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The basic concepts of Markov chains were introduced by A. A. Markov 
in 1907. Since that  time Markov chain theory has been developed by 
a number of leading mathematicians. It is only in very recent times 
that  the importance of Markov chain theory to  the social and biological 
sciences has become recognized. This new interest has, we believe, 
produced a real need for a treatment, in English, of the basic ideas 
of finite Markov chains. 

B y  restricting our attention t o  finite chains, we are able to  give 
quite a complete treatment and in such a way that  a minimum amount 
of mathematical background is needed. For  example, we have written 
the book in such a way that  it can be used in a n  undergraduate prob- 
ability course, as well as a reference book for workers in fields out- 
side of mathematics. 

The restriction of this book t o  finite chains has made i t  possible to 
give simple, closed-form matrix expressions for many quantities usually 
given as series. It is shown tha t  it  suffices for all types of problems to 
consider just two types of Markov chains, namely absorbing and ergodic 
chains. A "fundamental matrix" is developed for each type of chain, 
and the other interesting quantities are obtained from the fundamental 
matrices by elementary m a t r ~ x  operations. 

One of the practical advantages of this new treatment of the sub- 
ject is that  these elementary matrix operations can easily be programed 
for a high-speed computer. The  authors have developed a pair of pro- 
grams for the I B M  704, one for each type of chain, which will find a 
number of interesting quantities for a given process directly from the 
transition matrix. These programs were invaluable in the computation 
of examples and in the checking of conjectures for theorems. 

A significant feature of the new approach is that  it  makes no use of 
the theory of eigen-values. The authors found, in each case, that  the 
expressions in matrix form are simpler than the corresponding expres- 
sions usually given in terms of eigen-values. This is presumably due 
to the fact that  the fundamental matrices have direct probabilistic in- 
terpretations, while the eigen-values do not. 

The book falls into three parts. Chapter I is a very brief summary 
of prerequisites. Chapters 11-VI develop the theory of Markov chains 
Chapter VII  contains apphcations of this theory to  problems in a variety 
of fields. A summary of the symbols used and of the principal defi- 
nitions and formulas can be found in the appendices together with page 
references. Therefore, there is no index, but  i t  is hoped that  the de- 
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The basic concepts of Markov chains were introduced by A. A. Markov 
in 1907. Since that  time Markov chain theory has been developed by 
a number of leading mathematicians. It is only in very recent times 
that  the importance of Markov chain theory to  the social and biological 
sciences has become recognized. This new interest has, we believe, 
produced a real need for a treatment, in English, of the basic ideas 
of finite Markov chains. 

B y  restricting our attention t o  finite chains, we are able to  give 
quite a complete treatment and in such a way that  a minimum amount 
of mathematical background is needed. For  example, we have written 
the book in such a way that  it can be used in a n  undergraduate prob- 
ability course, as well as a reference book for workers in fields out- 
side of mathematics. 

The restriction of this book t o  finite chains has made i t  possible to 
give simple, closed-form matrix expressions for many quantities usually 
given as series. It is shown tha t  it  suffices for all types of problems to 
consider just two types of Markov chains, namely absorbing and ergodic 
chains. A "fundamental matrix" is developed for each type of chain, 
and the other interesting quantities are obtained from the fundamental 
matrices by elementary m a t r ~ x  operations. 

One of the practical advantages of this new treatment of the sub- 
ject is that  these elementary matrix operations can easily be programed 
for a high-speed computer. The  authors have developed a pair of pro- 
grams for the I B M  704, one for each type of chain, which will find a 
number of interesting quantities for a given process directly from the 
transition matrix. These programs were invaluable in the computation 
of examples and in the checking of conjectures for theorems. 

A significant feature of the new approach is that  it  makes no use of 
the theory of eigen-values. The authors found, in each case, that  the 
expressions in matrix form are simpler than the corresponding expres- 
sions usually given in terms of eigen-values. This is presumably due 
to the fact that  the fundamental matrices have direct probabilistic in- 
terpretations, while the eigen-values do not. 

The book falls into three parts. Chapter I is a very brief summary 
of prerequisites. Chapters 11-VI develop the theory of Markov chains 
Chapter VII  contains apphcations of this theory to  problems in a variety 
of fields. A summary of the symbols used and of the principal defi- 
nitions and formulas can be found in the appendices together with page 
references. Therefore, there is no index, but  i t  is hoped that  the de- 
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PREFACE 

The basic concepts of Markov chains were introduced by A. A. Markov 
in 1907. Since that time Markov chain theory has been developed by 
a number of leading mathematicians. It is only in very recent times 
that the importance of Markov chain theory to the social and biological 
sciences has become recognized. This new interest has, we believe, 
produced a real need for a treatment, in English, of the basic ideas 
of finite 1\Iarkov chains. 

By restricting our atteDtion to finite chains, we are able to give 
quite a complete treatment and in such a way that a minimum amount 
of mathematical background is needed. For example, we have written 
the book in such a way that it can be used in an undergraduate prob
ability course, as well as a reference book for workers in fields out
side of mathematics. 

The restriction of this book to finite chains has made it possible to 
give simple, closed-form matrix expressions for many quantities usually 
given as series. It is shown that it suffices for all types of problems to 
consider just two types of Markov chains, namely absorbing and ergodic 
chains. A "fundamental matrix" is developed for each type of chain, 
and the other interesting quantities are obtained from the fundamental 
matrices by elementary matrix operations. 

One of the practical advantages of this new treatment of the sub
ject is that these elemenL"ry matrix operations can easily be programed 
for a high-speed computer. The authors have developed a pair of pro
grams for the IBM 704, one for each type of chain, which will find a 
number of interesting quantities for a given process directly from the 
transition matrix. These programs were invaluable in the computation 
of examples and in the checking of conjectures for theorems. 

A significant feature of the new approach is that it makes no use of 
the theory of eigen-values. The authors found, in each case, that the 
expressions in matrix fanE are simpler than the corresponding expres
sions usually given in terms of eigen-values. This is presumably due 
to the fact that the fundamental matrices have direct probabilistic in
terpretations, while the eigen-values do not. 

The book falls into three parts. Chapter I is a very brief summary 
of prerequisites. Chapters II-VI develop the theory of Markov chains. 
Chapter VII contains applications of this theory to problems in a variety 
of fields. A summary of the symbols used and of the principal defi
nitions and formulas can be found in the appendices together with page 
references. Therefore, there is no index, but it is hoped that the de-
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tailed table of contents and the appendices will serve a more useful 
purpose. 

I t  was not intended that Chapter I be read as a unit. The book can 
be started in Chapter 11, and the reader has the option of looking up the 
brief summary of any prerequisite topic not familiar to him, when he 
needs it in a later chapter.' 

The book was designed so that it can be used as a text for an under- 
graduate mathematics course. For this reason the proofs were carried 
out by the most elementary methods possible. The book is suitable 
for a one-semester course in Markov chains and their applications. 
Selections from the book (presumably from Chapters 11, 111, IV, and 
possibly VII) could also be used as part of an upper-class course in 
probability theory. For this use, exercises have been given a t  the end 
of Chapters II-VI. 

The following system of notation has been used in the book: Num- 
bers are denoted by small italic letters, matrices by capital italics, vectors 
by Greek letters. Functions, sets, and other abstract objects are de- 
noted by boldface letters. 

The authors gratefully acknowledge support by the National Science 
Foundation to the Dartmouth Mathematics Project. Many of the origi- 
nal results in this book were found by the authors while working on 
this project. The authors are also grateful for computing time made 
available by the M.I.T. and Dartmouth Computation Center for the 
development of the above-mentioned programs and for the use of these 
programs. 

The authors wish to express their thanks to two research assistants, 
P. Perkins and B. Barnes, for many valuable suggestions as well as for 
their careful reading of the manuscript. Thanks are due to Mrs. M. 
Andrews and Mrs. H. Hanchett for typing the manuscript. 

THE AUTHORS 
Hanover, New Hampshire 

* A  more detailed treatment of most of these topics may be found in one of the 
following books: (If Modern Mathematical Methods and Models, Volumes 1 and 2, 
by the Dartmouth Writing Group, published by the Mathematical Association of 
America, 1958. [Referred to as M4.1 ( 2 )  Introduction to Finile Mathematics, by 
Kemeny, Snell, and Thompson, Prentice-Hall, 1957. [Referred to as FM.1 (3) 
Finite Mathematical Structu~es, by Kemeny, Mirkil, Snell, and Thompson, Prentice- 
Hall, 1959. [Referred to as FMS.1 For the prerequisites in probability theory, as 
well as a treatment of Markov chains from a different point of view, the reader may 
also wish to consult Introduction to Probability Theory and I ts  Applications, by W. 
Feller, Wiley, 1957. 

When the  authors wrote Finite Xarkov Chains, two fundamental 
matrices A7 for absorbing chains and Z for ergodic chains were used 
to compute the basic descriptive quantities for Narkov chains. The 
choice of N was natural but  tlie choice of Z was less natural. Z was 
needed to solve equations of tlie form (I-P)x = f where f is known. 
Since I-P does not have an inverse, I-P was modified by adding 
the matrix A ,  all of whose roa s are the fixed probability vector a ,  
and the resulting inverse Z = (1-P+A)-1 was used as the funda- 
mental matrix for ergodic chains. This had the  disadvantage bf having 
to  find a before computing Z .  

With the  development of pseudo-inverses, i t  was pointed out by 
C!. D. Meyer" tha t  pseudo-inverses could be used to find basic 
quantities for ergodic Marlio-i- chains, including the fixed vector a.  
Independently, while teaching Markov chains, Kemeny noticed tha t  
i t  was not necessary to  use A and tha t  A could be replaced by any 
matrix B all of whose rows are the same vector P whose components 
sum to I. The resulting matrix Z = ( I -  P+ B)-1 serves in many ways 
the  same role as the fundamental matrix used in the book. (Actually, 
i t  is sufficient to assume tha t  the sum of the con~ponents of P is 
non-zero.) The fixed vector a is obtained from such a Z by a = PZ 
and certain other basic quantities for ergodic chains, such as the mean 
first passage times, have the same formula as in the book. I n  any 
event, the fundamental matrix used in the book is easily obtamed 
from any matrix in this new class. Kemeny further showed that  thcsc 
results are special cases of a more general theorem in linear algebra. 

We  have included Kemeny's paper as a n  appendix to enable the  
readers to benefit from the simplification resulting from the use of 
this more general class of fi~ndamental matrices. 

* Carl D. AIeyer, "The role of tllc gmnp generalized invc~sc  i n  tlic t l ~ c o ~ y  of 
finite h'larkov chains", SIAJi l h .  97 :443-464. 1075. 
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When the  authors wrote Finite Xarkov Chains, two fundamental 
matrices A7 for absorbing chains and Z for ergodic chains were used 
to compute the basic descriptive quantities for Narkov chains. The 
choice of N was natural but  tlie choice of Z was less natural. Z was 
needed to solve equations of tlie form (I-P)x = f where f is known. 
Since I-P does not have an inverse, I-P was modified by adding 
the matrix A ,  all of whose roa s are the fixed probability vector a ,  
and the resulting inverse Z = (1-P+A)-1 was used as the funda- 
mental matrix for ergodic chains. This had the  disadvantage bf having 
to  find a before computing Z .  

With the  development of pseudo-inverses, i t  was pointed out by 
C!. D. Meyer" tha t  pseudo-inverses could be used to find basic 
quantities for ergodic Marlio-i- chains, including the fixed vector a.  
Independently, while teaching Markov chains, Kemeny noticed tha t  
i t  was not necessary to  use A and tha t  A could be replaced by any 
matrix B all of whose rows are the same vector P whose components 
sum to I. The resulting matrix Z = ( I -  P+ B)-1 serves in many ways 
the  same role as the fundamental matrix used in the book. (Actually, 
i t  is sufficient to assume tha t  the sum of the con~ponents of P is 
non-zero.) The fixed vector a is obtained from such a Z by a = PZ 
and certain other basic quantities for ergodic chains, such as the mean 
first passage times, have the same formula as in the book. I n  any 
event, the fundamental matrix used in the book is easily obtamed 
from any matrix in this new class. Kemeny further showed that  thcsc 
results are special cases of a more general theorem in linear algebra. 

We  have included Kemeny's paper as a n  appendix to enable the  
readers to benefit from the simplification resulting from the use of 
this more general class of fi~ndamental matrices. 
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Sets. By a set a mathematician means an  arbitrary but well- 
defined collection of objects. Sets will be denoted by bold capital 
letters. The objects in the collection are called elements. 

If  A is a set, and B is a set whose elements are some (but not neces- 
sarily all) of the elements of A,  then we say that  B is a subset of A, 

E A. If  the two sets have exactly the same elements, 
say that  they are equal, i.e. A and only 

and B s A. If  B is a subset of A , then we 
t i t  is a proper subset, and write have no 

element in common, we say that  they ar 
Very frequently we will deal with a given set of objects, and discuss 

various subsets of it. The entire set will be called the universe, ki. 
A particularly interesting subset is the set with no elements, the 
empty set E. 

Given a set, there are a number of ways of getting new subsets from 
old ones. If A and B are both subsets of U, then we define the follow- 
ing operations: 

(1) The complement of A, A, has as elements all the elements of U 
which are not in A. 

( 2 )  The union of A and B, A u , has as elements all the elements of 
A and all the elements of B. 

(3) The intersection of and B, A n El, has as elements all the 
elements that A an 

(4) The difference of A lements all the elements 
of A that  are not in B. 

To illustrate these operations, we will list some easily provable 
relations between these se 

8 = E - a = A 
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CHAPTER I 

PREREQUISITES 

§ 1.1 Sets. By a set a mathematician means an arbitrary but well
defined collection of objects. Sets will be denoted by bold capital 
letters. The objects in the 8011ection are called elements. 

If A is a set, and B is a set whose elements are some (but not neces
sarily all) of the elements of A, then we say that B is a .'i'Ubset of 
symbolized as B s; A. If the two sets have exactly the same elements, 
then \ve say that they are equal, i.e. A = B. Thus A = B if and only 
if As; Band B s; A. If B i~ a subset of A and is not equal to A, then we 
say that it is a proper subset, ",nd write BcA. If A and B have no 
element in common, we say that they are disjoint. 

