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Abstract. We generalize the Perron Frobenius Theorem for nonnegative ma-
trices to the class of nonnegative tensors.

1. Introduction

Perron Frobenius Theorem is a fundamental result for nonnegative matrices. It
has numerous applications, not only in many branches of mathematics, such as
Markov chains, graph theory, game theory, and numerical analysis, but in various
fields of science and technology, e.g. economics, operational research, and recently,
page rank in the internet, as well. Its infinite dimensional extension is known as
the Krein Rutman Theorem for positive linear compact operators, which has also
been widely applied to Partial Differential Equations, Fixed Point Theory, and
Functional Analysis.
In late studies of numerical multilinear algebra [7][4][1], eigenvalue problems for
tensors have been brought to special attention. In particular, the Perron Frobenius
Theorem for nonnegative tensors is related to measuring higher order connectivity
in linked objects [5] and hypergraphs [6].
The purpose of this paper is to extend Perron Frobenius Theorem to nonnegative
tensors.
It is well known that Perron Frobenius Theorem has the following two forms:

Theorem 1.1. (Weak Form) If A is a nonnegative square matrix, then
(1) r(A), the spectral radius of A, is an eigenvalue.
(2) There exists a nonnegative vector x0 �= 0 such that

(1.1) Ax0 = r(A)x0.

We recall the following definition of irreducibility of A: a square matrix A is said to
be reducible if it can be placed into block upper-triangular form by simultaneous
row/column permutations. A square matrix that is not reducible is said to be
irreducible.

Theorem 1.2. (Strong Form) If A is an irreducible nonnegative square matrix,
then

(1) r(A) > 0 is an eigenvalue.
(2) There exists a nonnegative vector x0 > 0, i.e. all components of x0 are

positive, such that Ax0 = r(A)x0.
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(3) (Uniqueness) If λ is an eigenvalue with a nonnegative eigenvector, then
λ = r(A).

(4) r(A) is a simple eigenvalue of A.
(5) If λ is an eigenvalue of A, the |λ| ≤ r(A).

We shall extend these results to nonnegative tensors. But first, let us recall some
definitions on tensors. An m-order n-dimensional tensor C is a set of n

m real entries

(1.2) C = (ci1···im), ci1···im ∈ R, 1 ≤ i1, . . . , im ≤ n.

C is called nonnegative (or respectively positive) if ci1···im ≥ 0 (or respectively
ci1···im > 0). To an n-vector x = (x1, · · · , xn), real or complex, we define an
n-vector:

(1.3) Cx
m−1 :=

� n�

i2,...,im=1

cii2···imxi2 · · ·xim

�

1≤i≤n

.

Suppose Cx
m−1 �= 0, a pair (λ, x) ∈ C × (Cn \ {0}) is called an eigenvalue and an

eigenvector, if they satisfy

(1.4) Cx
m−1 = λx

[m−1]
,

where x
[m−1] = (xm−1

1 , . . . , x
m−1
n ). When m is even, and C is symmetric, this was

introduced by Qi [7]; when m is odd, Lim [4] used (xm−1 sgn x1
1 , . . . , x

m−1
n sgn xn) on

the right-hand side instead, and the notion has been generalized in Chang Pearson
Zhang [1].
Unlike matrices, the eigenvalue problem for tensors are nonlinear, namely, finding
nontrivial solutions of polynomial systems in several variables. This feature enables
us to employ different methods in generazations.
The main results of this paper are stated as follows:

Theorem 1.3. If A is a nonnegative tensor of order m dimension n, then there
exist λ0 ≥ 0 and a nonnegative vector x0 �= 0 such that

(1.5) Ax
m−1 = λ0x

[m−1]
0 .

Theorem 1.4. If A is an irreducible nonnegative tensor of order m dimension n,
then the pair (λ0, x0) in equation (1.5) satisfy:

(1) λ0 > 0 is an eigenvalue.
(2) x0 > 0, i.e. all components of x0 are positive.
(3) If λ is an eigenvalue with nonnegative eigenvector, then λ = λ0. Moreover,

the nonnegative eigenvector is unique up to a multiplicative constant.
(4) If λ is an eigenvalue of A, then |λ| ≤ λ0.

However, unlike matrices, such λ0 is not necessarily a simple eigenvalue for tensors
in general. We shall present an example to demostrate such distinction. Further-
more, some additional conditions will be imposed to ensure the simplicity of the
eigenvalue λ0.
In the paper of Lim [4], some of the above conclusions in Theorem 1.4 were obtained.
However, we shall study this problem more systematically in a more self-contained
manner via a different approach here.
We organize our paper as follows: §2 is devoted to prove the main theorems, except
(4) of Theorem 1.4. In §3, we discuss the simplicity of λ0. In §4, we study an
extended Collatz’s minimax Theorem, from which assertion (4) of Theorem 1.4 will
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follow as a direct consequence. In the last §5, various extensions of the main results
will be given.

