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ABSTRACT. We generalize the Perron Frobenius Theorem for nonnegative ma-
trices to the class of nonnegative tensors.

1. INTRODUCTION

Perron Frobenius Theorem is a fundamental result for nonnegative matrices. It
has numerous applications, not only in many branches of mathematics, such as
Markov chains, graph theory, game theory, and numerical analysis, but in various
fields of science and technology, e.g. economics, operational research, and recently,
page rank in the internet, as well. Its infinite dimensional extension is known as
the Krein Rutman Theorem for positive linear compact operators, which has also
been widely applied to Partial Differential Equations, Fixed Point Theory, and
Functional Analysis.

In late studies of numerical multilinear algebra [7][4][1], eigenvalue problems for
tensors have been brought to special attention. In particular, the Perron Frobenius
Theorem for nonnegative tensors is related to measuring higher order connectivity
in linked objects [5] and hypergraphs [6].

The purpose of this paper is to extend Perron Frobenius Theorem to nonnegative
tensors.

It is well known that Perron Frobenius Theorem has the following two forms:

Theorem 1.1. (Weak Form) If A is a nonnegative square matriz, then

(1) r(A), the spectral radius of A, is an eigenvalue.
(2) There exists a nonnegative vector xo # 0 such that

(1.1) Azg = r(A)xo.

We recall the following definition of irreducibility of A: a square matrix A is said to
be reducible if it can be placed into block upper-triangular form by simultaneous
row/column permutations. A square matrix that is not reducible is said to be
irreducible.

Theorem 1.2. (Strong Form) If A is an irreducible nonnegative square matriz,
then

(1) r(A) > 0 is an eigenvalue.
(2) There exists a nonnegative vector xg > 0, i.e. all components of x¢ are
positive, such that Axzg = r(A)xg.
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(3) (Uniqueness) If X\ is an eigenvalue with a nonnegative eigenvector, then
A=r(A4).

(4) r(A) is a simple eigenvalue of A.

(5) If X is an eigenvalue of A, the |\| < r(A).

We shall extend these results to nonnegative tensors. But first, let us recall some
definitions on tensors. An m-order n-dimensional tensor C is a set of n™ real entries

(1.2) C= (ci1~-im)> Ciyoevigy € R, 1<4,...,%0pn <n.

C is called nonnegative (or respectively positive) if ¢;,..,,, > 0 (or respectively
Ciy-iy, > 0). To an n-vector = (z1,---,y), real or complex, we define an
n-vector:

(1~3) Ca™ ! = ( Z Cii2-~z'm35i2"'35z'm> .
1<i<n

12,0 0m =1

Suppose Cz™~1 £ 0, a pair (\,z) € C x (C™\ {0}) is called an eigenvalue and an
eigenvector, if they satisfy

(1.4) Ca™™t = \glm=1,

where 2l = (x’f%l, ..,2™"1). When m is even, and C is symmetric, this was

introduced by Qi [7]; when m is odd, Lim [4] used (z7"~ '™ 2™ lsgna,) on
the right-hand side instead, and the notion has been generalized in Chang Pearson
Zhang [1].

Unlike matrices, the eigenvalue problem for tensors are nonlinear, namely, finding
nontrivial solutions of polynomial systems in several variables. This feature enables
us to employ different methods in generazations.

The main results of this paper are stated as follows:

Theorem 1.3. If A is a nonnegative tensor of order m dimension n, then there
ezist Ao > 0 and a nonnegative vector xg # 0 such that

(1.5) Azt = )\Ox([)m_l].

Theorem 1.4. If A is an irreducible nonnegative tensor of order m dimension n,
then the pair (Ao, xo) in equation (1.5) satisfy:

(1) Ao > 0 is an eigenvalue.

(2) zg >0, i.e. all components of xq are positive.

(3) If X is an eigenvalue with nonnegative eigenvector, then A = Ag. Moreover,

the nonnegative eigenvector is unique up to a multiplicative constant.
(4) If X is an eigenvalue of A, then |A| < Ag.

