

Lecture 4. Diffusion Map, an introduction

Instructor: Xiuyuan Cheng, Princeton University

Scribe: Peng Luo, Wei Jin

1 Review Of The Last Class And Some Hints Of The First Homework

In the last class, we introduced how to calculate the largest eigenvalue of matrix $\hat{\Sigma}_n$ and the properties of the corresponding eigenvector \hat{v} . First we say some points about last class.

Random vectors: $\{Y_i\}_{i=1}^n \sim N(0, \sigma_x^2 uu^T + \sigma_\varepsilon^2 I_p)$, where $\|u\|^2 = 1$. Define $R = SNR = \frac{\sigma_x^2}{\sigma_\varepsilon^2}$. Without of generality, we assume $\sigma_\varepsilon^2 = 1$.

The sample covariance matrix of Y is: $\hat{\Sigma}_n = \frac{1}{n} \sum_{i=1}^n y_i y_i^T = \frac{1}{n} Y Y^T$, suppose one of its eigenvalue is λ and the corresponding unit eigenvector is \hat{v} , so $\hat{\Sigma}_n \hat{v} = \lambda \hat{v}$. After that, we relate the λ to the MP distribution by the trick:

$$Y_i = \Sigma^{\frac{1}{2}} Z_i \rightarrow Z_i \sim N(0, I_p), \text{ where } \Sigma^{\frac{1}{2}} = \sigma_x^2 uu^T + \sigma_\varepsilon^2 I_p = R uu^T + I_p \quad (1)$$

Then $S_n = \frac{1}{n} \sum_{i=1}^n Z_i Z_i^T \sim \text{MP distribution}$.

Notice: $\hat{\Sigma}_n = \Sigma^{\frac{1}{2}} S_n \Sigma^{\frac{1}{2}}$ and $\lambda \hat{v}$ is eigenvalue and eigenvector of matrix $\hat{\Sigma}_n$. So

$$\Sigma^{\frac{1}{2}} S_n \Sigma^{\frac{1}{2}} \hat{v} = \lambda \hat{v} \text{ which implies } S_n \Sigma (\Sigma^{-\frac{1}{2}} \hat{v}) = \lambda (\Sigma^{-\frac{1}{2}} \hat{v}) \quad (2)$$

From the above equation, we find that λ and $\Sigma^{-\frac{1}{2}} \hat{v}$ is the eigenvalue and eigenvector of matrix $S_n \Sigma$. Suppose $c \Sigma^{-\frac{1}{2}} \hat{v} = v$ where the constant c makes v a unit eigenvector. So we have

$$c \hat{v} = \Sigma^{\frac{1}{2}} v \Rightarrow c^2 = c \hat{v}^T \hat{v} = v^T \Sigma v = v^T (\sigma_x^2 uu^T + \sigma_\varepsilon^2) v = R(u^T v)^2 + 1 \quad (3)$$

In the last class, we computed the inner product of u and v (lecture03 equation22):

$$|u^T v|^2 = \{\sigma_x^4 \int_a^b \frac{t^2}{(\lambda - \sigma_\varepsilon^2)^2} d\mu^{MP}(t)\}^{-1} \quad (4)$$

$$= \{\frac{\sigma_x^4}{4\gamma} (-4\lambda + (a+b) + 2(\sqrt{(\lambda-a)(\lambda-b)}) + \frac{\lambda(2\lambda-(a+b))}{\sqrt{(\lambda-a)(\lambda-b)}})\}^{-1} \quad (5)$$

$$= \frac{1 - \frac{\gamma}{R^2}}{1 + \gamma + \frac{2\gamma}{R}} \quad (6)$$

where $R = SNR = \frac{\sigma_x^2}{\sigma_\varepsilon^2} = \sigma_x^2, \gamma = \sqrt{\frac{R}{n}}$. We can compute the inner product of u and \hat{v} which we are really interested in from the above equation:

$$\begin{aligned} |u^T \hat{v}|^2 &= (\frac{1}{c} u^T \Sigma^{\frac{1}{2}} v)^2 = \frac{1}{c^2} ((\Sigma^{\frac{1}{2}} u)^T v)^2 = \frac{1}{c^2} (((Ruu^T + I_p)^{\frac{1}{2}} u)^T v)^2 = \frac{1}{c^2} ((\sqrt{(1+R)} u)^T v)^2 \\ &= \frac{(1+R)(u^T v)^2}{R(u^T v)^2 + 1} = \frac{1+R - \frac{\gamma}{R} - \frac{\gamma}{R^2}}{1+R + \gamma + \frac{\gamma}{R}} = \frac{1 - \frac{\gamma}{R^2}}{1 + \frac{\gamma}{R}} \end{aligned}$$

