

Lecture 05. Diffusion Map, Convergence theory

Instructor: Xiuyuan Cheng, Princeton University

Scribe: Jun Yin, Ya'ning Liu

 W is positive definite if using Gaussian Kernel

This is left by previous lecture.

One can check that, when

$$Q(x) = \int_{\mathbb{R}} e^{-ix\xi} d\mu(\xi),$$

for some positive finite Borel measure $d\mu$ on \mathbb{R} , then the (symmetric/Hermitian) integral kernel

$$k(x, y) = Q(x - y)$$

is positive definite, that is, for any function $\phi(x)$ on \mathbb{R} ,

$$\int \int \bar{\phi}(x)\phi(y)k(x, y) \geq 0.$$

Proof omitted. The reverse is also true, which is Bochner theorem. High dimensional case is similar.

Take 1-dimensional as an example. Since the Gaussian distribution $e^{-\xi^2/2}d\xi$ is a positive finite Borel measure, and the Fourier transform of Gaussian kernel is itself, we know that $k(x, y) = e^{-|x-y|^2/2}$ is a positive definite integral kernel. The matrix W as an discretized version of $k(x, y)$ keeps the positive-definiteness (make this rigorous? Hint: take $\phi(x)$ as a linear combination of n delta functions).**1 Main Result**

In this lecture, we will study the bias and variance decomposition for sample graph Laplacians and their asymptotic convergence to Laplacian-Beltrami operators on manifolds.

Let \mathcal{M} be a smooth manifold without boundary in \mathbb{R}^p (e.g. a d -dimensional sphere). Randomly draw a set of n data points, $x_1, \dots, x_n \in \mathcal{M} \subset \mathbb{R}^p$, according to distribution $p(x)$ in an independent and identically distributed (i.i.d.) way. We can extract an $n \times n$ weight matrix W_{ij} as follows:

$$W_{ij} = k(x_i, x_j)$$

where $k(x, y)$ is a symmetric $k(x, y) = k(y, x)$ and positivity-preserving kernel $k(x, y) \geq 0$. As an example, it can be the *heat kernel* (or Gaussian kernel),

$$k_\epsilon(x_i, x_j) = \exp\left(-\frac{\|x_i - x_j\|^2}{2\epsilon}\right),$$

where $\|\cdot\|^2$ is the Euclidean distance in space \mathbb{R}^p and ϵ is the bandwidth of the kernel. W_{ij} stands for similarity function between x_i and x_j . A diagonal matrix D is defined with diagonal elements are the row sums of W :

$$D_{ii} = \sum_{j=1}^n W_{ij}.$$

Let's consider a family of re-weighted similarity matrix, with superscript (α) ,

$$W^{(\alpha)} = D^{-\alpha} W D^{-\alpha}$$

and

$$D_{ii}^{(\alpha)} = \sum_{j=1}^n W_{ij}^{(\alpha)}.$$

Denote $A^{(\alpha)} = (D^{(\alpha)})^{-1} W$, and we can verify that $\sum_{j=1}^n A_{ij}^{(\alpha)} = 1$, i.e. a row Markov matrix. Now define $L^{(\alpha)} = A^{(\alpha)} - I = (D^{(\alpha)})^{-1} W^{(\alpha)} - I$; and

$$L_{\epsilon, \alpha} = \frac{1}{\epsilon} (A_{\epsilon}^{(\alpha)} - I)$$

when $k_{\epsilon}(x, y)$ is used in constructing W . In general, $L^{(\alpha)}$ and $L_{\epsilon, \alpha}$ are both called *graph Laplacians*. In particular $L^{(0)}$ is the unnormalized graph Laplacian in literature.