However, unlike matrices, such Ag is not necessarily a simple eigenvalue for tensors
in general. We shall present an example to demostrate such distinction. Further-
more, some additional conditions will be imposed to ensure the simplicity of the
eigenvalue Ag.

In the paper of Lim [4], some of the above conclusions in Theorem 1.4 were obtained.
However, we shall study this problem more systematically in a more self-contained
manner via a different approach here.

‘We organize our paper as follows: §2 is devoted to prove the main theorems, except
(4) of Theorem 1.4. In §3, we discuss the simplicity of A\g. In §4, we study an
extended Collatz’s minimax Theorem, from which assertion (4) of Theorem 1.4 will
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follow as a direct consequence. In the last §5, various extensions of the main results
will be given.

2. PROOFS OF THE MAIN THEOREMS

Let X = R™. It has a positive cone P = {(z1,...,2,) € X | z; > 0,1 < i < n}.
The interior of P is denoted int P = {(z1,...,2,) € P | z; > 0,1 <i <n}. An
order is induced by P: Vz,y € X, wedefinex <yify—z e P,andx <yifz <y
and x # y.

A m order tensor C is hence associated with a nonlinear (m — 1) homogeneous
operator C': X — X by Cz = Ca™ ', Vz € X, i.e.,

(2.1) C(tz) = t™ 'Cx,Vx € X,Vt € R

It is obviously seen that if C is nonnegative (or respectively positive), i.e, all entries
are nonnegative (or respectively positive), then the associate nonlinear operator
C:P— P (or C:P\{0} — int P). Moreover, if C is nonnegative, then

(2.2) Cx < Cy,Vx <y,Va,y € P.
And we are now ready for the proof of Theorem 1.3:

Proof. We reduce the problem to a fixed point problem as follows. Let D =
{(z1,...;2n) € X | 2; > 0,1 <1 < n,Z?zlxi = 1} be a closed convex set.
One may assume Ax™~! £ 0 Vz € D. For otherwise, there exists at least a xg € D
so that Azg'™' = 0. Let A\g = 0, then (\g, o) is a solution to (1.3), and we are
done. Then the following map F' : D — D is well defined:
1
m—1\m—1
(2.3) Flay = A,
ST (Agm1)

j=1 J

where (Az™~1), is the i—th component of Az™~!. F : D — D is clearly continuous.
According to the Brouwer’s Fixed Point Theorem, 3 zg € D such that F(xg) = xq,
ie.

Azl = gz,

where

(2.4) Xo = (zn:(Axgﬂ-l);nll>m_l.

j=1

O

We now turn to Theorem 1.4. If A is positive then we can use similar arguments
used in positive matrices to establish conclusions (1) - (3) in Theorem 1.4 based on
Theorem 1.3.

Our purpose in the remaining of this section is to introduce a condition on tensors
which lies in between positivity and nonnegativity to ensure similar results hold as
Perron Frobenius Theorem for matrices.

Definition 2.1. (Reducibility) A tensor C = (¢;,...;,,) of order m dimension n is
called reducible, if there exists a nonempty proper index subset I C {1,...,n} such
that

Ciyorii =0, Vipel, Vig,...,inm ¢ I.

If C is not reducible, then we call C irreducible.
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Lemma 2.2. If a nonnegative tensor C of order m dimension n is irreducible, then
n
Z Ciigerriyy = 0, Vi<i<n.

i27~~-7im,=1

Proof. Suppose not, then there exists ig so that >0  _, Cigiyoi,, = 0. Since
C is nonnegative, ¢;iy...i,, = 0 Via,...,in. In particular, if we let T = {ig}, then
Ciyig-in, = 0,Vi1 € T and Via, ..., 4, ¢ I, this contradicts irreducibility. O

We are now ready for the proof of Theorem 1.4.