2. Proofs of the main theorems

Let X = Rn. It has a positive cone P = {(x1, . . . , xn) ∈ X | xi ≥ 0, 1 ≤ i ≤ n}.
The interior of P is denoted intP = {(x1, . . . , xn) ∈ P | xi > 0, 1 ≤ i ≤ n}. An
order is induced by P : ∀x, y ∈ X, we define x ≤ y if y − x ∈ P , and x < y if x ≤ y

and x �= y.
A m order tensor C is hence associated with a nonlinear (m − 1) homogeneous
operator C : X → X by Cx = Cx

m−1
,∀x ∈ X, i.e.,

(2.1) C(tx) = t
m−1

Cx,∀x ∈ X, ∀t ∈ R
1
.

It is obviously seen that if C is nonnegative (or respectively positive), i.e, all entries
are nonnegative (or respectively positive), then the associate nonlinear operator
C : P → P (or C : P \ {0} → intP ). Moreover, if C is nonnegative, then

(2.2) Cx ≤ Cy,∀x ≤ y, ∀x, y ∈ P.

And we are now ready for the proof of Theorem 1.3:

Proof. We reduce the problem to a fixed point problem as follows. Let D =
{(x1, . . . , xn) ∈ X | xi ≥ 0, 1 ≤ i ≤ n,

�n
i=1 xi = 1} be a closed convex set.

One may assume Ax
m−1 �= 0 ∀x ∈ D. For otherwise, there exists at least a x0 ∈ D

so that Ax
m−1
0 = 0. Let λ0 = 0, then (λ0, x0) is a solution to (1.3), and we are

done. Then the following map F : D → D is well defined:

(2.3) F (x)i =
(Ax

m−1)
1

m−1
i

�n
j=1(Axm−1)

1
m−1
j

, 1 ≤ i ≤ n,

where (Ax
m−1)i is the i−th component of Ax

m−1. F : D → D is clearly continuous.
According to the Brouwer’s Fixed Point Theorem, ∃ x0 ∈ D such that F (x0) = x0,
i.e.

Ax
m−1
0 = λ0x

[m−1]
0 ,

where

(2.4) λ0 =
� n�

j=1

(Ax
m−1
0 )

1
m−1
j

�m−1

.

�
We now turn to Theorem 1.4. If A is positive then we can use similar arguments
used in positive matrices to establish conclusions (1) - (3) in Theorem 1.4 based on
Theorem 1.3.
Our purpose in the remaining of this section is to introduce a condition on tensors
which lies in between positivity and nonnegativity to ensure similar results hold as
Perron Frobenius Theorem for matrices.

Definition 2.1. (Reducibility) A tensor C = (ci1···im) of order m dimension n is
called reducible, if there exists a nonempty proper index subset I ⊂ {1, . . . , n} such
that

ci1···im = 0, ∀i1 ∈ I, ∀i2, . . . , im /∈ I.

If C is not reducible, then we call C irreducible.
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Lemma 2.2. If a nonnegative tensor C of order m dimension n is irreducible, then
n�

i2,...,im=1

cii2···im > 0, ∀1 ≤ i ≤ n.

Proof. Suppose not, then there exists i0 so that
�n

i2,...,im=1 ci0i2···im = 0. Since
C is nonnegative, ci0i2···im = 0 ∀i2, . . . , im. In particular, if we let I = {i0}, then
ci1i2···im = 0,∀i1 ∈ I and ∀i2, . . . , im /∈ I, this contradicts irreducibility. �

We are now ready for the proof of Theorem 1.4.

Proof. 1◦ First, we prove x0 ∈ intP . Note P \ intP = ∂P = ∪I∈ΛFI , where Λ is
the set of all index subsets I of {1, . . . , n} and

FI = {(x1, . . . , xn) ∈ P | xi = 0 ∀i ∈ I, andxj �= 0 ∀j /∈ I}.

Suppose x0 /∈ intP , since x0 �= 0, there must be a maximal proper index subset
I ∈ Λ such that x0 ∈ FI , i.e. (x0)i = 0 ∀i ∈ I and (x0)j > 0 ∀j /∈ I. Let
δ = Min{(x0)j | j /∈ I}, we then have δ > 0. Since x0 is an eigenvector, Ax0 ∈ FI ,
i.e.

n�

i2,...,im=1

aii2···im(x0)i2 · · · (x0)im = 0, ∀i ∈ I.