The target is to show that graph Laplacian $L_{\epsilon, \alpha}$ converges to continuous differential operators acting on smooth functions on \mathcal{M} the manifold. The convergence can be roughly understood as: we say a sequence of n -by- n matrix $L^{(n)}$ as $n \rightarrow \infty$ converges to a limiting operator \mathcal{L} , if for \mathcal{L} 's eigenfunction $f(x)$ (a smooth function on \mathcal{M}) with eigenvalue λ , that is

$$\mathcal{L}f = \lambda f,$$

the length- n vector $f^{(n)} = (f(x_i))$, $(i = 1, \dots, n)$ is approximately an eigenvector of $L^{(n)}$ with eigenvalue λ , that is

$$L^{(n)} f^{(n)} = \lambda f^{(n)} + o(1),$$

where $o(1)$ goes to zero as $n \rightarrow \infty$.

Specifically, (the convergence is in the sense of multiplying a positive constant)

(I) $L_{\epsilon, 0} = \frac{1}{\epsilon} (A_{\epsilon} - I) \rightarrow \frac{1}{2} (\Delta_{\mathcal{M}} + 2 \frac{\nabla p}{p} \cdot \nabla)$ as $\epsilon \rightarrow 0$ and $n \rightarrow \infty$. $\Delta_{\mathcal{M}}$ is the Laplace-Beltrami operator of manifold M . At a point on M which is d -dimensional, in local (orthogonal) geodesic coordinate s_1, \dots, s_d , the Laplace-Beltrami operator has the same form as the laplace in calculus

$$\Delta_{\mathcal{M}} f = \sum_{i=1}^d \frac{\partial^2}{\partial s_i^2} f;$$

∇ denotes the gradient of a function on M , and \cdot denotes the inner product on tangent spaces of \mathcal{M} . Note that $p = e^{-V}$, so $\frac{\nabla p}{p} = -\nabla V$.

(Ignore this part if you don't know stochastic process) Suppose we have the following diffusion process

$$dX_t = -\nabla V(X_t) dt + \sigma dW_t^{(M)},$$

where $W_t^{(M)}$ is the Brownian motion on M , and σ is the volatility, say a positive constant, then the backward Kolmogorov operator/Fokker-Plank operator/infinitesimal generator of the process is

$$\frac{\sigma^2}{2} \Delta_{\mathcal{M}} - \nabla V \cdot \nabla,$$

so we say in (I) the limiting operator is the Fokker-Plank operator. Notice that in Lafon '06 paper they differ the case of $\alpha = 0$ and $\alpha = 1/2$, and argue that only in the later case the limiting operator

is the Fokker-Plank. However the difference between $\alpha = 0$ and $\alpha = 1/2$ is a $1/2$ factor in front of $-\nabla V$, and that can be unified by changing the volatility σ to another number. (Actually, according to Thm 2. on Page 15 of Lafon'06, one can check that $\sigma^2 = \frac{1}{1-\alpha}$.) So here we say for $\alpha = 0$ the limiting operator is also Fokker-Plank. (not talked in class, open to discussion...)

(II) $L_{\epsilon,1} = \frac{1}{\epsilon}(A_{\epsilon}^{(1)} - I) \rightarrow \frac{1}{2}\Delta_{\mathcal{M}}$ as $\epsilon \rightarrow 0$ and $n \rightarrow \infty$. Notice that this case is of important application value: whatever the density $p(x)$ is, the Laplacian-Beltrami operator of \mathcal{M} is approximated, so the geometry of the manifold can be understood.

A special case is that samples x_i are uniformly distributed on \mathcal{M} , whence $\nabla p = 0$. Then (I) and (II) are the same up to multiplying a positive constant, due to that D 's diagonal entries are almost the same number and the re-weight does not do anything.

Convergence results like these can be found in Coifman and Lafon (2006), *Diffusion maps, Applied and Computational Harmonic Analysis*.

We also refer Singer (2006) *From graph to manifold Laplacian: The convergence rate, Applied and Computational Harmonic Analysis* for a complete analysis of the variance error, while the analysis of bias is very brief in this paper.