Very frequently we will deal with a given set of objects, and discuss 
various subsets of it. The entire set will be called the universe, U. 
A particularly interesting subset is the set with no elements, the 
empty set E. 

Given a set, there are a number of ways of getting new subsets from 
old ones. If A and B are both subsets of U, then we define the foHow
ing operations: 

(1) The complement of A, J, has as elements all the elements of U 
which are not in A. 

(2) The union of A and B, A u B, has as elements all the elements of 
A and all the elements of B. 

(3) The intersection of A and B, A n R, has as elements all the 
elements that A and B have in common. 

(4) The difference of A and E, A-B has as elements all the elements 
of A that are not in B. 

To illustrate these operations, we will list some easily provable 
relations between these sets: 

~ - -
AuB=AnB 
~ - -

AnB=AuB 

A-B=An'B AuB=BuA 

AnB=EnA 

A uE = A 



2 FINITE MARKOV CHAINS CHAP. I 

If A,, A2, . . . , A, are subsets of U, and every element of U is in one 
and only one set Aj, then we say tha t  A =  {AI, Az, . . . , A,.) is a par- 
tition of U .  

If wc wish to specify a set by listing its elements, we write the 
elements inside curly brackets. Thus, for example, the set of the 
first five positive integers is {I ,  2 ,  3, 4, 5) .  The set (1 ,  3, 5) is a proper 
subset of it.  The set (21, which is also a subset of the five-element set, 
is called a unit  set, since i t  has only one element. 

I n  the course of this book we will have to  deal with both finite and 
infinite sets, i.e. with sets having a finite number or an  infinite number 
of elements. The only infinite sets tha t  are used repeatedly are the  
set of integers (1, 2, 3, . . .} and certain simple subsets of this set. 

For a more detailed account of the  theory of sets see FM Chapter I1 
or FMS Chapter 1I.t 

$ 1.2 Statements. We are concerned with a process which will 
frequently be a scientific experiment or a game of chance. There are 
a number of different possible outcomes, and we will consider various 
statements about the outcome. 

We form the set U of all logically possible outcomes. These must 
be so chosen that  we are assured that  exactly one of these will take 
place. The set U is called the possibility space. If  p is any statement 
about the outcome, then i t  will (in general) be true according to some 
possibilities, and false according to others. The set P of all possibilities 
which would make p true is called the truth set of p. Thus to each 
statement about the outcome we assign a subset of U as a truth set. 
The choice of U for a given experiment is not unique. For example, 
for two tosses of a coin we may analyze the possibilities as 
U = {NM, WT, TW, TT) or U = (ON, IH, 2N). I n  the first case we give 
the outcome of each toss and in the second only the number of heads 
which turn up. (For a more detailed discussion of this concept see 
FRI Chapter II or FMS Chapter 11.) 

Given two statements p and q having the same subject matter (i.e. 
the same U), we have a number of ways of forming new statements 
from them. (We will assume that  the statements have 
truth sets :) 

(1) The statenlent - p  (read "not p") is true if and only if p is false. 
Hence i t  has P as truth set. 

(2) The statement pV q (read "p or q") is true if either p is true or 
q is true or both. Hence i t  has 

t FM =Kemeny, Snell, and Thompson, Introduction Lo Finite Mathemalics, Engle. 
wood Cliffs, N.J., Prentice-Hall, Inc., 1957. 

FMS=Kemeny, Mirkil, Snell, and Thompson, Finite .?ltrthematicnl Structures, Engle. 
wood Cliffs, N.J., Prentice-Hall, Inc., 1959. 

SEC. 3 PREREQUISITES 3 

(3) The statement p A esd "p and q") is true if both 

Two special kinds of statements are among the principal concerns 
of logic. A statement that  is true for each logically possible outcome, 
that  is, a statement having U as its truth set, is said to be logically 
true (such a statement is sometimes called a tautology). A statement 
that  is false for each logically possible outcome, tha t  is a statement 
having E as its truth set, is logically ,false or self-contradictory. 

Two statements are said to  be equivalent if they have the same truth 
set. That means that  one is true if and only if the other is true. 

they are said to  be consister~t. If the 
they cannot all be true. If they are consistent, then they could all be 
true. 

2, . . . , pi: are said to  form a complete set of 
alternutives if for every element of K exactly one of them is true. This 

means that  the intersection of any two truth sets is empty, and the 
union of all the truth sets is U. Thus the truth sets of a complete set 
of alternatives form a partition of U. A complete set of alternatives 
provides a new way (and normally a less detailed way) of analyzing 
the possible outcomes. 

der relations. We will need some simple ideas from the 
rder relations. A complete treatment of this theory will 

be found in M 4 ,  Vol. 11, Unit 2.1 We will take only n few concepts 
from that treatment. 

Let R be a relation between two objects (selected from a specified 
set U). We denote by aRb the fact tha t  a holds the relation B to 
Some special properties of such relations arc of interest to us. 

1.3.1 DEFIEITIOK. The relation R i s  reflexive if xRx holds for all 
x in U. 
1.3.2 DEFINITION. The relation l[k. i s  symmetric if whenever xRy 
holds, then yRx also holds, for all x, y in U. 
1.3.3 DEFINITION. The relation R i s  transitive if whenever 
xRy ~ y R z  holds, then xRz also holds, for all x, y,  z in U. 
1.3.4 DEFINITION. A relation that i s  rejlexive, symmetric, and 
transitive i s  a n  equivalence relation. 

The fundamental property of an  equivalence relation is that  i t  
partitions the set U. More specifically, let us suppose that  B is an  

i 1\14=Modern Muthen~nlical Methods and Models, by  the Dartmouth Writing Group. 
Mathrmnticnl Assorintion of America,  1938. 
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If Al , A2 , ••. , AT are subsets of U, and every element of U is in one 
and only one set Aj , then we say that A = {Al' Az, ... , Ar} is a par
tition of U. 

If we wish to specify a set by listing its elements, we write the 
elements inside curly brackets. Thus, for example, the set of the 
first five positive integers is {l, 2, 3, 4, 5}. The set {I, 3, 5} is a proper 
subset of it. The set {2}, which is also a subset of the five-element set, 
is called a unit set, since it has only one element. 

In the course of this book we will have to deal with both finite and 
infinite sets, i.e. with sets having a finite number or an infinite number 
of elements. The only infinite sets that are used repeatedly are the 
set of integers {I, 2, 3, ... } and certain simple subsets of this set. 

For a more detailed account of the theory of sets see FM Chapter II 
or FMS Chapter II. t 

§ 1.2 Statements. We are concerned with a process which will 
frequently be a scientific experiment or a game of chance. There are 
a number of different possible outcomes, and we will consider various 
statements about the outcome. 

We form the set U of all logically possible outcomes. These must 
be so chosen that we are assured that exactly one of these will take 
place. The set U is called the possibility space. If p is any statement 
about the outcome, then it will (in general) be true according to some 
possibilities, and false according to others. The set P of all possibilities 
which would make p true is called the truth set of p. Thus to each 
statement about the outcome we assign a subset of U as a truth set. 
The choice of U for a given experiment is not unique. For example, 
for two tosses of a coin we may analyze the possibilities as 
U = {HH, HT, TH, TT} or U = {OH, lH, 2H}. In the first case we give 
the outcome of each toss ELnd in the second only the number of heads 
which turn up. (For a more detailed discussion of this concept see 
FM Chapter II or FMS Chapter II.) 

Given two statements p and q having the same subject matter (i.e. 
the same U), we have a number of ways of forming new statements 
from them. (We will assume that the statements have rand Q as 
truth sets:) 

(1) The statement ~ p (read "not p") is true if and only if p is false. 
Hence it has P as truth set. 

(2) The statement p\f q (read "p or q") is true if either p is true or 
q is true or both. Hence it has P U Q as truth set. 

t FM=Kemeny, Snell, and Thompson. Introduction to Finite Mathematics, Engle· 
wood Cliffs, N .• J., Prentice-Hall, Inc., 19:)7. 

FMS= Kemeny, Mirkil, Snell. and Thompson, Finite 3l1'nthematica! Structures, Engle
wood Cliffs. N.J .. Prentice-Hall, Inc., 19M), 
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If A,, A2, . . . , A, are subsets of U, and every element of U is in one 
and only one set Aj, then we say tha t  A =  {AI, Az, . . . , A,.) is a par- 
tition of U .  

If wc wish to specify a set by listing its elements, we write the 
elements inside curly brackets. Thus, for example, the set of the 
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infinite sets, i.e. with sets having a finite number or an  infinite number 
of elements. The only infinite sets tha t  are used repeatedly are the  
set of integers (1, 2, 3, . . .} and certain simple subsets of this set. 

For a more detailed account of the  theory of sets see FM Chapter I1 
or FMS Chapter 1I.t 

$ 1.2 Statements. We are concerned with a process which will 
frequently be a scientific experiment or a game of chance. There are 
a number of different possible outcomes, and we will consider various 
statements about the outcome. 

We form the set U of all logically possible outcomes. These must 
be so chosen that  we are assured that  exactly one of these will take 
place. The set U is called the possibility space. If  p is any statement 
about the outcome, then i t  will (in general) be true according to some 
possibilities, and false according to others. The set P of all possibilities 
which would make p true is called the truth set of p. Thus to each 
statement about the outcome we assign a subset of U as a truth set. 
The choice of U for a given experiment is not unique. For example, 
for two tosses of a coin we may analyze the possibilities as 
U = {NM, WT, TW, TT) or U = (ON, IH, 2N). I n  the first case we give 
the outcome of each toss and in the second only the number of heads 
which turn up. (For a more detailed discussion of this concept see 
FRI Chapter II or FMS Chapter 11.) 

Given two statements p and q having the same subject matter (i.e. 
the same U), we have a number of ways of forming new statements 
from them. (We will assume that  the statements have 
truth sets :) 

(1) The statenlent - p  (read "not p") is true if and only if p is false. 
Hence i t  has P as truth set. 

(2) The statement pV q (read "p or q") is true if either p is true or 
q is true or both. Hence i t  has 

t FM =Kemeny, Snell, and Thompson, Introduction Lo Finite Mathemalics, Engle. 
wood Cliffs, N.J., Prentice-Hall, Inc., 1957. 

FMS=Kemeny, Mirkil, Snell, and Thompson, Finite .?ltrthematicnl Structures, Engle. 
wood Cliffs, N.J., Prentice-Hall, Inc., 1959. 
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(3) The statement p A esd "p and q") is true if both 

Two special kinds of statements are among the principal concerns 
of logic. A statement that  is true for each logically possible outcome, 
that  is, a statement having U as its truth set, is said to be logically 
true (such a statement is sometimes called a tautology). A statement 
that  is false for each logically possible outcome, tha t  is a statement 
having E as its truth set, is logically ,false or self-contradictory. 

Two statements are said to  be equivalent if they have the same truth 
set. That means that  one is true if and only if the other is true. 

they are said to  be consister~t. If the 
they cannot all be true. If they are consistent, then they could all be 
true. 

2, . . . , pi: are said to  form a complete set of 
alternutives if for every element of K exactly one of them is true. This 

means that  the intersection of any two truth sets is empty, and the 
union of all the truth sets is U. Thus the truth sets of a complete set 
of alternatives form a partition of U. A complete set of alternatives 
provides a new way (and normally a less detailed way) of analyzing 
the possible outcomes. 

der relations. We will need some simple ideas from the 
rder relations. A complete treatment of this theory will 

be found in M 4 ,  Vol. 11, Unit 2.1 We will take only n few concepts 
from that treatment. 

Let R be a relation between two objects (selected from a specified 
set U). We denote by aRb the fact tha t  a holds the relation B to 
Some special properties of such relations arc of interest to us. 

1.3.1 DEFIEITIOK. The relation R i s  reflexive if xRx holds for all 
x in U. 
1.3.2 DEFINITION. The relation l[k. i s  symmetric if whenever xRy 
holds, then yRx also holds, for all x, y in U. 
1.3.3 DEFINITION. The relation R i s  transitive if whenever 
xRy ~ y R z  holds, then xRz also holds, for all x, y,  z in U. 
1.3.4 DEFINITION. A relation that i s  rejlexive, symmetric, and 
transitive i s  a n  equivalence relation. 

The fundamental property of an  equivalence relation is that  i t  
partitions the set U. More specifically, let us suppose that  B is an  

i 1\14=Modern Muthen~nlical Methods and Models, by  the Dartmouth Writing Group. 
Mathrmnticnl Assorintion of America,  1938. 

SEC. 3 PREREQCISITES 3 

(3) The statement p Aq (read "p and q") is true if both p and q are 
true. Hence it has P (\ Q as truth set. 

Two special kinds of statements are among the principal concerns 
of logic. A statement that is true for each logically possible outcome, 
that is, a statement having U as its truth set, is said to be logically 
true (such a statement is sometimes called a tautology). A statement 
that is false for each logically possible outcome, that is a statement 
having E as its truth set, is logically false or self-contradictory. 

Two statements are said to be equivalent if they have the same truth 
set. That means that one is true if and only if the other is true. 

The statements PI, P2, ... , Pk are inconsistent if the intersection of 
their truth sets is empty, i.e., PI (\ P2 (\ ... (\ Pk=E. Otherwise 
they are said to be consistent. If the statements are inconsi.s~ent, then 
they cannot all be true. If they are consistent, then they could all be 
true. 

The statements PI, pz, ... , Pk are said to form a complete set of 
alternati'z:es if for every element of U exactly one of them is true. This 
means that the intersection of any two truth sets is empty, and the 
union of all the truth sets is U. Thus the truth sets of a complete set 
of alternatiyes form a partition of U. A complete set of alternatives 
provides a new way (and normally a less detailed way) of analyzing 
the possible outcomes. 

