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Lecture 05. Diffusion Map, Convergence theory

Instructor: Xiuyuan Cheng, Princeton University Scribe: Jun Yin, Ya’ning Liu

W is positive definite if using Gaussian Kernel

This is left by previous lecture.
One can check that, when

Q(x) =

ˆ
R
e−ixξdµ(ξ),

for some positive finite Borel measure dµ on R, then the (symmetric/Hermitian) integral kernel

k(x, y) = Q(x− y)

is positive definite, that is, for any function φ(x) on R,
ˆ ˆ

φ̄(x)φ(y)k(x, y) ≥ 0.

Proof omitted. The reverse is also true, which is Bochner theorem. High dimensional case is similar.
Take 1-dimensional as an example. Since the Gaussian distribution e−ξ

2/2dξ is a positive finite Borel
measure, and the Fourier transform of Gaussian kernel is itself, we know that k(x, y) = e−|x−y|

2/2 is a positive
definite integral kernel. The matrix W as an discretized version of k(x, y) keeps the positive-definiteness
(make this rigorous? Hint: take φ(x) as a linear combination of n delta functions).

1 Main Result

In this lecture, we will study the bias and variance decomposition for sample graph Laplacians and their
asymptotic convergence to Laplacian-Beltrami operators on manifolds.

LetM be a smooth manifold without boundary in Rp (e.g. a d-dimensional sphere). Randomly draw a
set of n data points, x1,..., xn ∈ M ⊂ Rp, according to distribution p(x) in an independent and identically
distributed (i.i.d.) way. We can extract an n× n weight matrix Wij as follows:

Wij = k(xi, xj)

where k(x, y) is a symmetric k(x, y) = k(y, x) and positivity-preserving kernel k(x, y) ≥ 0. As an example,
it can be the heat kernel (or Gaussian kernel),

kε(xi, xj) = exp

(
−||xi − xj ||

2

2ε

)
,

where || � ||2is the Euclidean distance in space Rp and ε is the bandwidth of the kernel. Wij stands for
similarity function between xi and xj . A diagonal matrix D is defined with diagonal elements are the row
sums of W :
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Dii =

n∑
j=1

Wij .

Let’s consider a family of re-weighted similarity matrix, with superscript (α),

W (α) = D−αWD−α

and

D
(α)
ii =

n∑
j=1

W
(α)
ij .

Denote A(α) = (D(α))−1W , and we can verify that
∑n
j=1A

(α)
ij = 1, i.e. a row Markov matrix. Now

define L(α) = A(α) − I = (D(α))−1W (α) − I; and

Lε,α =
1

ε
(A(α)

ε − I)

when kε(x, y) is used in constructing W . In general, L(α) and Lε,α are both called graph Laplacians. In
particular L(0) is the unnormalized graph Laplacian in literature.

The target is to show that graph Laplacian Lε,α converges to continuous differential operators acting on
smooth functions onM the manifold. The convergence can be roughly understood as: we say a sequence of
n-by-n matrix L(n) as n → ∞ converges to a limiting operator L, if for L’s eigenfunction f(x) (a smooth
function onM) with eigenvalue λ, that is

Lf = λf,

the length-n vector f (n) = (f(xi)), (i = 1, · · · , n) is approximately an eigenvector of L(n) with eigenvalue λ,
that is

L(n)f (n) = λf (n) + o(1),

where o(1) goes to zero as n→∞.
Specifically, (the convergence is in the sense of multiplying a positive constant)

(I) Lε,0 = 1
ε (Aε − I) → 1

2 (∆M + 2∇pp · ∇) as ε → 0 and n → ∞. ∆M is the Laplace-Beltrami operator
of manifold M . At a point on M which is d-dimensional, in local (orthogonal) geodesic coordinate
s1, · · · , sd, the Laplace-Beltrami operator has the same form as the laplace in calculus

∆Mf =

d∑
i=1

∂2

∂s2i
f ;

∇ denotes the gradient of a function on M , and · denotes the inner product on tangent spaces ofM.
Note that p = e−V , so ∇pp = −∇V .

(Ignore this part if you don’t know stochastic process) Suppose we have the following diffusion process

dXt = −∇V (Xt)dt+ σdW
(M)
t ,

where W (M)
t is the Brownian motion on M , and σ is the volatility, say a positive constant, then the

backward Kolmogorov operator/Fokker-Plank operator/infinitesimal generator of the process is

σ2

2
∆M −∇V · ∇,

so we say in (I) the limiting operator is the Fokker-Plank operator. Notice that in Lafon ’06 paper
they differ the case of α = 0 and α = 1/2, and argue that only in the later case the limiting operator
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is the Fokker-Plank. However the difference between α = 0 and α = 1/2 is a 1/2 factor in front of
−∇V , and that can be unified by changing the volatility σ to another number. (Actually, according to
Thm 2. on Page 15 of Lafon’06, one can check that σ2 = 1

1−α .) So here we say for α = 0 the limiting
operator is also Fokker-Plank. (not talked in class, open to discussion...)