2 Proof

For a smooth function $f(x)$ on \mathcal{M} , let $f = (f_i) \in \mathbb{R}^n$ as a vector defined by $f_i = f(x_i)$. At a given fixed point x_i , we have the formula:

$$\begin{aligned} (Lf)^i &= \frac{1}{\epsilon} \left(\frac{\sum_{j=1}^n W_{ij} f_j}{\sum_{j=1}^n W_{ij}} - f_i \right) = \frac{1}{\epsilon} \left(\frac{\frac{1}{n} \sum_{j=1}^n W_{ij} f_j}{\frac{1}{n} \sum_{j=1}^n W_{ij}} - f_i \right) \\ &= \frac{1}{\epsilon} \left(\frac{\frac{1}{n} \sum_{j \neq i} k_{\epsilon}(x_i, x_j) \cdot f(x_j)}{\frac{1}{n} \sum_{j \neq i} k_{\epsilon}(x_i, x_j)} - f(x_i) + f(x_i)O\left(\frac{1}{n\epsilon^{\frac{d}{2}}}\right) \right) \end{aligned}$$

where in the last step the diagonal terms $j = i$ are excluded from the sums resulting in an $O(n^{-1}\epsilon^{-\frac{d}{2}})$ error. Later we will see that compared to the variance error, this term is negligible.

We rewrite the Laplacian above as

$$(Lf)^i = \frac{1}{\epsilon} \left(\frac{F(x_i)}{G(x_i)} - f(x_i) + f(x_i)O\left(\frac{1}{n\epsilon^{\frac{d}{2}}}\right) \right) \quad (1)$$

where

$$F(x_i) = \frac{1}{n} \sum_{j \neq i} k_{\epsilon}(x_i, x_j) f(x_j), \quad G(x_i) = \frac{1}{n} \sum_{j \neq i} k_{\epsilon}(x_i, x_j).$$

depends only on the other $n - 1$ data points than x_i . In what follows we treat x_i as a fixed chosen point and write as x .

Bias-Variance Decomposition. The points $x_j, j \neq i$ are independent identically distributed (i.i.d), therefore every term in the summation of $F(x)$ ($G(x)$) are i.i.d., and by the Law of Large Numbers (LLN) one should expect $F(x) \approx \mathbb{E}_{x_1}[k(x, x_1)f(x_1)] = \int_{\mathcal{M}} k(x, y)f(y)p(y)dy$ (and $G(x) \approx \mathbb{E}k(x, x_1) = \int_{\mathcal{M}} k(x, y)p(y)dy$). Recall that given a random variable x , and a sample estimator $\hat{\theta}$ (e.g. sample mean), the bias-variance decomposition is given by

$$\mathbb{E}\|x - \hat{\theta}\|^2 = \mathbb{E}\|x - \mathbb{E}x\|^2 + \mathbb{E}\|\mathbb{E}x - \hat{\theta}\|^2.$$

If we use the same strategy here (though not exactly the same, since $\mathbb{E}[\frac{F}{G}] \neq \frac{\mathbb{E}[F]}{\mathbb{E}[G]}$!), we can decompose Eqn. (1) as

$$(Lf)^i = \frac{1}{\epsilon} \left(\frac{\mathbb{E}[F]}{\mathbb{E}[G]} - f(x_i) + f(x_i)O\left(\frac{1}{n\epsilon^{\frac{d}{2}}}\right) \right) + \frac{1}{\epsilon} \left(\frac{F(x_i)}{G(x_i)} - \frac{\mathbb{E}[F]}{\mathbb{E}[G]} \right) \\ = \text{bias} + \text{variance.}$$

span

In the below we shall show that for case (I) the estimates are

$$\text{bias} = \frac{1}{\epsilon} \left(\frac{\mathbb{E}[F]}{\mathbb{E}[G]} - f(x) + f(x_i)O\left(\frac{1}{n\epsilon^{\frac{d}{2}}}\right) \right) = \frac{m_2}{2} (\Delta_{\mathcal{M}} f + 2\nabla f \cdot \frac{\nabla p}{p}) + O(\epsilon) + O\left(n^{-1}\epsilon^{-\frac{d}{2}}\right). \quad (2)$$