§ l.3 Order relations. "Ve will need some simple ideas from the 
theory of order relations. A complete treatment of this theory will 
be found in lH4, Vol. II, unit 2.t We will take only It few concepts 
from that treatment. 

Let R be a relation between two objects (selected from a specified 
set U). \Ve denote by aRb the fact that a holds the relation R to b. 
Some special properties of such relations are of interest to us. 

1.3.1 DEFINITION. The relation R is reflexive if xRx'holds for all 
x in U. 
1.3.2 DEFI:\ITION. T hr: relation R is symmetric if whenever xRy 
holds, then yRx also holds, for all x, y in U. 

1.3.3 DEFINITION. The rdation R is transitive if whenever 
xRy AyRz holds, then xRz also holds, for all x, y, z in U. 

1.3.4 DEFINITION. A relation that is reflexive, symmetric, and 
transitive is an equivaJc·,ce relation. 

The fundamental property of an equivalence relation is that it 
partitions the set U. More specifically, let us suppose that R is an 

t M'=Modern Mathematical }..teli,ods and },{odels, by the DArtmouth Writing Group. 
!\-IFlthf'mAtiC'fll As:"'o('i8tion of America.! l05S. 
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equivalence relation defined on U. . We put elements of U into classes 
in such a manner that two elements a and b are in the same class if 
aRb. It can be shown that the resulting classes are well defined and 
mutually exclusive, giving us a partition of U. These classes are the 
equ.ivalence classes of R. 

For example, let xRy express that "x is the same height as y," where 
U is a set of human beings. Then the resulting partition divides these 
people according to their heights. Two men are in the same equiva- 
lence class if and only if they are the same height. 

1.3.5 DEFINITION. A relation T i s  said to  be consistent with the 
equivalence relation R if, given that xRy, then if xTz holds so does 
yTz, and if zTx holds so does zTy. 

1.3.6 DEFINITION. A relation that i s  re$exive and transitive i s  
known as  a weak ordering relation. 
A weak ordering relation can be used to order the elements of U. 

Given a weak ordering T, and given any two elements a and b of U, 
there are four possibilities: (1) aTb AbTa; then the two elements are 
"alike" according to T. (2) aTb A-  (bTa) ; then a is "ahead" of b. 
(3) -(aTb) AbTa; then b is "ahead." (4) ~ ( a T b )  A-(bTa); then we 
are unable to compare the two objects. 

For example, if xTy expresses that "I like x a t  least as well as y," 
then the four cases correspond to "I like them equally," "I prefer x," 
"I prefer y," aild "I cannot choose," respectively. 

The relation of being alike acts as an equivalence relation. Indeed, 
it can be shown that if T is a weak ordering, then the relation xRy that 
expresses that xTy AyTx is an equivalence relation consistent with 
Thus T serves both to classify and to order. Consistency assures us 
that equivalent elements of U have the same place in the ordering. 

For example, if we choose "is a t  least as tall" as our weak ordering, 
this determines the equivalence relation "is the same height,," which is 
consistent with the original relation. 

1.3.7 DEFINITION. i f  T i s  a weak ordering, then the relation 
xTy AyTx i s  the equivalence relation determined by it .  

1.3.8 DEFINITION. i f  T i s  a weak ordering, and the equivalence 
relation determined by i t  i s  the identity relation (x=y)  then 
partial ordering. 

The significance of a partial ordering is that no two distinct elements 
are alike according to it. One simple way of getting a partial ordering 
is as follows: Let T be a weak ordering defined on U. Define a new 
relation T* on the set of equivalence classes by saying that uT*v 
holds if every elenlent of u bears the relation T to every element of v. 
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This is a partial ordering of the equivalence classes, and we call it the 
partial ordering induced by T. 

1.3.9 DEFINITION. An element a of U i s  called a minimal element 
a for all x E U. I f  a min imal  etement i s  unique, we 

call it a minimum. 

We can define "maximal element" and "maximum" similarly. If 
U is a finite set, then i t  is easily shown that for any weak ordering there 
must be a t  least one minimal element. However, this minimal element 
need not be unique. Similarly, the weak ordering must have a maxi- 
mal element, but not necessarily a maximum. 

§ 1.4 Communication relations. An important application of order 
relations is the study of communication networks. Let us suppose 
that r individuals are connected through a complex network. Each 
individual can pass a message on to a subset of the individuals. This 
we will call direct contact. These messages may be relayed, and 
relayed again, etc. This will be indirect contact. It will not be assumed 
that a member can contact himself directly. Let aTb express that the 
individual a can contact b (directly or indirectly) or that a =  
easy to verify that T is a weak ordering of the set of individuals. It 
determines the equivalence relation xTy AYTX, which may be read as 
"x and y can communicate with each other, or x = y." 

This equivalence relation may be used to classify the individuals. 
Two men will be in the same equivalence class if they can communicate, 
that is, if each can contact the other one. The induced partial ordering 
T* has a very intuitive meaning : The relation uT*v holds if all members 
of the class u can contact all members of the class v, but not con- 
versely unless u=v.  Thus the partial ordering shows us the possible 
flow of information. 

In  particular, u is a maximal element of the partial ordering if its 
members cannot be contacted by members of any other class, and u 
is a minimal element if its members cannot contact members of other 
classes. Thus the maximal sets are message initiators, while the 
minimal sets are terminals for messages. (See M4 Vol. PI, Unit 2.) 

It is interesting to study a given equivalence class. Any two 
members of such a class can communicate with each other. Hence 
any member can contact any other member. But how long does i t  
take to contact other members? As a unit of time we will take the 
time needed to send a message from any one member to any member 
he can contact directly. We call this one step. We will assume that 
member i sends out a message, and we will be interested to know where 
the message could possibly be after n steps. 
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equivalence relation defined on U. , We put elements of U into classes 
in such a manner that two elements a and b are in the same class if 
aRb. It can be shown that the resulting classes are well defined and 
mutually exclusive, giving us a partition of U. These classes are the 
equ.ivalence classes of R. 

For example, let xRy express that "x is the same height as y," where 
U is a set of human beings. Then the resulting partition divides these 
people according to their heights. Two men are in the same equiva
lence class if and only if they are the same height. 

1.3.5 DEFINITION. A relation T is said to be consistent with the 
equivalence relation R if, given that xRy, then if xTz holds so does 
yTz, and if zTx holds so does zTy. 

1.3.6 DEFINITION. A relation that is reflexive and transitive is 
known as a weak ordering relation. 

A weak ordering relation can be used to order the elements of U. 
Given a weak ordering T, and given any two elements a and b of U, 
there are four possibilities: (1) aTb /\ bTa; then the two elements are 
"alike" according to T. (2) aTb 1\ ~ (bTa); then a is "ahead" of b. 
(3) -(aTb)l\bTa; then b is "ahead." (4) -(aTb)I\-(bTa); then we 
are unable to compare the two objects. 

For example, if xTy expresses that "I like x at least as well as y," 
then the four cases correspond to "I like them equally," "I prefer x," 
"I prefer y," and "I cannot choose," respectively. 

The relation of being alike acts as an equivalence relation. Indeed, 
it can be shown that if T is a weak ordering, then the relation xRy that 
expresses that xTy l\yTx is an equivalence relation consistent with T. 
Thus T serves both to classify and to order. Consistency assures us 
that equivalent elements of U have the same place in the ordering. 

For example, if we choose "is at least as tall" as our weak ordering, 
this determines the equivalence relation "is the same height," which is 
consistent with the original relation. 

1.3.7 DEFINITION. If T is a weak ordering, then the relation 
xTy /\yTx is the equivalence rela"tion determined by it. 

1.3.8 DEFINITION. If T is a weak ordering, and the equivalence 
relation determined by it is the identity relation (X"" y) then T is a 
partial ordering. 

The significance of a partial ordering is that no two distinct elements 
are alike according to it. One simple way of getting a partial ordering 
is as follows: Let T be a weak ordering defined on U. Define a new 
relation T* on the set of equivalence classes by saying that uT*v 
holds if every element of u bears the relation T to every element of v. 
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equivalence relation defined on U. . We put elements of U into classes 
in such a manner that two elements a and b are in the same class if 
aRb. It can be shown that the resulting classes are well defined and 
mutually exclusive, giving us a partition of U. These classes are the 
equ.ivalence classes of R. 

For example, let xRy express that "x is the same height as y," where 
U is a set of human beings. Then the resulting partition divides these 
people according to their heights. Two men are in the same equiva- 
lence class if and only if they are the same height. 

1.3.5 DEFINITION. A relation T i s  said to  be consistent with the 
equivalence relation R if, given that xRy, then if xTz holds so does 
yTz, and if zTx holds so does zTy. 

1.3.6 DEFINITION. A relation that i s  re$exive and transitive i s  
known as  a weak ordering relation. 
A weak ordering relation can be used to order the elements of U. 

Given a weak ordering T, and given any two elements a and b of U, 
there are four possibilities: (1) aTb AbTa; then the two elements are 
"alike" according to T. (2) aTb A-  (bTa) ; then a is "ahead" of b. 
(3) -(aTb) AbTa; then b is "ahead." (4) ~ ( a T b )  A-(bTa); then we 
are unable to compare the two objects. 

For example, if xTy expresses that "I like x a t  least as well as y," 
then the four cases correspond to "I like them equally," "I prefer x," 
"I prefer y," aild "I cannot choose," respectively. 

The relation of being alike acts as an equivalence relation. Indeed, 
it can be shown that if T is a weak ordering, then the relation xRy that 
expresses that xTy AyTx is an equivalence relation consistent with 
Thus T serves both to classify and to order. Consistency assures us 
that equivalent elements of U have the same place in the ordering. 

For example, if we choose "is a t  least as tall" as our weak ordering, 
this determines the equivalence relation "is the same height,," which is 
consistent with the original relation. 

1.3.7 DEFINITION. i f  T i s  a weak ordering, then the relation 
xTy AyTx i s  the equivalence relation determined by it .  

1.3.8 DEFINITION. i f  T i s  a weak ordering, and the equivalence 
relation determined by i t  i s  the identity relation (x=y)  then 
partial ordering. 

The significance of a partial ordering is that no two distinct elements 
are alike according to it. One simple way of getting a partial ordering 
is as follows: Let T be a weak ordering defined on U. Define a new 
relation T* on the set of equivalence classes by saying that uT*v 
holds if every elenlent of u bears the relation T to every element of v. 
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This is a partial ordering of the equivalence classes, and we call it the 
partial ordering induced by T. 

1.3.9 DEFINITION. An element a of U i s  called a minimal element 
a for all x E U. I f  a min imal  etement i s  unique, we 

call it a minimum. 

We can define "maximal element" and "maximum" similarly. If 
U is a finite set, then i t  is easily shown that for any weak ordering there 
must be a t  least one minimal element. However, this minimal element 
need not be unique. Similarly, the weak ordering must have a maxi- 
mal element, but not necessarily a maximum. 

§ 1.4 Communication relations. An important application of order 
relations is the study of communication networks. Let us suppose 
that r individuals are connected through a complex network. Each 
individual can pass a message on to a subset of the individuals. This 
we will call direct contact. These messages may be relayed, and 
relayed again, etc. This will be indirect contact. It will not be assumed 
that a member can contact himself directly. Let aTb express that the 
individual a can contact b (directly or indirectly) or that a =  
easy to verify that T is a weak ordering of the set of individuals. It 
determines the equivalence relation xTy AYTX, which may be read as 
"x and y can communicate with each other, or x = y." 

This equivalence relation may be used to classify the individuals. 
Two men will be in the same equivalence class if they can communicate, 
that is, if each can contact the other one. The induced partial ordering 
T* has a very intuitive meaning : The relation uT*v holds if all members 
of the class u can contact all members of the class v, but not con- 
versely unless u=v.  Thus the partial ordering shows us the possible 
flow of information. 

In  particular, u is a maximal element of the partial ordering if its 
members cannot be contacted by members of any other class, and u 
is a minimal element if its members cannot contact members of other 
classes. Thus the maximal sets are message initiators, while the 
minimal sets are terminals for messages. (See M4 Vol. PI, Unit 2.) 

It is interesting to study a given equivalence class. Any two 
members of such a class can communicate with each other. Hence 
any member can contact any other member. But how long does i t  
take to contact other members? As a unit of time we will take the 
time needed to send a message from any one member to any member 
he can contact directly. We call this one step. We will assume that 
member i sends out a message, and we will be interested to know where 
the message could possibly be after n steps. 

SEC. 4 PREREQUISITES 5 

This is a partial ordering of the equivalence classes, and we call it the 
partial ordering induced by T. 

1.3.9 DEFINITION. An element a of U is called a minimal element 
if aTx implies xTa for all x E U. If a minimal element is unique, we 
call it a minimum. 

We can define "maximal element" and "maximum" similarly. If 
U is a finite set, then it is easily shown that for any weak ordering there 
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of the class u can contact all members of the class v, but not con· 
versely unless u = v. Thus the partial ordering shows us the possible 
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In particular, u is a maximal element of the partial ordering if its 
members cannot be contacted by members of any other class, and u 
is a minimal element if its members cannot contact members of other 
classes. Thus the maximal sets are message initiators, while the 
minimal sets are terminals for messages. (See M4 VoL II, Cnit 2.) 

It is interesting to study a given equivalence class. Any two 
members of such a class CiLl1 communicate with each other. Hence 
any member can contact any other member. But ho;w long does it 
take to contact other members? As a unit of time we will take the 
time needed to send a mesEage from anyone member to any member 
he can contact directly. We call this one step. We will assume that 
member i sends out a message, and we will be interested to know where 
t.he message could possihly be after n steps. 
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Let Nij be the set of n such that a message starting from member i 
can be in member j's hands a t  the end of n steps. We will first con- 
sider Nil ,  the possible times a t  which a message can return to its 
originator. It is clear that if a E Nii and b E Nii, then a + b E Nii after 
all the message can return in a steps and can be sent out again and be 
received back after b more steps. So the set Nif is closed under addition. 
The following number-theoretic result will be useful. I ts  proof is 
given a t  the end of the section. 

1.4.1 THEOREM. A set of positive integers that i s  closed under 
addition contains all but a finite number of multiples of i ts greatest 
common divisor. 