Proof. 1° First, we prove xg € int P. Note P \ int P = 0P = Ujea Fy, where A is
the set of all index subsets I of {1,...,n} and

Fr={(z1,...,zn) € P|z;=0Vie I,andz; #0Vj ¢ I}.

Suppose zp ¢ int P, since xg # 0, there must be a maximal proper index subset
I € A such that zg € Fy, ie. (z9); = 0 Vi € I and (z9); > 0Vj ¢ I. Let
d = Min{(zo), | j ¢ I}, we then have § > 0. Since z( is an eigenvector, Azg € F7,
ie.

Z Qiig-i (T0)is +* (Z0)i,, =0, Vi€ L

12,00 yim =1

It follows
5m—1 Z Qi < Z Qg (!L‘o)iz oo (Z,Eo)im = 0, Vi e I,
i2yeim @1 iyenyim @1
hence we have aj,..,,, = 0 Vi € I, Vig,...,i, ¢ I, ie. A is reducible, a
contradiction.

2° Combining 1° and Lemma 2.2, we have Ag > 0.

3° We now prove the eigenvalue corresponding to the positive eigenvector is unique,
namely, if (A, z) and (u,y) € R x P are solutions of (1.5), then A = u. According
to 1° and 2°, such z,y € int P and A, > 0. Vz € int P and Yw ¢ P, we define
d.(w) ={s € Ry | z+ sw € P}, then §,(w) >0, z+tw € P for 0 <t < J,(w) and
z+tw € P for t > §,(w). Applying these to (z,w) = (x,—y), we have x — ty € P
for 0 <t < 6,(—y). By definition and (2.1), (2.2),

(2.5) Azl = g™ > 5, (—y)" T Ay T = b (—y)m Ty,

it follows = > (%)ﬁéw(—y)y, thus p < A\

Likewise, if we interchange x and y, it follows y > (%)ﬁéy(—x)x, and thus A < p.
We have hence proved A = u. Therefore, the only eigenvalue corresponding to the
positive eigenvector is Ag.

4° We prove the positive eigenvector is unique up to a multiplicative constant,
ie. if zg,x € P\ {0} satistying Az~ ' = )\Ox([)mfl] and Az™~! = \gx[™~1 then
x = kxg for some constant k. It has been known that xg € int P, by the definition of
0z (—x), we have xg —tx € P for 0 <t < d,,(—x) and g —tx ¢ P for t > d,,(—2).
This implies xg — tox € OP, where tg = 04,(—x). So there exists a nonempty
maximal index subset I C {1,...,n} such that zy —tox € Fr. If I = {1,...,n},
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then xg = tgx, and we are done. Otherwise, I is a nonempty proper subset. There
exist € > 0 and ¢ > 0 such that

(xo)i >0, Vie{l,2,...n},
0 < tox; = (T0)is Viel,

tox; )
<l—e Vié¢l,
(wo); #

0<

and then Vi € T

D iy [(@0)iy -+ (@0)i,, =10 @iy - i, ] = No[(w0)]" ! — (to)™ ) = 0.

‘We have
t6”‘1:v¢2 ey < (20)iy o (@0)i, Y2y, b,

and

o iy @i, < (1= €)™ N@o)iy - (T0)i,, iy .o sim 1
It follows

A= =™ ) D iy,

12,0yt &1
<Y i [(@0)sy - (@0)iy, — 15 sy s,

i27-~~7im,¢1
n

< Y g [(@0)iy - (0)i,, — b iy i, ] =0 Vi€

thus ajy...;,, =0 Vi€ I, Via,..., iy ¢ I,ie. Aisreducible, a contradiction. O

Remark: By the same argument used in 1° of the proof of Theorem 1.4, the
following improvement also holds: Assume A is an irreducible nonnegative tensor.
If 2o € P\ {0} is a solution of the inequality Az™~' < Az[™~1] then z( € int P.

