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1. Singular Value Decomposition: The goal of this exercise is to re-
fresh your memory about the singular value decomposition and matrix
norms. A good reference to the singular value decomposition is Chap-
ter 2 in this book:
Matrix Computations, Golub and Van Loan, 3rd edition.
Parts of the book are available online here:
http://books.google.com/books?id=mlOa7wPX6OYC&dq=Matrix+Computations&printsec=

frontcover&source=bl&ots=lbfmg9JblY&sig=_ZNYb_4zdwfTrtn3zCKEZH9HVzA&hl=

en&ei=cry8SuG7NMO2lAfUhtWYBA&sa=X&oi=book_result&ct=result&resnum=

3#v=onepage&q=&f=false

(a) Existence: Prove the existence of the singular value decomposi-
tion. That is, show that if A is an m × n real valued matrix,
then A = UΣV T , where U is m × m orthogonal matrix, V is
n × n orthogonal matrix, and Σ = diag(σ1, σ2, . . . , σp) (where
p = min{m,n}) is an m× n diagonal matrix. It is customary to
order the singular values in decreasing order: σ1 ≥ σ2 ≥ . . . ≥
σp ≥ 0. Determine to what extent the SVD is unique. (See
Theorem 2.5.2, page 70 in Golub and Van Loan).

(b) Best rank-k approximation - operator norm: Prove that the “best”
rank-k approximation of a matrix in the operator norm sense is
given by its SVD. That is, if A = UΣV T is the SVD of A, then
Ak = UΣkV

T (where Σk = diag(σ1, σ2, . . . , σk, 0, . . . , 0) is a diag-
onal matrix containing the largest k singular values) is a rank-k
matrix that satisfies

‖A−Ak‖ = min
rank(B)=k

‖A−B‖.

(Recall that the operator norm of A is ‖A‖ = max‖x‖=1 ‖Ax‖.
See Theorem 2.5.3 (page 72) in Golub and Van Loan).
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(c) Best rank-k approximation - Frobenius norm: Show that the SVD
also provides the best rank-k approximation for the Frobenius
norm, that is, Ak = UΣkV

T satisfies

‖A−Ak‖F = min
rank(B)=k

‖A−B‖F .

(d) Schatten p-norms: A matrix norm ‖ · ‖ that satisfies

‖QAZ‖ = ‖A‖,

for all Q and Z orthogonal matrices is called a unitarily invariant
norm. The Schatten p-norm of a matrix A is given by the `p
norm (p ≥ 1) of its vector of singular values, namely,

‖A‖p =

(∑
i

σpi

)1/p

.

Show that the Schatten p-norm is unitarily invariant. Note that
the case p = 1 is sometimes called the nuclear norm of the matrix,
the case p = 2 is the Frobenius norm, and p =∞ is the operator
norm.

(e) Best rank-k approximation for unitarily invariant norms: Show
that the SVD provides the best rank-k approximation for any
unitarily invariant norm. See also 7.4.51 and 7.4.52 in:
Matrix Analysis, Horn and Johnson, Cambridge University Press,
1985.

(f) Closest rotation: Given a square n × n matrix A whose SVD
is A = UΣV T , show that its closest (in the Frobenius norm)
orthogonal matrix R (satisfying RRT = RTR = I) is given by
R = UV T . That is, show that

‖A− UV T ‖F = min
RRT=RTR=I

‖A−R‖F ,

where A = UΣV T . In other words, R is obtained from the SVD
of A by dropping the diagonal matrix Σ. Use this observation
to conclude what is the optimal rotation that aligns two sets of
points p1, p2, . . . , pn and q1, . . . , qn in Rd, that is, find R that
minimizes

∑n
i=1 ‖Rpi − qi‖2. See also (the papers are posted on

course website):
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2. James-Stein Estimators: Suppose that Xi ∼ N (µ, Ip)(i = 1 . . . n)
are independent p-Gaussian variables, let y = µ̂n = 1

n

∑n
i=1Xi ∼

N (µ, 1√
n
Ip) = N (µ, εIp), ε = 1√

n
, consider the James-Stein estimator

µ̃JS =

(
1− ε2(p− 2)

‖µ̂n‖2

)
µ̂n

and its positive part truncation

µ̃JS+ =

(
1− ε2(p− 2)

‖µ̂n‖2

)
+

µ̂n,

where (x)+ = max(0, x).