If the greatest common divisor of the elements of Nii is designated 
dl ,  i t  is clear that the elements of Nii are all multiples of di. But 
Theorem 1.4.1 tells us in addition that all sufficiently high multiples 
of dz  are in the set. 

Since each member can contact every other member in its equiva- 
lence class, the Nil are non-empty. We next prove that for i and j 
in the same equivalence class, di = d j  = d ,  and that the elements of 
a given Nil are congruent to each other modulo d (their difference is a 
multiple of d). Suppose that a E Nil, b E Nij ,  and c E Nji.  

First of all, member i can contact himself by sending a message to 
member j and getting a message back. Hence a i c  E Nti. The mes- 
sage could also go to member j ,  come back to member j ,  and then go 
to member i. This could be done in a + kdj  + c  steps, where k is 
sufficiently large. Hence d j  must be a multiple of di. But in exactly 
the same way we can prove that di is a multiple of dj. Hence 
d i = d j = d .  

Or again, the message could go to member j in b steps, and then back to 
member i. Hence b + c E Nii. Hence a + c and b + c are both divisible 
bv d ,  and thus we see that a =  b (mod d ) .  Thus the elements of a " ,  

given Nij are congruent to each other mocha d .  We can thus intro- 
duce numbers t i j ,  with O<t i j<d ,  so that any element of Nij is con- 
gruent to tij, modulo d .  I t  is also easy to see that Nii contains all but 
a finite. number of the numbers t i j  + kd. 

In particular we see that tit = 0 in each case, and hence tii + tji = 0 
(mod d ) .  Also tij + ti, =tirn (mod d ) .  From this it is easily seen that 
tij=O is an equivalence relation. Let us call such an equivalence 
class a cyclic class. 

Since ttj + t jm  = ttm (mod d ) ,  we see that tij = tim if and only if tim = 0, 
hence if and only if members j and m are in the same cyclic class. 
Let n be any integer. If n r ti; (mod d ) ,  then the message originating 
from member i can only be in this one cyclic class after n steps. From 
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this i t  immediately follows that there are exactly d cyclic clasises, and 
that the message moves cyclically from class to class, with cycle of 
length d .  It is also easily seen that after sufficient time has elapse 
it can be in the hands of any member of the one cyclic class appropriate 
for n. 

While this description of an equivalence class of the communication 
network holds in complete generality, the cycle degenerates when 
d =  l. In  this case there is a single "cyclic class," and after sufficient 
time has elapsed the message can be in the hands of any member a t  
any time. 

I n  particular, it is worth noting that if any member of the equivalence 
class can contact himself directly, then d -  1. This is immediately 
seen from the fact that d is a divisor of any time in which a member 
can contact himself, and here d has to divide 1. 

The number-theoretic result, § 1.4.1, is of such interest that its 
proof will be given here. 

First, of all we note that if the greatest common divisor d of the set 
is not 1, then we can divide all elements by d, and reduce the problem 
to the case d = 1. Hence it suffices to treat this case. Here we have 
a set of numbers whose greatest common divisor is 1 ,  and we must 
have a finite subset with this property. Hence, by a well-known 
result, there is a linear combinalion, a l n l +  aznz + . . . + aknk of the 
elements (with positive or negative integers a t )  which is equal to 1. 
If we collect all the positive and all the negative terms separately, 
and remember that the set is closed under addition, we note that there 
must be elements m and n in the set, such that m - n = 1 (m being the 
sum of the positive terms, and -n  the sum of the negative terms). 
Let q be any sufficiently large number, or more pecisely p >,n(n- 1). 
We can write q = a n  + b,  where a > (n- 1 )  and o < b < (n - 1). Then 
we see that q= ( a  - b ) n  + bm, and hence q must be in the set. 

robability measures. In  making a probability analysis of an 
experiment there are two basic steps. First, a set of logical possibili- 
ties is chosen. This problem was discussed in 5 1.2. Second a proba- 
bility measure is assigned. The way that this second step is carried 
out will be discussed in this section. We consider first a finite possi- 
bility space. (For a more detailed discussion see FM Chapter IV or 
FMS Chapter III.) 

3.1 DEFINITION. Let U = {a1, az, . . . , a,) be a set of logical possi- 
bilities. A probabiIity measure for U i s  obtained by  assigning to each 
element a$ a positive number w(al), called a weight, in such a way that 
the weights assigned have s u m  1. T h e  measure of a subset A of U, 
denoted by m(A),  i s  the s u m  of the weights assigned to elements of A. 
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can be in member ./S hands at the end of n steps. vVe will first COIl

sider Nit, the possible times at which a message can return to its 
originator. It is clear that if a E Nii and b E Nii , then a+b E Nii after 
all the message can return in a steps and can be sent out again and be 
received back after b more steps. So the set Nii is closed under addition. 
The following number-theoretic result will be useful. Its proof is 
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in the same equivalence class, di=el;=d, and that the elements of 
a given Nij are congruent to each other modulo d (their difference is a 
multiple of d). Suppose that a E Nih b E Nij, and C E X j1:. 

First of all, member i can contact himself by sending a message to 
member j and getting a message back. Hence aTe E ~~ii. The mes
sage could also go to member j, come back to member j, and then go 
to member i. This could be done in a + kd j + C steps, where k is 
sufficiently large. Hence d j must be a multiple of di . But in exactly 
the same way we can prove that eli is a multiple of d j . Hence 
di=d j =d. 

Or again, the message could go to member j in b steps, and then back to 
member i. Hence b + c E Nii . Hence a + c and b + c are both divisible 
by d, and thus we see that a b (mod d). Thus the elements of a 
given Nij are congruent to each other modulo d. \Ve can thus intro
duce numbers lij, with 0"; til < d, so that any element of Ntj is con
gruent to tij, modulo d. It is also easy to see that Ntj contains all but 
a finite number of the numbers lij + led. 

In particular we see that lit. = 0 in each case, and hence tij + tji == 0 
(mod d). Also tl} + tjm == tim (mod d). From this it is easily seen that 
til = 0 is an equivalence relation. Let us call such an equivalence 
class a cyclic class. 

Since lij + tjm == tim (mod d), we see that lij = tim if and only if tim = 0, 
hence if and only if members j and rn are in the same cyclic class. 
Let n be any integer. If n == lij (mod d), then the message originating 
from member i can only be in this Olle cyclic class after n steps. From 
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Let Nij be the set of n such that a message starting from member i 
can be in member j's hands a t  the end of n steps. We will first con- 
sider Nil ,  the possible times a t  which a message can return to its 
originator. It is clear that if a E Nii and b E Nii, then a + b E Nii after 
all the message can return in a steps and can be sent out again and be 
received back after b more steps. So the set Nif is closed under addition. 
The following number-theoretic result will be useful. I ts  proof is 
given a t  the end of the section. 

1.4.1 THEOREM. A set of positive integers that i s  closed under 
addition contains all but a finite number of multiples of i ts greatest 
common divisor. 

If the greatest common divisor of the elements of Nii is designated 
dl ,  i t  is clear that the elements of Nii are all multiples of di. But 
Theorem 1.4.1 tells us in addition that all sufficiently high multiples 
of dz  are in the set. 

Since each member can contact every other member in its equiva- 
lence class, the Nil are non-empty. We next prove that for i and j 
in the same equivalence class, di = d j  = d ,  and that the elements of 
a given Nil are congruent to each other modulo d (their difference is a 
multiple of d). Suppose that a E Nil, b E Nij ,  and c E Nji.  

First of all, member i can contact himself by sending a message to 
member j and getting a message back. Hence a i c  E Nti. The mes- 
sage could also go to member j ,  come back to member j ,  and then go 
to member i. This could be done in a + kdj  + c  steps, where k is 
sufficiently large. Hence d j  must be a multiple of di. But in exactly 
the same way we can prove that di is a multiple of dj. Hence 
d i = d j = d .  

Or again, the message could go to member j in b steps, and then back to 
member i. Hence b + c E Nii. Hence a + c and b + c are both divisible 
bv d ,  and thus we see that a =  b (mod d ) .  Thus the elements of a " ,  

given Nij are congruent to each other mocha d .  We can thus intro- 
duce numbers t i j ,  with O<t i j<d ,  so that any element of Nij is con- 
gruent to tij, modulo d .  I t  is also easy to see that Nii contains all but 
a finite. number of the numbers t i j  + kd. 

In particular we see that tit = 0 in each case, and hence tii + tji = 0 
(mod d ) .  Also tij + ti, =tirn (mod d ) .  From this it is easily seen that 
tij=O is an equivalence relation. Let us call such an equivalence 
class a cyclic class. 

Since ttj + t jm  = ttm (mod d ) ,  we see that tij = tim if and only if tim = 0, 
hence if and only if members j and m are in the same cyclic class. 
Let n be any integer. If n r ti; (mod d ) ,  then the message originating 
from member i can only be in this one cyclic class after n steps. From 
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this i t  immediately follows that there are exactly d cyclic clasises, and 
that the message moves cyclically from class to class, with cycle of 
length d .  It is also easily seen that after sufficient time has elapse 
it can be in the hands of any member of the one cyclic class appropriate 
for n. 

While this description of an equivalence class of the communication 
network holds in complete generality, the cycle degenerates when 
d =  l. In  this case there is a single "cyclic class," and after sufficient 
time has elapsed the message can be in the hands of any member a t  
any time. 

I n  particular, it is worth noting that if any member of the equivalence 
class can contact himself directly, then d -  1. This is immediately 
seen from the fact that d is a divisor of any time in which a member 
can contact himself, and here d has to divide 1. 

The number-theoretic result, § 1.4.1, is of such interest that its 
proof will be given here. 

First, of all we note that if the greatest common divisor d of the set 
is not 1, then we can divide all elements by d, and reduce the problem 
to the case d = 1. Hence it suffices to treat this case. Here we have 
a set of numbers whose greatest common divisor is 1 ,  and we must 
have a finite subset with this property. Hence, by a well-known 
result, there is a linear combinalion, a l n l +  aznz + . . . + aknk of the 
elements (with positive or negative integers a t )  which is equal to 1. 
If we collect all the positive and all the negative terms separately, 
and remember that the set is closed under addition, we note that there 
must be elements m and n in the set, such that m - n = 1 (m being the 
sum of the positive terms, and -n  the sum of the negative terms). 
Let q be any sufficiently large number, or more pecisely p >,n(n- 1). 
We can write q = a n  + b,  where a > (n- 1 )  and o < b < (n - 1). Then 
we see that q= ( a  - b ) n  + bm, and hence q must be in the set. 

robability measures. In  making a probability analysis of an 
experiment there are two basic steps. First, a set of logical possibili- 
ties is chosen. This problem was discussed in 5 1.2. Second a proba- 
bility measure is assigned. The way that this second step is carried 
out will be discussed in this section. We consider first a finite possi- 
bility space. (For a more detailed discussion see FM Chapter IV or 
FMS Chapter III.) 

3.1 DEFINITION. Let U = {a1, az, . . . , a,) be a set of logical possi- 
bilities. A probabiIity measure for U i s  obtained by  assigning to each 
element a$ a positive number w(al), called a weight, in such a way that 
the weights assigned have s u m  1. T h e  measure of a subset A of U, 
denoted by m(A),  i s  the s u m  of the weights assigned to elements of A. 
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this it immediately follows that there are exactly d cyclic classes, and 
that the message moves cyclically from class to class, with cycle of 
length d. It is also easily seen that after sufficient time has elapsed, 
it can be in the hands of any member of the one cyclic class appropriate 
for n. 

While this description of an equivalence class of the communication 
network holds in complete generality, the cycle degenerates when 
d = 1. In this case there is a single "cyclic class," and after sufficient 
time has elapsed the message can be in the hands of any member at 
any time. 

In particular, it is worth noting that if any member of the equivalence 
class can contact himsdf directly, then d = 1. This is immediately 
seen from the fact that d is a divisor of any time in which a member 
can contact himself, and here d has to divide I.' 

The number-theoretic result, § 1.4.1, is of such interest that its 
proof will be given here. 

First, of all we note that if the greatest common divisor d of the set 
is not 1, then we can divide all elements by d, and reduce the problem 
to the case d = 1. Hence it suffices to treat this case. Here we have 
a set of numbers whose greatest common divisor is 1, and we must 
have a finite subset with this property. Hence, by a well-known 
result, there is a linear combination, alnl + aznz + ... + aknk of the 
elements (with positive or negative integers a;) which is equal to l. 
If we collect all the positive and all the negative terms separately, 
and remember that the set is closed under addition, we note that there 
must be elements m and n in the set, such that m-n= 1 (m being the 
sum of the positive terms, and -n the sum of the negative terms). 
Let q be any sufficiently large number, or more precisely q ~ n(n - 1). 
We can write q=an+b, where a~(n-l) and o,,;b";(n-l). Then 
we see that q = (a - b)n + bm, and hence q must be in the set. 

§ 1.5 Probability measures. In making a probability analysis of an 
experiment there are two basic steps. First, a set of logical possibili
ties is chosen. This problem was discussed in § 1.2. Second a proba
bility measure is assigned. The way that this second step is carried 
out will be discussed in this section. We consider first a finite possi
bility space. (For a more detailed discussion see FM Chapter IV or 
FMS Chapter III.) 

1.5.1 DEFINITION. Let U = {aI, az, ... , ar} be a set of logical possi
bilities. A probability measure for U is obtained by assigning to each 
element aj a positive number w(aj), called a weight, in such a way that 
the weights assigned have sum 1. The measure of a subset A of U, 
denoted by m(A), is the sum of the weights assigned to elements of A. 
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1.5.2 THEOREM. A probability measure m assigned to a possibility 
set U has the following properties: 

bset B of U, O<m( 

re disjoint subsets of U, then 

1.5.3 ~ E F I N I T I O N .  Let p be a statement relative to a set U having truth 
set P. T h e  probability of p relative to  the probability measure m 
i s  dejned as m ( P ) .  

