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1. Singular Value Decomposition: The goal of this exercise is to re-
fresh your memory about the singular value decomposition and matrix
norms. A good reference to the singular value decomposition is Chap-
ter 2 in this book:
Matriz Computations, Golub and Van Loan, 3rd edition.
Parts of the book are available online here:
http://books.google.com/books?id=m10a7wPX60YC&dg=Matrix+Computations&printsec=
frontcover&source=bl&ots=1bfmg9JblY&sig=_7ZNYb_4zdwfTrtn3zCKEZHOHVzA&hl=
en&ei=cry8SuG7NMO21AfUhtWYBA&sa=X&oi=book_result&ct=result&resnum=
3#v=onepage&q=&f=false

(a) Existence: Prove the existence of the singular value decomposi-
tion. That is, show that if A is an m x n real valued matrix,
then A = UXVT, where U is m x m orthogonal matrix, V is
n x n orthogonal matrix, and ¥ = diag(oy,02,...,0p) (where
p = min{m,n}) is an m x n diagonal matrix. It is customary to
order the singular values in decreasing order: o1 > 09 > ... >
op > 0. Determine to what extent the SVD is unique. (See
Theorem 2.5.2, page 70 in Golub and Van Loan).

(b) Best rank-k approximation - operator norm: Prove that the “best”
rank-k approximation of a matrix in the operator norm sense is
given by its SVD. That is, if A = UXV7” is the SVD of A, then
Ap = U, VT (where ), = diag(o1, 09, ...,0%,0,...,0) is a diag-
onal matrix containing the largest k singular values) is a rank-k
matrix that satisfies

A= Apl= min [A-B].
rank(B)=k
(Recall that the operator norm of A is [[Al| = maxy— [|[Az].

See Theorem 2.5.3 (page 72) in Golub and Van Loan).
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(c)

Best rank-k approximation - Frobenius norm: Show that the SVD
also provides the best rank-k£ approximation for the Frobenius
norm, that is, A, = U, V7T satisfies

|A—Agllr= min ||[A— BlFr.

rank(B)=k
Schatten p-norms: A matrix norm || - || that satisfies
1QAZ]| = [ Al

for all @ and Z orthogonal matrices is called a unitarily invariant
norm. The Schatten p-norm of a matrix A is given by the ¢,
norm (p > 1) of its vector of singular values, namely,

1/p
[ Allp = <ZU§)> :

Show that the Schatten p-norm is unitarily invariant. Note that
the case p = 1 is sometimes called the nuclear norm of the matrix,
the case p = 2 is the Frobenius norm, and p = oo is the operator
norm.

Best rank-k approzimation for unitarily invariant norms: Show
that the SVD provides the best rank-k approximation for any
unitarily invariant norm. See also 7.4.51 and 7.4.52 in:

Matriz Analysis, Horn and Johnson, Cambridge University Press,
1985.

Closest rotation: Given a square n X n matrix A whose SVD
is A = UXVT, show that its closest (in the Frobenius norm)
orthogonal matrix R (satisfying RRT = RTR = I) is given by
R =UVT. That is, show that
[A-UVT|r=  min  ||A-R|r,
RRT=RTR=I

where A = UXVT. In other words, R is obtained from the SVD
of A by dropping the diagonal matrix Y. Use this observation
to conclude what is the optimal rotation that aligns two sets of
points pi,pa,...,pn and qi,...,qn in R% that is, find R that

minimizes Y 1, | Rp; — ¢i||*. See also (the papers are posted on
course website):



e [Arun87] Arun, K. S., Huang, T. S., and Blostein, S. D., “Least-
squares fitting of two 3-D point sets”, IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 9 (5), pp. 698-700, 1987.

e [Keller75] Keller, J. B., “Closest Unitary, Orthogonal and Her-
mitian Operators to a Given Operator”, Mathematics Magazine,
48 (4), pp. 192-197, 1975.

e [FanHoffman55] Fan, K. and Hoffman, A. J., “Some Metric In-
equalities in the Space of Matrices”, Proceedings of the American
Mathematical Society, 6 (1), pp. 111-116, 1955.