(II) Lε,1 = 1
ε (A

(1)
ε − I) → 1

2∆M as ε → 0 and n → ∞. Notice that this case is of important application
value: whatever the density p(x) is, the Laplacian-Beltrami operator of M is approximated, so the
geometry of the manifold can be understood.

A special case is that samples xi are uniformly distributed onM, whence ∇p = 0. Then (I) and (II) are
the same up to multiplying a positive constant, due to that D’s diagonal entries are almost the same number
and the re-weight does not do anything.

Convergence results like these can be found in Coifman and Lafon (2006), Diffusion maps, Applied and
Computational Harmonic Analysis.

We also refer Singer (2006) From graph to manifold Laplacian: The convergence rate, Applied and Com-
putational Harmonic Analysis for a complete analysis of the variance error, while the analysis of bias is very
brief in this paper.

2 Proof

For a smooth function f(x) on M, let f = (fi) ∈ Rn as a vector defined by fi = f(xi). At a given fixed
point xi, we have the formula:

(Lf)i =
1

ε

(∑n
j=1Wijfj∑n
j=1Wij

− fi

)
=

1

ε

(
1
n

∑n
j=1Wijfj

1
n

∑n
j=1Wij

− fi

)

=
1

ε

(
1
n

∑
j 6=i kε(xi, xj).f(xj)

1
n

∑
j 6=i kε(xi, xj)

− f(xi) + f(xi)O(
1

nε
d
2

)

)

where in the last step the diagonal terms j = i are excluded from the sums resulting in an O(n−1ε−
d
2 ) error.

Later we will see that compared to the variance error, this term is negligible.
We rewrite the Laplacian above as

(Lf)i =
1

ε

(
F (xi)

G(xi)
− f(xi) + f(xi)O(

1

nε
d
2

)

)
(1)

where

F (xi) =
1

n

∑
j 6=i

kε(xi, xj)f(xj), G(xi) =
1

n

∑
j 6=i

kε(xi,xj).

depends only on the other n− 1 data points than xi. In what follows we treat xi as a fixed chosen point
and write as x.

Bias-Variance Decomposition. The points xj , j 6= i are independent identically distributed (i.i.d),
therefore every term in the summation of F (x) (G(x)) are i.i.d., and by the Law of Large Numbers
(LLN) one should expect F (x) ≈ Ex1

[k(x, x1)f(x1)] =
´
M k(x, y)f(y)p(y)dy (and G(x) ≈ Ek(x, x1) =´

M k(x, y)p(y)dy). Recall that given a random variable x, and a sample estimator θ̂ (e.g. sample mean), the
bias-variance decomposition is given by

E‖x− θ̂‖2 = E‖x− Ex‖2 + E‖Ex− θ̂‖2.
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If we use the same strategy here (though not exactly the same, since E[FG ] 6= E[F ]
E[G] !), we can decompose Eqn.

(1) as

(Lf)i =
1

ε

(
E[F ]

E[G]
− f(xi) + f(xi)O(

1

nε
d
2

)

)
+

1

ε

(
F (xi)

G(xi)
− E[F ]

E[G]

)
= bias+ variance.

span

In the below we shall show that for case (I) the estimates are

bias =
1

ε

(
E[F ]

E[G]
− f(x) + f(xi)O(

1

nε
d
2

)

)
=
m2

2
(∆Mf + 2∇f · ∇p

p
) +O(ε) +O

(
n−1ε−

d
2

)
. (2)

variance =
1

ε

(
F (xi)

G(xi)
− E[F ]

E[G]

)
= O(n−

1
2 ε−

d
4−1), (3)

whence
bias+ variance = O(ε, n−

1
2 ε−

d
4−1) = C1ε+ C2n

− 1
2 ε−

d
4−1.

As the bias is a monotone increasing function of ε while the variance is decreasing w.r.t. ε, the optimal choice
of ε is to balance the two terms by taking derivative of the right hand side equal to zero (or equivalently
setting ε ∼ n− 1

2 ε−
d
4−1) whose solution gives the optimal rates

ε∗ ∼ n−1/(2+d/2).

Lafon’06 gives the bias and Hein’05 contains the variance parts, which are further improved by Singer’06 in
both bias and variance.