I n  any discussion where there is a fixed probability measure we shall 
refer simply to the probability of p without mentioning each time the 
measure. From Theorem 1.5.2 and the relation of the connectives to 
the set operations, we have the following theorem: 

1.5.4 THEOREM. Let U be a set of possibilities for which a probability 
measure has been assigned. T h e  probabilities of statements determined 
by this measure have the following properties: 

( 1 )  For any  statement p, 0 < Pr[p] < 1 .  

( 2 )  If p clnd q are inconsistent then Pr[ 
(3) For a n y  two statements p and q, 

Pr[p Ad. 
( 4 )  For any statement p, Pr[- p] = 1 - Pr[p]. 

1.5.5 EXAMPLE. Given any finite set having s elements we can 
determine a probability measure by assigning weight 11s to each 
element of U. This measure is called the equiprobable measure. For 
any set A with r elements, m(A) =rjs. For example, this is the mea- 
sure which would normally be assigned to the outcomes for the roll of 
a die. I n  this case U = { l ,  2 ,  3, 4, 5 ,  6) and a weight of ' 1 6  is assigned 
to each. 

1.5.6 EXAMPLE. AS an example of a situation where different 
weights would be assigned consider the following: A man observes a 
race between three horses a ,  b, and c. He  feels tha t  a and b have the 
same chance of winning but tha t  c is twice as likely to win as a.  We 
take the possibility set to be U = {a, b, c) and assign weights w ( a )  = l /4 ,  
w(b) = and w(c) = ' 1 %  

It is occasionally necessary to extend the above concepts to  include 
the case of an  experiment with an  infinite sequence of possible outcomes. 
For example, consider the experiment of tossing a coin until the first 
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time tha t  a Lead turns up. The possible outcomes would be 
U = (1, 2, 3, . . .). The above definitions and theorems apply equally 
well to this possibility set. We will have an  infinite number of weights 
assigned but we still must require that  they have sum 1. I n  the 
example just mentioned we would assign weights (112, '14, ' I 8 ,  . . .). 
These weights form a geometric progression having sum 1. 

$ 1.6 Conditional probability. It often happens that  a probability 
measure has been assigned to a set U and then we learn that  a certain 
statement q relative to U is true. With this new information we change 
the possibility set to the truth set q. We wish to determine a 
probability measure on this fiew set our original measure m. We 
do this by requiring that  elements hould have the same relative 
weights as they had under the original assignment, of weights. This 
means that  our new weights must be the old weights multiplied by a 
constant to give them sum 1. This constan 
the sum of the weights of all elements in 
Chapter I V  or FMS Chapter 111.) 

1.6.1 DEFINITION. Let U = jal, az, . . . , a,) be a possibility set for 
which a measure has been assigned, determined by weights w(aj). Let 
q be a statement relative lo U (not a self-contradiction). The  con- 
ditional probability measure given q i s  a p~obability measure dejned 

the t m t h  set of q ,  deterw'ined by weights 

1.6.2 DEFINITION. Let p and q be two statements relative to a set 
tJ (q not a self-contradiction). The conditional probability of p given q ,  
denoted by Pr[p/q]  i s  the probubility of p computed from the conditional 
probability measure given a. 
1.6.3 THEOREM. Let g and q be two statements relative to ki (q not 
a self-contradiction). Assume ihat a probability measure rn has been 
assigned to U. T h e n  

where Pr[p Aq] and r[q]  aTe found from the measure rn 

EXAMPLE. In Example 1.5.6 assume that  the man learns 
rse b is not going to run. This causes him to consider the new 

possibility space ={a,  cj. The new weights which determine the 

conditional measure are * ( a )  = - - '12 ' I 4  - 113 and G ( e ) =  = 213. + l / 2  14 + l / 2  
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1.5.2 THEOREM. A probability' measure m assigned to a possibility 
set U has the foUowing properties: 

(1) For any subset P of U, 0 ~ m(P) ~ I. 

(2) IfPandQare disjointsubsetsofU, thenm(P u Q)=m(P)+m(Q). 

(3) For any subsets P and Q of U, m(PuQ)=m(P}+m(Q)-
m(P n Q). 

(4) For any set P in U, m(P)= l-m(P). 

1.5.3 DEFINITION. Let p be a statement relative to a set U having truth 
set P. The probability of p relative to the probability measure m 
is defined as m(P). 

In any discussion where there is a fixed probability measure we shall 
refer simply to the probability of p without mentioning each time the 
measure. From Theorem 1.5.2 and the relation of the connectives to 
the set operations, we haye the following theorem: 

1.5.4 THEOREM. Let U be a set of possibilities for which a probability 
meaSUTe has been assigned. The probabilities of statements determined 
by this measure have the following properties: 

(I) For any statement p, 0 ~ Pr[p] ~ 1. 

(2) If p and q are inconsistent then Pr[pV q] = Prep] + Pr(qJ. 

(3) For any two statements p and q, Pr[pVq]=Pr[pl+Pr[q]
Prep 1\ q]. 

(4) For any statement p, Pre ~ p] = 1 - Prep J. 

1.5.5 EXAMPLE. Given any finite set having 8 elements we can 
determine a probability measure by assigning weight l/s to each 
element of U. This measure is called the equiprobable measure. For 
any set A with r elements, m(A) = r/s. For example, this is the mea
sure which would normally be assigned to the outcomes for the roll of 
a die. In this case U = {I, 2, 3, 4, 5, 6} and a weight of 1! 6 is assigned 
to each. 

1.5.6 EXAMPLE. As an example of a situation where different 
weights would be assigned consider the following: A man observes a 
race between three horses a, b, and c. He feels that a and b have the 
same chance of winning but that c is twice as likely to win as a. We 
take the possibility set to be U = {a, b, c} and assign weights w(a) = 1! 4, 
W(b)=lj4 and W(C)=l/z. 

It is occasionally necessary to extend the above concepts to include 
the case of an experiment with an infinite sequence of possible outcomes. 
For example, consider the experiment of tossing a coin until the first 
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1.5.2 THEOREM. A probability measure m assigned to a possibility 
set U has the following properties: 

bset B of U, O<m( 

re disjoint subsets of U, then 

1.5.3 ~ E F I N I T I O N .  Let p be a statement relative to a set U having truth 
set P. T h e  probability of p relative to  the probability measure m 
i s  dejned as m ( P ) .  

I n  any discussion where there is a fixed probability measure we shall 
refer simply to the probability of p without mentioning each time the 
measure. From Theorem 1.5.2 and the relation of the connectives to 
the set operations, we have the following theorem: 

1.5.4 THEOREM. Let U be a set of possibilities for which a probability 
measure has been assigned. T h e  probabilities of statements determined 
by this measure have the following properties: 

( 1 )  For any  statement p, 0 < Pr[p] < 1 .  

( 2 )  If p clnd q are inconsistent then Pr[ 
(3) For a n y  two statements p and q, 

Pr[p Ad. 
( 4 )  For any statement p, Pr[- p] = 1 - Pr[p]. 

1.5.5 EXAMPLE. Given any finite set having s elements we can 
determine a probability measure by assigning weight 11s to each 
element of U. This measure is called the equiprobable measure. For 
any set A with r elements, m(A) =rjs. For example, this is the mea- 
sure which would normally be assigned to the outcomes for the roll of 
a die. I n  this case U = { l ,  2 ,  3, 4, 5 ,  6) and a weight of ' 1 6  is assigned 
to each. 

1.5.6 EXAMPLE. AS an example of a situation where different 
weights would be assigned consider the following: A man observes a 
race between three horses a ,  b, and c. He  feels tha t  a and b have the 
same chance of winning but tha t  c is twice as likely to win as a.  We 
take the possibility set to be U = {a, b, c) and assign weights w ( a )  = l /4 ,  
w(b) = and w(c) = ' 1 %  

It is occasionally necessary to extend the above concepts to  include 
the case of an  experiment with an  infinite sequence of possible outcomes. 
For example, consider the experiment of tossing a coin until the first 
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time tha t  a Lead turns up. The possible outcomes would be 
U = (1, 2, 3, . . .). The above definitions and theorems apply equally 
well to this possibility set. We will have an  infinite number of weights 
assigned but we still must require that  they have sum 1. I n  the 
example just mentioned we would assign weights (112, '14, ' I 8 ,  . . .). 
These weights form a geometric progression having sum 1. 

$ 1.6 Conditional probability. It often happens that  a probability 
measure has been assigned to a set U and then we learn that  a certain 
statement q relative to U is true. With this new information we change 
the possibility set to the truth set q. We wish to determine a 
probability measure on this fiew set our original measure m. We 
do this by requiring that  elements hould have the same relative 
weights as they had under the original assignment, of weights. This 
means that  our new weights must be the old weights multiplied by a 
constant to give them sum 1. This constan 
the sum of the weights of all elements in 
Chapter I V  or FMS Chapter 111.) 

1.6.1 DEFINITION. Let U = jal, az, . . . , a,) be a possibility set for 
which a measure has been assigned, determined by weights w(aj). Let 
q be a statement relative lo U (not a self-contradiction). The  con- 
ditional probability measure given q i s  a p~obability measure dejned 

the t m t h  set of q ,  deterw'ined by weights 

1.6.2 DEFINITION. Let p and q be two statements relative to a set 
tJ (q not a self-contradiction). The conditional probability of p given q ,  
denoted by Pr[p/q]  i s  the probubility of p computed from the conditional 
probability measure given a. 
1.6.3 THEOREM. Let g and q be two statements relative to ki (q not 
a self-contradiction). Assume ihat a probability measure rn has been 
assigned to U. T h e n  

where Pr[p Aq] and r[q]  aTe found from the measure rn 

EXAMPLE. In Example 1.5.6 assume that  the man learns 
rse b is not going to run. This causes him to consider the new 

possibility space ={a,  cj. The new weights which determine the 

conditional measure are * ( a )  = - - '12 ' I 4  - 113 and G ( e ) =  = 213. + l / 2  14 + l / 2  
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time that a llead turns up. The possible outcomes would be 
U={l, 2, 3, ... }. The above definitions and theorems apply equally 
well to this possibility set. vVe will have an infinite number of weights 
assigned but we still must require that they have sum 1. In the 
example just mentioned we would assign weights (liz, 1/4, lis, . .. ). 
These weights form a geometric progression having sum 1. 

§ 1.6 Conditional probability. It often happens that a probability 
me8.sure h8.s been assigned to a set U and then we learn that a certain 
statement q relative to U is true. With this new information we change 
the possibility set to the truth set Q of q. We wish to determine a 
probability measure on this new set from our original measure m. We 
do this by requiring that elements of Q should have the same relative 
weights as they had under the original assignment of weights. This 
means that our new weights must be the old weights multiplied by a 
constant to give them sum 1. This constant will be the reciprocal of 
the sum of the weights of all elements in Q, i.e. I/m(Q). (See FM 
Chapter IV or FMS Chapter III.) 

1.6.1 DEFINITION. Let U ={al' a2, ... , a r } be a possibility set for 
which a measure has been assigned, determined by weights w(aj). Let 
q be a statement relative to U (not a. self-contradiction). The con
ditional probability measure given q is a pj'obability measure defined 
on Q the tmth set of q, d eterrnined by weights 

_ w(aj) 
v;(aj) = --. 

m(Q) 

1.6.2 DEFINITION. Let p and q be two statements relative to a set 
U (q not a self-contradiction). The conditional probability of p given q. 
denoted by Pr[plq] is the probability of p computed from the conditional 
probability measure given q. 

1.6.3 THEOREM. Let P CLnd q be two statements relative to U (q not 
a self-contradiction). Asswne that a probability measure m has been 
assigned to U. Then 

Pr[plq] 
Pr[p /\q] 

Pr[q] 

where Pr[p /\ q] and Pr[ q] are found from the measure m. 

1.6.4 EXAMPLE. In Example 1.5.6 assume that the man learns 
that horse b is not going to run. This causes him to consider the new 
possibility space Q={a, c}. The new weights which determine the 

1/4 1/ ') 
conditional measure are w(a)=---=I!a and w(c)=-,_'_"_=2/3' 

1/4+ 1/2 1/ 4+ 1/2 
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We observe that it is still twice as likely that c will win than it is that 
a will win. 

1.6.5 DEFINITION. Two statements p and q (neither of which is 
a self-contradiction) are independent if PrEp i\ q] = Pr[pJ· Pr[qJ. 

It follows from Theorem 1.6.3 that p and q are independent if and 
only if Pr[plq]=Pr[p] and Pr[qlp]=Pr[q). Thus to say that p and q 
are independent is to say that the knowledge that one is true does not 
effect the probability assigned to the other. 

1.6.6 EXAMPLE. Consider two tosses of a coin. We describe the 
outcomes by U = {HH, HT, TH, TT}. We assign the equiprobable 
measure. Let p be the statement "a head turns up on the first toss" 
and q the statement "a head turns up on the second toss." Then 
Pr[pi\q]=lj4, Pr[p] =Pr[q] = ljz. Thus p and q are independent. 

§ 1.7 Functions on a possibility space. Let U = {:1l, a 2, ..• , a r } be a 
possibility space. Let f be a function with domain U and range 
R = {fl, rz, ... , fs}. That is, f assigns to each element U a unique 
element of R. If f assigns fk to aj, we write f(aj)=rk. We write 
f = rk for the statement "the value of the function is fk." This is a 
statement relative to U, since its truth value is known when the 
outcome aj is known. Hence it has a truth set which is a subset of U. 
(See FMS Chapters II, III, or M4 Vol. II, Unit 1.) 

1. 7.1 DEFINITION. Let f be a function with domain U and range R. 
Assume that a measure has been assigned to U. For each rk in R 
let w(rk) = Pr[f = rkJ. The weights w(rk) determine a probability 
measure on the set R, called the induced measure for f. The weights 
are called the induced weights. 

We shall normally indicate the induced measure by giving both the 
range values and the weights in the form: 

f: 
... , 

Thus the induced weight of rk in R is the measure of the truth set 
of f=rk in U. 

