Mathematics for Data Sciences Sep 20th, 2011
Lecture 4. Diffusion Map, an introduction

Instructor: Xiuyuan Cheng, Princeton University Scribe: Peng Luo, Wei Jin

1 Review Of The Last Class And Some Hints Of The First Home-
work

In the last class, we introduced how to calculate the largest eigenvalue of matrix f]n and the properties of
the corresponding eigenvector v. First we say some points about last class.
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Random vectors:{Y;}?; ~ N(0,02uu” + 021,), where|u||?> = 1. Define R = SNR = Z%. Without of
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generality,we assume o- = 1.

The sample covariance matrix of Y is:3, = %2?21 vyl = %YYT, suppose one of its eigenvalue is A

and the corresponding unit eigenvector is o, so 3,0 = \0. After that, we relate the A to the MP distribution
by the trick: i )
Y; =%27; — Z; ~ N(0,1,),where %2 = o2uu’ + 021, = Ruu” + I, (1)

Then S, = L 37" | Z;ZT ~MP distribution.
Notice: ¥, = £25,52 and A 0 is eigenvalue and eigenvector of matrix S, So
$25,579 = Ad which implies S, %(X728) = A(S729) (2)

From the above equation, we find that A and Y29 is the eigenvalue and eigenvector of matrix S, >. Suppose
1. . .
X720 = v where the constant ¢ makes v a unit eigenvector. So we have

cd =370 = =cd"o =0T =0T (02uuT + o2 = R(uTv)® +1 (3)

In the last class, we computed the inner product of u and v(lecture03 equation22):

b 2
R R el O (4)
I T o L AR )
= R0 ey 2D a0 B + SR ) (5)
_ 1%
149+ Z ©)

2
where R = SNR = Z—’é =o02y= \/g . We can compute the inner product of u and © which we are really
interested in from the above equation:

WP =GR = S (SH)T) = S ((Ru” + L) R o) = (VT + Rju)To)?
(1+R)(u"v)? 1+R—-F -5 1—7
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In lecture03, we didn’t compute two equations(see equation (17)and(22) in lecture03) in details. Here is
my point to calculate them:

b

t
/ muMP(t)dt :=T()\) (equation (17) in lecture03) (7)

From above equation, we can get:

b ,
/ WMMP(t)dt = —T(\) = AT ()\) (equation (22) in lecture03) (8)
. (A—
So we just focus on T'(A).
Define: )
MP

m(z):= | ——u t)dt, z € C 9
()= [ )

m(z) is called Stieltjes Transformation of density 7 .If z € R, the transformation is called Hilbert Trans-
formation. Further details can be found in Reference [Tao] (Topics on Random Matrix Theory), Sec. 2.4.3
(the end of page 169) for the definition of Stietljes transform of a density p(¢)dt on R (the book is using s(z)
instead of m(z) in class).

m(z) satisfies the equation:

1
2
m(z)"+ (=1 —=79)m(z)+1=0<= 2+ = 10
vem(2)? + (2 = (1= ))m(z) ) = T (10)
From the equation, one can take derivative of z on both side to obtain m’(z) in terms of m and z.
Notice:
PA—t+t LMP
14T\ _1+/ Bt = / ALELME (@)t = Am() (11)
So we can compute T'(A\) by m(A)
In the last problem of first homework, we analyze Wigner Matrix W = [wij]nxn,wij = wj;, Wi ~
N(0, ﬁ) The answer is
eigenvalue is A=R+ %
eigenvector satisfies (uW'o)> =1- 35

2 Introduction To The Diffusion Map

2.1 Manifold Learning Method

Here is the development of manifold learning method:

Laplacian Eigen Map
PCA — LLE — Hessian LLE
Diffusion MAp

MSE — ISOMAP

Please read the Todd Wittman’s slides for the comparison of different manifold learning method. You
can find it in the website:http: www.math.pku.edu.cn/teachers/yaoy/Spring2011/. Lecturell.
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Figure 1: Order the face

Figure 2: Two circles

2.2 Examples

The following three problems can be solved by diffusion map.
Ex1: order the face. How to put the photos of figure one in order?
Ex2:”3D”. Fig. 2 of CoifmanLafon’06 paper.

Ex3:spectral clustering. How to separate the points in figure 27

2.3 Method

In this section,we introduce the general diffusion map.

