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Lecture 4. Diffusion Map, an introduction

Instructor: Xiuyuan Cheng, Princeton University Scribe: Peng Luo, Wei Jin

1 Review Of The Last Class And Some Hints Of The First Home-
work

In the last class, we introduced how to calculate the largest eigenvalue of matrix Σ̂n and the properties of
the corresponding eigenvector v̂. First we say some points about last class.

Random vectors:{Yi}ni=1 ∼ N(0, σ2
xuu

T + σ2
εIp), where‖u‖2 = 1. Define R = SNR =

σ2
x

σ2
ε
. Without of

generality,we assume σ2
ε = 1.

The sample covariance matrix of Y is:Σ̂n = 1
n

∑n
i=1 yiy

t
i = 1

nY Y
T , suppose one of its eigenvalue is λ

and the corresponding unit eigenvector is v̂, so Σ̂nv̂ = λv̂. After that, we relate the λ to the MP distribution
by the trick:

Yi = Σ
1
2Zi → Zi ∼ N(0, Ip),where Σ

1
2 = σ2

xuu
T + σ2

εIp = RuuT + Ip (1)

Then Sn = 1
n

∑n
i=1 ZiZ

T
i ∼MP distribution.

Notice: Σ̂n = Σ
1
2SnΣ

1
2 and λ v̂ is eigenvalue and eigenvector of matrix Σ̂n. So

Σ
1
2SnΣ

1
2 v̂ = λv̂ which implies SnΣ(Σ−

1
2 v̂) = λ(Σ−

1
2 v̂) (2)

From the above equation, we find that λ and Σ−
1
2 v̂ is the eigenvalue and eigenvector of matrix SnΣ. Suppose

cΣ−
1
2 v̂ = v where the constant c makes v a unit eigenvector. So we have

cv̂ = Σ
1
2 v ⇒ c2 = cv̂T v̂ = vTΣv = vT (σ2

xuu
T + σ2

ε)v = R(uT v)2 + 1 (3)

In the last class, we computed the inner product of u and v(lecture03 equation22):

|uT v|2 = {σ4
x

∫ b

a

t2

(λ− σ2
ε)2

dµMP (t)}−1 (4)

= {σ
4
x

4γ
(−4λ+ (a+ b) + 2(

√
(λ− a)(λ− b)) +

λ(2λ− (a+ b))√
(λ− a)(λ− b)

)}−1 (5)

=
1− γ

R2

1 + γ + 2γ
R

(6)

where R = SNR =
σ2
x

σ2
ε

= σ2
x,γ =

√
p
n . We can compute the inner product of u and v̂ which we are really

interested in from the above equation:

|uT v̂|2 = (
1

c
uTΣ

1
2 v)2 =

1

c2
((Σ

1
2u)T v)2 =

1

c2
(((RuuT + Ip)

1
2u)T v)2 =

1

c2
((
√

(1 +R)u)T v)2

=
(1 +R)(uT v)2

R(uT v)2 + 1
=

1 +R− γ
R −

γ
R2

1 +R+ γ + γ
R

=
1− γ

R2

1 + γ
R
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In lecture03, we didn’t compute two equations(see equation (17)and(22) in lecture03) in details. Here is
my point to calculate them:∫ b

a

t

λ− t
µMP (t)dt := T (λ) (equation (17) in lecture03) (7)

From above equation, we can get:∫ b

a

t2

(λ− t)2
µMP (t)dt = −T (λ)− λT

′
(λ) (equation (22) in lecture03) (8)

So we just focus on T (λ).

