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1 Principal Component Analysis

In this first part, we will show how to get a principle component of high dimension data.

Let X = [X1|X2| · · · |Xn] ∈ Rp∗n, Σ̂n = 1
nXX

T is the sample variance. To calculate the top k principal
component, we need to

min
β,µ,U

I :=

n∑
i=1

‖xi − (µ+ Uβi)‖2 (1)

where U ∈ Rp∗k, UUT = Ip, e
TU = 0.

∂I

∂µ
= −2

n∑
i=1

(Xi − µ− Uβi) = 0⇒ µ̂n =
1

n

n∑
i=1

(Xi)

∂I

∂βi
= (Xi − µ− Uβi)TU = 0⇒ βi = UT (Xi − µ)

Plug in the expression of µ̂n and βi

I =

n∑
i=1

‖Xi − µ̂n − UUT (Xi − µ̂n)‖2

=

n∑
i=1

‖Xi − µ̂n − Pk(Xi − µ̂n)‖2

=

n∑
i=1

‖yi − Pk(yi)‖2

where Pk is a projection operator.

So the original problem turns into

min

n∑
i=1

‖yi − Pk(yi)‖2 = min[tr(Y − PkY )T (Y − PkY )]

= min[tr(I − Pk)Y TY (I − Pk)]

= min tr[Y TY (I − Pk)2]

= min tr[Y TY (I − Pk)]

= min[tr(Y TY )− tr(Y TY UUT )]

= min[tr(Y TY )− tr(UTY TY U)]

1
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Above we use tr(AB) = tr(BA) and P 2
k = Pk.

Since Y is considered as a constant, the problem above is equivalent to

max
UUT=Ik

V ar(UTY ) = max
UUT=Ik

E[tr(UTY TY U)] = max
UUT=Ik

tr(UTΣU) (2)

Here we conclude that the principal component analysis is equivalent to find a k-affine space to approximate
the space span by {Xi}.

2 Marcenko-Pastur Distribution of Random Matrix

Let X ∈ Rp∗n, Xi ∼ N (0, Ip).

When p fixed and n→∞

Σ̂n =
1

n
XX′ → Ip (3)

But when p
n → γ 6= 0, the distribution of the eigenvalues of Σ̂n follows, if γ ≤ 1,

µMP (t) =

{
0 t /∈ [a, b]√

(b−t)(t−a)
2πγt dt t ∈ [a, b]

(4)

and has an additional point mass 1− 1/γ at the origin if γ > 1. Note that a = (1−√γ)2, b = (1 +
√
γ)2.

3 Rank-1 Signal Model

Suppose Y = X + ε, where X = αu.

In addition, ε ∼ N (0, σ2
εIp), α ∼ N (0, σ2

X), so Y ∼ N (0, σ2
Xuu

′ + σ2
εIp).

Define SNR =
σ2
X

σ2
ε

, we aim to show how SNR affect the result of PCA when p is large. Let Y =

[Y1, Y2, · · · , Yn] ∈ Rp×n

For simplicity, denote Σ = σ2
Xuu

′ + σ2
εIp, then Yi = Σ

1
2Zi, where Zi ∼ N (0, Ip).

Σ̂n =
1

n
YY′ = Σ

1
2 · 1

n
ZZ′ · Σ 1

2 = Σ
1
2 · Sn · Σ

1
2 (5)

Sn =
1

n
ZZ′ ∼MPdistribution (6)

We can do a Similarity Transformation to matrix Σ
1
2 · Sn · Σ

1
2 , that is Σ−

1
2 · Σ 1

2SnΣ
1
2 · Σ 1

2 , this new
matrix is Sn · Σ, which has the same eigenvalues as the Σ

1
2 · Sn · Σ

1
2 .

Then we focus on Sn ·Σ, suppose one of its eigenvalue is λ and the corresponding eigenvector is v, then:

SnΣv = λv, (7)
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Notice that
Σ̂nv̂ = λv̂,

where
cv̂ = Σ1/2v, c2 = v′Σv = σ2

X(u′v)2 + σ2
ε . (8)

Plug in the expression of Σ

Sn(σ2
Xuu

′ + σ2
εIp)v = λv (9)

Rearrange the term with u to one side, we got

(λIp − σ2
εSn)v = σ2

XSnuu
′v (10)

Assuming that λIp − σ2
εSn is reversible, then multiple its reversion at both sides of the equality, we get,

v = σ2
X · (λIp − σ2

εSn)−1 · Snu(u′v) (11)

Multiply by u′ at both side,

u′v = σ2
X · u′(λIp − σ2

εSn)−1Snu · (u′v) (12)

that is, if u′v 6= 0,

1 = σ2
X · u′(λIp − σ2

εSn)−1Snu (13)

For SVD Sn = WΛW ′, where Λ is diagonal, W ·W ′ = W ′ ·W = Ip, W = [W1,W2, · · · ,Wn] ∈ Rp×p, α =
[α1, α2, · · · , αn] ∈ Rp×1, in which Wi is the corresponding eigenvector, then u =

∑p
i=1 αiWi = W · α, then,

α = W ′u, and,

1 = σ2
X · u′[W (λIp − σ2

εΛ)−1W ′][WΛW ′]u = σ2
X · (u′W )(λIp − σ2

εΛ)−1Λ(W ′u) (14)