2.1 The Bias Term

Now focus on E[F ]

E[F ] = E

 1

n

∑
j 6=i

kε(xi, xj)f(xj)

 =
n− 1

n

ˆ
M
kε(x, y)f(y)p(y)dy

n−1
n is close to 1 and is treated as 1.

1. the case of one-dimensional and flat (which means the manifoldM is just a real line, i.e. M = R)

Let f̃(y) = f(y)p(y), and kε(x, y) = 1√
ε
e−

(x−y)2
2ε , by change of variable

y = x+
√
εz,

we have
� =

ˆ
R
f̃(x+

√
εz)e−

ε2

2 dz = m0f̃(x) +
1

2
m2f

′′(x)ε+O(ε2)

where m0 =
´
R e
− ε22 dz, and m2 =

´
R z

2e−
ε2

2 dz.

2. 1 Dimensional & Not flat:

Divide the integral into 2 parts:

ˆ
m

kε(x, y)f̃(y)p(y)dy =

ˆ
||x−y||>c

√
ε

·+
ˆ
||x−y||<c

√
ε

·
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First part = ◦

| ◦ | ≤ ||f̃ ||∞
1

ε
a
2
e−

ε2

2ε ,

due to ||x− y||2 > c
√
ε

c ∼ ln(
1

ε
).

so this item is tiny and can be ignored.

Locally, that is u ∼
√
ε, we have the curve in a plane and has the following parametrized equation

(x(u), y(u)) = (u, au2 + qu3 + · · · ),

then the chord length

1

ε
||x− y||2 =

1

ε
[u2 + (au2 + qu3 + ...)2] =

1

ε
[u2 + a2u4 + q5(u) + · · · ],

where we mark a2u4 + 2aqu5 + ... = q5(u). Next, change variable u√
ε

= z, then with h(ξ) = e−
ξ
2

h(
||x− y||

ε
)2 = h(z2) + h′(z2)(ε2az4 + ε

3
2 q5 +O(ε2)),

also

f̃(s) = f̃(x) +
df̃

ds
(x)s+

1

2

d2f̃

ds2
(x)s2 + · · ·

and

s =

ˆ u

0

√
1 + (2au+ 3quu2 + ...)2du+ · · ·

and
ds

du
= 1 + 2a2u2 + q2(u) +O(ε2), s = u+

2

3
a2u3 +O(ε2).

Now come back to the intergral
ˆ
|x−y|<c

√
ε

1√
ε
h(
x− y
ε

)f̃(s)ds

≈
ˆ +∞

−∞
[h(z2) + h′(z2)(ε2az4 + ε

3
2 q5] · [f̃(x) +

df̃

ds
(x)(
√
εz +

2

3
a2z2ε

3
2 )

+
1

2

d2f̃

ds2
(x)εz2] · [1 + 2a2 + ε3y3(z)]dz

=m0f̃(x) + ε
m2

2
(
d2f̃

ds2
(x) + a2f̃(x)) +O(ε2),

span

where the O(ε2) tails are omitted in middle steps, and m0 =
´
h(z2)dz,m2 =

´
z2h(z2)dz, are positive

constants. In what follows we normalize both of them by m0, so only m2 appears as coefficient in the
O(ε) term. Also the fact that h(ξ) = e−

ξ
2 , and so h′(ξ) = − 1

2h(ξ), is used.

3. For high dimension,M is of dimension d,

kε(x, y) =
1

ε
d
2

e−
|x−y|2

2ε ,
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the corresponding result is (Lemma 8 in Appendix B of Lafon ’06 paper)
ˆ
M
kε(x, y)f̃(y)dy = f̃(x) + ε

m2

2
(∆Mf̃ + E(x)f̃(x)) +O(ε2), (4)

where

E(x) =

d∑
i=1

ai(x)2 −
∑
i1 6=i2

ai1(x)ai2(x),

and ai(x) are the curvatures along coordinates si (i = 1, · · · , d) at point x.

Now we study the limiting operator and the bias error:

EF
EG

=

´
kε(x, y)f(y)p(y)dy´
kε(x, y)p(y)dy

≈
f + εm2

2 (f ′′ + 2f ′ p
′

p + f p
2

p + Ef) +O(ε2)

1 + εm2

2 (p
′′

p + E) +O(ε2)

= f(x) + ε
m2

2
(f ′′ + 2f ′

p′

p
) + o(ε2), (5)

and as a result, for generally d-dim case,

1

ε

(
EF
EG
− f(x)

)
=
m2

2
(∆Mf + 2∇f · ∇p

p
) +O(ε).