3. THE SIMPLICITY OF THE EIGENVALUE )\g

For a matrix (i.e. m = 2) A, an eigenvalue X is called algebraically simple, if A is a
simple root of the characteristic polynomial det(A— AI), and is called geometrically
simple if dim Ker(A—AI) = 1. We will generalize these notions to the tensor setting.
Since the operator A associate with a tensor A is nonlinear but homogeneous, we
can define the geometric multiplicity of an eigenvalue of A as follow:

Definition 3.1. Let A be an eigenvalue of
(3.1) Azt = \glm=1l,

We say A has geometric multiplicity ¢, if the maximum number of linearly in-
dependent eigenvectors corresponding to A equals ¢q. If ¢ = 1, then A is called
geometrically simple.

It is worth noting the geometric multiplicity for a real eigenvalue A of a real matrix
A is independent to the field over the vector space being real or complex, i.e.,

dimp{z € R"|(A — A)xz =0} = dimc{z € C"|(A - \])z = 0}.
This is due to the fact that if z = z 4+ iy € R"™ 4+ i{R" satisfies (A — AI)z = 0, then
both z,y € Ker(A— M) R"™.



6 K.C. CHANG, KELLY PEARSON, AND TAN ZHANG

As to higher order tensors, since Az™~! is m — 1 homogeneous, we still have
real geometric multiplicity < complex geometric multiplicity,

but not equal in general. This can be seen from the following example:

Example 3.2. Let m = 3 and n = 2. Consider A = (a;;x) where a111 = a2 =1,
a122 = ag11 = € for 0 < € < 1, and a;;; = 0 for other (ijk). Then the eigenvalue
problem becomes:

3.2
(3:2) ex? + 13 = \x3.

{x% + ex3 = \a?

We have A = 1 + ¢, with eigenvectors: u; = (1,1) and ug = (1,-1), and A=1—¢
with eigenvectors: ug = (1,4), and ugq = (1, —1).

In this example we see that

real geometric multiplicity of A = 1 + € = complex geometric multiplicity = 2,
and

real geometric multiplicity of A = 1 —¢ is 0, and complex geometric multiplicity
is 2.

The same example also shows the nonnegative irreducible tensor A has a positive
eigenvalue 1+ ¢ with unique positive eigenvector (up to a multiplicative constant),
which is not geometrically simple neither in R nor in C.

Example 3.3. Let m=4,n =2, A= (aijkl) with a1209 = ao111 = 1 and Qijkl = 0
elsewhere. Then after computation, we see there are two eigenvalues: A = +1, with
eigenvectors: (z, £x), (x, L exp %z), (z, Lt exp %x) Therefore both A = £1 are
all real geometrically simple, but with complex geometrical multiplicity 3.

In the following, we shall seek a sufficient condition to ensure the real geometric
simplicity of Ag.

In case m is odd, there are two different types of eigenvalue problems, which impose
the same constraints on P:

(1) Az™ 1 = At Y,

n
(2) Az™ 1 = Nsgnaa" ™t ... sgna,a? ).

Theorem 3.4. Let m be odd, and let A be an irreducible nonnegative tensor of
order m dimension n. If Ax™~! is invariant under any one of the transformations:
(1, ..., xpn) — (£x1, ..., £2), except the identity and its reflection, then N\ is not
geometrically simple for problem (1). If all terms in Az™~' are monomials of
22,22 Qe iy, 7 0 only if the numbers of indices appearing in {ia, . .. im}
are all even, Vi, then Ao is real geometrically simple for problem (2).

Proof. (1) Let T be the transformation, to which Az™~! is invariant under. By
assumption, if zg = (29,...,29) € int P is a solution of (1), then Tzq is also a
solution of (1) corresponding to the same eigenvalue g, so Ag is not geometrically
simple.

(2) By the assumption, Az™~! > 0,Vz € R", which implies all solutions of (2)
must be in P. Using assertion (3) of Theorem 1.4, we see x = kxg, i.e. Ag is real
geometrically simple. [
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We next examine the case when m is even. We introduce a condition on C to ensure
the associated nonlinear operator C' is increasing, i.e.