Replace W ′u = α, then,

1 = σ2
X ·

p∑
i=1

λi
λ− σ2

ελi
α2
i (15)

where
∑p
i=1 α

2
i = 1. Since W is a random orthogonal basis on a sphere, αi will concentrate on its mean

αi = 1√
q . According to the fact that p is large enough(∼ ∞), due to Law of Large Numbers(LLN) and

λ ∼ µMP (λi can be thought sampled from the µMP ), the equation (12) can be thought of as the Expected
Value (Monte-Carlo Integration), then equation (12) can be written as,

1 = σ2
X ·

1

p

p∑
i=1

λi
λ− σ2

ελi
∼ σ2

X ·
∫ b

a

t

λ− σ2
εt
dµMP (t) (16)

For convenience, assume without loss of generosity that σ2
ε = 1, that is the noise volatility is 1. Now we

unveil the story of the ratio γ, do the integration in equation (13), we got,
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1 = σ2
X ·
∫ b

a

t

λ− t

√
(b− t)(t− a)

2πγt
dt = σ2

X ·
1

4γ
[2λ− (a+ b)− 2

√
|(λ− a)(b− λ)|] (17)

3.1 About the Eigenvalue: Phase-Transition

• If λ ∈ [a, b], then Σ̂n has eigenvalue λ within supp(µMP ), so it is undistinguishable from the noise Sn.

• If λ ≥ b, PCA will pick up the top eigenvalue as non-noise. So λ = b is the phase transition where
PCA works to pop up correct eigenvalue. Then plug in λ = b in equation (14), we get,

1 = σ2
X ·

1

4γ
[2b− (a+ b)] =

σ2
X√
γ
⇔ σ2

X =

√
p

n
(18)

So, in order to make PCA works, we need to let SNR ≥
√

p
n

3.2 Eigenvector

We know that if PCA works good and noise doesn’t dominate the effect, the innerproduct |u′v̂| should be
close to 1. On the other hand, from RMT we know that if the top eigenvalue λ is merged in the M. P.
distribution, then the top eigenvector computed is purely random and |u′v̂| = 0, which means that from v̂
we can know nothing about the signal u. We now study the phase transition of top-eigenvector.

It is convenient to study |u′v|2 first and then translate back to |u′v̂|2. Using the equation (8),

1 = |v′v| = σ4
X · v′uu′Sn(λIp − σ2

εSn)−2Snuu
′v = σ4

X · (|v′u|)[u′Sn(λIp − σ2
εSn)−2Snu](|u′v|) (19)

|u′v|−2 = σ4
X [u′Sn(λIp − σ2

εSn)−2Snu] (20)

Using the same trick as the equation (11),

|u′v|−2 = σ4
X [u′Sn(λIp − σ2

εSn)−2Snu] ∼ σ4
X ·
∫ b

a

t2

(λ− σ2
εt)

2
dµMP (t) (21)

and assume that λ > b,

|u′v|−2 = σ4
X ·
∫ b

a

t2

(λ− σ2
εt)

2
dµMP (t) =

σ4
X

4γ
(−4λ+ (a+ b) + 2

√
(λ− a)(λ− b) +

λ(2λ− (a+ b))√
(λ− a)(λ− b)

(22)

from which it can be computed that (using λ = (1 + R)(1 + γ
R ) which is computed above, where

R = SNR =
σ2
X

σ2
ε

)

|u′v|2 =
1− γ

R2

1 + γ + 2γ
R

.

Using the relation

u′v̂ = u′
(

1

c
Σ1/2v

)
=

√
1 +R

c
(u′v)
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where the second equality uses Σ1/2u =
√

1 +Ru, and with the formula for c2 above, we can compute

(u′v̂)2 =
1 +R

1 +R(u′v)2
(u′v)2

in terms of R. Note that this number holds under the condition that R >
√
γ.

To sum up, according to [Johnstone06] or [Nadakuditi10], For eigenvalue,

λmax(Σ̂n)→

{
(1 +

√
γ)2 = b σ2

X ,≤
√
γ

(1 + σ2
X)(1 + γ

σ2
X

), σ2
X >

√
γ

(23)

which implies that if signal energy is small, top eigenvalue of sample covariance matrix never pops up from
random matrix ones; only if the signal energy is beyond the phase transition threshold

√
γ, top eigenvalue

can be separated from random matrix eigenvalues. However, even in the latter case it is a biased estimation.

For eigenvector,

|〈u, vmax〉|2 →

0 σ2
X ,≤

√
γ

1− γ

σ4
X

1+ γ

σ2
X

, σ2
X >

√
γ

(24)

which means the same phase transition phenomenon: if signal is of low energy, PCA will tell us nothing
about the true signal and the estimated top eigenvector is orthogonal to the true direction u; if the signal is
of high energy, PCA will return a biased estimation which lies in a cone whose angle with the true signal is
bounded by

1− γ
σ4
X

1 + γ
σ2
X

.

3.3 Further Results

When log(p)
n → 0, we need to add more restrictions on Σ̂n in order to estimate it faithfully. There are

typically three kinds of restrictions.

• Σ sparse

• Σ−1 sparse, also called–Precision Matrix

• banded structures (e.g. Toeplitz) on Σ or Σ−1

Recent developments can be found by Bickel, Tony Cai, Tsybakov, Wainwright et al.