Suppose 1,2, ..., T, € RP,we create a symmetric matrix W, x, = {w;;}, such that w;; = k(x;,x;) =
k(|zi — z;]|%»), where k(z,y) is the similarity function. For example, we can choose

lz — ylI?

o }or k(z,y) = I{jjz,—a; | <5} (12)

k(z,y) = exp{—

Next, we create a n x n diagonal matrix D, where D;; = Z?Zl Wi
A:=D7'W, So
n
> A =1Vie{1,2,--n} (A >0) (13)

j=1

Based on matrix A, we can construct a discrete time Markov chain: {X;};cny which satifies

P(Xt+1 =, | X = xl) = Aij (14)

S:=D3WD? = VAV where VVT = I,,, A = diag(A1, X2, -, An) (15)
So

A=D'W =D D 38D %) =D 358D% = D :VAVTD? = AW (& = D2V, ¥ = V' D) (16)
Thus ®¥7 = I,, and we can get A® = ®A, VA = AUT,
Suppose ¢ = [¢0,¢13 t '7¢n]7 So A[¢Oa¢la o a(z)n} = [)‘0¢07>\1¢17 t ’7)\n¢n]7 where >‘0 = 1; ¢O = €n.
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Figure 3: EX2 single circle

Define map:
D (w) = [(A1)"d1(0), (A2) d2(3), -, (An—1) b1 (D)] (t > 0) (17)

o (i) is the i-th entry of ¢p.

Truncate the mapping where only those eigenvalues whose absolute value are larger than §, some positive
constant, are saved: suppose A1, Ag, -+, Ay, 8. |A| >0

B9 (2;) = [(M)fD1(2), (M2)!2(3), -+, (M) i ()] (18)

Diffusion distance:
Dy(xs,25) = ®4(x;) — 4(x;) |I? (19)

2.4 Simple examples

Three examples about diffusion map:
EX1: two circles.

Suppose graph G : (V,E). Matrix W satisfies w;; > 0, if and only if (¢,j) € E. Choose k(z,y) =
Iy, — . In this case,
le—yll<é
(A O
(0 a)

where A; is a my X nq matrix, As is a ny X no matrix, ny + ng = n.

Notice that the eigenvalue A\g = 1 of A is of multiplicity 2, the two eigenvectors are ¢y = 1, and
b0 = [e11h1, cal o)™ 1 # ca.

O10(z1),--+ , @1 (2n,) = 1
Diffusion Map : L VLTt
P { (I)tlD(xn1+1)ﬂ T 7(I)}D(xn) = C2
EX2: ring graph. ”single circle”
In this case, W is a circulant matrix
1 1 0 0 1
1 1 10 0
wolo111 0
100 0 --- 1
The eigenvalue of W is A, = cos 222 k =0,1,--- , 2 and the corresponding eigenvector is (uy); = etk j =

2nky i 27kyj
ﬂkﬂjsmm)ct
n

1,--+,n. So we can get ®?P(z;) = (cos =
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EX3: order the face.
L=A—-I=D'W-1TI

1
L. := E(A -1 =¥ backward Kolmogorov operator

_1 ERVEIRv _ 10 () ¢ (s)V (8) Ao(s)
Lgf_QAMf Vf-Vv= L. )\qb:>{ (): (1)

Where V(s) is the Gibbs weight and p(s) = e~V (*) is the density of data points along the curve. Ay is
Laplace-Beltrami Operator. If p(z) = const, we can get

V(s) = const = ¢ (s) = 2Xp(s) = ¢r(s) = cos(kms), 2X, = —k>n2 (20)

On the other hand p(s) # const, one can show ! that ¢;(s) is monotonic for arbitrary p(s). As a result, the
faces can still be ordered by using ¢1(s).

2.5 Properties of Transition Matrix of Markov Chain

Suppose A is a Markov Chain Transition Matrix.
1 AA) C[-1,1].

proof: assume A and v are the eigenvalue and eigenvector of A, soAv = Av. Find jo s.t. |v;,| > |vj],Vj #
jo where v; is the j-th entry of v. Then:

Nvjy = (Av)jo = > Ajyjv;

So:
n n
Mlviol = 1D Ajosvgl <D Ajoslvg| < lvjo

j=1 j=1

2 Define: A is irreducible, if and only if V(i, ) 3¢ s.t. (4");; > 0 < Graph is connected
fact:A is irreducible = A =1

3 Define: A is primitive, if and only if 3¢t > 0 s.£.Y(z,5) (4%);; >0

fact: A is primitive = —1 & A(4)

fact: A is irreducible and A;; > 0 Vi = A is primitive

4 Theory(Perron-Frobenius):if A;; > 0, then:

Ir > 0,st. 7€ AMA) and YA € MA), N £ |\ <r

5 Fact: If k(x,y) is heat kernel = A(A) >0

Iby changing to polar coordinate p(s)¢’(s) = r(s) cos(s), ¢(s) = r(s)sin(s) ( the so-called ‘Prufer Transform’ ) and then
try to show that ¢’(s) is never zero on (0, 1).