Define:

m(z) :=

∫
R

1

(z − t)
µMP (t)dt, z ∈ C (9)

m(z) is called Stieltjes Transformation of density µMP .If z ∈ R, the transformation is called Hilbert Trans-
formation. Further details can be found in Reference [Tao] (Topics on Random Matrix Theory), Sec. 2.4.3
(the end of page 169) for the definition of Stietljes transform of a density p(t)dt on R (the book is using s(z)
instead of m(z) in class).

m(z) satisfies the equation:

γzm(z)2 + (z − (1− γ))m(z) + 1 = 0⇐⇒ z +
1

m(z)
=

1

1 + γm(z)
(10)

From the equation, one can take derivative of z on both side to obtain m′(z) in terms of m and z.

Notice:

1 + T (λ) = 1 +

∫ b

a

t

λ− t
µMP (t)dt =

∫ b

a

λ− t+ t

λ− t
µMP (t)dt = λm(λ) (11)

So we can compute T (λ) by m(λ)

In the last problem of first homework, we analyze Wigner Matrix W = [wij ]n×n, wij = wji, wij ∼
N(0, σ√

n
). The answer is

eigenvalue is λ = R+ 1
R

eigenvector satisfies (uT v̂)2 = 1− 1
R2

2 Introduction To The Diffusion Map

2.1 Manifold Learning Method

Here is the development of manifold learning method:

PCA −→ LLE −→

 Laplacian Eigen Map
Hessian LLE

Diffusion MAp

MSE −→ ISOMAP

Please read the Todd Wittman’s slides for the comparison of different manifold learning method. You
can find it in the website:http: www.math.pku.edu.cn/teachers/yaoy/Spring2011/. Lecture11.
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Figure 1: Order the face

Figure 2: Two circles

2.2 Examples

The following three problems can be solved by diffusion map.

Ex1: order the face. How to put the photos of figure one in order?

Ex2:”3D”. Fig. 2 of CoifmanLafon’06 paper.

Ex3:spectral clustering. How to separate the points in figure 2?

2.3 Method

In this section,we introduce the general diffusion map.

Suppose x1, x2, . . . , xn ∈ Rp,we create a symmetric matrix Wn×n = {wij}, such that wij = k(xi, xj) =
k(‖xi − xj‖2Rp), where k(x, y) is the similarity function. For example, we can choose

k(x, y) = exp{−‖x− y‖
2

2ε
} or k(x, y) = I{‖xi−xj‖<δ} (12)

Next, we create a n× n diagonal matrix D, where Dii =
∑n
j=1Wij .

A := D−1W , So
n∑
j=1

Aij = 1 ∀i ∈ {1, 2, · · ·, n} (Aij ≥ 0) (13)

Based on matrix A, we can construct a discrete time Markov chain: {Xt}t∈N which satifies

P (Xt+1 = xj | Xt = xi) = Aij (14)

S := D
1
2WD

1
2 = V ΛV Twhere V V T = In,Λ = diag(λ1, λ2, · · ·, λn) (15)

So

A = D−1W = D−1(D−
1
2SD−

1
2 ) = D−

1
2SD

1
2 = D−

1
2V ΛV TD

1
2 = ΦΛΨT (Φ = D−

1
2V,Ψ = V TD

1
2 ) (16)

Thus ΦΨT = In and we can get AΦ = ΦΛ,ΨTA = ΛΨT .

Suppose Φ = [φ0, φ1, · · ·, φn], So A[φ0, φ1, · · ·, φn] = [λ0φ0, λ1φ1, · · ·, λnφn], where λ0 = 1, φ0 = en.
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Figure 3: EX2 single circle

Define map:
Φt(xi) = [(λ1)tφ1(i), (λ2)tφ2(i), · · · , (λn−1)tφn−1(i)] (t > 0) (17)

φk(i) is the i-th entry of φk.

Truncate the mapping where only those eigenvalues whose absolute value are larger than δ, some positive
constant, are saved: suppose λ1, λ2, · · · , λm s.t. |λi| ≥ δ

Φδt (xi) = [(λ1)tφ1(i), (λ2)tφ2(i), · · · , (λm)tφm(i)] (18)

Diffusion distance:
Dt(xi, xj) :=‖ Φt(xi)− Φt(xj) ‖2 (19)

2.4 Simple examples

Three examples about diffusion map:

EX1: two circles.