Using the same method and use Eqn. (4), one can show that for case (II) where α = 1, the limiting
operator is exactly the Laplace-Beltrami operator and the bias error is again O(ε) (homework).

About M with boundary: firstly the limiting differential operator bears Newmann/no-flux boundary
condition. Secondly, the convergence at a belt of width

√
ε near ∂M is slower than the inner part ofM, see

more in Lafon’06 paper.

2.2 Variance Term

Our purpose is to derive the large deviation bound for1

Prob

(
F

G
− E[F ]

E[G]
≥ α

)
(6)

where F = F (xi) = 1
n

∑
j 6=i kε(xi, xj)f(xj) and G = G(xi) = 1

n

∑
j 6=i kε(x, xj). With x1, x2, ..., xn as i.i.d

random variables, F and G are sample means (up to a scaling constant). Define a new random variable

Y = E[G]F − E[F ]G− αE[G](G− E[G])

which is of mean zero and Eqn. (6) can be rewritten as

Prob(Y ≥ αE[G]2).

For simplicity by Markov (Chebyshev) inequality2 ,

Prob(Y ≥ αE[G]2) ≤ E[Y 2]

α2E[G]4

1The opposite direction is omitted here.
2It means that Prob(X > α) ≤ E(X2)/α2. A Chernoff bound with exponential tail can be found in Singer’06.
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and setting the right hand side to be δ ∈ (0, 1), then with probability at least 1− δ the following holds

α ≤
√
E[Y 2]

E[G]2
√
δ
∼ O

(√
E[Y 2]

E[G]2

)
.

It remains to bound

E[Y 2] = (EG)2E(F 2)− 2(EG)(EF )E(FG) + (EF )2E(G2) + ...

+2α(EG)[(EF )E(G2)− (EG)E(FG)] + α2(EG)2(E(G2)− (EG)2).

So it suffices to give E(F ), E(G), E(FG), E(F 2), and E(G2). The former two are given in bias and for the
variance parts in latter three, let’s take one simple example with E(G2).

Recall that x1, x2, ..., xn are distributed i.i.d according to density p(x), and

G(x) =
1

n

∑
j 6=i

kε(x, xj),

so
V ar(G) =

1

n2
(n− 1)

[ˆ
M
kε(x, y))2p(y)dy − (Ekε(x, y))2

]
.

Look at the simplest case of 1-dimension flatM for an illustrative example:
ˆ

M

(kε(x, y))2p(y)dy =

ˆ

R

1√
ε
h2(z2)(p(x) + p′(x)(

√
εz +O(ε)))dz,

let M2 =
´
R
h2(z2)dz

ˆ

M

(kε(x, y))2p(y)dy = p(x) · 1√
ε
M2 +O(

√
ε).

Recall that Ekε(x, y) = O(1), we finally have

V ar(G) ∼ 1

n

[
p(x)M2√

ε
+O(1)

]
∼ 1

n
√
ε
.

Generally, for d-dimensional case, V ar(G) ∼ n−1ε− d2 . Similarly one can derive estimates on V ar(F ).
Ignoring the joint effect of E(FG), one can somehow get a rough estimate based on F/G = [E(F ) +

O(
√
E(F 2))]/[E(G) + O(

√
E(G2))] where we applied the Markov inequality on both the numerator and

denominator. Combining those estimates together, we have the following,

F

G
=

fp+ εm2

2 (∆(fp) + E[fp]) +O(ε2, n−
1
2 ε−

d
4 )

p+ εm2

2 (∆p+ E[p]) +O(ε2, n−
1
2 ε−

d
4 )

= f + ε
m2

2
(∆p+ E[p]) +O(ε2, n−

1
2 ε−

d
4 ),

here O(B1, B2) denotes the dominating one of the two bounds B1 and B2 in the asymptotic limit. As a
result, the error (bias + variance) of Lε,α (dividing another ε) is of the order

O(ε, n−
1
2 ε−

d
4−1). (7)

In Amit Singer ’06 paper, the last term in the last line is improved to

O(ε, n−
1
2 ε−

d
4−

1
2 ), (8)



8 Lecture 05. Diffusion Map, Convergence theory

where the improvement is by carefully analyzing the large deviation bound of F
G around EF

EG shown above,
making use of the fact that F and G are correlated. Technical details are not discussed here.

In conclusion, we need to choose ε to balance bias error and variance error to be both small. For example,
by setting the two bounds in Eqn. (8) to be of the same order we have

ε ∼ n−1/2ε−1/2−d/4,

that is
ε ∼ n−1/(3+d/2),

so the total error is O(n−1/(3+d/2)).


