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PREFACE

The basic concepts of Markov chains were introduced by A. A. Markov
in 1907. Since that time Markov chain theory has been developed by
a number of leading mathematicians., It is only in very recent times
that the importance of Markov chain theory to the social and biological
sciences has become recognized. This new interest has, we believe,
produced a real need for a treatment, in English, of the basic ideas
of finite Markov chains.

By restricting our attention to finite chains, we are able to give
quite & complete treatment and in such a way that a minimum amount
of mathematical background is needed. For example, we have written
the book in such a way that it can be used in an undergraduate prob-
ability course, as well as a reference book for workers in fields out-
side of mathematics.

The restriction of this book to finite chains has made it possible to
give simple, closed-form matrix expressions for many quantities usually
given as series. It is shown that it suffices for all types of problems to
consider just two types of Markov chains, namely absorbing and ergodic
chains. A “fundamental matrix” is developed for each type of chain,
and the other interesting quantities are obtained from the fundamental
matrices by elementary matrix operations.

One of the practical advantages of this new treatment of the sub-
ject is that these elementary matrix operations can easily be programed
for a high-speed computer. The authors have developed a pair of pro-
grams for the IBM 704, one for each type of chain, which will find a
number of interesting quantities for a given process directly from the
transition matrix. These programs were invaluable in the computation
of examples and in the checking of conjectures for theorems.

A significant feature of the new approach is that it makes no use of
the theory of eigen-values. The authors found, in each case, that the
expressions in matrix form are simpler than the corresponding expres-
sions usually given in terms of eigen-values. This is presumably due
to the fact that the fundamental matrices have direct probabilistic in-
terpretations, while the eigen-values do not.

The book falls into three parts. Chapter I is a very brief summary
of prerequisites. Chapters II-VI develop the theory of Markov chains.
Chapter VII contains applications of this theory to problems in a variety
of fields. A summary of the symbols used and of the principal defi-
nitions and formulas can be found in the appendices together with page
references. Therefore, there is no index, but it is hoped that the de-
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vi PREFACE

tailed table of contents and the appendices will serve a more useful
purpose.

It was not intended that Chapter I be read as a unit. The book can
be started in Chapter II, and the reader has the option of locking up the
brief summary of any prerequ1s1te topic not familiar to hlm, when he
needs it in a later chapter.*

The book was designed so that it can be used as a text for an under-
graduate mathematics course. For this reason the preofs were carried
out by the most elementary methods possible. The bock is suitable
for a one-semester course in Markov chains and their applications.
Selections from the book (presumably from Chapters II, III, IV, and
possibly VII) could also be used as part of an upper-class course in
probability theory. For this use, exercises have been given at the end
of Chapters TI-VI.

The following system of notation has been used in the book: Num-
bers are denoted by small italic letters, matrices by capital italics, vectors
by Greek letters. Functions, sets, and other abstract objects are de-
noted by boldface letters.

The authors gratefully acknowledge support by the National Science
Foundation to the Dartmouth Mathematics Project. Many of the origi-
nal results in this book were found by the authors while working on
this project. The authors are also grateful for computing time made
available by the M.LT. and Dartmouth Computation Center for the
development of the above-mentioned programs and for the use of these
programs.

The authors wish to express their thanks to two research assistants,
P. Perkins and B. Barnes, for many valuable suggestions as well as for
their careful reading of the manusecript. Thanks are due to Mrs. M.
Andrews and Mrs. H. Hanchett for typing the manuseript.

THE AUTHORS
Hanover, New Hampshire

* A more detailed treatment of most of these topics may be found in one of the
following books: (1) Modern Mathematical Methods and Models, Volumes 1 and 2,
by the Dartmouth Writing Group, published by the Mathematical Association of
America, 1958. [Referred to as M1 (2) Introduction to Finite Mathematics, by
Kemeny, Snell, and Thompson, Prentice-Hall, 1957. [Referred to as FM.] (3)
Finite Mathematical Siructures, by Kemeny, Mirkil, Snell, and Thompson, Prentice-
Hall, 1959. [Referred to as FMS.1 For the prerequisites in probability theory, as
well as a treatment of Markov chains from a different point of view, the reader may
also wish to consult Introduction to Probability Theory and Its Applications, by W.
Feller, Wiley, 1957.



PREFACE TO THE SECOND PRINTING

‘When the authors wrote Finite Markov Chains, two fundamental
matrices N for absorbing chains and Z for ergodic chains were used
to compute the basic descriptive quantities for Markov chains. The
choice of N was natural but the choice of Z was less natural. Z was
needed to solve equations of the form (I—P)zx = f where f is known.
Since J—P does not have an inverse, ] —P was modified by adding
the matrix A, all of whose rows are the fixed probability vector a,
and the resulting inverse Z = (I —P+A4)-! was used as the funda-
mental matrix for ergodic chains. This had the disadvantage df having
to find a before computing Z.

With the development of pseudo-inverses, it was pointed out by
C. D. Meyer* that pseudo-inverses could be used to find basic
quantities for ergodic Markov chains, including the fixed vector a.
Independently, while teaching Markov chains, Kemeny noticed that
it was not necessary to use 4 and that 4 could be replaced by any
matrix B all of whose rows are the same vector 8 whose components
sum to 1. The resulting matrix Z = (I— P+ B) serves in many ways
the same role as the fundamental matrix used in the book. (Actually,
it is sufficient to assume that the sum of the components of 8 is
non-zero.) The fixed vector « is obtained from such a Z by a = gZ
and certain other basic quantities for ergodic chains, such as the mean
first passage times, have the same formula as in the book. In any
event, the fundamental matrix used in the book is easily obtained
from any matrix in this new class. Kemeny further showed that these
results are special cases of a more general theorem in linear algebra.

We have included Kemeny's paper as an appendix to enable the

readers to benefit from the simplification resulting from the use of
this more general class of fundamental matrices.

* Carl D. Meyer, ‘‘The role of the group generalized inverse in the theory of
finite Markov chains®, SIAM Rev. 17 :443-464, 1975.
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CHAPTER 1

PREREQUISITES

§1.1 Sets. By a set a mathematician means an arbitrary but well-
defined collection of objects. Sets will be denoted by bold capital
letters. The objects in the collection are called elements.

If A is a set, and B is a set, whose elements are some (but not neces-
sarily all) of the elements of A, then we say that B is a subset of A,
symbolized as B< A. If the two sets have exactly the same elements,
then we say that they are equal, i.e. A=B. Thus A=B if and only
ifAcBand B A. IfBisasubset of A and is not equal to A, then we
say that it is a proper subset, and write B A. If A and B have no
element in common, we say that they are disjoint.

Very frequently we will deal with a given set of objects, and discuss
various subsets of it. The entire set will be called the universe, U.
A particularly interesting subset is the set with no elements, the
empty set E.

Given a set, there are a number of ways of getting new subsets from
old ones. If A and B are both subsets of U, then we define the follow-
ing operations:

(1) The complement of A, A, has as elements all the elements of U

which are not in A.
(2) The union of A and B, A U B, has as elements all the elements of
A and all the elements of B.

(3) The wntersection of A and B, A N B, has as elements all the

elements that A and B have in common.

(4) The difference of A and B, A —B has as elements all the elements

of A that are not in B.

To illustrate these operations, we will list some easily provable
relations between these sets:

- ) —~ ~

U=E AUB=ANB ANB=BnNnA
~ e — -~

A=A ANB=AUB AUE=A
A-B=ANnB AUB=BUA ANE=E
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If Ay, As, ..., A, are subsets of ‘U, and every element of U is in one
and only one set A;, then we say that A={A;, Ay, ..., A7} is a par-
tition of U.

If we wish to specify a set by listing its elements, we write the
elements inside curly brackets. Thus, for example, the set of the
first five positive integers is {1, 2, 3, 4, 5}. The set {1, 3, 5} is a proper
subset of it. The set {2}, which is also a subset of the five-element set,
is called a unit set, since it has only one element.

In the course of this book we will have to deal with both finite and
infinite sets, i.e. with sets having a finite number or an infinite number
of elements. The only infinite sets that are used repeatedly are the
set of integers {1, 2, 3, ...} and certain simple subsets of this set.

For a more detailed account of the theory of sets see FM Chapter I1
or FMS Chapter I1.t

§1.2 Statements. We are concerned with a process which will
frequently be a scientific experiment or a game of chance. There are
a number of different possible outcomes, and we will consider various
statements about the outcome.

We form the set U of all logically possible outcomes. These must
be 8o chosen that we are assured that exactly one of these will take
place. The set U is called the possibility space. If p is any statement
about the outcome, then it will (in general) be true according to some
possibilities, and false according to others. The set P of all possibilities
which would make p true is called the truth set of p. Thus to each
statement about the outcome we assign a subset of U as a truth set.
The choice of U for a given experiment is not unique. For example,
for two tosses of a coin we may analyze the possibilities as
U={HH, HT, TH, TT} or U={0H, 1H, 2H}. In the first case we give
the outcome of each toss and in the second only the number of heads
which turn up. (For a more detailed discussion of this concept see
FM Chapter IT or FMS Chapter 11.)

Given two statements p and g having the same subject matter (i.e.
the same U), we have a number of ways of forming new statements
from them. (We will assume that the statements have P and Q as
truth sets:)

(1) The statement ~p (read “not p”) is true if and only if p is false.
Hence it has P as truth set. ‘
(2) The statement p\/ q (read “p or q”) is true if either p is true or
q is true or both. Hence it has P U @ as truth set.
t FM =Kemeny, Snell, and Thompson, Introduction to Finite Mathematics, Engle-
wood Cliffs, N.J., Prentice-Hall, Inc., 1957.

FMS =Kemeny, Mirkil, Snell, and Thompson, Finite Mathematical Structures, Engle-
wood Cliffs, N.J., Prentice-Hall, Inc., 1959.
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(3) The statement p Aq (read “p and q”) is true if both p and q are
true. Henece it has P N § as truth set.

Two special kinds of statements are among the principal concerns
of logic. A statement that is true for each logically possible outcome,
that is, a statement having U as its truth set, is said to be logically
true (such a statement is sometimes called a tautology). A statement
that is false for each logically possible outcome, that is a statement
having E as its truth set, is logically false or self-contradictory.

Two statements are said to be equivalent if they have the same truth
set. That means that one is true if and only if the other is true.

The statements pi, pz2, - . . , Pr are inconsistent if the intersection of
their truth sets is empty, ie., P1 NPy N ... NPr=E. Otherwise
they are said to be consistent. If the statements are inconsistent, then
they cannot all be true. If they are consistent, then they could all be
true.

The statements pi, ps, ..., D are said to form a complete set of
alternatives if for every element of U exactly one of them is true. This
means that the intersection of any two truth sets is empty, and the
union of all the truth sets is U. Thus the truth sets of a complete set
of alternatives form a partition of U. A complete set of alternatives

provides a new way (and normally a less detailed way) of analyzing
the possible outcomes.

§ 1.3 Order relations. We will need some simple ideas from the
theory of order relations. A complete treatment of this theory will
be found in M4, Vol. II, Unit 2.+ We will take only a few concepts
from that treatment.

Let R be a relation between two objects (selected from a specified
set U). We denote by aRb the fact that a holds the relation R to b.
Some special properties of such relations are of interest to us.

1.3.1 DeriNiTION. The relation R is reflexive iof xRx holds for all
xin U.

1.3.2 DeEriNiTION. The relation R s symmetric if whenever xRy
holds, then yRx also holds, for all x, y in U.

1.3.3 DEeFINITION. The relation R is transitive if whenever
xRy AyRz holds, then xRz also holds, for all x,y, z wn U.

1.3.4 DerFINITION. A relation that is reflexive, symmetric, and
transitive 1s an equivalence relation.

The fundamental property of an equivalence relation is that it
partitions the set U. More specifically, let us suppose that R is an

t M4=DModern Mathematical Metiods and Models, by the Dartmouth Writing Group.
Mathematical Association of America, 1958.
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equivalence relation defined on U. | We put elements of U into classes
in such a manner that two elements a and b are in the same class if
aRb. It can be shown that the resulting classes are well defined and
mutually exclusive, giving us a partition of U. These classes are the
equivalence classes of R.

For example, let xRy express that “x is the same height as y,” where
U is a set of human beings. Then the resulting partition divides these
people according to their heights. Two men are in the same equiva-
lence class if and only if they are the same height.

1.3.5 DsrivitioN. A relaiton T is said to be consistent with the
equivalence relation R if, given that xRy, then if xTz holds so does
yTz, and if 2Tx holds so does zTy.

1.3.6 DerINITION. A relation that is reflexive and transitive is
known as a weak ordering relation.

A weak ordering relation can be used to order the elements of U.
Given a weak ordering T, and given any two elements a and b of U,
there are four possibilities: (1) aTb AbTa; then the two elements are
“alike” according to T. (2) aTb A~ (bTa); then a is “ahead” of b.
(3) ~(aTb) AbTa; then b is “ahead.” (4) ~(aTh) A~ (bTa); then we
are unable to compare the two objects.

For example, if xTy expresses that “I like x at least as well as y,”
then the four cases correspond to “I like them equally,” “I prefer x,”
“I prefer y,” and “I cannot choose,” respectively.

The relation of being alike acts as an equivalence relation. Indeed,
it can be shown that if T is a weak ordering, then the relation xRy that
expresses that xTy AyTx is an equivalence relation consistent with T.
Thus T serves both to classify and to order. Consistency assures us
that equivalent elements of U have the same place in the ordering.

For example, if we choose “is at least as tall” as our weak ordering,
this determines the equivalence relation “is the same height,” which is
consistent with the original relation.

1.3.7 DermvitioNn. If T is a weak ordering, then the relation
xTy AyTx is the equivalence relation determined by it.

1.3.8 DerinttioN. If T 4is a weak ordering, and the equivalence
relation determined by it is the identity relation (x=y) then T is a
partial ordering. ’

The significance of a partial ordering is that no two distinet elements
are alike according to it. One simple way of getting a partial ordering
is as follows: Let T be a weak ordering defined on U. Define a new
relation T* on the set of equivalence classes by saying that uT*v
holds if every element of u bears the relation T to every element of v.
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This is a partial ordering of the equivalence classes, and we call it the
partial ordering induced by T.

1.3.9 DerFINITION. An element a of U 45 called @ minimal element
if aTx implies xTa for all x e U. If a minimal element is unique, we
call 7t @ minimum.

We can define “maximal element” and “maximum” similarly. If
U is a finite set, then it is easily shown that for any weak ordering there
must be at least one minimal element. However, this minimal element
need not be unique. Similarly, the weak ordering must have a maxi-
mal element, but not necessarily a maximum.

§ 1.4 Communication relations. An important application of order
relations is the study of communication networks. Let us suppose
that r individuals are connected through a complex network. Each
individual can pass a message on to a subset of the individuals. This
we will call direct contact. These messages may be relayed, and
relayed again, etc. This will be inderect contact. It will not be assumed
that a member can contact himself directly. Let aTb express that the
individual a can contact b (directly or indirectly) or that a=b. It is
easy to verify that T is a weak ordering of the set of individuals. It
determines the equivalence relation xTy AyTx, which may be read as
“x and y can communicate with each other, or x=y.”

This equivalence relation may be used to classify the individuals.
Two men will be in the same equivalence class if they can communicate,
that is, if each can contact the other one. The induced partial ordering
T* has a very intuitive meaning : The relation uT*v holds if all members
of the class u can contact all members of the eclass v, but not con-
versely unless u=v. Thus the partial ordering shows us the possible
flow of information.

In particular, u is a maximal element of the partial ordering if its
members cannot be contacted by members of any other class, and u
" is a minimal element if its members cannot contact members of other
classes. Thus the maximal sets are message initiators, while the
minimal sets are terminals for messages. (See M4 Vol. II, Unit 2.)

It is interesting to study a given equivalence class. Any two
members of such a class can communicate with each other. Hence
any member can contact any other member. But how long does it
take to contact other members? As a unit of time we will take the
time needed to send a message from any one member to any member
he can contact directly. We call this one step. We will assume that
member 7 sends out a message, and we will be interested to know where
the message could possibly be after n steps.
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Let Ny be the set of n such that a message starting from member ¢
can be in member j’s hands at the end of n steps. We will first con-
sider Nj;, the possible times at which a message can return to its
originator. It is clear that if @ € Ny; and b € Ny, then a +b € Ny; after
all the message can return in a steps and can be sent out again and be
received back after b more steps. So the set N;; is closed under addition.
The following number-theoretic result will be useful. Its proof is
given at the end of the section.

1.4.1 THEOREM. A sef of positive integers that is closed under
addition contains all but a finite number of muliiples of its greatest
common divisor.

If the greatest common divisor of the elements of Nj; is designated
di, it is clear that the elements of Nj; are all multiples of d;. But
Theorem 1.4.1 tells us in addition that all sufficiently high multiples
of d; are in the set.

Since each member can contact every other member in its equiva-
lence class, the Ny are non-empty. We next prove that for ¢ and j
in the same equivalence class, d;=d;=d, and that the elements of
a given Nj; are congruent to each other modulo 4 (their difference is a
multiple of d). Suppose that ¢ € Ny;, b € Ny;, and ¢ & Ny;.

First of all, member ¢ can contact himself by sending a message to
member j and getting a message back. Hence a+c e Ny;. The mes-
sage could also go to member j, come back to member j, and then go
to member 7. This could be done in a+kd;+c steps, where k is
sufficiently large. Hence d; must be a multiple of d;. But in exactly
the same way we can prove that d; is a multiple of d;. Hence
di=d;=d.

Oragain, the message could go to member j in b steps, and then back to
member 5. Hence b+c¢ € N;;. Hence a4c¢ and b+ ¢ are both divisible
by d, and thus we see that a=b (mod d). Thus the elements of a
given Nj; are congruent to each other modulo d. We can thus intro-
duce numbers t;;, with 0<{i;<d, so that any element of Nj; is con-
gruent to i, modulo d. It is also easy to see that N;; contains all but
a finite number of the numbers ¢;; + kd.

In particular we see that #;;=0 in each case, and hence t; +4£;;=0
(mod d). Also ty; +tjm=tim (mod d). From this it is easily seen that
ti;=0 is an equivalence relation. Let us call such an equivalence
class a cyclic class.

Since ty5 + tjm =t (mod d), we see that &;; =tim if and only if 4, =0,
hence if and only if members j and m are in the same cyclic class.
Let n be any integer. If n=t;; (mod d), then the message originating
from member ¢ can only be in this one cyclic class after n steps. From
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this it immediately follows that there are exactly d cyclic classes, and
that the message moves cyclically from class to class, with cycle of
length d. It is also easily seen that after sufficient time has elapsed,
it can be in the hands of any member of the one cyclic class appropriate
for n.

While this description of an equivalence class of the communication
network holds in complete generality, the cycle degenerates when
d=1. In this case there is a single “cyclic class,” and after sufficient
time has elapsed the message can be in the hands of any member at
any time.

In particular, it is worth noting that if any member of the equivalence
class can contact himself directly, then d=1. This is immediately
seen from the fact that d is a divisor of any time in which a member
can contact himself, and here d has to divide 1. "

The number-theoretic result, § 1.4.1, is of such interest that its
proof will be given here.

First, of all we note that if the greatest common divisor d of the set
_ is not 1, then we can divide all elements by d, and reduce the problem
to the case d=1. Hence it suffices to treat this case. Here we have
a set of numbers whose greatest common divisor is 1, and we must
have a finite subset with this property. Hence, by a well-known
result, there is a linear combination, ainy+agna+ - - - +agng of the
elements (with positive or negative integers a;) which is equal to 1.
If we collect all the positive and all the negative terms separately,
and remember that the set is closed under addition, we note that there
must be elements m and » in the set, such that m—mn=1 (m being the
sum of the positive terms, and —n the sum of the negative terms).
Let ¢ be any sufficiently large number, or more precisely ¢ > n(n—1).
We can write g=an+b, where a2 (n—1) and og<b<(n—1). Then
we see that g=(a—b)n + bm, and hence ¢ must be in the set.

§ 1.5 Probability measures. In making a probability analysis of an
experiment there are two basic steps. First, a set of logical possibili-
ties is chosen. This problem was discussed in § 1.2. Second a proba-
bility measure is assigned. The way that this second step is carried
out will be discussed in this section. We consider first a finite possi-
bility space. (For a more detailed discussion see FM Chapter IV or
FMS Chapter IIIL.)

1.5.1 DsriNiTioN. Let U={ay, az, ..., a,} be a set of logical possi-
bilities. A probability measure for U is obtained by assigning to each
element a; a positive number w(ay), called a weight, in such o way that
the weights assigned have sum 1. The measure of a subset A of U,
denoted by m(4), is the sum of the weights assigned to elements of A.
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1.5.2 THEOREM. A probability measure m assigned to a possibility
set U has the following properties:

(1) For any subset P of U, 0<m(P)<1.
(2) IfP and Q are disjoint subsets of U, then m(P U Q) =m(P) +m(Q).

(3) For any subsets P and @ of U, m(P U §)=m(P)+m(Q)—-
mP N Q).
(4) For any set P in U, m(P) =1 —m(P).

1.5.3 DEerINITION. Let p be a statement relative to a set U having truth
set P. The probability of p relative to the probability measure m
is defined as m(P).

In any discussion where there is a fixed probability measure we shall
refer simply to the probability of p without mentioning each time the
measure. From Theorem 1.5.2 and the relation of the connectives to
the set operations, we have the following theorem :

1.5.4 THEOREM. Let U be a set of possibilities for which a probability
measure has been assigned. The probabilities of statements determined
by this measure have the following properties:

(1) For any statement p, 0<Pr[p]<1.
2) If p and q are inconsistent then Pr{p\/ q]=Pr[p]+ Pr{q].

(3) For any two statements p and q, Pr(pV q]=Pr(p]+Pr(q]-
Prlp Aq].
(4) For any statement p, Pr[~p]=1—Pr(p].

1.5.5 ExamprLE. Given any finite set having s elements we can
determine a probability measure by assigning weight l/s to each
element of U. This measure is called the equiprobable measure. For
any set A with r elements, m(A)=r/s. For example, this is the mea-
sure which would normally be assigned to the outcomes for the roll of
a die. In this case U={1, 2, 3, 4, 5, 6} and a weight of 1/ is assigned
to each.

1.5.6 ExampLE. As an example of a situation where different
weights would be assigned consider the following: A man observes a
race between three horses a, b, and ¢. He feels that a and b have the
same chance of winning but that ¢ is twice as likely to win as a. We
take the possibility set to be U={a, b, ¢} and assign weights w(a)=1/,,
w(b)=1/4 and w(c)=1/s.

It is occasionally necessary to extend the above concepts to include
the case of an experiment with an infinite sequence of possible outcomes.
For example, consider the experiment of tossing a coin until the first



SEc. 6 PREREQUISITES 9

time that a lLead turns up. The possible outcomes would be
U={1,2,3,...}. The above definitions and theorems applyequally
well to this possibility set. We will have an infinite number of weights
assigned but we still must require that they have sum 1. In the
example just mentioned we would assign weights (Y2, /4, /s, ...).
These weights form a geometric progression having sum 1.

§ 1.6 Conditional probability. It often happens that a probability
measure has been assigned to a set U and then we learn that a certain
statement q relative to Uis true. With this new information we change
the possibility set to the truth set @ of . We wish to determine a
probability measure on this new set from our original measure m. We
do this by requiring that elements of @ should have the same relative
weights as they had under the original assignment of weights. This
means that our new weights must be the old weights multiplied by a
constant to give them sum 1. This constant will be the reciprocal of
the sum of the weights of all elements in @, ie. 1/m(Q). (See FM
Chapter IV or FMS Chapter IIL.)

1.6.1 DeriviTioN. Let U={ay, a3, ..., a,} be a possibility set for
which o measure has been assigned, determined by weights w(a;). Let
q be a statement relative o U (not a self-contradiction). The con-
ditional probability measure given q is a probability measure defined
on Q the truth set of q, determined by weights

w(a;)
m(Q)

1.6.2 DeriNiTION. Let p and q be two statements relative to a set
U (q not a self-contradiction). The conditional probability of p given g,
denoted by Pr[p|q] is the probability of p computed from the conditional
probability measure given g.

Wias) =

1.6.3 TureoreEM. Let p and q be two statements relative to U (q not
a self-contradiction). Asswme that a probability measure m has been
assigned to U. Then

_ Prlp Adq]

Pr(piq) = Priq]

where Pr[p Aq] and Pr[q] are found from the measure m.

1.6.4 Exampre. In Example 1.5.6 assume that the man learns
that horse b is not going to run. This causes him to consider the new
possibility space @={a, c}. The new weights which determine the

14 1/, 2.

conditional measure are w(a) :m= 1/3 and W(c) =m=
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We observe that it is still twice as likely that ¢ will win than it is that
a will win.

1.6.5 DerinitioN. Two statements p and q (neither of which is
a self-contradiction) are independent if Pr(p Aq]=Pr(p] Pr(q].

It follows from Theorem 1.6.3 that p and q are independent if and
only if Pr(p|q]="Pr(p] and Pr(q|p)=Pr{q]. Thus to say that p and q
are independent is to say that the knowledge that one is true does not
effect the probability assigned to the other.

1.6.6 ExampLe. Consider two tosses of a coin. We describe the
outcomes by U={HH, HT, TH, TT}. We assign the equiprobable
measure. Let p be the statement “a head turns up on the first toss”
and g the statement “a head turns up on the second toss.” Then
Pr(p Aq)=1/4, Pr[p]=Pr{q]=1/s. Thus p and q are independent.

§ 1.7 Functions on a possibility space. Let U={a;,a;,...,2a, bea
possibility space. Let f be a function with domain U and range
R={r;, rs, ..., r}. That is, f assigns to each element U a unique

element of R. If f assigns ry to a;, we write f(a;)=r;. We write
f=r; for the statement “the value of the function is ry.” This is a
statement relative to U, since its truth value is known when the
outcome a; is known. Hence it has a truth set which is a subset of U.
(See FMS Chapters I1, II1, or M4 Vol. II, Unit 1.)

1.7.1 DerFivition. Let f be a function with domain U and range R.
Assume that a measure has been assigned to U. For each ry in R
let w(rg)=Pr[f=rr]. The weights w(ry) determine a probability
measure on the set R, called the induced measure for f. The weights
are called the induced weights.

We shall normally indicate the induced measure by giving both the
range values and the weights in the form:

. { ST rs}
w(r), wirz), ..., w(rs)
Thus the induced weight of ry in R is the measure of the truth set
of f=r; in U.

1.7.2 Exampre. In Example 1.6.6 let f be the function which gives
the number of heads which turn up. The range of fis R={0, 1, 2}.
The Pr(f=0]=1/4, Prif=1]=1/5, and Pr[f=2]=1/,. Hence the range
and induced measure is:

. {0 1 2}.
1/, 1/, 1/4
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1.7.3 DerFINITION. Let U be a possibility space, and £ and g be two
SJunctions with domain U, each having as range a set of numbers. The
Sfunction f+g is the function with domain U which assigns to a; the
number £(a;)+g(a;). The function £-g is the function with domain U
which assigns to a; the number £(ay) -g(as). For any number c the
constant function ¢ is the function which assigns the number ¢ to every
element of U.

Let U be a possibility space for which a measure has been assigned.
Then if f and g are two numerical functions with domain U, f+g and
f. g will be functions with domain U, and as such have induced measures.
In general there is no simple connection between the induced measures
of these functions and the induced measure for f and g.

1.7.4 Exampre. In Example 1.6.6 let g be a function having the
value 1 if a head turns up on the first toss and 0 otherwise. Let h be
a function having the value 1 if a head turns up on the second toss
and 0 if a tail turns up. Then the range and induced measures for

g, h,g+h,and g-h are
[o 1}
il/z e

h- {0 1}
1/‘2 1/2
"0 1 2
g+h: { }
Ya Yo Y4

g-h: {0 1}.
8y 1/

1.7.5 DgerIiNITION. Let £ be a function defined on U. Let p be a
statement relative to U having truth set P. Assume that @ measure m
has been assigned to U. Let £ be the function f considered only on the
set P.  Then the tnduced measure for £ calculated from the conditional
measure given p s called the conditional induced measure for f
given p.

1.7.6 DermviTioN. Let { and g be two functions defined on a space U
for which a probability measure has been assigned. Then £ and g are
independent if, for any ry tn the range of f and s; in the range of g,
the statemenis f=ry and g=s; are independent statements.

An equivalent way to state the condition for independence of two
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functions is to say that the induced measure for one funection is not
changed by the knowledge of the value of the other.

§ 1.8 Mean and variance of a funetion. Throughout this section we
shall assume that the functions considered are functions whose range
set is a set of numbers. (A detailed discussion of the concepts intro-
duced in this section is given in FMS Chapter I, or M4 Vol. II, Unit 1.)

1.8.1 DerinITiON. Let f be a function defined on a possibility space
U={ay, as, ..., ar}, for which a measure determined by weights
w(ay) has been assigned. Then the mean value of f denoted by M(f] is

M{f] = f(ay)-wiay).
7 .
The term expected value is often used 'n place of mean value.

1.8.2 TurEOREM. Let fbe a function defined on U. _Assume that for
a probability measure m defined on U, the function f has induced

measure
£: { Ty, s, ..., l‘;}
W(rl); W(rz): cee w(rs)
Mm:qum)
3

1.8.3 ExampreE. In Example 1.6.6 let f be the number of heads
which turn up. From the definition of mean value we have
M(f] = f(HH) /4 +f(HT) - 1/4+ f{TH) - 1/4 + {(TT) - 1/4
2.1/4+1.1/4+1.1/4+0.1/4
1.

Then

It

We can also calculate the mean of f by making use of Theorem 1.8.2.
The range and induced measure for f is

f: {O, 1 2}.
g 1Yy 1Y,

Thus by Theorem 1.8.2,
M[f] = 0-3/4+ 122424 = 1.

1.8.4 DeriNtTiON. Let f be a function defined on a possibility space
U for which a measure has been assigned. Let M[f]=m be the mean of
this function. Then the variance of f, denoted by Var[f], is the mean
of the function (f—m)2. The standard deviation denoted by sd[f], is
the square root of the variance.



SEc. 8 PREREQUISITES 13

1.8.5 TueoreEM. Let f be a function having mean value m. Then
Var[f]=M[f2] —m2.

1.8.6 ExamprLE. Let f be the function in Example 1.8.3. We
found that M[f]=1. Thus

Varff] = (2= 1)21/a+ (1= D)2 3o+ (1= 1)2- 1o+ (0— 1214

1/,.

An alternative way to compute the variance is to make use of
Theorem 1.8.5. Using this result we find

M[f2] = 4-1/4+1-1/4+1.1/440-1/4 = 3/,.
Since M[f]=1, we have Var[f]=3/s~1=1/s.

o

1.8.7 TueoreEM. Letfand gbeany two functions for which means and
variances have been defined. Then

(1) M[c] = c. (4) Var[e-f] = c2-Var[f].
(2) M[f+g] = M[f]+M[g]. (5) Var[e+f] = Var(f].
(3) Mfe-f] = ¢-M[f). (6) Var[c] = 0.

If £ and g are independent functions then

(7) M[f-g] = M[f]-M[g].
(8) Var[f+g] = Var[f]+ Var[g].

1.8.8 DEerINITION. Let p be a statement relative to a possibility set U
for which a measure has been assigned. Let f be a function with
domain U. The conditional mean and variance of f given p are the
mean and variance of £ computed from the conditional measure given p.
We denote these by M[f|p) and Var([f|p].

1.8.9 THEOREM. Let py, ps, ..., Pr be a complete set of alternatives
relative to a set U. Let f be a function with domain U. Then

M(f] = 5 Mf|p;]-Prlp;].

1.8.10 TaeoreM. If fi,fs, ... ts a sequence of functions such that
for some constant c,

M[(f,—¢)2] — 0
as n—- o0, then
M[f,] — ¢
and for any €>0
Pr[{fp—c|>€]—>0
asn — oo.
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1.8.11 DernivioN. Let f1 and f5 be two functions with M[f]=a;
and sd[f;1=0b;. Then the covariance of fi and f2 is defined by

Cov[fy, fr] = M[(f1 —a1)(f2—a2)],
and the correlation of £y and f» is

COV[fl s fz]

Corr[f,, 3] = b1 bs

§ 1.9 Stochastic proecesses. In this section we shall briefly describe
the concept of a stochastic process. A more complete treatment may
be found in FM Chapter IV or FMS Chapter III1.

We wish to give a probability measure to describe an experiment
which takes place in stages. The outcome at the n-th stage is allowed
to depend on the outcomes of the previous stages. It is assumed,
however, that the probability for each possible outcome at a particular
stage is known when the outcomes of all previous stages are known.
From this knowledge we shall construct a possibility space and measure
for the over-all experiment.

We shall illustrate the construction of the possibility space and

measure by a particular example. The general procedure will be clear
from this.

1.9.1 ExampLe. We choose at random one of two coins A or B.
Coin A is a fair coin and coin B has heads on both sides. The coin
chosen is tossed. If a tail comes up a die is rolled. If a head turns up
the coin is thrown again. The first stage of the experiment is the
choice of a coin. At the second stage, a coin is tossed. At the third
stage a coin is tossed or a die is rolled, depending on the outcome of
the first two stages.

We indicate the possible outcomes of the experiment by a iree as
shown in Figure 1-1.

The possibilities for the experiment are t,=(A, H, H), to=(A, H, T),
ts=(A, T, 1), ta=(A, T, 2), etc. Each possibility may be identified
with a path through the trees. Each path is made up of line segments
called branches. In the tree we have just given, there are nine paths
each having three branches.

We know the probability for each outcome at a given stage when the
previous stages are known. For example, if outcome A occurs on the
first stage and T on the second stage, then the probability of a 1 for
the third stage is 1/s. We assign these known probabilities to the
branches and call them branch probabilities.

We next assign weights to the paths equal to the product of the
probabilities assigned to the components of the path. For example
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the path t7 corresponds to outcome A on the first stage, T on the second,
and 5 on the third. The weight assigned to this path is

g 1/ 1/g = gy,
This procedure assigns a weight to each path of the tree and the sum
of the weights assigned is 1. The set U of all paths may be considered
a suitable possibility space for the consideration of any statement
whose truth value depends on the outcome of the total experiment.
The measure assigned by the path weights is the appropriate prob-
ability measure.

t w(t) fi(t) fa(s) f3(b)

1/2 H t1 1/3 A H - H
1

V2 g 2g 4 1y A H T

/ g 1 b3 Yoa A T 1

e A 1 ) ts Yo A T 2
2 /s

\ 1/6 3 t5 1/24 A 3

T He 4 ts 1aa A T 4
s

Y2 U5 tp 1 A T 5

6 ts Y A T 6

B H H t Y B H H

Froure 1-1

The above procedure can be carried out for any experiment that
takes place in stages. We require only that there be a finite number
of possible outcomes at each stage and that we know the probabilities
for any particular outcome at the j-th stage, given the knowledge of
the outcome for the first j— 1 stages. For each j we obtain a tree Uj.
The set of paths of this tree serves as a possibility space for any state-
ment relating to the first j experiments. On this tree we assign a
measure to the set of all paths. We first assign branch probabilities.
Then the weight assigned to a path is the product of all branch proba-
bilities on the path. The tree measures are consistent in the following
sense. A statement whose truth value depends only on the first j
stages may be considered a statement relative to any tree U; for ¢>j.
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Each of these trees has its own tree measure and the probability of the
statement could be found from any one of these measures. However,
in every case the same probability would be assigned.

Assume that we have a tree for an n stage experiment. Let f; be
a function with domain the set of paths U, and value the outcome
at the j-th stage. Then the functions fy, fs, . . . , f, are called outcome
Sfunctions. The set of functions fy, fs, ..., f, is called a stochastic
process. (In Markov chain theory it is convenient to denote the first
outcome by f, instead of f;.)

In our example there are three outcome functions. We have indi-
cated in Figure 1-1 the value of each function on each path.

There is a simple connection between the branch probabilities and
the outcome functions. The branch probabilities at the first stage are,
Pl‘[fl = 1‘7;]

at the second stage
Pl‘[fg = l‘jifi = r,-]
at the third stage
Pl‘[fs = I‘k‘fz = Ty /\fl = I‘i]
ete.

In our example,
Pr(fi = A] = w(t))+ - - - +w(tg) = 1z
_ Prff; = TAf = Al

Pl'[fz = Tlfl = A] == Pr[fl — A]
_ Wlts)+ - - - +w(ts) _ e _ y
w(t)+ - - - +wits) 12
Prify = 1|f; = TAf; = A] = Prifs = 1 Afa = TAf) = A)

Prif; = TAf; = A]
w(ts) _ ey
wits)+ - +w(ts) 14 &

1.9.2 ExamprLE. We shall often deal with experiments where we
allow an arbitrary number of stages. For example, in considering
the tosses of a coin, we can envision any number of tosses. The tree
for three tosses and the path measure is shown in Fig. 1.2.

For any number of tosses we can construct a tree. It is even possible
to consider continuing the tree indefinitely to obtain a tree with
infinite paths. Our procedure for assigning a measure would not in
this case be adequate since it would assign weight 0 to every path.
We shall not, however, have to assign a measure to the infinite tree.
This is the case because the statements about the process that interest
us will depend only on a finite part of the tree, and for any finite number



Sgc. 9 PREREQUISITES 17

of stages we have a method of assigning a measure. We shall, how-
ever, consider functions whose definition requires the infinite tree.

For example, in Example 1.9.2 let the value of f be the stage at
which the first head occurs. Then f is defined for all paths with at
least one head. This is a subset of paths in the infinite tree. We shall

v w(t)
1, H o Ys
1/2 T 1
t
o, - 2 s
4 - H o 4, s
2
1/, H T 1, .
tq 1/8
1y .
e 2 H ts s
T H 1/,
1/2 T trﬁ 1/8
T e
1, H tr s
T ts s

Figure 1.2

speak of the mean value of such & function when the following con-
ditions are satisfied :

(a) There is a sequence of numerical range values ri, rp, ... such
that the truth value of the statement f=r; depends only on the

outcomes of a finite number of stages and Z Prif=r;] = 1.
i
(b) Z r;Prif=r;] < co.
J

In case (a) and (b) hold, we say that f has a mean value given by
M[f] = z i Prif = r;]
j
When f has a mean «a, we shall say that f has-a variance if (f—a)? has
a mean. If so, Var[f]=M[(f-a)?].
All properties of means and variances given in § 8 hold for these



18 FINITE MARKOV CHAINS Cuap. 1

extended mean values. In addition we shall need the following
theorem.

1.9.3 THEOREM. Let fy, fs, ... be funciions such that the range of
each f; s a subset of the same finite set of numbers. Let s=f;+fa+ -
Then if the mean of s exusts,

M[s] = ZM[fJ-].

A stochastic process for which the outcome functions all have ranges
which are subsets of a given finite set is called a finite stochastic process.
Thus Theorem 1.9.3 states that in a finite stochastic process the mean
of the sum of the functions (if this mean exists) is the sum of the means
of the functions.

§1.10 Summability of sequences and series. It may occur that for a
divergent sequence Sy, 1, 82, . . . we can form a sequence of averages
of the terms, and that this new sequence converges. In this case
we say that the original sequence is summable by means of the
averaging process. We will be concerned with only two methods of
averaging.

n—1 n
Let t,=(1/n) z s; and let up,= z (:?)kﬂ—f(l —k)ts; for some k such
i=0

=0

that 0<k<1. Each of these is an average of terms of the sequence,
with non-negative coefficients whose sum is 1. If the sequence
by, ta, . . . converges to a limit ¢, then we say that the original sequence is
Cesaro-summable to t. If the sequence uj, us, . . . converges to u, then
we say that the original sequence is Euler-summable to w.

For example, consider the sequence 1,0,1,0,1,0,.... We find
that ¢, = 15 if n is even, ¥ + Y4n if n is odd. This sequence con-
verges to 1, and hence the original sequence is Cesaro-summable
to 1/, It is easy to verify that lim u,=1/; and hence the original

sequence is also Euler-summable to 1/.. But the original sequence
diverges.

These two summability methods have the following two properties: (1) If
a sequence converges, then it is summable by each method to its limit.
(2). If a sequence is summable by both methods, the two sums must be the
same.

Summability may also be applied to a series. To say that the

@
series > ay is summable by a given method means that its sequence of
i=0
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partial sums s; = z ar is summable by that method. For example

k=0
if we apply Cesaro-summability to the partial sums, we obtain
n—1 n——-k
ta= > —— ag.
" k=zo n

§1.11 Matrices. A matrix is a rectangular array of numbers. An
7 X 8 matrix has r rows and s columns, a total of rs entries (or com-
ponents). Three special kinds of matrices will be especially important
in this book. A matrix having the same number of rows as columns
is called a square matriz. That is, a square matrix is rxr. Ifr=1,
that is, the matrix consists of a single row, then we call it a row vector.
If s=1, i.e. the matrix has a single column, we call it a colimn vector.
Matrices will be denoted by capitals and vectors by small Greek
letters.

Let the r x s matrix 4 have components ay;, and the 7' x s” matrix B
have components b;. Then we define the following operations and
relations:

(1) The matrix k4 has components ka;;. That is, a multiplication
of the matrix by a number means multiplying each component
by this number. The matrix — 4 is (—1)4.

(2) If r=r" and s=¢’, then the matrix sum 4 + B has components
ai+ by That is, addition is carried out componentwise.

38
(3) If s=7', we define the product A B to have components Z aixbj.
=1

Note that the product of an rxs and sx? matrix is an rx¢
matrix. This definition also applies to the product of a row
vector and a matrix, «4, or to a matrix times a column vector,
AB. In the former case the product of a 1xr and an rxs
matrix is a 1 x s matrix, or a row vector. If the matrix 4 is
square, the resulting row vector has the same number of
components as «. Thus a square matrix may be thought of
as a transformation of row vectors. Similarly we can think
of it as a transformation of column vectors. This will be our
principal use of the product of a vector and a matrix.

(4) We say that 4> B (or that 4 = B) if a;; > by (or ay;=by;) for all
1 and j. That is, matrix relations must hold componentwise—
for all corresponding components.

{5) Some special matrices play an important role. The » x s matrix
having all components equal to 0 is denoted by Om. The
subscripts are omitted whenever there is no danger of con-
fusion. The r xr matrix having 1’s as components ay (“on
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the main diagonal”) and 0’s elsewhere is denoted by I,. The
subscript is often omitted. The role that these matrices play
can be seen as follows. Let A4, I, and O be rx7r, let « be an
r-component row vector, and B an r-component column vector.

Then :
A+0=04+A4 =4
A+(—A)y=(-4)+4 =0

Al =IA =4
ol =«
8 =
AQ = 0A =0
08 =0
a0 = 0.

Thus the matrices O and I play somewhat the same role as the
numbers 0 and 1.

(6) In analogy to the reciprocal of a number we define the inverse
of a matrix. The r x r matrix B is said to be the inverse of the
rxr matrix 4 if AB=1. 1If such an inverse exists, it is denoted
by A-1. The inverse can be found by solving r2 simultaneous
equations. Of course, these equations may fail to have a
solution. But when they do have a solution, the solution is
unique, and we can show that A4-1=4-14=1.

The various arithmetical operations on matrices, whenever they are
defined, obey the usual laws of arithmetic. The one major exception
to this is that matrix multiplication is not commutative, i.e. that
A B need not equal BA. One important case where matrices commute
is the case of powers of a given matrix. Let A" be 4 multiplied by
itself » times. Then A»-Am=Am. A~ for every n and m. We define
Ad=1.

It is convenient to introduce row vector z, and the column vector &,
having all components equal to 1. The subsecript is again omitted
when possible. These vectors are convenient for summing vectors
or rows and columns of matrices. The product «f is a number (or
more precisely a matrix with a single entry) which is the sum of the
components of «. Similarly for n8. The product 4¢ is a column
vector whose i-th component gives the sum of the components in the
t-th row of 4 (or the i-th row sum of A). Similarly nd4 gives the
column sums of 4. We shall denote by E & square matrix with all
entries 1. Note that B =&y,
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Let us give some examples of these operations and relations.

