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Lecture 05. Diffusion Map, Convergence theory

Instructor: Xiuyuan Cheng, Princeton University Scribe: Jun Yin, Ya’ning Liu

W is positive definite if using Gaussian Kernel

This is left by previous lecture.

One can check that, when
Q@) = [ e <due),
R

for some positive finite Borel measure du on R, then the (symmetric/Hermitian) integral kernel

k(z,y) = Q(x —y)

is positive definite, that is, for any function ¢(z) on R,

| [ #@owhiz.) = o

Proof omitted. The reverse is also true, which is Bochner theorem. High dimensional case is similar.

Take 1-dimensional as an example. Since the Gaussian distribution =€/ 2d¢ is a positive finite Borel
measure, and the Fourier transform of Gaussian kernel is itself, we know that k(x,y) = e~ lz=ul*/2ig 5 positive
definite integral kernel. The matrix W as an discretized version of k(x,y) keeps the positive-definiteness
(make this rigorous? Hint: take ¢(z) as a linear combination of n delta functions).

1 Main Result

In this lecture, we will study the bias and variance decomposition for sample graph Laplacians and their
asymptotic convergence to Laplacian-Beltrami operators on manifolds.

Let M be a smooth manifold without boundary in RP (e.g. a d-dimensional sphere). Randomly draw a
set of n data points, x1...,2, € M C RP, according to distribution p(z) in an independent and identically
distributed (i.i.d.) way. We can extract an n x n weight matrix W;; as follows:

Wi]‘ = k‘(l‘i,l‘j)

where k(z,y) is a symmetric k(x,y) = k(y, z) and positivity-preserving kernel k(x,y) > 0. As an example,
it can be the heat kernel (or Gaussian kernel),

Hxi ijQ
k‘f 7:7 j = - 5. b
(2, ;) = exp ( 5¢

where || . ||%is the Euclidean distance in space RP and e is the bandwidth of the kernel. W;; stands for
similarity function between z; and x;. A diagonal matrix D is defined with diagonal elements are the row

sums of W:
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=> Wi

J=1

Let’s consider a family of re-weighted similarity matrix, with superscript (),
W = p=ewpD~

and

(0‘) ZW 0‘).

Denote A = (D(®)~'W, and we can verify that > 7, AE?) =1, i.e. a row Markov matrix. Now
define L(®) = A(®) — [ = (D))=l (®) — [; and

1
Lea = *(Aga) —1)
€

when k.(z,y) is used in constructing W. In general, L) and L., are both called graph Laplacians. In
particular L(®) is the unnormalized graph Laplacian in literature.

The target is to show that graph Laplacian L. , converges to continuous differential operators acting on
smooth functions on M the manifold. The convergence can be roughly understood as: we say a sequence of
n-by-n matrix L™ as n — oo converges to a limiting operator £, if for £’s eigenfunction f(z) (a smooth
function on M) with eigenvalue A, that is

Lf=A\f,
the length-n vector f(™) = (f(x;)),(i = 1,--- ,n) is approximately an eigenvector of L(™) with eigenvalue \,
that is

LM ) — () 4 o(1),
where o(1) goes to zero as n — oo.

Specifically, (the convergence is in the sense of multiplying a positive constant)

(I) Leo = %(A6 -1 — %(AM + 2% -V) as € —» 0 and n — oo. Ay is the Laplace-Beltrami operator
of manifold M. At a point on M which is d-dimensional, in local (orthogonal) geodesic coordinate
S1,- , 84, the Laplace-Beltrami operator has the same form as the laplace in calculus

A./Vlf Za Qfa

V denotes the gradient of a function on M, and - denotes the inner product on tangent spaces of M.
Note that p =e~", so % =-VV.

(Ignore this part if you don’t know stochastic process) Suppose we have the following diffusion process
dX, = —VV(X,)dt + cdW ™,

where Wt(M) is the Brownian motion on M, and o is the volatility, say a positive constant, then the
backward Kolmogorov operator/Fokker-Plank operator/infinitesimal generator of the process is

2
%AM—VV-V,

so we say in (I) the limiting operator is the Fokker-Plank operator. Notice that in Lafon 06 paper
they differ the case of @« = 0 and « = 1/2, and argue that only in the later case the limiting operator
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is the Fokker-Plank. However the difference between a = 0 and o = 1/2 is a 1/2 factor in front of
—VV, and that can be unified by changing the volatility o to another number. (Actually, according to
Thm 2. on Page 15 of Lafon’06, one can check that o2 = % ) So here we say for a = 0 the limiting

— .
operator is also Fokker-Plank. (not talked in class, open to discussion...)

(Il) Ly = %(AEI) —1I) = 1Ax as € — 0 and n — oco. Notice that this case is of important application

value: whatever the density p(z) is, the Laplacian-Beltrami operator of M is approximated, so the
geometry of the manifold can be understood.