It follows

δ
m−1

�

i2,...,im /∈I

aii2···im ≤
�

i2,...,im /∈I

aii2···im(x0)i2 · · · (x0)im = 0, ∀i ∈ I,

hence we have aii2···im = 0 ∀i ∈ I, ∀i2, . . . , im /∈ I, i.e. A is reducible, a
contradiction.
2◦ Combining 1◦ and Lemma 2.2, we have λ0 > 0.
3◦ We now prove the eigenvalue corresponding to the positive eigenvector is unique,
namely, if (λ, x) and (µ, y) ∈ R × P are solutions of (1.5), then λ = µ. According
to 1◦ and 2◦, such x, y ∈ intP and λ, µ > 0. ∀z ∈ intP and ∀w /∈ P , we define
δz(w) = {s ∈ R+ | z + sw ∈ P}, then δz(w) > 0, z + tw ∈ P for 0 ≤ t ≤ δz(w) and
z + tw ∈ P for t > δz(w). Applying these to (z, w) = (x,−y), we have x− ty ∈ P

for 0 ≤ t ≤ δz(−y). By definition and (2.1), (2.2),

(2.5) λx
[m−1] = Ax

m−1 ≥ δx(−y)m−1Ay
m−1 = µδx(−y)m−1

y
[m−1]

,

it follows x ≥ (µ
λ )

1
m−1 δx(−y)y, thus µ ≤ λ.

Likewise, if we interchange x and y, it follows y ≥ (λ
µ )

1
m−1 δy(−x)x, and thus λ ≤ µ.

We have hence proved λ = µ. Therefore, the only eigenvalue corresponding to the
positive eigenvector is λ0.
4◦ We prove the positive eigenvector is unique up to a multiplicative constant,
i.e. if x0, x ∈ P \ {0} satisfying Ax

m−1
0 = λ0x

[m−1]
0 and Ax

m−1 = λ0x
[m−1], then

x = kx0 for some constant k. It has been known that x0 ∈ intP , by the definition of
δx0(−x), we have x0− tx ∈ P for 0 ≤ t ≤ δx0(−x) and x0− tx /∈ P for t > δx0(−x).
This implies x0 − t0x ∈ ∂P , where t0 = δx0(−x). So there exists a nonempty
maximal index subset I ⊂ {1, . . . , n} such that x0 − t0x ∈ FI . If I = {1, . . . , n},
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then x0 = t0x, and we are done. Otherwise, I is a nonempty proper subset. There
exist � > 0 and δ > 0 such that

(x0)i ≥ δ, ∀i ∈ {1, 2, ....n},
0 < t0xi = (x0)i, ∀i ∈ I,

0 <
t0xi

(x0)i
< 1− � ∀i /∈ I,

and then ∀i ∈ I

n�

i2,...,im=1

aii2···im [(x0)i2 · · · (x0)im− t
m−1
0 xi2 · · ·xim ] = λ0[(x0)m−1

i − (t0xi)m−1] = 0.

We have
t
m−1
0 xi2 · · ·xim ≤ (x0)i2 · · · (x0)im ∀i2, . . . , im,

and
t
m−1
0 xi2 · · ·xim ≤ (1− �)m−1(x0)i2 · · · (x0)im ∀i2, . . . , im /∈ I.

It follows

δ
m−1(1− (1− �)m−1)

�

i2,...,im /∈I

aii2···im

≤
�

i2,...,im /∈I

aii2···im [(x0)i2 · · · (x0)im − t
m−1
0 xi2 · · ·xim ]

≤
n�

i2,...,im=1

aii2···im [(x0)i2 · · · (x0)im − t
m−1
0 xi2 · · ·xim ] = 0 ∀i ∈ I,

thus aii2···im = 0 ∀i ∈ I, ∀i2, . . . , im /∈ I, i.e. A is reducible, a contradiction. �
Remark: By the same argument used in 1◦ of the proof of Theorem 1.4, the
following improvement also holds: Assume A is an irreducible nonnegative tensor.
If x0 ∈ P \ {0} is a solution of the inequality Ax

m−1 ≤ λx
[m−1], then x0 ∈ intP .

3. The simplicity of the eigenvalue λ0

For a matrix (i.e. m = 2) A, an eigenvalue λ is called algebraically simple, if λ is a
simple root of the characteristic polynomial det(A−λI), and is called geometrically
simple if dim Ker(A−λI) = 1. We will generalize these notions to the tensor setting.
Since the operator A associate with a tensor A is nonlinear but homogeneous, we
can define the geometric multiplicity of an eigenvalue of A as follow:

Definition 3.1. Let λ be an eigenvalue of

(3.1) Ax
m−1 = λx

[m−1]
.