L

1 0
2 1
2 1 0\ /4 1)
0 -1 =(
(o 1 2/ 2 -1
\1 0
(2 1\<1 (3
0 —1) 1) —1)
1 1y
0} > 0
~1 -2

(2 l)( 1 —1)2( 1 —1)(2 1)=(l O>=I
1 1/\-1 2 -1 2/\1 1 0 1
Therefore,
I -1 2 I\—1
)

For a square matrix 4 we introduce its transpose A7. The ij-th
entry of AT is the ji-th entry of 4. We also define the matrix dgq,
which agrees with 4 on the main diagonal, but is 0 elsewhere. The
matrix Asq is formed from 4 by squaring each entry. This, of course,
will not normally be the same as 42, (But D2= Dy for a diagonal
matriz D, i.e. a matrix whose only non-zero entries are on the main
diagonal.) Similarly we define ogq for a vector «.

It is often convenient to give a matrix or a vector in terms of its
components. We thus write {a;;} for the matrix whose ij component
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is ay. Similarly we write {a;} for a row-vector, and {a;} for a column
vector. The following relations will illustrate this notation.

{au}+1{bis} = {a+bus},
0 = {0},
én =& = {1},
{ais}sa = {a2},
{a}T = {a;,
3{04} = {3@;},
{a}{bs} = {aibs}.
The last example shows that the product of a column vector and a
row vector (each with » components) is a matrix (with r x r components).
This must be contrasted with the product in the reverse order, which
is a single component. For example, if « is a row vector, then «f
gives the sum of its components. However, fa gives an r x r matrix
with « for each row.

Suppose that we have a sequence of matrices A, with entries ath);;.
We will say that the series Ao+ 41+ 42+ - - - converges if each series
of entries converges, i.e. if a(®;; +atly; +a(2y;+ - - - converges for every
4 and j. And if the sum of this series of components is a;;, for each
v and j, and if 4 is the matrix with these entries as components, then
we say that A is the sum of the infinite series of matrices. In brief,

we define an infinite sum of matrices by forming the sum for each
component.

1.11.1 TueoreM. If A" tendsto O (zero matriz)as n tends to infinity,
then (I — A) has an inverse, and

Ak,

N8

(I-A)yt=I+A+A24+ 43+ ... =

k=0

[

PROOF. Consider the identity
[—A) (I+A+4%2+ ... +A771) = ] — An,

which is easily verified by multiplying out the left side. By hypothesis
we know that the right side tends to I. This matrix has determinant 1.
Hence for sufficiently large n, I — A7 must have a non-zero determinant.
But the determinant of a product of two matrices is the product of the
determinants, hence I — A4 cannot have a zero determinant. The
determinant not being equal to zero is a sufficient condition for a
matrix to have an inverse. Hence /—4 has an inverse. Since this
inverse exists, we may multiply both sides of the identity by it:

I+ A+424 - 4+ An-1 = (I -4) 1. (I—A47).
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But the right side of this new identity clearly tends to (I —A4)-t,
which completes the proof.

One can define the summability of matrix sequences and series
exactly asin § 1.10, applying the averaging method to each component
-of the matrix. Then there is a generalization of the previous theorem :
If the sequence A" is summable to O by some averaging method, then
the matrix /—4 has an inverse, and the series [ +4 +A42%+ - .. is
summable by the same method to (I —A4)-1.

1.11.2 DEerFINITION. A square matriz 4 1s posttive semi-definite if
for any column vector y, yTAy 2 0.

1.11.3 TueorEM. For any positive semi-definite matriz A there
ts a matrix B such that A = BT B,

®



CHAPTER 1I

BASIC CONCEPTS OF MARKOV CHAINS

§ 2.1 Definition of a Markov process and a Markov chain. We
recall that for a finite stochastic process we have a tree and a tree
measure and a sequence of outcome functions f,, »=0,1,2,....
The domain of f, is the tree T, and the range is the set U, of possible
outcomes for the n-th experiment. The value of £, is s; if the outcome
of the n-th experiment is s; (see § 1.9). In the following definitions,
whenever a conditional probability Pr{q|p] occurs, it is assumed that
P is not logically false. The reader may find it convenient from time
to time to refer to the summary of basic notations and quantities at
the end of the book.

A finite stochastic process is an independent process if

(I) For any statement p whose truth value depends only on the outcomes
before the n-th,

Pr{f, =s;|p] = Pr{fa=5;].

For such a process the knowledge of the outcome of any preceding
experiment does not affect our predictions for the next experiment.
For a Markov process we weaken this to allow the knowledge of the
immediate past to influence these predictions.

2.1.1 DesriniTiON. A finite Markov process is a finite stochastic
process such that

(II) For any statement p whose truth value depends only on the outcomes
before the m-st,

Pr{f,=s;|(fa-1=5:) Ap] = Pr[fp=s)|fn1=5;].

We shall refer to condition II as the Markov property. For a
Markov process, knowing the outcome of the last experiment we can
neglect any other information we have about the past in predicting
the future. It is important to realize that this is the case only if we

24
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know exactly the outcome of the last experiment. For example, if
we know only that the outcome of the last experiment was either s;
or s; then knowledge of the truth value of a statement p relating to
earlier experiments may affect our future predictions.

2.1.2 DsriNiTioN. The n-th step transition probabilities for a
Markov process, denoted by pi(n) are

pig(n) = Prify=s;|fr1=5].

2.1.3 DsriNiTION. 4 finite Markov chain is a finite Markov process
such that the tramsition probabilities pi;(n) do not depend on n. In
this case they are denoted by pi;. The elements of U are called states.

2.1.4 Derrmvition. The transition matrix for a Markov chain is the
matrix P with entries py;. The initial probability vector is the
vector mo={p;(0} = {Pr[fo=s;]}

For a Markov chain we may visualize a process which moves from
state to state. It starts in s; with probability p(®;. If at any time it
- is in state s;, then it moves on the next “step” to s; with probability pi;.
The initial probabilities are thought of as giving the probabilities for
the various possible starting states. The initial probability vector and
the transition matrix completely determine the Markov chain process,
since they are sufficient to build the entire tree measure. Thus, given
- any probability vector m¢ and any probability matrix P, there is a
unique Markov chain (except possibly for renaming the states) which
will have the 7 as initial probability vector and P as transition matrix.

In most of our discussions we will consider a fixed transition matrix
P, but we will wish to vary the initial vector #. The tree measure
assigned will depend on the initial vector = that is chosen. Hence if
P is any statement relative to the tree, or f is a function with domain
the tree, Pr(p], M(f], and Var[f] all depend on ». We indicate this by
writing Pr,[p], M,[f] and Var,[f]. The special case where = has a 1
in the ¢-th component (process is started in state s;) is denoted Pry[p],
M;[f], Var;[f].

We shall give several examples of Markov chains in the next section.
We conclude this section with a few brief remarks about the Markov
property.

It can be easily proved that the Markov property is equivalent to
the following property more symmetric with respect to time.

(II') Let p be any statement whose truth value depends only on outcomes
after the n-th expervment and q be any statement whose truth value
depends only on outcomes before the n-th experiment. Then

Pr(p Aq|fn=s;]1 = Pr{p|fa=s;] - Prlg|fn=s,].
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This condition says essentially that, given the present, the past
and future are independent of each other. This more symmetric
definition suggests in turn that a Markov process should remain a
Markov process if it is observed in reverse order. That the latter is
true is seen from the following theorem. (We shall not prove this
theorem.)

2.1.5 THEOREM. Given a Markov process let p be any statement
whose truth value depends only on experiments after the n-th experiment.
Then

Pl‘[fn=51|(fn+1=si) /\P] = Pl‘[f,,:—-‘S;‘fn-i.],‘—'S'].

Since a Markov process observed in reverse order remains a Markov
process, it might be suspected that the same is true for a Markov
chain. This would be the case if the “backward transition proba-
bilities,” p*y(n)="Pr[f, =ss|fn+1=5;], were independent of n. These
probabilities may be found as follows:

Pl‘[fn =84 /\fn+1 = S(]
* =
P*13(n) Prfuri=si]

_ Prlfasi= $1|fn =s4)- Pr{fn =s/]
Pr{fny1=s4]

_ i Prifa=s;]
Pr{fny1=s:]

These transition probabilities would be independent of n only if the
probability of being in a particular state at time » was independent of n.
This is certainly not the case in general. For example, if the system
is started in state s; with probability 1, then the probability that it is
there on the next step is p1;. Thus, in general, Pr(fy=s;]# Pr[f; =s,].
Thus a Markov chain looked at in reverse order will be a Markov
process, but in general its transition probabilities will depend on time
and hence it will not be a Markov chain. We will return to this
problem in § 5.3.

§2.2 Examples. In this section we shall give several simple
examples of Markov chains which will be used in future work for
illustrative purposes. The first five examples relate to what is normally
called a “random walk.” We imagine a particle which moves in a
straight line in unit steps. Each step is one unit to the right with
probability p or one unit to the left with probability ¢g. It moves
until it reaches one of two extreme poinvs which are called “boundary
points.” The possibilities for its behavior at these points determine
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several different kinds of Markov chains. The states are the possible
positions. We take the case of 5 states, states s; and ss being the
“boundary” states, and s, 53, s4 the “interior states.”

83 So S3 Sy4 Ss

EXAMPLE 1

Assume that if the process reaches state s; or ss it remains there
from that time on. In this case the transition matrix is given by

S; S2 S3 S4 S5

81 1 0 0 0 0
se §g 0 » 0 0
P=s3¢§ 0 ¢ 0 p O (1)
S4 0 0 g 0 »p
S5 0 0 0 0 1

EXAMPLE 2

Assume now that the particle is “reflected” when it reaches a
boundary point and returns to the point from which it came. Thus if
it ever hits s; it"goes on the next step back to s;. If it hits ss it goes
on the next step back to s4. The matrix of transition probabilities
becomes in this case

S1 01 0 0 O
ss g 0 p 0 O
P = s3 0 ¢ 0 p 0 (2)
s3 40 0 g 0 p
Ss 0 0 0 1 0

EXAMPLE 3

As a third possibility we assume that whenever the particle hits
one of the boundary states, it goes directly to the center state s;. We
may think of this as the process of Example 1 started at state sz and
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repeated each time the boundary is reached. The transition matrix is

S S2 83 S84 Ss

sy 0 0 1 0 O
s2 fg 0 » 0 0
P=s3f 0 ¢ 0 p 0 (3)
sa 40 0 ¢ 0 p
ss \0 0 1 0 O

EXAMPLE 4

Assume now that once a boundary state is reached the particle
stays at this state with probability 1/; and moves to the other boundary
state with probability !/,. In this case the transition matrix is

S 8o S3 Sg 83
Sy 1/2 0O 0 0 1/2

S q 0O p 0 O

P = s;3 g 0 p O . (4)
S4 0 0 g 0 p
ss \Y2 0 0 0 1/,

EXAMPLE 5

As the final choice for the behavior at the boundary, let us assume
that when the particle reaches one boundary it moves directly to the
other. The transition matrix is

S1 S2 83 S4 83

3 0O 0 0 0 1

So qg 0 p 0 O
P=s3§4 0 ¢ 0 p O (5)

s4 Y0 0 ¢ 0 »

S5 1 0 0 0 O

EXAMPLE 6

We next consider a modified version of the random walk. If the
process is in one of the three interior states, it has equal probability
of moving right, moving left, or staying in its present state. If it is
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on the boundary, it cannot stay, but has equal probability of moving
to any of the four other states. The transition matrix is:

81 Sz 83 S84 S8s
s1 /6 Yy Yy g 1Yy
s f s Ys Yz O 0
P=s3f 0 Y3 Yz Y3 O (6)
s A 0 0 Iz 1fy 13
ss \Ys Ya Ys Y4 O

EXAMPLE 7

A sequence of digits is generated at random. We take as states
the following: s; if a 0 occurs, sz if a 1 or 2 occurs, sgifa 3, 4, 5, or 6
oceurs, s4 if a 7 or 8 occurs, s5 if a 9 occurs.  This process is an indepen-
dent trials process, but we shall see that Markov chain theory gives
us information even about this special case. The transition matrix is

S; Sz S3 S4 S;
sy /1 2 4 2 |1
So /.1 2 4 2 1
P =s; d 2 4 2 1 (7)
S¢ d 2 4 2 1
S5 A2 4 2 1

EXAMPLE 8

According to Finite Mathematics (Chapter V, Section 8), in the Land
of Oz they never have two nice days in a row. If they have a nice day
they are just as likely to have snow as rain the next day. If they
have snow (or rain) they have an even chance of having the same the
next day. If there is a change from snow or rain, only half of the
time is this a change to a nice day. We form a three-state Markov
chain with states R, N, and 8 for rain, nice, and snow, respectively.
The transition matrix is then

R N S

R /2 e Ya
P=N |1y 0 1 (8)

) Vg Yy 1



30 FINITE MARKOV CHAINS Crap. II

In our previous examples the Markov property clearly held. In
this case it could only be regarded as an approximation since the
knowledge of the weather the last two days, for example, might lead
us to different predictions than knowing the weather only on the
previous day. One way to improve this approximation is to take as
states the weather for two successive days. The states would then be
NN, NR, NS, RN, RR, RS, SN, SR, SS. New transition probabilities
would have to be estimated. A single step would still be one day, so
that from NR, for example, we could move only to states RN, RR, RS.
In examples of this kind it is possible to improve the approximation,
still using the Markov chain theory, but at the expense of increasing
the number of states.

EXAMPLE 9

An urn contains two unpainted balls. At a sequence of times a
ball is chosen at random, painted either red or black, and put back.
If the ball was unpainted, the choice of color is made at random.
If it is painted, its color is changed. We form a Markov chain by
taking as a state three numbers (z, ¥, z) where z is the number of
unpainted balls, ¥ the number of red balls, and z the number of black
balls. The transition matrix is then

(0,1,1) (0,2,0) (0,0,2) (2,0,0) (1,1,0) (1,0,1)

(0,1,1) 0 1, /g 0 0 0
(0,2,0) 1 0 0 0 0
(0,0,2) 1 0 0 0 0 0 ) (9)
(2,0,0) 0 0 o o
(1,1,0) s 14 0 0 1/,
(1,0.1) Ya 0 /4 0 1, 0

EXAMPLE 10

Assume that a student going to a certain college has each year a
probability p of flunking out, a probability ¢ of having to repeat the
year, and a probability » of passing on to the next year. We form a
Markov chain, taking as states s;—has flunked out, s;—has graduated,
s3—is a senior, sq—is a junior, ss—is a sophomore, sg—is a freshman.



Skc. 2 BASIC CONCEPTS OF MARKOV CHAINS 31

The transition matrix is then

51 82 S3 84 S5 Sg

Sy

—

So
53 (10)
Sq

S5

Rk R o =
o © o =3

o o X a o ©
o T R o o o
~ R o o ©
R O O o © o

S¢

£

EXAMPLE 11

A man is playing two slot-machines. The first machine pays off
with probability c, the second with probability d. If he loses, he plays
the same machine again; if he wins, he switches to the other machine,
Let s; be the state of playing the ¢-th machine. The transition matrix is

S1 Sg
sy f1—¢ c
P = < . (11)
So d 1-d

As ¢ and d take on all permissible values (0<c<1, 0<d< 1) we get all
2% 2 Markov chains.

EXAMPLE 12

Consider the special two-state Markov chain (Example 11) with
- transition matrix

S1 So
p=t (1/2 1/2). (11a)
se \lg 3[4

(This can be called Example 11a.)

From this Markov chain we form a new Markov chain as follows.
A state in the new chain will be a pair of states in the old chain. That
is, the states are s;s1. S8z, S281, SgSz.  The new chain is in state s;s;
on the n-th step if the old chain was in state s; on the n-th step and s
on the (n+ 1)-th step.
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The transition matrix for the new chain (Example 12) is
S181 S182 S281 8282

$181 Uy Yz O 0

S1S3 0 0 1 4 3

P fa 3a _ 12)
S28) l/g /e 4] 0
S8 0 0 1y 34

We shall see in § 6.5 that the study of this new chain gives us more
detailed information about the original process than could be obtained
directly from the two-state chain.

§ 2.3 Connection with matrix theory. In this section we shall show
the connection between Markov chain theory and matrix theory. We
shall start with the general finite Markov process and then specialize
our results to the finite Markov chain.

2.3.1 THEOREM. Let f, be the outcome function «t time n for a fintte
Markov process with transition probabilities pij(n), then

Prif,=s,] = z Pr{fn-1=su)puc(n).

PROOF. The statement f, =s, is a statement relative to the tree T,.
To find its probability, we add the weights of all paths in its truth set.

That is, all possible paths which end in outcome s,. Thusifj, &k, ...,
is a possible sequence of states
Pr[f,=s,]
= > Prifo=s; A Afpr=sy Afa=s,).
koo u
= z Prifo=s; A\ -+ Afpor=s.]-Prlfp=s|fo=5 A - - - Afa1=84].
k.., u

By the Markov property this is
[N R
If in this last sum we keep u fixed and sum over the remaining indices
we obtain
Prifr=s,] = > Prlfo1=su]puw(n).

This completes the proof.

We can write the result of this theorem in matrix form. Let =,
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be a row vector which gives the induced measure for the outcome
function f,. That is

= {p(n)l, P, L >P(")r},

where p(®; =Pr[f,=s;]. Thus, p); is the probability that the process
will after n steps be in state s;. The vector mg is the injtial probabilities
vector. Let P(n) be the matrix with entries p;;(n). Then the result
of Theorem 2.3.1 may be written in the form

7 = 7Tp-1- P(R)
for n>1. By successive application of this result we have
7 = mo- P(1)- P(2)- ... P(n).

In the case of a Markov chain process, all the I’(n)’s are the ‘same and
we obtain the following fundamental theorem.

2.3.2 THEOREM. Let =, be the induced measure for the outcome
Sfunction £, for a finite Markov chain with tnitial probability vector mq
and transition matrix P.  Then

Ty = WO'P".

This theorem shows that the key to the study of the induced measures
for the outcome functions of a finite Markov chain is the study of the
powers of the transition matrix. The entries of these powers have
themselves an interesting probabilistic interpretation. To see this,

Path
Weights
1
1, S5—— S5 a
sS4 /g
1
54 1, 5
1
y <
) s
1
S3 y [2 sS4 1/g
2
A/e s
3 1
2
S2
e s s
1

8] —m8 5y 1/,

Frevre 2-1
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take as initial vector = the vector with 1 in the ¢-th component and
0 otherwise. Then by Theorem 3.2, mp =7 P?. But moPr is the i-th
row of the matrix P». Thus the ¢-th row of the n-th power of the
transition matrix gives the probability of being in each of the various
states under the assumption that the process started in state s;.

In Example 1, let us assume that the process starts in state sj.
Then m={0, 0, 1, 0, 0}. We can find the induced measures (see § 1.7)
for the first three outcome functions by constructing a tree and tree
measure for the first three experiments. This tree is given in Figure 2-1.

From this tree and tree measure we easily compute the induced
measures for the functions fi, f2, f3. They are

w1 = {0,1/2, 0, /3, 0}
e = {1/4’ 0, 1/2! 0, 1/4}
73 = {4, 1[4, 0, }a, 1/a}.

By Theorem 2.3.2 these induced measures should also be the third
row in the matrices P, P2, and P3, since the starting state was sj.
These matrices are

Yy 1Yy 0 14 O
Pr=f 1y, 0 1Yy 0 1,
0 Y4 0 Yg Y

0 0 0 0 1
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We thus see that these matrices furnish us several tree measures
simultaneously.

§ 2.4 Classification of states and chains. We wish to classify the
states of a Markov chain according to whether it is possible to go
from a given state to another given state. This problem is exactly
like the one treated in § 1.4. If we interpret iTj to mean that the pro-
cess can go from state s; to state s; (not necessarily in one step), then
all the results of that section are apphcable.

In particular, the states are divided into equivalence classes. Two
states are in the same equivalence class if they “communicate,” i.e. if
one can go from either state to the other one. The resulting partial
ordering shows us the possible directions in which the process can
proceed.

The minimal elements of the partial ordering are of particular
interest.

2.4.1 DEerFiniTION. The minimal elements of the partial ordering of
equivalence classes are called ergodic sets. The remaining elements
are called transient sets. The elements of a transient set are called
transient states. The elements of an ergodic set are called ergodic
(or non-transient) states.

Since every finite partial ordering must have at least one minimal
element, there must be at least one ergodic set for every Markov chain.
However, there need be no transient set. The latter will occur if the
entire chain consists of a single ergodic set, or if there are several
ergodic sets which do not communicate with others.

From the results of § 1.4 we see that if a process leaves a transient
set it can never return to this set, while if it once enters an ergodic set,
it can never leave it. In particular, if an ergodic set contains only
one element, then we have a state which once entered cannot be left.
Such a state is called absorbing. Since from such a state we cannot
go to another state, the following theorem characterizes absorbing
states.

2.4.2 TaeoreM. A states;isabsorbing if and only if pi=1.

It is convenient to use our classification to arrive at a canonical
form for the transition matrix. We renumber the states as follows:
The elements of a given equivalence class will receive consecutive
numbers. The minimal sets will come first, then sets that are one
level above the minimal sets, then sets two levels above the minimal
sets, etc. This will assure us that we can go from a given state to
another in the same class, or to a state in an earlier class, but not to
a state in a later class. If the equivalence classes arranged as here
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described are uj, us, . .., g, then our matrix will appear as follows
(where k is taken as 5, for the sake of illustration):

up: P,

ug: Rs T 0

u3: R3 Py J

uy: Ry P,

us: Rs f Py

Here the P; represent transition matrices within a given equivalence
class. The region O consists entirely of 0’s. The matrix R; will be
entirely 0 if P; is an ergodic set, but will have non-zero elements
otherwise.

In this form it is easy to see what happens as P is raised to powers.
Each power will be a matrix of the same form ; in P» we still have zeros
in the upper region, and we simply have P?; in the diagonal regions.
This shows that a given equivalence class can be studied in isolation,
by treating the submatrix P;. 'This will be considered in detail later.

We can also apply the subdivision of an equivalence class considered
in the previous chapter. We saw there that each equivalence class
can be partitioned into cyclic classes. If there is only one cyclic
class, then we say that the equivalence class is reqular, otherwise we
say that it is cyclic.

If an equivalence class is regular, then after sufficient time has
elapsed the process can be in any state of the class, no matter which
of the equivalent states it started in (see § 1.4). This means that all
sufficiently high powers of its P; must be positive (i.e. have only
positive entries). If the equivalence class is eyclic, then no power of
P; can be positive.

From this classification of states we can arrive at a classification
of Markov chains. We have noted that there must be an ergodic set,
but there need be no transient set. This will lead to our primary
subdivision. Within this we can subdivide according to the number
and type of ergodic sets.

1. Chains Without Transient Sets

If such a chain has more than one ergodic set, then there is abso-
lutely no interaction between these sets. Hence we have two or more
unrelated Markov chains lumped together. These chains may be
studied separately, and hence without loss of generality we may
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assume that the entire chain is a single ergodic set. A chain consisting
of a single ergodic set is called an ergodic chain.

I-A. The ergodic set is regular. In this case the chain is called a
regular Markov chain. As we see from previous considerations, all
sufficiently high powers of P must be positive in this case. Thus no
matter where the process starts, after sufficient lapse of time it
could be in any state.

I-B. The ergodic set is cyclic. In this case the chain is called a
cyclic Markov chain. Such a chain has a period d, and its states
are subdivided into d cyclic sets (d>1). For a given starting
position it will move through the cyclic sets in a definite order,
returning to the set of the starting state after d steps. We also
know that after sufficient time has elapsed, the process can, be in
any state of the cyclic set appropriate for the moment.

I1. Chains With Transient Sets

In such a chain the process moves towards the ergodic sets. As will
be seen in the next chapter, the probability that the process is in an
ergodic set tends to 1; and it cannot escape from an ergodic set once it
entersit. Henceit is fruitful to classify such chains by their ergodicsets.

II-A. All ergodic sets are unit sets. Such a chain is called an
absorbing charn. In this case the process is eventually trapped in a
single (absorbing) state. This type of process can also be character-
ized by the fact that all the ergodic states are absorbing states.

TI-B. Al ergodic sets are regular, but not all are unit sets.
II-C. All ergodic sets are cyclic.
II-D. There are both cyclic and regular ergodic sets.

Naturally, in each of these classes we can further classify chains:
according to how many ergodic sets there are. Of particular interest
is the question whether there are one or more ergodic sets.

We can illustrate all of these types except II-D by the random walk
examples.

For Example 1: The states s; and s; are absorbing states. The
states s», 83, 54 are transient states. It is possibie to go between any
two of these states. Hence they form a single transient set. We have
an absorbing Markov chain—that is, case II-A.

For Example 2: In this example it is possible to go from any state
to any other state. Hence there are no transient states and there is a
single ergodic set. Thus we have an ergodic chain. It is possible to
return to a state only in an even number of steps. Thus the period
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of the states is 2. The two cyclic sets are {si, ss, s5) and {ss, ss}.
This is type I-B.

For Ezample 3: Again we can go from any state to any other state.
Hence we again have an ergodic chain. It is possible to return to
state sz from sz in either two or three steps. Hence the greatest
common divisor d =1, and the period is 1. This is type I-A.

For Example 4 : In this example {s;, ss} is an ergodic set which is clearly
regular. The set {ss, 53,54} is the single transient set. Thisis type II-B.

For Example 5: Here we have a single ergodic set {s1, s5} which has
period 2. The set {ss, s3, 54} is again a transient set. This is type II-C.

§2.5 Problems to be studied. Let us consider our various types of
chains, and ask what types of problems we would like to answer in the
following chapters.

First of all we may wish to study a regular Markov chain. In such
a chain the process keeps moving through all the states, no matter
where it starts. Some of the questions of interest are:

(1) If a chain starts in s;, what is the probability after n steps that
it will be in s;?

(2) Can we predict the average number of times that the process
isins;?  And if so, how does this depend on where the process starts?

(3) We may wish to consider the process as it goes from s; to sj.
What is the mean and variance of the number of steps needed? What
are the mean and variance of the number of states passed? What is
the probability that the process passes through s;?

(4) We may wish to study a certain subset of states, and observe
the process only when it is in these states. How does this modify
our previous results? These questions are treated in Chapter 1IV.

Next we may wish to study a cyelic chain. Here the same kinds of
questions are of interest as for a regnlar chain. Naturally, a regular
chain is easier to study; and we will find that, once we have the
answers for regular chains, it is not hard to find the corresponding
answers for all ergodic chains. This extension of regular chain theory
to the theory of ergodic chains is carried out in Chapter V.

Next we may wish to consider a Markov chain with transient states.
There are two kinds of questions to be asked here. One will concern
the behavior of the chain before it enters an ergodic set, while the other
kind will apply after the chain has entered an ergodic set. The latter
questions are no different from the ones considered above. Once a
chain enters an ergodic set it can never leave it, and hence the existence
of states outside the set is irrelevant. Thus questions of the second
kind can be answered by considering a chain consisting of a single
ergodic set, i.e. an ergodic chain.
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The really new questions concern the behavior of the chain up to
the moment that it enters an ergodic set. Iowever, for these questions
the nature of the ergodic states is irrelevant, and we may make them
all into absorbing states if we wish. More generally, if we wish to
study the process while it is in a set of transient states, we may make
all other states absorbing. This modified process will serve to find all
the answers we desire. Hence the only new questions concern the
behavior of an absorbing chain.

Some of the questions that are of interest concerning a transient
state s; are:

(1) The probability of entering & given ergodic set, starting from s;.

(2) The mean and variance of the number of times that the process
is in s; before entering an ergodic set, and how this number depends on
the starting position.

(3) The mean and variance of the number of steps needed before
entering an ergodic set starting at s;.

(4) The mean number of states passed before entering an ergodic
set, starting at s;.

Chapter 1II will deal with absorbing chains, and all these questions
will be answered. Thus we will find the most interesting questions
about finite Markov chains answered in Chapters III, IV, and V.

Exercises for Chapter II

For § 2.1

1. Five points are marked on a circle. A process moves from a given
point to one of its neighbors, with probability 1/, for each neighbor. Find
_ the transition matrix of the resulting Markov chain.

2. Three tanks fight a duel. Tank A hits its target with probability 2/s,
tank B with probability !/,, and tank € with probability /5. Shots are fired
simultaneously, and once a tank is hit it is out of action. As a state we
choose the set of tanks still in action. If on each step each tank fires at its
strongest opponent, verify that the following transition matrix is correct:

E A B € AC BC ABC
E 1 06 0 0 0 0 0
A 0 1 0 0 0 0 0
B 0 1 0 0 o0 0
c 0 o 1 0 0 0
AC 2y 4y 0 1y 2g O O
BC Y 0 Y g O 1z 0

ABC 0 0 0 4 2%y 2y

—
-
©
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3. Modify the transition matrix in the previous exercise, assuming that
when all tanks are in action, A fires at B,;'B at €, and € at A.

4. We carry out a sequence of experiments as follows: At first a fair coin
is tossed. Then, if experiment »—1 comes out heads, we toss a fair coin;
if it comes out tails, we toss a coin which has probability 1/»n of coming up
heads. What are the transition probabilities? What kind of process is
this?

For § 2.2

5. Modify Example 1 by assuming that when the process reaches s; it
goes on the next step to state s;. Form the new transition matrix.

6. Modify the process described in Example 2 by assuming that when the
process reaches s; it stays there for the next two steps and on the third step
moves to state s;. Show that the resulting process is not a Markov chain
(with the five given states).

7. In Exercise 6 show that we can treat the process as a Markov chain, by
allowing a larger number of states. Write down the transition matrix.

8. Modify the transition matrix of Example 7, assuming that the digit 0 is
twice as likely to be generated than any other digit.

9. Modify Example 7, assuming that the same digit is never generated
twice in a row, but otherwise digits are equally likely to occur.

10. In Example 8 allow only two states: Nice and not nice. Show that
the process is still a Markov chain, and find its transition matrix.

For § 2.3

11. In Example 11a compute P2, P4, P8 and P16, and write the entries
as decimal fractions. Note the trend, and interpret your results.

12. Show that, no matter how Example 7 is started, the probabilities for
being in each of the states after 1 step agree with the common row for the
transition matrix. What are the probabilities after n steps?

13. Assume that Example 8 is started with initial vector mo=(%/s, /s, 2/s).
Find =y, 7. What is 7, ?

14. The weather is nice today in the Land of Oz. What kind of weather
is most likely to occur day after tomorrow?

15. In Example 11, assume that ¢=1/; and d=1/4. The man randomly
chooses the machine to play first. What is the probability that he plays the
better machine (a) on the second play, (b) on the third play, and (c) on the
fourth play?

16. In Example 2 assume that the process is started in state s3g. Construct
a tree and tree measure for the first three experiments. Use this to find the
induced measure for the first three outcome functions. Verify that your
results agree with the probabilities found from P, P2, and PS.

For §24

17. For the following Markov chain, give a complete classification of the
states and put the transition matrix in canonical form.
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Sy Sg 53 S4 S5 Sg S7
S 0

<

S2

oo

1/

0

0

0

P =sy 1/, 0
S5 0
0

[ea TN e SN e

S6

©
© O = o o o o
O = O O O = O

$? 0 /s 0

18. A Markov chain has the following transition matrix, with non-zero
entries marked by z. Give a complete classification of the states and put the
transition matrix in canonical form.

-

w
)

wn
[

Sg

7]

e
w

-~

S1
Sg
S3
S4
P = S5

S¢

O R O O O
SO 8 © © © © ©

S7

o O O
S O O O O K8 &8 O

8

S8

S OO0 OO0 O O 8 R
O B ©O O © O © 8 8
OONHOOO&O&:
OOOOHOOOO&
HOOOOHOOOg

[e=]
o

Sg @

19. Classify the following chains as ergodic or absorbing. Which of the
ergodic chains is regular?

1 1
(a) P= < lo 2 1 0 O
Yo 12 MyP=f0 1 0
s s s
0 1/2 1/2 1 0 0 0
_ 0 1 1 1
€ P={1 0 o0 @ P = s s 1/a
1 0 0 0 sz Yz 1
0 1z Y3 13
0 1 O

ey P=f0 0 1
Yo Y2 O
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20. In Example 9 classify the states. Put the transition matrix in
canonical form. What type of chain is this?

21. For an ergodic chain the i-th state is made absorbing by replacing the
t-th row in the transition matrix by a row with a 1 in the 7-th component.
Prove that the resulting chain is absorbing.

22. In Example 11, give conditions on ¢ and d so that the resulting chain
is
(a) ergodic (b) regular (¢) cyclic (d) absorbing

For the entire chapter

23. In a certain state a voter is allowed to change his party affiliation (for
primary elections) only by abstaining from the primary for one year. Let
s; indicate that a man votes Democratic, sg that he votes Republican, and s3
that he abstains, in the given year. Experience shows that a Democrat will
abstain 1/; the time in the following primary, a Republican will abstain 1/4
time, while a voter who abstained for a year is equally likely to vote for
either party in the next election. [We will refer to this as Example 13.]

(a) Find the transition matrix.

(b) Find the probability that a man who votes Democratic this year will
abstain three years from now.

(¢) Classify the states.

(d) In a given year 1/, of the population votes Democratic, 1/ Republican,
the rest abstain. What proportions do you expect in the next primary
election ?

24. A sequence of experiments is performed, in each of which two fair coins
are tossed. Let s; indicate that two heads come up, sp that a head and a tail
come up, and sz that two tails turn up. [We will refer to this as Example 14.]

(a) Find the transition matrix.

{b) If two heads turn up on a given toss, what is the probability of two

heads turning up three tosses later ?

(¢) Classify the states.



CHAPTER III

ABSORBING MARKOV CHAINS

§ 3.1 Introduction. Let us recall the basic definitions relevant to
an absorbing chain. In the classification of states, the equivalence
classes were divided into transient and ergodic sets. The former, once
left, are never again entered ; while the latter, once entered, are never
again left. If a state is the only element of an ergodic set, then it is
called an absorbing state. For such a state s; the entry p;; must be 1,
and hence all other entries in this row of the transition matrix are 0.
A chain, all of whose non-transient states are absorbing, is called an
absorbing chain. These chains will occupy us in the present chapter.

3.1.1 TareoreM. In any finite Morkov chain, no matter where the
process starts, the probability after n steps that the process ts tn an ergodic
state tends to 1 as n tends to infinity.

PROOF. If the process once reaches an ergodic state, then it can
never leave its equivalence class, and hence it will at all future steps be
in an ergodic state. Suppose that it starts in a transient state. Its
equivalence class is not minimal; hence there is a minimal element
below it. This means that it must be possible to reach some ergodic set.
Let us suppose that from any transient state it is possible to reach an
ergodicstateinnot more thannsteps. (Sincethere are only a finite num-
ber of states, n is simply the maximum of the number of steps required
fromeachstate.) Hencethereisa positive number p such that the prob-
ability of entering an ergodic state in at most » steps is at least p, from
any transient state.  Hence the probability of not reaching an ergodic
state in » steps is at most (1 —p), which isless than 1. The probability
of not reaching an ergodic state in &z steps isless than orequal to (1 —p)¥,
and this probability tendsto Oas kincreases. Hence the theorem follows.

3.1.2 CororLARY. There are numbers b>0, O<c<]l such that
Py < b-cn, for any transtent states s;, s;.
This is a direct consequence of the above proof. It shows the rate

at which p);; tends to 0.
43
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It is convenient to consider the canonical form of the matrix P in an
aggregated version. We unite all the ergodic sets, and all the tran-
sient sets. (Let us say that there are s transient states, and r—s
ergodic states.) The form then becomes

r—=s S
—h— —f—

N 0 ) r—s
P = — .
( B 1 Q@ )i

Here again the region O consists entirely of 0’s. The s x s submatrix @
concerns the process as long as it stays in transient states, the
§ x (r—s) matrix R concerns the transition from transient to ergodic
states, and the (r —s) x (r—s) matrix deals with the process after it has
reached an ergodic set. From Theorem 3.1.1 we see that the powers
of @ tend to 0. Hence as we raise P to higher and higher powers, the
matrices approach a matrix whose last s columns are all 0. This is the
matrix version of Theorem 3.1.1.

Let us now consider an absorbing chain. By its definition we see
that 8 is I —gyx(r—s), 1.6. an identity matrix of the appropriate dimension.
Thus its canonical form is '

r—8 8

I 0 r—8
Pe|—— .
S ER)

And by the nature of the powers of P we know that the region I remains
I. This corresponds to the fact that once an absorbing state is entered,
it cannot be left. From Theorem 3.1.1 we know that the probability
that such a state is entered, in an absorbing chain, tends to 1. Hence
we may say that with probability 1 the chain will enter an absorbing
state and stay there, i.e. that it will be “absorbed.” '

Let us write some of our examples from Chapter 11, § 2.2, in the new
canonical form. In Example 1 the states s; and ss are absorbing,
hence these must be written first. We thus have

S1 Sj Sz S3 84
3 1 0 0 0 0

Sy 0 1 0 0 0

P =
Sz g O 0 p» O

S3 0 0 g 0 p

ss \0O p | 0 q 0
where the regions I, O, R, and @ have been marked off.
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The matrix for Example 10 is already in canonical form in § 2.2.
The first two states are absorbing. Hence Ris 4x2 and @ is 4 x4 in
this example.

Example 9 is not an absorbing chain. It has a single ergodic set,
consisting of the first three states. The matrix appears in canonical
form in § 2.2. If we want to study this process only until it enters the
ergodic set, then we may make the ergodic states absorbing. The
resulting transition matrix is

1 0 |
0o 1 0 ! 0
0 0 / 0
P = i »
0 0 0 J 0 1y 1
Yo Ys 0 | 0 0 1
Yy 0 g | 0 1Yy 0

If we do not even care at which state the ergodic set is entered, we may
lump the three ergodic states into a single one, obtaining the much
simpler matrix

1 00 0 0

0 0 Yy 1
1, © 0 0 1Y
i 00 Yy O

The former matrix preserves ¢ and £, while it modifies §; the latter
preserves only Q. This is in good agreement with the interpretation
given for @, R, and S earlier in this section.

It should now be clear that absorbing chains serve to answer all
questions of the second type (concerning transient states) raised in
§ 2.5. But absorbing chains are also important in the study of an
ergodicset. Supposethat we wish to ask a question about what happens
as the process goes from s; to s; Then we may wish to “stop” the
process as soon as it reaches s;, which we accomplish by making s;
an absorbing state. And since s; can be reached from all states of its
equivalence class, the resulting chain will be an absorbing Markov
chain. This trick will be developed in § 6.1.

§3.2 The fundamental matrix. The following basic theorem is a
direct consequence of the matrix theorem we proved in § 1.11.1, if we
recall that @* tends to 0.
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3.2.1 THEorReM. For any absorbing Markov chain, I—@Q has an
inverse, and

(I-Q) 1 =I+Q+Q2+ - = ZQI:_
E=0
3.2.2 DeEerFiNITION. For an absorbing Markov chain we define the
fundamental matrix to be N = (I —Q)-1.

3.2.3 DeriNITION. We define n; to be the function giving the total
number of times that the process is in s;. (This is defined only for
transient state s;.)  u¥; is defined as the function that is 1 of the process
1s 1n state s; after k steps, and is O otherwise. (See §§ 1.7 and 1.8 for
the notation used in this section.)

We will now give a probabilistic interpretation to N. We let T be
the set of transient states.

3.24 TaeorREM. {My[n;]}=0N, wheres;, s; e T.

@
PROOF. It is easily seen that ny= > u¥;.
k=0

Hence

{Mi[n;]}

i i
— = —A
=
[
i
=]
NR‘
[
\__.Y_../

= { (L=p®rg) - 0+ pkdy; . 1)}
K=o

= i {p®;}

k=10

8

= Q* since s;, s; are transient
£=0

=N by3.21,3.2.2.
This completes the proof.

This theorem establishes the fact that the mean of the total number
of times the process is in a given transient state is always finite, and
that these means are simply given by N.

There is an interesting alternative proof for this result. To compute
M;[n;], we may add up the original position’s contribution, plus each
of the steps’ contribution. The original position contributes 1 if and
only if1=7. Itisconvenient to define d;;, the constant function that is
1 if i=j, 0 otherwise. Then we can say that the original position
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contributes d;;. After one step we move to sgp with probability pu.
If the new state is absorbing, it contributes nothing to our mean, but
if it is transient, then it contributes Myn;]. Hence we have

Mi[n;] = di; + Z PikMk[nJ']
speT
{Min}} = I+@Q-{Mi[n;}}.
Min)]} = I-Q) = N.

We will apply these results to the examples of the last section. In
the random walk, Example 1 of § 2.2,

i

Hence

/1 -P 0
(I—Q)=(—q I -p

0 —q 1,
and hence

Sy S3 Sa

S /p+g2 : pz
pi+qd piag?  piigl

g 1 p

_— _ -1

N ={T-Q ! = s3 PEgl pPrgE piige
g2 g q+p?

Ap2+q2 p2+q2 p2+q2

[Since p+¢g=1, and hence (p+¢)2=1, we have that 1 —2pg=p2+q2.]
We see that, for example, if the process starts in s3 (the middle state),
then it will be in the middle state an average of 1/(p2+¢?) times. This
quantity is always between 1 and 2. The minimum of 1 is achieved if
p=0or 1, the maximum of 2 if p=1/,. In the former case the process
starts at sz and goes directly to one of the boundaries, hence it will be
in state sz only at the beginning. But even in the case p=1/; we
expect the process to return only once on the average.

3.2.5 ExamprLE la. As an illustration we give the fundamental
matrix for the case p=2/3, i.e. when it is twice as likely to move to the
right as to the left.

So 83 Sa

s2 /75 85 4fs

N =353 §\3/5 85 ©/s
s 35 s

Sq
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In the college example, Example 10
p+g+r=1, we have

of §2.2, remembering that

P+ 0 0 0
—r  p+r 0 0
(I-Q) =
-7 p4r 0
0 0 -r p+r
S3 Sq S5 S¢
1
S3 0 0 0 SENIOR
p+r
7 1
s 0 0 JUNIOR
w0 prr
N=(-Qr =
] r ! L SOPHOMORE
*\ (p+r? (p+1? p+r
S r rk r 1 FRESHMAN
* \p+nt (p+r)® (p+n? p+r

The zeros in N indicate that no one is demoted in the college.

Thus,

for example, a junior cannot spend any time as a sophomore or fresh-
man in the future. As an illustration we compute N (approximately)
for the case we will call Example 10a, where the probabilities of flunking
out, repeating, and being promoted are p=.2, g=_1, r=.7, respectively.

1.11 0 0 0 SENIOR
N - .86 1.11 0 0 ‘JUNIOR
.67 .86 1.11 0 SOPHOMORE
.52 .67 .86 1.11/ FRESHMAN

In the urn example, Example 9 of § 2.2, we have

1 1, 1
(I-& =10 L =1
0 —1y 1
se /1 1 1\ (20,0
N=(-Q 1=ss{0 %5 23} (1,10
se \0 2/g 4[5 (1,0,1)



SEec. 3 ABSORBING MARXOV CHAINS 49

If the process reaches (1,1,0) or (1,0,1), then from then on it is expected
to be in that state ¢/3 times, and in the other state 2/3 times. (The 4/3
includes the original position.) From neither of these states can the
state (2,0,0) be reached, since a painted ball always remains painted.
If the process starts in (2,0,0), which is its natural starting position, it
will be in this position only once. It is expected to be in each of the
other two states once, which is the average of 4/3 and 2/3.

These fundamental matrices will be used throughout this chapter
for illustrations.

§3.3 Applications of the fundamental matrix. We will show that a
number of interesting quantities can be expressed in terms of the
fundamental matrix. These results will here be illustrated in terms of
the random walk Example la (see § 3.2.5), and all the absorbing chains
will be worked out in the next section.

3.3.1 Dervimion. We define the following new matrices and vectors:

Ny = N(2Ngg— 1)~ Ngq § X § matrix

B = NR 8 x (r—s) matrix

T = N¢ s component column vector
7o = 2N —I)1— 7 s component column vector

3.3.2 TuEOREM. QN=N@=N-I.
PROOF. From 3.2.1, 3.2.2,

N =T4+Q+Q2+ ---.
Hence,
QN = NQ = Q+Q2+@Q3+ .-+,
which is the original series without J.
3.3.3 TueoreM. {Varyn;]}=XN,, wheres;, s; € T.

PROOF. We recall that Var;{n;]=M;[n2;]—M;n;]2. From Theorem
3.2.4 we see that

{M([n;)%} = Neq,
hence we need only show that
{M{[nzj]} = N('Zng—-I).

