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Introduction

In this very first lecture, we talk about data representation as vectors, matrices (esp. graphs, networks), and
tensors, etc. Data are mappings of real world based on sensory measurements, whence the real world puts
constraints on the variations of data. Data science is the study of laws in real world which shapes the data.

We start the first topic on sample mean and variance in high dimensional Euclidean spaces, and show
they are maximal likelihood estimators based on multivariate Gaussian assumption. Principle Component
Analysis (PCA) is the projection of high dimensional data on its top singular vectors.

Sample Mean, Sample Variance, Principal Component Analysis

Let x1, ..., xn ∈ Rp are sampled from a distribution p(X) on Rp,

E[X] = µ, Cov[X] = E[(X − µ)(X − µ)T ] = Σ ∈ Rp×p

Take normal distribution as an example:

N (µ,Σ) ∼ 1√
2π|Σ|

exp[−(X − µ)TΣ−1(X − µ)],

where |Σ| is the determinant of covariance matrix Σ. The maximum likelihood estimators (MLE) of µ and
Σ are1

µ̂n =
1

n

n∑
i=1

xi, Σ̂n =
1

n− 1

n∑
i=1

(Xi − µ̂n)(Xi − µ̂n)T .

The Law of Large Numbers (LLN) tells us that for fixed p, when n→∞, µ̂n → µ and Σ̂n → Σ. However as
we can see in the following classes, they are not the best estimators when the dimension of the data p gets
large.

To get the MLE of normal distribution, we need to

max
µ,Σ

P (x1, ..., xn|µ,Σ) = max
µ,Σ

n∏
i=1

1√
2π|Σ|

exp[−(Xi − µ)TΣ−1(Xi − µ)]

It is equivalent to maximize the log-likelihood

I = logP (x1, ..., xn|µ,Σ) = −1

2

n∑
i=1

(Xi − µ)TΣ−1(Xi − µ)− n

2
log |Σ|+ C

1There is a constant difference in variance-covariance matrix as will be shown later.
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Let µ∗ is the MLE of µ, we have

0 =
∂I

∂µ∗ = −
n∑
i=1

Σ−1(Xi − µ∗)

⇒ µ∗ =
1

n

n∑
i=1

xi = µ̂n

To get the estimation of Σ, we need to maximize

I(Σ) = tr(I) = −1

2
tr

n∑
i=1

(Xi − µ)TΣ−1(Xi − µ)− n

2
tr log |Σ|+ C

−1

2
tr

n∑
i=1

(Xi − µ)TΣ−1(Xi − µ) = −1

2

n∑
i=1

tr[Σ−1(Xi − µ)(Xi − µ)T ]

= −1

2
(trΣ−1Σ̂n)(n− 1)

= −n− 1

2
tr(Σ−1Σ̂

1
2
n Σ̂

1
2
n )

= −n− 1

2
tr(Σ̂

1
2
nΣ−1Σ̂

1
2
n )

= −n− 1

2
tr(S)

where S = Σ̂
1
2
nΣ−1Σ̂

1
2
n is symmetric and positive definite. Above we repeatedly use tr(AB) = tr(BA). Then

we have

Σ = Σ̂
− 1

2
n S−1Σ̂

− 1
2

n

−n
2

log |Σ| = n

2
log |S|+ n

2
log |Σ̂n| = f(Σ̂n)

Therefore,

max I(Σ)⇔ min
n− 1

2
tr(S)− n

2
log |S|+ Const(Σ̂n, 1)

Suppose S = UΛU is the eigenvalue decomposition of S, Λ = diag(λi)

J =
n− 1

2

p∑
i=1

λi −
n

2

p∑
i=1

log(λi) + Const

∂J

∂λi
=
n− 1

2
− n

2

1

λi
⇒ λi =

n

n− 1

S =
n

n− 1
Ip

This gives the MLE solution

Σ∗ =
n− 1

n
Σ̂n =

1

n

n∑
i=1

(Xi − µ̂n)(Xi − µ̂n)T ,

which differs to Σ̂n only in that the denominator (n − 1) is replaced by n. In covariance matrix, (n − 1) is
used because for a single sample n = 1, there is no variance at all.
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PCA takes the eigenvector decomposition of Σ̂n = V̂ Λ̂V̂ T and studies its top k eigenvectors v̂1, . . . , v̂k as
the principle components. This is equivalent to the singular value decomposition (SVD) of X̂ = [x1, . . . , xn]T ∈
Rn×p in the following sense,

X̃ = X̂ − 1

n
eeT X̂ = Ũ S̃Ṽ T , e = (1, . . . , 1)T ∈ Rn

where top right singular vectors ṽ1, . . . , ṽk gives the same principle components.

Example. Take the dataset of hand written digit ‘3’, X̂ ∈ R658×256 contains 658 images, each of which
is of 16-by-16 grayscale image as hand written digit 3. Figure 1 shows a random selection of 9 images, the
sorted singular values divided by total sum of singular values, and an approximation of x1 by top 3 principle
components: x1 = µ̂n − 2.5184ṽ1 − 0.6385ṽ2 + 2.0223ṽ3.

(a) (b)

≈ - 2.52 - 0.64 + 2.02
(c)

Figure 1: (a) random 9 images. (b) percentage of singular values over total sum. (c) approximation of the
first image by top 3 principle components (singular vectors).

Although sample mean µ̂n and sample variance Σ̂n are the most common statistics widely used in data
analysis, they may suffer some problems in high dimensional settings, e.g. for large p and small n scenario.
In 1956, Stein shows that the sample mean is not the best estimator in terms of the mean square error, for
p > 2; moreover in 2006, Jonestone shows by random matrix theory that the sample variance is far from
consistency for fixed ratio p/n. Among other works, these two pieces of excellent works inspired a long
pursuit toward modern high dimensional statistics with a large unexplored field ahead.