We say λ has geometric multiplicity q, if the maximum number of linearly in-
dependent eigenvectors corresponding to λ equals q. If q = 1, then λ is called
geometrically simple.

It is worth noting the geometric multiplicity for a real eigenvalue λ of a real matrix
A is independent to the field over the vector space being real or complex, i.e.,

dimR{x ∈ Rn|(A− λI)x = 0} = dimC{z ∈ Cn|(A− λI)z = 0}.
This is due to the fact that if z = x + iy ∈ Rn + iRn satisfies (A− λI)z = 0, then
both x, y ∈ Ker(A− λI)

�
Rn.
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As to higher order tensors, since Ax
m−1 is m− 1 homogeneous, we still have

real geometric multiplicity ≤ complex geometric multiplicity,
but not equal in general. This can be seen from the following example:

Example 3.2. Let m = 3 and n = 2. Consider A = (aijk) where a111 = a222 = 1,
a122 = a211 = � for 0 < � < 1, and aijk = 0 for other (ijk). Then the eigenvalue
problem becomes:

(3.2)

�
x

2
1 + �x

2
2 = λx

2
1

�x
2
1 + x

2
2 = λx

2
2.

We have λ = 1 + ε, with eigenvectors: u1 = (1, 1) and u2 = (1,−1), and λ = 1− ε

with eigenvectors: u3 = (1, i), and u4 = (1,−i).
In this example we see that

real geometric multiplicity of λ = 1 + ε = complex geometric multiplicity = 2,
and

real geometric multiplicity of λ = 1− ε is 0, and complex geometric multiplicity
is 2.

The same example also shows the nonnegative irreducible tensor A has a positive
eigenvalue 1 + ε with unique positive eigenvector (up to a multiplicative constant),
which is not geometrically simple neither in R nor in C.

Example 3.3. Let m = 4, n = 2,A = (aijkl) with a1222 = a2111 = 1 and aijkl = 0
elsewhere. Then after computation, we see there are two eigenvalues: λ = ±1, with
eigenvectors: (x,±x), (x,± exp 2πi

3 x), (x,± exp 4πi
3 x). Therefore both λ = ±1 are

all real geometrically simple, but with complex geometrical multiplicity 3.

In the following, we shall seek a sufficient condition to ensure the real geometric
simplicity of λ0.
In case m is odd, there are two different types of eigenvalue problems, which impose
the same constraints on P :

(1) Ax
m−1 = λ(xm−1

1 , . . . , x
m−1
n ),

(2) Ax
m−1 = λ(sgnx1x

m−1
1 , . . . , sgn xnx

m−1
n ).

Theorem 3.4. Let m be odd, and let A be an irreducible nonnegative tensor of
order m dimension n. If Ax

m−1 is invariant under any one of the transformations:
(x1, ..., xn) → (±x1, ...,±xn), except the identity and its reflection, then λ0 is not
geometrically simple for problem (1). If all terms in Ax

m−1 are monomials of
x

2
1, . . . , x

2
n, i.e. ai1i2···im �= 0 only if the numbers of indices appearing in {i2, . . . , im}

are all even, ∀i1, then λ0 is real geometrically simple for problem (2).

Proof. (1) Let T be the transformation, to which Ax
m−1 is invariant under. By

assumption, if x0 = (x0
1, . . . , x

0
n) ∈ intP is a solution of (1), then Tx0 is also a

solution of (1) corresponding to the same eigenvalue λ0, so λ0 is not geometrically
simple.
(2) By the assumption, Ax

m−1 ≥ 0,∀x ∈ R
n, which implies all solutions of (2)

must be in P . Using assertion (3) of Theorem 1.4, we see x = kx0, i.e. λ0 is real
geometrically simple. �
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We next examine the case when m is even. We introduce a condition on C to ensure
the associated nonlinear operator C is increasing, i.e.

(3.3) x ≤ y ⇒ Cx ≤ Cy.

Comparing with (2.2), there is no restriction: x, y ∈ P in (3.3).

Definition 3.5. (Condition (M)) A tensor C = ci1i2···im of order m > 2 dimension
n is said to satisfy Condition (M), if there exists a nonnegative matrix D = (dij)
such that ci1i2···im = di1i2δi2···im , where δi2···im is the Kronecker delta.

