Homework 1

Yuan Yao

September 18, 2011

- 1. Singular Value Decomposition: The goal of this exercise is to refresh your memory about the singular value decomposition and matrix norms. A good reference to the singular value decomposition is Chapter 2 in this book: Matrix Computations, Golub and Van Loan, 3rd edition. Parts of the book are available online here: http://books.google.com/books?id=mlOa7wPX60YC&dq=Matrix+Computations&printsec= frontcover&source=bl&ots=lbfmg9JblY&sig=_ZNYb_4zdwfTrtn3zCKEZH9HVzA&hl= en&ei=cry8SuG7NMO2lAfUhtWYBA&sa=X&oi=book_result&ct=result&resnum= 3#v=onepage&q=&f=false
 - (a) Existence: Prove the existence of the singular value decomposition. That is, show that if A is an $m \times n$ real valued matrix, then $A = U\Sigma V^T$, where U is $m \times m$ orthogonal matrix, V is $n \times n$ orthogonal matrix, and $\Sigma = \text{diag}(\sigma_1, \sigma_2, \ldots, \sigma_p)$ (where $p = \min\{m, n\}$) is an $m \times n$ diagonal matrix. It is customary to order the singular values in decreasing order: $\sigma_1 \geq \sigma_2 \geq \ldots \geq$ $\sigma_p \geq 0$. Determine to what extent the SVD is unique. (See Theorem 2.5.2, page 70 in Golub and Van Loan).
 - (b) Best rank-k approximation operator norm: Prove that the "best" rank-k approximation of a matrix in the operator norm sense is given by its SVD. That is, if $A = U\Sigma V^T$ is the SVD of A, then $A_k = U\Sigma_k V^T$ (where $\Sigma_k = \text{diag}(\sigma_1, \sigma_2, \dots, \sigma_k, 0, \dots, 0)$) is a diagonal matrix containing the largest k singular values) is a rank-k matrix that satisfies

$$||A - A_k|| = \min_{\operatorname{rank}(B)=k} ||A - B||.$$

(Recall that the operator norm of A is $||A|| = \max_{||x||=1} ||Ax||$. See Theorem 2.5.3 (page 72) in Golub and Van Loan). (c) Best rank-k approximation - Frobenius norm: Show that the SVD also provides the best rank-k approximation for the Frobenius norm, that is, $A_k = U\Sigma_k V^T$ satisfies

$$||A - A_k||_F = \min_{\operatorname{rank}(B)=k} ||A - B||_F.$$

(d) Schatten p-norms: A matrix norm $\|\cdot\|$ that satisfies

$$\|QAZ\| = \|A\|,$$

for all Q and Z orthogonal matrices is called a unitarily invariant norm. The Schatten *p*-norm of a matrix A is given by the ℓ_p norm $(p \ge 1)$ of its vector of singular values, namely,

$$||A||_p = \left(\sum_i \sigma_i^p\right)^{1/p}$$

Show that the Schatten *p*-norm is unitarily invariant. Note that the case p = 1 is sometimes called the nuclear norm of the matrix, the case p = 2 is the Frobenius norm, and $p = \infty$ is the operator norm.

- (e) Best rank-k approximation for unitarily invariant norms: Show that the SVD provides the best rank-k approximation for any unitarily invariant norm. See also 7.4.51 and 7.4.52 in: Matrix Analysis, Horn and Johnson, Cambridge University Press, 1985.
- (f) Closest rotation: Given a square $n \times n$ matrix A whose SVD is $A = U\Sigma V^T$, show that its closest (in the Frobenius norm) orthogonal matrix R (satisfying $RR^T = R^T R = I$) is given by $R = UV^T$. That is, show that

$$||A - UV^T||_F = \min_{RR^T = R^T R = I} ||A - R||_F,$$

where $A = U\Sigma V^T$. In other words, R is obtained from the SVD of A by dropping the diagonal matrix Σ . Use this observation to conclude what is the optimal rotation that aligns two sets of points p_1, p_2, \ldots, p_n and q_1, \ldots, q_n in \mathbb{R}^d , that is, find R that minimizes $\sum_{i=1}^n ||Rp_i - q_i||^2$. See also (the papers are posted on course website): • [Arun87] Arun, K. S., Huang, T. S., and Blostein, S. D., "Least-squares fitting of two 3-D point sets", *IEEE Transactions on Pattern Analysis and Machine Intelligence*, **9** (5), pp. 698–700, 1987.

• [Keller75] Keller, J. B., "Closest Unitary, Orthogonal and Hermitian Operators to a Given Operator", *Mathematics Magazine*, **48** (4), pp. 192–197, 1975.

• [FanHoffman55] Fan, K. and Hoffman, A. J., "Some Metric Inequalities in the Space of Matrices", *Proceedings of the American Mathematical Society*, **6** (1), pp. 111–116, 1955.

2. James-Stein Estimators: Suppose that $X_i \sim \mathcal{N}(\mu, I_p)(i = 1...n)$ are independent *p*-Gaussian variables, let $y = \hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n X_i \sim \mathcal{N}(\mu, \frac{1}{\sqrt{n}}I_p) = \mathcal{N}(\mu, \varepsilon I_p), \ \varepsilon = \frac{1}{\sqrt{n}}$, consider the James-Stein estimator

$$\tilde{\mu}_{JS} = \left(1 - \frac{\varepsilon^2 (p-2)}{\|\hat{\mu}_n\|^2}\right) \hat{\mu}_n$$

and its positive part truncation

$$\tilde{\mu}_{JS+} = \left(1 - \frac{\varepsilon^2(p-2)}{\|\hat{\mu}_n\|^2}\right)_+ \hat{\mu}_n,$$

where $(x)_{+} = max(0, x)$.