(3.3) r<y=Cx<C(Cy.
Comparing with (2.2), there is no restriction: z,y € P in (3.3).

Definition 3.5. (Condition (M)) A tensor C = ¢;,4,...;,, of order m > 2 dimension
n is said to satisfy Condition (M), if there exists a nonnegative matrix D = (d;;)
such that ¢;,iy..s,, = diyiy0iy..i,,, Where d;,...;  is the Kronecker delta.

tm

Remark: For m = 2, Condition (M) is trivial, hence is superfluous.

In fact, if m is even, Condition (M) on C implies

0 _ - m— .
8Tj(&cm Hi=(m-1) Zdijxj 2>0Vi,j,
j=1
and then Czx < Cy,Vx <y, Vx,y € R". We now state and prove the following:

Theorem 3.6. Let m be even, and let A be an irreducible nonnegative tensor. If A
satisfies Condition (M), then the eigenvalue A for nonnegative eigenvector is real
geometrically simple.

Remark: To the special problem, it can, by setting y = 2™~ be reduced to
the problem for matrices, hence becomes a direct consequence of Perron Frobenius
Theorem. However, we present the following proof since it will be useful for more
general problems, see §5.

Proof. We follow 4° in the proof of Theorem 1.4. We note the only difference is
now z € R™\ {0} but not P\ {0}. We still have ¢ty = d,,(—=) such that zo —tx € P
for 0 <t < tg, and xg — tx ¢ P for t > tg. We want to show zy = tpx. Suppose
not, one has (x¢); > 6 > 0,Vi and a nonempty proper index subset I such that
tox; = (x0); Vi€ I and tox; < (1 —€)(zg); Vi ¢ I. It follows Vi € T

5m—1(1 — (1 — E)m_l) Zaij...j
J¢I
<D il (@) = (to)™ ]
i¢1
n
< Z Qi [(0) 15+ (@0)i, — tg" iy -4, ] =0,
i2yenyim=1
thus a;5..; =0 Vj ¢ I. Combining this with Condition (M), we obtain a;,4,...;,, =
0 Vi el, VYia,...,im ¢ I, which contradicts the irreducibility of A. Therefore,
xo = tox, i.e. Ag is geometrically simple as desired. [l

We next define the algebraic simplicity of the eigenvalue of (3.1). We follow the ap-
proach described in Cox et al. [pp. 97 — 105] to define the characteristic polynomial
Ya(A) of A by

Ya(N) := Res((Az™ 1) — A" o (Ae™ ), — dam ),

where Res(Pi,...,P,) is the resultant of n homogeneous polynomials Pi,..., P,.
For each A, such 1 4()) is unique up to an extraneous factor.
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Definition 3.7. Let A be an eigenvalue of (3.1). We say A has algebraic multiplicity
p, if A is a root of ¥ 4(\) of multiplicity p. And we call A an algebraically simple
eigenvalue, if p = 1.

To the Example 3.2, we have known that A\ = 1 4+ ¢ has geometric multiplicity 2
both in real or in complex fields. After computation we have

1—-AX 0 € 0
0 1—A 0 €
7/).4(/\) det € 0 1—A 0
0 € 0 1-—A

= A=1+6?’N—1-¢)?2
which shows the eigenvalue Ay = 1 + € also has algebraic multiplicity 2.
By definition, we see
complex geometric multiplicity < algebraic multiplicity,
but not equal in general, this can be seen in the next example.
Example 3.8. Let m =4 and n = 2. Consider A = (a;jx) where ai111 = a1112 =

G122 = a2202 = 1, and a5y = 0 for other (ijkl). Then the eigenvalue problem
becomes:

3+ 23wy = A1}
173 + 23 = A7,

‘We compute to see

1—Xx 1 0 0 0 0
0 1-X 1 0 0 0
0 0 1-x 1 0 0
vad) = det| 0 1 1-Xx 0 0
0 0 0 1 1-Xx 0
0 0 0 0 11—

— AA—2)(A- 1),

which shows the eigenvalues A = 0, 2 are all algebraically and geometrically simple,
with eigenvectors u; = (1,—1), and up = (1,1) respectively, while A = 1 has
algebraic multiplicity 4. but has only two linearly independent eigenvectors uz =
(1,0) and ug4 = (0, 1), so its geometric multiplicity is 2.

