Mathematics for Data Sciences Sep 13th, 2011

Lecture 3. Random Matrix Theory and PCA

Instructor: Yuan Yao, Peking University Scribe: Tengyuan Liang; Bowei Yan

1 Principal Component Analysis

In this first part, we will show how to get a principle component of high dimension data.

Let X = [X1| X2 ---|X,] € RP*™, S, = %XXT is the sample variance. To calculate the top k principal
component, we need to

in [ := i — (n+UB)|? 1
Jnin, ;Hx (n+UB)l (1)

where U € RP** UUT = Ip,eTU =0.
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Plug in the expression of fi,, and 3;
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where Py, is a projection operator.

So the original problem turns into

min Y|y — Pe(y)|? = min[tr(Y — BY)T(Y — BY)]
i=1
= minftr(I — P,)YTY(I — P)]
= mintr[YTY(I — P)?]
= mintr[YTY (I — P)]
= minftr(YTY) - tr(YTYUUT)]
= min[tr(YTY) - tr(UTYTYU))
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Above we use tr(AB) = tr(BA) and P? = Pj.
Since Y is considered as a constant, the problem above is equivalent to

max Var(U'Y)= max E[tr(UTYTYU)]= max tr(U'SU) (2)
UUT=I, UUT=I, UUT=I,

Here we conclude that the principal component analysis is equivalent to find a k-affine space to approximate
the space span by {X;}.

2 Marcenko-Pastur Distribution of Random Matrix

Let X € RP*™, X, ~ N(0, I,)).

When p fixed and n — oo
~ 1.,
DI EXX -1 (3)

But when 2 — ~ # 0, the distribution of the eigenvalues of in follows, if v < 1,

n

0 t ¢ [a,b]
pMP (1) = { YOI gy ¢ o) ;

and has an additional point mass 1 — 1/ at the origin if v > 1. Note that a = (1 — /7)%,b= (1+ /7).

3 Rank-1 Signal Model

Suppose Y = X + ¢, where X = au.

In addition, e ~ N(0,021,), a ~ N(0,0%), so Y ~ N(0,c%uu’ + 021,).

Define SNR = Z—%, we aim to show how SNR affect the result of PCA when p is large. Let Y =
[Y17Y27 e 7Yn] S RPxm

For simplicity, denote ¥ = o%uu’ + 021, then Y; = Y2 Z;, where Z; ~ N(0, I,).

~ 1 1
S, =-YY =%2.-77 .-%N2 =%3.8, -5
n n

W=

(5)

1
S, = =77/ ~ M Pdistribution (6)
n
We can do a Similarity Transformation to matrix ¥z .5, - E%, that is ¥~z - £25,%2 - E%, this new
1 1
matrix is S, - 3, which has the same eigenvalues as the X2 - .S, - ¥z.

Then we focus on 5, - %, suppose one of its eigenvalue is A and the corresponding eigenvector is v, then:

5,50 = Av, (7)
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Notice that

Ynl = A0,
where
ch =32, & =v'%0 = 0% (uv)? + 0. (8)
Plug in the expression of ¥
Sp(oxuu’ +o21,)v = v (9)

Rearrange the term with u to one side, we got

(M, — 028, )v = 0% Spuu'v (10)

Assuming that A\l — 025, is reversible, then multiple its reversion at both sides of the equality, we get,

v=0% (M, —025,)"" - S,u(u'v) (11)
Multiply by u’ at both side,
u'v = 0% (M, —028,) " Spu - (u'v) (12)
that is, if u'v # 0,
1=o0% - u'(M, —025,) ' S,u (13)
For SVD S,, = WAW’, where A is diagonal, W -W' =W'-W = I,, W = [Wy,Wa,--- ,W,] e RF*P o =
[, a2, - -+, @] € RPX1in which W; is the corresponding eigenvector, then u = > % a;W; = W - a, then,
a = W'u, and,
1=0% - u'[WL, — 2A) "W [WAW |u = 0% - (WW)(A, — o2A) " A(W'u) (14)

Replace W'u = a, then,
P
s
_ 2 i 2

where Zle a? = 1. Since W is a random orthogonal basis on a sphere, «; will concentrate on its mean
a; = —=. According to the fact that p is large enough(~ o), due to Law of Large Numbers(LLN) and