2. James-Stein Estimators: Suppose that X; ~ N(u,Ip)(i = 1...n)
are independent p-Gaussian variables, let y = [, = %Z?:l X; ~
N (s, ﬁlp) =N(p,elp), e = ﬁ, consider the James-Stein estimator
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where (z)1 = max(0, z).
(a) Show that
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so when p >> 2 and p = 0, the gain will be in O(e?p). (Hint:
use Jenson inequality as Lemma 3.10 in [Tsybakov09)]).
(b) Show that
El|fzssy — pl* <Ellfiss — pl*.
(Hint: see Lemma A.6 in Appendix of [Tsybakov(09])
3. Phase transition in PCA “spike” model: Consider a finite sample of

n i.i.d vectors x1,xo,...,z, drawn from the p-dimensional Gaussian
distribution N (0, 0% L,xp, + Aouu?), where Ag/o? is the signal-to-noise



ratio (SNR) and u € RP. In class we showed that the largest eigenvalue
A of the sample covariance matrix .S,
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pops outside the support of the Marcenko-Pastur distribution if

Ao
— > ,
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SNR > \/5
n

(Notice that /7 < (1+,/7)? that is, Ao can be “buried” well inside the
support Marcenko-Pastur distribution and still the largest eigenvalue
pops outside its support). All the following questions refer to the limit
n — oo and to almost surely values:

or equivalently, if

(a) Find X given SNR > /7.
(b) Use your previous answer to explain how the SNR can be esti-
mated from the eigenvalues of the sample covariance matrix.

(c) Find the squared correlation between the eigenvector v of the
sample covariance matrix (corresponding to the largest eigenvalue
A) and the “true” signal component u, as a function of the SNR,
p and n. That is, find |{u, v)|?.

(d) Confirm your result using MATLAB simulations (e.g. set u = e;
and choose o = 1 and )¢ in different levels. Compute the largest
eigenvalue and its associated eigenvector, with a comparison to
the true ones.)

. Finite rank perturbations of random symmetric matrices: Wigner’s
semi-circle law (proved by Eugene Wigner in 1951) concerns the lim-
iting distribution of the eigenvalues of random symmetric matrices.
It states, for example, that the limiting eigenvalue distribution of
n X n symmetric matrices whose entries w;; on and above the diagonal
(i < j) arei.i.d Gaussians N'(0, £-) (and the entries below the diagonal
are determined by symmetrization, i.e., wj; = w;;) is the semi-circle:
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where the distribution is supported in the interval [—1, 1].



(a) Confirm Wigner’s semi-circle law using MATLAB simulations
(take, e.g., n = 400).

(b) Find the largest eigenvalue of a rank-1 perturbation of a Wigner
matrix. That is, find the largest eigenvalue of the matrix

W + Mouu?,

where W is an n x n random symmetric matrix as above, and u
is some deterministic unit-norm vector. Determine the value of
Ao for which a phase transition occurs. What is the correlation
between the top eigenvector of W + Aguu’! and the vector u as
a function of Ag? Use techniques similar to the ones we used in
class for analyzing finite rank perturbations of sample covariance
matrices.

5. PCA experiments: Take any digit data ( ‘0’,...,9”), or all of them, from
website
http://www-stat.stanford.edu/"tibs/ElemStatLearn/datasets/zip.digits/

and perform PCA experiments with Matlab or other language you are

familiar:
(a) Set up data matrix X = (z1,...,2,) € RP*™;
(b) Compute the sample mean ji, and form X = X — efi’;
(c) Compute top k SVD of X = US,VT;
(d) Plot eigenvalue curve, i.e. ivs. Aj(3,)/tr(3,) (i =1,...,k), with

top-k eigenvalue \; for sample covariance matrix X, = %f( « XT:

(e) Use imshow to visualize the mean and top-k principle components
as left singular vectors U = [uq, ..., ug|;

(f) For k = 1, sort the image data (z;) (i = 1,...,n) according to
the top right singular vectors, v1, in an ascending order;

(g) For k = 2, scatter plot (v, v2) and select a grid on such a plane to
show those images on the grid (e.g. Figure 14.23 in book [ESL]:
Elements of Statistical Learning).