We will assume that these means are finite. A proof of this fact will
be given at the end of this section. To compute these means we again
ask where the process can go in one step, from its starting position s;.
It can go to sy with probability p:. If the new state is absorbing, then
we can never reach sy again, and the only possible contribution is from
the initial state, which is d;;. If the new state is transient, we will be
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in s; dy; times from the original positioﬁ, and n; times from the later steps.
Hence, remembering that di; is a constant function and d;; = d2y,

{Min2]} = {s?:i Pud?+ Z DM (ny 4 dyy) ’]}

sge T

- { > pu(My[n]+ 2My[ny] - dy) +dif}

sxeT
= QMin?%1} + 2(QN)ge+1.
Hence
{Mi[n%]} = (I —Q)}(2(@N)ag+ 1)
= N(2(N —1I)gg+1I) = N(2Ngg—1I).
The matrix (QN)gg appeared above since the factor d;; has the effect
of setting all elements off the main diagonal equal to 0.

In our Example la, we have already computed &, and we now
compute N as well.

s Sls 4 49/p5 38/p5 18/a5
N =135 95 58/s Nog = | 925 835 38/s5
s 3fs s Yos  9[35 4%[as
s 0 0 s 0 0
Neg=1]0 95 0 ONe—I=|0 135 0
0 0 s 0 0 9
Se s3 sS4
63/p5 785 36/u5 Sz /Mas 2[5 29y
N(2Ngg—1I) = | 27/as 117[55 54[55 | Ny =s3 | 18/25 38/a5 18[p5
925 3%[a5 6325 sg \ 825 3035 1455

Thus we see that for any state as initial state the variance is largest for
the middle state. We also note that N is quite large compared to
Ngq; hence the means are fairly unreliable estimates for this Markov
chain. This will often be the case.

3.3.4 DeriviTioN. Let t be the function giving the number of steps

(including the original position) in which the process is in a transient

state.

If the process starts in an ergodic state, then t=0. If the process
starts in a transient state, then t gives the total number of steps needed
to reach an ergodic set. In an absorbing chain this is the time to
absorption.
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3.3.5 TmeoreMm. {Mt]}=r7, {Var{t]}=rs, where s;eT.

PROOF. It is easily seen that t= > nj.
s € T

{ > Mi[“!]}

s;eT
= N¢,

since this gives the row sums of N.

For the variance we carry out an argument similar to that in §3.3.3,
but here the first step always counts.

{M,[t2]} = {skze’i‘ Pue- i Z PuM{(t+ 1>2]}

Hence

{ML[t]}

s eT
- {2 pikmkﬁ%mkmwl}
seT
= Q{M:[t?]} + 207+ ¢
Hence
{M[t2]} = (I -@)"12@7 +¢§)
= 2NQr+ N¢
= 2(N—I)yr+7
= (2N —I)r.
Thus

(Var{t]} = (M[t2] — BL[t])2} = (2N — )7 —7eq.

In our example,

Sa 17/5
T = Nf = 83 18/5
Sg 11/5

/9";5 12y 8/
(2N~I)=K5/5 13f5 12[5

i1 !
2//5 6/5 9/5

457/55\ 289/,
(2N —I)r = | 488/, Teq = | %2455
241/, 121/,

sz /16855

!
Ty = 83 | 14/as5

S4 120/25
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We see that one expects to reach the boundary most quickly from
ss-  This is not surprising, since it is easier to reach the boundary from.
an outside state than from the middle, and it is more probable that the
process moves to the right. But we again note that the variance is
sizable.

We have computed means only for measures in which the process
starts in a given state s;. But it is easy to obtain from this the means
and variances for an arbitrary initial probability vector.

3.3.6 CoroLLarY. If 7 is the initial probability vector for an
absorbing chain, and =’ consists of the last s components of m, t.e. w’
gives the initial probabilities for the transient states, then

{M,[n;]} = »'N

{Var,[n;]} = 7' N(2Ngg—I)— (7' N)gq
{ML[t]} =='r
{Var,[t]} = #"(2N —I)t— (7'7)sq.

PROOF. This is an immediate consequence of the fact that for any
function f, M,[f]==~Mf], which follows from the nature of the tree
measure. The right sides contain =’ rather than =, since the various
means are 0 if the initial state is absorbing.

Our remaining applications will concern the question of which
absorbing state is likely to capture the process.

3.3.7 THEOREM. If bi; is the probability that the process starting in
transtent state s; ends up in absorbing state sy, then

{by} = B=NR, €T, s;eT.

PROOF. Starting in s;, the process may be captured in s; in one or
more steps. The probability of capture on a single step is py;.  If this
does not happen, the process may move either to another absorbing
state (in which case it is impossible to reach s;), or to a transient state
si. In the latter case there is probability bx; of being captured in the
right state. Hence we have

biy = py+ o Pubis,

sxeT
which can be written in matrix form as
B = R+QB.

Thus
B=({d-@)'R = NR.

An alternative proof is based on the following observation: Every
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time that the process is in transient state sg, it has probability pys of
going to s;. Hence it is possible to show that

by = > Mine]-pus.

ST
This gives directly that
B = NR.
In our example

S1 Ss
3 0 se /715 815
R=|0 o B=NBR=s3|1s s
0 2 sg \Y1s 1415

It is worth noting that for each starting state the sum of the two absorption
probabilities is 1. By Theorem 3.1.1 it will always be true that NR¢,_ =
&,. It is also easy to verify this directly.

The further to the right we start, the more probable it is, of course,
that the process will end up at the right end. It is interesting to see
that even in the leftmost transient state the probability is somewhat
greater for capture on the right.

3.3.8 CoROLLARY. If pg is the a-th column of R, i.e. ps=pis for
si in T and for fixed a, then N p, gives the probabilities of absorption in
the given absorbing state sq, for any transient state as initial state.

This corollary is useful if we are interested in a single absorbing state.

3.3.9 TuEOREM. If B* is the r x r matriz whose entry b*;; gives the
probability of being absorbed in s;, starting in s;, for all states s; and s;,
then

PB* = B*,

PROOF. Ifs;je T, then b*y=0. Hence the last s columns of B* are 0.
Consider s; absorbing. If s; € T, then b*;=10y;, as in §3.3.7. If s;is
also absorbing, then b*;=d;;. Hence we have

PB*=(;£;><;EZ)=(R:TQB{2)

But R+QB=R+QNR=R+(N—I)R=NR=B.
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Hence PB* = B*,

We thus see that the r-component column vector giving the proba-
bilities of absorption in an absorbing state s; is a fixed vector of P, and
its first r —s components are 0, except the j-th, which is 1. This deter-
mines the vector. This method of finding the absorption probabilities
is useful if we are not interested in finding N.

In our example it is easily verified that

1 0
0 1
15 and 815
1/s 4/s
s 145

are fixed vectors of P.
We will now supply the missing step for Theorem 3.3.3.

3.3.10 TueoreM. M;[n%] is finite for any absorbing chain, and any
si, s; € T.

PROOF. M;[n?;)

l
5
=

x
1M
=
Ry
S
N

i
=
o}
Ms
s
=
-
g
—=

> > Miukuy)
k=0 1=0
M.[u*;ul;] is the probability that the process is in s; both on step k and
on I, starting in s;. If we let m =min(k, 1), d=|k—1|, then this is the
probability of being in s; after m steps, and of returning d steps later.
Hence Mi[u¥;ulj] = p(m);p(@;;.

Min%] = Pimyypdy,

s

w~
[}
=]

18
8

< (b-cm)(b-c?)

=
i

[

0

i
o

¢ %> > ¢* where n = max (k)
¥=0 150

(2n+ 1)c», which is finite.

N

= b?

0

n
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§3.4 Examples
ExampLe 3.4.1 (Example 1 of §2.2 continued). In the random
walk we find :
p+g¢* p  p?

1
S| 2
g g+p?
/P+q? 1+2p p+p?
g
Nog = —=2 ___ 2 1
e (p¥+g2)?
g+q* 1+2¢ gq+p?
1+2p2 : 1+2p
1 9 4pg 9
T = — 3 TY =% s
P / * T (prgR
1+ 2g2 1+2g
pq+q* p?
1 g
pr B

\ ¢ pg+pd
In particular, if p=1/; (Example 1b), then

8a 1 Yy Sa 2 %
N = 1 2 1 Ny = 1 2 1
Yo 1 3o/ 84 2 34
3 /38 3a. Y4
=4 = |8 B=|1, 1,
3 iS 1y 34

And if p=1 (Example lc¢), then

1 1 1 3 0 1
N=}o0o 1 1 r=12 B=1{o0o 1},
0 0 1 1 0 1

and the variances are all 0.
This last case is easily interpreted if we remember that the process

in this case must move to the right.
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ExaMpLE 3.4.2 (Example 10 of.§ 2.2 continued). In the college

process we have, letting ¢ = LA
pt+r
1 ¢ 0 0
1 t 1 0 0
(p+r)l ¢tz ¢t 1 0
t3 t2 ¢t 1
q 0 0 0
1 gt +E—1t2 q 0 0
Ny = 3
(p+1)? | gtz +t2—t4  gt4t—1¢2 q 0
GEdH3—16 gtZ4e2—td gt+t—t2 g
1-—-t¢
1] 1—t2
T = -
Py 1-¢3
1—14
q(1-t)
1 ql—12)+t—2¢2 4¢3
To ==
P ppn) gl —t3) 4 t+82— 4434 ¢4 415
ql—t3) + e+ 824+23— 664405 +t6 447
1—-¢ t
1—t2 t2
B =
13 (3
1—t4 ¢4

The probability of graduating from each class depends only on the
ratio ¢t = ]—):_-—r This ratio is the conditional probability that the man

is promoted rather than flunked out, given that he leaves his present
class. Having successive powers of this ratio can be interpreted as
saying that each time he leaves his class he must be promoted rather
than flunked out, but it does not matter how long he stays in his present
class. The formulas simplify greatly if we eliminate the possibility of
having a man repeat the class, that is if ¢=0. In that case,

l=
p+r

= r, and
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1 0 0 0 0 Q 0 o
r 0 0 r—r2 0 0 0
N = Ny =
r2 r 1 0 ri—rt p—r2 0 o
3 2 o 1 r3—76 r2—pd r_p2 ¢
1 0
147 1
T = Ty = pr
1T+r+40r2 14 3r+r2
T4r+72478 143746724373 474

B is unchanged.

In the numerical Example 10a (cf. § 3.2.5) we have:

1.11
.86
.67
.52

12

No

-

.37

.37

1.11
1.98
2.65
3.17

FLUNK
ouUT

0 Q 0
111 ¢ 0 .
86 111 0 ’
.67 .86 1.11
o] 0
12 0
31 12 0
37 .31 (12
12
.43
I BT
2.22
GRADUATE
.78\ SENIOR
.60 | JUNIOR
47 SOPHOMORE
37/ FRESHMAN

Thus a student must reach the junior year before he has a better than

even chance of graduating.
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ExamrrLE 3.4.3 (Example 9 of § 2.2). In the urn example the five
vectors and matrices are:

1 1 1 0 s 2
N=10 4 2% Noy= 10 4 23
0 2/3 4s 0 2z 4s

3 2

r=|2 o= |2

2 2

se \Y2 s Y3

Since the process must leave s, immediately and cannot return, there is
0 variance for the number of times in this state. Of the remaining
variances the diagonal elements are smallest—this is due to the
stabilizing effect of having to count the original position.

The B matrix needs special interpretation in this case. Since the
states si, s», and s3 were not absorbing in the original process, the
“absorption probabilities” must be interpreted as probabilities of
entering the ergodic set at the given state. Thus, for example, if the
process starts with both balls unpainted (state s4), then there is pro-
bability 1/, that the first time both balls are painted there will be one
of each color, 1/4 that they will both be red, and !/4 that they will both
be black. It should be noted that these probabilities are the same
as if we had assigned the two balls colors independently and at
random.

§ 3.5 Extension of results. We will see that results obtained in
§ 3.3 can be applied to a wider variety of problems.

3.5.1 DerINITION. A set 8 of states 18 an open set if from every state
in S it is possible to go to a state in §.

It is easy to think of examples of open sets : A set consisting of a single
state is open (unless the state is absorbing), so is a set of transient
states, so is a proper subset of an ergodic set, etc. The following
theorem characterizes these sets.
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38.5.2 TaHEOREM. A4 setS of states vs open if and only if no ergodic set
18 a subset of 8.

PrROOF. If an ergodic set is contained in 8, then there is no escape
from this set once it is entered ; hence § is not open.

On the other hand we know that from every state we can reach an
ergodic state. And from an ergodic state we can reach all the elements
of its ergodic set. Hence if there is no ergodic set contained in 8,
then for every element of § we can find an ergodic state in § which can
be reached from the given state. Hence S is open.

3.5.3 TuEOREM. IfS is an open sei of states, and all the states in §
are made absorbing states, then the resulting Markov chain is absorbing,
and its transient states are the elements of 8.

PROOF. Since § is open, from every state of it we can reach a state
in S—which must be an absorbing state. Hence the chain is absorbing.
And since from each element of S we can reach an absorbing state, the
elements of § must all be transient states in the new process.

3.5.4 TuBOREM. Lef 8 be an open set of s states. Let @ be the
sx s submatriz of P corresponding to these states. Let pg be the s-
component column vector with components piq, where the s; are the
elements of 8 and s, € 8. Let the process start in s;.  Then:

(1) The ij-component of N = (I —Q)1 is the mean number of times
the process 18 in s; before leaving S.

(2) The tj-components of No=N(2Ngg—I)— Ngq is the variance of
the same function.

(3) The i-th component of +=N¢ is the mean number of steps needed
to leave 8.

(4) The i-th component of ty== (2N — I)r —15q is the variance of the
same function.

(8) The i-th component of N pg is the probability that the process goes
to s, when it leaves S.

PROOF. The various parts of this theorem are a direct consequence
of the corresponding results in § 3.3, due to Theorem 3.5.3.

As an application of this theorem consider the following problem.
Let ¢; and s; be any two states in a regular Markov chain. Assume
that the process is started at a third state. What is the probability
of reaching s; before s;¢ This probability may be found from
3.5.4(5) by choosing S to be the set of all states in the ergodic set except
&5 and sg.
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3.5.5 Exampre. Consider the random walk Example 6 of Chapter

II. The transition matrix is
$1 0 Yy g Y4 1,
S Ys iz Yz O O
P =53 0 13 Yz iz 0 |,
S4 0 0 13 13 13
S5 g g Yy 1y O

and since from any state we can move to any other state in two steps,
the Markov chain is regular. Hence any proper subset of the states is

open. Let S consist of the last three states.
s3 /s s O
Q=ssf|s Ys 2
ss \1s g O
21/9 12/9 4/9
N =15y 24y 8],
9y 9y 12/
252/g;  324[g; 44/,
Ny = | 270/, 360/g, 56/g,
2165, 270/g 36y
37/9 1220/81
=4 Ty = | 1114/g,
30/9 1062/81
1/
Np1 = | %
\3/q

The N matrix tells us the mean number of times that the process is in
each of the last three states, before it goes to one of the first two states.
We see that the numbers are small if the process starts in the last state.
But this is intuitively clear, since in this case it has a 1/, probability
of “escaping” on the first step. For the same reason, the mean number
of times that it is in the last state is small, no matter where the process
starts. However, from Ny we see that the former numbers have much
greater variances than the latter.
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From r we see that it takes longest to escape from s4, which has no
connection to 8. Indeed, the differences in mean number of steps to
escape can be accounted for by the number of connections the three
states have with outside states. Note that while the means differ
considerably, the variances are roughly the same.

Finally, the vector Np; gives us the “exit probabilities” for state s,
i.e. the probabilities (depending on starting state) of going to s, when
the process leaves S; or, stated otherwise, the probability of hitting s;
before hitting s;. These probabilities seem to depend very simply on
the number of steps necessary to reach s; from the starting state
(going through 8).

3.5.6 TuHEOREM. Leir;bethe function giving the number of times that
the process remains in the non-absorbing state s; once the state is eriered
(¢ncluding the entering step). Then

Mfr:] = /(I —pu), (a)
Vari[ri] = pu/(1—pu)?. (b)

And the conditional probability of the process going to s;, given that it
leaves s, 18

2/ (1 —pu). (e}

PROOF. The set whose only element is s; is an open set. We apply
Theorem 3.5.4 to this set. In this case N is a 1 x 1 matrix, and hence
identical with 7; its only component is 1/(1—py). Hence (a) is a
consequence of either (1) or (3) of Theorem 3.5.4. Similarly, No=7,,
and (b) is a consequence of either (2) or (4) of Theorem 3.5.4. We
obtain (c) from 3.5.4(5) by choosing the vector p; whose only com-
ponent is py;.  Since s; is not absorbing, pi;< 1, hence our quantities
are well defined.

One type of concept that we have not investigated as yet is illustrated
by the guestion of whether the process ever enters a given transient
state. This and related questions are taken up in Theorems 3.5.7,
3.5.8, and 3.5.9. For these theorems we will let n; be the number of
times that the process is in transient state s;, m be the total number
of transient states it will ever be in, and h;; be the probability
that the process will ever go to transient state s;, starting in transient
state s; (not counting the initial state).

3.5.7 THEOREM.
H = {hij} = (LV‘-I)ng“l.
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PROOF. .
{Mi[n;1} = {ds} + {hsyyM;[n;]}
or
{ni} = I+ {hyny}
or
N = I+ HNq,.
Hence

H = (N-I)Ng 1.
3.5.8 Tarorem. {Prn;—d;=k]}=

E—-H ifk=20
H.Hog 1[I = Hag] = (N = )Nag2(I = Nag™)#-1 if k > 0

This theorem determines the probability of going to a given transient
state exactly k£ times. The theorem is an immediate consequence of
the following consideration: To go to a given state & times one must go
there at least once, then one must return k— 1 times, and one must not
return again.

3.5.8 TucoreM.
po= {Mi[m]} = [H+(] —Hag)l¢ = NNag™¢.

PROOF. The mean number of transient states occupied is equal to
the sum of the probabilities of ever being in the various states. If the
process starts in s;, the probability of ever being in s; is Ay if 4547,
and is 1 if ¢=7.

If we apply Theorem 3.5.7 to Example 1, we obtain

g p?
1-pg P 1—-pq
g P
H={ 2 2 £
1—-pg P 1—pq
7* . g
1-pq 1-pg

We see, for example, that if ¢ =0, then all entries on and below the main
diagonal are 0. This means that if the process is sure to move to the
right, then it can never re-enter the starting state, nor can it enter a
state to the left of the starting state.

1+p2+p3
1
= — 2-—-—
Sl p ?q
T+q2+¢3
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. 3
If g = 0 the vector p= (2), which is obvious in this case since it moves
1
directly to the right boundary, passing through the intermediate states
only once.

3.5.10 TuEOREM. Themean and variance of the number of changes of
state in an absorbing chain can be calculated by setting py=0 for all
transient states, and dividing each row by its row-sum. The i-th
component of the new = gives the mean number of changes of state for the
original process. The variance of the same function is given by the
new ra.

PROOF. Assume that the Markov chain is started in a non-absorbing
state. We form a new process in which the n-th outcome function is
defined as follows: If the original chain is absorbed at state s, before
making n changes of state, then f,=s;. If not, f, is the state to which
the process moved on the n-th change of state. The new process is
clearly a Markov chain. The transition probabilities are the same as
P for s; absorbing. For s; non-absorbing

ﬁu = Pr;[ﬁ:i] =0

py =Prfhi=j1= 3 p™upy = Pu

wTh 1—pu

From this new transition matrix we can obtain the mean and variance
of the time to absorption for the process fi, fz,. ... This time repre-
sents the number of changes of state in the original chain started in
state s;.

We can also find the mean number of times that the process does not
change its state while it is among the transient states. This is found
by taking the mean number of times to reach the absorbing states and
subtracting the mean number of changes of state.

If we want to illustrate Theorem 3.5.10 by the college example,
Example 10 of § 2.2, we set pyy=0,1=3, 4, 5, 6, and renormalize :

1 0 0 0 0o o0
0 1 0 0 0 0

P = .22 .78 0 0 :
.22 0 .78 0
22 0 0 .78 0
22 ‘ 0 78 0
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1 00 0 0
78 1 0 0.
N =
61 .78 1 0
47 61 78 1
1.00 0
1.78 17
T = Ty =
2.38 .68
2.85 1.51

By comparing these results with Example 3.4.2, we note that the
mean number of steps to absorption is somewhat higher than the mean
number of changes of state (but not by much, since repetition of a
state is rare), and that the variance of the former is considerably higher
than that of the latter.

Another interesting use of conditional probabilities for absorbing
chains is the following. Assume that for an absorbing chain we start
in a non-absorbing state and compute all probabilities relative to the
hypothesis that the process ends up in a given absorbing state, say si.
Then we obtain a new absorbing chain with a single absorbing state s;.
The non-absorbing states will be as before, except that we have new
transition probabilities. We compute these as follows. Let p be the
statement “the original process is absorbed in state s;.” Then if s;
is a non-absorbing state, the transition probabilities for the new
process are

Pl‘i[fl =8; /\p] — Pri[plfl = Sj] . Pri[f1 = Sj]
Pri{p) Prip)

A b51p15
iy = T3
bi

Pri[fy =s;|p] =

This formula applies for j=1 if we interpret b;;=1. The standard

form for P may be obtained as follows. The matrix B is a column
vector with R = {zg:—;} Let Do be a diagonal matrix with diagonal
entries by1, for s; non-absorbing. Then

Q = D-1,QDo.
From this we see that

Qr = D-1QnD,
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and

b

I

D"loNDo.
B=¢ and # may be obtained from N.

ExamMPLE.

D—IO[I+Q+Q2+ e

Consider Example la, §3.2.5.

1Do

Let us consider the

process obtained by assuming that the original chain is absorbed in

state s;. Then the new matrix ¢ is
Sz Sz S4
15/, 0 ) 0 23 0 715 @ 0
6= 0 15/3 0 s 0 2[g 0 315 0 |~
0o o 1,/\o Y o/ \o0o 0 s
0 2
=17 0 %
0 1
so that
$1 Sy S3 S84
S1 1 0O O
P=52<5/7 2, 0
S3 O g 0 2y
S4 0 0 1 0
15/, 0 O\ /s s 45\ /s O 0
N = 0 153 © (3/5 3/s 83 0 35 O
0 0 15/ \Ys 35 Y/ \ O 0 1
s 18/35 4/35
=175 s 2/5)
s ®fs s
71/35
£ = {184
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Exercises for Chapter III

For § 3.1
1. Put the following matrices in the canonical form for absorbing chains.
51 Sz 83
s1 (Y3 Y3 Vs
(a) P=sf 0 1 0

sa \Ys 12 s

81 "S2 83 84
S1 1 0o 0 0
{1 0 0 0
sa\ Ys Vs Yi Ya

sS4 0O 0 0 1

(b) P =

2. Apply Theorem 3.1.1 to an absorbing chain with a single absorbing
state.

3. Apply the result of the previous exercise to an ergodic chain in which
one state has been made absorbing. (See Chapter I, Exercise 21.)

4. In Example 8 of § 2.2 make state R into an absorbing state. What
does Theorem 3.1.1, applied to the resulting absorbing chain, say about the
weather in the Land of Oz? (That is, what do we learn about the original
chain?)

For § 3.2

5. Compute the fundamental matrix for the absorbing chain with transition
matrix.

6. Compute the fundamental matrix for Example 11 of Chapter II when
¢=0, and d#0.

7. Make Example 9 of § 2.2 into an absorbing chain by making all of the
ergodic states absorbing. Find the fundamental matrix and interpret the
entries of the first row of this matrix.

8. Show that if the fundamental matrix N is given for an absorbing chain,
then N-1 exists and @=1—N-1.

9. Prove that NQ=N—1.
10. Check the results of Exercise 9, above, in Example 9 of § 2.2.
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For § 3.3

11. If an absorbing chain has only one absorbing state, what can be said
about the matrix B? In Example 8 of § 2.2 make R an absorbing state,
compute N and B, and verify your statement.

12. Change Example 7 of § 2.2 into an absorbing chain by assuming that
the process is stopped if a 0 or 9 is reached. Construct the new transition
matrix, in canonical form.

13. In the example of Exercise 12, above, compute ¥, Ng, B, 7, 2.

14. In Example 8 of § 2.2 make N into an absorbing state. Compute the
fundamental matrix for the resulting Markov chain. Find N,, B, 7, 7.
Interpret the results in terms of the original chain.

15. Compute N for the tank duel (Exercise 2 of Chapter II). From this
find the mean length of the duel and the probability of each possible ending.

16. Carry out the computations of Exercise 15, above, for the modified
tank duel (Exercise 3 of Chapter II). Which duel is more favorable to
tank A?

17. In Example 10a (of § 3.2.5) find the probabilities of graduation by the
method resulting from Theorem 3.3.9, that is, by finding a certain fixed
column vector for the transition matrix.

18. The chain of Example la (cf. § 3.2.5) is started by means of a random
device which make all five states equally likely as starting states. Find the
means and variances of the number of times in the various transient states,
and of the number of steps to absorption.

For § 3.5

19. In Example 9 of §2.2, assume that initially both balls are unpainted.
Find the mean number of draws before the first time that both balls are
painted. When this occurs, what is the probability that both balls are red !

20. It is snowing in the Land of Oz today. Find the mean number of
changes of weather that will occur before the next rainy day. Find the proba-
bility that there is at least one nice day before a rainy day.

21. For Example 1 of § 2.2 with p=1/5, assume that it is known that the
process is absorbed in state s;. Find the transition matrix for the new
conditional process. Find the mean time to absorption.

22. Compute the following quantities for the tank duel (see Exercise 2 of
Chapter II).

(a) The mean and variance of the number of rounds for which all three

tanks remain active.

(b) The probability that at some stage A and € will still be active, but B is

no longer active.

(c) The probability that at some stage A and B will still be active, but Cis

no longer active.

{d) The probability that A and B will be eliminated on the same round.

(e) P, N+ assuming that € wins the duel.

(f) P, N, #, assuming that no tank survives.
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23. In the tank duel (Exercise 2 of Chapter II) let tank A have probability
8/, of hitting, tank B probability 3/5, and tank € an unspecified probability p
(Wltvh r< 3/5).

(2) Set up the transition matrix.

(b) Find the probability that tank C is the survivor.

(¢) In the answer obtained in (b), let p tend to 0.
Interpret your result.

For the entire chapter

24. Seven boys are playing with a ball.

The first boy always throws it to the second boy.

The second boy is equally likely to throw it to the third or the seventh.

The third boy keeps the ball if he gets it.

The fourth boy always throws it to the sixth. .

The fifth boy is equally likely to throw it to the fourth, sixth, or seventh
boy.

The sixth boy always throws it to the fourth.

The seventh boy is equally likely to throw it to the first or fourth boy.

a) Set up the transition matrix P.

b) Classify the states.

¢) Put P into canonical form.

d) Give an interpretation for the chain ending up in one of the ergodic sets.

e) The ball is given to the fifth boy. Find the mean and variance of the
number of times that the seventh boy has the ball, and find the mean
and variance of the time to reach an ergodic set.

25. Given an absorbing Markov chain, we play a game as follows:

{
(
(
(
(

We start in a specified state, and carry the chain out till it reaches an absorb-
ing state. If we reach s,, we receive a payment of ¢,. Form the column
vector y whose i-th component is the mean of the payment if we start in s;.

(a) Prove that Py=qy.

(b) Prove that for absorbing state s, the a-th component of y is ¢,.

(¢} Prove that these two conditions determine y. (HixT: Consider the
limit of Pny.)

(d) Let y, be the vector giving the probabilities of absorption in sg.
Show that y can be expressed in terms of the y,.



CHAPTER 1V

REGULAR MARKOV CHAINS

§ 4.1 Basic theorems. In this section we shall study the behavior of
a regular Markov chain. We recall that a regular Markov chain is one
that has no transient sets, and has a single ergodic set with only one
cyclic class.

4.1.1 DerixitioN. The transition matriz for a regular Markov
chain is called o regular transition matrix.

4.1.2 THEOREM. A transition matriz is regular if and only if for
some N, PN has no zero entries.

It was shown in Chapter II that a Markov chain was regular if and
only if it is possible to be in any state after some number N of steps, no
matter what the starting state. That is, if and only if P¥ has no zero
entries for some N.

4.1.3 THEOREM. Let P be an r xr transition matrix having no zero
entries. Let € be the smallest entry of P. Let x be any r-component
column vector, having maximum component Mo and minimum com-
ponent mo, and let My and my be the maximum and minvmum com-
ponents for the vector Px. Then Mi< Mo, my>my, and

Mi—my < (1-2e)(Mo—myo).

PROOF. Let 2’ be the vector obtained from z by replacing all com-
ponents, except one mp component, by M, Then z<z’. Each
component of Pz’ is of the form

a-m0+(l—a)~ﬂi/0 == Jt10—~a'(Mo——mo)

where a>e. Thus each such component is < Mo— e(Mo—mp). But
since z <z, we have

M1 < ﬂfg—e(Mo—-mo). (1)
69
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If we apply this result to the vector —z we obtain
—-m1 < —-77’Z0—€(—77’L0+M0)‘ (2)
Adding (1) and (2) we have

My—m; £ ﬁfo—?’flo-—2€(ﬂ’[0—7ﬂg)
= (1'—26)(M0——7?’?/0).

This theorem gives us a simple proof of the following fundamental
theorem for regular Markov chains.

4.1.4 TureoreM. If P isa regular transition matriz then

(1) The powers Pr approach a probability matriz 4.
(ii) Each row of A is the same probability vector «={ay, az, . . . , @y},
that is A = fa.
(111) The components of « are positive.

PROOF. We shall first assume that P has no zeros. Let ¢ be the
minimum entry. Let p; be a column vector with a 1 in the j-th
component and 0O otherwise. Let M, and m, be the maximum and
minimum components of the vector Prp;. Since Prp;=P.Pr-1p;
we have, from Theoremm 4.1.3, that M;>M,>Mz> - .- and
mi<me<ma< - - - and

My—ma < (11— 26)””72-—1 —Mp—1)
forn>1. If welet d, =M, —m,, this tells us that
dp € (1—=26)"-dg = (1—26)m,

Thus as n tends to infinity d, goes to 0, M, and m, approach a common
limit, and therefore Prp; tends to a vector with all components the
same. Let a; be this common value. It is clear that, for all =,
mnp<a; <My In particular, since 0<m, and M;<1, we have that
O<ay<1. Now Pnp;is the j-th column of P». Thus the j-th column
of P» tends to a vector with all components the same valuea;. Thatis,
Pn tends to a matrix 4 with all rows the same vector e ={ay, az, . . ., a,}.
Since the row-sums of P7 are always 1, the same must be true of the
limit. This completes the proof for the case where the matrix has all
positive entries.

Consider next the case that P is only assumed to be regular. Let N
be such that P¥ has no zero entries. ILet ¢ be the smallest entry of
P~ Applying the first part of the proof to the matrix PV, we have

dey < (1—2€')F (3)

Therefore the sequence d,, which is non-increasing, has a subsequence
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tending to 0. Thus d, tends to zero and the rest of the proof is the
same as in the proof for all positive entries.

4.1.5 CororrarY. Let P be a regular transition matriz. Let
as=1lim pM™y;.  Then there are constants b and r with O<r< 1 such that

n—r-0
PPy = aj+ ey

with ]e(“)ﬂj < brm,

PROOF. We know that |e®y| <d,. Let N be such that P¥ has no
zero entries. Let € be the smallest entry of P¥.  Choose r=(1 — 2¢)1/¥
and b=1/(1—-2¢)=7r"¥ If n=kN, then from (8), ds<rr. If
n=kN+mn;, where 0<n;<N, then since d, is non-increasing,
dp<rn~mgrr-r~¥=brn. The bound here obtained for ey is useful
for proving theorems, but it is very conservative as an estimate for
the rate of convergence of p(™y;.

4.1.6 TuEorEM. If P is a regular transition mairiz and A and «
are as given in Theorem 4.1.4, then

(a) For any probability vector =, =-P» approaches the vector o as
as n tends to infinity.

(b) The vector a is the unique probability vector such that aP =«.

(¢) PA=AP=A4.

PROOF. If mis a probability vector, then n¢=1; hence n4 =nfa=e.
But 7= Pn approaches = 4. Hence it approaches «. This proves
part (a).

Since the powers of P approach 4, Ps+l= Pn. P approaches 4, but
it also approaches AP ; hence AP=4. Similarly P4 =4, proving (c).
Any one row of this matrix equation states that «P =«. We now show
that o is unique. Let B be any probability vector such that P =8.
By (a), 8- P approaches . But since P =g, BPr=8. Hence a=§4.
Thus we have proved (b).

The matrix 4 and vector « will be referred to as the limiting matrix
and limiting vector for the Markov chain determined by P.

Theorem 4.1.6 shows that for a regular transition matrix there is &
row vector « which remains “fixed” when multiplied by P. Any
other vector ¢’ such that «'P=cq’ is proportional to the probability
vector . The following theorem shows that any fixed column vector
for P is proportional to .

4.1.7 TrEOREM. If P1sa regular transition matriz and p={r} s a
column vector such that
Pp=1p

then p=c-¢ for some constant c.
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PROOF. Since Pp=p, P2p=Pp=p and in general Prp=p. Hence
also Ap=p. Thus ri=w0p. But this states that all components of p
have the same value. That is p=c¢ for some constant c.

In Chapter II we saw that if the process is started in each of the
states with probabilities given by =, then the probabilities for being in
each of the states after n steps are given by nP».  For large n Theorem
4.1.6 states that 7P~ is approximately «. Since « depends only on P
and not on =, this may be described by saying that, for a regular
Markov chain, the long range predictions are independent of the initial
vector. Let us illustrate this in terms of Example 8 of Chapter II.
The transition matrix for this example is

R N S
R /Yy g 14
N2 O 1,
S\1s Y4 1,
To find the vector «= (a1, as, as), we must find a probability vector

such that «P=«. That is, we must satisfy the following set of equa-
tions :

1 = ar+ az+ ag
ay = /sa1+1/eas+1/4a3
az = 1/aa;+1/sas
a3 = /4a1+1/sa0+ 1/ 2as.

The unique solution to these equations is
@ = (*/s,}s, *[s)-

The limit matrix 4 is then

4 2 4
A={14 2 4
4 2 4

Corollary 4.1.5 states that this limit is reached geometrically. This
being a very fast kind of convergence, we would expect that, even for
moderately large values of n, P» should be approximated by 4. The
matrix P5 is

R N S

R /.4004 .2002 .3994
Ps5 = N| .4004 .1992 .4004
S1\.3994 .2002 .4004
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Each row of P3 gives the probability of each kind of weather five days
after a particular kind of day. For example, the first row gives the
probadbilities for each kind of weather five days after a rainy day. The
fact that the rows are so nearly equal means that today’s weather in
the Land of Oz may be considered to have very little effect on our pre-
dictions for five days from now.

§4.2 Law of large numbers for regular Markov chains. As we have
seen in § 4.1, for a regular Markov chain there is a limiting probability
ay of being in state s; independent of the starting state. In this section
we shall prove that a; also represents the fraction of the time that the
process can be expected to be in state s; for a large number of steps.
This result will also be independent of the starting state.

To state the above result precisely, we shall need to introduce some
new functions. Let u(); be a function with domain the tree U, and
with value 1 if the n-th step was to state s; and 0 otherwise. We

”n
define yin, = z u®;, Then yt™; is again a function with domain
k=1

the tree U, and value the number of times (not counting the initial
position) that the process is in state s; during the first n steps. The
function v(®); =y, /n gives the fraction of times in the first n steps that
the process moves to state s;.

4.2.1 THreorREM (The Law of Large Numbers). Consider a regular
Markov chain with limiting vector a={ay, as, ...,ar). For any
inatial vector ,
M[v(m);] — ay (a)
and for any >0
Pr.[lvimy—a;] > ] —0 (b)
as n tends to infinity.
PROOF. According to Theorem 1.8.10, to prove this theorem it is
sufficient to prove that M,[(v(®; —@;)2]->0 as n tends to infinity. To
prove this it is sufficient to prove that, for every ¢, M;[(v(®); — a;)2]—0.

(2l
3o+

Let my, ;=M (u®; —a;)(uh; —a;)]. Then we must prove that

l n
AP

M (vi™; —a;)?]

I

mg,1 — O (1)

IiM:
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as n tends to infinity. Multiplying out the expression for m ; we have
mi, = My[u®;uld;]—a;Mi{u®;] - a;Mi[uh;] +a?;.
Let m=min (k, 1) and d=|k—1]. Then
Mg, = pmyp@y—a;p®y; —aphy+a?y.
Using Corollary 4.1.5, we have
M, = ag(eMyy+ ey — ey —ey;) +elmizel@y;

where |e™ | <brm with 0<r<1. Hence for a suitably chosen constant
c’

|mi,i| < e(rm+rd 47k 4ty (2)

Each value of m, d, k, and [ occurs < 2n timesin thesumin (1). Hence,
using (2), we have

22 2n 8¢

1 4c
w22 el S T T ey

The right side of this inequality tends to 0 as n tends to infinity;
hence, also the left side, as was to be proved.

Let us apply this theorem to the Land of Oz example. We found in
§4.1.5 that a=(2/s5, /5, 2/5). Thus we can now say that for a large
number of days we can expect about 2/s of the days to be rainy, /s
of the days to be nice, and 2/5 of the days to be snowy.

Consider the special case of an independent trials process. Such a
process is a Markov chain with transition matrix having all rows the
same vector « and with initial probability vector chosen to be «. The
law of large numbers for an independent trials process is thus a special
case of the theorem just proved. The proof for this case is very much
simpler. In fact, in this case M,[u(;]=a; for all n; hence also
M,[vin)]=a;. Also my,1=0 for ksl and my x =02, a constant for all k.
Hence

2
M[(vin); —a;)?] = Var[vi®,] = %

This tends to 0 as n tends to infinity.

Another special case of interest is a general Markov chain process
which is started by an initial probability vector m=«. In this case also
M.[u™;]=M,[v(®),]=a, for all n. Hence

M,[(vin); —a;)2] = Var,[vn),].

However, it is not possible, in this case, to give a simple expression for
this variance as a function of n, as was possible in the independent case.
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We shall consider this variance in § 4.6, where we shall give an
asymptotic expression for it. )

§4.3 The fundamental matrix for regular chains. In Chapter III
we found that, for an absorbing chain, the matrix (/ —¢)~! played a
fundamental role. (@ was the matrix obtained by truncating the
transition matrix to include only the non-absorbing states.) We shall
see that there is a corresponding fundamental matrix for regular chains.

4.3.1 THEOREM. Let P be the transition matriz for a regular Markov
chain. Let A be the lmiting matrix. Then Z=(I—(P-—4))!
exists and

Z =1+ (Pr—A).
n=1
PROOF. We shall prove that (P—A4d)»=P»— 4. Since Pr—A4—0,
our theorem will then follow from the matrix theorem proved in
§1.11.1. We have A2=¢afa=¢a=A, hence 4¥=4, and

(P—4Apm Z (’;)(—1)n—tPiAn—t

1=0
n—1
= Pny Z (?)(_l)nﬂA
1=
= Prn—A4.

4.3.2 DeriNITION. Let P be a regular transition matriz. The
matriz Z=(I—(P—A))"1 is called the fundamental matrix for the
Markov chain determined by P.

We shall see that the matrix Z is the basic quantity used to compute
most of the interesting descriptive quantities for the behavior of a
regular Markov chain. We shall first establish certain important
properties of the matrix which will be useful in later work.

4.3.3 TueoreM. Let Z be the fundamental matrix for a regular
Markov chain with transition matriz P, limiting vector «, and limiting
matriz A. Then

(a) PZ=2ZP
(b)y  Z&=¢
(¢) o=«

@d) I-Z = 4~ PZ.

PROOF. Part (a) follows from the infinite series representation for Z
and the fact that P commutes with each term in this infinite series.
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Part (b) states that Z has row-sums 1. This again follows from the
infinite series representation for Z since the first matrix I has row-
sums 1 and each of the matrices P»—.A4 have row-sums 0. Part (¢)
follows from the infinite series representation for Z, since ol =« and

a(Pr—A)=0. To prove (d) we multiply Z=I+ > (P»—A4) by

n=1
I — P obtaining
I-P)\Z

(I—P)+(P—A4)
=I-A4.

We shall use the Land of Oz example as our standard example of the
applications of the Z matrix. For this example P and 4 are

R N ) R N S
R /Yy Y4 14 s s s\ R
P=N{: 0 1 A=12%s s 25| N
S\Ys g Y2 s s s/ 8
To find the matrix Z we must find the inverse of the matrix
.9 —.05 .15
I-P+4 =} —~.1 12 -1

A5 —.05 .9

Doing this we obtain

86 3 —14\ R
Z =1l 6 63 6] N.
—14 3 86 S

While the fundamental matrix Z has several properties in common
with a transition matrix, we see from this example that it does not
necessarily have non-negative entries.

An example where the Z matrix turns out to be a very simple matrix
is the case of an independent trials process. In this case P =4 so that
Z=(I—(P~A4))t=1I. Thus for an independent trials -process the
Z matrix is the identity matrix.

Let §®; be the number of times that the process is in state s; in the
first n stages, i.e. the initial position plus » — 1 stages.
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4.3.4 TueorEM. For any regular Markov chain, and any initial
vector m, :

{Mw[?‘"’f]} —ne—>m{Z~4) = nZ~—a.
PROOF. For any g,

n—1 n—1
M[Fm,] = > Mfu®;] = > piy.

k=0 k=0

Thus
n—1
(MFm)—najy = > (P¥—A)— Z—A.

E=0
Therefore
m{Mi[F™;]—naj} > (2 —4) = nZ—«.
An immediate consequence of this theorem is the following:
4.3.5 CorOLLARY. For any two initial distributions = and =’
ML 7] =M F ]} — (m—7=") 2.

If we choose a particular starting state, say ¢, then Theorem 4.3.4
states that
Mi[y™;] = nay — (245 — ).

Thus we see that for large n the mean number of times in state sy,
starting at state sq, differs from na; by approximately z;—a; We recall
that by Theorem 4.2.1 the mean of the fraction of times in state sy
approaches a; independent of the starting state. Thus the entries of
(Z— 4) give us an interesting quantity for regular chains for which the
initial state does have an influence. We can compare two starting
states, since by Corollary 4.3.5

Mi[y™3] = Mul§™5] — 24y — 215
Another interesting corollary to Theorem 4.3.4 is the following.

4.3.6 CoroLLarY.  Letc = » z;. Then

> (M[F™,]— ML[F™]) — c—1

J

as n approaches infinity, independent of m.
PROOF. By Corollary 4.3.5
My[y™;] — M, [y™5] — 25y — (7 Z);.

Therefore the sum approaches

:z Z“-—7TZ§ = c—1.

L3
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This corollary has the following interpretation. For any =,
M,;[¥y™;]>M,[¥™;]. Hence M;[y");] gives the largest possible mean
number of times in s;. The corollary states that the deviations from
this maximum, summed over all states, approach a limit which is
independent of the choice of =.

§4.4 First passage times. In thissection we shall study the length of
time to go from a state s; to a state s; for the first time. We shall see that
the mean of this time is easily obtained from the fundamental matrix.

4.4.1 DerFiziTION. For a regular Markov chain, the first passage
time fi ts a function whose value is the number of steps before entering
sk for the first time after the initial position.

4.4.2 THEOREM. For any i, M;[fi] is finite.

PROOF. Assume first that i#%k. Form a new Markov chain by
making state sy into an absorbing state. The resulting Markov chain
is an absorbing Markov chain with a single absorbing state, s,. The
mean time to go from s; to s; in the given chain is the same as the mean
time before absorption in the new chain. The mean time before
absorption is finite by Theorem 3.2.4.

If :=k, then
Mi[f;] = pu+ > puMi(fi]
F=i

which is finite by the first part of the proof.

4.4.3 DEFINITION. The mean first passage matrix, denoted by M,

1s the matriz with entries my; =M[f;]."

Jt then follows from 1.8.9 that, for an initial vector =, the mean
first passage times are the components of the vector =J/.