ﬁ.
A~ uMP()\; can be thought sampled from the ™), the equation (12) can be thought of as the Expected
Value (Monte-Carlo Integration), then equation (12) can be written as,

1=0% '}iLNUQ -/b ! dpMP(t) (16)
Y pEA-a2N X Jo Aot
i=1

For convenience, assume without loss of generosity that o2 = 1, that is the noise volatility is 1. Now we
unveil the story of the ratio v, do the integration in equation (13), we got,
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b — —a
1:a§-/a - ® 2;)7(5 )dt:ai-;[Q)\—(a+b)—2 =)=V (17)

3.1 About the Eigenvalue: Phase-Transition

e If \ € [a,b], then 3, has eigenvalue A within supp(u™?), so it is undistinguishable from the noise S,,.

o If A\ > b, PCA will pick up the top eigenvalue as non-noise. So A = b is the phase transition where
PCA works to pop up correct eigenvalue. Then plug in A = b in equation (14), we get,

R

t=ok = (a+b)] = Lok = (18)

2
Ox
- &
VY

So, in order to make PCA works, we need to let SNR > \/g

3.2 Eigenvector

We know that if PCA works good and noise doesn’t dominate the effect, the innerproduct |u'9| should be
close to 1. On the other hand, from RMT we know that if the top eigenvalue A is merged in the M. P.
distribution, then the top eigenvector computed is purely random and |u'9| = 0, which means that from o
we can know nothing about the signal u. We now study the phase transition of top-eigenvector.

It is convenient to study |u/v|? first and then translate back to |u/9|?. Using the equation (8),
1= [v/v] = 0% -v'u S, (AT, — 028,) " 2Spu/v = o - (|v'ul) [t/ Sp( A, — 028,) "2 S, u] (Ju'v|) (19)

[u'v| 7% = 0% 'S, (A, — 62S,,) "2 S,u] (20)
Using the same trick as the equation (11),
b t2
u'v|72 = ox[u'Su (M, — 028,) 72 Spu] ~ o / ﬁdﬂMP(lL) (21)
o (A—02t)

and assume that A > b,

|u’v|_2:o§(-/bﬁduMP(t):U%((—él)\—&-(a—i-b)—FQ ()\—a)()\—b)—l—w (22)

(A —o2t)? dy A—a)(A—b)

from which it can be computed that (using A = (1 + R)(1 + %) which is computed above, where
R=SNR="2)

2
UE

12
lu'v]? = —8
5
L+vy+ 5
Using the relation

= 2w

w0 = <121/2U> 1+ 5
¢
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where the second equality uses X'/%2u = /1 4+ Ru, and with the formula for ¢? above, we can compute

. 1+ R
(UIU)Q 1 T R(u'v)? (U/U)2

in terms of R. Note that this number holds under the condition that R > /7.

To sum up, according to [Johnstone06] or [NadakuditilO], For eigenvalue,

(1+y7)?*=b ok, <7 (23)

(Zn) {(1—}—0%()(1—1—(%(), ok >V

which implies that if signal energy is small, top eigenvalue of sample covariance matrix never pops up from
random matrix ones; only if the signal energy is beyond the phase transition threshold /7, top eigenvalue
can be separated from random matrix eigenvalues. However, even in the latter case it is a biased estimation.

For eigenvector,

0 0%, <
s tman)? = 4 o V7 (24)
1_;'_%7 UX > ﬂ
X

which means the same phase transition phenomenon: if signal is of low energy, PCA will tell us nothing
about the true signal and the estimated top eigenvector is orthogonal to the true direction w; if the signal is
of high energy, PCA will return a biased estimation which lies in a cone whose angle with the true signal is
bounded by

o

1——0_§(
=

1+T§(

3.3 Further Results

When % — 0, we need to add more restrictions on f]n in order to estimate it faithfully. There are
typically three kinds of restrictions.

e ) sparse
e X! sparse, also called—Precision Matrix

e banded structures (e.g. Toeplitz) on ¥ or X1

Recent developments can be found by Bickel, Tony Cai, Tsybakov, Wainwright et al.