(a) Show that

E‖µ̃JS − µ‖2 ≤ E‖µ̂n − µ‖2 −
ε4(p− 2)2

ε2p+ ‖µ‖2

so when p >> 2 and µ = 0, the gain will be in O(ε2p). (Hint:
use Jenson inequality as Lemma 3.10 in [Tsybakov09]).

(b) Show that
E‖µ̃JS+ − µ‖2 ≤ E‖µ̃JS − µ‖2.

(Hint: see Lemma A.6 in Appendix of [Tsybakov09])

3. Phase transition in PCA “spike” model: Consider a finite sample of
n i.i.d vectors x1, x2, . . . , xn drawn from the p-dimensional Gaussian
distribution N (0, σ2Ip×p + λ0uu

T ), where λ0/σ
2 is the signal-to-noise
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ratio (SNR) and u ∈ Rp. In class we showed that the largest eigenvalue
λ of the sample covariance matrix Sn

Sn =
1

n

n∑
i=1

xix
T
i

pops outside the support of the Marcenko-Pastur distribution if

λ0
σ2

>
√
γ,

or equivalently, if

SNR >

√
p

n
.

(Notice that
√
γ < (1+

√
γ)2, that is, λ0 can be “buried” well inside the

support Marcenko-Pastur distribution and still the largest eigenvalue
pops outside its support). All the following questions refer to the limit
n→∞ and to almost surely values:

(a) Find λ given SNR >
√
γ.

(b) Use your previous answer to explain how the SNR can be esti-
mated from the eigenvalues of the sample covariance matrix.

(c) Find the squared correlation between the eigenvector v of the
sample covariance matrix (corresponding to the largest eigenvalue
λ) and the “true” signal component u, as a function of the SNR,
p and n. That is, find |〈u, v〉|2.

(d) Confirm your result using MATLAB simulations (e.g. set u = e;
and choose σ = 1 and λ0 in different levels. Compute the largest
eigenvalue and its associated eigenvector, with a comparison to
the true ones.)

4. Finite rank perturbations of random symmetric matrices: Wigner’s
semi-circle law (proved by Eugene Wigner in 1951) concerns the lim-
iting distribution of the eigenvalues of random symmetric matrices.
It states, for example, that the limiting eigenvalue distribution of
n×n symmetric matrices whose entries wij on and above the diagonal
(i ≤ j) are i.i.d Gaussians N (0, 1

4n) (and the entries below the diagonal
are determined by symmetrization, i.e., wji = wij) is the semi-circle:

p(t) =
2

π

√
1− t2, −1 ≤ t ≤ 1,

where the distribution is supported in the interval [−1, 1].
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(a) Confirm Wigner’s semi-circle law using MATLAB simulations
(take, e.g., n = 400).

(b) Find the largest eigenvalue of a rank-1 perturbation of a Wigner
matrix. That is, find the largest eigenvalue of the matrix

W + λ0uu
T ,

where W is an n× n random symmetric matrix as above, and u
is some deterministic unit-norm vector. Determine the value of
λ0 for which a phase transition occurs. What is the correlation
between the top eigenvector of W + λ0uu

T and the vector u as
a function of λ0? Use techniques similar to the ones we used in
class for analyzing finite rank perturbations of sample covariance
matrices.

5. PCA experiments: Take any digit data ( ‘0’,...,‘9’), or all of them, from
website

http://www-stat.stanford.edu/~tibs/ElemStatLearn/datasets/zip.digits/

and perform PCA experiments with Matlab or other language you are
familiar:

(a) Set up data matrix X = (x1, . . . , xn) ∈ Rp×n;

(b) Compute the sample mean µ̂n and form X̃ = X − eµ̂Tn ;

(c) Compute top k SVD of X̃ = USkV
T ;

(d) Plot eigenvalue curve, i.e. i vs. λi(Σ̂n)/tr(Σ̂n) (i = 1, . . . , k), with
top-k eigenvalue λi for sample covariance matrix Σ̂n = 1

nX̃ ∗ X̃
T ;

(e) Use imshow to visualize the mean and top-k principle components
as left singular vectors U = [u1, . . . , uk];

(f) For k = 1, sort the image data (xi) (i = 1, . . . , n) according to
the top right singular vectors, v1, in an ascending order;

(g) For k = 2, scatter plot (v1, v2) and select a grid on such a plane to
show those images on the grid (e.g. Figure 14.23 in book [ESL]:
Elements of Statistical Learning).
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