1.7.2 EXAMPLE. In Example lo6.6let f be the function which gives 
the number of heads which turn up. The range of f is R = {a, 1, 2}. 
The Pr[f=O]=lj4, Pr[f=1]=lj2, and Pr[f=2]=lj4. Hence the range 
and induced measure is: 

2 ' 

ljJ 
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1.7.3 DEFINITION. Let U be a possibility space, and f and g be two 
functions with domain D, each having as range a set of nllmbers. The 
function f + g is the funch:on with domain U which assigns to aj the 
number f(aj) + g(aj). The junction f· g is the function with domain U 
which assigns to aj the number f(aj)·g(aj). For any number G the 
constant function c is the function which assigns the number c to every 
element of U. 

Let U be a possibility space for which a measure has been assigned. 
Then if f and g are two numerical functions with domain U, f + g and 
f· g will be functions with domain U, and as such have induced measures. 
In general there is no simple connection between the induced measures 
of these functions and the induced measure for f and g. 

1.7.4 EXAMPLE. In Example 1.6.6 let g be a function having the 
value 1 if a head turns up on the first toss and 0 otherwise. Let h be 
a function having the vaiue 1 if a head turns up on the second toss 
and 0 if a tail turns up. Then the range and induced measures for 
g, h, g+h, and g·h are 

( 0 

1~2} g: i . I 
l <: 2 

h: {1~2 l~J 
g+h: {1~4 21 

liz 1/4J 

g·h: {3~4 I;} 
1.7.5 DEFINITIO=". Lei f be a function defined on U. Let p be a 
statement relative to U hav'ing truth set P. Assume that a measure m 
has been assigned to U. Let f' be the function f considered only on the 
set P. Then the induced mwsure for f' calculated from the conditional 
measure given p is called the conditional induced measure for f 
given p. 

1.7.6 DEFI!<ITION. Let f and g be two functions defined on a space 13 
for which a probability measure has been assigned. Then f and g are 
independent if, for any rIc in the range of f and Sf in the range of g, 
the statements f = rIc and g = Sf are independent statements. 

An equivalent way to state the condition for independence of two 
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functions is to say that the induced measure for one function is not 
changed by the knowledge of the value of the other. 

3 1.8 Mean and variance of a function. Throughout this section we 
shall assume that the functions considered are functions whose range 
set is a set of numbers. (A detailed discussion of the concepts intro- 
duced in this section is given in FMS Chapter 111, or M4 Vol. 11, Unit 1.) 

1.8.1 DEFINITION. Let f be a function defined on a possibility space 
U = (81, ag, . . . , a,.), for which a measure determined by weights 
w(aj) has been assigned. Then the mean value of f denoted by 

The term expected value i s  often used in place of mean value. 

1.8.2 THEOREM. Let f be a function defined on U .  Assume that for 
a probability measure m defined on U ,  the function f has induced 
measure 

1.8.3 EXAMPLE. In Example 1.6.6 let f be the number of heads 
which turn up. From the definition of mean value we have 

We can also calculate the mean of f by making use of Theorem 1.8.2. 
The range and induced measure for f is 

Thus by Theorem 1.8.2, 

1.8.4 DEFINITION. Let f be a function dejined on a possibility space 
U for which a measure has been assigned. Let M[f] = m be the mean of 
this function. Then the variance of f, denoted by Var[f], i s  the mean 
of the function (f-m)2. The standard deviation denoted by sd[f], i s  
the square root of the variance. 
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1.8.5 TEEOREM. Let f be a f u d i o n  having mean value m. Then 

f be the function in Example 1.8.3. 

An alternative way to compute the variance is to  make use of 
Theorem 1.8.5. Using this result we find 

.8.7 THEOREM. Let f and g be any two functions for which means and 
variances have been defined. Then 

If f and g are independent functions then 

1.8.8 DEFINITION. Let p be a statement relative to a possibility set U 
for which a measure has been assigned. Let f be a function with 
domain U .  The conditional mean and variance of f given 
mean and variance o f f  computed from the conditional measur 
W e  denote these by RI[f lp] and Var[f jp]. 

1.8.9 THEOREM. Let PI, , be a complete set of alternatives 
relative to a set U. Let f be a function with domain U. Then 

THEOREM. I f  fl, f z ,  . . . is  a sequence of functions such that 
for some. constant c, 

as n + co, then 

andfor any E > O  
Pr[jf, - cj > €1 -t 0 

a s n  +a. 
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functions is to say that the induced measure for one function is not 
changed by the knowledge of the value of the other. 

§ 1.8 Mean and variance of a function. Throughout this section we 
shall assume that the functions considered are functions whose range 
set is a set of numbers. (A detailed discussion of the concepts intro
duced in this section is given in FMS Chapter III, or M 4 Vol. II, Unit 1.) 

1.8.1 DEFINITION. Let f be a function defined on a pos8ibility space 
U = {aI, a2, ... ,ar}, for which a meas1~re determined by weights 
w(aJ) has been assigned. Then the mean value of f denoted by M[f] is 

M[f] = 2:f(aj).w(aJ)' 
J 

The term expected value is often used in place of mean value. 

1.8.2 THEOREM. Let f be a function defined on U. Assume that for 
a probability measure m defined on U, the function f has induced 
meaS1(re 

f: 

Then 

M[f] = 2: fj'W(fj). 
j 

1.8.3 EXAMPLE. In Example 1.6.6 let f be the number of heads 
which turn up. From the definition of mean value we have 

M[f] = f(HH)· 1/4 + f(HT)· 1/4 +f(TH)· 1/4+ f(TT) .1/4 
= 2.1/4+1.1/4+1.1/4+0.1/4 
= 1. 

We can also calculate the mean of f by making use of Theorem 1.8.2. 
The range and induced measure for f is 

Thus by Theorem 1.8.2, 

M[f] = 0.1/4+1.1/2+2.1/4 = 1. 

1.8.4 DEFINITION. Let f be a function defined on a possibility space 
U for which a measure has been assigned. Let M[f] = m be the mean of 
this f1mction. Then the variance of f, denoted by Var[f], is the mean 
of the f1mclion (f - m)2. The standard deviation denoted by sd[f], is 
the sq1~are root of the variance. 
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set is a set of numbers. (A detailed discussion of the concepts intro- 
duced in this section is given in FMS Chapter 111, or M4 Vol. 11, Unit 1.) 

1.8.1 DEFINITION. Let f be a function defined on a possibility space 
U = (81, ag, . . . , a,.), for which a measure determined by weights 
w(aj) has been assigned. Then the mean value of f denoted by 

The term expected value i s  often used in place of mean value. 

1.8.2 THEOREM. Let f be a function defined on U .  Assume that for 
a probability measure m defined on U ,  the function f has induced 
measure 

1.8.3 EXAMPLE. In Example 1.6.6 let f be the number of heads 
which turn up. From the definition of mean value we have 

We can also calculate the mean of f by making use of Theorem 1.8.2. 
The range and induced measure for f is 

Thus by Theorem 1.8.2, 

1.8.4 DEFINITION. Let f be a function dejined on a possibility space 
U for which a measure has been assigned. Let M[f] = m be the mean of 
this function. Then the variance of f, denoted by Var[f], i s  the mean 
of the function (f-m)2. The standard deviation denoted by sd[f], i s  
the square root of the variance. 
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1.8.5 TEEOREM. Let f be a f u d i o n  having mean value m. Then 

f be the function in Example 1.8.3. 

An alternative way to compute the variance is to  make use of 
Theorem 1.8.5. Using this result we find 

.8.7 THEOREM. Let f and g be any two functions for which means and 
variances have been defined. Then 

If f and g are independent functions then 

1.8.8 DEFINITION. Let p be a statement relative to a possibility set U 
for which a measure has been assigned. Let f be a function with 
domain U .  The conditional mean and variance of f given 
mean and variance o f f  computed from the conditional measur 
W e  denote these by RI[f lp] and Var[f jp]. 

1.8.9 THEOREM. Let PI, , be a complete set of alternatives 
relative to a set U. Let f be a function with domain U. Then 

THEOREM. I f  fl, f z ,  . . . is  a sequence of functions such that 
for some. constant c, 

as n + co, then 

andfor any E > O  
Pr[jf, - cj > €1 -t 0 

a s n  +a. 
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1.8.5 THEOREM. Let f be a function having mean value m. Then 
Va.r[!] =M[f2] -m2• 

1.8.6 EXAMFLE. Let f be the function in Exa.mple 1.8.3. We 
found tha.t M[f] = 1. Thus 

Var[f] = (2-1)2.1/4+(1-1)2.1/4+(1-1)2.1/4+(0-1)2.1/4 
= 1/2. 

An alternative way to compute the variance is to make use of 
Theorem 1.8.5. Using this result we find 

M[f2] = 4..1/4+1.1/4+1.1/4+0.1/4 = 3/ 2. 

Since M[f] = 1, we have Var(£] = 3/z-1 = 1/2. 

1.8.7 THEOREM. Let f and g be any two junctions jor which means and 
variances have been defined. Then 

(1) M[c] = c. 
(2) M[f+g] = M[f]+M[gJ. 
(3) M[c.f] = e·M[f]. 

(4) Var[e·f] = c2 • Var[f]. 
(5) Var[c+f] = Var[f]. 
(6) Var[e] = O. 

Ij f and g are independent functions then 

(7) M[f· g] = M[ f]- M[g]. 
(8) Var[f+g] = Var[f]+Var[g]. 

1.8.8 DEFINITION. Let p be a statement relative to a possibility set U 
jor which a measure has been assigned. Let f be a fu.nction with 
domain U. The conditional mean and variance of f given p are the 
mean and variance of f comp1ded from the conditional meastwe given p. 
We denote these by M[flp] and Var[flp]. 

1.8.9 THEOREM. Let PI, pz, ... , pr be a complete set of alternatives 
rela1ive to a set U. Let f be a function with domain U. Then 

M[f] = L M[fJpiJ ·Pr[pj]' 
j 

1.8.10 THEOREM. If f 1, f 2 , ..• is a sequence of functions such that 
for some. constant c, 

as n -700, then 

and for any E> 0 
Pr[lfn-cl > E] -r 0 

asn -+00. 
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1 DEFINITION.  Let fi und fz be two functions with 
and sd[f] = bi. Then  the covariance of fl and fz i s  defined by 

axd the correlation of 4 and f~ i s  

5 1.9 Stochastic processes. I n  this section we shall briefly describe 
the concept of a stochastic process. A more complete treatment may 
be found in FM Chapter IV or FMS Chapter 111. 

We wish to  give a probability measure to describe an  experiment 
which takes place in stages. The outcome a t  the n-th stage is allowed 
to depend on the outcomes of the previous stages. It is assumed, 
however, tha t  the probability for each possible outconle a t  a particular 
stage is known when the outcomes of all previous stages are known. 
From this knowledge we shall construct a possibility space and measure 
for the over-all experiment. 

We shall illustrate the construction of the possibility space and 
measure by a particular example. The general procedure will be clear 
from this. 

1.9.1 EXAMPLE. We choos a t  random one of two coins A or 
Coin A is a fair coin and coin has heads on both sides. The coin 
chosen is tossed. If a tail comes up a die is rolled. If  a head turns up 
the coin is thrown again. The first stage of the experiment is the 
choice of a coin. At the second stage, a coin is tossed. At  the third 
stage a coin is tossed or a die is rolled, depending on the outcome of 
the first two stages. 

We indicate the possible outcomes of the experiment by a tree as 
shown in Figure 1 - 1 .  

The possibilities for the experiment are t l  = (A,  H, W ) ,  t z= ( A ,  M, T ) ,  
t3 = ( A ,  T, I ) ,  t4 = (A ,  T, %), etc. Each possibility may be identified 
with a path through the trees. Each path is made up of line segments 
called branches. I n  the tree we have just given, there are nine paths 
each having three branches. 

We know the probability for each outcome a t  a given stage when the 
previous stages are known. For example, if outcome A occurs on the 
first stage and T on the second stage, then the probability of a 1 for 
the third stage is 1 1 6  We assign these known probabilities to the 
branches and call them branch probabilities. 

We next assign weights to the paths equal to the product of the 
probabilities assigned to the components of the path. For example 
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the path ti. corresponds to outcome A on the first stage, T! on the second, 
and 5 on the third. The weight assigned to this path is 

li2. I/6 = 

This procedure assigns a weight to each path of the  tree and the sum 
of the weights assigned is 1. The set U of all paths may be considered 
a suitable possibility space for the consideration of any statement 
whose truth value depends on the outcome of the total experiment. 
The measure assigned by the path weights is the appropriate prob- 
ability measure. 

The above procedure can be carried out for any experiment that  
takes place in stages. We require only that  there be a finite number 
of possible outcomes a t  each stage and that  we know the probabilities 
for any particular outcome a t  the j- th stage, given the knowledge of 
the outcome for the first j- 1 stages. For each j we obtain a tree Ui. 
The set of paths of this tree serves as a possibility space for any state- 
ment relating to the first j experiments. On this tree we assign a 
measure to the set of all paths. We first assign branch probabilities. 
Then the weight assigned to a path is the product of all branch proba- 
bilities on the path. The tree measures are consistent in the following 
sense. A statement whose truth value depends only on the first j 
stages may be considered a statement relative to any tree Ui for i > j. 
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1.8.11 DEFINITW:'i". Let fl and f2 be two functions with M[f;] = ai 
and sd[fiJ = bi . Then the covariance of f1 and f2 is defined by 

COV[f1, f 2] = M[(fl - a1)(f2 - a2)], 

and the correlation of f1 and f2 is 

C [f f] _ COV[fl' f 2] 
orr 1, 2 - b b ' 

. l' 2 

§ 1.9 Stochastic processes. In this section we shall briefly describe 
the concept of a stochastic process. A more complete treatment may 
be found in FM Chapter IV or FMS Chapter III. 

INe wish to give a probability measure to describe an experiment 
which takes place in stages. The outcome at the n-th stage is allowed 
to depend on the outcomes of the previous stages. It is assumed, 
however, that the probability for each possible outcome at a particular 
stage is known when the outcomes of all previous stages are known. 
From this knowiedge we shaH construct a possibility space and measure 
for the over-all experiment. 