A special case is that samples z; are uniformly distributed on M, whence Vp = 0. Then (I) and (II) are
the same up to multiplying a positive constant, due to that D’s diagonal entries are almost the same number
and the re-weight does not do anything.

Convergence results like these can be found in Coifman and Lafon (2006), Diffusion maps, Applied and
Computational Harmonic Analysis.

We also refer Singer (2006) From graph to manifold Laplacian: The convergence rate, Applied and Com-
putational Harmonic Analysis for a complete analysis of the variance error, while the analysis of bias is very
brief in this paper.

2 Proof

For a smooth function f(z) on M, let f = (f;) € R™ as a vector defined by f; = f(x;). At a given fixed
point xz;, we have the formula:

oo M (Xm Wi (e X Wali
(Lf) = 6< ST ﬁ) (:< IS AT ﬁ)
_ 1 %Zj;éi ke(zi, ;). f(2;) B 4 . 1

e < %stﬁi ke(i,25) fla f(m,)O(ne% )>

where in the last step the diagonal terms j = i are excluded from the sums resulting in an O(n~te~2) error.
Later we will see that compared to the variance error, this term is negligible.

(B

F(,TZ) = %Zke(xi,xj)f(xj), G(l‘,) = %Zke(xz,x])

J#i j#i

We rewrite the Laplacian above as

!

A | =

(Lf)' = — f(@i) + f2:)O(

1) W

~

where

depends only on the other n — 1 data points than x;. In what follows we treat x; as a fixed chosen point
and write as x.

Bias-Variance Decomposition. The points z;,j # i are independent identically distributed (i.i.d),
therefore every term in the summation of F(z) (G(x)) are i.i.d., and by the Law of Large Numbers
(LLN) one should expect F(z) ~ Eg, [k(z,z1)f(z1)] = [y k(z,9)f(y)py)dy (and G(z) ~ Ek(z,z1) =
fM k(x,y)p(y)dy). Recall that given a random variable z, and a sample estimator 0 (e.g. sample mean), the
bias-variance decomposition is given by

Ellz — 0| = E|z — Ez||® + E|Ez — 6.
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If we use the same strategy here (though not exactly the same, since E[g] % % 1), we can decompose Eqn.

(1) as

i _ 1 (E[F] 4 oL 1 (F(x;) E[F]
whi =1 (gig — e+ 10G) + 1 (50d - 5 ) .
= bias + variance.
In the below we shall show that for case (I) the estimates are
bias = % (Eg ~ f(a)+ f(xi)O(ni% )) = SH(Amf+2Vf- %) +0(+0(n ). ()
variance = 1 F(a:) — @ = n_%e_%_l
: (563 - 7i61) — ) ©)

whence

As the bias is a monotone increasing function of € while the variance is decreasing w.r.t. €, the optimal choice
of € is to balance the two terms by taking derivative of the right hand side equal to zero (or equivalently

o o 1/ (2Hd/2)

Lafon’06 gives the bias and Hein’05 contains the variance parts, which are further improved by Singer’06 in
both bias and variance.

2.1 The Bias Term

Now focus on E[F]

n

E[F] =E %Z ke(wi, ) f(x5) | =

vy n
J#i

1 /M ke, ) f (0)p(y)dy

"T_l is close to 1 and is treated as 1.
1. the case of one-dimensional and flat (which means the manifold M is just a real line, i.e. M =R)

_ (z—y)?

Let f(y) = f(y)p(y), and kc(z,y) = %e 2c , by change of variable

y =1+ ez,
we have )
. 2 -
0= / f(z+Vez)e™ Tdz = mof(z) + gmgf”(x)e + O(€?)
R
where mg = [, e_édz, and my = [, 2e=%dz.

2. 1 Dimensional & Not flat:
Divide the integral into 2 parts:

/mke(w,y)f(y)p(y)dy = Ax—ypcﬁ - Ax_y@ﬁ
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First part = o

m\n‘ =
"o

o] < Iflls

due to ||z —y|]* > cy/e

1
c~lIn(=).
€

so this item is tiny and can be ignored.
Locally, that is u ~ /€, we have the curve in a plane and has the following parametrized equation

(z(u),y(u) = (u, au® + qu + ---),
then the chord length
1 2 _ 1o 2 3 2 Loy 2,4
e =yl = e+ ( + g + )% = S+ aPut o+ gs(u) + ],

where we mark a?u* + 2aqu® + ... = g5(u). Next, change variable = = %, then with h(§) =

P - Ule — h(2) 4 W(2)(@azt + etgs + O()),

also -
oz df 1d%f 5
f(s) = f( H_E( ) +§ﬁ( )s® +
and N
s:/ V1 + (2au + 3quu? + ..)2du + - - -
0
and
ds 2,2 2 253 2
@:1+2au + g2 (u) + O(€?), s:u+§au + O(€).