4.4.4 TasorEm. The matriz M satisfies the equation
M = P(M—Mg)+E. (1)
PrROOF. We calculate M,[f;] by taking the mean of the conditional
means, given the outcome of the first experiment. This gives
Milfj] = > paMif]+1) + py

k%5

>, puMilfy] + 1
k#j

2, paMlfy] — puMy[£] + 1.
k

That is,
My = D pumi; — pymy + L.
4 «

This proves the theorem.

* This matrix is denoted by M in later works by the authors.
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4.45 TurorEM. Lel a={a1, as,...,as} be the limiting probability
vector for P. Thenmyu=1/a;.

prOOF. Multiplying equation (1) above by « we have
aM = «P(M — Mg} +coE
= o(M — Mag)+cE.
Therefore
algg = cE = x.
This states that a;my =1 for every 1, or my=1/a;.
4.4.6 THEOREM. Equation (1) of Theorem 4.4.4 has a wunique

solution.

PROOF. Let M and M’ be two solutions for (1). Then from the
proof of Theorem 4.4.5 we have aMag=caM'qz=7. Hence Myy=M g,
This gives

MM = P(M-M.
But this means that each column of M — M’ is a fixed column vector for
P. Hence by Theorem 4.1.7 each column is a constant vector. Since
M~ M’ has 0's on the diagonal, these vectors must all be 0 vectors.
Hence M =2".

4.47 THEOREM. The mean first passage matriz M s given by
M = (I-Z+EZg)D (2)
where D is the diagonal matriz with diagonal elements di = 1/a.

PROOF. By Theorems 4.4.4 and 4.4.6 we need only show that M
as defined by (2) satisfles equation (1) above.

Let
M = (I-Z+EZg)D.
Then
M—-D = (—Z+EZg)D
and

PM—-D)=(-PZ+EZg)D
=M+ (—I+Z~P2Z)D.
By Theorem 4.3.3(d) this is
PM-D)y=M-AD
=M-E.
By (2), D=DMgss. Hence M =P(M—Ma)+E.

4.4.8 THEOREM. Let P be the transition matriz for an independent
trials process. Then M ={1/py)}.
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PROOF. From Theorem 4.4.7 and the fact that Z=1I for an inde-
pendent trials process, we have M =FED. For an independent trials
process the limit matrix 4 =P. Hence py;=a; and 1/a;=1/p;;. Thus
M=ED={1/py).

We now illustrate the calculation of the mean first passage matrix
for the Land of Oz example. We have found.« to be (?/5, /s, 2/s).
Hence the matrix D is

5, 0 0
D=|0 5 0
0 0 5

The Z matrix was found in § 4.3. From this, using Theorem 4.4.7
we obtain M by M=(I—-2Z+ EZqs)D. Carrying out this calculation
we obtain

R N S8
R/5/, 4 10,

M=N| % 5 8
S\10/; 4 3/,

Thus, for example, if it is raining in the Land of Oz today the mean
number of days before a nice day is 4. The mean number of days
before another rainy day is 5/ ; before a snowy day 19/3.

We shall next prove a theorem which connects the diagonal elements
of Z with the mean time to reach s; for the initial probability vector
m=o. We have seen previously that the mean number of times in
state s; is particularly simple in this case. This choice of initial vector
is of special importance for the following reason. Assume that a
regular Markov chain has gone through a large number of steps before
it i3 observed. Then Theorem 4.1.6 suggests that a natural choice for
the new initial vector = is «. The probabilities for any later time are
then also given by «. In this case we say that the process is observed
in equilibrium.

4.4.9 TuroreEM. For a regular Markov chain
M = {M[fi]} = 9ZagD = {z5/as}.
PROOF. Multiplying (2) by « we have

aM = ol —Z + EZq4)D
(e —a+nZag) D
nZagD.

Il

aM
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4.4.10 TagorEM. Letc= > 24 Then MoT =cf.

PROOF.
MaT = (I —Z+ EZag)DaT
= ([ —Z+EZy)t
= {(nZagt) = ¢£.
In § 4.3 we compared the mean number of times §»); in a state s;

under the assumption of two different starting distributions. We can
make the same comparison for the function fj.

4.4.11 TaeorEM. For any two wnitial probability vectors = and =’
(M1 - M, f]} = (m—=")(I — Z)D.
PROOF.
M) M, ]} = nd —7'M
= (r—n Y~ Z+EZq)D.
= (m—n')(I - Z)D.
In the Land of Oz example we see that
My[fs]—Mglfs] = 8/3—10/s = —?/a.

Thus the mean time to the first snowy day is shorter starting with a
nice day than it is starting with a rainy day.

We will conclude this section by showing that the Markov chain is
completely determined by the numbers my, for ¢3j. We shall use
these numbers as the non-zero entries of the matrix M = — D. This
matrix has n{n—1) non-zero entries, which suffices to determine the
chain. When we give the chain in terms of P, we specify n? entries;
but these satisfy n relations, since P must have row-sums 1. But
there is no natural way of specifying just n{n— 1) entries of P, while
H is a natural way of giving this minimum information.

4.4.12 TurorEM. For any regular Markov chain
(8) The matriz M has an inverse
(b) « = (c—1) (M-14)T
(¢) P=1I+(D-E)ML

PROOF. From equation (1) in § 4.4.4 we have

M+D = PH+E;
hence
(P-I)M = D—E. (3}
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If M has no inverse, then there is a non-zero column vector y such that
My=0. Hence from (3)

(D=E)y = (P=D)My = 0
Dy = By
y = DBy = D7y = (qy)e”,
where =7y is a number. And since y#0, [50.
of = (Yl)y
MaT = (Y1)My =

But, clearly, MaT >0, and we have a contradiction. Therefore, M has
an inverse. Formula (c¢) is then an immediate consequence of (3).
To prove (b) we make use of § 4.4.9 and the fact that DaT =¢.

(M + D)aT = cf

i

I

MaT = (c—1)¢
= (c—1)M-1¢
o« = (c—1)(M-14)T.

We can now find « from formula (b), and the condition that «f=1.
This determines D, and then formula (¢) will yield P. Thus the chain
is determined by M.

§4.5 Variance of the first passage time. In the previous section we
found that the Z matrix enabled us to find the mean first passage time
from s; to s;. In this section we shall show that the Z matrix also
provides us with the variance of the first passage time.

We recall that f; is the function whose value gives the number of
steps required to reach s; for the first time after the initial step. We
have found M;[f;]. Hence to find Var[f;] it is only necessary to find
M,;[f%] and use the fact that Var[f;]=M,[{%]—M;[f;]2. We denote by
W the matrix W ={M,[f2;]}.

4.5.1 THEOREM. Thematriz W satisfies the equation
W = P[W—Wg) ~ 2P[Z—-EZg)D + E. (1

rroOF. Taking conditional means we have

M,[f%] = z puMi[(f;+ 1)2] + py;

k#j

Z puMi{f%] + 2 ZptkMk ;] + 1.

k)

Or
W = P[W—Wag) + 2P[M — M) + E. (2)
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From Theorem 4.4.7 we have M —Mag=(—Z + EZg)D. Putting
this in (2) we have (1).

4.5.2 THEOREM. The values for M;[f%;] are given by
Wag = D(2ZggD—1I). (3)

PROOF. Multiplying equation (1) through by « and using the fact
that P =a, we have

aW = o[W—-Wae] — 2¢[Z—EZgg]D + u; (4)
or, since aZ =ca, and «D =0k =1,

«Wag = —7+29ZagD.
This gives

apeiy = — 14 22550
or
1 22;‘@
Wig = ——-+—5
ar A%

Written in matrix form, this is (3).

4.5.3 THEOREM. The unique solution to (1) is
W = M(2Z3gD—1I)+2(ZM — E{(ZM )q).

PROOF. The uniqueness proof is the same as that given for the
matrix M in Theorem 4.4.6. It is then only a matter of verifying that
the expression given for W. satisfies (1). We omit the details of this.

From the matrix W it is an easy matter to find the {Var;[f;]}. We
denote by Me={Var;[f;]}. Then Mo=W — Mg,

Let us find these variances for the Land of Oz example. We have
previously found M, D, and Z for this example, so that to find W, the
only new matrix we need is ZM. Thisis

17613 303 259%/3
Z-M =155 203 363 203
25923 303 1761/3

From the formula W =M (2ZegD — 1)+ 2(ZM — E(ZM )qg) we find

. s 26 54
W o= |43 37 403},
54/3 28 71/g
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and subtracting Mgaq from this we obtain
57/12 12 62‘/9
My = | 58/g 12 58/4
62/ 12 67[p,

We observe that the variance Var[f;] in this example depends very
little on the choice of the starting state s;. The first passage times for a
regular chain are quite similar to absorption times for an absorbing
Markov chain. They both have variances which are in general large
compared to their means.

The formulas for W and for M ; are very much simplified for the case
of an independent trials process.

4.54 TurOorREM. For an independent trials process

W = ED2D-I) = {(1/py)(2/pi;— 1)}
and
My = E(D*~ D) = {(1/pi;)*—1/pu}.
rROOF. We recall that for an mdependenb trials process Z is the
identity matrix and M =ED. Thus, using Theorem 4.5.3,
W = ED(2D-1)+2(ED~ED)
= ED2D-1).
From this we obtain
My = W—Mg
2ED?2—ED — (ED)g,
= E(D2- D).
The alternative expressions for W and M, given in the statement of
the theorem follow from the fact that py;=p;; for all <.

I

§4.6 Limiting covariance. Let f and g be two functions defined on
the states of a regular chain. Let f(s;)=f; and g(s;)=g:. Let £ and
g™ be the values of these functions on the n-th step. We are interested
in finding

lim 2 Cov [Z fo Z g(")]

no o I=1
It can be shown that this limit exists and is independent of =.
4.6.1 TyEOREM.

hm~Cov [ Z o, }i g(")] rz Jici;g;

"n— o =1
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where
Cij = Q%3+ Qy25— a{dij — aia;.

PROOF. We shall assume the result that the limit is independent of
m and prove the theorem for the case n=«.

[zfmj =n Z aifs

=1
and
M. z A "z @395
K=1 J=1
Hence,
=~ Cov, f, > g
g ]
1
= ;.L [( Z £y — Z alf,>< z gh—n Z ajg])]
i=1 J=1
= _’\I [ Z Z foorgh — p z £(k) z a9,
k=1 I=1 j=1
-7 Z g z aif; + n? z a;a,f,g;j{
=1 i=1 i, j=1
1 n r
= Z Z (Profu®;=1aAu®;=1]fig; — Pr,[u®,=1]f:a,9;
k=1 1,5=1
—Pr[u®;=1]g;aifi + aia;fig;)
1 n T
“n > 2 (Prju®;=1Au®;=1}fg; - aa;fig). (1)
k=1 {j=1
Now
agpti=fy, i k<l
Prfut) =1 ud;=1] = {apt-hy if &> 1 (2)

ady; if k=1
Hence we have from (1) and (2)

n 1 T

=1

r

1
+ >, aifigs Z (pt*=by—ay)

i1 =1
r
+ > (ady—aa))figs.

i,7=1



86 FINITE MARKOV CHAINS Cuar. IV

Collecting terms with the same d = |l —k|, we have

1 n n r "2 n—d
= Cov, z fk), Z gh| = Z ayfigy Z — (p@y —ay)
n ¥=1 =1 =1 "

Bi=1

r n—1 n—d
+ > afgs — (PP —a) (3)
i3 d=1

1, =1

+ > (adig—aiag) figs.

1,7=1

Since Z = Z (P~ A)? converges, it is Cesaro-summable (see § 1.10),
d=0
that is
n—1 -
Z = lim n—d (P—A)e
ey
Hence
n—1 .
Z—1 = lim n=d pa_y),
N~ © o=} n
n—1 __d
Z{j—du = lim n—n——- (pw)”——aj).

n—» 0 g=1

Then from (3)
lim lCov‘x z £, Z g
nsx M E=1 =1

,

= > [asfigi(zs —dis) + aifigs(zr — dog) + (asddis — aiay) figy]

i5=1
T
= > [filazy+ gz —adiy — aiag)gy.
=1
This completes the proof.
If f and g are the same function, then the above theorem gives us
4.6.2 COROLLARY.

lim —Var [ > f“‘)] = i Jicifs.

n— 1,7=1

3

We shall need a slight extension of this last result. Suppose that f
is not simply a function of the state, but f=1 with probability f; on
state s; and 0 with probability 1—f;. We may think of f as deter-
mined as follows: We carry out the Markov chain, and if the process is
in s; on a given step we flip a biased coin (probability f; for heads) to
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determine whether fis 1 or 0. Again, f® is the value of the function
on the n-th step. Then the above argument for the limiting variance
applies except that in (1) a slight change must be made when k=1I.
Here, the term f2; should be simply f;, and we have a correction term

7

> aifll=f).

i1
Thus we have proved
4.6.3 TureoreMm. If f is a function that takes on the value 1 with
probability fi in 8, and is O otherwise, then
1 n 7 14
lim ;—bVar,,[z f(’d} = > fieufi+ > afill=fi).
N+ k=1 )

i, 5=1 i=1

We can also extend the result to two such functions. If these take
on their values independently of each other, then the proof of 4.6.1
applies exactly. This proves

4.6.4 TuroreMm. If f and g are functions that take on the value 1
8, with probabilities fi and gy, respectively, independently of each
other, and if the functions are O otherwise, then

lim %Bovﬂ[i £®, i g(”] = }r: Jieug;.
k=1 1

N~ GO =1 1, J=1

One application of the covariance is to obtain correlation coefficients.
Let f and g be as in Theorem 4.6.1. Then

4.6.5 DEFINITION.

Cov,,[ }:‘ £y, i g(z)}

k=1 i=1 '

JVar,[ i fo)} -Va,r,,[ i g(l)]
k=1 l=1

Dividing aumerator and denominator of the right side by », and using
4.6.1 and 4.6.2, we have

Corr,[i fue), i g(l)] =
E=1 i=1

4.6.6 THEOREM.

n n Z Sicugs
lim Corr,,[z fo, z gu)} - i, 5=1

7> ® k=1 l=1

r

- .
2, feafs o 2 giougs

3, 7=1 3, j=1
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Another important application of Theorem 4.6.1 is the following:
Let A and B be any two sets of states. Let y® 4 and y® 5 be respec-
tively the number of times in set 4 in the first » steps and the number
of times in set B in the first n steps. For these functions we have the
following theorem.

4.6.7 THEOREM.

R 1
lim - Cov,[ym,, yng] = z Cij.
n—so N s;in A
s;in B
PROOF. Let f be a function which is 1 on the states of 4 and 0 on
all other states. Let g be a function which is 1 on states of B and 0
otherwise.

l=1

n n
yimy = Z f® and ymg = Z g,
k=1

Hence the theorem follows from 4.6.1.
From this theorem we see that

4.6.8 COROLLARY.

lim Corr,[ym,, y®g] =

mose e > o
s;in 4 s;in B
s, in A s;in B

Taking 4 and B in 4.6.7 to be sets with a single element, we see
that ¢y represents the limiting covariance for the number of times in
states 7 and j in the first » steps. The values of ¢j; give the limiting
variances for the number of times in state s;. We are often interested
only in these variances, we denote them by the vector 8. The limiting

correlation for the number of times in s; and s; is M Ifi= J, the
Ve Cy5
correlation is 1.
For an independent trials process ¢ = a;dy; — a;ay, and hence all the
formulas found above simplify. For example, if ¢#j, the limiting
correlation is

— @iy - __'\/ a;ay
Vai(l—aas(1 - ay) (1—a)(l—ay)
The diagonal entries of C, i.e. the limiting variances, have the following

important use. Let 8={b;}={c;;}.- Then B is a vector which gives the
limiting variances for the number of times in each state. These
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variances appear in the following important theorem (called the Central
Limits Theorem for Markov Chains).

4.6.9 THEOREM. For an ergodic chain, let y; be the number of
tumes in state s; in the first n steps and let a={a;} and B={bs} respec-
tively be the fixed vector and the vector of limiting variances. Then
if bys£ 0, for any numbers r<s,

y®y—nay

1 8
Prifr< — < s > —— j- e~z dx
k[ \/nb; :l \/277 r

as n—co, for any choice of starting state k.

The proof of this theorem is beyond the scope of this book and appears
only in the more advanced books on probability theory. However, for
a discussion of this theorem in the case of independent trials processes
see FMS Chapter 3. It is not possible to evaluate the integral in this
theorem exactly, but for illustrative purposes we mention that the
value for r= — 1L and s=1 is approximately .681, forr=~2and s=21it
is approximately .954, and for r= — 3 and s =3 it is .997.

ExamprLe. Let us consider the Land of Oz example. For this
example we have found,

a = (s, s, s)
and
R N )
/ 86 3 —14
Z =15 6 63 6
— 14 3 86

This is all the information we need to compute the matrix C'={cs}.
Carrying out this computation we find

R N S
134 —18 —116\ R
C =135 —18 36 —18]} N.
~116 -18 134/ 8

The diagonal entries of C' give us the limiting variance 8={134/37s,
86/375, 134/375} for being in each of the states. Thus the Central Limit
Theorem would say, for example, that

y(ﬂ)N — 71,/5

vV (3%[375)n
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would for large n have approximately a normal distribution. From
this we may estimate that the number of days in 375 days which would
be nice would be unlikely (probability about .046) to deviate from 75
by more than 12.

Assume that we are interested only in bad weather or only in good
weather. Then we would want to consider the number of times the
process is in the set A; ={R, 8} and the number of times it is in the set
A,={N}. Let é; be the limiting covariance for the number of times
in set A¢ and A;. Then from 4.6.7 we know that we can obtain
C ={¢y} by simply adding elements of C. For example,

b1z = can+Csy = —18[gp5—18[395 = —36/375 = —12[155.
A A,
6= Ax( 12/195 —12/125).
Ao\ —12/145 12/195

It is easily verified that the row-sums of C must be 0. Since C is
symmetric, the column-sums must also be 0. For a 2 x 2 matrix this
tells us that the entries must all have the same absolute value. Thus
we would expect { to have the special form that we found.

§ 4.7 Comparison of two examples. In this section we shall compare
the basic quantities for two regular Markov chains with the same
limiting vector. One will be an independent trials example and the
other will be a dependent example. The two examples are the random
walk Example 3 of Chapter IT with p=1/, (denoted by Example 3a)
and Example 7. The transition matrix for Example 3a is

S Sz Sz S4 S35
81 0 0 1 0 ¢
So 1/2 0 1/2 0 0
/
0

™

P = S3 0 1/2 0 0
Sq 0 1/2 4] 1/2
S5 0 0 1 0 0

8]

The transition matrix for Example 7 is

81 S S8S3 S84 S8j

Sy o2 4 2 1
S d 2 4 2
P = s3 d 02 4 2 1
Sg4 d 2 4 2 1
S5 Jd o2 4 2 1
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The limiting vector for each of these chains is a=(.1, .2, .4, .2, .1).
Thus by the Law of Large Numbers we can expect in each case about
.1 of the steps to be to sy, about .2 to s2, ete.

For a regular Markov chain the fundamental matrix is given by
Z=(I—-P+A4)t. Ifthisis computed for Example 3a we obtain

k33 23] S3 S4 85
S1 .88 —.04 .32 .04 -—.12
So 33 .86 .12 —.14 —.17
Z=s38§ —.02 16 .72 16 —.02
Sa —-.17 —.14 .12 .86 .33
S5 -.12 —-.0¢ 32 -—-.04 .88

For an independent trials process, Z is the identity matrix. Hence
for Example 7, Z=1.

The first information we obtain from Z relates to the number of
times in a state in the first » steps. Let §(#); be the number of times
in state s; in the first n steps (counting the initial state). Then by
Theorem 4.3.4

My®™;]—na; — zy—ay.
For the independent case this limit is replaced by equality. In the
dependent case, z;; gives us a comparison of My[y(™),] for fixed s; and
different starting states s;. For example, in Example 3a, 211> 221>
z31>251>241. Thus for large n

My[y®™1] > My[y™1] > Ma[t™i] > Ms[y™i] > My[§™;].

The fact that the process may be expected to be more often in s;
starting from ss than from s4 may be seen also from the fact that to
reach’'s; from either of these states it is necessary to go through sa.
From ss the first step is to s3 while from sy it is either to s3 or to ss.

We can also find from Z the limiting variance for y/4/n.  This
is given by '

B = {225 - 1—ay)}.
In Example 3a this gives
B = (.066, .104, .016, .104, .066).
For theindependent trials process B ={a;(1 —a;)}. Thusfor Example7,
B = (.09, .16, .24, .16, .09).

The variance in the independent case is in each case larger than the

corresponding variance in the dependent case. The variance for sz

is much larger. This means that we can make more accurate predic-
tions about ¥ 3 in Example 3a than in Example 7. For example, the
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Central Limit Theorem tells us that in 1600 steps the number of occur-
rences of s3 in Example 3a will, with probability~.95, not deviate
from 400 by more than 24/1000..016=8. In Example 7 we could,
with the same probability, only say that the number of occurrences of

s3 would deviate from 400 by less than 24/71000. .24~ 31.
Let us next compute the covariance matrix and some correlations.

For Example 3a we have

.066 042 —.016 —.058 —.034

.042 .104 .008 —.096 —.058

C = —.016 .008 .016 008 —.016
—.058 —.096 .008 104 .042

—-.034 —-.058 —.016 042 .066

For the limiting correlation between s; and each of the five states we
have (rounded): (1.00, .51, — .49, —.70, —.52).

For Example 7 the covariance matrix is

08 —-.02 —-.04 —-.02 -~-.01

-.02 16 —.08 —.04 .02

C = —.04 .08 .24 —.08 —.04
—.02 —.04 —.08 16 — .02

-.01 —-.02 —-.0¢4 -.02 .09

The limiting correlations with s; are: (1.00, —.17, — .28, —.17, —.11).

It is to be expected that often the limiting correlations between two
different states will be negative, since—generally—the more often the
process enters one state, the less often it will be in the other state. For
the independent process all the correlations between pairs of different
states are negative, though quite small. But for Example 3a the
correlations are fairly large, and the correlation between s; and s is
positive. ‘

We next consider the function f; which gives the number of steps
taken to reach s; for the first time. The values of M;[f;] are given by
the matrix M =(I - Z+ EZ4)D. For Example 3a this is

53 S2 S3 S4 S5

s1 10 45 1 4.5 10
P 55 5 1.5 5 10.5

M = s3 9 3.5 25 35 9
S4 10.5 5 1.5 5 5.5

S5 10 45 1 45 10
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For an independent trials process the formula for M reduces to
M=ED. Thus for Example 7

S1 Sz 83 S84 S8

s1 f10 5 25 5 10\
s2f/ 10 5 25 5 10

M=s3§ 10 5 25 5 10
se\ 10 5 25 5 10 |
ss \10 5 25 5 10/

In the independent case the mean time to reach s; is independent of
the starting state. This is not true for the dependent case. In fact,
the mean time required to reach s; from s; is only about half that
required for any other starting state. We observe that the mean
time to return to a state, M,[f,], is the same in the two examples.
This is because these means depend only on «.

The variances Var;{f;] are given by

My = M(2ZggD—1)+2(ZM — E(ZM )gg) — Moq.
For Example 3a this is

81 S2 83 84 85
s 66 123/, O 123/, 66
se f 5314 13 1/, 13 661/,
My = s3 66  123/4 1/, 123/, 66
sg \ 66/s 13 1, 13 531/
S5 66 1234 0 1234 66
For the independent trials case the formula for M, reduces to
My=E(D?— D). Thus for Example 7 we have
Sy S2 83 Sg S3
s1 #9020 15/, 20 90
S2 90 20 15/, 20 90

My=s3 § 90 20 15/, 20 90
s¢ 4 90 20 15/, 20 90
ss \90 20 15/4 20 90

As in the case of the means, in the independent case, Example 7, the
variances do not depend on the starting state. Unlike the case of the
means this is almost true for the variances in the dependent case
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Example 3a. We note finally that, as in the case of the variances for
¥y, the variances for f; are in each case greater for the independent
case than for the dependent.

§ 4.8 The general two-state case. In this section we give for future
reference the basic quantities for Example 11 of Chapter II. We
recall that this was the general Markov chain with two states. The
transition matrix was written in the form

l—c¢ c
P = .
d 1—-d
We assume that 0<c<1 and 0<d<1 but ¢ and d are not both 1.

This will give us the general regular two-state Markov chain.

The limiting vector « is
[ d c )
T (m’ ct+d
The tundamental matrix Z= (I - P+ A4)-11is

d+—2 c——S
i +C+d c+d

= ivd p
d=cid  “Tovd

The mean first passage matrix 3 is

c+d 1
d ©
.M = El
‘ 1 c+d
d ¢

and the variance matrix for the first passage time is

c(2—c—d) 1-¢
dz c2
Mo = 1—-d d(2 —c—d)
d2 c?

The limiting variance for the number of times in state s; is given by

8= cd(2—c—d) cd(2—c—d)
T\ e (c+ad)® |
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Compare this variance for the dependent case with the independent
case having the same limiting vector. This independent process would
have transition matrix

2

c+d c+d
Pelae o f

c+d c+d

and the limiting variance for the number of times in s; would be

A =((cj-dd)%’ ' (cidd)Z)‘

Thus the limiting variance for the number of times in s; will be greater
in the dependent case if and only if

2—c—d > c+d.

That is, if the sum of the diagonal elements is greater than the sum of
the off-diagonal elements. Or in other words, if the probabilities for
remaining in a state have a sum greater than the probabilities for a
change of state.

The covariance matrix is

- (503

Thus ¢y > 0if i=73, but ¢;; < 0if ¢5#7. The limiting correlations are
+1and —1in the two cases, respectively.

Exercises for Chapter IV
For § 4.1

1. Find the limiting matrix 4 for Example 13. (See Exercise 23,
Chapter II.)

2. Find the limiting matrix 4 for Example 14. (See Exercise 24,
Chapter I1.)

3. Show that the four-state chain in Example 12 is regular. Find the
fixed vector «. What is the relation of this vector to the fixed vector for the
two-state chain which determined the four-state chain?

4. Show that if « is the fixed probability vector for a chain with transition
matrix P, then it is also a fixed vector for the chain with transition matrix
Pn,

5. Prove that if a transition matrix has column sums 1, then the fixed
vector has equal components.
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6. Given a probability vector « with positive components, determine a
regular transition matrix which will have this as its fixed vector.

For § 4.2
7. For Example 14 find the mean and variance for the number of times in
state s; in the first » steps.
8. Consider the Markov chain with transition matrix

§1 82

0 1
26, 3)
sz \l/s 12
Start the process in sz, and compute the mean of vim), for n=1, 2, 3, 4, 5, 6.
Compare these results with a;.

For § 4.3

9. Find the fundamental matrix for Example 11 whenc=1/; and d=1/4.

10. Find the limit of the difference between the mean number of nice
days in the Land of Oz in the first n days, starting with a rainy day and
starting with a nice day.

11. Find the fundamental matrix for the chain in Exercise 8 above.
Interpret 233 —22;.

12. Find the fundamental matrix for Example 14. (Use the result of
Exercise 2 above.)

13. Find the fundamental matrix for Example 13. (Use the result of
Exercise 1 above.)

For § 4.4

14. Find the mean first passage matrix for Example 14. (Use the result
of Exercise 12 above.)

15. Find the mean first passage matrix for Example 13. (Use the result
of Exercise 13 above).

16. Verify Theorems 4.4.9 and 4.4.10 for Example 13.
17. Prove that for an independent trials process, M has all rows the same.
18. Given that the mean first passage matrix of a chain has the form

x 2 6
M=14 x 4
6 2 =z

determine the transition matrix.

19. Give two different transition matrices which have the same funda-
mental matrix, and hence show that the fundamental matrix does not deter-
mine the transition matrix.

20. Prove that P has constant column sums if and only if # has constant
row-sums.
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For § 4.5
21. Find M, for Example 14.
22. Using the result of Exercise 15 above, find M3 for Example 13.
23. Find M, for Example 11 with ¢=1/5 and d=1/,.

24. A die is rolled a number of times. Find the mean and variance for
the number of rolls between occurrences of two 6’s.

25. Find the mean and variance of the first passage times in Exercise 8
above.

For § 4.8
26. Find the limiting covariance matrix for Example 11 with c=1/; and
d=1/4
27. Find the limiting covariance matrix for Example 13. Interpret the
diagonal entries.

28. On a nice day a man in the Land of Oz takes his umbrella with proba-
bility 1/s, on arainy day with probability 1 and on a snowy day with probability
3/4.  Find the limiting variance for the number of days that he will take his
umbrelia.

29. For an absorbing chain let n; be the number of times in state s;
before absorption. Using the method of proof for Theorem 4.6.1, show that
Milni-n5] = npgnge+ neng — dignig

where N ={ny} is the fundamental matrix. Find Covi[nsn;] and Vari[n;].

For § 4.8
30. Find the limiting variance of the number of times in a state when c=d.
How does this vary with ¢? Interpret your formula as ¢c—0.

31. Find the limiting vector and the mean first passage matrix for the
case where ¢=2d. How do these vary with ¢? Interpret your results as
c—>0.

For the entire chapter

32. Consider the following transition matrix for a Markov chain.

e Yz 1lg\sy
P=1{3y 0 1/4lse
0 1 0 S3

a) Is the chain regular?

b) Find e, 4, and Z.

¢) Find M and Ms.

d) Find the covariance maitrix.

e) Use absorbing-chain methods to find the mean time to go from s3 to
s1.  Check your answer against part (c).

33. Let Py and P, be two different transition matrices for a three-state

(
(
(
(
(
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Markov chain. By a random device we select one of these matrices and carry
out the resulting chain. (Say P; is selected with probability p.)

(a) Is this process a Markov chain ?

(b) Show that the probability of being in a given state tends to a limit,
and show how these probabilities may be obtained from the fixed
vectors of the two matrices.

34. Suppose that in Exercise 33 we use the random device before each

step, to decide which matrix to apply on that step.

(a) Is this process a Markov chain ?
(b) Show that the limiting probabilities for being in the various states are
normally not the same as those obtained in Exercise 33(b).



CHAPTER V

ERGODIC MARKOV CHAINS

§5.1 Fundamental matrix. We will now generalize the results
obtained in the last chapter. There they were proved for regular
chains, and now we will extend. them to an arbitrary chain consisting
of a single ergodic set, i.e. to an ergodic chain. We know that such a
chain must be either regular or cyclic. A cyclic chain consists of d
cyclic classes, and a regular chain may be thought of as the special
case where d=1. The results to be obtained will be generalizations of
the previous results in the sense that if we set d =1 in them, we obtain
a result from the previous chapter. As a matter of fact, in most of
the results d will not appear explicitly, so that the result of the previous
chapter will be shown to hold for all ergodic chains.

An ergodic chain is characterized by the fact that it consists of a
single ergodic class, that is, it is possible to go from every state to
every other state. However, if d> 1, then such transition is possible
only for special n-values. Thus no power of P is positive, and different
powers will have zeros in different positions, these zeros changing
cyclically for the powers. Hence Pn cannot converge. This is the
most important difference between cyclic and regular chains,

But while the powers fail to converge, we have the following weaker
result.

5.1.1 Turorem. For any ergodic chain the sequence of powers Pn
18 Buler-summable to a Umating matriz 4, and this limiting matriz is
of the form A = éa, with o a posilive probability vector.

PrOOF. Consider the matrix (kI +(1—k)P), for some k, O<k< 1.
This matrix is again a transition matrix. Since it has positive entries
in all places where P is positive, the new matrix also represents an
ergodic chain. And since the diagonal entries are positive, it is
possible to return to a state in one step, and hence d=1. Thus the

new chain is regular.
99
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From § 4.1.4 we know that (kI + (1 —k)P)" tends to a matrix 4 ={e,
with a probability vector «>0. Thus

A = lim (kI +(1—k)P)»
= i S n n—1(] — L\ Pt
A nlirgj ;0 (Z)k (1 —Fk)LPt, (1)

But this states precisely that the sequence P is Euler-summable to 4
(see § 1.10). Indeed, it is Euler-summable for every value of %.

5.1.2 TueorEM. If P is an ergodic transition matriz, and 4 and
a are as tn Theorem 5.1.1, then

(a) For any probability vector m, the sequence mPn 15 Euler-summable
to c.

(b) The vector « i3 the unique fixed probability vector of P.

(¢) PA=AP=A4,

PROOF. If we multiply (1) by = we obtain that the Euler sum of the
sequence wP7 is m4 = nfa=«, which proves (a).

Since « was obtained from the limiting matrix of (kI + (1 —k)P), it
is the unique fixed probability vector of this regular transition matrix.
But this matrix must have the same fixed vectors as P, since

mkl+(1—-k)P) ==
implies that
m(1—k)P = m(1—k)
and since k# 1,
7P = .

This proves (b). Part (c¢) follows from the fact that P¢=¢ for any
transition matrix, and that a P =«.

We thus see that « and 4 have nearly the same properties in the
ergodic case as they did for regular chains ; only, (a) had to be weakened
to summability in place of convergence. We will now show that ergodic
chains have a fundamental matrix which behaves just like the funda-
mental matrix of regular chains.

5.1.3 TuroreM. If P isan ergodictransition matriz, then the inverse
matrix Z = (I — (P —A))"! exists, and

(a) PZ = ZP
(b) Z¢ = ¢
() ¢Z = «

@) (I-P)Z = I—-A.
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PROOF. Since the sequence P» is Euler-summable to 4 by §5.1.1,
and since (P—A)»=Pr—A4 by §5.1.2(c), the sequence (P—A4)» is
Euler-summable to 0. Hence the inverse Z exists (see §1.11).
Furthermore, the series

I+% (Pi-4) (2)
i=1
is Euler-summable to Z. Then (b) and (¢) follow from the fact that
I¢=¢, ol =«, and multiplying Pi— 4 by either ¢ on the right or by «
on the left yields 0. Result (d) is obtained by multiplying (2) by
I-P.

While for the theorems so far, Euler-summability of P» sufficed, we
will need the following stronger results.

5.1.4 TureorEM. If P is an ergodic transition matriz,
(a) The sequence Pn is Cesaro-summable to A.

)

(b) The series I+ z (Pt — A) s Cesaro-summable to Z.
i=1

PROOF. If n=Fkd, then in n steps after starting at s; we must be in a
state in the cyclic class of s;. And if k is sufficiently large, we may be
in any state in the class. Hence P2 may be thought of as the tran-
sition matrix of a Markov chain with d separate ergodic sets, each of
which is non-cyclic. Therefore, Pkd tends to a limiting matrix A4,,
whose ij-entry is 0 if s; and s; are not in the same cyclic class, and
otherwise the 75 entry is gotten by taking the components of « belonging
to the cyclic class and renormalizing them.

If 0<l<d, then Pkd+! tends to P!4, as k tends to infinity. Hence
the sequence P» has these d convergent subsequences, and hence
(see § 1.10) P is Cesaro-summable to the average of the limits. But
two different summation methods cannot give different answers, hence
A must be this average; that is,

d—1
4 = (1/d) > Pld,, (3)
(=0
and P is Cesaro-summable to 4. It is then an immediate consequence
that since Pt— 4 is Cesaro-summable to 0, (b) must hold.
Let us restate the summability result (b) as a limit.

n n— i
515 ComoLLaRY. I+ lim > — (Pi-4) = Z.
n—swo ;=1
Since we have now succeeded in generalizing many basic properties
of Z to ergodic chains, and since d did not appear explicitly, we may
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now assert that many of the results of Chapter IV hold for all ergodic
chains. In particular this applies to all results concerning the mean
first passage time matrix M and the variance of first passage time
matrix M, that is to all results in §§ 4.4 and 4.5. We also have all
the results of §4.6 concerning limiting variances and covariances,
since in the proof of § 4.6.1 we needed only the summability (5.1.5) of
the infinite series for Z, not its convergence. And thus all the basic
formulas of §§ 4.4, 4.5, and 4.6 may be applied to any ergodic chain.

It is worth making a special comment on § 4.4.12. We now know
that #7 determines the transition matrix of any ergodic chain by
means of the formula P=I+(D—E)M-1. Thus, in particular, H
determines whether (or not) the chainis cyclic. Thisis quite surprising,
and it would be highly desirable to find necessary and sufficient con-
ditions (i) that # be the mean first passage matrix of an ergodic chain,
and (ii) that it represent a regular rather than a ecyclic chain. One
would like these conditions to be simpler than computing P from M
and then checking P.

What results on regular chains have we not generalized so far?
The most important such results are: The geometric estimate § 4.1.5,
the Law of Large Numbers § 4.2.1, and the results in §§4.3.4-4.3.6
on §m;. To be able to discuss these we shall have to find some sort
of an upper bound on p(®;; —ay.

It is clear that the geometric bound of § 4.1.5 cannot apply to this
difference in the cyclic chain, since p™;; will frequently be 0, and
hence the difference—in absolute value—is a; infinitely often. How-
ever it can be shown, using the ideas of the proof of § 5.1.4, that if we
add up d consecutive terms, that is, form

d--1

> (b —ay),

=0
then this sum is bounded geometrically. This suffices to prove the
Law of Large Numbers, if in § 4.2.1 we take sums d terms at a time.
This method also allows us to prove analogues of §§ 4.3.4-4.3.6, but
we will not take these up.

§5.2 Examples of cyclic chains. The simplest possible cyclic chain
is obtained from the two-state Example 11 by choosing c=d=1. We
will call this Example 11a. The transition matrix is

()

From the proof of §5.1.1 we know that 4 may be obtained as the
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limiting matrix of (/) + (}/2)P =(1/2)E. But this is its own limiting
matrix. Hence

A= (Y2)B, o= (Y, 1), d=2,

2 1 00
M=( >’ M2=< >.
1 2 60 0

It is very easy to find M directly, and to see that M, must have all
components 0. Similarly, the limiting variances are 0.

As a less trivial example we take up the random walk Example 2
for p=1/; (denoted by Example 2a). Its transition matrix is

S1 0 1 4] 0 0
Sg o 0 13 O 0
P =g 0 Yy 0 1y 0O
sa 4 0 0 1y 0 1Y
S5 0 6 0 1 0

Starting from an even-numbered state, the process can be in even-
numbered states only in an even number of steps, and in an odd-
numbered state in an odd number of steps; hence the even and odd
states form two cyclic classes. Computing the other quantities we
find :

a = (Y, 14, Y/a, 1[4, 1/s)
23 18 -2 —~l4 -9
9 22 2 -10 -7
Z=14s§ -1 2 14 2 -1
-7 =10 2 22 9
-9 —-14 -2 18 23

S; S2 83 S84 S5

81 1 4 9 16

Sg 4 3 8 15
M = s3 12 5 4 5 12

Sq 15 8 3 4

s 416 9 4 1
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S1 112 0 8 48 160
So 112 24 8 48 160
My = sg 152 40 8 40 152
S4 160 48 8 24 112
S5 160 48 8 0 112

It is interesting to examine some of the entries of M and of M.
From either end state we can go to any state only by passing through
the neighboring state. Hence the first row of 3 is, with one exception,
1 greater than the second row, and similarly for the fifth and fourth
rows. The one exception is stepping into the neighboring state itself.
The third row is the average of the second and fourth, plus 1, except
for stepping into a neighboring state.

In M, it is worth noting the equal entries. Some of the equalities
are due to the symmetry of the process. But this does not account,
for example, for the third column being constant. The second and
fourth entries are the same in this column by symmetry. The other
three are also 8, because from one of the states in the first cyclic set
we must enter the second cyclic set, and then the variance is 8. The
two 0 entries are due to the fact that from an end state we always go
to its neighbor in one step.

It is also interesting to think of the middle column in M and M,
as arising from making s; absorbing, and asking for the mean and
variance of the number of steps needed for absorption. The resulting
process behaves in all essential features like § 3.4.1 (with p=1/;), and
hence the numbers 3, 4, and 8 are the same as the entries of = and =5
there obtained.

We shall conclude by computing the covariance matrix.

7 8§ =2 -8 -5

8 12 0 —-12 -8

C = 13 -2 0 4 0 -2
-8 =12 0 12 8

-5 -8 -2 8 7

From this we obtain the limiting variances
B = ("/s2, 3/s, 1/s, 3/, 7/32).
The fact that czz3=cgq3=0 means that the limiting correlations

between s; and s3, and s4 and s3, are 0.  On the other hand the correla-

tion between s; and ss is 8/4/84=x.87. The reason for this is fairly
obvious from the transition matrix.
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§ 5.3 Reverse Markov chains. We saw in § 2.1 that a Markov
process observed in reverse order would be a Markov process with
transition probabilities given by

_ Pr,[fi—1= sj]Pr,,[fn = s‘lfn_l =g;]
Pl = Pr,[fn=5]

where f, is the n-th outcome function. It was observed also that, if
the forward process is a Markov chain, the reverse process will be a
Markov chain only if Pr,[f, =s;] does not depend on n. This will be
the case if the process is started in equilibrium. In this case
Pr.[f,=s;]=0; for all », and p;(n) becomes

" yPji
By = py(n) = -——;“ .
1

5.3.1 DeriniTION. Let P be the transition matriz for an ergodic
Markov chain. Let o be the fixed probability vector for P. Then the
reverse Markov chain for P is a Markov chain with transition matriz
given by

P = (pi) = {*42#} - DPrp-s

To justify the above definition we must show that P is a transition
matrix. By Theorem 5.1.2 the a;’s are all positive, so that gy is
defined and non-negative.

P¢=DPTD-1¢{= DPTaT = D(aP)T=DaT =¢, Hence P is a tran-
sition matrix.

5.3.2 DermNitioN. A4 Markov chain is reversible if P= P,

5.3.3 TureoreM. 4 Markov chain is reversible if and only if
D-1P is a symmetric matriz.

PROOF. P =DPTD-!, Hence P=P if and only if
D-1P = PTD-l = (D-1P)T,
That is, if and only if D-1P is a symmetric matrix.

A reversible Markov chain in equilibrium will appear the same
looked at backwards as forwards. An alternative way to describe
reversibility is the following. A process is reversible if, in equilibrium,
for any s; and s; the probability of s; followed by s; is the same as the
probability of s; followed by s;. That is, if for every =, s;, 55

Pra[fﬂ =s; Afny1= sj] = Pra[fn =38; Afp+1=5¢].

This last equation will be true if a;py=a;py or if piy=a;psja;. That
is, if pyy= Py; for every ¢, j.
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It is obvious that any periodic chain with period greater than 2
cannot be reversible. In fact for such a chain, any state which can
be reached on the next step could not have been the result of the last
step. Thus only chains of period 1 and 2 can be reversible. It is
clear that if such a chain is reversible it will have the same period.

As an example of a reversible chain of period 1, we can consider the
Land of Oz example. In this case we find:

'2/5 0 0 1/2 1/4 11/4

D-1P = 0 1/5 0 1/2 0 l/z
0 0 25/ \lYg 14 1
R N S

R /s 110 Yo
=N {1 0 1|,
S \YYw 1w s
which is a symmetric matrix. Hence by Theorem 5.3.3 the chain is
reversible. An example of a reversible chain with period 2 is given
by Example 2a. In this case the matrix D-1P is
0 Yg 0 0 0
g 0 g 0 0
D-1P = 0 g 0 /g 0
0 0 g 0 1
0 0 0 g 0
This is again a symmetric matrix.
Given an ergodic chain, we now ask for the relation between this
chain and the associated reverse chain. We shall find the relation
between the fixed vectors and the fundamental matrices and hence,

from these, any quantities which depend on them. We shall denote
A, Z, M, ete. for the reverse chain by 4, Z, M, ete.

5.3.4 TurorEM. The fized probability vector for P and P is the same.

PROOF. Let alP = a.

Then aP = « DPTD-1
= 'qPTD_1
= (PT L™
= 7;[)—1

I

.
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5.3.5 THEOREM. 2 = DZTD-1,
PROOF. Z = I-P+ A4

From the form of A4 it is clear that 4 =DATD-1, From Theorem
5.3.4, A=A4. Thus

Z = (I-DPTD-1+ DATD-1)-1
D(I~PT 4+ AT)-1D-1

DZT D1,

o

5.3.6 THEOREM. Any quaniity whose value depends only on Zgg
and A is the same for the reverse process as for the forward process.

