, 2, · · · , n⇔ dt(xi, xj) = 0, xi 6= xj

Proof Indeed, if dt(xi, xj) = 0, then
n∑
k=1

λ2tk (φk(i) − φk(j))2 = 0 and φk(i) = φk(j) for k with λk 6= 0

This implies that dt′(xi, xj) = 0 for all t′, because

dt′(xi, xj) =

n∑
k=1

λ2t
′

k (φk(i)− φk(j)2 = 0 (26)

In particular, for t′ = 1, we get d1(xi, xj) = 0. But d1(xi, xj) = ‖Ai,∗ − Aj,∗‖`2(Rn,1/d), and since
‖ · ‖`2(Rn,1/d) is a norm, we must have Ai,∗ = Aj,∗, which implies Wik = Wjk. In other direction, if

Ai,∗ = Aj,∗, then d1(xi, xj) =
n∑
k=1

λ2k(φk(i) − φk(j))2 = 0 and therefore φk(i) = φk(j) for k with λk 6= 0,

from which it follows that dt(xi, xj) = 0 for all t.

Example In a graph with three nodes V = {1, 2, 3} and two edges, say E = {(1, 2), (2, 3)}, the diffusion
distance between nodes 1 and 3 is 0.

Summary

The mapping of points from the feature space to the diffusion map space of eigenvectors of the normalized
graph Laplacian has a well defined probabilistic meaning in terms of the diffusion distance. This distance,
in turn, depends on both the geometry and density of the dataset. The key concepts in the analysis of these
methods, that incorporates the density and geometry of a dataset, are the characteristic relaxation times
and processes of the random walk on the graph. Constructing on the finite Markov process and spectral
kernel method that reflect the geometry structure of dataset, diffusion map gained a great success.
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