$$\text{variance} = \frac{1}{\epsilon} \left(\frac{F(x_i)}{G(x_i)} - \frac{\mathbb{E}[F]}{\mathbb{E}[G]} \right) = O(n^{-\frac{1}{2}}\epsilon^{-\frac{d}{4}-1}), \quad (3)$$

whence

$$\text{bias} + \text{variance} = O(\epsilon, n^{-\frac{1}{2}}\epsilon^{-\frac{d}{4}-1}) = C_1\epsilon + C_2n^{-\frac{1}{2}}\epsilon^{-\frac{d}{4}-1}.$$

As the bias is a monotone increasing function of ϵ while the variance is decreasing w.r.t. ϵ , the optimal choice of ϵ is to balance the two terms by taking derivative of the right hand side equal to zero (or equivalently setting $\epsilon \sim n^{-\frac{1}{2}}\epsilon^{-\frac{d}{4}-1}$) whose solution gives the optimal rates

$$\epsilon^* \sim n^{-1/(2+d/2)}.$$

Lafon'06 gives the bias and Hein'05 contains the variance parts, which are further improved by Singer'06 in both bias and variance.

2.1 The Bias Term

Now focus on $\mathbb{E}[F]$

$$\mathbb{E}[F] = \mathbb{E} \left[\frac{1}{n} \sum_{j \neq i} k_{\epsilon}(x_i, x_j) f(x_j) \right] = \frac{n-1}{n} \int_{\mathcal{M}} k_{\epsilon}(x, y) f(y) p(y) dy$$

$\frac{n-1}{n}$ is close to 1 and is treated as 1.

1. the case of one-dimensional and flat (which means the manifold \mathcal{M} is just a real line, i.e. $\mathcal{M} = \mathbb{R}$)

Let $\tilde{f}(y) = f(y)p(y)$, and $k_{\epsilon}(x, y) = \frac{1}{\sqrt{\epsilon}} e^{-\frac{(x-y)^2}{2\epsilon}}$, by change of variable

$$y = x + \sqrt{\epsilon}z,$$

we have

$$\square = \int_{\mathbb{R}} \tilde{f}(x + \sqrt{\epsilon}z) e^{-\frac{\epsilon^2}{2}} dz = m_0 \tilde{f}(x) + \frac{1}{2} m_2 f''(x) \epsilon + O(\epsilon^2)$$

where $m_0 = \int_{\mathbb{R}} e^{-\frac{\epsilon^2}{2}} dz$, and $m_2 = \int_{\mathbb{R}} z^2 e^{-\frac{\epsilon^2}{2}} dz$.

2. 1 Dimensional & Not flat:

Divide the integral into 2 parts:

$$\int_{\mathbb{M}} k_{\epsilon}(x, y) \tilde{f}(y) p(y) dy = \int_{||x-y|| > c\sqrt{\epsilon}} \cdot + \int_{||x-y|| < c\sqrt{\epsilon}} \cdot$$

First part = \circ

$$|\circ| \leq \|\tilde{f}\|_\infty \frac{1}{\epsilon^{\frac{d}{2}}} e^{-\frac{\epsilon^2}{2\epsilon}},$$

due to $\|x - y\|^2 > c\sqrt{\epsilon}$

$$c \sim \ln\left(\frac{1}{\epsilon}\right).$$

so this item is tiny and can be ignored.