PROOF. By Theorem 5.3.5, Zag= Zag, and by § 5.3.4, A=A,

An example of the application of the above theorem is the mean
and variance of the first passage time to state s;, if we start in s; or if
we have as initial vector «.' Similarly, the limiting variance for the
number of times in a state depends only on Zag and 4. Hence these
quantities are the same for the forward and reverse processes. Addi-
tional examples are provided by the following theorem.

5.3.7 THEOREM. C=C.

PROOF. éi; = aié‘u + a,éﬁ - a;du — Qyay

a(aszji/a:) + ay(@izig/a) — aidsy — asay
Q5255 + Q4245 — Qydyy — A4y

= Cij.

i

Thus all results that depend only on the covariance matrix are the
same for the reverse process.

5.3.8 Turorem. M-—M = (ZD)-(ZD)T.

PROOF. M—M = (J—Z2+EZsg)D—(I~Z+EZqs)D
= (Z-2)D.

The theorem then follows from § 5.3.5.

5.3.8 TuEOREM. W —~W = (ZD—(ZD)T)(2Z4,D—3I)
+2(Z2D—(Z2D)T).

PROOF.
W—W = (0 —M)2ZagD 1)+ 20ZM - ZM)—-2E(ZM — ZM)gg. (1)
M-M = ZD—-(ZD)T. (2)
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Since ZM =(Z—22+EZa)D, and ZM =(Z — Z%+ EZ4,) D, we have

ZM—-2ZM = (Z2-2)D+(Z*- 2*)D
= (ZD)T —(ZD)+(Z*D)~ (Z2D)7. (3)

Since this is the difference of a matrix and its transpose, it has 0
diagonal entries, hence

(ZM — ZM)ge = 0. (4)
We obtain our theorem by combining (1), (2), (3), and (4).

We shall now illustrate the application of the above theorems for a
process which is not reversible. Such a process is the random walk
Example 3a. Here

S1 Sz 83 S84 S5

S1 0 0 1 0 0

se f Y2 0 1Yy 0 0

P =s3 0 1 0 1 O
S4 0 0 1Yy 0 1Yy

S5 0 0 1 0 0

and e¢=(.1, .2, 4, .2, .1). From this we find

S 0 1 0 0 0
So 0 0 1 0 0
P =s; Yy Y4 0 Yy 1
S4 0 0 1 0 4}
S5 0 0 0 1 0

Most of the entries in this matrix are obvious. For example, if the
process is ever in state s; it must have come from ss, hence fy12=1.
The fixed vector for p is again «={(.1, .2, .4, .2, .1).

In Chapter IV we found Z for this example to be

Sy Sg S3 Sq S5
S .88 —.04 32 —.04 —.12
Sa .33 .86 A2 —.14 — .17
Z = 83 -.02 .16 72 16 —.02
Sy -.17 -.14 12 .86 .33
Ss -.12  —.04 32 —.04 .88
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From this we find Z=DZTD-! to be

S3 S2 S3 Sq S5
$1 .88 66 —.08 —.34 —.12
ss —.02 .86 832 —.14 —.02

2 = s3 .08 .06 72 .06 .08
S4 —-.02 -—.14 .32 86 —.02

S5 —-.12 —-.34 —-.08 .66 .88
We found M to be: ’
Sy Sg S3 S4 85
S 10 45 1 4.5 10
Sg 55 5 1.5 5 10.5
M=s38 9 3.5 25 35 9
S4 105 5 16 5 5.5
ss \N10 45 1 45 10
From this we obtain M =M + (ZD—(ZD)7}:

83 Sz 83 Sz 83

S1 10 1 2 6 10
S2 9 5 5 9
T = s3 8 4 25 4 8
S4 g 5 1 5 g
S5 10 6 2 I 10
We found W to be
S1 S2 83 Sg S5
S 166 33 1 33 166
Sg 83.56 38 2.5 38 176.5

W = ss 147 25 6.5 25 147
4 176.5 28 2.5 28 83.5
S5 166 33 1 33 166
From this we obtain W=W +(ZD - (ZD)T)(2%4eD —3I)+2(Z22D—
(Z2D)T):
166 1 4 49 166
147 38 1 38 147
W = 130 29 6.5 29 130
147 38 1 38 147
166 49 4 1 168
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Hence
66 0 0 13 66
66 13 0 13 66
M,=1] 66 13 1/ 13 66
66 13 0 13 66
66 13 0 0 66

The zeros and the equal variances are easily deduced from P.

Exercises for Chapter V
For § 5.1

1. Compute the limiting matrix 4 and the fundamental matrix for the
ergodic chain with transition matrix

010
P=4q 0 p
010

2. Compute M and M for the chain in Exercise 1 above.
3. Find the covariance matrix C for the chain in Exercise 1 above.

4. In Example 2 let p=2/3. Find the fixed probability vector and the
fundamental matrix.

5. For the example of Exercise 4 above find the mean first passage matrix.
Check your results by obtaining P from M.

6. Given that for an ergodic chain

2 3 3
M=}]1 4 41},
1 4 4
show that the chain is cyclic.
7. Prove that the matrix
3 4 10
M= 3 3
10/; 4 3

is not the first passage matrix of an ergodic chain:

8. Let P be the transition matrix foran ergodic chain. Let P be the matrix
P with diagonal entries replaced by 0’s and the rows renormalized to have
sum 1. Show that the resulting chain is again ergodic; and if «={a;} is the
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fixed vector for the original chain, then a={a;(1—py;)} is proportional to
the fixed vector for the new chain. What is the interpretation of the
components of the new fixed vector in terms of the original chain?

9. Carry out the procedure indicated in the previous exercise for the Land
of Oz example.

For § 5.3

10. Find the reverse transition matrix for the chain in Exercise 1 above.
Compute the fundamental matrix for this reverse chain from the fundamental
matrix for the original chain.

11. For which values of p is the chain in Exercise 1 reversible ?

12. Find the reverse transition matrix for Example 2 with p=2/3. Com-
pute the fundamental matrix for the reverse chain and compare your result
with the result of Exercise 4 above.

13. Compute M for the example of the last exercise directly from the
fundamental matrix there found. Compute # from M (see Exercise 5)
using Theorem 5.3.8, and compare your answers.

14. Prove that every independent process is reversible.
15. Prove that every two-state ergodic chain is reversible.

16. Prove that if an ergodic chain has a symmetric transition matrix
(i.e., py = pji), then the chain is reversible.

17. Show for an ergodic chain that

(a) If the chain is reversible, then pi;piPri = PsiPrsPik-

(b) If the transition matrix has all positive entries, then the above condi-
tion assures reversibility. [Hixt: Show that for fixed 7 the row
vector A = {pqj/p;:} is a fixed vector of P. Hence this vector must be
proportional to «.]

For the entire chapter

18. The general (finite) random walk is defined as follows. The states are
numbered sg, S1,-..,Sz. If the process is in s, then it moves to s;—; with
probability gg, it stays in s; with probability r;, and moves to s;;; with
probability p;. (Where ps+qi+7i = 1,00 = 0, pn = 0.)

(a) Under what conditions is a random walk ergodic ¢

(b) From the equation «P = « prove, by mathematical induction, that
i4+19i+1 = APi.

(¢) Prove that an ergodic random walk is reversible.

(d) Find a formula for the fixed vector «.



CHAPTER VI

FURTHER RESULTS

§ 6.1 Application of absorbing chain theory to ergodic chains. We
have seen that the Z matrix enables us to find the mean and variance
of the first passage time to state s;. Assume now that we are interested
in more detailed behavior of the process in going to s;. For example,
we might ask for the mean number of times that it will be in each of
the other states before reaching s; for the first time. The answer to
this and other similar questions is furnished by applying the absorbing
Markov chain theory. To do this we change our process by making
s; into an absorbing state. The resulting process will be an absorbing
process with a single absorbing state. The behavior of this process
before absorption is exactly the same as the behavior of the original
process before hitting s; for the first time. Hence we can translate
all of the information we have about an absorbing Markov chain
into information about our original chain. In particular it provides
us with an alternative way to find the mean and variance of the first
passage time from s; to s;, these being the mean and variance of the
time before absorption in the new process. Since any proper subset
of an ergodic set is an open set, we can apply the results of § 3.5 to
obtain the behavior of our process before it hits a subset for the first
time.

Let us illustrate the above ideas with the Land of Oz example.
Assume that we are interested in the behavior of the process before
the first rainy day. We make state R absorbing and have the new
absorbing Markov chain with transition matrix:

R N

w
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The basic results for this absorbing chain are obtained from the
fundamental matrix N = (I —@)~! where ¢ is the matrix obtained by
considering only non-absorbing states. For example, let n; be the
number of times the process is in state s; before being absorbed. Then
the values of M;[n;] are given by the matrix N, in this case

N S

. (4/3 4/3)

N = .
S \2/3 ¢/

For example, calculated from a nice day, the mean number of nice
days before the next rainy day is ¢/3. We can find Var[n;] from the
matrix

Ny = N(2Ngg—I)—Ngq

N 8

N (4/9 4 )
T8 Ny a0y
Let ¢t be the function which gives the total number of steps before

absorption. Then, from Theorem 3.3.5, we have that the column
vector r={M,[t]} is given by r=N¢. In the example we are con-

sidering, this is
s 4fs\ (1 ¥a
ol - ek
2/ 8/3/\1 10/

The function t represents in the original process the time to reach
state R for the first time. Thus the mean first passage time to R,
starting in state N, is 8/3, and, starting in state 8 it is 10/3. These values
agree with those found in the matrix M calculated from the Z matrix
in § 4.4. Similarly, from Theorem 3.3.5, we have that the Var([t] is
given by the column vector 7= (2N —I)r—715. Calculating this, we

have
(56/9
Ty = .
)

The vector 7, gives us the variance of the time before absorption. In
terms of the original process this is the variance of the first passage
time to state R. Again the above values check with those found from
the matrix M, obtained in § 4.5.

By successively making each state absorbing we could find all the
non-diagonal elements of M and M, for an ergodic chain. However,
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the use of the Z matrix is much more natural and convenient. We
would normally use the absorbing methods only to obtain the more
detailed information not available by the Z matrix methods.

As an example of a cyclic chain we consider Example 2a. We make
states s; and s; absorbing. We then have

S3 S4 S5 S3 S4 Ss

53 0 1/2 0 S3 2 2 1

Q=ss11z 0 1 N=s;{2 ¢ 2

S5 0 1 0 ss \2 4 3

83 S4 Ss

s /2 10 4 ss /5 83 /40
No=354§2 12 6 T =84 | 8 Ty = S4 | 48
S5 2 12 6 S5 9 Ss 48

The entries of N and N; give the mean and variance of the number of
times that the process is in each state before reaching ss. (The state
s; can only be reached through s;.) The vectors r and = give the
mean and variance of the steps needed to reach sp, hence of the first
passage times. We can verify that the components of = and 72 agree
with the corresponding entries (in the second column) of M and Mq.in
§5.2.

As a second application of absorbing theory to ergodic chains,
consider the following problem. Assume that we have an ergodic
Markov chain with r states and that the process is observed only when
it is in a subset S of the states having s elements. A new Markov
chain is obtained : A single step in the new process corresponds in the
old process to the transition (not necessarily in one step) from a state
in 8 to another state in 8. Let s; and s; be two states of S. The new
trapsition probability will be found by finding the probability that the
original process starting in s; hits § for the first time at state s;, This
is the probability that it goes to s; in one step, plus the probability
that it goes to a state in § and from this state enters S for the first
time at state s;. Using the results of Chapter III we can easily find
these transition probabilities. To do this we relabel the states so
that those in S come first. We then write the transition matrix P
in the form N

S 8§

P S /T U
_S(RQ)'
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The new process will be an s-state Markov chain with transition
matrix which we denote by P. We shall now find this matrix.
Assume a starting state in 8. Then the probability of going to each
of the states in 8 on the first step is given by the matrix 7. To take
more than one step, it must enter a state of §, with probabilities given
by U. Then from a given state of § it enters 8 for the first time at
state s; with probabilities given by (/—@)-1R (see Theorem 3.3.7).
Putting all of this information together, we have that

P=T+UI-Q)R.
It is easily seen that P again represents an ergodic chain.

6.1.1. THEEOREM. Let a=(ai, as, ..., Qqs As+1, ..., ar) be the fized
probability vector for P. Then ai=(ai, as, . .., as), normalized to
have sum 1, is the fixed probability vector for P.

PROOF. Since an ergodic chain has a unique probability vector fixed
point, it is sufficient to prove that «; is a fixed vector for P. Let
ag=(ss1, . - ., Gr). 'Then we can write a= (a1, ¢2). Since « is a fixed
vector for P we have

ar = T+ R
and

o = o U+ as@.
From this last equation we have as(l —@)=0c;U or
ay = o U(I —Q)2.
Putting this result in the first equation we have
a1 = a1l + ;U —-Q)1R

which states that oy is a fixed vector for P.
As an example of the above procedure let us consider Example 6.
The transition matrix for this random walk example is

S Sy S3 Sy S5

s1 0 gy Yy 1y
Sg Yg 13113 0 O
P = S3 0 1/3 | 1//3 1/3 0
sS4 0 0 |13 1z 13
S5 Yg g |1g Yy ©

The fixed vector for this Markov chain is = (4/3s, /38, *2/38, %38, 4/38)-
Assume now that the process is observed only when it is in s; and ss.
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Then we find the new transition matrix as follows. From the dis-
cussion of this example in 3.5.5 we have

21y 12/ 4,
I-Q = {5 245 ¥,
o 9y 12
Thus the new transition probabilities are

P=T+UI-Q) R

i

21/9 12/9 4/9 0 1/3

(0 1/4)-i~(1/4 s 1(/)4) 15/ 24fg  B[g 0 0

1/3 1/3 1/3 0 9/9 9/9 12./9 1/4 1/4

- 10/y;, 17[p; ’
The fixed vector for P is a= (4/13, 9/13) which is simply the first two
components of « normalized to have sum 1.

For a cyclic example, let us consider the random walk Example 2a.
We observe the process in 8 ={s;, sz, s3}.

010‘00

1/2 0 1/2 0 0
P = 0 Yz 011 0 ;o= (Ys, Y4, 14, a4, Ys).
0 0 1y| 0 1
0 0 0 1 0
0 1 0 0 O
- 1 —1n\=1/0 0 1,
P={1, 0 1,l+f 0 o .
—1 1 0O 0 O
1} 1/2 QO 1/2 1)
0 1 0
P=1{1Ys 0O 13}, a= (s 25 2s).
0 Yo 1Yy

P differs only slightly from the first three states of P. The process
can leave S only through s3, and must return there. Hence only pas

is changed. We note that, in accordance with § 6.1.1, & consists of
the first three components of « normalized.
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§6.2 Application of ergodic chain theory to absorbing Markov
chains. In the preceding section we saw that absorbing Markov chain
theory could furnish us with new information about ergodic chains.
We shall now show that certain results of absorbing chain theory can
be obtained by using the theory of ergodic chains.

We will need the following generalization of § 5.1.2(b).

€.2.1 TurmorEM. Every Markov chain with a single ergodic set has a
unique probability vector fizxed point. This vector has positive com-
ponents for the ergodic states, and zero for the transtent states.

PROOF. Let us write the transition matrix in canonical form.

The matrix S is the transition matrix of the ergodic set; hence it has
a limiting vector a;>0. Let a=(x1, «z), where o2 is a vector with s
components all 0. Then we see that « is a probability vector fixed
point of P. Conversely, let us suppose that 8= (81, B2) is a probability
vector fixed point. Then Bo@=pf2. Hence P2Q7=PB3, and Bo=
lim Bx@»=0. Thus B; is a probability vector fixed point of §; hence

n—

by § 5.1.2(b) we have 81=«;, and f=a.

Assume now that we have an absorbing Markov chain with r states,
r—s of which are absorbing, and s non-absorbing. As usual we shall
label the absorbing states so that they come first. The transition
matrix then has the form:

{0
p=(_.__d).
R |Q

We now change this process into a new process as follows. Let
m={py, Pe, . .., Pry be the initial probability vector for the given
process. Whenever this process reaches an absorbing state it is
started over again with the same- initial vector =. The resulting
process is a new Markov chain with transition matrix given by

P1, P2 «+ - Pr—s ! Pr—s+1s -+ ., Pr

P P1, P2y« « s Pr—s | Pr—s+ls - -+ Pr
B P1y P2« + - s Pr—s Pr—s+1y -« 5 Pr

B Q
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The matrix P’ is obtained by making all rows corresponding to absorb-

ing states the same vector 7. Let mi=(p1,...,»—) and my=
(Pr—s+15 - - - » pr). Then P’ may be written in the form:
fr—sﬂ'l ‘ 'fr—s‘77'2
P = |
R ' @

6.2.2 TarOREM. The matriz P’ represents a Markov chain with a
single ergodic set.

PROOF. Let I be the set of states for which = has positive components.
Let J be the set of all states to which the process can go starting in I.
It is clear that from s,, a=1,2,...,r—5, we can go only to states
ind. However, from any state we can go to some s,, since the original
chain was absorbing. Hence all states in J§ are transient.

Since from any state we can go to an s, and from this to all states
in I, and hence in J, we see that J is an ergodic set. Hence the new
process has the single ergodic set J, and at least one s; € 4.

Let o be the fixed probability vector for P’. Write « in the form
a=(01, as) where ay= (a1, @2, . . . , Qrs) ANd 0= (Gr_sr1, Crogt2, - - « 5 Ar)e
Then, since a.P’' =«a, we have the two equations

air-smit o R = a3 (1)
a1br—sma + w2 = as. (2)
1
o.
o‘lfr—s

The result @={ai, @»} will still be a fixed vector; remembering that
@16,-s=1, our equations become

By §6.2.1 we know that «; >0, hence «165>0. Let é=

m+ &Rk =a (1)

mo+ G2 = da. (29
From equation (2') we have

@y = mo(l —Q)-L.

This inverse exists because the original chain was absorbing. From
Theorem 3.3.5 we see that @; gives us the mean number of times in
each of the states before absorption, for the given initial probability
vector 7.

Using the result just obtained in equation (1’) we have

) = 77'1+7T2(I—Q)“1R.
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The vector m; gives the probability in the original process of being
absorbed at each absorbing state on the initial step, and 7o(/ —Q)~1R
gives this probability for being absorbed in each absorbing state if the
initial step is to a non-absorbing state. Hence & gives the proba-
bilities for absorption in each of the given states, for the initial
probability vector .

We thus see that the single vector ¢ furnishes us with both absorption
probabilities and the mean number of times in a transient state before
absorption. This method is more economical than the method of
Chapter III, if we are interested in a given initial probability vector.
It must be remembered, however, that Chapter III furnishes the
solution for any initial vector.

Let us carry out this procedure for the random walk Example 1.
The transition matrix is

S1 S5 Sz 83 S84

si /1 0 0 0 O\
ss £ 01 0 0 0\
P =g g 0 0 p O |
S3 6 0 ¢g 0 »p
S4 0 »p 0 ¢

Let »=(0,0,0,1,0). Then the new Markov chain obtained by
the above procedure is

1 00 0 1 0
S5 0 0 01 ¢
P =5 g 0 0 p O
S3 9O 0 g 0 »
84 O p 0 g O

This is the same as Example 3 of § 2.2, with the states reordered.

The fixed vector is
1
- 2 52
« 2+p2+q2(Q:P>9,1:P)-

Thus

«a

= piige (¢% p% ¢, 1, p).

From this we see that, in the original process, the absorption proba-
bilities are ¢2/(p%-+q?) for state s; and p?/(p%+q?) for state ss. The
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mean number of times in each of the states sz, s3, s4 are q/(p®+¢?),
1/(p?+4q2), and p/(p2+q?) respectively. This is in agreement with the
results found in § 3.4.1.

If we let #=(0,0, 0, 0, 1), then the resulting chain is cyclic with
d=2. The same is true if #=(0,0,¢,0,d), d=1—c. We will work
out this example.

I3 0 0 ¢ 0 d
S5 0 0 ¢c 0 d
P = sy g 0 0 p O
S3 0 0 g 0 p
S4 0 p 0 g O

In calculating & it is simplest not to find « first. In solving the
equation &P’ =a, the condition @ + @z =1 is very helpful.

1
p2+q2

(g2 + p2qc — pq*d, p+ pg’d — pqc,

g =
g+p%—pgd, 1 —gc—pd, p+gq°d—pge).
If we let p=qg=1/3, we obtain
@ = (Yot slc—d), Ho—1a{c—d}, 1+ /o(c—d), 1, 1 = /o(c~a)).

The first two components furnish the probabilities of absorption in
s1, 85 for the chain starting with #. As is to be expected, the larger ¢
is, the more likely it is that the process is absorbed in s;. The last
three components furnish the mean number of times in a state before
absorption. It is interesting to note that for s3 this is 1, no matter
what c is.

An interesting application of the last result can be made to ergodic
chain theory. Let P be the transition matrix for an ergodic chain
with fixed probability vector «. Let us make one of the states, say s;,
into an absorbing state. Then every time this process reaches s; we
will start it again with the probabilities =={p,;}. Then by the above
result the fixed vector for this new process will give us the mean
number of times in each state before absorption. But the new process
is just the original process, and time before absorption means time
between occurrences of state s;. Hence by re-normalizing « to have
first component 1 we will obtain the mean number of times in each
state between occurrences of state s; for the original ergodic chain.
Since s; was arbitrary, this gives us the following theorem :

6.2.3 THEOREM. Let « be the fixed probability vector for an ergodic
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chain. Then the mean number of times in state s; between occurrences
of state s; is aj/a;.

Note that if the transition matrix for the chain has column sums 1,
then the fixed vector has all components equal. This means, by this
theorem, that the mean number of times in each of the other states,
between occurrences of a given state, is the same.

6.2.4 CoroLLARY. Let & be the vector obtained from o by deleting
component 1; let p be the I-th row of P with component [ deleted; let @
be the maitriz obtained from P by deleting row I and column 1; and let

= —-Q) L, r=N¢ Then

= PN: (a)

8w
R

8~

PROOF. In (a) the left side is the mean number of times in each
of the other states between occurrences of s;. The right side is the
same quantity computed from absorbing chain theory. In (b) we
have my computed from regular and absorbing chain theory, respect-
ively.

6.2.5 THEOREM. If Z isthe fundamental matriz of an ergodic chain,
and A s its limiting matriz, and N is the fundamental matriz of the
absorbing chain obtained by making s; absorbing, and we construct N*
from N by inserting an l-th row and I-th column of all zeros, then

Z = A+ (I—AN*I-A). (3)

PrROOF. Without loss of generality we may choose i=1. Then,
using the notation of § 6.2.4, P and A are of the form

Fes) )
P = e | —— A4 = ,
§-Q¢ 1 @ aif | &a
and hence,

(1“1011[ ) < 1-—(11 f —a )
I-P = — -4 = i ,
Q¢ 1 1-Q ‘ —a¢ | I-¢a

and
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0| —pN
- P)N* = w_-—__._—w_>
0 I

Then

aipT —pN + pra
(I— PYN* (I—4) = < 0 prTe )
—a1¢ I—-¢ta
Making use of § 6.2.4,
(I-P)N*(I-4)=1-4
([-P+AfA+ I -AWN*I-4)] = A+(I—-P)N¥I-A4)
=A+(I-4)
=1

Hence
A+(I-ANKI-4) = (I-P+A) = 2.

It is interesting to note that in (3) we may use any IV* obtained by
making any one state absorbing.

6.2.6 COROLLARY. If in §6.2.5 we let N={n0;} and N¢= {10y},
and nWy;=nDy =10, =0 if i=1, then

2y = a5+ nhy— Z apnttyy —ath; + a4 Z aptDy. (a)
k1l kE#1
miy = (1/az)(nWy —nWy+dy)+ 10— 10, (b)

These quantities are obtained directly from § 6.2.5, making use of
§ 4.4.7 for (b). These formulas may be used to derive many interesting
results. A few of these are given below. The number n{ly; is the
number of times the process is in s;, starting in s;, before reaching s;
for the first time.

6.2.7 COROLLARY.
Wy o
(a) my+my = 7nﬂ+a—j (1=hMyy), for, 5 # L.

(b) my +my a7 nO %

a; iy @
PROOF. From § 6.2.6(h), if 1, js£1{,
mig+my = mi+10; = (1az)(n'Dj; —nij +dy) + mu

g —dy Wy —nly+dy

—h® =
1—Athy (0, ny;

i

Hence (a) follows.
myr+my = W5+ (Hagnthy; — 1y,



Sec. 3 FURTHER RESULTS 123

Hence {b) follows.

1 = myr+ My _ ‘Yb(l)jj/aj.
my+my  nDyja

Hence (c) follows.

If in the Land of Oz example we make R absorbing, we obtain
(see § 6.1), .
iz s
N =( ? )
23 83
A+ (I-ANHI—-4)

2y 1y 2

= {2 15 2s

s s 2[s
85 —is =25\ /0 O O 3s =15 —2s
=¥ s =Rs {0 s fagf —=%s s =%s
—2f5 —1fs 35 0 2/ 8g —2fy =1 3/
86 3 —14
=] 663 6)l=2
~14 3 86

as we saw in § 4.3. Using results from § 4.4 and from §6.1, we can
illustrate Corollaries 6.2.6 and 6.2.7.

mys = (ljas)(nss—nys)+ty—ts
= (3f2)®s=2%/a)+8/a =103 = 8/

nss
msptmps = = or 10541005 = (9/5)/(%/s).

§ 6.3 Combining states. Assume that we are given an r-state
Markov chain with transition matrix P and initial vector =. Let
A={Ay A, ..., A} be a partition of the set of states. We form a
new process as follows. The outcome of the j-th experiment in the
new process is the set Ay that contains the outcome of the j-th step
in the original chain. We define branch probabilities as follows: At
the zero level we assign .

PX‘,,[fo € Ad (1)
At the first level we assign

Pl‘,.,[fl € Ajlfo € Ai}
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In general, at the n-th level we assign branch probabilities,
Pr,[fn e Alfui € As A - - - Af1 € Ay Nfo € Ayl (2)

The above procedure could be used to reduce a process with a very
large number of states to a process with a smaller number of states.
We call this process a lumped process. It is also often the case in
applications that we are only interested in questions which relate to
this coarser analysis of the possibilities. Thus it is important to be
able to determine whether the new process can be treated by Markov
chain methods.

6.3.1 DeriNvitioN. We shall say that a Markov chain ts lumpable
with respect to a partition A={Ay, As, ..., A} if for every starting
vector m the lumped process defined by (1) and (2) is a Markov chain
and the transition probabilities do not depend on the choice of =.

We shall see in the next section that, at least for regular chains,
the condition that the transition probabilities do not depend on =
follows from the requirement that every starting vector give a Markov
chain.

Let pia,= Z Pik- Then pi4, represents the probability of moving

Sy EA;

from state s; into set A; in one step for the original Markov chain.

6.3.2 THEOREM. 4 necessary and sufficient condition for a Markov
chain to be lumpable with respect to o partition A={Ay, As, ..., As}
is that for every pair of sets Ay and Aj, pia, have the same value for
every sg in Aq. These common values {Pi;} form the transition matrixz
for the lumped chain.

PROOF. For the chain to be lumpable it is clearly necessary that
Pl',,[fl € A;‘f() € Ag]

be the same for every = for which it is defined. Call this common
value $y;. In particular this must be the same for = having a 1 in its
k-th component, for state s; in A;. Hence pra, =Pri[f1 € Aj]=py for
every si in A;. Thus the condition given is necessary. To prove it is
sufficient, we must show that if the condition is satisfied the probability
(2) depends only on As; and A;. The probability (2) may be written
in the form
Pr,[f; € A/}

where =’ is a vector with non-zero components only on the states of A;.
It depends on 7 and on the first n outcomes. However, if Pry[f; € A;]=
Pss for all s; in A,, then it is clear also that Pr,/[fi € A;]=px. Thus the
probability in (2) depends only on A, and A,.
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6.3.3 ExampLe. Let us consider the Land of Oz example. Recall
that P is given by

R N §
R /iy 1y 14

P=N {1 0 1

S \1s Yi 1,
Assume now that we are interested only in “good” and “bad”
weather. This suggests lumping R.and 8. We note that the proba-
bility of moving from either of these states to N is the same. Hence

if we choose for our partition A=({N}, {R,8})=(G, B), the condition
for lumpability is satisfied. The new transition matrix is

G B

G (O 1
P = .
B \1, 3/4)

Note that the condition for lumpability is not satisfied for the
partition A=({R}, {N,8}) since pya,=2n¥r=1/s and psis,=psp=1/s

Assume now that we have a Markov chain which is lumpable with
respect to a partition A={A;, ..., As. We assume that the original
chain had r states and the lumped chain has s states. Let U be the
sxr matrix whose ¢-th row is the probability vector having equal
components for states in A; and 0 for the remaining states. Let V be
the r x s matrix with the j-th column a vector with 1’s in the com-
ponents corresponding to states in A; and 0’s otherwise. Then the
lumped transition matrix is given by

P = UPV.
In the Land of Oz example this is
U P 14
1, 1), 1 0 1
. 0 1 © Jo M s
P = Y, 0 1pdf1 0
oy 0 1
Yy 1y 1,/ \0 1
U PV
1, 3,

(0 1 0 0 1
= ‘ ) 0 1 = ( )
e O 13 s B4
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Note that the rows of PV corresponding to the elements in the
same set of the partition are the same. This will be true in general
for a chain which satisfies the condition for lumpability. The matrix
U then simply removes this duplication of rows. The choice of U is
by no means unique. In fact, all that is needed is that the i-th row
should be a probability vector with non-zero components only for
states in A;. We have chosen, for convenience, the vector with equal
components for these states. Also it is convenient for proofs to
assume that the states are numbered so that those in A; come first,
those in Ay come next, etc. In all proofs we shall understand that this
had been done.

The following result will be useful in deriving formulas for lnmped
chains.

6.3.4 TueoreMm. If P isthe transition matrix of a choin lumpable
with respect to the partition A, and if the matrices U and 'V are defined
—as above—uwith respect Lo this partition, then

VUPV = PV. (3)

¥rROOF. The matrix VU has the form

Wi ! 0 0
VU = 0 W 0 ,
0 0 Ws

where Wi, W3, and W3 are probability matrices. Condition (3) states
ithanz the columns of PV are fixed vectors of VU. But since the chain
s lumpable, the probability of moving from a state of A; to the set Ay
is the same for all states in A;, hence the components of a column of
PV corresponding to A; are all the same. Therefore they form a
fixed vector for W;. This proves (3).

6.3.5 Turorem. If P, A, U, and V are as in Theorem 6.3.4, then
condition (3) is equivalent to lumpability.

PROOF. We have already seen that (3) is implied by lumpability.
Conversely, let us suppose that (3) holds. Then the columns of PV
are fixed vectors for VU. But each W; is the transition matrix of an
ergodic chain, hence its only fixed column vectors are of the form c¢£.
Henee all the components of a column of PV corresponding to one set
A; must be the same. That is, the chain is lumpable by § 6.3.2.




SEc. 3 FURTHER RESULTS 127

Note that from (3)

P2 = UPVUPY
= UPy
and in general
Prn = UPnV.

This last fact could also be verified directly from the process.

Assume now that P is an absorbing chain. We shall restrict our
discussion to the case where we lump only states of the same kind.
That is, any subset of our partition will contain only absorbing states
or only non-absorbing states. We recall that the standard form for
an absorbing chain is

We shall write U in the form

U, | 0
U= ,
0 | U,

where entries of U; refer to absorbing states and entries of Uj to non-
absorbing states. Similarly we write ¥V in the form

Vi o
V= .
0 Ve

Then, if we consider the condition for lumpability, VUPV =PV,
we obtain in terms of the above matrices the equivalent set of con-
ditions:

VlUlVi = V1 (4&)
VU2 RV = RV, (4b)
VzUQQ Vz = QVz (4())

Since U,V 1=1, the first condition is automatically satisfied.
The standard form for the transition matrix P is obtained from

P=UPV

)
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Multiplying this out we obtain

1 ) O
P .
( URVy | UsQVe )

B = U,RV,
Q@ = UQV2.

From condition (4c¢) we obtain

Hence we have

Q2 = U@V, UV

U.Q2V,.

More generally we have
Qr = U@V

From the infinite series representation for the fundamental matrix
N we have

Wy

I+Q+Q2+ - ..
UdVa+UnQVedt - - -
UgI+Q+Q%+ -+ )V,
UsNV,.

iy

Il

From this we obtain

= UNVy¢
UN¢
Usr

S P PO Y
I

i

and
B = NR = UgNVgUzRVl
B = U,NRV,
B = U,BV,.

Hence all three of the quantities NV, r, and B are easily obtained for the
lumped chain from the corresponding quantities for the original chain.

An important consequence of our result £= Uqr is the following.
Let A; be any non-absorbing set, and s; be a state in A;. We can
choose the i-th row of Us to be a probability vector with 1 in the s
component. But this means that ¢; =t for all sy in A;. Hence when
a chain is lumpable, the mean time to absorption must be the same
for all starting states si in the same set Ay

As an example of the above, let us consider the random walk example
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with transition matrix
S; S35 S 83 84

s1 1 0 0 0
S5 0 1 ! 0 0
P=g{ 1y 0 L0 1 o0
S3 0 012 0 1/,
s4 0 Y2l 0 1y 0

We take the partition A=({s;, ss}, {s2, 84}, {sa}). For this partition
the condition for lumpability is satisfied. Notice that this would not
have been the case if we have unequal probabilities for moving to the
right or left.

From the original chain we found

Sg 83 Sy

N=s {1 2 1
s¢ \Ye 1 3/

3

T=}4

3
S1  Ss

sz /3s 14
B=s3 {12 1s
ss \/a 34

The corresponding quantities for the lumped process are

0 0 0 0 1 0 0
Y2 Y 0 0 0 o 1 0 0 o0 1 0 0
P=f o0 0 Y01, Yy 0 0 1y O 01 0
000 01 0/\ 0 0 Y2 0 1 0 0 1

0 Yy 0 1y O 0 1 o/

A, Aq A
4, 1 0 0

=A; |2 0 12
As V0 1 0
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3/, 1 15\ /1 0\
Yy 0 1y

N = 1 2 1 0 1
0 1 0

Yy 1 33/ \1 0

e a
g 0 1y 1
B=</ /)1/2 1/2<)
O 1 0 1

1y 3,

Il

Ao (1
As \1 ‘

Assume now that we have an ergodic chain which satisfies the con-
dition for lumpability for a partition A. The resulting chain will be
ergodic. Let 4 be the limiting matrix for the lumped chain. Then
we know that

PyPry ... 4 Pn

4 = lim
" — o0 n
- . UPV+UPV+ -.- +UPV
A = lim
n—> n
A =UA4V.

In particular, this states that the components of &are obtained from
o by simply adding comporients in a given set. Similarly from the
infinite series representation for the fundamental matrix Z we have

Z=UZV.

There is in general no simple relation between M and #. However,
the mean time to go from a state in Ay to the set A;, in the original
process, is the same for all states in A;. To see this we need only make
the states of A; absorbing. We know that the mean time to absorption
is the same for all starting states chosen from a given set. If, in
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addition, A; happens to consist of a single state, then 72y may be
found from M.

We can also compute the covariance matrix of the lumped process.
As a matter of fact we know (see § 4.6.7) that the covariances are
easily obtainable from C even if the original process is not lumpable
with respect to the partition, that is, if the lumped process is not a
Markov chain. In any case

é = Z Ckl.
Spin A,
Syin A;
Let us carry out these computations for the Land of Oz example.
For A we have

0 1 0] s s s\ (01
A = 2f 1 2 1 0
(1/2 0 1/2) /s s 2[5
s s 25/ \o 1
(1/5 “/5)
S\ s
o 1 o 86/75  B3fzs  —14[25\ [0 1
Z = ( /75 3/q5 6/ 441 O
1, o 1)
& "\ - Yl 3 88/75/ \0 1

. ( 32/ — 12125\
6 = )
—12/125 12/155
R N S
R /5, 4 10
M=X1{5%; 5 8
s \10f; 4 s),

From the fundamental matrix Z we find,

N B

R N (5 1
M = .
B \4 5/4)
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Note that the mean time to reach N from either R or S is 4. Here
N in the lumped process is a single element set. This common value
is the mean time in the lumped chain to go from B to N. Similarly,
the value 5 is obtainable from M. We observe that the mean time
to go from N to B is considerably less than the mean time to go from
N to either of the states in B in the original process.

§ 6.4 Weak lumpability. In practice if one wanted to apply Markov
chain ideas to a process for which the states have been combined,
with respect to a partition A={Aj, As, ..., A}, it is most natural to
require that the resulting process be a Markov chain no matter what
choice is made for the starting vector. However, there are some
interesting theoretical considerations when we require only that at
least one starting vector lead to a Markov chain. When this is the
case we shall say that the process is weakly lumpable with respect to the
partition A. We shall investigate the consequences of this weaker
assumption in this section. We restrict the discussion to regular
chains. The results of this section are based in part on results of
C. K. Burke and M. Rosenblatt.t

For a given starting vector =, to determine whether or not the
process is a Markov chain we must examine probabilities of the form

P!‘,.,[fn.;_l € Ag|fn € Ag/\ L /\fl EAj /\fu EAi:[. (1)

For a given 7 the process will be a Markov chain if these probabilities
do not depend upon the outcomes before the n-th.

We must find conditions under which the knowledge of the outcomes
before the last one does not affect the probability (1). ILet us see how
such knowledge could affect it. Given the information in (1), we know
that after n steps the underlying chain is in a state in A;, but we do
not know in which state it is. We can, however, assign probabilities
for its being in each state of A;. We do this as follows: For any
probability vector 8, we denote by £/ the probability vector formed by
making all components corresponding to states not in A; equal to 0
and the remaining components proportional to those of 8. We shall
say that 7 is B restricted to A;.  (If B has all components 0 in A; we do
not, define B7.) Consider now the information given in (1). The fact
that fo € A; may be interpreted as changing our initial vector to =t
Learning then that f; € A; may be interpreted as changing this vector
to (#tP)I. We continue this process until we have taken into account
all of the information given in (1). We are led to a certain assignment
of probabilities for the states in A;. From these probabilities we can

¥ C. K. Burke and M. Rosenblatt, ““A Markovian function of a Markov chain,”’ Annals
of Mathematical Statistzcs, 29: 1112-1122, 1958.
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easily compute the probability of a transition to A, on the next step.
But note that this probability may be quite different for different kinds
of information. For example, our information may place high proba-
bility for being in a state from which it is certain that we move to A..
A different history of the process may place low probability on this
state. These considerations give us a clue as to when we could expect
that the past could be ignored. Two different cases are suggested.
First would be the case where the information gained from the past
would not do us any good. For example, assume that the probability
for moving to the set A, from a state in A; is the same for all states
in A,. Then clearly the probabilities for being in each state of A,
would not affect our predictions for the next outcome in the lumped
process. This is the condition we found for lumpability in §6.3.2.
A second condition is suggested by the following: Assume that no
matter what the past information is, we always end up with the same
assignment of probabilities for being in each of the states in A,. Then
again the past can have no influence on our predictions. We shall
see that this case can also arise.

We have indicated above that the information given in (1) can be
represented by a probability vector restricted to A,. This vector is
obtained from the initial vector = by a sequence of transformations,
each time taking into account one more bit of information. That is,
we form the sequence

7 o= 7t

7o = (m P)

my = (ﬂz.P)k (2)
Tm = (Wm-lp)s

We denote by Y, the totality of vectors obtained by considering all
finite sequences A;, 4;, . . ., A, ending in A,

6.4.1 TrreoreEM. The lumped chain is a Markov chain for the initial
vector m if and only if for every s and ¢ the probability Pryfy € A¢] is
the same for every B in ¥s;. This common value ts the transition
probability for moving from set A; to set A, in the lumped process.

PROOF. The probability (1) can be represented in the form
Prg(f; € A/} for a suitable 8in Y,;. To do this we use the first n outcomes
for the construction (2). By hypothesis this probability depends only
on s and ¢ as required. Hence the lumped process is a Markov chain.
Conversely, assume that the lumped chain is a Markov chain for initial
vector ». Let B be any vector in ¥;. Then f is obtained from a
possible sequence, say of length n, A4, Ay, ..., A;.  Let these be the



134 FINITE MARKOV CHAINS Cuar. VI

given outcomes used to compute a probability of the form (1). This
probability is Prgf; € A;] and by the Markov property must not
depend upon the outcomes before A;. Hence it has the same value
for every g in Y.

6.4.2 ExamrrLe. Consider a Markov chain with transition matrix

A, A,
Ay /14 " Ha e
P =
A 0 | s 3/
2 s | s 0

Let A=({s1}, {sz, s3}). Consider any vector of the form (1 - 3a, a,
2a). Any such vector multiplied by P will again be of this form.
Also any such vector restricted to A; or A will be such a vector.
Hence for any such starting vector the set ¥; will contain the single
element (1,0, 0) and Y, the single element (0, /3, 2/3). Thus the
condition of § 6.4.1 is satisfied trivially for any such starting vector.
On the other hand assume that our starting vector is 7#=(0, 0, 1).
Iet mi=(=xP)2=(0,1,0) and == (m P)2=(0, 1/, 3/s). Then 7, and
mg are in ¥y and Pr,[f1 € A1]=0 while Pr,[f; € A;]=133/45. Hence this
choice of starting vector does not lead to a Markov chain.

We see that it is possible for certain starting vectors to lead to
Markov chains while others do not. We shall now prove that if there
is any starting vector which gives a Markov chain, then the fixed
vector « does.

6.4.3 THEOREM. Assume that a regular Markov chain ts weakly
lumpable with respect to A={A;, As, ..., A;}. Then the starting
vector o will give a Markov chain for the lumped process. The tran-
sition probabilities will be

Z;ij = Pl‘ax[fl € Aj]

Any other starting vector which yields a Markov chain for the lumped
process will give the sume transition probabilities.

PROOF. Since the chain is weakly lumpable there must be some
starting vector = which leads to a Markov chain. Let its transition
matrix be {f}. For this vector »

Pr.[f, € Aj|fn-1 € Ai Nz € Ax] = Py

for all sets for which this probability is defined. But this may be
written as
P,,pn-v'i[fz IS A;‘fl e A; £Nfp € Ak].
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Letting n tend to infinity we have
Pr.[fo € Aj}fl € A Nfo € Ax] = Py

We have proved that the probability of the forn (1), with « as
starting vector, does not depend upon the past beyond the last out-
come for the case n=1. The general case is similar. Therefore, for o
as a starting vector, the lumped process is a Markov chain. In the
course of the proof we showed that i for a starting vector = is the
same as for «, hence it will be the same for any starting vector which
yields a Markov chain.

By the previous theorem, if we are testing for weak lumpability we
may assume that the process is started with the initial vector «. In
this case the transition matrix P can be written in the form

P -UPV

where V is as before but U is a matrix with i-th row of. When we
have lumpability there is a great deal of freedom in the choice of U
and in that case we chose a more convenient . We do not have this
freedom for weak lumpability.

We consider now conditions for which we can expect to have weak
lumpability. If the chain is to be a Markov chain when lumped then
we can compute P? in two ways. Computing it directly from the
underlying chain we have P:=UP2V. By squaring P we have
UPVUPV. Hence it must be true that

UPVUPYV = UPPV.
One sufficient condition for this is
VUPY = PYV. (3)

This is the condition for lumpability expressed in terms of our new U.
It is necessary and sufficient for lumpability, and hence sufficient for
weak lumpability. A second condition which would be sufficient for
the above is

UPVU = UP. (4)

This condition states the rows of UUP are fixed vectors for VU. The
matrix VU is now of the form

Wil 0|
0 WZ;O ,
|

o

VU =
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where W; is a transition matrix having all rows equal to of. To say
that the i-th row of UP is a fixed vector for VU means that this
vector, restricted to A;, is a fixed vector for W;. But this means that
the components of this vector must be proportional to «/. Hence we
have

(iP)i = . (5)

This means that if we start with «, the set Y;, obtained by construction
(2), consists, for each i, of a single element, namely of. Conversely,
if each such set has only a single element, then (5) is satisfied and
hence also (4). To say that Y; has only one element for each i is to
say that when the last outcome was A; the knowledge of previous
outcomes does not influence the assignment of the probabilities for
being in each of the states of A;. Hence we have found that (4) is
necessary and sufficient for the past beyond the last outcome to
provide no new information, and is sufficient for weak lumpability.