Remark: For m = 2, Condition (M) is trivial, hence is superfluous.
In fact, if m is even, Condition (M) on C implies

∂

∂xj
(Cx

m−1)i = (m− 1)
n�

j=1

dijx
m−2
j ≥ 0 ∀i, j,

and then Cx ≤ Cy,∀x ≤ y, ∀x, y ∈ R
n. We now state and prove the following:

Theorem 3.6. Let m be even, and let A be an irreducible nonnegative tensor. If A
satisfies Condition (M), then the eigenvalue λ0 for nonnegative eigenvector is real
geometrically simple.

Remark: To the special problem, it can, by setting y = x
[m−1], be reduced to

the problem for matrices, hence becomes a direct consequence of Perron Frobenius
Theorem. However, we present the following proof since it will be useful for more
general problems, see §5.

Proof. We follow 4◦ in the proof of Theorem 1.4. We note the only difference is
now x ∈ Rn \{0} but not P \{0}. We still have t0 = δx0(−x) such that x0− tx ∈ P

for 0 ≤ t ≤ t0, and x0 − tx /∈ P for t > t0. We want to show x0 = t0x. Suppose
not, one has (x0)i ≥ δ > 0,∀i and a nonempty proper index subset I such that
t0xi = (x0)i ∀i ∈ I and t0xi < (1− �)(x0)i ∀i /∈ I. It follows ∀i ∈ I

δ
m−1(1− (1− �)m−1)

�

j /∈I

aij···j

≤
�

j /∈I

aij···j [(x0)m−1
j − (t0xi)m−1]

≤
n�

i2,...,im=1

aii2···im [(x0)i2 · · · (x0)im − t
m−1
0 xi2 · · ·xim ] = 0,

thus aij···j = 0 ∀j /∈ I. Combining this with Condition (M), we obtain ai1i2···im =
0 ∀i1 ∈ I, ∀i2, . . . , im /∈ I, which contradicts the irreducibility of A. Therefore,
x0 = t0x, i.e. λ0 is geometrically simple as desired. �

We next define the algebraic simplicity of the eigenvalue of (3.1). We follow the ap-
proach described in Cox et al. [pp. 97 – 105] to define the characteristic polynomial
ψA(λ) of A by

ψA(λ) := Res((Ax
m−1)1 − λx

m−1
1 , . . . , (Ax

m−1)n − λx
m−1
n )),

where Res(P1, . . . , Pn) is the resultant of n homogeneous polynomials P1, . . . , Pn.
For each A, such ψA(λ) is unique up to an extraneous factor.
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Definition 3.7. Let λ be an eigenvalue of (3.1). We say λ has algebraic multiplicity
p, if λ is a root of ψA(λ) of multiplicity p. And we call λ an algebraically simple
eigenvalue, if p = 1.

To the Example 3.2, we have known that λ = 1 + � has geometric multiplicity 2
both in real or in complex fields. After computation we have

ψA(λ) = det





1− λ 0 � 0
0 1− λ 0 �

� 0 1− λ 0
0 � 0 1− λ





= (λ− 1 + �)2(λ− 1− �)2,

which shows the eigenvalue λ0 = 1 + � also has algebraic multiplicity 2.
By definition, we see

complex geometric multiplicity ≤ algebraic multiplicity,
but not equal in general, this can be seen in the next example.

Example 3.8. Let m = 4 and n = 2. Consider A = (aijkl) where a1111 = a1112 =
a2122 = a2222 = 1, and aijkl = 0 for other (ijkl). Then the eigenvalue problem
becomes: �

x
3
1 + x

2
1x2 = λx

3
1

x1x
2
2 + x

3
2 = λx

3
2.

We compute to see

ψA(λ) = det





1− λ 1 0 0 0 0
0 1− λ 1 0 0 0
0 0 1− λ 1 0 0
0 0 1 1− λ 0 0
0 0 0 1 1− λ 0
0 0 0 0 1 1− λ





= λ(λ− 2)(λ− 1)4,

which shows the eigenvalues λ = 0, 2 are all algebraically and geometrically simple,
with eigenvectors u1 = (1,−1), and u2 = (1, 1) respectively, while λ = 1 has
algebraic multiplicity 4. but has only two linearly independent eigenvectors u3 =
(1, 0) and u4 = (0, 1), so its geometric multiplicity is 2.

4. A Minimax Theorem

The following well known [3] minimax theorem for irreducible nonnegative matrices
will be extended to irreducible nonnegative tensors.