In lecture03, we didn't compute two equations(see equation (17)and(22) in lecture03) in details. Here is my point to calculate them:

$$\int_a^b \frac{t}{\lambda - t} \mu^{MP}(t) dt := T(\lambda) \text{ (equation (17) in lecture03)} \quad (7)$$

From above equation, we can get:

$$\int_a^b \frac{t^2}{(\lambda - t)^2} \mu^{MP}(t) dt = -T(\lambda) - \lambda T'(\lambda) \text{ (equation (22) in lecture03)} \quad (8)$$

So we just focus on $T(\lambda)$.

Define:

$$m(z) := \int_R \frac{1}{(z - t)} \mu^{MP}(t) dt, \quad z \in C \quad (9)$$

$m(z)$ is called Stieltjes Transformation of density μ^{MP} . If $z \in R$, the transformation is called Hilbert Transformation. Further details can be found in Reference [Tao] (Topics on Random Matrix Theory), Sec. 2.4.3 (the end of page 169) for the definition of Stieltjes transform of a density $p(t)dt$ on \mathbb{R} (the book is using $s(z)$ instead of $m(z)$ in class).

$m(z)$ satisfies the equation:

$$\gamma z m(z)^2 + (z - (1 - \gamma))m(z) + 1 = 0 \iff z + \frac{1}{m(z)} = \frac{1}{1 + \gamma m(z)} \quad (10)$$

From the equation, one can take derivative of z on both side to obtain $m'(z)$ in terms of m and z .

Notice:

$$1 + T(\lambda) = 1 + \int_a^b \frac{t}{\lambda - t} \mu^{MP}(t) dt = \int_a^b \frac{\lambda - t + t}{\lambda - t} \mu^{MP}(t) dt = \lambda m(\lambda) \quad (11)$$

So we can compute $T(\lambda)$ by $m(\lambda)$

In the last problem of first homework, we analyze Wigner Matrix $W = [w_{ij}]_{n \times n}$, $w_{ij} = w_{ji}$, $w_{ij} \sim N(0, \frac{\sigma}{\sqrt{n}})$. The answer is

$$\begin{array}{ll} \text{eigenvalue is} & \lambda = R + \frac{1}{R} \\ \text{eigenvector satisfies} & (u^T \hat{v})^2 = 1 - \frac{1}{R^2} \end{array}$$

2 Introduction To The Diffusion Map

2.1 Manifold Learning Method

Here is the development of manifold learning method:

$$\text{PCA} \longrightarrow \text{LLE} \longrightarrow \begin{cases} \text{Laplacian Eigen Map} \\ \text{Hessian LLE} \\ \text{Diffusion MAp} \end{cases}$$

$$\text{MSE} \longrightarrow \text{ISOMAP}$$

Please read the Todd Wittman's slides for the comparison of different manifold learning method. You can find it in the website: <http://www.math.pku.edu.cn/teachers/yaoy/Spring2011/>. Lecture11.

Figure 1: Order the face

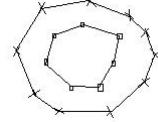


Figure 2: Two circles

2.2 Examples

The following three problems can be solved by diffusion map.

Ex1: order the face. How to put the photos of figure one in order?

Ex2: "3D". Fig. 2 of CoifmanLafon'06 paper.

Ex3: spectral clustering. How to separate the points in figure 2?

2.3 Method

In this section, we introduce the general diffusion map.