(a) Show that

$$\mathbb{E}\|\tilde{\mu}_{JS} - \mu\|^2 \le \mathbb{E}\|\hat{\mu}_n - \mu\|^2 - \frac{\varepsilon^4 (p-2)^2}{\varepsilon^2 p + \|\mu\|^2}$$

so when p >> 2 and $\mu = 0$, the gain will be in $O(\varepsilon^2 p)$. (Hint: use Jenson inequality as Lemma 3.10 in [Tsybakov09]).

(b) Show that

$$\mathbb{E}\|\tilde{\mu}_{JS+} - \mu\|^2 \le \mathbb{E}\|\tilde{\mu}_{JS} - \mu\|^2$$

(Hint: see Lemma A.6 in Appendix of [Tsybakov09])

3. Phase transition in PCA "spike" model: Consider a finite sample of n i.i.d vectors x_1, x_2, \ldots, x_n drawn from the p-dimensional Gaussian distribution $\mathcal{N}(0, \sigma^2 I_{p \times p} + \lambda_0 u u^T)$, where λ_0 / σ^2 is the signal-to-noise ratio (SNR) and $u \in \mathbb{R}^p$. In class we showed that the largest eigenvalue λ of the sample covariance matrix S_n

$$S_n = \frac{1}{n} \sum_{i=1}^n x_i x_i^T$$

pops outside the support of the Marcenko-Pastur distribution if

$$\frac{\lambda_0}{\sigma^2} > \sqrt{\gamma},$$

or equivalently, if

$$\operatorname{SNR} > \sqrt{\frac{p}{n}}.$$

(Notice that $\sqrt{\gamma} < (1+\sqrt{\gamma})^2$, that is, λ_0 can be "buried" well inside the support Marcenko-Pastur distribution and still the largest eigenvalue pops outside its support). All the following questions refer to the limit $n \to \infty$ and to almost surely values:

- (a) Find λ given SNR > $\sqrt{\gamma}$.
- (b) Use your previous answer to explain how the SNR can be estimated from the eigenvalues of the sample covariance matrix.
- (c) Find the squared correlation between the eigenvector v of the sample covariance matrix (corresponding to the largest eigenvalue λ) and the "true" signal component u, as a function of the SNR, p and n. That is, find $|\langle u, v \rangle|^2$.
- (d) Confirm your result using MATLAB simulations (e.g. set u = e; and choose $\sigma = 1$ and λ_0 in different levels. Compute the largest eigenvalue and its associated eigenvector, with a comparison to the true ones.)
- 4. Finite rank perturbations of random symmetric matrices: Wigner's semi-circle law (proved by Eugene Wigner in 1951) concerns the limiting distribution of the eigenvalues of random symmetric matrices. It states, for example, that the limiting eigenvalue distribution of $n \times n$ symmetric matrices whose entries w_{ij} on and above the diagonal $(i \leq j)$ are i.i.d Gaussians $\mathcal{N}(0, \frac{1}{4n})$ (and the entries below the diagonal are determined by symmetrization, i.e., $w_{ji} = w_{ij}$) is the semi-circle:

$$p(t) = \frac{2}{\pi}\sqrt{1-t^2}, \quad -1 \le t \le 1,$$

where the distribution is supported in the interval [-1, 1].

- (a) Confirm Wigner's semi-circle law using MATLAB simulations (take, e.g., n = 400).
- (b) Find the largest eigenvalue of a rank-1 perturbation of a Wigner matrix. That is, find the largest eigenvalue of the matrix

$$W + \lambda_0 u u^T$$
,

where W is an $n \times n$ random symmetric matrix as above, and u is some deterministic unit-norm vector. Determine the value of λ_0 for which a phase transition occurs. What is the correlation between the top eigenvector of $W + \lambda_0 u u^T$ and the vector u as a function of λ_0 ? Use techniques similar to the ones we used in class for analyzing finite rank perturbations of sample covariance matrices.

5. *PCA experiments:* Take any digit data ('0',...,'9'), or all of them, from website

http://www-stat.stanford.edu/~tibs/ElemStatLearn/datasets/zip.digits/ and perform PCA experiments with Matlab or other language you are familiar:

- (a) Set up data matrix $X = (x_1, \ldots, x_n) \in \mathcal{R}^{p \times n}$;
- (b) Compute the sample mean $\hat{\mu}_n$ and form $\tilde{X} = X e\hat{\mu}_n^T$;
- (c) Compute top k SVD of $\tilde{X} = US_k V^T$;
- (d) Plot eigenvalue curve, i.e. *i* vs. $\lambda_i(\hat{\Sigma}_n)/tr(\hat{\Sigma}_n)$ (i = 1, ..., k), with top-*k* eigenvalue λ_i for sample covariance matrix $\hat{\Sigma}_n = \frac{1}{n}\tilde{X} * \tilde{X}^T$;
- (e) Use imshow to visualize the mean and top-k principle components as *left* singular vectors $U = [u_1, \ldots, u_k]$;
- (f) For k = 1, sort the image data (x_i) (i = 1, ..., n) according to the top *right* singular vectors, v_1 , in an ascending order;
- (g) For k = 2, scatter plot (v_1, v_2) and select a grid on such a plane to show those images on the grid (e.g. Figure 14.23 in book [ESL]: Elements of Statistical Learning).