Locally, that is $u \sim \sqrt{\epsilon}$, we have the curve in a plane and has the following parametrized equation

$$(x(u), y(u)) = (u, au^2 + qu^3 + \dots),$$

then the chord length

$$\frac{1}{\epsilon} \|x - y\|^2 = \frac{1}{\epsilon} [u^2 + (au^2 + qu^3 + \dots)^2] = \frac{1}{\epsilon} [u^2 + a^2 u^4 + q_5(u) + \dots],$$

where we mark $a^2 u^4 + 2a qu^5 + \dots = q_5(u)$. Next, change variable $\frac{u}{\sqrt{\epsilon}} = z$, then with $h(\xi) = e^{-\frac{\xi}{2}}$

$$h\left(\frac{\|x - y\|}{\epsilon}\right)^2 = h(z^2) + h'(z^2)(\epsilon^2 az^4 + \epsilon^{\frac{3}{2}} q_5 + O(\epsilon^2)),$$

also

$$\tilde{f}(s) = \tilde{f}(x) + \frac{d\tilde{f}}{ds}(x)s + \frac{1}{2} \frac{d^2\tilde{f}}{ds^2}(x)s^2 + \dots$$

and

$$s = \int_0^u \sqrt{1 + (2au + 3quu^2 + \dots)^2} du + \dots$$

and

$$\frac{ds}{du} = 1 + 2a^2 u^2 + q_2(u) + O(\epsilon^2), \quad s = u + \frac{2}{3} a^2 u^3 + O(\epsilon^2).$$

Now come back to the intergral

$$\begin{aligned} & \int_{|x-y| < c\sqrt{\epsilon}} \frac{1}{\sqrt{\epsilon}} h\left(\frac{x-y}{\epsilon}\right) \tilde{f}(s) ds \\ & \approx \int_{-\infty}^{+\infty} [h(z^2) + h'(z^2)(\epsilon^2 az^4 + \epsilon^{\frac{3}{2}} q_5)] \cdot [\tilde{f}(x) + \frac{d\tilde{f}}{ds}(x)(\sqrt{\epsilon}z + \frac{2}{3} a^2 z^2 \epsilon^{\frac{3}{2}}) \\ & \quad + \frac{1}{2} \frac{d^2\tilde{f}}{ds^2}(x)\epsilon z^2] \cdot [1 + 2a^2 + \epsilon^3 y_3(z)] dz \\ & = m_0 \tilde{f}(x) + \epsilon \frac{m_2}{2} \left(\frac{d^2\tilde{f}}{ds^2}(x) + a^2 \tilde{f}(x) \right) + O(\epsilon^2), \end{aligned} \quad \text{span}$$

where the $O(\epsilon^2)$ tails are omitted in middle steps, and $m_0 = \int h(z^2) dz$, $m_2 = \int z^2 h(z^2) dz$, are positive constants. In what follows we normalize both of them by m_0 , so only m_2 appears as coefficient in the $O(\epsilon)$ term. Also the fact that $h(\xi) = e^{-\frac{\xi}{2}}$, and so $h'(\xi) = -\frac{1}{2}h(\xi)$, is used.

3. For high dimension, \mathcal{M} is of dimension d ,

$$k_\epsilon(x, y) = \frac{1}{\epsilon^{\frac{d}{2}}} e^{-\frac{\|x-y\|^2}{2\epsilon}},$$

the corresponding result is (Lemma 8 in Appendix B of Lafon '06 paper)

$$\int_{\mathcal{M}} k_{\epsilon}(x, y) \tilde{f}(y) dy = \tilde{f}(x) + \epsilon \frac{m_2}{2} (\Delta_{\mathcal{M}} \tilde{f} + E(x) \tilde{f}(x)) + O(\epsilon^2), \quad (4)$$

where

$$E(x) = \sum_{i=1}^d a_i(x)^2 - \sum_{i_1 \neq i_2} a_{i_1}(x) a_{i_2}(x),$$

and $a_i(x)$ are the curvatures along coordinates s_i ($i = 1, \dots, d$) at point x .