Example 6.4.2 is a case where (4) is satisfied. Recall that we found
that each Y; had only one element.

We can summarize our findings as follows: We stated in the intro-
duction that there are two obvious ways to make the information
contained in the outcomes before the last one useless. One way is to
require that even if we know the exact state of the original process
our predictions would be unchanged. This is condition (3). The
other is to require that we get no information at all from the past
except the last step. This is condition (4). Iach leads to weak
lumpability. We have thus proved:

6.4.4. TureorEM. Fither condition (3) or condition (4) is sufficient
Jor weak lumpability.

There is an interesting connection between (3) and (4) in terms of
the process and its associated reverse process (see § 5.3).

6.4.5 THEOREM. 4 regular chain satisfies (3) if and only if the
reverse chain satisfies (4). -

PROOF. Assume that a process satisfies (3). Then
VUPY = PV.

Let Py be the transition matrix for the reverse process, then P=
DPTyD-1, Hence

VUDPT D=1V = DPT D1V
or, transposing,

VID-1PyDUTVT = VTD-1PyD,
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and
VID-1P,DUTYVI D= = VI D-1Pg.

We observe that V7D-1=D-1U. Furthermore, VUD is a sym-
metric matrix so that VUD=DUTVT or DUTVTD-1=VU. Using
these two facts, our last equation becomes

DiUPVU = D1UP,.

Multiplying on the left by D gives condition (4) for Po. The proof
of the converse is similar.

6.4.6 THEOREM. If a given process 18 weakly lumpable with respect
to a partition A, then so is the reverse process.

PrROOF. We must prove that all probabilities of the form
Pra[fl € At}fg € Aj NiseAp A --- N E At]
depend only on A; and A;. We can write this probability in the form

Pr.ffi e A;nfoe Ay Afae AN - Afn € A
Prjfoc A; N3 A A - - Afn € Ay

_ Pl‘,[fn ceAN - /\fg € An‘fz e A; /\fl S Ai] Prn[fl e Ay /\fz IS Aj]
- Prf, € As A - - Afs € Anlfz € Aj] Pr.[f; € 4] ’

By hypothesis the forward process is a Markov chain, so that the
first term in the numerator does not depend on A;. Hence this whole
expression is simply

Pr.f) € Ay A2 € Ay)
Pru{f’i € A’I]

which depends only on A; and A;.

6.4.7 TusorsM. A reversible regular Markov chain is reversible
when lumped.

PROOF. By reversibility,

P = DPTD1
and

BE=UPV.
Hence

P = UDPTD-Y.
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We have seen that VID-1=D-1U. Hence UD=DVZ.  Also
"DV =UTDH-1. Thus we have

P = DyrpPryrph-1,

and hence

b= DP TD"I‘
This means that the lumped process is reversible.

6.4.8 TurorEM. For a reversible regular Markov chain, weak
lumpability tmplies lumpability.

PROOF. Let P be the transition matrix for a regnlar reversible chain.
Then, if the chain is weakly lumpable,

UPPV = UPVUPV
or
UP(I-VU)PV = 0.

Since U= DVTD-1, we have
DyvrD-1P(I-VU)PV = 0,
or, multiplying through by D~ and using the fact that for a reversible
chain D-1P= PT -1, we have
VITPTD-Y{I-VU)PV = 0.
Let W=D-1—D-1VU. Then W=D-1-UTD-1U. We shall show

that W is semi-definite. That is, for any vector 8, BSTWpB is non-
negative. It is sufficient to prove that

> alcbzk>(i¢( > (Lkbk)2

kin A, kin A,

where d; is the i-th diagonal entry of D, or equivalently

Z ardib? > Z (axdybr)?.
kin A; ko A

But since the coefficients axd; are non-negative and have sum 1, this
is a standard inequality of probability theory. It can be proved by
considering a function f which takes on the value b; with probability
axds. Then iie inequality expresses that. M[f2]» (M[f])2; and, by
§ 1.8.5, this simply asserts that the variance of f is non-negative.

Since W, is semi-definite, W= X7X for some matrix X. Thus

VTPTXTXPV =0

or

(XPV)T(XPV) = o.

i
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This can be true only if

XPV = 0.

Hence

XTXPV =0,
or

DY I-VIYPV = 0,
or
I-VU)PV = 0.

Hence

PV = VUPYV.

Note that while we have given necessary and sufficient conditions
for lumpability with respect to a partition A, we have not given
necessary and sufficient conditions for weak lumpability. We have
given two different sufficient conditions (3) and (4). It might be
hoped that for weak Iumpability one of the two conditions would have
to be satisfied. It is, however, easy to get an example where neither
is satisfied as follows: If we take a Markov chain and find a method
of combining states to give a Markov chain, we can then ask whether
the new chain can be combined. 1If so, the result can be considered a
combining of states in the original chain. To get our counterexample,
we take a chain for which we can combine states by condition (3) and
then combine states in the new chain by condition (4); the result
considered as a lumping of the original chain will obviously be a
Markov chain, but it will satisfy neither (4) nor (3). Consider a
Markov chain with transition matrix

A s ) Yie 316 i 1/,
{

0 | Y1z 12| 56

0 | Y12 Y1z %

As s | Y32 3fas l 0

For the partition A=({s1}, {se, sa}, {s4}) the strong condition (3) is
satisfied. Hence we obtain a lumped chain with transition matrix

A, A, A

Ay /s Yg s
P=A | 0 g 5/g
Az \"/s s O

But this is Example 6.4.2, which satisfies (4). Hence we can lump it
by ({A1}, {42, As}). The result is a lumping of the original chain by
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A= ({s1}, {s2, s3, s4}). It is easily checked that neither (3) nor (4) is
satisfied in the original process for this partition.

We conclude with some remarks about a lumped process when the
condition for weak lumpability is not satisfied. We assume that P is
regular. Then if the process is started in equilibrium

Py = Pra[fn+1 € Aj‘fn € A}

is the same for every n. Hence the matrix P={py} may still be
interpreted as a one-step transition matrix. Also

di = Prffn € A¢]

is the same for all n. The vector &={d;} will be the unique fixed
vector for P. Its components may be obtained from « by simply
adding the components corresponding to each set. Similarly we may
define two-step transition probabilities by

f)(z)g = Pra[fn+z EAJ'fn & A1]

The two-step transition matrix will then be P® ={p®,}. Tt will no
longer be true that P2= P®.

We can also define the mean first passage matrix M for the lumped
process. It cannot be obtained by our Markov chain formulas. To
obtain M it is necessary first to find mi,4,, the mean time to go from

state ¢ to set A; in the original process. We can do this by making
all of the elements of A; absorbing and find the mean time to absorp-
tion. (A slight modification is necessary if ¢ is in A;.) From these
we obtain the mean time to go from A4 to Ay, by

2 *
myy = Z a kmk,A,.
kin A;

where a*; is the k-th component of o?.

§6.5 Expanding a Markov chain. In the last two sections we
showed that under certain conditions a Markov chain would, by
lumping states together, be reduced to a smaller chain which gave
interesting information about the original chain. By this process we
obtained a more manageable chain at the sacrifice of obtaining less
precise information. In this section we shall show that it is possible
to go in the other direction. That is, to obtain from a Markov chain
a Jarger chain which gives more detailed information about the process
being considered. We shall base the presentation on results obtained
by S. Hudson in his senior thesis at Dartmouth College.

Consider now a Markov chain with states sy, s;,...,s,. We form
a new Markov chain, called the expanded process, as follows. A state
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is a pair of states (s¢, s;) in the original chain, for which py>0. We
denote these states by sgy. Assume now that in the original chain the
transition from s; to s; and from s; to si occurs on two successive steps.
We shall interpret this as a single step in the expanded process from
the state sy; to the state sgry. With this convention, transition
from state suj to state sy in the expanded process is possible only if
j=Fk. Transition probabilities are given by

Pangn = Pin
Papan = 0 for j # k.

1l

Or
Panen = Pk

6.5.1 ExamprLe. Consider the Land of Oz example. The states
for the expanded process are RR, RN, RS, NR, NS, SR, 8N, SS. Note
that NN is not a state, since pny=0 in the original process. The
transition matrix for the expanded process is

RR RN RS NR NS SR SN S§
RR /2 g Yy O © 0O 0 O
RN 0 0 1Yy Yy 0 0 0
RS 0 0 0 0 1y 1y 1Yy
NR | 1y g4 Yy 0 O O O O
NS 0 0 0 0 0 1y g 1
SR Y15 g Yy 0 0 O O O
SN 0 0 0 1y l/z 0 0 0
S8 0 0 0 0 0 Yy Yy 1,

0
0

Let us first see how the classification of states for the expanded
process compares with the original chain. We note that p ;=
p®=Dpr >0 if and only if p(»=1;.>0. Hence if the original chain is
ergodic, so will the expanded process be, and if the original chain is of
period d, then the expanded chain will also be of period d. A state
S in the expanded process is absorbing only if 4=4 and only if state
s; is absorbing in the original chain.

Assume that the original chain is an absorbing chain. Let sy be
a non-absorbing state in the expanded process. Since the original
chain was absorbing, there must be an absorbing state sy such that it
is possible to go from s; to sp. Thus it is possible to go from sgj to
sqr in the expanded process. Thus the expanded process is also

absorbing.
It is interesting to observe that from the expanded process we can
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go back to the original process by lumping states. For this we form
the partition A={A1, A,, ..., A/} of the states in the extended chain,
with A; the set of all states of the form suy. Then the condition for
lumping is that pgs .4, should not depend on k. But this is true by

the Markov property for the original chain. The lumped process is
then the same as the original chain. In our example, the partition is
A = {(RR, SR, NR), (SN, RN), (RS, N8, §8)}.

We next compare the basic quantities for our expanded process
with the corresponding quantities for the original chain. We shall
treat only the regular case. The other cases may be treated similarly.

6.5.2 TurEOREM. Let a=/{a¢} be the fized vector for a regular chain
with transition mairiz P. Let d={auy} be the fized vector for the
expanded chain. Then

Qi) = QiPis-

PROOF. It is obvious that a(py is positive. Also,

Doagn = > apiy =) a =L

@ i3 i
Hence we need only prove that &={apy} is a fixed vector for the
transition matrix for the expanded process. That is,

Z AupP s (k= Aekn-
(i3]

But
D aupPaney = 2 aipupuds
3

(i)
Z aspndsx
J

= QppPrl

= Akl

Il

In our example, this gives for the fixed vector

Note that the result we have proved is intuitively obvious, since auy
represents the probability that after a large number of steps the process
will be in state s; and then move to state s;. The probability that this
will occur is clearly ap;.

6.5.3 THEOREM. The fundamental matria for the expanded chain is

Z = zapan} = {danen + (232 — ax) pra.
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PROOF.

©
zupan = dapan+ 2 (P ey —aan)

n=1

Il

0
dapen+ 2, (P D jepi ~ axpiy)

f=1
e

= dupun +011 D (P™—a)

n=Q
= dupan + perlzn — k).
For our example
RR RN RS NR NS SR SN
RR [ 1.373 .187 .187 —.080 —.080 —.147 —.147
RN [ —.160 .920 —.080 .320 .320 —.080 —.080
RS § —.203 —.147 853 —.080 —.080 .187 .187
5 VR 373 187 187  .820 —.080 —.147 —.147
NS B —.293 —.147 —.147 —.080 .920 .187 .187
SR 373 187 .187 —.080 —.080 .853 —.147
SN | —.180 —.080 —.080 .320 .320 —.080 .920
S8\ -.293 —.147 —.147 —.080 —.080 .187 .87

We next consider the mean first passage times for the expanded
process.

6.5.4 THEOREM.
1 _ (ij - Zlk).

QkPxl 273

M (el =
PROOF. From the matrix expression for M in terms of the funda-
mental matrix we have

My en = (@up ey — 2ap en + 2y en) —
@kl

(diun wn — Prlzie — ax)

i

1
APkt

—danwy + Prrlzn — ax) + 1]

1l

Y —peze — 2 )]
(1 —purlzs lh)"a;‘p;,-z

1 (zsx — 211)
kPt Qg

Again, as was to be expected, m ) «kn does not depend on 1.
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For our example, we obtain
RR RN RS NR NS SR SN S8

RR /5 Ty 62/3 10 10 10  10%/3 8/4
RN [723 10 = 93 6 6 913 10 72,
RS | 81/3 10%2/3 10 10 10 6%2/3 73 5
g VRS 713 623 10 10 10 10%/3; 8,
NS % 81/3 1023 10 10 10 623 73 5
SR {5 713 6%/3 10 10 10 10%/3 81/,
SN\ 725 10 913 6 6 91y 10 T2,

SS  \81/; 10%/3 10 10 10 623 Tl 5
In comparison, the mean first passage matrix for the original chain is

R N 8§
R /25 4 33

M =N {27 5 27
S \33 4 25

Consider next the reverse transition matrix for the expanded pro-
cess. The transition probabilities are

DEHP KD (@) |
Qg

Il

Dan

Hence
Papay = 0 if e #1
and
A (k) P (k1) (1)
Qt5)

_ CkPriPij
B AiPij
QAxPki
Tar
= Pir.

Hence the reverse process for the expanded process is simply the
reverse process for the original chain expanded.

One application of the expanded process is the following: It often
happens that the transition matrix P for a chain is not known and
must be estimated from data. If a large number n of outcomes for

il

D i) k)

i
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the process are known, then an obvious estimate is

(),

where y(™y; i1s the number of transitions from state s; to state s;, and
y); is the number of times the process is in state s;. To study the
properties of this estimate it is necessary to study the properties of
y™;; and y®; for a Markov chain. In particular, the limiting vari-
ances and covariances for these quantities are important. We know
that we can obtain the limiting covariances for y(™;, y; from the
fundamental matrix for the basic chain. But how do we obtain the
limiting covariances for y™ «;, y™ 4 ? We simply observe that these
are the limiting covariances for the number of times in a pair of states
for the expanded chain. Hence we can express these covariances in
terms of Z and 4 for the expanded process. We can then use Theorems
6.5.2, 6.5.3 to express the limiting covariances in terms of quantities
relating to the original chain. Carrying out this computation gives:

6.5.5 THEOREM. The limiting covariances for the expanded chains
are given by

Cuj)ykny = at‘/pijpklzjk + AxPrIPijZi + akpkzd(ij>(kz> — 3 pyagpr.
For our example these covariances are
2309 001 —.012 .001 —.065 —.012 —.065 —.157}
001 074 —.033 —.041 .007 .00l —.026 —.065 |
.012 —.033 .061 001 —.033 .027 .00l —.012
.001 041 .001 074 —.026 —.033 007 —.065
.065 .007 —.033 —.026 .074 .001 .041 .00l
012 .001 027 —.033 .00} .061 —.033 —.012
065 —.026 001  .007 .04l —.033 .074 .00l “5'
1587 —.065 —.012 —.0656 .001 —.012 001  .309/

Exercises for Chapter VI
For §6.1

1. Consider Example 2 with p=1/5. Assume that the process is observed
only when it is in the set {ss, s3, s4}. Find the resulting transition matrix.
Find M for the new process. What do the entries of M mean in terms of the
original chain?
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2. The following table gives the probability of a team ending up in a
certain position next year, given what its position is this year. For each
position in the second division, calculate the mean number of years to reach
the first division.

1 2 3 4 5 6 7 8

st |3 3 3 .1 0 0 0 0

oxpl 1 2 2 2 2 1 0 0

Fmsromvisiox <ot 07 2 2 1 1 1 4
4re| 0 1 1 2 2 2 1 1

5rE| 0 05 05 2 3 2 1 1

6t | O ¢ 1 1 2 3 2 .1

Secowppvision ¢ ool g o 9 0 1 3 3 3
grel 0 0 0 0 1 2 4 3

3. Consider a chain with a single ergodic set, which has transient states.
Let s; be a transient state and s; an ergodic state. Let f; be the time required
to reach 8;, g the first ergodic state reached anc t the time required to reach
the ergodic set. Then

M) = 2 Prifg = s JIMelfy]+Milt|g = s]).
8, ergodic
Use this result to find, for Example 4 with p=2/;, the mean time to reach
state 81 for the first time starting in state s3.

4. It is raining in the Land of Oz. Find the mean number of days until

each kind of weather has occurred at least once.

5. Prove that when a process is observed only when in a subset of an
ergodic chain, the resulting process is also an ergodic chain.

For § 6.2

6. Find the mean number of rainy days between nice days in the Land of
Oz.

7. For the Markov chain in Exercise 2 of Chapter II, assume that when the
duel ends a new duel is started. Find the fixed vector for the resulting chain.
Use this to determine the absorption probabilities and the mean number of
times in each state for the original chain.

" 8. Consider the chain with transition matrix

S; Sz 83

81 0 1 0
P=sy {4 0 34
S3 6 1 0

Find the fundamental matrix Z by making state s; into an absorbing state,
calculating N, and using the result of Theorem 6.2.5. Find myg+may by
using Corollary 6.2.7.
9. From 6.2.5 deduce the identity
I—A=I—P)N*I-4).
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For §6.3
10. For Example 2 with p=1/5, which of the following partitions produces
a Markov chain when lumped ?
(8) A = ({51, 83,55}, {s2,84}).
(b) B = {{s1,85}, {84}, {sa}).
Which produce Markov chains if p#1/5?

11. Show that Example 3(a) is lumpable with respect to the partition
A =({s1, s5}, {s2, 4}, {s3}). Find the fundamental matrix for the lumped
chain from the fundamental matrix for the original chain (see § 4.7).

12. Find a three-cell partition which makes Example 6 lumpable.

13. Let P be the transition matrix of an independent trials chain and a be
any number with 0<a<1. Show that P'=aP+(1—a)l is lumpable with
respect to any partition.

14. Show that Example 12 is lumpable with respect to the partition
A = ({8181, s251}, {5182, 5282}). How is the resulting transition matrix related
to the two-state chain which determined the four-state chain ?

15. Prove that for a lumpable ergodic chain, &4=«V.

16. Give an example of a Markov chain which is not itself an independent
trials chain, but which can be lumped to an independent trials chain. Check
your answer by computing Z and UZV.

For § 6.4
17. Show that the Markov chain with transition matrix
s1 /e Yy 14
s2 412 1y O
s3 \0 1/ 34

is weakly lumpable, but not lumpable, with respect to 4 =({s1}, {s2, s3}).
Find the transition matrix for the lumped process. Show that the reverse
process is lumpable.

18. Show that the Markov chain with transition matrix
1 0 34 Yy O O
S5 34 0 1y O O
P =s3 0 g Sjg g 1
Sq e Yie e s Y2
S5 g 0 g 3/g 3g
is weakly Ilumpable with respect to ({s1, s, 83}, {34, 55})-

19. For the Land of Oz example, let A;={R, N} and A;={8}. Compute
Pr,[f2 € Ay|fy € A1] and Pr,[f; € Ay|fy € Ay afo € Ay].  Use the result to show
that the chain is not weakly lumpable with respect to A=(A;, Ag).
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20. Prove that if P is lumpable with respect to a given partition, and if P
has column sums 1, then P7 is weakly lumpable with respect to the same
partition.

For § 6.5

21. A coin is tossed a sequence of times. Represent this as a two-state
Markov chain. Form the expanded process. Find M and M, for the
expanded chain. Interpret the diagonal entries in terms of the original
chain.

22. Let P be the transition matrix of an independent trials chain. Find
formulas for Z and M of the expanded chain. Check the latter against
Exercise 21.

23. Let P be the transition matrix of an independent trials chain. Find
a formula for the limiting covariances of the expanded chain. [Hixt:
Write the formula in the form aga( - -).] Use this formula to compute
the limiting covariances in Exercise 21.




CHAPTER ViI

APPLICATIONS OF MARKQV CHAINS

§7.1 Random walks. We will consider four simple, related random

walks. The first three are walks on a line, with states 0, 1,...,n:
| | | 1 2 1 2 1 ! |
| [ [ | | [ ! |
0 1 2 i-1 i i+l n-1 n
FiGure 7-1

In each of the first three types of random walks we have probability »
of moving to the right (from 7 to 1+ 1) and probability ¢ of moving to
the left (from 7 to ¢ — 1), for states1=1, 2, ..., n—1. The three types
differ in their behavior at the “boundaries,” 0 and n.

AARW : A random walk having both 0 and » as absorbing states.

APRW : A random walk having 0 as an
absorbing state, while n is “partially re-
flecting.” That is, at » it moves back to
n—1 with probability ¢ and stays at =
with probability p.

PPRW: A random walk partially re-
flecting at both boundaries. That is it is
like APRW at n, and at 0 it moves to 1
with probability p and stays at 0 with
probability g.

The fourth random walk will move
on a circle, with states numbered 1, 2, FIGURE 7-2
...,n, as in Figure 7-2.

CRW : The process moves on the circle, taking one step clockwise
with probability p, and counterclockwise with probability ¢.
140
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We will illustrate each of these random walks for n=35.

Crar. VII

Since the

behavior is often quite different for p =1/, than for any other p-value, we
will carry out the illustration for both p=1/; and p=2/s.
solve each random walk. It will be convenient to let r stand for p/q.

Let us first consider AARW. This is an absorbing chain with two

absorbing states 0 and n.
AARW for n=5, p=1/,

0 5 1 3 4
0 1 0 0 0 0
5 0 1
P 1 Y, 0| 0 1 0 O
T2l 0 oY, 0 1 0
3\ 0 0|0 1Yy 0 1/
4 \ 0 Y| 0 0 Y, 0
1 /16 12 8 4
N = 2112 24 1.6 .8 _
3 8 16 24 1.2
4 4 .8 1.2 1.6
0 5
1 .8 2
B 2 6 .4
31 .4 6
4 \.2 8
AARW for n=5, p=2[3
0 5 1 2 3
1 0 0O 0 O
5 0 1 6 0 0 o
1 1/4 0 23 0 0
p_2) 0 0t 0 20
3\ 0 00 13 0 2
4 \ 0 25,0 0 Y3 0

B3 O

Then we will




Sec. 1 APPLICATIONS OF MARKOV CHAINS 151

45 42 36 24
21 63 54 36

N = 1/3
27 63 42
3 9 21 45
0 5
147 15 16\ 1
1/ 174 B . 7 24 2
T=2s g = 1/3; 5 98 | 3
78 1 30 4
The matrix I —@ has the form
1 -p 0 0
- 1 - 0
1-Q = q p
0 —q 1 —-p
0 0 -—gq 1
when n=>5. In general it has entries sy (¢,5=1,2,...,n—1) which

are O except that syy=1, 8—1,;= —», S41,3=—¢. We note from the
numerical examples that the entries of N decrease on both sides of the
diagonal. N will have the form -

s = 1 (rl=1)(rn—t-1) ifj < (1)
R VAR (G G S W
except where p=1/;, here the solution simplifies to
2 Jjn—1) ifj <4
™= {i(n—j) ifj > 1. 2

Let us verify the solution for p#1/s, by computing N/ —@). Its
1,j-th entry is

1
D] S U Vet 3ttt

We recall that sp;#0 only for x=j—1,j,7+1. Suppose that j<i.
Then all terms in the second sum are 0. The first sum simplifies to
———— (= 1) (—p)+ (T = 1)1} + (L= 1) (—
(g L = D= 2)+ (7= (1) + (741 = 1= )]

n—i _
= (P:QTB [r’(—f+l—rq)+(p——l+q)] = 0.
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The answer for j>1 is also 0. Hence all off-diagonal entries are 0.
Let us compute the three non-zero terms for the i,i-th entry.

@—gz)l_m——n [(rt=2 = D= = D)(= p) + (= 1~ = 1)(1)
+ (= 1) = r)(= )]
= g (g -1

+ri(§—l+rq)+(——p+l—rg)]

_me-a+@-p) _
(P=q)rm—=1)
Thus N = (I —Q)-! as required.

The solution for p=1/s may be verified similarly. We can also
obtain it by a limit process from the general solution: We write p —¢
as q(r—1), and we let g—1/s, r—1.

Let us next compute .

n—1 1
fy = Ny = —— .
=AM oD

i n-1

Z (rI =)=t — 1)+ Z (ri — 1)(rn=i — yi=1)

i=1 j=i+1

((n—i——l)r””i— nil rj—f)j,
(n—2)rn—myn—t 44 j=it+1l

(-q)(r"—1)

Or more simply,

[Pyt .
b= — (n e -—z) ifp # s (3)
Similarly,

ti = iln—1) ifp=1/s (4)

An interesting question to consider is finding the maximum value
of ty. For p=1/, we see that #; increases till the middle, and then
decreases symmetrically. If » is even, the mid-point i=n/2 yields
t;=(n/2)%. For the general case we can write down the ratio of two
terms, and find the value of 7 for which this ratio is one. This will not
vield an integer in general, but the ¢ nearest will give a maximum.
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We find the approximate solution
imax = IOgr( (T“ l)n)

If p>q, that is r > 1, then the resulting fmax is of the order of magnitude
of (n—imax)/(p—¢q). Thus we see that if ps 1/, the absorption time is
of a lower order of magnitude for large »n than for p=1/,. For example,
if p=2/3, and hence r=2, imax=1logen, and tmax is about 3(n—logsn)
for large n. For the very small n=25 of our example tmex=2.3, and
1=2 is the marimum point, but the value {max obtained is too large
for so small an n.

Finally, we shall compute B. It is sufficient to find b;,, since
bio=1—bin. We note that ri, is 0 except for rp—1,2n=p.

p(ri— 1)(,«7;—1_7.7;—1—:).
(p—g)(r»—1)

n—1
bin = O MikTin = My n-1D =
K=1

Hence
—pn~f
bin = ”; ifp # s (5)

rh —

Similarly,
bin = ifn ifp =1/, (6)

For p=1/; the solution is very intuitive. The probability of ending
up at the right-hand boundary is proportional to the original distance
from the left-hand boundary. But the solution for p#1/; has some
surprising features. Let us study the case p>1/,, that is r>1. We
find that for a given starting position ¢ the probability of ending up at
n is not negligible for any n. Indeed, if we keep ¢ fixed and let n
tend to infinity, &i» approaches the limit 1—7~t. If ¢ is fairly large
this probability will be close to 1 no matter how large n is! Even
for i=1 we have a probability (r— 1)/r of ending up at n. The absorp-
tion time in this case is about n/p, surprisingly small. For p=2/s
this probability is /.. This means that if p = 2/; we may put the right-
hand boundary n as far out as we wish, start the process at i=1,
and still have a better than even chance of ending up at n» rather
than at 0.

This particular random walk is often referred to as “gambler’s
ruin:” We may think of two men playing a certain game repeatedly
in which player 4 has probability p of winning. Let ¢ dollars be his
original capital, n—7 the fortune of his opponent, and assume that 1
dolla> is bet each time. Then A’s fortune carries out the random
walk AARW with the given ». Absorption at n means that 4 ends
up with all the money, while absorption at 0 means that he is ruined.
We see that for a fair game (p=1/,) the probability of ruin is equal to
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the fraction of the two fortunes held by the opponent. But the nature
of the solution changes drastically if player 4 has an advantage in
the game. In this case he has a good chance of winning out even if his
opponent has a much greater capital. For example, if he has p=2/,
that is =2 (meaning the odds are 2:1 in his favor), then he has a
better than even chance of ruining a rich opponent even if he has only
1 dollar to start with!

We will briefly mention two applications of this result. First of
all, gambling houses can exist due to it. They fix the odds so that
r>1. Then by making sure that their original capital i is large
enough (measured in terms of the size of one wager), they will have
probability 1—r—f, very near to 1, of staying in business no matter
how much is bet at their gambling tables. We also see that the
absorption time is enormous, which is the reason that gambling houses
have not yet acquired all the money in the world. For 7 near to 1,
(3) is roughly equal to (4). We may estimate, very conservatively,
that the gambling house can cover 10,000 bets, while the gamblers
can provide 1,000,000 bets. Then i(n—1) is about 101¢; which would
put the absorption time into thousands of years. This leaves ample
opportunity for the raising of new gamblers.

A second application is to a simple model for the principle of natural
selection in the theory of evolution. Suppose that on an isolated
island the population of some species is fixed at n by the supply of
food. Let us suppose that a mutant is born with a slightly better
chance of survival than the regular member of the species. A simple
model of the struggle for survival is given by assuming that in each
generation the mutants gain one place with probability »>1/s or lose
one place with probability g. We then know that the mutants have
probability of more than (r—1)/r of taking over the island. If p=.51,
this probability is .04; if p=.6, the probability is /5. Hence we see
that relatively minor advantages can result in the survival of the
mutants.

While this simple model serves to illustrate how mutants may take
over a large species, the estimate for the absorption time is unrealistic.
Even for p=.6 and n as small as 100 we obtain n/p or about 167
generations before the mutants take over. This brings out the
unrealistic nature of the assumption that only one place is changed in
each generation. For a realistic time for absorption we need a more
sophisticated model.

We will now show that the solutions for the other three random
walks may be obtained from AARW by various tricks. Let us first
illustrate APRW for n=5.
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APRW for n=35, p=1/,
0 1 5
0 110 © 0
Vf Y| 0 Y, 0 0 0
P2 01 0 Y 0 0
3 0] 06 1 0 1YY ©
4 010 0 1 0 1
5 00 0 0 1y 1Y,
1 42 2 2 2 2 10
2 42 4 4 4 4 18
N=3§ 2 46 6 8 r=1§ 24
44 2 468 8 28
5 \2 4 6 8 10 30
APRW for n=>5, p=2/g
0 2 4 5
0 1 ’ 0 0 o 0 0
1/ Ys| 0 23 0 0 o©
2 0 |13 0 %z 0 O
P=31 o Ys 0 23 0
4 0 0 g 0 23
5 00 06 0 s 23
1 #3 6 12 24 48 93
2 (3 9 18 36 72 138
N=3] 3 9 21 42 84 r=1{ 169
443 9 21 45 90 168
5 \3 9 21 45 93 171

The N matrix for APRW may be obtained from AARW through

the following cbservations.

Consider 1 >J.

If the process

[¢]
k i

i

Fioure 7-3
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starts in %, it must eventually enter j. Hence hy=mn4/ny;=1, and
ni;=ny;. (This is conspicuous in N above.) If k<j, then %y; may be
gotten as the probability of ending up at j in AARW withn=j. Hence
ks = hrjng; = brsnyj, with by from AARW. Thus it suffices to find ny;.
Let us first compute the case p=1/5. - We note that @ (except for the
last row and column) is a submatrix of ¢ for larger n. And in the
larger @ these rows and columns are filled out with 0’s. Hence n; is
independent of n. But as we let n—co in AARW, the difference
between it and APRW disappears. Hence nj; for APRW is the limit
as n—c0 of nj; for AARW. Thus

Ny = 2j if 4 >j
; for p. = 1/,. (7
m,=§~2j=2i i< p="l 7
The same argument is applicable if r<1. Thus
ri—1
nyy = ifi >
5 Py J

for p # 1/,. (8)

ri—ri—t yi—1] 7 —yi=t

. = ifi <j
-1 p—gq P—q J

Ny =

We can also obtain ny; for i) from N for AARW by letting n—co.

For r>1 the above argument breaks down, since no matter how large
n is in AARW, the probability of ending up at # does not become
negligible. But here we make use of the fact that if in AARW we
renumber state 7 as n—1, we have the original process with p and ¢
interchanged. We then find that the above formulas also hold for
r>1.

For 7 we obtain

= (2n—1+ 1) if p = 1); (9)
1 yn+l _pn—it+l
= 7" gl i 1/,
b p—q[ p—T z} if p # 1/, (10)

Since there is only one absorbing state, all absorption probabilities
are 1.

In both AARW and APRW there is a simple relation between ny;
and ny. In fact it may be verified from our formulas for these quan-
tities that

Nig; = rj“in,-g.

We shall see that there is a simple probabilistic proof of this fact.
Assume that j<i. Let d=i—j. Then any path which allows the
process to go from 7 to j in n steps must take d more steps to the left
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than to the right. Hence the probability that the process starting at
1 will follow such a path is
prgkte
where 2k +d=mn. On the other hand each such path, looked at back-
wards, may be considered a path from j to ¢. For the process to follow
this path it must make d more steps to the right than to the left.
Hence the probability that, starting at j, the process will follow this
path is
phagk,
There are the same number of paths from ¢ to j in n steps as there
are from j to ¢, but the ratio of the probability for each path is
pgEte e it
prragk — pd
Hence, pm; =ri—ip(n);;.  But then

0 0

Ny = Z Py = it Z PRy = ri=ing,

n=_ n=0

Note that this also shows that when p=1/s, then r=1, ny;=ny.
We now turn to the regular chains, starting with PPRW.

PPRW for n=35, p=1/,

0 1 2 3 4 5
0 /is 1Yo 0 0 0 0O
1/, 0 1, 0 0 o0
2 [} 1/2 0 1/2 0 0
P = 4
0 0 19 0 1/2 0
a4\ 0 0 0 Y, 0 1y
5 \0 0 0 0 1 1f
o = (e, s, Yo, Vs, sy Ys)
0 1 2 3 4 5
0 6 2 6 12 20 30
1 10 6 4 10 18 28
2 18 8 6 6 14 24
M =
3 24 14 6 6 8 18
4 28 18 10 4 6 10
5 30 20 12 6 2 6
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PPRW for n=>5, p=2/3

0 1 2 3 4
0 /s 23 0 0 0
1 /15 0 23 0 o
2f 0 Y5 0 3 o0
30 o o0 1y o 2
4
5

© © © O &

6 0 0 Y; 0 2

0 0 0 0 Y3 23
o = (1/e3, 2[63, /63, 8[63, 1%/s3, 32/63)
0 1 2 3 4 5
63 3y 154 5l 14715 3875,
93 63/, 8/, 39y 123/ 339y,
138 45 63, 21/5 87, 2075
159 66 21 63y 4555 183y
168 75 30 9 835, 935,
5 \171 78 33 12 3 83y

B W N = O

We may obtain APRW from PPRW by making 0 absorbing. Thus,
if we know o for PPRW, we may obtain M from N of APRW by
Corollary 6.2.6,

1 . .
myy = CT] (nj;——nu)-}—t(—tj for s s J-

1
If p=1/;, we have column sums 1, and hence a=n—+1 n. Thus we

obtain
n+1 i=j
my =< Cn—t+13—2n—J+1)j +>j5) p =15 (11)
JE+D—iE+1) i<j

For ps£1/; the above example suggests that a;y;=7ra;. Indeed,
this yields a fixed vector, as can be seen from writing our equations as

qao+4qay = Qo or ay = rag

P
Pa-1+qagy1 = ay Or 'r—ai+1+qr€l¢-1 = 04

1
Pan-1+pan = dn  OT dn-1 = - dn.
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Thus

o = r—1
Then N
rntl—1 1 . .
r—1 v=J
1 [re—fl_gm=edr 7
myy = p—q'[ pry “‘(2“.7)} v > 7 2 #* Yo (12)

1 .. ri—rt . .
e = IR
Let us compare mon Wwith mnpe. If p=1/z2, mop=mno=n(n+1),
which is of the order n?2 for large n. But if p# 1/, we observe a com-
pletely different behavior. Say r>1, then

1 re—1
o= = "=

is roughly ;i—qn for large n. Hence it takes a surprisingly short

time to go “all the way” in the favored direction.
1 ratl—p
p—q { r—1 ]

-r» for large n.  Since 7 > 1, this increases

Mpo =

Cy r
which is roughly P0r—1)
exponentially in n. For very large n it will take a tremendously
long time to go “all the way” in the wrong direction. This type of
behavior is typical of random walks. We will see another example of
this in the Ehrenfest model.

Finally we consider CRW.

CRW for n=5, p=1/,

1 2 3 4 5
1 0 Yy 0 0 1,
2/ Yy 0 Yy 0 0
P =3 0 Yy 0 1y O
4 0 0 Yy 0 1
5 Ny 0 0 1y 0
1 5 4 6 6 4
2f4 5 4 6 6
M=31 645 4 8
4\ 6 6 4 5 4
5 4 6 6 4 5
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CRW for n=5, p=2/5

1 2 3 4 5

1 6 23 0 0 1
2 f s 0 23 0 0
P =3 Q0 13 0 23 0
e\ 0 0 y; 0 2
5 \25 0 0 13 0
1 5 85 141y 174/y;  147/g
2 147/g 5 78[5 14l)g) 174y,
M =3 178)5,  187/y 5 T8/gy  141[g
4 a1/ 174)y 147/4 5 78/5
5 783, 14lfg,  174[g;  147)g 5

. 1 .
This process always has a=_m, since P always has column sums 1.

This is also obvious from the fact that no position in the circle is
distinguished. For the same reason we expect that m;; should depend
only on how far 7 and j are apart (and on the direction if ps1/s).
This is certainly so in the examples above.

If state »n is made absorbing in CRW, we obtain AARW—with 0
and n identified. Hence M for CRW is obtainable from N for AARW.
But there is an even simpler method. If we want my;, we renumber
the states so that j becomes n, and then m; is just an absorption time
for AARW. Specifically, if the distance from j to ¢ (clockwise) is d,
then myj=1t3. Thus

mii = N

1 7N — pn—d . .
s =m'{“ﬁ“d} P (13)
my = d(n—d) p=1e1#]

where d is the clockwise distance from j to <.

The remarks made for + of AARW are applicable here. Thus, for
example, the distance (clockwise) that it takes longest to travel is
approximately log,((r — 1)n). We also note that my; is generally of a
lower order of magnitude for any ps !/, than for p=1/s.

Let us next find the transition matrices for the reverse processes
of PPRW and CRW.



Sec. 2 APPLICATIONS OF MARKOV CHAINS 161

For PPRW, remembering that a1 =ray,

4 Ag+1
Pt i+ = a—ptﬂ,i =714 =D = Pii+l
4
) g 1
P14 = — Dia+1 = =P = ¢ = D410
ai4+1 r

Hence the process is reversible, contrary to one’s intuition. But for
CRW a¢r1=ay4, hence

" Ai+1

Pri+l = — Pi+14 = ¢
[¢]

p aq

Pi+1,4 = —— Pii+1 = P.
22251

Hence the reverse process is a CRW with p replaced by ¢, as one would
expect. It is reversible only when p=g=1/s.

Let us close by giving a practical application for PPRW. We
consider a gambling house that wishes to keep a close check on its
roulette wheel. Suppose that it is a wheel having in addition to the
numbers 1 to 36, half of which are red and half black, the numbers 0
and 00 which are not colored. We will devise a simple automatic
check to see that the house is taking its share of the bets on red. We
set up an electric counter which starts at 0 and adds 1 every time red
comes up, subtracts 1 every time red fails to come up. The counter
does not go below 0. If the counter reaches a specified number =,
then it rings a bell, and the house changes the whecl.

If the wheel is properly balanced, then we have PPRW with
p=18[35=9/19. Hence it will take a very long time to reach n. The
house adjusts n so that me, corresponds to its normal periodic servicing
of the wheel. However, if the wheel fails to function properly—for
example, if p rises to 1/, in which case the house no longer makes a
profit—then the bell will ring much sooner. A similar check on black
will assure that the house continues to make its profit on all bets.

Let us consider a concrete example of this. Suppose that n=40 is
selected. Then mo, for proper functioning is about 18,000. If the
wheel is turned 400 times in a day, the bell will ring on the average
once in 45 days, allowing for normal servicing. But if p rises to 1/,
then mo, = 1640, and the bell will ring after four days. If p rises above
the break-even figure (that is, the house is losing money), then the bell
will ring very quickly.

§7.2 Applications to sports. Let us apply some of our results to the
game of tennis. We will first consider the problem of a single game of
tennis played between two players. We will assume that player 4
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has probability. p of winning any given point, and player B has
probability ¢ < p.

If we keep score in the ordinary manner, there are 20 possible scores
during a game. These are: 0-0, 0-15, 15-0, 0-30, 15-15, 30-0, 0—40,
15-30, 30-15, 40-0, 15-40, 30-30, 40-15, 30-40, 40-30, Advantage B,
Deuce, Advantage 4, Game B, Game 4. However, it is easily seen

P p P
Game | 30-40 . 30~30 7 40-30 Game
B Adv. B Deuce Adv. A A
q P q o
q 15-40 P q 40-15 P
P 9q P q
040 15-30 30-15 40-0
) P q9 P q P
0-30 15-15 30-0
q p 9 P
0-15 15-0
9 P,
0-0
FI1GURE 7-4

that we may lump the following pairs: {30-30, Deuce}, {30-40,
Advantage B}, {40-30, Advantage 4}. The resulting random walk is
then represented by Figure 7-4.

The game of tennis may conveniently be broken down into two
steges. At the beginning the process goes through some of the lower
twelve states, always moving up, and in four or five steps it arrives at
one of the five states in the top row. This we will refer to as the
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preliminary process. The preliminary process is of an extremely simple
nature. It is followed by a random wall of type AARW, with n=4.
The state Game B is the absorbing state 0 of AARW, and Game 4 is
the absorbing state n.

We will describe the entire process as an AARW random walk, with
initial probabilities furnished by the preliminary process. These initial
probabilities == (co, €1, C2, €3, ¢4) are given by an elementary proba-
bility caleculation. We find that

co = ¢*(1+4p), c1 = 4p%B, co = 6p%g?,
= 4p%¢2, cq = pYl+4g).

If p=1/s, co=3/16, c1=1/5, Ca=3[s, ca=1[s, ca=3/16. Using the basic
quantities of AARW with n=4¢,

/(r Ir3—=1) (r=1)(r23=r) (r—1)(r3—1r?)
1
N = r—1i)r?— r?—1)2 (r2—1)(r2—r)
CETE Doy
(r—1)2 (r=1)(=1) (r=1)((r*-1)
ré_y3
ré—1 -1
péompd
1 réd—r2 1
T=pT 74_1—2 {bl4}=r4—l ré—r2 :p?él/z
. réd—7r
ré—r
4r4—1~3
e 1 12 3 ta
N=¢{1 2 1 E=|4 {bis} = { /2 p =1/,
Uy 1 3, 3 3/,

we can find all interesting quantities. The most interesting one is,
of course, the probability that 4 will win. For p=1;; we obtain

(316)- 0+ (1s)- (1) + (3/s) - (12) + (1/a)- (3fa) + (3[16)- 1 = Y.

This was to be expected, by symmetry. If p>1/;, we obtain

$(1+4p)- 0+ 4p2g3(rt — r3) + 6p2q2(rt — %) + 4p3¢*(rt —7)
+pH1+4g)(rt = 1)]

which simplifies to
pi(1—16¢%)

Pa = pi—qt
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For example, if p=.51, then pa=.525, and if p=.6, then p,=.736.
For the absorption time and the number of times in a state we will
carry out the computation only when p=1/,. The interesting cases
are ones where p is near 1/, and absorption times do not depend very
drastically on p.

When p=1/, we find that the mean number of times in the three
interesting transient states is: 1 for Deuce, and 5/g for Advantage B
and for Advantage 4. The absorption time is %/s. To find the actual
length of the game, we must also take into account the preliminary
stage. If we do, we find that the mean length of a tennis game
between equally matched opponents is 27/4=63%/4. Since the minimum
length of the game is 4, this shows that for equally matched players
the average length is not much above the minimum.

Should it prove from records that games actually are much longer
than this, and that the average number of times in Deuce is well above
1, as seems to be the case, then it would indicate that the present model
for tennis is too simple. Perhaps a player “plays harder” when he is
behind. This would lead to a somewhat more complicated random
walk.

Let us return to the probability that the better player 4 wins. This
is always greater for a game than for an individual point. Thus, the
game serves to magnify the difference between the two players. This
is further magnified since several games are played in a set, and several
sets in a match. The probabilities for a set, in which a player must
win at least six games, but by a margin of at least two, may be com-
puted just as above. We are led to the same AARW, but with a
longer preliminary stage. A match is won by the first player winning
three sets. This is a straightforward computation. The following
figures will illustrate the magnification achieved in sets and
matches:

p=.51 p=.6

Probability of winning point .510 .600
Probability of winning game 525 136
Probability of winning set 573 .966

Probability of winning match  .635 .9996

Thus there iz always a good chance that the better player will win
the match. And if there is a fairly significant difference between
players, then it is practically certain that the better player wins.

Let us compare these results for tennis with the World Series in
baseball. Here the team that first wins four games is declared winner.
If we assume that team A has probability p of winning any one game,
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then we find that

pa = pHl+4g+10¢2+ 20g¢3),
where the various terms correspond to series of 4, 5, 6, and 7 games
respectively. If p=.51, p,=.522, while if p=.6, then p,=.710.
The World Series also magnifies differences between teams, but not
nearly as well as a match of tennis—or even a single game of tennis.