Suppose $x_1, x_2, \dots, x_n \in R^p$, we create a symmetric matrix $W_{n \times n} = \{w_{ij}\}$, such that $w_{ij} = k(x_i, x_j) = k(\|x_i - x_j\|_{R^p}^2)$, where $k(x, y)$ is the similarity function. For example, we can choose

$$k(x, y) = \exp\left\{-\frac{\|x - y\|^2}{2\varepsilon}\right\} \text{ or } k(x, y) = I_{\{\|x_i - x_j\| < \delta\}} \quad (12)$$

Next, we create a $n \times n$ diagonal matrix D , where $D_{ii} = \sum_{j=1}^n W_{ij}$.

$A := D^{-1}W$, So

$$\sum_{j=1}^n A_{ij} = 1 \quad \forall i \in \{1, 2, \dots, n\} \quad (A_{ij} \geq 0) \quad (13)$$

Based on matrix A , we can construct a discrete time Markov chain: $\{X_t\}_{t \in N}$ which satisfies

$$P(X_{t+1} = x_j \mid X_t = x_i) = A_{ij} \quad (14)$$

$$S := D^{\frac{1}{2}}WD^{\frac{1}{2}} = V\Lambda V^T \text{ where } VV^T = I_n, \Lambda = \text{diag}(\lambda_1, \lambda_2, \dots, \lambda_n) \quad (15)$$

So

$$A = D^{-1}W = D^{-1}(D^{-\frac{1}{2}}SD^{-\frac{1}{2}}) = D^{-\frac{1}{2}}SD^{\frac{1}{2}} = D^{-\frac{1}{2}}V\Lambda V^TD^{\frac{1}{2}} = \Phi\Lambda\Psi^T \quad (\Phi = D^{-\frac{1}{2}}V, \Psi = V^TD^{\frac{1}{2}}) \quad (16)$$

Thus $\Phi\Psi^T = I_n$ and we can get $A\Phi = \Phi\Lambda$, $\Psi^TA = \Lambda\Psi^T$.

Suppose $\Phi = [\phi_0, \phi_1, \dots, \phi_n]$, So $A[\phi_0, \phi_1, \dots, \phi_n] = [\lambda_0\phi_0, \lambda_1\phi_1, \dots, \lambda_n\phi_n]$, where $\lambda_0 = 1$, $\phi_0 = e_n$.

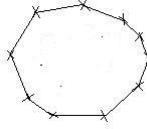


Figure 3: EX2 single circle

Define map:

$$\Phi_t(x_i) = [(\lambda_1)^t \phi_1(i), (\lambda_2)^t \phi_2(i), \dots, (\lambda_{n-1})^t \phi_{n-1}(i)] \quad (t > 0) \quad (17)$$

$\phi_k(i)$ is the i -th entry of ϕ_k .

Truncate the mapping where only those eigenvalues whose absolute value are larger than δ , some positive constant, are saved: suppose $\lambda_1, \lambda_2, \dots, \lambda_m$ s.t. $|\lambda_i| \geq \delta$

$$\Phi_t^\delta(x_i) = [(\lambda_1)^t \phi_1(i), (\lambda_2)^t \phi_2(i), \dots, (\lambda_m)^t \phi_m(i)] \quad (18)$$

Diffusion distance:

$$D_t(x_i, x_j) := \|\Phi_t(x_i) - \Phi_t(x_j)\|^2 \quad (19)$$

2.4 Simple examples

Three examples about diffusion map:

EX1: two circles.

Suppose graph $G : (V, E)$. Matrix W satisfies $w_{ij} > 0$, if and only if $(i, j) \in E$. Choose $k(x, y) = I_{\|x-y\| < \delta}$. In this case,

$$A = \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix},$$

where A_1 is a $n_1 \times n_1$ matrix, A_2 is a $n_2 \times n_2$ matrix, $n_1 + n_2 = n$.