Now we study the limiting operator and the bias error:

$$\begin{aligned} \frac{\mathbb{E}F}{\mathbb{E}G} &= \frac{\int k_{\epsilon}(x, y) f(y) p(y) dy}{\int k_{\epsilon}(x, y) p(y) dy} \approx \frac{f + \epsilon \frac{m_2}{2} (f'' + 2f' \frac{p'}{p} + f \frac{p^2}{p} + Ef) + O(\epsilon^2)}{1 + \epsilon \frac{m_2}{2} (\frac{p''}{p} + E) + O(\epsilon^2)} \\ &= f(x) + \epsilon \frac{m_2}{2} (f'' + 2f' \frac{p'}{p}) + o(\epsilon^2), \end{aligned} \quad (5)$$

and as a result, for generally d -dim case,

$$\frac{1}{\epsilon} \left(\frac{\mathbb{E}F}{\mathbb{E}G} - f(x) \right) = \frac{m_2}{2} (\Delta_{\mathcal{M}} f + 2\nabla f \cdot \frac{\nabla p}{p}) + O(\epsilon).$$

Using the same method and use Eqn. (4), one can show that for case (II) where $\alpha = 1$, the limiting operator is exactly the Laplace-Beltrami operator and the bias error is again $O(\epsilon)$ (homework).

About \mathcal{M} with boundary: firstly the limiting differential operator bears Newmann/no-flux boundary condition. Secondly, the convergence at a belt of width $\sqrt{\epsilon}$ near $\partial\mathcal{M}$ is slower than the inner part of \mathcal{M} , see more in Lafon'06 paper.

2.2 Variance Term

Our purpose is to derive the large deviation bound for¹

$$\text{Prob} \left(\frac{F}{G} - \frac{\mathbb{E}[F]}{\mathbb{E}[G]} \geq \alpha \right) \quad (6)$$

where $F = F(x_i) = \frac{1}{n} \sum_{j \neq i} k_{\epsilon}(x_i, x_j) f(x_j)$ and $G = G(x_i) = \frac{1}{n} \sum_{j \neq i} k_{\epsilon}(x_i, x_j)$. With x_1, x_2, \dots, x_n as i.i.d random variables, F and G are sample means (up to a scaling constant). Define a new random variable

$$Y = \mathbb{E}[G]F - \mathbb{E}[F]G - \alpha \mathbb{E}[G](G - \mathbb{E}[G])$$

which is of mean zero and Eqn. (6) can be rewritten as

$$\text{Prob}(Y \geq \alpha \mathbb{E}[G]^2).$$

For simplicity by *Markov (Chebyshev) inequality*²,

$$\text{Prob}(Y \geq \alpha \mathbb{E}[G]^2) \leq \frac{\mathbb{E}[Y^2]}{\alpha^2 \mathbb{E}[G]^4}$$

¹The opposite direction is omitted here.

²It means that $\text{Prob}(X > \alpha) \leq \mathbb{E}(X^2)/\alpha^2$. A Chernoff bound with exponential tail can be found in Singer'06.

and setting the right hand side to be $\delta \in (0, 1)$, then with probability at least $1 - \delta$ the following holds

$$\alpha \leq \frac{\sqrt{\mathbb{E}[Y^2]}}{\mathbb{E}[G]^2 \sqrt{\delta}} \sim O\left(\frac{\sqrt{\mathbb{E}[Y^2]}}{\mathbb{E}[G]^2}\right).$$

It remains to bound

$$\begin{aligned} \mathbb{E}[Y^2] &= (\mathbb{E}G)^2 \mathbb{E}(F^2) - 2(\mathbb{E}G)(\mathbb{E}F)\mathbb{E}(FG) + (\mathbb{E}F)^2 \mathbb{E}(G^2) + \dots \\ &\quad + 2\alpha(\mathbb{E}G)[(\mathbb{E}F)\mathbb{E}(G^2) - (\mathbb{E}G)\mathbb{E}(FG)] + \alpha^2(\mathbb{E}G)^2(\mathbb{E}(G^2) - (\mathbb{E}G)^2). \end{aligned}$$

So it suffices to give $\mathbb{E}(F)$, $\mathbb{E}(G)$, $\mathbb{E}(FG)$, $\mathbb{E}(F^2)$, and $\mathbb{E}(G^2)$. The former two are given in bias and for the variance parts in latter three, let's take one simple example with $\mathbb{E}(G^2)$.