We shall illustrate the construction of the possibility space and 
measure by a particular example. The general procedure will be clear 
from this. 

1.9.1 EXAJ\1PLE. We choose at random one of two coins A or B. 
Coin A is a fair coin and coin B has heads on both sides. The coin 
chosen is tossed. If a tail comes up a die is rolled. If a head turns up 
the coin is thrown again. The first stage of the experiment is the 
choice of a coin. At the second stage, a coin is tossed. At the third 
stage a coin is tossed or a die is rolled, depending on the outcome of 
the first two stages. 

We indicate the possible outcomes of the experiment by a tree as 
shown in Figure 1-1. 

The possibilities for the experiment are h = (A, H, H), tz = (A, H, T), 
t3 = (A, T, I), t4 = (A, T, 2), etc. Each possibility may be identified 
with a path through the trees. Each path is made up of line segments 
called branches. In the tree v,e have just given, there are nine paths 
each having three branches. 

We know the probability for each outcome at a given stage when the 
previous stages arc known. For example, if outcome A occurs 011 the 
first stage and T on the second stage, then the probability of a 1 for 
the third stage is lis. We assign these known probabilities to the 
branches and call them branch probabilities. 

We next assign weights to the paths equal to the product of the 
probabilities assigned to the components of the path. For example 



13 FINITE MARKOV CHAINS CHAP. I 

1 DEFINITION.  Let fi und fz be two functions with 
and sd[f] = bi. Then  the covariance of fl and fz i s  defined by 

axd the correlation of 4 and f~ i s  

5 1.9 Stochastic processes. I n  this section we shall briefly describe 
the concept of a stochastic process. A more complete treatment may 
be found in FM Chapter IV or FMS Chapter 111. 

We wish to  give a probability measure to describe an  experiment 
which takes place in stages. The outcome a t  the n-th stage is allowed 
to depend on the outcomes of the previous stages. It is assumed, 
however, tha t  the probability for each possible outconle a t  a particular 
stage is known when the outcomes of all previous stages are known. 
From this knowledge we shall construct a possibility space and measure 
for the over-all experiment. 

We shall illustrate the construction of the possibility space and 
measure by a particular example. The general procedure will be clear 
from this. 

1.9.1 EXAMPLE. We choos a t  random one of two coins A or 
Coin A is a fair coin and coin has heads on both sides. The coin 
chosen is tossed. If a tail comes up a die is rolled. If  a head turns up 
the coin is thrown again. The first stage of the experiment is the 
choice of a coin. At the second stage, a coin is tossed. At  the third 
stage a coin is tossed or a die is rolled, depending on the outcome of 
the first two stages. 

We indicate the possible outcomes of the experiment by a tree as 
shown in Figure 1 - 1 .  

The possibilities for the experiment are t l  = (A,  H, W ) ,  t z= ( A ,  M, T ) ,  
t3 = ( A ,  T, I ) ,  t4 = (A ,  T, %), etc. Each possibility may be identified 
with a path through the trees. Each path is made up of line segments 
called branches. I n  the tree we have just given, there are nine paths 
each having three branches. 

We know the probability for each outcome a t  a given stage when the 
previous stages are known. For example, if outcome A occurs on the 
first stage and T on the second stage, then the probability of a 1 for 
the third stage is 1 1 6  We assign these known probabilities to the 
branches and call them branch probabilities. 

We next assign weights to the paths equal to the product of the 
probabilities assigned to the components of the path. For example 

SEC. 9 PREREQUISITES 15 

the path ti. corresponds to outcome A on the first stage, T! on the second, 
and 5 on the third. The weight assigned to this path is 

li2. I/6 = 

This procedure assigns a weight to each path of the  tree and the sum 
of the weights assigned is 1. The set U of all paths may be considered 
a suitable possibility space for the consideration of any statement 
whose truth value depends on the outcome of the total experiment. 
The measure assigned by the path weights is the appropriate prob- 
ability measure. 

The above procedure can be carried out for any experiment that  
takes place in stages. We require only that  there be a finite number 
of possible outcomes a t  each stage and that  we know the probabilities 
for any particular outcome a t  the j- th stage, given the knowledge of 
the outcome for the first j- 1 stages. For each j we obtain a tree Ui. 
The set of paths of this tree serves as a possibility space for any state- 
ment relating to the first j experiments. On this tree we assign a 
measure to the set of all paths. We first assign branch probabilities. 
Then the weight assigned to a path is the product of all branch proba- 
bilities on the path. The tree measures are consistent in the following 
sense. A statement whose truth value depends only on the first j 
stages may be considered a statement relative to any tree Ui for i > j. 
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the path t? corresponds to outcome A on the first stage, T on the second, 
and 5 on the third. The weight assigned to this path is 

1/2.1/2 .1/6 = 1/24. 

This procedure assigns a weight to each path of the tree and the sum 
of the weights assigned .is 1. The set V of all paths may be considered 
a sUitable possibility space for the consideration of any statement 
whose truth value depends on the outcome of the total experiment. 
The measure assigned by the path weights is the appropriate prob
ability measure. 

w(t) f l (t) £2(t) f3(t) 

X tt 1/8 A II· II 
1: 

1/2 '2 m 
tz 1/8 A II T II .i 

/ 71 
t3 1/z4 A T 

liz 

~a: 
t4 1/24 A T 2 

ts 1/24 A T 3 

T 1/6 4 t6 1/24 A T 4 

~ 1/2 t7 llz4 A T 5 ~5 :" 

6 is 1/24 A T 6 

B II II tg 1 ;'2 B H II 

FrauHE l~l 

The above procedure can be carried out for any experiment that 
takes place in stages. We require only that there be a finite number 
of possible outcomes at each stage and that we know the probabilities 
for any particular outcome at the j-th stage, given the knowledge of 
the outcome for the first j - 1 stages. For each j we obtain a tree V j • 

The set of paths of this tree serves as a possibility space for any state
ment relating to the first j experiments. On this tree we assign a 
measure to the set of all paths. "Ve first assign branch probabilities. 
Then the weight assigned to a path is the product of all branch proba
bilities on the path. The tree measures are consistent in the following 
sense. A statement whose truth value depends only on the first j 
stages may be considered a statement relative to any tree U i for i~j. 
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Each of these trees has its own tree measure and the probability of the 
statement could be found from any one of these measures. However, 
in every case the same probability would be assigned. 

Assume that  we have a tree for an  n stage experiment. Let fi be 
a function with domain the set of paths U, and value the outcome 
a t  the j- th stage. Then the functions f l ,  fz, . . . , f,, are called outcome 
functions. The set of functions fl, fz, . . . , f, is called a stochastic 
process. (In Markov chain theory i t  is convenient to denote the first 
outcome by fo instead of 4.) 

I n  our example there are three outcome functions. We have indi- 
cated in Figure 1-1 the value of each function on each path. 

There is a simple connection between the branch probabilities and 
the outcome functions. The branch probabilities a t  the first stage are, 

r[fl = rz] 
a t  the second stage 

Pr[fz = rijEi = ri] 
a t  the third stage 

Pr[f3 = rr /f i  = rj Afl = ri] 
etc. 

I n  our example, 

rCf1 = A] = w(tl) + . . . +w(ts) = 

1.9.2 EXAMPLE. We shall often deal with experiments where we 
allow an arbitrary number of stages. For example, in considering 
the tosses of a coin, we can envision any number of tosses. The tree 
for three tosses and the path measure is shown in Fig. 1.2. 

For any number of tosses we can construct a tree. I t  is even possible 
to consider continuing the tree indefinitely to obtain a tree with 
infinite paths. Our procedure for assigning a measure would not in 
this case be adequate since i t  would assign weight 0 to every path. 
We shall not, however, have to assign a measure to the infinite tree. 
This is the case because the statements about the process that  interest 
us will depend only on a finite part of the tree, and for any finite number 
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of stages we have a method of assigning a measure. We shall, how- 
ever, consider functions whose definition requires the infinite tree. 

For example, in Example 1.9.2 let the value of f be the stage a t  
which the first head occurs. Then f is defined for all paths with a t  
least one head. This is a subset of paths in the infinite tree. W- shall 

speak of the mean value of such a function when the following con- 
ditions are satisfied : 

(a) There is a sequence of numerical range values r l ,  rz, . . . such 
that  the truth value of the statenlent f= r ,  depends only on the 
outcomes of a finite number of stages and 2 

3 

(b) z r ,P r [ f= r , ]  c co. 
J 

In  case (a)  and (b) hold, we say that  f has a mean vaiue given by 

7 

When f has a mean a ,  we shall say that  f has.a variance if (f-a)2 has 
a mean. If so, Var[f] = M[(f - a)2]. 

All properties of means and variances given in § 8 hold for these 
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Each of these trees has its own tree measure and the probability of the 
statement could be found from anyone of these measures. However, 
in every case the same probability would be assigned. 

Assume that we have a tree for an n stage experiment. Let fj be 
a function with domain the set of paths Un and value the outcome 
at the j-th stage. Then the functions fl' f2, ... , fn are called outcome 
functions. The set of functions fl' f2, ... ,fn is called a stochastic 
process. (In Markov chain theory it is convenient to denote the first 
outcome by fo instead of fl.) 

In our example there are three outcome functions. We have indi
cated in Figure 1-1 the value of each function on each path. 

There is a simple connection between the branch probabilities and 
the outcome functions. The branch probabilities at the first stage are, 

Pr[fl = Ti] 
at the second stage 

at the third stage 

etc. 

In our example, 

Pr[fl = A] = W(tl)+ ... +w(ts)= 1/2 

P [f = T'f = A] = Pr[f2 = T /\fl = A] 
r 2 I 1 Pr[ f 1 = A] 

W(t3)+ ... + wits) 1/4 
= - = liz 

w(td+ ... +w(ts) 1/2 

Pr[f3 = I1f2 = T /\fl = A] 
Pr[fs = 1/\£2 = T /\fl = A] 

Pr[f2 = T /\fl = A] 

wits) = 1/24 = 1/6. 
W(t3) + ... + wits) 1/4 

1.9.2 EXAMPLE. \Ve shall often deal with experiments where we 
allow an arbitrary number of stages. For example, in considering 
the tosses of a coin, we can envision any number of tosses. The tree 
for three tosses and the path measure is shown in Fig. 1.2. 

For any number of tosses we can construct a tree. It is even possible 
to consider continuing the tree indefinitely to obtain a tree with 
infinite paths. Our procedure for assigning a measure would not in 
this case be adequate since it would assign weight 0 to every path. 
We shall not, however, have to assign a measure to the infinite tree. 
This is the case because the statements about the process that interest 
us will depend only on a finite part of the tree, and for any finite number 
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the tosses of a coin, we can envision any number of tosses. The tree 
for three tosses and the path measure is shown in Fig. 1.2. 

For any number of tosses we can construct a tree. I t  is even possible 
to consider continuing the tree indefinitely to obtain a tree with 
infinite paths. Our procedure for assigning a measure would not in 
this case be adequate since i t  would assign weight 0 to every path. 
We shall not, however, have to assign a measure to the infinite tree. 
This is the case because the statements about the process that  interest 
us will depend only on a finite part of the tree, and for any finite number 
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of stages we have a method of assigning a measure. We shall, how- 
ever, consider functions whose definition requires the infinite tree. 

For example, in Example 1.9.2 let the value of f be the stage a t  
which the first head occurs. Then f is defined for all paths with a t  
least one head. This is a subset of paths in the infinite tree. W- shall 

speak of the mean value of such a function when the following con- 
ditions are satisfied : 

(a) There is a sequence of numerical range values r l ,  rz, . . . such 
that  the truth value of the statenlent f= r ,  depends only on the 
outcomes of a finite number of stages and 2 

3 

(b) z r ,P r [ f= r , ]  c co. 
J 

In  case (a)  and (b) hold, we say that  f has a mean vaiue given by 

7 

When f has a mean a ,  we shall say that  f has.a variance if (f-a)2 has 
a mean. If so, Var[f] = M[(f - a)2]. 

All properties of means and variances given in § 8 hold for these 
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In case (a) and (b) hold, we say that f has a mean value given by 

M[f] = 2: rjPr[f = rj} 
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\Vhen f has a mean a, we shall say that f has a variance if (f-a)2 has 
a mean. If so, Var[f]=M[(f-a)2J. 

All properties of means and variances given in § 8 hold for these 
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extended mean values. I n  addition we shall need the following 
theorem. 

1.9.3 THEOREM. Let f l ,  fi, . . . be functions such that the range of 
each f j  i s  a subset of the same jinite set of numbers. Let s = f l  + fz + 
. . . Then i f  the mean o f  s exists, 

A stochastic process for which the outcome functions all have ranges 
which are subsets of a given finite set is called afcnite stochastic process. 
Thus Theorem 1.9.3 states tha t  in a finite stochastic process the mean 
of the sum of the functions (if this mean exists) is the sum of the means 
of the functions. 

§ 1.10 Summability of sequences and series. It may occur that  for a 
divergent sequence so, s l ,  sz, . . . we can form a sequence of averages 
of the terms, and that  this new sequence converges. I n  this case 
we say that  the original sequence is summable by means of the 
averaging process. We will be concerned with only two methods of 
averaging. 

n- 1 

Let t,= (lln) si and let un = f (:)kn-i(l - k)ist for some E such 
i = O  i = O  

that  O< k <  1. Each of these is an  average of terms of the sequence, 
with non-negative coefficients whose sum is 1. If the sequence 
t l .  ta, . . . converges to a limit t ,  then we say that  the original sequence is 
Cesaro-summable t o  t. If the sequence u l ,  uz, . . . converges to  u ,  then 
we say that  the original sequence is Euler-summable t o  u. 

For example, consider the sequence 1 ,0 ,  1 ,0 ,1 ,0 , .  . . . We find 
that t ,  = 1/2 if n is even, 1/2 + 1/2n if ?z is odd. This sequence con- 
verges to 1/2, and hence the original sequence is Cesaro-summable 
to It is easy to verify that  lim u n =  112 and hence the original 

n+m 

sequence is also Euler-summable to I / * .  But the original sequence 
diverges. 