Suppose graph G : (V,E). Matrix W satisfies wij > 0, if and only if (i, j) ∈ E. Choose k(x, y) =
I‖x−y‖<δ. In this case,

A =

(
A1 0
0 A2

)
,

where A1 is a n1 × n1 matrix, A2 is a n2 × n2 matrix, n1 + n2 = n.

Notice that the eigenvalue λ0 = 1 of A is of multiplicity 2, the two eigenvectors are φ0 = 1n and
φ

′

0 = [c11Tn1, c21Tn2]T c1 6= c2.

Diffusion Map :

{
Φ1D
t (x1), · · · ,Φ1D

t (xn1) = c1
Φ1D
t (xn1+1), · · · ,Φ1D

t (xn) = c2

EX2: ring graph. ”single circle”

In this case, W is a circulant matrix

W =


1 1 0 0 · · · 1
1 1 1 0 · · · 0
0 1 1 1 · · · 0
...

...
...

... · · ·
...

1 0 0 0 · · · 1


The eigenvalue of W is λk = cos 2πk

n k = 0, 1, · · · , n2 and the corresponding eigenvector is (uk)j = ei
2π
n kj j =

1, · · · , n. So we can get Φ2D
t (xi) = (cos 2πkj

n , sin 2πkj
n )ct
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EX3: order the face.

L := A− I = D−1W − I

Lε :=
1

ε
(Aε − I)

ε→0−→ backward Kolmogorov operator

Lεf =
1

2
4Mf −∇f · ∇v ⇒ Lε = λφ⇒

{
1
2φ

′′
(s)− φ′

(s)V
′
(s) = λφ(s)

φ
′
(0) = φ

′
(1) = 0

Where V (s) is the Gibbs weight and p(s) = e−V (x) is the density of data points along the curve. 4M is
Laplace-Beltrami Operator. If p(x) = const, we can get

V (s) = const⇒ φ
′′
(s) = 2λφ(s)⇒ φk(s) = cos(kπs), 2λk = −k2π2 (20)

On the other hand p(s) 6= const, one can show 1 that φ1(s) is monotonic for arbitrary p(s). As a result, the
faces can still be ordered by using φ1(s).

2.5 Properties of Transition Matrix of Markov Chain

Suppose A is a Markov Chain Transition Matrix.

1 λ(A) ⊂ [−1, 1].

proof : assume λ and v are the eigenvalue and eigenvector of A, soAv = λv. Find j0 s.t. |vj0 | ≥ |vj |,∀j 6=
j0 where vj is the j-th entry of v. Then:

λvj0 = (Av)j0 =

n∑
j=1

Aj0jvj

So:

|λ||vj0 | = |
n∑
j=1

Aj0jvj | ≤
n∑
j=1

Aj0j |vj | ≤ |vj0 |

2 Define: A is irreducible, if and only if ∀(i, j) ∃t s.t. (At)ij > 0 ⇔ Graph is connected

fact:A is irreducible ⇒ λ = 1

3 Define: A is primitive, if and only if ∃t > 0 s.t.∀(i, j) (At)ij > 0

fact: A is primitive ⇒ −1 6∈ λ(A)

fact: A is irreducible and Aii > 0 ∀i ⇒ A is primitive

4 Theory(Perron-Frobenius):if Aij > 0, then:

∃r > 0, s.t. r ∈ λ(A) and ∀λ ∈ λ(A), λ 6= r, |λ| < r

5 Fact: If k(x, y) is heat kernel ⇒ λ(A) ≥ 0

1by changing to polar coordinate p(s)φ′(s) = r(s) cos θ(s), φ(s) = r(s) sin θ(s) ( the so-called ‘Prufer Transform’ ) and then
try to show that φ′(s) is never zero on (0, 1).