4. A MINIMAX THEOREM

The following well known [3] minimax theorem for irreducible nonnegative matrices
will be extended to irreducible nonnegative tensors.

Theorem 4.1. (Collatz) Assume that A is an irreducible nonnegative n xn matriz,
then
. Ax); . Ax),;
(4.1) Mingeint p Maxy,; >0 % = Ao = Maxzeint p Ming, >0 ( ‘)Z )
K2 3

where Ao s the unique positive eigenvalue corresponding to the positive eigenvector.

In the remainder of this section, we will prove the following
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Theorem 4.2. Assume that A is an irreducible nonnegative tensor of order m
dimension n, then

Azm=1); . Axm—1).

( m—1 )2 = Ao = Maxycint p Ming, o ( m—1 )la

3 (2

(42) Minzeintp MaXIi>0

where Ao is the unique positive eigenvalue corresponding to the positive eigenvector.

Before we proceed with the proof of Theorem 4.2, we first define the following two
functions on P\ {0}:

) Az, « Az 1),
ps () = Ming, ~0 (xmi—l) and  p*(z) = Maxy, >0 %

Clearly, p.(x) < p*(x).

Note p*(z) may be +o0o on the boundary 9P \ {0}.

Since both p.(x) and p*(z) are positive 0-homogeneous functions, we can restrict
them on the compact set

A={(z=(21,...,2,) € P| inzl}.

Now, i, is continuous and bounded from above and p* is continuous on A () int P
and is bounded from below, there exist x,,z* € A such that

Ty = Ux (JT*) = MaXJJEA /.t*(x) = MaXIEP\{O} s (x)a

r* = pt(2") = Mingea p«(x) = Minge p\ g0y i+ ().
Let (Ao, zo) € Ry X int P be the positive eigen-pair obtained in Theorem 1.4, we
then have:

1 (@) < i (30) = Ao = 1 (@0) < puu(a.):

Therefore,

(43) 7"* S )\0 S Tx.

We shall prove they are indeed all equal. To do so, we modify 3° in the proof of
Theorem 1.4 as follows:

Lemma 4.3. Let A an irreducible nonnegative tensor of order m dimension n. If
(A, z) and (u,y) € Ry x (P\ {0}) satisfy Az~ = Xzl and Ay™~1 > pylm—1]
(or respectively Ay™ ' < pyl™=1), then p < X (or respectively A < p).

Proof. We first assume Ay™ ' > puyl™~1. Since = € int P, we have tg = 6,(—y) >
0 such that o —ty € P for 0 <t <ty and z — ty ¢ P for ¢t > ty. It implies:

)\x[m—l] — A.’Em_l > tglflAym—l > tgLflluy[nL—l]7

hence, z > (%)ﬁtoy, consequently, u < A.

Next we assume Ay™ ! < pgyl™=1. After the remark of section 2, we have y € int P,
and if we interchange the roles of x and y in the previous paragraph, then we have
A < . Our assertion now follows. O

We now return to the proof of Theorem 4.2:
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Proof. After (4.3), it remains to show r, < Ag < r*. By the definition of p.(x), we
have

m—1) .
Ty = Wi (T4) = Ming, >0 (“496*7721
()i
This means
Azt > r*me_l].
Likewise,
A(E*m_l < ’I"*{E*[m_l].