If we compute the mean length of a series, we find this to be
t=4(p* + %) + 20(pig + pg®) + 60(p’q? + pPg*) + 140(p*g® + p%g%). This is
largest (5.81) when p=1/,, and decreases monotonically to 4 as p is
increased to 1. Hence we should he able to estimate p from the
observed length of World Series. In the 50 World Series played under
the stated rules from 1905 to 1957, 10 ended in four games, 13 in five
games, 12 in six games, and 15 in seven games. This yields a mean
length of 5.64, which would agree very well with p=5/5. This would
suggest that the teams playing in the World Series have, on the average,
not been matched too closely.

Let us now consider the efficiency of various procedures in magnifying
the differences between players or teams. We have found that tennis
(one game) gives slightly more magnification than the World Series,
but it also requires more steps on the average. To be able to compare
the efficiency of two rules, we will have to take them so that the mean
length of a series is the same.

Tennis may be compared to the World Series as follows: The latter
requires four wins, while the former requires that the winner have
four wins and be ahead by two. This is really a hybrid between two
types of procedures. The pure procedure would be to require that the
winner end up ahead by four points. It can easily be seen that this
rule gives much more magnification than the other, but also requires
a great deal more time. Let us therefore consider two classes of
rules.

RuLE W, : The first person to win n poinis 1s declared winner.

RuLe 4, The first person to get ahead of his opponent by n points is
declared winner.

We will compare these two rules, selecting n in each case so that the
mean length of a game be a given large number, which we will denote
by &2, and seeing how much they magnify differences. Since we will
be interested particularly in large n, we will allow asymptotic approxi-
mations. Since we are particularly interested in magnification of very
small differences, we will let the players differ by ¢, that is let p=
{1+¢)/2 and g=(1—¢)/2, and compute the final difference just to the
first order term in e.
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The following identities will be useful:
i (n—e—k} _ (2n+1)
“o\ K n
& (n+k (2n 4 1 2n+1
ko= -
2 U= ()G
= (n+k\ [1\*
2, () -

o (n+k\ [1\F 2n+1 /2n
D R O S

If we use W, the probability that the better player wins is
pa = pr :2; (n_,t+k)qk
n=1 ,, _ _
=20
s o)

I4ne o, 2n—1/2n-2
T (e -5= (05)])

Using Stirling’s formulat and simplifying we obtain

A ~1+J£
LRV

The expected length of the game (for which we may use p=1/5) is

n—1 _
2.0 3 ("7, mse

k=0

(/)2 [n?n—l 4 pgn_2n ] (Zn - 2)}

|

I

It

Q

It

i

t

i

271\ p—1
2 —
~ 2 ——=/ 7.
vV
We will simply use tx 2n. Thus if we want ¢ x N2, we must choose

N2 . . N
n=— This yields pax e+ —=¢, pA—szATJ% e; and thus a
vV 2

T
: , 2
magnification factor is N A/ = or about .8N.
™

1 See W. Feller, Introduction to Probability Theory and Its Applications, John Wiley
& Son, Inc., New York, 1957, Chapter 2.
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The method 4, may be represented as AARW from 0 to 2n, starting
at n. Hence
72 —yn

rin—1

pa =

Here we find that the terms in ¢ cancel and that €2 terms must be
carried. We find

14 2ne+2(n+n2)e?
72 X 1+ 4ne+4(n+ 2n?)e?
L 2ne+2(n+3n2)er  1p41/p(1+3n)e
PAR Gevdmaonde? . 1+(112n)e
n
~ 1/2+T) €.

For the mean length we find (using px1/2) t=n(2n—n)xn? Thus

we ‘choose n=LN, and obtain p,qzl,/z+f;—7 e, pa—pex~Ne; yielding a
magnification factor of N.

We thus find that Wy2» and 4y are comparable, in the sense that
each yields an approximate mean time of N2. The former magnifies
minute differences by about .8V, while the latter multiplies them by XN.
Thus the A, rule is more efficiént. Any mixture of the two, as in
tennis, will lie in between, and hence will also be less efficient than 4.

'§7.3 Ehrenfest model for diffusion. There is a simple model for a
system of statistical mechanics which is due to T. Ehrenfest. In this
model we consider a gas which is contained in a volume that is divided
into two regions 4 and B by a permeable membrane. We assume that
the gas has s molecules. At each instant of time a molecule is chosen
at random from the set of s molecules and moved from the region that
it is in to the other region. We are interested in the way in which the
composition of the two regions changes with time. For example, if
we start with all the molecules in one region, how long on the average
will it be before each regions has half the molecules? Such questions
can be answered by using the methods of Markov chains.

We form a Markov chain as follows: We assume first that the mole-
cules are identifiable. We take as states & vector y= (2, 22, ..., )
where z; is 1 if the j-th molecule is in region 4, and 0 otherwise. Know-
ing the state tells us the exact composition of 4 and hence also of B.
There are 2s states. If the process is in state y, then choosing a molecule
at random and moving it to the other region means that we change
the state y to a state § by simply changing one coordinate of y. It is
clear that from y there are s states to which the process can move and
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these transitions occur each with probability 1/s. It is possible to go
from any state y to any other state § in a sequence of steps, but it is
possible to go from y to y only in an even number of steps; and it is
possible in two steps. Hence we have an ergodic chain with period 2.
It is clear also that we can go from y to 8 in one step if and only if we
go from & to v in one step. If possible, the probability in each case is
1/s. Hence the transition matrix is symmetric. This tells us two
things. First, the process is a reversible process. Secondly, the fixed
probability vector is a constant vector with components 1/2s.
The transition matrix for the case s=3 is

000 001 010 100 Ol1 101 1i0 111

000 0 Y3 13 13 0 0 0 O

00l f1s 0 0 0 13 I3 0 O

010 { /3 0 O O 13 O 13 0O

100§ 13 0 0 O s Y5 0

011y 0 13 Y3 O O 0O 0 1

100§ 0 13 0 Y3 0 0 O 1y

110 0 0 13 /g 0 0 0 13

111 0 0 0 0 1Yz 13 Y3 0
The fixed vector is a=(1/s, !/s, 1/s, /s, /s, /s, }/s, 1/s). From this
we see, for example, that the mean number of steps required to return
to any one stateis 8. Wealso
have, by Theorem 6.2.3, that
the mean number of times in
(001) (101) each of the states between
occurrences of a particular
(011) state is 1. In general, for a
100) chain with s states the mean
time to return to a state will
be 25 and the mean number of
(010) times in state & between occur-

(110) rences of a state y is 1.
There is a simple random
walk interpretation for the
FIGURE T-5 process we are considering.

The vectors p are the corner
points of an s-dimensional cube. The possible states to which the
process can move from y in one step are the corner points connected
to y by an edge. There are s such points, and the probability of
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moving to any one is 1/s. For the case s=3, we have the cube in
Figure 7-5. :

We define the distance between two states v and &, denoted by
d(y, 8), to be the minimum number of steps required to go from y to o.
In terms of the coordinates of y and & this is

s

d(y,8) = z ]xi—yd.

=1

It is clear from the random walk interpretation that the mean time
to go from y to & depends only on the distance between v and 8. Let
mg be this mean time for two points a distance d apart. For fixed s,
we compute mg=ms; as follows. Lety and é be two points a distance
d apart. This means that they have exactly d coordinates different.
On one step there are d choices which will make the process one unit
closer to 8, and s —d choices which will make it one unit farther from 3.
Hence, considering the possible first steps, we have

d s —
mg = 1+Emd_.1+——s—— Mg+1, 0 <d < s,

where we let mo=m,;4+1=0. These equations have a unique solution
which may be written as follows. Let

- (2

summraut] ? O: 1: 78_1:
s——l)
*=0
(7
then
d
Mg = Zst_i, 0<d<s
i=1

The values of Q% for values of s up to 6 are given in Figure 7-6.

VALUES FOR @5

8
Xll 2 3 4 5 6

0 1 J 1 J 1 } 1 R

1 IR

2 I A

3 [ ! 15 61y | 415

4 ‘ ‘ 31 1125

] | ;
Ficure 7-6
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For values of s up to 6 the values of m%; are given in Figure 7-7.

VALUES FOR mSy

8

N 1 2 3 4 5 8
1 1 3 7 15 31 63
2 4 9 18%/3 | 37l | 4%
3 10 201/3 401/g 783/
5 213 | 41%/3 | 80Ys
5 \ 4223 | 8215
6 J J 831/5

FIGURrE 7-7

We note that the means for a given s increase as we increase the
distance. Thisis to be expected. However, they increase very slowly.

We shall call the above chain the microscopic chain. In physical
applications this chain is often not as interesting as one obtained
from it by lumping. The macroscopic chain is a Markov chain obtained
from the microscopic chain by lumping all states having the same
number of molecules in region 4. Let us verify that the condition
for lumpability is satisfied. Let V; be the set of all states in the
microscopic process with ¢ molecules in region A. The set V; has

s
<®> elements. From any element of V¢ the process moves to one of

(ii 1) elements of V1 or to one of (lj 1) elements in Vi;—;. The

probability of moving to Vi is (s —1)/s and the probability of moving
to Vi is i/s. These probabilities are the same for all elements of V.
Hence the condition for lumpability is satisfied, and we obtain a new
Markov chain with states Vo, V1, Vs, ..., Vs. The transition proba-
bilities are

Dig+1 = 1—1fs
Pr-1 =18
p1; = 0 otherwise.
We shall refer to this new process as the macroscopic process.

By the results of § 6.3 we know that the lumped process will again
be ergodic and reversible. It is again of period 2. The fixed vector &
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for the lumped process is easiiy obtained from «. The component &
is the sum of the components of « for states in V;. Since there are

8 ; .
(2) states in V; we have

Hence

By Thecrem 6.2.3 we see that the mean number of times in any state
Vi, between occurrences of state V;, is

s
i .
()
J
In particular the mean number of times in each state between
. (8
occurrences of 0 is (z)
For our example s=3 the partition for the lumping is V= ({000},
{100, 010, 001}, {110, 101, 011}, {111}). The transition matrix is
Vo Vi Vo V3
Vo /0 1 0 0
V1 1/3 0 2/3 4}
Vs 0 %3 0O 1
Vs 0 0 1 0

For the macroscopic chain we are also primarily interested in the
mean first passage times. We know that in general it is not easy to
obtain the mean first passage times for the lumped chain from the
original chain. However, in the case we are considering we are
helped by two special features of the process. First, for the lumped
chain we can obtain all of the values of my from the knowledge of
only myp. In fact, since it is possible to go from V.4, to V4 only by
going through V; we have

Mit+1,4 = Mi+1,0— M0 0<i<s
and, by symmetry,

My 431 = Ma—i,s—d~1 = Ms—q 6 — Ms—i~1,0 G <1 <s.
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Thus we need only find the mean times to go from any state to V,.
In lumping, the set which became state Vo was a set with only one

element, namely the vector y=(0, 0, 0, ..., 0). Hence the mean time
to go from state V; in the lumped chain to Vy is the same as the mean
time to go from any element in the set V; to »=(0,0,0,...,0). But

any such element is a distance ¢ from this vector. Hence this mean
time is m5. Using our results for the microscopic process we have the
values my; for the macroscopic process. These are best expressed as
follows :

s—i~1

s—1
M el = Mt 0= Memi-1,0 = . Qi — > Qi = Qn
=1 ¥=1
0<i1<s—1.

To go from V; to V; we must go through every intermediate point.
Hence

-1
myy = z st for 7 <j
k=i

and
s—-j—1
Miy = Moy oy = p Q@ fori >j.
k=s—1
From the vector «,
8

|

Mmyg =

P
~, G

From these values we obtain

Mg 41+ Mgyl =

8 /s
(k> k=iz+l (k) 2s
I, T o1y T s—1 ) (1)
i ( i ( 7
Let nti+1);; be the mean number of times in state Vy before reaching

state Vi;1, the process is started in state V4. Then by § 6.2.7(b) we
have

(s

M 4+1F Mg 4
Mg

-
()"

S

8§—1

nUtL =



Sec. 3 APPLICATIONS OF MARKOV CHAINS 173

Assume now that s is even. From (1) we obtain

i=0 .
?

5/2~1 1
mo,s/z +Msjz,6 = 28 Z (.5‘——1)

Also, since mgz,0=ms/2 5, We have

§/2~1 1
Mo,s = Mg g2+ Meja,s = 28 Z Te— 1\ (2)
| i:O( . )
v

From the point of view of physical interpretations the most interest-
ing case is where there is a large number of molecules. For this we
would like to find estimates for mg 52 and mg2, 0. The first represents
the time taken to go from no molecules in the given region to an equal
number in each. The second is the time taken to go from an equal
number in each to O inregion 4. If the model is to have any similarity
to actual physical situations we would expect that the time to equalize
the molecules would be much shorter than the time to reach an extreme
situation from equalization.

We consider first mo 2. We estimate the time required to go from
V: to Vie1. We know that the mean number of times in V; before
reaching Visy is s/(s —4)=1+14/{(s—4). Each time it is in Vi {(except for
the last time) at least two steps are taken in going to V;.; and back to
Vi. Hence the mean time to go from V; to V;;1 is at least

s+1

142 — = —
§—1  §—1
Hence we may find a lower bound for mg 52 by finding

8/ 1

_W
Co
i
.|

©
|

0

1

his sum is greater than:

s/2
~2 [T e = s log 2= -

0 S§—Z

Hence (2 log 2—1/5)— 2 is a lower bound for mg 5. A better lower
bound is obtained as follows. We assumed above that each time the
process went from Vi to V;, it did so in one step. If instead we use
our lower bound for the mean time tc go from V,_; to Vi we have a
new lower bound for the time to go from V; to Viy;. Thisis

1 s4+1—1 257
ST Pl B I
1+3 z<l+s~z+1> G5 —i+ 1)
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The sum of these values between V¢ and V,/2-1 is greater than

&/2 sz
—H fo (”(s—x)(s—xm)d’”
8+2
= —4+s[ [2—2log 2+s{s+1)log——}

Using the first two terms in the Taylor series for log (s+ 2)/(s+ 1) we
obtain the estimate

—5+8(5/2—2 log 2)
for our improved lower bound.
We next obtain an upper bound for me 2. We have

8/2-1

S S
el

?; (Ii) - (;)[’+s—§+1+<s—zi(l1;:sllz+2)+ +T8—:l_ﬂf'ﬂ*—“’}

Hence,

8/2~1 () §/2-1
s—1 s
mOs/z S z

(3—1) “s—2 < §—21

0

(512 i
x4+ 148
J-O s—2 +1

8(1/4+1/2 log s).

il

This approximation can be improved by using a better estimate for
the terms of the sum where [ is large. Thus we have found that

~5+8(5/5—2log 2) < mg g2 < s[5+ 1]z log s].

It would appear that these values are asymptotically of a greater
order of magnitude than a constant times s, but less than a constant
times slogs. We see from these estimates that the process takes a
very short time to go from 0 to s/2. For s =100 the minimum time it
could take is 50 and the actual mean time required is about 140.
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Consider next me,s. We know from (2) that

8/2—1

_ s—1)
=0 R
(7

st

mo,s = 2¢

But
/21
1 * 1 1 s/2-1
1+—— < < —_—
+8—l Z) s—1 1+s—1+ §— 1)
; 2)
Hence
1 2
25(1+—— < mos < 2&(1+-— :
s—1 §—
Thus

Mo,e ~ 28(14-%) where 1 < 4 < 2.

Our estimates for mg,¢2 show that this quantity is of a lower order of
magnitude than mgs Hence the above estimates serve also for
Mgy, =Msj2,0 a0nd we have

A
Msj2,0 ~ 28(1—%—;—) where 1 € 4 < 2.

Thus, as predicted, the mean time to go from equalization to the
extreme of 0 molecules is very much larger than to go from 0 to
equalization. For s=100 the first time is approximately 2100 or about
1000 billion billion billion while the second is only 140.

Other interesting quantities are mg,o and ms/s,2. For these we
have

Mmo,0 = 2°

_ 28 A/17
Mig/2,8/2 = T\ ~ 53-
s/2

For s =100, ms0,50 is approximately 12.5.

We conclude this section with some remarks about the macroscopic
chain and reversibility. It is sometimes argued that a process of the
type we have considered has a “direction” because of the very great
tendency to move toward equalization. It is true that if the process
is started out of equilibrium—say, in state O—then it will certainly
move towards the center. However, if the process is observed after
it has been going for a long time, then we may consider it as started in
equilibrium and in this case the process will appear the same looked
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at in the reverse direction as in the forward. For example, if the
process is then observed in V. the probability that it moves to state
V-1 is the same as the probability that it came from Vz—;. Anocther
way to put this is the following. If a sequence of outcomes for a large
number of steps is recorded and then handed to a physicist, he would
be unable to tell whether he was given them in the order of increasing
time or in the order of decreasing time.

§7.4 Applications to genetics. A problem that is frequently
discussed in genetics is the following: Two animals are mated. From
their offspring, two are selected by some method, and these are mated.
Then the procedure is repeated. This type of problem may be treated
as a Markov chain. As states we take the possible combinations of
parents, and the transition probabilities are determined by the laws of
genetics, from the assumptions concerning the way parents are selected.

The simplest such problem is obtained if we classify parents only
according to the pair of genes thev carry in one position in the chromo-
somes. We will discuss this case. Here we may further simplify the
problem by assuming that the gene is either a or b, and hence that any
individual animal must be of type aa or ab or bb. TFor example, if a
dominates b, then aa is a pure dominant, ab is a hybrid, and bb is a pure
recessive animal. Then a pair of parents must be of one of the following
six types: (aa, aa), (bb, bb), {(aa, ab), (bb, ab), (aa, bb), (ub,ab). This
problem, for the simple case that the new parents are selected at
random from the offspring, is treated in Feller and in FM.

We will discuss a class of problems of which the above problem is a
special case. We will assume that one offspring is selected at random,
and that this offspring selects a mate. In its selection it is & times as
likely to pick a given animal unlike itself than a given animal like
itself. Thus k£ measures how strongly “opposites attract each other.”
In this we take into account that in a simple dominance situation,
aa and ab type animals are alike as far as appearances are concerned.
The resulting transition matrix is

(aa, aa) 1 Q } 0 0 Q [}
(bb, bb) 0 1o 0 0 0
(aa, ab) g ' s 0 0 g N
1 k 1
p=wha)l O 3Erml ° EEh ¢ T

0 0 0 0 1

1 1 2Ue(k+ 1) k(k+1) 1

0
{aa, bb) 1
(ab, ab)  ‘4(k+3) 4(3k+1) k+3 (k+3)Bk+ 1) (k+3)3Bk+1) k+3
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The first two states are absorbing. They correspond to having
developed a pure strain: pure dominant in the first state, and pure
recessive in the second. We will compute the fundamental matrix N,
the vector 7, and the matrix B.

1
T {2k + N)(k+ 3)

4(k2 + 5k + 2) 2he(k+1)2 k(k+1) (3k+1Y(k+3) \ (aa, ab)
2(3k+1)  (4k249k+3)(k+1)  K(k+1) (3k+1)(k+3) } (bb, ab)

* 4(3k+1) ak(k+1)2 (4k2+ 9k +3) 2(3k+1)(k+3) | (aa, bb)
4(3k+1) 4h(k + 1)2 ek+1) 23k +1)k+3) / (ab, ab)

k3 +12k24+33%+11 {aa, ab)
) 4k34+17k2 + 29k + 8 (60, ab)

T T @k D(k+3) | 4k34+18%2 445k +13 | (aa, bb)
4k3 4+ 16k2+ 38k + 10 {ab, ab)
(aa, aa) (bD, bb)
4k +23k+9 4k24+ 5k+3 (aa, ab)
1 Qk+3 Bk2+19k-+-9 (bb, ab)
T AREF (kT 3) 18k+6 8k2410k+6 | (aa, bb)

18k+6 8k2410k+6 (ab, ab)

Since we know that we will eventually end up with a pure strain, the
two most interesting questions concern the number of generations
needed to reach a pure strain and the probability of getting pure
dominants or pure recessives. In particular, we will be interested in
the effect that & has on these quantities.

A large k has the effect of producing more mixed matings. Hence we
would expect a large & to slow down the process. Indeed, every eutry
in 7 s monotone increasing in k. Some typical values of this vector are

32/ 45/, 5.64 10.11
223 45/g 6.64 /16.11
41/ 62/3 3.28 17.21
3/ 52/ 7.28 16.21
k=0 k=1 k=2 k=1

We see that increasing & will slow down the process considerably,
especially if we start in one of the last three states. The fact that
the time to absorption from (ea, bb) is always one more than from
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(ab, ab) is due to the fact that from the former state we always go to the
latter in one step (a pure dominant and a pure recessive parent must
have hybrid offspring).

The effect of k on the probability of absorption is not so clear.
One would guess that large & favors the recessive strain, since then both
dominants and hybrids would tend to select recessive mates. Indeed,
for k>1 the probability of absorption in (bb, bb) increases with k.
But for k<1 a surprising situation develops. As k is decreased from
1, the probability of absorption in (aa, aa) increases, until it reaches a
maximum at k=1/3, and then decreases back to the same value as at
k=1. Thus k=0 and k=1 yield the same absorption probabilities.
This means that if in mating like always selects like, the probability
of absorption is the same as for random mating (though of course the
time to absorption is much less than for random mating). Some typical
values for the probability of absorption in (aa, aa) are

.75 77 .75 71 .61
.25 .27 .25 21 11
.50 .54 .50 .42 .22
.50 .54 .50 42 .22

k=0 k=13 k=1 k=2 k=17

The fact that the last two entries are always the same is due to the
already observed fact that the process always goes directly from
(aa, bb) to (ab,ad). The probability from (bb, ad) is half this much;
since when the process leaves (bb, ab), it is equally likely to go to
(ab, ab) or to be absorbed in (bb, bb). Similarly, the value at (aa, ab)
is half the {(ab, ab) value, plus 1/;. It is interesting to note that for
random mating the probability of absorption in (aa, aa) is proportional
to the number of a genes present at the start.

Let us collect the quantities for the special case of random mating,
k=1.

1 o { 0 0 0 O (aa, aa)
0o 1 0 0 0 © (bb, bb)
Yy O 1y 0 0 1, (aa, ab)
P=1 1, 0 1y 0 1, (bb, ab)
0 0 6 0 0 1 (aa, bb)

Y6 116 Vg Yg g 14 (ab, ab)
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S 2y 1 g
Y ?[s 8la e 43
“fa s s 83
s s 1z 8/
45/g 3/ 1,
T = 45/6 B = 1/4 3/'4
62/3/ 1Yy 1y
52(3 o /g
We also compute
Sle Yy s g 769
1 5/, 1 1 769
H = /,4 s s s 72 = a6
Yy g 1y 1 816
g Yo 1y 3Jg 816

The standard deviation in + is around 4.7 for every entry. This is of
the same order of magnitude as the entries of =, hence we may expect
very large fluctuations.

We observe from P that the process satisfies the condition for lumpa-
bility if we combine the first two states and combine the next two states.
This partition has a simple interpretation. The state (bb, bb) results
from (aa,aa) by interchanging a and b, and (bb, ab) results from
(aa, ab) similarly. On the other hand (aa, bb) and (ab, ab) are un-
changed. Hence the partition represents the process if we do not care
which gene is the dominant gene. The first state of the new process,
which we may denote by (aa, aa), represents any pair of like pure
parents. The second state, to be denoted by (aa, ab), represents one
pure and one hybrid parent. The remaining two states represent the
combination of unlike pure parents, and of two hybrid parents, re-
spectively. The lumped transition matrix is

1 6 0 ¢ (aa, aa)
- Vg Yy 0 1y (aa, ab)
4] 0 0 1 (aa, bb)
g Yo g 1y (ab, ab)

To obtain N for the lumped process. we add the first two columns,
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which correspond to lumped transient states:
10/ 1/s 43
10/3 g 43
8/s 45 83
83 13 83

We then observe that the first two rows are identical, as must be the
case for lumpability. Hence we have

10/3 1/5 4/3 (aa, ab)

F={ % % 83| (aa,bb)

8/3 1/3 %3/ (ab, ab)
and
45/6
=Nt = [623).

52/3

The vector 7 is also obtainable directly from r. The latter has identical
entries for the two states to be lumped, as must be the case, and con-
traction yields #. For many purposes the lumped process yields
sufficient information. (Of course, it does not yield any interesting
information as far as the absorption probabilities are concerned, since
there is only one absorbing state after lumping.) For example, 7 is
completely determined by #.

J10 s 12 2113/36
H= %1 s 1 F2 = | 222,
816 4 /s 222/,

The last two columns of H, corresponding to single-state cells, are
obtainable directly from H. But the first columnis new. #;is directly
obtainable from 7s.

A generalization of this lumped process is discussed in Kempthorne.t
We still restrict ourselves to a single position in the chromosomes, but
we no longer assume that only two types of genes can occur in this
position. There may be any number of different kinds of genes. We
consider the process in the lumped form: We care about the number of
different genes present and about their combination, but we do not
distinguish states that differ only in having the genes permuted. Thus

1 O. Kempthorne, An Introduction to Genetic Statistics, New York, John Wiley & Son,
Inc., 1950.
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we have the following seven states:
s1: (aa, aa)
sz:  (aa, ab)

s3:  {aa, bb)
Sa: (ab, ﬂ,b)
85: (da, bO)
ss:  {ab, ac)
s7: {ab, cd)

The transition matrix is:

We have indicated the equivalence classes in the transition matrix.
The equivalence classes are determined by the number of different genes
present in the parents. Clearly, this number either stays the same or
it decreases, hence the process can move from an equivalence class with
a given number of genes only to one with fewer genes, i.e. from the
bottom up in P. The single state with only one type of gene present is
absorbing. The four-state lumped process we considered above
corresponds to the two top equivalence classes in the present chain.
Since numbers concerning these classes are not affected by equivalence
classes lower down, all quantities we are about to compute will agree in
their upper left corner with those previously found.

10/3  Ig 4y 0 0 } 0 Sg
8/s s B3 0 o | 0 S3

, |
83 s %3 0 0 1 0 S4

N =

85 Sjs 20/ l 10/ 8/ [ 0 S5
8/5 2y 18/ } 2jy  18/g % 0 Sg

| T {
8/s /oy 5830 | a7 3%ae | 4 89
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45//6\ S2 2113/35
62/3 S3 2 2//‘3
52/3 S4 222/3
T = T2 =
71/5 S5 2311/42
62/3 Ss 242/3
72/’3 §7 242/3

S 83 S84 S5 S¢ 87

/10 g 1/ 0 0 0
816 Y4 1 0 0 0
gl fho Y 550 0 0
8/10 5/2a 3f6 o 12 O
820 s s 15 7is O

8/10 "fas s s s Y

We note that s;, 54, and sg are the “likely states,” in the sense that if
the process starts low enough for it to be possible to reach the state
there is always a fairly good chance of reaching the state. The other
states are quite unlikely no matter how the process is started. It is
quite surprising that starting in s;—that is, starting with four different
genes—we expect to reach a pure strain in 72/; generations. But it
must be remembered that the standard deviation of this quantity is
4.97, and hence much longer processes are not too unlikely.

§7.5 Learning theory. This section will be devoted to the study of
a mathematical model for certain kinds of learning, due to W. K. Estes.
We will discuss only some relatively simple special cases, but the
techniques here used are applicable to more general situations.

In a typical experiment the subject is placed in front of a pair of
lights, and he is asked to guess whether the light on his left or the light
on his right will be turned onnext. Thus, he has two possible responses.
We denote by Ay the guess “left,” and by A, the guess “right.” Then
the experimenter turns on one of the lights. Let E, mean turning
on the left light, and E; the right light. The procedure is repeated a
large number of times, and a record is kept of the sequence of hoth
A;and E;. The purpose of the theory is to predict, for given behavior
of the experimenter, how the subject’s guesses will change in the long
run. A variety of experiments has shown that the model is in good
agreement with the facts.
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In a large class of interesting experiments the experimenter will
choose his actions with fixed probabilities, depending only on the
action of the subject. These probabilities may be given in Figure
7-8.

Eo E:
A(,(l—v v
A1 w I—w

FIeUre 7-8

That is, a guess “left” (A¢) is reinforced by turning on the left light
(Eo) with probability 1—v; otherwise the right light is turned on.
And a guess “right” is reinforced with probability 1 —w. Here v and
w are numbers between 0 and 1, which are kept fixed for the duration
of the experiment. '

While v and w are usually positive numbers, the cases in which they
are not lead to interesting experiments. For example, if v=0 and
w> 0, then Ao is always reinforced, but A; is only occasionally rein-
forced. The case v>0 and w=0 is similar. If v=w=0, then every
action of the subject is reinforced.

Another class of interesting special cases is where v+w=1. Here
1—v=w and v=1-w, and hence the probability of Eg or of E; is
independent of the action of the subject.

The model assumes that the subject has a certain unknown number s
of stimulus elements. Each stimulus element is at each stage of the
experiment connected to one of the two possible responses Ay, the
original connections not being known. It is then assumed that the
following takes place at each stage of the experiment:

(1) The subject “samples” a subset of the stimulus elements, by
means of an independent trials process, in which any one stimulus
element is sampled with probability ¢ or not sampled with probability
I—t¢.

(2) If in the sampled set there are & stimulus elements connected to
Ao and [ to A,, then the subject performs A; with probability I/(k+1).
Some convention is necessary if no stimulus element is sampled; we
will assume that the probability of A; is the same in this case as if all
stimulus elements had been sampled.

(3) If the experimenter performs Eg, then any stimulus element that
was previously connected to A; and which was just sampled by the
subject is reconnected to Ao. Similarly, after E;, all the sampled
stimulus elements are connected to A;.
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We can represent the model as an (s+ 1) state Markov chain, in which
state s; occurs when exactly ¢ stimulus elements are connected to Aj,
and =0, I, ..., s. Al the interesting quantities depend only on
how many stimulus elements are connected each way, and hence these
quantities are functions on the chain. For example, the probability of
action A; from state s; is obtained as follows:

PrfAi] = ; iﬂ (2 ()ma—trm o+ -0l

¥, 1not both 0

where k is the number of stimulus elements sampled from those con-
nected to Ao, ! from those connected to Ai, m=k+1, and the last term
arises from the assumption concerning the case where no stimulus
element is sampled. We rewrite this as a sum on m, and then use a
binomial identity:

8

2 mamorn 3 () oo
mzllltm(l—-t)ﬂ‘m(;)% + (1—t)a§

s i (;z)tm(l_t)s—m

m=0

I e,

?
8

It will be convenient to let the column vector y = {‘%} represent these

probabilities.

Let us next construct the transition matrix P. For this we must
take into account all four possibilities in Figure 7-8. The combination
of A, and E,, with a transition from s; down to s; has probabilities wX,
where

o fs—3 _ P e BT
x‘i'—‘{Z(k )(z_‘?)t‘ JHE(1 — ¢ )s=its Ry ifj<i

¥=0
0 ifj=zaq

The downward transition s; to s;, by means of the combination A and
Ep, has probabilities (1 —v)(Y — X), where

(1t ifj<e
(s

0 ifj >4
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fwe let % = 5, sy, a0d Y*i5 = Ys—i, 5—j, then X * and (1 —w)(T* — X*)
represent the probabilities of upwards transition. Thus
P = wX+0X*+(1=0)(¥ —X)+ (1—w)(¥* = X*) + (v+ w—1)(1 =),
or '
P=oX+X*-Y)+wX+X*¥—T*)+ (Y +T*) - (X +X%)
(o4 w—1)(1 =) (1)

The final term represents the cases where no stimulus element is sampled,
which were not included in the two previous terms.
We wish to compute Py. First we find Yy.

J k
2 yug= 2
k=0

F=1
i< 1—1
= - i~k(] — 1)k
2, (1o
i’ fi-1
_— i—1-1(} — )I+1
sh0<l y» (1~¢)
= (1-t)
Hence
Yy = (1-t)y (2)
Quite similarly,
Yry = 6+ (1 —t)y. (3)
And by a somewhat longer argument we find that
(X+X*)y = tf4+(1—2=(1=t))y. (4)

If we write Py by means of (1), and make use of (2), (3), and (4}, we
obtain
Py = oftf+ (1 =2 —(1—1) )y — (1= £)y]
FuftE+ (1= 2 — (1=t )y — i€ — (1 —t)y]
21— t)y—tE~ (1= 24— (1=t ))y
+(@+w—1)(1—1t)5y.
This simplifies to
Py = vt§+[1—(v+w)tly. (5)

)f for the cases where v

Let us introduce the vector 8=y — (v iy
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and w are not both 0. It will be shown later that § has an important
interpretation in the model.

v 17
P3 = Py= (L Iohe = (1= oy 2 L= o e
or
Ps = [1—(o+u)t]s (6)
and
Pr§ = [1~(v+w)t]"3. (7

The values of v and w determine the nature of the Markov chain. If
O<wv<l and O<w<1, then P>0 and hence the chain is regular.
If »=0, then i=0 is an absorbing state; and if w=0, then ¢=s is an
absorbing state. Hence if either v or wis 0, we have an absorbing chain.
If v=w=0, then we have two absorbing states.

Let us find the probability of an A; response after n steps. This
will be given by the vector Py, the probability depending on the
starting state. If v=w=0, then Py=y from (5), hence P?y=vy. The
probability of an A; response is unchanged. In the other cases,
(7) provides the answer

Pry = [pf(v+w)]¢ + [1— (v+w)t]nd.

The first term (as will be seen below) is the limiting probability for
an A response, and the second is the deviation due to the initial
position.

Let us first discuss the regular case. Here v>0 and w>0. Since
O<t<1, wehave |l—(v+w)t|<1l. From (7),

A =0
o5 = oy (2o)e) = o
and thus
v
¥ rw (8)

This proves that the limiting probability of an A; response is v/(v +w).
Applying this to Figure 7-8 we find that the limiting probability of an
E; action by the experimenter is

v

w v
) _._.(I_uy)=_ﬁ__._.
v+w v+ w vt w

Thus in eguilibrium the probabilities for the experimenter and the
subject are in agreement.
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It is Interesting to note that the subject does not maximize the number
of correct guesses. Instead, he brings about an equilibrium in which he
is guessing “right” with the same frequency with which “right” comes
up.

Since v/(v +w) is the mean number of A, responses per trial in equili-
brium, and sinece /s is the mean nwumnber when in state s;, the vector

¢ v . .
8 = {EQ (m)} gives the deviation between the mean number of
Aj responses in a given state and in equilibrium.
From (8), (7),

L=P+A4) = (v+w)s

1
Z8 = v+ w)i
1
(Z=4) = o
1

Thus the total deviation from equilibrium (for the number of A,
responses) is proportional to the deviation vector 8. Hence the total
deviation may be large because 1/s for the starting state may have been
far from the equilibrium v/(v + w), or because ¢ is small.

To obtain the limiting variance for the number of A, responses, we
must use § 4.6, since we have a function on the chain which takes on the
value 1 in s; with probability fi=1¢/s. While we have no general
formula for this limiting variance, in any concrete example it is easy to
compute it from § 4.6,

Let us next consider the case of an absorbing chain with one absorbing
state 1 =0, that is, v=0 and w>0. (The case v>0, w=0 is similar.)
In this case 6=y. Lety be gotten from y by deleting its first component
(which is 8). TFrom (6),

=P8 =(1-ut)d = (I—ut)y
Q7 = (L—wt)y
(I~Q)p= = (wt)y

This case is one in which the subject is being conditioned to give Ag
responses. If he gives an A response, it is always reinforced. But an
A; response is also reinforced occasionally, with probability 1 —w. Ny
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gives the mean of the total number of A; (or “wrong”) responses. For
starting state s; this is 1/wt-ifs. Thus there may be a large number of
errors for one of three reasons: The fraction 1/s of stimulus elements that
need reconditioning was high at the start; or the learning parameter ¢ is
low; or w is low, that is, an A; response is frequently reinforced.
It is sometimes reasonable to assume that the stimulus elements
were originally connected at random. This gives us an initial proba-
i 1
bility vector m = {—2—5 (i)} Then the mean of the total number of
“wrong” responses is

1 (1 1
Twm? T (E)m’ ~ Swt
We could expect to average this number of A; responses in a large
homogeneous population. This is one simple way of estimating .

Finally we discuss the case v =w=0, where every action of the subject
is reinforced. Then both i=0 and 7=¢ are absorbing states, and the
most interesting question is whether the subject ends up conditioned
to Ag or to Aj responses.

From (5) we see that in this case Py=y. But y has a 0 component
for so, and 1 for s;, hence (see Theorem 3.3.9) y gives the probabilities
for absorptionin s,. Thus the probability of being conditioned entirely
to Aj responses is equal to the fraction of stimulus elements originally
connected to A;.

To obtain more detailed information about the model we will have
to make a simplifying assumption. Since in most applications the
learning parameter ¢ is quite small, we shall assume that terms of higher
order in ¢ are negligible. This may also be interpreted psychologically.
If we drop terms in powers of ¢ higher than the first, we assume that the
sampling of more than one stimulus element at a time is quite unlikely.
Under this assumption P is eonsiderably simplified:

Piiv1 = (§—1)fv
Pii-1 = Hw
Pu = 1—t(tw+ (s—12)v)
piy = O otherwise.
Let us consider first the regular case under this simplifying assump-
tion. The most important quantity lacking in our previous treatment

was the vector of limiting probabilities «. We shall show that under
our present assumption

a; = (:)vfwé“/(v-{-w)s.
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Let us compute «P.

8

D, Py = [G1Pio1,5 QP+ e1P541,1]
k=0

It

[(ﬁj 1>Ui—lws—2‘+l(s —j+ )i+ (;)vfws‘ (1 —t(jw+ (s—j))]

+ (ji}L)Umwan(j-;« 1)tw]/(e)+w)s

tviws—? s\, . P .
ort g 2109 o= () i
S .
+(j+1>(j+l)?)]'

We then find that the two v-terms cancel each other and the two
w-terms also cancel, and hence the expression in brackets is 0. Thus
the right side reduces to a;, and hence o ={a;} is the fixed vector of P.
Thus we know that if ¢ is small, the limiting probabilities are very
nearly given by this «. Indeed «is the limit of the limiting probabilities
as t—0.

It is interesting to note that for w=v=1/st the process we obtain is
the same as that obtained for the macroscopic process in the Ehrenfest
model.

Next let us consider an absorbing case, say w>0 and v=0, that is,
where the subject is being conditioned to response Ag. Then

pi,i-—l = itw
Vi = I —atw

and all other entries are 0. The matrix I-Q={c;} where ¢y =1iw,
and ¢;,;_1 = —1tw, and all other entries are 0. We will show that

I

ng = 1jtw ifj <4

0 otherwise.

Let us compute N(I —Q).

8§
z NixCky
k=1

Il

niz( Jlw) +ng g1 — (5 + Dbw]

i1 < e =0+0=190
ifs = j: = (I/jtw)jtw+0 = 1
ifi > g = (1/jtw)jlw+ (1/(5+ L)tw)(~(F+ 1)iw) = 1~1

- 0,
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which verifies that &V is the desired inverse. It is interesting to note
that N depends on s, j, ¢, but not ons. We then obtain

o= () S (1),
i<

Thus the time of conditioning is inversely proportional to ¢ and to w,
and depends on the number of stimulus elements that need to be
conditioned from A; to Ay. The time will be large if ¢ is small. It
will be large if w is small—that is, A; is frequently reinforced. But
since the series 1/j diverges, the time may also be large because many
stimuli elements were originally conditioned to A;.

Finally we shall consider the case of two absorbing states, w=v=0.
Here the first-order terms in ¢ drop out, and hence we will have to carry
out our computation in terms of ¢2.

D1 = Pri+1 = (1/2)i(s —1)t2
Pt = I—Z.(S-—’Ij)iz‘

A computation quite similar to the one above will verify that
(2/128)(3]5) ifi < j.
= @trs)(s—i)(s—j) ifi> .

N -1 s s—1
o= <2/t2)[(1—-‘) TS l].
LI Traitly B e S |

Again the sum may be large because ¢ is small or because there are
many terms (s is large). But in this case #; is inversely proportional to
¢2, and hence we expect a much longer time for conditioning.

There is one special case in which more precise information is avail-
able without the above simplifying assumption. This is the case
where v+ w=1, or w=1~v. Here the action of the experimenter is
independent of what the subject does. We found an exact solution
for « in this case, in terms of simple recursion equations.t

It was shown that the limiting probabilities may also be obtained
from the following auxiliary process: We start with s stimuli elements
completely unconditioned. We select a subset of these, picking each
stimulus element with probability {. Then by a random device we
assign these to A, with probability w or to A; with probability 1 —w.
We then apply the same procedure to the remaining stimuli elements,
till all are assigned. Then the limiting probability a; for the original
process is simply the probability of assigning ¢ stimuli elements to A,

I

niy

and hence

1 Cf. J. G. Kemeny and J. L. Snell, “Markov Processes in Learning Theory,” Psycho-
metrika, 22 (No. 3):221-230, 1957.
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in our auxiliary process. These probabilities are easily obtained for
any s of reasonable size.

§7.6 Applications to mobility theory. In this section we shall
consider the application of Markov chain ideas tc a problem in sociology,
the problem of intergenerational occupational mobility. The results
of this section were prepared jointly with J. Berger. The problem may
be stated as follows. A partition A={A;, A, ..., A/} is made of the
set of all occupations. The cells are called the occupational classes.
These are usually ordered with respect to some socially relevant
criterion, for example, prestige of occupation. The question is then
asked, to what extent does the occupational class of the father, grand-
father, ete., affect the occupational class of the son? In any such study
a matrix is constructed which represents for each class the fraction of
the sons that would be expected to go into each of the occupations.

We shall take as our basic example a matrix constructed from data
collected by Glass and Hall from England and Wales for 1949.7
Following Prais,} we classify the occupations as upper, middle, and
lower. The estimated matrix is

UPPER MIDDLE LOWER

UPPER 448 484 .068
P = MIpDDLE | .054 629 .247
LOWER 011 .503 .486

We see, for example, that of the upper class, 44.8 percent of the sons
went to the upper class, 48.4 percent to the middle, and 6.8 percent to
the lower.

There are two ways to make use of P. One is to consider at each
state the total population, and predict the fraction of the population
which will be in each of the occupational classes. We shall call this
the “collective process”.

A second way is to study a single family history. From this point of
view we consider this history as the outcomes of a Markov chain with
transition matrix P. We shall call this the “individual process.”
We assume every family has exactly one son.

We proceed now to discuss the relation of the basic concepts of
Markov chain theory to these two processes.

We begin with the assumptions for a Markov chain. The basic

+ D. V. Glass and J. R. Hall, “Social Mobility in Great Britain: A Study of Inter-
generation Changes in Status,” in D. V. Glass (1d.), Social Mobility in Great Britain,
London, Routledge & Kegan Paul, 1954.

t 8. J. Prais, “Measuring Social Mobility,” Journal of the Royal Statistical Society,
118:56-606, 1955.
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assumption is that the knowledge of the past beyond the last outcome
does not influence our predictions. In the individual process this would
mean, for example, that the knowledge of the occupation of the grand-
father would not affect our predictions for the son.

We also assume that the same P serves for every generation. This
is clearly not completely realistic. However, there is still a great deal
of interest in studying what would happen if the present P were to
continue to be appropriate.

It is also assumed that changes in distributions in oceccupational
classes from one generation to the next are to be accounted for only by
the process described by P ; that is to say, for purposes of this analysis
we ignore the effect of differential reproduction and migration rates, as
these may be related to occupations of the system.

The classification of states has obvious interpretations in mobility.
An ergodic set is a set of occupations from which it is impossible to leave.
In most industrialized societies we would expect only one ergodic set.
However, if we take as state the pair, occupation and race, then dis-
crimination against a certain race may cause the resulting chain to
have more than one ergodic set. When studying occupations, a son
can have the same occupation as his father. Thus we would not
expect cyclic chains. An absorbing state would mean that for a given
occupation the son must follow his father’s footsteps. Again, in
industrialized societies occupations do not usually have this property.
We shall therefore assume that our basic chain is regular.