Now come back to the intergral

1. -y, -
/wa( ) fs)ds
+oo B r 3
%/ 1) + 1 () (az* + bas) - (o) + S (@) (Vs + 22226t

— 00

R span
2
Ld/ (z)ez?] - [1 4 2a® + y3(2)]dz

242
~ m2 2
o)+ P2 ) + @2 + 0@,

where the O(€?) tails are omitted in middle steps, and mg = [ h(2%)dz,m2 = [ 2°h(2?)dz, are positive
constants. In what follows we normalize both of them by my, so only Mo appears as coefﬁClent in the

O(e) term. Also the fact that h(€) = e~%, and so W (&) = —3h(§), is used.

3. For high dimension, M is of dimension d,

k‘e(l‘,y) = g€
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the corresponding result is (Lemma 8 in Appendix B of Lafon ’06 paper)

~ ~ m, ~ ~
| Ele s = f@) + S+ B@) (@) + 0(@), (1)
where .
E(x) =Y ai()?® = Y a;(x)a,(z),
i=1 i1
and a;(z) are the curvatures along coordinates s; (i = 1,--- ,d) at point z.

Now we study the limiting operator and the bias error:

EF [k, ) fWp)dy [+ (" + 2f'E + f% +Ef)+0(e?)
EG  [kdzyply)dy 1+ e (2 1 B) + 0(&)
_ ma .y /p/

and as a result, for generally d-dim case,

Using the same method and use Eqn. (4), one can show that for case (II) where o = 1, the limiting
operator is exactly the Laplace-Beltrami operator and the bias error is again O(e) (homework).

About M with boundary: firstly the limiting differential operator bears Newmann/no-flux boundary
condition. Secondly, the convergence at a belt of width /e near OM is slower than the inner part of M, see
more in Lafon’06 paper.

2.2  Variance Term

Our purpose is to derive the large deviation bound for!

Prob (g - Eg > a> (6)

where F = F(z;) = %zﬁﬁi ke(zi,z)f(z;) and G = G(z;) = %Ej# ke(z,z;). With x1, 29, ..., 2, as 1.i.d
random variables, F' and G are sample means (up to a scaling constant). Define a new random variable

Y = E[G]F — E[F]G — oE[G](G — E[G])
which is of mean zero and Eqn. (6) can be rewritten as
Prob(Y > oE[G]?).
For simplicity by Markov (Chebyshev) inequality?

Prob(Y > oE[G]?) < C%

IThe opposite direction is omitted here.
2Tt means that Prob(X > o) < E(X?)/a?. A Chernoff bound with exponential tail can be found in Singer’06.
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and setting the right hand side to be § € (0,1), then with probability at least 1 —  the following holds
E[Y?2 E[Y2
v VEVI (VBT
E[G]2V/6 E[G]

E[Y?] = (EG)%E(F?) — 2(EG)(EF)E(FG) + (EF)*E(G?) +

It remains to bound

+2a(EG)[(EF)E(G?) — (EG)E(FG)] + o*(EG)*(E(G?) — (EG)?).

So it suffices to give E(F), E(G), E(FG), E(F?), and E(G?). The former two are given in bias and for the
variance parts in latter three, let’s take one simple example with E(G?).

Recall that 1,2, ..., 2,, are distributed i.i.d according to density p(z), and
1
= st(x,xj),
Jj#i
SO

Var(G) = i3 (n=1) | [ kelo) ol — (B ) |

Look at the simplest case of 1-dimension flat M for an illustrative example:

/ (ke ) 2p(y)dy = / L 2@2) () + ¢ (@) (Vez + 0()dz,

M
let My = [ h%(2?)dz
R
1
[ ) Pata)dy = pta) - 0o + OV
M
Recall that Ek.(x,y) = O(1), we finally have

Var(G) ~ 1 [p(m)MQ

1
Ve ny/e
1

Generally, for d-dimensional case, Var(G) ~ n~'e~ 2. Similarly one can derive estimates on Var(F).

+ 0(1)] ~

Ignoring the joint effect of E(F'G), one can somehow get a rough estimate based on F/G = [E(F) +
O(WE(F?))]/[E(G) + O(y/E(G?))] where we applied the Markov inequality on both the numerator and
denominator. Combining those estimates together, we have the following,

Fo o+ e (A(fp) +Elfp]) + O n 2 )
)

G p+eZ2(Ap+E[p]) + O(e2,n"3
= f+ eT(Ap—HE[p]) +0(E n 7

€
d
1

),

here O(B1, Bs) denotes the dominating one of the two bounds B; and By in the asymptotic limit. As a
result, the error (bias + variance) of L, (dividing another €) is of the order

O(e,n ze 171, (7)
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where the improvement is by carefully analyzing the large deviation bound of g around % shown above,

making use of the fact that F' and G are correlated. Technical details are not discussed here.
In conclusion, we need to choose € to balance bias error and variance error to be both small. For example,
by setting the two bounds in Eqn. (8) to be of the same order we have

€ ~ /2 1/2-d/4,

that is

¢~/ (BFd/2).

so the total error is O(n~1/(3+4/2)),