Our desired inequality follows from Lemma 4.3. O

Since p, is continuous on A and is 0-homogeneous, we have

Corollary 4.4.
(Aan—l)i

m—1
%

Ao = Maxgep\ (o} Ming, >0

We close this section by proving assertion (4) of Theorem 1.4:

Proof. Let z € C*\ {0} be a solution of Az~ = X\z[™~1 for some A € C. We wish
to show |A| < Ag. Let y; = |z;| Vi and set y = (y1,...,yn). Clearly, y € P\ {0}.
One has

(A"l =1 Y Gt Zia 2| S D i i Wi = (A"

9y im=1 in,eeim=1

This shows
Ay ™" = Al = [(Az" 7] < (Ay™ ) Vi
Applying Corollary 4.4, we have

m—1Y . m—1y.
Ay )l < MaXxEP\G 1\/Iinacl>0 w = Xo-

m—1 m—1
i i

A < Miny, o

5. SOME EXTENSIONS

There are various ways in defining eigenvalues for tensors, e.g., there are H eigen-
value, Z eigenvalue, D eigenvalue etc. see [7], [8],[9],[4]. They are unified in [1]. In
this section, we extend the above results to more general eigenvalue problems for
tensors. Let A and B be two m order n dimensional real tensors. Assume both
Az™=1 and Bz™~! are not identically zero. We say (\,z) € C x (C™\ {0}) is
an eigen-pair (or eigenvalue and eigenvector) of A relative to B, if the n-system of
equations

(5.1) (A= AB)z™ 1 =0

possesses a solution.
The problem (1.5), which is called the H eigenvalue problem is the case, where
B = (0i,4y....i,, ), the unit tensor.

We next introduce a few more conditions on nonnegative tensors.
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Definition 5.1. (Quasi-diagonal) A tensor C of order m dimension n is said to be
quasi-diagonal, if for all nonempty proper index subset I C {1,...,n}, ¢, iy, =0
for iy ¢ I and ia,..., i, € I.

Example 5.2. For m = 2, C is quasi-diagonal if and only if it is a diagonal matrix.

Example 5.3. If C = (d;,..4,,), where &;,...;,, is the Kronecker delta, then C is
quasi-diagonal.

Lemma 5.4. If a nonnegative tensor C of order m dimension n is quasi-diagonal,
then there exists M > 0 such that for all nonempty proper index subset I C
{1,...,n}, one has Ce! < Me!, where ! = (el,... el) with

;1 ier
e =
"o, il

Proof. Let M =377 Ciyri,, - We verify (Cel); =0 Vi ¢ I by computing

reim=1

n

CEN™ Ni= D Ciinelh el = Y iy =0, Vil

i, yim=1 9, im€l

provided by that C is quasi-diagonal. (]

Definition 5.5. (Condition (E)) A nonnegative tensor C of order m dimension n
is said to satisfy Condition (E), if there exists a homeomorphism C' : R™ — R"™ such
that (1) C|p = C|p, and (2) Va,y € P,z < y implies C 1tz < C~1y.

For C = (8;,...4,.), C is the identity operator, so Condition (E) is satisfied.

Example 5.6. Let m be even, and D be a positive definite matrix. If C is a m
order n dimensional tensor satisfying:

Cx™ ' = Dx(Dx,2)% !,
then C satisfies (1) in the Condition (E). Indeed,

C'_ly — D—ly(y7 D—ly)_2<7z;21) .

Example 5.7. Let us consider the following example: let Cy : P — P be the
nonlinear operator:

PR 2=y = 2 4 1,

where 1 <k <r. And let C;, = (¢;,,..._i,,) be an m order n dimensional nonnegative
tensor corresponding to C}, for example,

Crx = {xmk_l]hlw‘k), m = 2r

e @t 22 R m= 2,
E Ciig..im Lig -+ Lipy, = 2
T T+
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The left hand side equals to

X\ 8l=m—12(ig,....i )~ (151 ,‘...,nﬁn)Ciiz--uimxfl""xgnv
where (171, ....,n") means j is repeated for 3; times, V1 < j < n, and (ig, ..., im) ~
(b, ....,1,,) means there exists a m € S,,,_1, the m — 1 permutative group, such that

(12, ceery i) = (il ey in).
(5.2) implies that
2k—1 m=2r
= Qs + 51 .

b ! ]{21« m=2r+1.
Therefore there exists a representation Cj of Cj such that c¢;;,,
31 > 2 such that i; = i. Consequently, Ci, is quasi-diagonal.
Also, Cj, satisfies Condition (E). In fact, define

im 7 0 only if

.....