Theorem 4.1. (Collatz) Assume that A is an irreducible nonnegative n×n matrix,
then

(4.1) Minx∈int P Maxxi>0
(Ax)i

xi
= λ0 = Maxx∈int P Minxi>0

(Ax)i

xi
,

where λ0 is the unique positive eigenvalue corresponding to the positive eigenvector.

In the remainder of this section, we will prove the following
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Theorem 4.2. Assume that A is an irreducible nonnegative tensor of order m

dimension n, then

(4.2) Minx∈int P Maxxi>0
(Ax

m−1)i

x
m−1
i

= λ0 = Maxx∈int P Minxi>0
(Ax

m−1)i

x
m−1
i

,

where λ0 is the unique positive eigenvalue corresponding to the positive eigenvector.

Before we proceed with the proof of Theorem 4.2, we first define the following two
functions on P \ {0}:

µ∗(x) = Minxi>0
(Ax

m−1)i

x
m−1
i

and µ
∗(x) = Maxxi>0

(Ax
m−1)i

x
m−1
i

.

Clearly, µ∗(x) ≤ µ
∗(x).

Note µ
∗(x) may be +∞ on the boundary ∂P \ {0}.

Since both µ∗(x) and µ
∗(x) are positive 0-homogeneous functions, we can restrict

them on the compact set

∆ = {(x = (x1, . . . , xn) ∈ P |
n�

i=1

xi = 1}.

Now, µ∗ is continuous and bounded from above and µ
∗ is continuous on ∆

�
intP

and is bounded from below, there exist x∗, x
∗ ∈ ∆ such that

r∗ := µ∗(x∗) = Maxx∈∆ µ∗(x) = Maxx∈P\{0} µ∗(x),
r
∗ := µ

∗(x∗) = Minx∈∆ µ∗(x) = Minx∈P\{0} µ∗(x).

Let (λ0, x0) ∈ R+ × intP be the positive eigen-pair obtained in Theorem 1.4, we
then have:

µ
∗(x∗) ≤ µ

∗(x0) = λ0 = µ∗(x0) ≤ µ∗(x∗).

Therefore,

(4.3) r
∗ ≤ λ0 ≤ r∗.

We shall prove they are indeed all equal. To do so, we modify 3◦ in the proof of
Theorem 1.4 as follows:

Lemma 4.3. Let A an irreducible nonnegative tensor of order m dimension n. If
(λ, x) and (µ, y) ∈ R+ × (P \ {0}) satisfy Ax

m−1 = λx
[m−1] and Ay

m−1 ≥ µy
[m−1]

(or respectively Ay
m−1 ≤ µy

[m−1]), then µ ≤ λ (or respectively λ ≤ µ).

Proof. We first assume Ay
m−1 ≥ µy

[m−1]. Since x ∈ intP , we have t0 = δx(−y) >

0 such that x− ty ∈ P for 0 ≤ t ≤ t0 and x− ty /∈ P for t > t0. It implies:

λx
[m−1] = Ax

m−1 ≥ t
m−1
0 Ay

m−1 ≥ t
m−1
0 µy

[m−1]
,

hence, x ≥ (µ
λ )

1
m−1 t0y, consequently, µ ≤ λ.

Next we assume Ay
m−1 ≤ µy

[m−1]. After the remark of section 2, we have y ∈ intP ,
and if we interchange the roles of x and y in the previous paragraph, then we have
λ ≤ µ. Our assertion now follows. �

We now return to the proof of Theorem 4.2:
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Proof. After (4.3), it remains to show r∗ ≤ λ0 ≤ r
∗. By the definition of µ∗(x), we

have

r∗ = µ∗(x∗) = Minxi>0
(Ax

m−1
∗ )i

(x∗)m−1
i

.

This means
Ax

m−1
∗ ≥ r∗x

[m−1]
∗ .

Likewise,
Ax

∗m−1 ≤ r
∗
x
∗[m−1]

.

Our desired inequality follows from Lemma 4.3. �

Since µ∗ is continuous on ∆ and is 0-homogeneous, we have

Corollary 4.4.

λ0 = Maxx∈P\{0} Minxi>0
(Ax

m−1)i

x
m−1
i

.

We close this section by proving assertion (4) of Theorem 1.4:

Proof. Let z ∈ Cn \{0} be a solution of Az
m−1 = λz

[m−1] for some λ ∈ C. We wish
to show |λ| ≤ λ0. Let yi = |zi| ∀i and set y = (y1, . . . , yn). Clearly, y ∈ P \ {0}.
One has

|(Az
m−1)i| = |

n�

i2,...,im=1

aii2···imzi2 · · · zim | ≤
n�

i2,...,im=1

aii2···imyi2 · · · yim = (Ay
m−1)i.