Recall that x_1, x_2, \dots, x_n are distributed i.i.d according to density $p(x)$, and

$$G(x) = \frac{1}{n} \sum_{j \neq i} k_\epsilon(x, x_j),$$

so

$$\text{Var}(G) = \frac{1}{n^2} (n-1) \left[\int_{\mathcal{M}} k_\epsilon(x, y)^2 p(y) dy - (\mathbb{E}k_\epsilon(x, y))^2 \right].$$

Look at the simplest case of 1-dimension flat \mathcal{M} for an illustrative example:

$$\int_{\mathcal{M}} (k_\epsilon(x, y))^2 p(y) dy = \int_{\mathbb{R}} \frac{1}{\sqrt{\epsilon}} h^2(z^2) (p(x) + p'(x)(\sqrt{\epsilon}z + O(\epsilon))) dz,$$

$$\text{let } M_2 = \int_{\mathbb{R}} h^2(z^2) dz$$

$$\int_{\mathcal{M}} (k_\epsilon(x, y))^2 p(y) dy = p(x) \cdot \frac{1}{\sqrt{\epsilon}} M_2 + O(\sqrt{\epsilon}).$$

Recall that $\mathbb{E}k_\epsilon(x, y) = O(1)$, we finally have

$$\text{Var}(G) \sim \frac{1}{n} \left[\frac{p(x)M_2}{\sqrt{\epsilon}} + O(1) \right] \sim \frac{1}{n\sqrt{\epsilon}}.$$

Generally, for d -dimensional case, $\text{Var}(G) \sim n^{-1}\epsilon^{-\frac{d}{2}}$. Similarly one can derive estimates on $\text{Var}(F)$.

Ignoring the joint effect of $\mathbb{E}(FG)$, one can somehow get a rough estimate based on $F/G = [\mathbb{E}(F) + O(\sqrt{\mathbb{E}(F^2)})]/[\mathbb{E}(G) + O(\sqrt{\mathbb{E}(G^2)})]$ where we applied the Markov inequality on both the numerator and denominator. Combining those estimates together, we have the following,

$$\begin{aligned} \frac{F}{G} &= \frac{fp + \epsilon \frac{m_2}{2}(\Delta(fp) + \mathbb{E}[fp]) + O(\epsilon^2, n^{-\frac{1}{2}}\epsilon^{-\frac{d}{4}})}{p + \epsilon \frac{m_2}{2}(\Delta p + \mathbb{E}[p]) + O(\epsilon^2, n^{-\frac{1}{2}}\epsilon^{-\frac{d}{4}})} \\ &= f + \epsilon \frac{m_2}{2}(\Delta p + \mathbb{E}[p]) + O(\epsilon^2, n^{-\frac{1}{2}}\epsilon^{-\frac{d}{4}}), \end{aligned}$$

here $O(B_1, B_2)$ denotes the dominating one of the two bounds B_1 and B_2 in the asymptotic limit. As a result, the error (bias + variance) of $L_{\epsilon, \alpha}$ (dividing another ϵ) is of the order

$$O(\epsilon, n^{-\frac{1}{2}}\epsilon^{-\frac{d}{4}-1}). \quad (7)$$

In Amit Singer '06 paper, the last term in the last line is improved to

$$O(\epsilon, n^{-\frac{1}{2}}\epsilon^{-\frac{d}{4}-\frac{1}{2}}), \quad (8)$$

where the improvement is by carefully analyzing the large deviation bound of $\frac{F}{G}$ around $\frac{\mathbb{E}F}{\mathbb{E}G}$ shown above, making use of the fact that F and G are correlated. Technical details are not discussed here.

In conclusion, we need to choose ϵ to balance bias error and variance error to be both small. For example, by setting the two bounds in Eqn. (8) to be of the same order we have

$$\epsilon \sim n^{-1/2} \epsilon^{-1/2-d/4},$$

that is

$$\epsilon \sim n^{-1/(3+d/2)},$$

so the total error is $O(n^{-1/(3+d/2)})$.