é‘ _ $[2k71]|$|2(r7k) m = 2r
b P2 PR Son(x) m = 2r 4+ 1,
where we use the notation: z[*Sgn(z) = (z¢sgn(z1), ....,2%sgn(z,)). Then

(5.3) cot=

_r—k

- y[ﬁ](E{»;ﬂyﬂﬁ)’% m=2r
| Sgn(y) (S |yl )~ m=2r+1.

Obviously, C, satisfies (1) and (2) in the definition of Condition (E).

Remark: For B = C; the problem (5.1) corresponds to Z eigenvalue, and when m
is even for B = C'm it corresponds to H eigenvalue.
We have the following general result:

Theorem 5.8. Suppose that A and B are nonnegative tensors, and that B satisfies
(1) in Condition (E), then there exist Ao > 0 and a nonnegative vector xog # 0,
such that

(5.4) Azt = NoBx L

If further, we assume that A is irreducible and B satisfies Condition (E), and is
quasi diagonal, then xo € int P, \g > 0 and is the unique eigenvalue with nonnega-
tive eigenvectors. In particular, for B = Cy, the nonnegative eigenvector is unique
up to a multiplicative constant.

Proof. We are satisfied only to sketch the proof, because it is parallel to that in
section 2. Let A, B be the nonlinear operators corresponding to A, B respectively.
For the existence part, we define

(B~ Ax));

i (B71Ax);

and
Ao = (Bf_y (B~ Az);)™ !

in replacing of (2.3) and (2.4). The after argument is the same with the counter
part in section 2.
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Next we follow step 1° in the proof of theorem 2 to prove x(y € int P by contradiction.
Suppose not, then there exists a maximal proper index subset I such that xzq € F7.
From the equation:

Azt = \oBx
and that B is quasi diagonal, it follows Bz € F; and then Axzy € F;. The following
arguments are the same.
In step 3°, (2.5) is replaced by

ABz = Az > pd.(—y)™ ' By.

Since B~! is order preserving in P, and is positively ﬁ homogeneous, we have

AT 2 Nﬁéx(_y)y
Therefore ;1 < A. Again the rest part is the same.
As to the uniqueness of the positive eigenvector (up to a multiplicative constant),
we reduce the problem by changing variables. For = # 0, let

(r—k)
:E|m|_7ifaﬁ2, m=2r+1,

_ 2(r—k)
¢ = {£C|.’L‘| m—a=1, m=2r

where o = 2k when m is even, and 2k 4+ 1 when m is odd. The problem is then
reduced to:
AE = A€,

We shall prove that the nonnegative eigenvector zy is unique. It is proved by
contradiction. Suppose not, there exist z,y € P\{0} satisfying Az = Aoz and
Ay = Ay. Let &, n are the images of z,y under the above transformation. Then
by the argument in step 4° of the proof in Theorem 1.4 there exists ¢t > 0 such that
& = tn. This implies

||| 26—k

)m,—(x—l
|yl

where o = 2k or 2k + 1 if m = 2r or 2r + 1 resp.
Lastly, the minimax theorem in §4 is also extended:

x =t

)

) (Axm71)1' ‘ (Axm71)1'
Mingeint PMaﬂfz,;>om = Ao = Mazzeint PMmz,;>om-
The following steps follow the last paragraph of §4. O

Corollary 5.9. Theorem 1.3 holds for D-eigenvalue problem. Theorem 1.4 holds
for H eigenvalue problem and Z eigenvalue problem.

m

More generally, For Bz = zFlp(z), where 1 < k < [2] and ¢(z) is a positively
m — k — 1 homogeneous positive polynomial, Perron Frobenius theorem also holds.
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