This shows

|λ|ym−1
i = |λ||zi|m−1 = |(Az

m−1)i| ≤ (Ay
m−1)i ∀i.

Applying Corollary 4.4, we have

|λ| ≤ Minyi>0
(Ay

m−1)i

y
m−1
i

≤ Maxx∈P\θ Minxi>0
(Ax

m−1)i

x
m−1
i

= λ0.

�

5. Some Extensions

There are various ways in defining eigenvalues for tensors, e.g., there are H eigen-
value, Z eigenvalue, D eigenvalue etc. see [7], [8],[9],[4]. They are unified in [1]. In
this section, we extend the above results to more general eigenvalue problems for
tensors. Let A and B be two m order n dimensional real tensors. Assume both
Ax

m−1 and Bx
m−1 are not identically zero. We say (λ, x) ∈ C × (Cn \ {0}) is

an eigen-pair (or eigenvalue and eigenvector) of A relative to B, if the n-system of
equations

(5.1) (A− λB)xm−1 = 0

possesses a solution.
The problem (1.5), which is called the H eigenvalue problem is the case, where
B = (δi1i2....im), the unit tensor.
We next introduce a few more conditions on nonnegative tensors.
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Definition 5.1. (Quasi-diagonal) A tensor C of order m dimension n is said to be
quasi-diagonal, if for all nonempty proper index subset I ⊂ {1, . . . , n}, ci1,i2,...im = 0
for i1 /∈ I and i2, . . . , im ∈ I.

Example 5.2. For m = 2, C is quasi-diagonal if and only if it is a diagonal matrix.

Example 5.3. If C = (δi1...im), where δi1···im is the Kronecker delta, then C is
quasi-diagonal.

Lemma 5.4. If a nonnegative tensor C of order m dimension n is quasi-diagonal,
then there exists M > 0 such that for all nonempty proper index subset I ⊂
{1, . . . , n}, one has Ce

I ≤Me
I , where e

I = (eI
1, . . . , e

I
n) with

e
I
i =

�
1, i ∈ I

0, i /∈ I.

Proof. Let M =
�n

i1,...,im=1 ci1···im . We verify (Ce
I)i = 0 ∀i /∈ I by computing

(C(eI)m−1)i =
n�

i2,...,im=1

cii2···ime
I
i2 · · · e

I
im

=
�

i2,...,im∈I

cii2···im = 0, ∀i /∈ I,

provided by that C is quasi-diagonal. �

Definition 5.5. (Condition (E)) A nonnegative tensor C of order m dimension n

is said to satisfy Condition (E), if there exists a homeomorphism C̃ : Rn → Rn such
that (1) C̃|P = C|P , and (2) ∀x, y ∈ P, x ≤ y implies C̃

−1
x ≤ C̃

−1
y.

For C = (δi1....im), C̃ is the identity operator, so Condition (E) is satisfied.

Example 5.6. Let m be even, and D be a positive definite matrix. If C is a m
order n dimensional tensor satisfying:

Cx
m−1 = Dx(Dx, x)

m
2 −1

,

then C satisfies (1) in the Condition (E). Indeed,

C̃
−1

y = D
−1

y(y, D
−1

y)−
m−2

2(m−1) .

Example 5.7. Let us consider the following example: let Ck : P → P be the
nonlinear operator:

Ckx =

�
x

[2k−1]|x|2(r−k)
, m = 2r

x
[2k]|x|2(r−k)

m = 2r + 1,

where 1 ≤ k ≤ r. And let Ck = (ci1,....,im) be an m order n dimensional nonnegative
tensor corresponding to Ck, for example,

�
cii2...imxi2 ...xim =

�
x

2k−1
i (x2

1 + .... + x
2
n)r−k

m = 2r,

x
2k
i (x2

1 + .... + x
2
n)r−k

m = 2r + 1

(5.2) =
�

|α|=r−k

(r − k)!
α1!....αn!

x
2α1
1 ....x

2αn
n

�
x

2k−1
i , m = 2r,

x
2k
i m = 2r + 1.
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The left hand side equals to

Σ|β|=m−1Σ(i2,...,im)∼(1β1 ,....,nβn )cii2....imx
β1
1 ....x

βn
n ,

where (1β1 , ...., n
βn) means j is repeated for βj times, ∀1 ≤ j ≤ n, and (i2, ...., im) ∼

(i�2, ...., i�m) means there exists a π ∈ Sm−1, the m− 1 permutative group, such that
π(i2, ...., im) = (i�2, ...., i�m).
(5.2) implies that

βj = 2αj + δij

�
2k − 1 m = 2r

2k m = 2r + 1.