Notice that the eigenvalue $\lambda_0 = 1$ of A is of multiplicity 2, the two eigenvectors are $\phi_0 = 1_n$ and $\phi_0' = [c_1 1_{n_1}^T, c_2 1_{n_2}^T]^T$ $c_1 \neq c_2$.

$$\text{Diffusion Map} : \begin{cases} \Phi_t^{1D}(x_1), \dots, \Phi_t^{1D}(x_{n_1}) = c_1 \\ \Phi_t^{1D}(x_{n_1+1}), \dots, \Phi_t^{1D}(x_n) = c_2 \end{cases}$$

EX2: ring graph. "single circle"

In this case, W is a circulant matrix

$$W = \begin{pmatrix} 1 & 1 & 0 & 0 & \cdots & 1 \\ 1 & 1 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 1 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \cdots & \vdots \\ 1 & 0 & 0 & 0 & \cdots & 1 \end{pmatrix}$$

The eigenvalue of W is $\lambda_k = \cos \frac{2\pi k}{n}$ $k = 0, 1, \dots, \frac{n}{2}$ and the corresponding eigenvector is $(u_k)_j = e^{i \frac{2\pi}{n} kj}$ $j = 1, \dots, n$. So we can get $\Phi_t^{2D}(x_i) = (\cos \frac{2\pi k j}{n}, \sin \frac{2\pi k j}{n}) c^t$

EX3: order the face.

$$L := A - I = D^{-1}W - I$$

$$L_\varepsilon := \frac{1}{\varepsilon}(A_\varepsilon - I) \xrightarrow{\varepsilon \rightarrow 0} \text{backward Kolmogorov operator}$$

$$L_\varepsilon f = \frac{1}{2} \Delta_M f - \nabla f \cdot \nabla v \Rightarrow L_\varepsilon = \lambda \phi \Rightarrow \begin{cases} \frac{1}{2} \phi''(s) - \phi'(s) V'(s) = \lambda \phi(s) \\ \phi'(0) = \phi'(1) = 0 \end{cases}$$

Where $V(s)$ is the Gibbs weight and $p(s) = e^{-V(s)}$ is the density of data points along the curve. Δ_M is Laplace-Beltrami Operator. If $p(x) = \text{const}$, we can get

$$V(s) = \text{const} \Rightarrow \phi''(s) = 2\lambda \phi(s) \Rightarrow \phi_k(s) = \cos(k\pi s), 2\lambda_k = -k^2\pi^2 \quad (20)$$

On the other hand $p(s) \neq \text{const}$, one can show¹ that $\phi_1(s)$ is monotonic for arbitrary $p(s)$. As a result, the faces can still be ordered by using $\phi_1(s)$.

2.5 Properties of Transition Matrix of Markov Chain

Suppose A is a Markov Chain Transition Matrix.

1 $\lambda(A) \subset [-1, 1]$.

proof: assume λ and v are the eigenvalue and eigenvector of A , so $Av = \lambda v$. Find j_0 s.t. $|v_{j_0}| \geq |v_j|, \forall j \neq j_0$ where v_j is the j -th entry of v . Then:

$$\lambda v_{j_0} = (Av)_{j_0} = \sum_{j=1}^n A_{j_0 j} v_j$$

So:

$$|\lambda| |v_{j_0}| = \left| \sum_{j=1}^n A_{j_0 j} v_j \right| \leq \sum_{j=1}^n |A_{j_0 j}| |v_j| \leq |v_{j_0}|$$

2 Define: A is irreducible, if and only if $\forall (i, j) \exists t$ s.t. $(A^t)_{ij} > 0 \Leftrightarrow$ Graph is connected

fact: A is irreducible $\Rightarrow \lambda = 1$

3 Define: A is primitive, if and only if $\exists t > 0$ s.t. $\forall (i, j) (A^t)_{ij} > 0$

fact: A is primitive $\Rightarrow -1 \notin \lambda(A)$

fact: A is irreducible and $A_{ii} > 0 \forall i \Rightarrow A$ is primitive

4 Theory(Perron-Frobenius): if $A_{ij} > 0$, then:

$$\exists r > 0, \text{s.t. } r \in \lambda(A) \text{ and } \forall \lambda \in \lambda(A), \lambda \neq r, |\lambda| < r$$

5 Fact: If $k(x, y)$ is heat kernel $\Rightarrow \lambda(A) \geq 0$

¹by changing to polar coordinate $p(s)\phi'(s) = r(s) \cos \theta(s)$, $\phi(s) = r(s) \sin \theta(s)$ (the so-called ‘Prufer Transform’) and then try to show that $\phi'(s)$ is never zero on $(0, 1)$.