Let us next see the interpretation of the powers of P. For the
individual process the ¢j-th entry of P» will give the probability that,
after n generations the family will be in the j-th occupation class if it
started in the i-th. For the collective process, p{®y; represents the
fraction of the descendants of people in the i-th occupational class that
will be in the j-th occupational class after n generations. If we start
with fractions 7= (p1, ps, p3) in each of the classes, then after n genera-
tions there will be fractions given by #»P». In our example, assume
that there are at present 20 percent in the upper class, 70 percent in the
middle class, and 10 percent in the lower class. Then after one
generation the percentages are 12.9, 63.6, and 23.5. We obtain these
by

448 484 .068

(.200 700 .100){ .054 .699 .247 | = (.129 .636 .235).
011 503 486

The fixed probability vector « has the following interpretations. In
the individual process it represents the long-range predictions for the
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occupation of an individual. Our basic theorem for regular chains tells
us that these predictions are independent of the present occupational
class. For the collective process, the fixed vector gives the equilibrium
fractions. When these fractions are realized, the fractions in successive
generations remain the same. No matter what the initial fractions are,
they will, after a number of generations, be close to those given by the
fixed vector.

In our example, the fixed vector is «=(.067, .624, .309). The actual
fraction in each of the classes from the data which determined the
matrix P was @=(.076, .634, .290). Thus we can see that the system
may be considered to be nearly in equilibrium.

The mean first passage times have the usual interpretation for the
individual process but do not seem to have a natural interpretation for
the collective process. For our example, the mean first passage time
matrix is

U M L

U /149 2.1 5.6
M =M¢§251 1.6 43
L \265 1.9 3.2
The standard deviations for the first passage times are

U M L
U /225 1.5 4.1

M¢E 250 1.2 3.9
L \25.1 1.4 3.5

Since the standard deviations of the first passage times are of the
same order of magnitude as the means, the means are not to be taken as
typical values. However, the relative size is of interest. For example,
the mean time to go from lower to upper is about five times as big as
the mean time to go from upper to lower.

Assume now that the individual process is in equilibrium. Then the
reverse transition matrix gives the probabilities for the father’s occupa-
tion when that of the son is known. If P isreversible, then, given that
a man is in class ¢, the probability that his son will be in a given occu-
pational class j is the same as the probability that his father was in this
classj. The condition for reversibility has an interesting interpretation
for the collective process. Recall that the condition for reversibility
may be expressed by saying that D-1P should be a symmetric matrix.
In other words, that a;p;; =a;p;i. In the collective process aipi; repre-
sents, in equilibrium, the fraction of the people in the i-th occupational
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class which move in one generation from the 7-th to the j-th class.
Also aypy represents the fraction which move from the j-th class to
the i-th class. Hence the condition for reversibility means that there
should be an “eqval exchange” between classes. If there is an equal
exchange then clearly the total numbers in each class will remain fixed,
i.e. the process will be in equilibrium. However, equal exchange is a
much stronger condition. The above discussion suggests that for
the collective process the matrix D~1P is an interesting matrix. We
call this matrix the exchange matriz. For our basic example, the ex-
change matrix is

U M L
U /.030 .032 .005

D1P =M | .034 .436 .154
L \.003 .155 .150

Note that there is approximately equal exchange between the
classes.t

Finally we consider the question of lumpability for mobility pro-
cesses. This is particularly important for the following reason. If we
decide that the Markov assumption is reasonable for a certain method of
classification, then we cannot arbitrarily treat a coarser classification
as a Markov chain. This is because the coarser classification is obtained
from the finer by lumping states. We know that only under very
special conditions will this again result in a Markov chain. Of course
the method of classification itself has a great deal to do with whether
or not the Markov assumption is realistic. Hence the coarser analysis
may be taken as a Markov chain even when the condition for lumpa-
bility is not satisfied. However, we must then admit that the finer
analysis is not a Markov chain. We cannot have both, unless the con-
dition for lumpability is satisfied.

We shall illustrate the above ideas in terms of some actual mobility
studies. The example that we have been considering was actually
obtained from a finer analysis of the data obtained by Glass and Hall
for England and Wales in 1949. These authors used seven classes.
They are:

1. Professional and high administrative.
2. Managerial and executive.
3. Inspectional, supervisory, and other non-manual (higher grade).

t ¥or a more detailed discussion of the exchange properties of a system see J. Berger
and J. L. Snell, “ On the Concept of liqual Exchange,” Behavioral Science, 2, (No. 2):
111-118, 1957.




SEc. 6 APPLICATIONS OF MARKOV CHAINS 195

'S

. Same (lower grade).

. Skilled manual and routine grades of non-manual.
. Semi-skilled manual.

Unskilled manual.

oo

From their data we obtain the transition matrix
1 2 3 4 5 6 7

0.388 0.147 0.202 0.062 0.140 0.047

0.107 0.267 0.227 0.120 0.207 0.083

0.035 0.161 0©.188 0.1981 6.357 0.067

P = 0.021 6.039 0.112 0.212 0.431 0.124
0.009 0.024 0.075 0.123 0.473 0.171

0.600 0.013 0.041 0.088 0.391 0.312

0.006 0.008 0.036 0.083 0.364 0.235

Our previous example was obtained from this study by calling {1,2}
the upper class, {3,4,5} the middle class, and {6,7} the lower class.
The fixed vector is

a = (.023 .041 .088 127 410 .182 .129).

The above transition matrix was estimated from a sample of 3497.
The distribution of the occupations in this sample was

a = (.030 .046 094 131 .409 .170 .121).

We see that these numbers are fairly close to the equilibrium vector.

1 2 3 4 5 6 7

1 439 262 9.9 9.2 4.0 84 115
2 63.1 24.2 101 8.5 3.5 81 111
3§ 703 305 114 80 29 7.6 10.3
M=4F 723 33.0 127 7.9 26 7.0 10.0
5% 73.7 339 135 87 24 6.5 9.3
6 74.9 346 141 9.1 26 55 88
7 \75.0 34.8 143 6.2 27 59 1.7

The diagonal entries of M are the reciprocals of the fixed vector.
Since the fixed vector is close to the actunal fraction of people in each
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class, when this fraction is small the mean time to return is corres-
pondingly large. For a given occupational class it is interesting to
compare the mean time to reach this class, starting in each of the other
classes. We observe that in general the mean time to go from any
state ¢ to a given state j decreases as 1 gets closer to state j. FPositions
of these occupational classes correspond to their relative social prestige,
and hence “closer” means closer in terms of prestige.

We have discussed only regular chain concepts in this section. We
know that absorbing chain ideas can be fruitfully used to study regular
chains. For example, we can study the behavior of the middle classes
3,4,5 by making the upper classes 1 and 2 and lower classes 6 and 7
into absorbing states. Doing this, we obtain an absorbing chainwith
matrices @ and R given by

3 4 5
3 /.188 .181 .357
Q=41 .112 .212 431
5 \.075 .123 473
1 2 6 7
3 /.035 .101 .067 .061
R =43.021 .039 .124 .062
5 \.009 .024 .171 .125

The basic guantities for this chain are:

3 4 6
3 /144 58 145 3 /3.47
N =4 .36 1.60 1.55 T =4} 3.51
5 .29 45 247 5 \3.21

1 2 6 7
3 /.08 .20 .42 .30

B =47.06 .14 .49 .32
5 \.04 .11 .49 .36

From r we obtain the mean time to leave the set {3,4,5} for thefirst
time for each starting state in the set. We see that this is between
3 and 4 for each starting state. From B we find the probabilities of
leaving by moving to each of the states 1,2,6,7. Combining states
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1 and 2, and 6 and 7 we can find the probability of moving out of each
of the middle classes by moving to the upper or to the lower class.
These probabilities are:

U L
3 /.28 .72
4f.20 811
5\.15 .85

In each case the probability of leaving by way of the lower class is
much higher than leaving by way of the upper class.

It is interesting to observe that the probability of leaving the middle
class by way of the upper class decreases the lower the level of the
occupational class.

As mentioned earlier, our basic example in this section was obtained
by combining states in this seven-state chain. The partition used was
A=({1,2}, {3,4,5}, {6,7}). The first set being the upper class, the
second the middle class, and the third the lower class. It is interesting
then to check the condition for lumpability with respect to this parti-
tion. To do this we must find the matrix PV (see §6.3). We obtain,

A, A, Az
534 404 .062

374 553 073

136 736 128
060 754 (128
033 671  .296

013 520  .467

008  .483  .509 |

/

To satisfy the condition for lumpability it is necessary that the
components of a column of this vector be constant within the sets
Ay, As. As. Thisis certainly not the case. For example the probability
of moving to A; is quite different for the states of Az. It is .033 from
state 5, .060 from state 4, and .136 from state 3. Thus we would not be
justified in treating both of our processes as Markov chains.

If we choose to believe that the seven-state chain is a Markov chain,
then the three-state process is not a Markov chain, but in equilibrium



198 FINITE MARKOV CHAINS Cruap. ViI

the matrix P, the vector 4, and the matrix M are all well defined. If
we compute these matrices by the method given in § 6.4, we obtain,

U M L

U /.43 50 .07
P=M {.05 70 .25
L \.01 .50 .48

4= (06 .63 .31)
U M L
U /157 2.0 5.9
M =M {2.3 1.6 63
L \280 2.0 3.0

We see that these quantities are all quite close to those obtained
by treating the three-state chain as a Markov chain.

The next example we consider is obtained from data collected by
N. Rogofff in a study made from marriage-license applications for
Marion County, Indiana. The interest in this example lies in the fact
that data were obtained for two different time periods, 1905 to 1912
and 1938 through the first half of 1941. Hence it is possible to compare
the transition matrices for these two different time periods. Within
the first sample there were 10,253 and within the second, 9,892. In
the Rogoff study a very fine analysis of the occupations is made.
However, for illustrative purposes, we have made a coarse analysis.
This classification may be considered as non-manual, manual, and
farming. We treat first the 1910 case. The transition matrix is

NON-MANUAL MANUAL FARM

NON-MANUAL / 594 .396 .009
P = MANUAL 211 782 007
FARM .252 641 .108

The fixed vector is ejgio=(.343 .648 .009). The actual fractions
in each of the classes are given by

Gie10 = (310 .658 .034)

Note that the equilibrium vector predicts significantly fewer farmers
than there actually are. This would suggest that the 1940 data should
show a decrease in the fraction in farming.

1t N. Rogoff, Recent Trends in Occupational Mobility, Glencoe, Ill., The Free Press,
1953.
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For the 1949 case we find

NON-MANUAL MANUAL FARM

NON-MANUAL .622 R YE) .003
P = MANUAL 274 721 .005
FARM .265 .694 042

The fixed vector is ajgqe=(.420 .576 .004). The actual fraction in
in each class in 1940 is given by

Gies0 = (.373 .616 .011).

As predicted, the fraction of farmers has significantly decreased. It is
interesting to observe that the equilibrium vectors for 1910 and 1940
predict larger fractions in the upper class than there actually are. In
the case of England the equilibrium vector predicted smaller numbers
in the upper classes.

The final example that we discuss illustrates equal exchange. The
data was obtained from a study made by Blumen, Kogan, and McCarthy
on labor mobility.T This was a very large study based on social security
records. A 1-percent sample of all workers who are or have been in
covered employment since the inception of the social security system
in 1937 has been kept. The study was based on a 10-percent sample
from this record. It presents the following transition matrix for the
group of males in the age bracket 20 to 24. We omit a discussion of
the classification used in the study.

1 2 3 4 5
0.832 0.033 0.013 0.028 0.095
0.046 0.788 0.616 0.038 0.112
0.038 0.034 0.785 0.036 0.107
0.05¢ 0.045 0.017 0.728 $.156
0.082 0.065 0.023 0.071 0.759

y
il
[ N N

The fixed vector is
a = (.270 184 .0786 .148 .322).
The actual fractions in the classes considered were
G = (.282 .170 .068 .137 .343).

t I. Blumen, M. Kogan, P. J. McCarthy, The Industrial Mobility of Labor as a Prob-
ability Process, Cornell Studies in Industrial and Labor Relations, Vol. VII, 1955.
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The most interesting feature of this examyle is the exchange matrix.
This is
225 009 .004 .008 .026
.008 .145 .003 .007 .021
.003 .002 .060 .003 .008
008 .007 .002 .108 .023
5 \.026 .021 .007 .023 .244

D-iP

It
B W N e

The almost perfect symmetry of this matrix indicates that this system
may be considered to be in equal exchange in equilibrium, or that the
process is reversible.

§7.7 The open Leontief model. In the Leontief input-output
model, we consider an economy in which there are r industries and we
make the simplifying assumption that each industry produces exactly
one kind of goods. We regard the natural factors of production such
as land, timber, minerals, ete. as free, and do not consider them as
entering into the cost of finished goods. In general, the industries are
interconnected in the sense that each must buy a certain amount
(positive or zero) of the other’s products in order to run its industry.
We shall define technological coefficients as follows: ¢y is the amount of
the output of industry j that must be purchased by industry ¢ in order
that industry 7 may produce $1 worth of its own goods. Let @ be
the r x 7 matrix with entries gi;. By their definition, the technological
coefficients are non-negative.

It is easy to see that the sum of the gy, for ¢ fixed, gives the total value
of the inputs needed by the ¢-th industry in order to produce $1 worth
of its goods. If the i-th industry is to be profitable, or at least to break
even, this sum must be less than or equal to the value of its output, i.e.
gu+qiz+ - -+ +qir<1. For obvious reasons we shall call the i-th
industry profitable if the strict inequality holds and profitless if the
equality holds. We make the assumption that every industry is either
profitable or profitless and thus rule out the possibility of unprofitable
industries.

We can restate the above conditions as

@G>0 (1)
Qf < ¢ (2)

Having discussed the inputs of the industries we next discuss their
outputs. Let z; denote the monetary value of the output of the i-th
industry and let w= (21, %2, ..., %) be the row vector of outputs.
Since the i-th industry needs an amount zgi; of the output of the j-th
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industry, the vector of inputs needed by the industries is simply Q.
Then the j-th component of #@ gives the total value of the output that
must be produced by the j-th industry in order to meet the inter-
industry demand for its product.

Let us assume that the economy supplies for consumption an amount
¢; of the output of the i-th industry. Let y=(ci,cs, ..., ¢;) be the
consumption vector ; we shall require that

y > 0. (3)

The requirement that the production vector of the economy be
adjusted so that the inter-industry needs as well as the consumption
needs may be fulfilled is now easy to write in vector form; it is

7 = mQ+y. (4)
Rewriting (4) as

mI-Q) =y, ' (5)

we see that it is a set of 7 simultaneous equations in r unknowns.

To be economically meaningful, we must find non-negative solutions
to (5). Since the demand vector y may be arbitrary, we see that
equations (5) are in general non-homogeneous and will have a solution
if and only if the matrix 7 —@ has an inverse. Moreover, the solutions
to (5) will be non-negative for every y if and only if (/ —)~1 has all non-
negative components. We must therefore search for necessary and
sufficient conditions that the inverse of J —{ be non-negative.

We will solve this problem by imbedding cur model in a Markov
chain. (This solution was worked out by the authors jointly with
G. L. Thompson.)

By the Markov chain associated with an tnput-output model we shall
mean a Markov chain with the following properties:

(i) The states are the r processes of the model plus one additional
. absorbing state so, called the banking state.
(i1) The transition matrix P is defined as follows:

Poo = 1
Poj = 0 J>0
Py = qu v >0

pgo:l—z Qi3 i > 0,
i=1

The intuitive interpretation of this is the following: If industry ¢
receives a dollar for its use, then it spends it by buying pi from industry
j. The remainder of the dollar, if any—that is, the amount p;o—is
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the profit, and we may think of it as being deposited in a bank. The
fact that the banking state is an absorbing state, means that the bank
gets money but does not spend it.

We immediately see that if @ is a matrix satisfying (1) and (2), then
a non-negative solution to equations (5) exists for every r> 0, if and
only if the associated Markov chain is absorbing, with the banking state
so as its only absorbing state. If s¢ is the only absorbing state for an
absorbing chain, then (/—@)~1=N exists and is non-negative; hence
m=yN is the desired solution. Otherwise (/—@)~1, which gives the
mean number of times in various states before reaching sq, would have
to have infinite entries, i.e. cannot exist.

There is a simple economic interpretation of this result. We see that
from every state it must be possible to “reach” the banking state.
Only a profitable industry “reaches” the bank directly. A profitless
industry must reach the bank through a profitable one. Hence our
condition states that every industry must be either profitable or must
depend on a profitable industry. For example, if we assume that every
industry depends on labor, and that labor is a profitable industry
(which presumably means that labor is paid more than subsistence
wages), then our condition will be met, and all demands can be ful-
filled.

If the above condition is viclated, then the economy cannot fulfill all
possible demands. Let us ask what kinds of demands it can fulfill.
First of all we consider the case that there is no profitable industry.
This means that each industry needs all it produces to pay for raw
materials, and it would seem that it could meet no outside demand.
That this is indeed the case is easily proved.

If there is no profitable industry, then each row of @ has row sum 1,
hence Q¢ =¢. If we multiply equation (4) by £ on the right, we find
that

m¢ = 76 +yé = m{+y¢,

hence y¢=0. This says that the sum of all the demands is 0. Hence
no (positive) demand can be fulfilled.

Let us now consider the general case where our condition is violated.
The associated Markov chain is not an absorbing chain with the single
absorbing state. Then there must be an ergodic set other than {so},
i.e. a closed group of industries none of which is profitable, and which
depend on no industry outside the group. Let us take the set of all
such industries, that is the union of all ergodic sets other than {so}.
The submatrix { of these industries has the property Q& =¢, as above,
and hence can fulfill no outside demand. Thus the entire economy
can fulfill no demands of goods produced by these industries. And
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any goods whose production required raw materials from these indus-
tries also cannot be supplied, since these would act as outside demands
on the closed group of industries.

However, if we remove this closed group of profitless industries and
all industries depending on them, the remaining industries (if any)
will fulfill our requirement, and hence can satisfy arbitrary demands.
These results can be summarized : If there are industries which depend
on no profitable industry, then these cannot fulfill an outside demand,
and neither can any industry depending on them. The remaining
industries can fulfill any outside demand. In terms of states this
means that any ergodic state (other than sg), or any transient state
from which such a state is reachable, can fulfill no demand.

To find what industries can support a demand, we use the following
simple algorithm for the classification of states:

(a) Make a check opposite each row of ¢ whose row-sum is less than
1; that is, check each row corresponding to a profitable industry.

(b) Check the columns having the same indices as the rows already
marked and then check, in these columns, rows which have
positive entries. '

(¢) Tterate (b) until it produces no new rows. Then one of two
possibilities may oceur:

(1) All rows are checked.
(2) Not all rows are checked.

If case (cl) occurs then the associated Markov chain is absorbing
with the single absorbing state so. Hence any non-negative demand
can be met. If case (c2) occurs, then the rows which are not checked
correspond to the maximal profitless closed group. We can find all
states depending on these by marking these rows (removing previous
check marks) and applying (b) repeatedly. Any state so marked will
not be able to fulfill an outside demand.

We thus see that the entire question of what outside demands can
be met by the economy is settled by a very simple algorithm. The
“computation” requires finding the row-sums, and then simple itera-
tions in which only the positivity of cormaponents is checked. This
algorithm is practical even for very large matrices.

The industries which can meet no outside demand form a totally
useless segment of the economy. ¥From here on we will assume that
they have been deleted ; then ({ —@Q)~! exists.

Next we want to raise the question: If an order for one dollar’s
worth of good is given by a customer to industry ¢, how much of it
ends up in the hands of the various industries?
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PFirst of all we must ask what the total demand is on the various
industries. We have a y vector whose i-th component is 1, and which
has 0’s as other components. Hence n=9N is simply the ¢-th row of
N. This gives a direct interpretation to the entries of NV; ny; is the
amount industry j must produce to fill a dollar order for industry J.
Since industry j makes pjo profit on a unit production, the answer to
our question is that if industry ¢ is given a dollar, the profit of industry
J will be ngpjo.

The sum of all the profits is anjpjo=b¢0=l (since sg is the only

J
absorbing state). This shows that a dollar spent by the consumer ends
up as profit in the hands of the profit-making industries.

A related question is the following: If a dollar order is given to
industry ¢, how much activity does this result in? It will result in ny;
units of production in industry j. The sum of these is #;, the ¢-th
component of 7. This is normally much greater than 1. For an order
y, the total production is yN¢=yr. C

Let us consider an example. Suppose that the technological co-
efficients for six industries are given by

i, 0 1Yy 0 0 0

Yo s 1, o 0

1y 1/, 0 0

“=1 0 Y4 % 0 [
0 0 0 1 0 0
U Ya 0 s
then

1 0 0 0 0 0 0 So
g 1y 0 Yg 0 0 O s1
Ve g g Yy 0 0 0 §s2
P=f 0 5 0 1, 0 0 0 Jss
0 0 0 0 Yy 3,4 0O S4
Q 4] 0 1 0 0 S5
14 e 0 Yg 0 Yef se

From the first column we see that sy, s2, and s are the profitable indus-
tries. The classification of states is given by Figure 7-9.
Here {s4, s5} is the ergodic set of industries which are profitless and
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do not depend on profitable industries. Industry sg is profitable, but it
dépends on the former. Hence sy, s5, sg are useless, and may be

Ficure 7-9

deleted. Industry s is profitless but not useless. The deleted transi-
tion matrix is

i 0 0 ¢ So

'1//4 1/2 0 1/4 1

P = ) .
Yo s Yy s [se
0 Y2 0 1/ sy
Hence
4 0 2 6
N = |83 43 2 T=1486
4 0 4 8

Thus, for example, a unit order to s; will stimulate a total of 6 dollars’
production, 8/3 from s;, 4/3 from sz, and 2 from sz. On this dolar
order s; makes a profit of 8/3-1/s4=2/s, sy makes ¢/3-1/4=1/5, and
s3 makes 2.0=0 (s3 is profitless).

If we place an outside demand of y=1(1,3,2) on the economy, then
yN = (20,4,16) units will have to be produced by the various industries.
The total production is worth yr =40 dollars.

We note that P is lumpable into the partition [{so}, {81, 82}, {s3}]. The
lumped process yields

1 0 0 ‘
. 4 2 B 6
P = Ja /2 /4 = (4 4) T = (8)
VO e Y

For
9 = (4,2) s8N = (24,16)  $7 = 40
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The “lumped” industries s, and sy are here considered as acting as one
“industrial group.” This process will yield the total demands on the
industrial group, but not the breakdown into industrial demands.

For practical problems the computations may be prohibitive.
Hence we are often happy to solve a lumped version of the economy.
The condition for lumpability becomes the following: Any industry
in one industrial group makes the same total per unit demands on the
members of (its own or) another industrial group. (Then all industries
in the group make the same per unit profit.) While these conditions
are unlikely to be met exactly, they may be put to a good approxima-
tion. This allows us to take industrial groups as basic entities, and
yields a smaller and more manageable model.

We thus see that even in a non-probabilistic model a great deal of
information can be obtained from Markov chain theory.
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APPENDICES

I—Summary of Basic Notation

M,[f], Var/{], Prip] denote the mean value of the function f,
variance of f, and probability of the statement p when the chain
is started in state s;.

R={ry} matrix with entries ry;
p={r;} row vector with component r;
y={c;} column vector with component ¢;
¢ column vector with all entries 1

row vector with all entries 1

7
E  matrix with all entries 1
I identity matrix

O

matrix with all entries 0
Lifi=j
diy= {0 if o)
AT is the transpose of 4
Asq results from 4 by squaring each entry

Aag results from 4 by setting off-diagonal entries equal to 0

II—Basic Definitions

A finate Markov chain is a stochastic process which moves through
a finite number of states, and for which the probability of entering
a certain state depends only on the last state occupied.

An ergodic set of states is a set in which every state can be reached
from every other state, and which cannot be left once it is entered.

A transient set of states is a set in which every state can be reached
from every other state, and which can be left.

An ergodic state is an element of an ergodic set.
207
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385 A iransient state is an element of a transient set.

35 An absorbing state is a state which once entered is never left.

37 An absorbing chain is one all of whose ergodic states are absorbing;
or—equivalently—which has at least.one absorbing state, and
such that an absorbing state can be reached from every state.

37 An ergodic chain is one whose states form a single ergodic set; or—
equivalently—a chain in which it is possible to go from every
state to every other state.

37 A cyclic chain is an ergodic chain in which each state can only be
entered at certain periodic intervals.

87 A regular chain is an ergodic chain that is not cyclic.

III—Basic Quantities for Absorbing Chains
STANDARD FORM FOR TRANSITION MATRIX
Iy 0

H 7= (w7

46 n; number of times in state s; before absorption

46 wu%; function that is 1 if process is in s; after k steps, 0 otherwise

50 t number of steps taken before absorption

52 b;; probability starting in state s; that the process is absorbed
in state s;

61 r; number of times in transient state s; before leaving the state

61 Ay probability starting in s; that the process is ever in s;

61 m total number of transient states entered before absorption

46 N ={Mn}

49 Np={Varn;]}

49 = {Mi[t]}

49  7o={Var[t]]

49  B={b;}

62 p={Mim]}

63 P transition matrix for process of changes of state
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1V-—Basic Formulas for Absorbing Chains

N={-@Q)! (Fundamental matrix)
Ny=N(2Ngg~1)—Ngq

B=NR
H=[N~1I]Nggt
r=N¢
=(2I\7*‘1)T-’qu
1
Mifr]=1—
or:] o
it
Vam[r;]—(1 )

p=(NNa1)¢

V—Basic Quantities for Ergodic Chains
={a;} fixed probability vector for P

cyy=lim — CQV}:[Y1<") ¥5™]

n-»m

B=1{b;} vector of limiting variances for the number of times in each
of the states a,(2z;;— a;) [see p. 91)

A matrix with each row «
D diagonal matrix with j-th entry 1/a;
P transition matrix for the reverse process

=(I—-P+A4)! (Fundamental matrix)
Cc= Zzﬁ

4

M ={my;} matrix of mean number of steps required to reach s;
for the first time, starting in s;

W ={wis} matrix of variances for the number of steps required
to reach s;, starting in state s;

y;™  number of times in state s; in the first n steps
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VI—Basic Formulas for Ergodic Chains
Page
105 P=DPTD-!

78 M ={my)=(I~Z+EZ)D
81 M=M- M yg
83 W={wy}=M2Z¢gD—-1)+2(ZM - EB(ZM)q)

85 C= {C{j} = {aizij + ajzy— [Z¢d¢j —_ a{fl»j}

79 Mi; = l
as

224 1
83 wn=—;t——
a;  a;

81 (X.LM = ’T)ngD
81 Mol =c¢
81 a=(c—)[(H)¥¢]T

81 P=I+(D-E)M)

VII—Some Basic Examples
Page Example
47 1Ia

163 2a
90 3o
108 3a
48 10a
102 lia
13
14

k&
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VIII—Generalization of a2 Fundamental Matrix

John G. Kemeny

ABSTRACT

It is shown that, for a finite ergodic Markov chain, basic descriptive guantities,
such as the stationary vector and mean first-passage matrix, may be calculated using
any one of a class of fundamental matrices. New applications of the use of these
operators are discussed.

INTRODUCTION

The motivation for this paper is to generalize the concept of the funda-
mental matrix of a finite ergodic Markov chain (see [4]). The approach will be
to consider a class of linear equations, of which the Markov chain case is a
subclass. It will be shown that one gains new insight into previous work on
ergodic chains, and that the generalized operator has interesting new applica-
tions.

We assume that we are dealing with an n-dimensional vector space, for
some fixed n>1. Unless otherwise indicated, in our formulas capital letters
will denote nby-n matrices, lowercase letters denote n-component column
vectors, and Greek letters denote n-component row vectors.

A CLASS OF LINEAR EQUATIONS

A standard approach to the computation of key quantities for finite
Markov chains is to compare the value of an unknown quantity x with its
expected value after one step. This leads to an equation of the form

x=Px+f, (1)
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where P is the transition matrix and the components of f are known
quantities. Let us write this class of equations in a standard form:

(I-P)x=f. @)

We wish to consider equations of this form in general, using the special case
of Markov chains only as motivation. It is well known that the nature of the
solutions of (2) is determined by studying the homogeneous equation

(I-P)x=0. (3)

If this equation has only the solution x=0, then (2) has a unique solution: if
there is a nonzero solution of (3), then (2) has either no solution or infinitely
many solutions, depending on the nature of f.

The case where (3) has only the trivial solution is the easy case. Then I—P
is nonsingular, and the solution of (2) is x=(I—P)~!f. This is the case for a
finite transient (absorbing) Markov chain, where P is the transition matrix
restricted to transient states. Therefore, the computation of basic quantities
for such chains is simple (see [4], Chapter 3).

The case we wish to consider is one in which I— P is singular. Specifically,
we shall assume that it has a one-dimensional kernel. (This is always the case
for finite ergodic chains.)

AssumpTion. The homogeneous equation (3) has a nonzero solution
x=h, and every solution of (3)is a multiple of h.

It should be noted that h is a fixed point of the transformation P, ie.,
Ph=h. From linear algebra we know that there is also a fixed point of P
acting on row vectors, aP=a. From now on we shall use h and « for these
fixed points. It should be remembered that they are determined only up to a
constant multiple. In the case of an ergodic chain, h may be chosen as the
vector all of whose components are 1, and « as the all-positive probability
vector of limiting probabilities.

We shall next demonstrate that there is a simple modification of the
matrix I —P which is nonsingular, and which may be used to solve (2). The
modification allows us.to choose row and column vectors 8 and g almost
arbitrarily, giving a great deal of flexibility to the generalization. The reader
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should keep in mind that while the product Bg is a number, the product g8 is
an n-by-n matrix.

TueoreMm 1. Let B and g be any two vectors such that Bh and ag are
nonzero. Then the inverse

Z=(TI—-P+g/8)H1 (4)
exists.
Proof. Suppose that
(1-P+gB)x=0. (5)
Then
x=Px—g{Bx). (6)

We multiply the equation by «, and use the fact that aP=a. This yields
(ag)(Bx)=0. But ag5=0; hence Bx=0. Thus (6) reduces to x=Px. By our
Assumption, x=ch, where ¢ is a2 constant. Then 0=_8x=c(Bh), and Bh0;
hence ¢=0. Thus (5) has only the solution x=0, and hence the matrix is
nonsingular. i

Let us next derive some properties of Z. From (4),

Z(1-P+gB)=1I. (7)

if we multiply this equation on the right by h, and use Ph=h, we obtain
(Zg)(Bh)=h, or

Zg= Elﬁh' (8)

In exactly the same manner, using that Z is a right inverse, we obtain

BZ=—a. (9)
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Thus from Z we can obtain the fixed points & and «. Substituting (8) into (7),
we find that

—y L
2(1-P)=I- rhp, (10)
and dually,
I-P)z=1-~ (11
( =I- e )

We are now ready to demonstrate the usefulness of Z in solving the
equation (2).

THEOREM 2. The equation (2) has a solution if and only if af=0. Ifa
solution exists, one may specify the value of Bx arbitrarily, say Bx=c (¢ a
constant ), and one obtains the unique solution

x=Zf+ = Bh (12)

Proof. Multiplying (2) by a shows that af=0 is a consequence; hence
this is a necessary condition for the existence of a solution. Let us next
multiply (2) by Z and make use of (10). We obtain

x———-h(,Bx) Zf.

And if we impose the condition Sx=¢, then we see that (12) is the only
possible solution. Conversely, if we substitute (12) into (2) and use (11), we
find that x satisfies the equation. (Recall that af=0 and Ph=h.) And if we
multiply (12) by 8 and use (9), we verify that the solution also satisfies the
condition Sx=c. &

We have thus shown both the necessary and sufficient condition for the
existence of a solution and precisely how much additional may be required of
a solution. Since 8 may be any row vector such that Sh£0, we have a very
flexible tool. And the choice of 8 in Z is naturally determined by the nature of
the side condition Sx=c.

There is a dual result which shows the role of g. Its proof exactly parallels
the proof of Theorem 2:
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TaeoreM 3.  The eguation
EI-P)=0¢ (13)
has a solution if and only if h=0. If a solution exists, cne may specify the

value &g arbitrarily, say £ég=c, and one obtains the unique solution

E=¢Z+ fg—a. (14)

A SPECIAL CASE

Assume that ah=£0. Then we may choose them so that ah=1. Let S=«
and g=h. All our conditions are met, and fSh=ag=1. For an ergodic Markov
chain the resulting operator

Z*=(I-P+ha)”', ah=1, (15)
is called the “fundamental matrix.”” For it (8) and (8) take the simple form
Z*h=h and aZ*=q, (18)
and (12) and (14) take the forms
x=Z*f+ch if af=0 and ax=c. (17)

t=¢Z*+ca if ¢h=0 and ¢h=c. (18)
We shall next show that any Z may be expressed in terms of Z*, and

conversely. It will be convenient to introduce the constants

szaig’ 62:‘[%’;’ c;=pZ*g+1, cy=aZh+1.

From (10),

Z(I—P+ho)=I—c,hB+(Zh)a;
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hence, multiplying by Z*,
Z2=27*—c,h(BZ*)+(Zh)a. (19)

Similarly,
Z*(I—P+gB)=1—-ha+(Z*g)B,

Z2*=7—h{aZ)+c/(Z*)a. (20)

Substituting (20) into (19),
hlaZ+c,fZ*] =[Zh+c,Z2%g] a. (21)

Multiplying on the right by g,

cotzh= -1—-Zh+ Z*g.
91

We solve this for Zh and substitute in (19):

Z=2Z%~c,h(BZ*)—cy(Z*g)a+ cyco05ha. (22)

This expresses Z in terms of Z*. If we multiply (21) by h and solve for Z*g,
we have from (20)

Z*=Z—h(aZ)—(Zh)a+c,ha, (23)

which expresses Z* in terms of Z. Computing aZh from (22), we obtain a
useful identity:

€y =C1CeC5. (24)

A numerical example may be helpful at this stage:

3 ) () e

This satisfies all our conditions, including ah=1. We find that Z* is the
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identity matrix. (This will always be the case when P=ha.) Suppose that we
choose .

B=(1,0), g:(i)-

Then

2 1
(34
=1 0

6 =3, =1, =2, ¢;=3,
and the previous results are easily verified. We wish to solve the equation
2
I—P)s :-( ) .
(I=P)x={ _}

Since af=0, it does have solutions. We may specify 8z, ie., the first
component of x. If we require Sx=3,

et 2o 3)

which satisfies all our requirements.

1t should be pointed out that, while Z* always exists for an ergodic chain,
there are cases where Theorem 1 applies but Z* does not exist. A simple
example will illustrate this: let

P:(i (1’) a=(1,0), h—m).

All the assumptions of the first section are met, and hence the matrices (4)
exist and have the stated properties. But, since ah =0, Z* is not one of them.
Indeed, I~ P+ha=0, and certainly does not have an inverse. This shows that
the method of this paper provides not only added flexibility but also wider
applicability than Z*.

ERGODIC CHAINS

A finite Markov chain is ergodic if from any state it is possible to reach
every other state. If P is the transition matrix of such a chain, and h is the
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constant vector (all components equal to 1), then the Assumption of this
paper is always satisfied. Such a Markov chain has an equilibrium, ie, a
probability vector « such that eP=a. And « is strictly positive. Thus there are
natural fixed points k and «, and ah=1.

The matrix Z* of the previous section is called the fundamental matrix of
the ergodic chain, and it can be shown that the various interesting probabilis-
tic quantities can be computed in terms of a and Z*. In particular, Eqs. (16),
(17), and (18) are well known results about finite ergodic chains (See [4].)
Two other important results are that the mean time to return to a state j is

m;=1/a, (25)

and the mean time to go from i to j (imean first-passage time) is

w, =25

17
.
7

(26)

To have a numerical illustration available, we introduce the weather in the
Land of Oz (see [3]):

(=

-

O v ol

This treatment of finite ergodic chains has never seemed as satisfactory as the
treatment of finite transient chains. For the latter (I—Q)~! is the natural
fundamental matrix, where Q represents transitions from transient state to
transient state, and all quantities can be expressed in terms of it. For ergodic
chains Z* appears somewhat arbitrary. It also suffers from the difficulty that
one must compute a (solving n equations) before one can compute Z*.
Various alternatives to this matrix have since appeared in the literature, (see
Meyer [7, 8]).
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We now know that Z* is only one of an infinite number of possible
choices for the fundamental matrix. One may choose any Z, the only
restrictions are that ag and S8h should not be 0. Thus 8 may be any vector
such that the sum of the components is not zero, and i g is chosen as a
nonnegative and nonzero vector, then ag 70— irrespective of what a may be.

Let us propose a new approach to the treatment of finite ergodic chains.
Let

Zy=(I-P+hB)™', Bh=L (27)

That is, we let g=h, and B be any vector with row sum 1. Theorem 1
guarantees its existence. Then, from (8) and (9),

Zgh=h and fZgs=a. (28)

Thus we may find & from the fundamental matrix rather than having to find «
first. Other quantities are determined from an equation of the form (1), with
af=0; we know from Theorem 2 that we may impose the additional
condition Sx=c¢ and obtain the unique solution

x=Zpf+ch. (29)

How are the mean first-passage times expressed in terms of the gener-
alized fundamental matrix? Instead of retracing the derivation of the matrix
M, we use (23) to translate the formula (26):

Z2x =25 =(2,;—Z;)~(h;—h)(aZ),~(Zh),0; +(Zh),a; +c( b, = R, ey

7

And since k is a constant vector, b, —h, =0:

va' Zii

12
7

(30)

If we use as Z a Z,, then (28) shows that the last two terms cancel. Thus the
simple formula (26) holds for any Z; in place of Z*.

This can be seen more simply if we express Zj in terms of Z*. From (22),
using g=h, Bh=ah=1, and (16),

Zp=2*—h(BZ*~a). (31)
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For the Oz example, if we select 8=(3,0, 1), then

16 1 — 4

15 5 15

Z,=| 0 1 0
. 1 16
13 S5 15

It is easy to verify that Zgh="h and BZ;=¢, and that M is given by (26)
using Zj, in place of Z*. We can also verify (31) by direct computation.

Thus any Zg is a suitable fundamental matrix, and it can be computed
without knowing a.

APPLICATIONS

Consider a Markov chain that has the property that when it moves away
from a state i, it moves to any other state with the same probability p,. For
example, Oz has this property with p, =p; =% and p,=4. If we choose
g, =p,and B§; =1, then I— P+gf is the diagonal matrix with entries np;. Thus
Z is diagonal matrix with Z;=1/(np;). From (9) we know that « is
proportional to BZ. Therefore,

0= Yy (32)
and from (30),

nfiizl(zi—i+i). (33)

For Oz, Z,1/p, =10. Thus, for example a; =15 =2 and M, = $(10—2+4)
=4.

Next we consider the method used in [6] to compute a. The “recipe” is to
replace the last column of I—P by ones and invert; then « is the last row of
the inverse. This corresponds to choosing g, =1—(I—P),, and §=(0,...,0,1).
The inverse in question is the Z corresponding to this choice of g and £, and
ag=1. Hence from (9), = BZ, which is the last row of Z. Meyer [7] showed
that this matrix could be used as a fundamental matrix in place of Z*.
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A third interesting choice for g and 8 is the following. We choose as £ the
first row of P, and g, =1 while the other components of g are 0. Then Z has
the form

where N is the fundamental matrix of the transient chain obtained by

making state 1 absorbing. The interpretation of 1Ni,- is the mean number of
times a process started in i steps into j before absorption. Here ag=«,, and
hence (9) shows that a=a,(SZ). For the first component this is an identity,

but for j5=1 we obtain the identity

1A % \
2Py Ny=—. (34)
k o

Also for i#1

(Zh), =1+ 2N, =1+M,;

hence from (30)
=,
A/Ixi = ‘—a—'— “A{“ +A4i1'

This result is correct also when i or jis 1, if we let (as usual) 'N;, =0if i or j is
1, and M;, =0. Since we could have used in place of 1 a general state k, we
obtain the interesting identity

i Nii _
M,=—"—"1—M, +M,. (35)

Multiplying by «; and summing on § we obtain, using M, =%, kNi,-,

2 Mja= 2N —(aM)),. (386)

7 7
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Since i does not occur on the right side, the left side is a constant (indepen-
dent of i). Similarly the right side is independent of k. We have previously
urged readers to try to find a probabilistic interpretation for this constant, but
so far none has been found. Still another expression for this constant may be

found from (30):

const = EMifaiz 2 Z,;—aZh. (37)

i i

This result was previously known for the special case Z=2Z*, for which
aZh=1, but it holds for all our Z’s. For Oz the constant is 3¢, as can be
computed from either Z* or Z.

Our final application is to the Markov-process version of classical potential
theory. Such a theory exists for both functions and measures (column and row
vectors in the finite case). A charge is a function f of total integral 0 (i.e.,
af=0) or a measure of total measure 0 (i.e., h=0). Potentials satisfy a
certain averaging property— they are solutions of (2) or (13), respectively. We
know that there always are such potentials for any charge, from Theorems 2
and 3, and that uniqueness requires an additional condition. The usual
conditions imposed have been ax=0 and £h=0. Hence Z* is suitable as a
potential operator for both functions and measures, and x=Z*f, {=¢Z*.

We can generalize this theory by imposing different boundary conditions
on the potentials. If we require that Sx=0 and £g=0, then the potential
operator is the Z determined by g and 8, and x=2Zf, {=¢Z.

These generalized potentials have an amusing nonprobabilistic applica-
tion. Consider n teams involved in a tournament. We wish to measure the
relative strengths of the teams even though not every team has played every
other team. Let s;;=number of points by which team i beat team j (a
negative number if j won). We wish to assign point ratings to teams, x,.
Ideally one wishes that

$; =%, X, (38)

for every game. But this is too much to expect; teams have “good days” and
“bad days”. What we will require is that for each team i, the sum of the
differences s;; —(x; —x;) be zero. If team i has played ¢, games, this means
that

1
xx:;2(1;+8i,-), (39)
L]

where the sum is taken over all the opponents i has played. Let us introduce
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the matrix P defined to have P;; =1 /¢, if i has played j, and 0 otherwise, and
the vector f with f; =(1/¢,)Z;s;;. Then (39) takes on the form (1). The matrix
P is nonnegative and has the constant vector h as fixed point, but is it
ergodic? This will be the case if every team either has played any other team
or has played teams that played teams (etc.) that have played that team.
Clearly, without such a connection meaningfu! ratings are not possible.

The vector « is defined by a; =%, /t, where t=2t,, and af is the average
of the s,;, which is 0, since s;;= —s,;. Thus a solution of (39) exists. We know
that an extra condition may be imposed, which is not surprising, since in (38)
only the differences of the ratings matter. We might decide to give one team
rating 0, and rate all other teams relative to it. This would be achieved by
choosing 2 8 with 1 in that component and 0 otherwise. Or we might make
the sum of the ratings equal to zero, choosing 8, =1/n. In either case we
have fx=0 as our condition and compute Zg; the ratings are then given by
x=2Z,f. It is worth noting that the condition ex=0 would be quite unnatural.

HISTORICAL NOTES

The matrix Z* was introduced in [4] and has been widely used. Various
alternatives have also been proposed. Hunter showed [2] that Z* is a
“generalized inverse” of I— P, in the sense that

(I-P)z*(I-P)=I—P. (40)

He also extended the use of the fundamental matrix to Markov renewal
processes.

It should be pointed out that all the matrices (4) are generalized inverses
of I—P, as follows immediately from either (10) or (11).

The paper [9] compares alternative methods for calculating the vector «
on a computer. The recommended method that emerges from this work is one
of the Z/9 matrices, with 8 chosen as a row of P, and a calculated as in (28).
[CE. the remark following (28).]

Campbell and Meyer [1] show that I—P has a group inverse (I—P)¥ for
any Markov chain P, and that it can be used tc calculate key quantities. For a
regular chain, (I—P)*=2*—ha. Thus the group inverse is very close to Z*;
indeed, on the range of I— P they are the same invertible operator. Thus they
are equivalent as potential operators. The similarity is not so great to the Zg’s.
The range of 1—P is the set {x|ax=0}. A Zg, 87, maps this set onto the
set {x|Bx=0}. That is why these matrices are new potential operators and
provide greater flexibility.
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For a treatment of potential theory for Markov chains the reader is
referred to [5].
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