Therefore there exists a representation Ck of Ck such that ci,i2,....,im �= 0 only if
∃l ≥ 2 such that il = i. Consequently, Ck is quasi-diagonal.
Also, Ck satisfies Condition (E). In fact, define

C̃k =

�
x

[2k−1]|x|2(r−k)
m = 2r

x
[2k]|x|2(r−k)

Sgn(x) m = 2r + 1,

where we use the notation: x
[α]

Sgn(x) = (xα
1 sgn(x1), ...., xα

nsgn(xn)). Then

(5.3) C̃
−1
k =

�
y
[ 1
2k−1 ](Σn

i=1|yi|
2

2k−1 )−
r−k
m−1 m = 2r

|y|[ 1
2k ]

Sgn(y)(Σn
i=1|yi|

1
k )−

r−k
m m = 2r + 1.

Obviously, C̃k satisfies (1) and (2) in the definition of Condition (E).

Remark: For B = C1 the problem (5.1) corresponds to Z eigenvalue, and when m

is even for B = Cm
2

it corresponds to H eigenvalue.
We have the following general result:

Theorem 5.8. Suppose that A and B are nonnegative tensors, and that B satisfies
(1) in Condition (E), then there exist λ0 ≥ 0 and a nonnegative vector x0 �= 0,
such that

(5.4) Ax
m−1
0 = λ0Bx

m−1
0 .

If further, we assume that A is irreducible and B satisfies Condition (E), and is
quasi diagonal, then x0 ∈ intP, λ0 > 0 and is the unique eigenvalue with nonnega-
tive eigenvectors. In particular, for B = Ck, the nonnegative eigenvector is unique
up to a multiplicative constant.

Proof. We are satisfied only to sketch the proof, because it is parallel to that in
section 2. Let A,B be the nonlinear operators corresponding to A,B respectively.
For the existence part, we define

F (x)i =
(B̃−1

Ax))i

Σn
j=1(B̃−1Ax)j

,

and
λ0 = (Σn

j=1(B̃
−1

Ax)j)m−1

in replacing of (2.3) and (2.4). The after argument is the same with the counter
part in section 2.
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Next we follow step 1◦ in the proof of theorem 2 to prove x0 ∈ intP by contradiction.
Suppose not, then there exists a maximal proper index subset I such that x0 ∈ FI .
From the equation:

Ax
m−1
0 = λ0Bx

m−1
0 ,

and that B is quasi diagonal, it follows Bx0 ∈ FI and then Ax0 ∈ FI . The following
arguments are the same.
In step 3◦, (2.5) is replaced by

λBx = Ax ≥ µδx(−y)m−1
By.

Since B̃
−1 is order preserving in P , and is positively 1

m−1 homogeneous, we have

λ
1

m−1 x ≥ µ
1

m−1 δx(−y)y.

Therefore µ ≤ λ. Again the rest part is the same.
As to the uniqueness of the positive eigenvector (up to a multiplicative constant),
we reduce the problem by changing variables. For x �= 0, let

ξ =

�
x|x|−

2(r−k)
m−α−1 , m = 2r

x|x|−
2(r−k)
m−α−2 , m = 2r + 1,

where α = 2k when m is even, and 2k + 1 when m is odd. The problem is then
reduced to:

Aξ = λ0ξ
[α]

.

We shall prove that the nonnegative eigenvector x0 is unique. It is proved by
contradiction. Suppose not, there exist x, y ∈ P\{0} satisfying Ax = λ0x and
Ay = λ0y. Let ξ, η are the images of x, y under the above transformation. Then
by the argument in step 4◦ of the proof in Theorem 1.4 there exists t > 0 such that
ξ = tη. This implies

x = t(
|x|
|y| )

2(r−k)
m−α−1 y,

where α = 2k or 2k + 1 if m = 2r or 2r + 1 resp.
Lastly, the minimax theorem in §4 is also extended:

Minx∈int P Maxxi>0
(Ax

m−1)i

(Ckxm−1)i
= λ0 = Maxx∈int P Minxi>0

(Ax
m−1)i

(Ckxm−1)i
.

The following steps follow the last paragraph of §4. �
Corollary 5.9. Theorem 1.3 holds for D-eigenvalue problem. Theorem 1.4 holds
for H eigenvalue problem and Z eigenvalue problem.

More generally, For Bx = x
[k]

ϕ(x), where 1 ≤ k ≤ [m
2 ] and ϕ(x) is a positively

m− k− 1 homogeneous positive polynomial, Perron Frobenius theorem also holds.
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