These two summability methods have the following two properties: (1) If 
a sequence converges, then it is summable by each method to its limit. 
(2) If a sequence is summable by both methods, the two sums must be the 
same. 

Summability may also be applied to a series. To say that  the 
m 

series 2 ak is summable by a given method means that  its sequence of 
k=O 
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t 

partial sums st = 2 at is summable by that  method. For example 
k= 0 

if we apply Cesaro-sumanability to  the partial sums, we obtain 
n-1 n - k  

tn= 2 - ak. 
k=O n 

atriees. A matrix is a rectangular array of numbers. An 
r x s matrix has r rows and s columns, a total of rs entries (or com- 
ponents). Three special kinds of matrices will be especially important 
in this book. A matrix having the same number of rows as columns 
is called a square matrix. That is, a square matrix is r x r .  If  r = 1 ,  
that  is, the matrix consists of a single row, then we call i t  a row vector. 

s= l ,  i.e. the matrix has a single column, we call i t  a coEQmn vector. 
atrices will be denoted by capitals and vectors by small Greek 

letters. 
Let  the r x s matrix A have components all, and the r' x s' matrix B 

have components bil. Then we define the following operations and 
relations : 

(1) The matrix k A  has components kau. That is, a multiplication 
of the matrix by a number means multiplying each component 
by this number. The matrix -A is ( -  1)A. 

( 2 )  If r = r' and s = s f ,  then the matrix sum A + B has components 
at, + bu. That is, addition is carried out componentwise. 

S 

(3) If  s=r', we define the product AR t o  have components 2 aikbkj. 
k=l  

Note that  the product of an  r x s and s x t matrix is an  r x t 
matrix. This definition also applies to  the product of a row 
vector and a matrix, aA, or to a matrix times a column vector, 
A/?. I n  the former case the product of a I x r and an r x s 
matrix is a I x s matrix, or a row vector. If  the matrix A is 
square, the resulting row vector has the same number of 
components as a. Thus a square matrix may be thought of 
as a transformation of row vectors. Similarly we can think 
of i t  as a transformation of column vectors. This will be our 
principal use of the product of a vector and a matrix. 
We say that  A 2 B (or that  A = B) if a~ > brj (or aij = btj) for all 
i and j. That is, matrix relations must hold componentwise- 
for all corresponding components. 
Some special matrices play a n  important role. The r x s matrix 
having all components equal to 0 is denoted by OTxS. The 
subscripts are omitted whenever there is no danger of con- 
fusion. The r x r matrix having 1's as components at5 ("on 
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extended mean values. In addition we shall need the following 
theorem. 

1.9.3 THEOREM. Let f1' f2' ... be functions such 
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of the sum of the functions (if this mean exists) is the sum of the means 
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§ 1.10 Summability of sequences and serIes. It may occur that for a 
divergent sequence 80, 81, 82, ... we can form a sequence of averages 
of the terms, and that this new sequence converges. In this case 
we say that the original sequence is 8ummable by means of the 
ayeraging process. We will be concerned with only two methods of 
averaging. 

Let tn = (1 /n) ~~ Sl and let 7),n == i~ (~) kn-i (1 - k )ISi for some k such 

that 0< k< 1. Each of these is an average of terms of the sequence, 
with non-negative coefficients whose sum is 1. If the sequence 
tl, t2, ... converges to a limit t, then we say that the original sequence is 
Cesaro-8ummable to t. If the sequence 7~1, Uz, ... converges to u, then 
we say that the original sequence is Euler-summable to u. 

:For example, consider the sequence 1,0,1,0,1,0,.... We find 
that tn = 12 if n is even, Yz. + Yzn if n is odd. This sequence con
verges to 12, and hence the original sequence is Cesaro-summable 
to l/z. It is easy to verify that lim Un = 1/2 and hence the original 

sequence is also Euler-summable to 1/2. But the original sequence 
diverges. 

These two summability methods have the following two properties: (1) If 
a sequence converges, then it is summable by each method to its limit. 
(2) If a sequence is summable by both methods, the two sums must be the 
same. 

Summability may also be applied to a series. To say that the 
'" 

series 2: ak is sum mabIe by a given method means that its sequence of 
k=O 
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that  is, the matrix consists of a single row, then we call i t  a row vector. 
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atrices will be denoted by capitals and vectors by small Greek 

letters. 
Let  the r x s matrix A have components all, and the r' x s' matrix B 

have components bil. Then we define the following operations and 
relations : 

(1) The matrix k A  has components kau. That is, a multiplication 
of the matrix by a number means multiplying each component 
by this number. The matrix -A is ( -  1)A. 

( 2 )  If r = r' and s = s f ,  then the matrix sum A + B has components 
at, + bu. That is, addition is carried out componentwise. 

S 

(3) If  s=r', we define the product AR t o  have components 2 aikbkj. 
k=l  

Note that  the product of an  r x s and s x t matrix is an  r x t 
matrix. This definition also applies to  the product of a row 
vector and a matrix, aA, or to a matrix times a column vector, 
A/?. I n  the former case the product of a I x r and an r x s 
matrix is a I x s matrix, or a row vector. If  the matrix A is 
square, the resulting row vector has the same number of 
components as a. Thus a square matrix may be thought of 
as a transformation of row vectors. Similarly we can think 
of i t  as a transformation of column vectors. This will be our 
principal use of the product of a vector and a matrix. 
We say that  A 2 B (or that  A = B) if a~ > brj (or aij = btj) for all 
i and j. That is, matrix relations must hold componentwise- 
for all corresponding components. 
Some special matrices play a n  important role. The r x s matrix 
having all components equal to 0 is denoted by OTxS. The 
subscripts are omitted whenever there is no danger of con- 
fusion. The r x r matrix having 1's as components at5 ("on 
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i 

partial sums 8t = 2: ale is summable by that method. For example 
k~O 

if we apply Cesaro-summability to the partial sums, we obtain 
,,-1 n - k 

tn= '2 --ale· 
k~O n 

§ 1.11 Matrices. A matrix is a rectangular array of numbers. An 
r x 8 matrix has r rows and s columns, a total of rs entries (or com
ponents). Three special kinds of matrices will be especial1y important 
in this book. A matrix having the same number of rows as columns 
is called a square matrix. That is, a square matrix is r x r. If r = I, 
that is, the matrix consists 0: a single row, then we call it a row vector. 
If s = I, i.e. the matrix has a single column, we call it a column vector. 
Matrices will be denoted by capitals and vectors by small Greek 
letters. 

Let the r x s matrix A have components atj, and the r' x 8' matrix B 
have components bij • Then we define the following operations and 
relations: 

(1) The matrix kA has components katj. That is, a multiplication 
of the matrix by a number means multiplying each component 
by this number. The matrix -A is (-l)A. 

(2) If r = r' and 8 = s', then the matrix sum A + B has components 
alj + bu. That is, addition is carried out componentwise. 

8 

(3) If 8=r', we define the product AB to have components 2: aikbkj. 
k~l 

Note that the product of an r x 8 and s x t matrix is an r x t 
matrix. This definition also applies to the product of a row 
vector and a matrix, o:A, or to a matrix times a column vector, 
Af3. In the former case the product of a 1 x r and an r x 8 

matrix is a I x 8 matrix, or a row vector. If the matrix A is 
square, the resulting row vector has the same number of 
components as 0:. Th;.;s a square matrix may be thought of 
as a transformatio!~l of row vectors. Similarly we can think 
of it as a transformation of column vectors. This will be our 
principal use of the product of a vector and a matrix. 

(4) We say that A:) B (or that A = B) if alj:) bij (or aij = bij ) for all 
i and j. That is, matrix relations must hold componentwise~ 
for all corresponding components. 

(5) Some special matrices. play an important role. The r x 8 matrix 
having all components equal to 0 is denoted by Orxs. The 
subscripts are omitted whenever there is no danger of con~ 
fusion. The r x r matrix having l's as components ali ("on 
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the main diagonal") and 0's elsewhere is denoted by I,. The 
subscript is often omitted. The role that these matrices play 
csn be seen as follows. Let A, I ,  and 0 be r x r ,  let a be an 
r-component row vector, and @ an r-component column vector. 
Then : 

Thus the matrices 0 and I play somewhat the same role as the 
numbers 0 and 1. 

(6) I n  analogy to the reciprocal of a number we define the inverse 
of a matrix. The r x r matrix B is said to be the inverse of the 
r x r matrix A if AB= I .  If such an inverse exists, it is denoted 
by A-1. The inverse can be found by solving r2 simultaneous 
equations. Of course, these equations may fail to have a 
solution. But when they do have a solution, the solution is 
unique, and we can show that AA-I= A-'A =I. 

The various arithmetical operations on matrices, whenever they are 
defined, obey the usual laws of arithmetic. The one major exception 
to this is that matrix multiplication is not commutative, i.e. that 
AB need not equal BA. One important case where matrices commute 
is the case of powers of a given matrix. Let An be A multiplied by 
itself n times. Then An. Am = Am. An for every n and m. We define 
AO= I .  

I t  is convenient to introduce row vector 7,  and the column vector 5, 
having all components equal to 1. The subscript is again omitted 
when possible. These vectors are convenient for summing vectors 
or rows and columns of matrices. The product a t  is a number (or 
more precisely a matrix with a single entry) which is the sum of the 
components of a. Similarly for $. The product At is a column 
vector whose i-th component gives the sum of the components in the 
i-th row of A (or the i-th row sum of A). Similarly ?A gives the 
column sums of A. We shall denote by E a square matrix with all 
entries 1. Note that E = 5~ 
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Let us give some examples of these operations and relations. 

Therefore, 

For a square matrix A we introduce its transpose AT. The ij-th 
entry of AT is the ji-th entry of -4. We also define the matrix .Adg 
which agrees with A on the main diagonal, but is 0 elsewhere. The 
matrix Asq is formed from A by squaring each entry. This, of course, 
will not normally be the same as A2. (But D2= Dsg for a diagonal 
matrix D, i.e. a matrix whose only non-zero entries are on the main 
diagonal.) Similarly we define asg for a vector a. 

It is often convenient to  give a matrix or a vector in terms of its 
components. We thus write (a,,) for the matrix whose ij component 
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the main diagonal") and O's elsewhere is denoted by IT' The 
subscript is often omitted. The role that these matrices play 
can be seen as follows. Let A, I, and 0 be r x r, let a be an 
r-component row yector, and f1 an r-component column vector. 
Then: 
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A+(-A) = (-A)+A = 0 

AI = IA = A 

al = a 

If3 = f3 
AO = OA = 0 

0f1 = 0 
aO = O. 
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(6) In analogy to the reciprocal of a number \ve define the inverse 
of a matrix. The r x r matrix B is said to be the inverse of the 
r x r matrix A if AB = I. If such an inverse exists, it is denoted 
by A-I. The inverse can be found by solving r2 simultaneous 
equations. Of course, these equations may fail to have a 
solution. But when they do haye a solution, the solution is 
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defined, obey the usual laws of arithmetic. The one major exception 
to this is that matrix multiplication is not commutative, i.e. that 
AB need not equal BA. One important case where matrices commute 
is the case of powers of a given matrix. Let An be A multiplied by 
itself n times. Then An. Am = Am. An for every nand m. We define 
AO=I. 

It is convenient to introduce row vector 1)r and the column vector tr 
having all components equal to 1. The subscript is again omitted 
when possible. These vectors are convenient for summing vectors 
or rows and columns of matrices. The product ag is a number (or 
more precisely a matrix with a single entry) which is the sum of the 
components of a. Similarly for 1)(3. The product At is a column 
vector whose i-th component giyes the sum of the components in the 
i-th row of A (or the i-th row sum of A). Similarly 1)A gives the 
column sums of A. We shall denote by E a square matrix with all 
entries 1. Note that E = g1). 
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Let us give some examples of these operations and relations. 
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entry of AT is the ji-th entry of -4. We also define the matrix .Adg 
which agrees with A on the main diagonal, but is 0 elsewhere. The 
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diagonal.) Similarly we define asg for a vector a. 

It is often convenient to  give a matrix or a vector in terms of its 
components. We thus write (a,,) for the matrix whose ij component 
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Let us give some examples of these operations and relations. 

3 
(6 
\0 -:) 

(2 1) (-1 0) (1 1) 
o -1 + 0 -2 = 0 -3 

(1,2,3)+ (2,1,0) = (3, 3,3) 

(1'2'3)(~ -:) 
(5, -1) 

(~ 
1 

( :'0) l\(~) = (_31) 
-1)\1/ 

(J > C:) 
(2 1)( 1 -1) ( 1 -1)(2 1) (1 0) = 1. 

1 1 -1 2 -1 2 1 1 0 1 

Therefore, 

- 1 \ = 12 
2} \1 

21 

For a square matrix A we introduce its transpose AT. The ij-th 
entry of AT is the ji-th entry of A. We also define the matrix A dg 

which agrees with A on the main diagonal, but is ° elsewhere. The 
matrix Asq is formed from A. by squaring each entry. This, of course, 
will not normally be the same as A 2. (But D2 = Dsq for a diagonal 
matrix D, i.e. a matrix whose only non-zero entries are on the main 
diagonal.) Similarly we define asq for a vector a. 

It is often convenient to give a matrix or a vector in terms of its 
components. We thus write {a;j} for the matrix whose ij component 
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is aij. Similarly we write {aj )  for a row-vector, and {ai) for a column 
vector. The following relations will illustrate this notation. 

{all) + {bij) = {aij + bij), 

0 = {O), 

&I = E = {I), 

{aij}sq = {a2ti), 
{ ~ i j ) ~  = {aji), 

3{m) = ( 3 4 ,  
{ai){bj} = {atbj). 

The last example shows that the product of a column vector and a 
row vector (each with r components) is a matrix (with r x r components). 
This must be contrasted with t'he product in the reverse order, which 
is a single component. For example, if a is a row vector, then a[ 
gives the sum of its components. However, Ea gives an r x r matrix 
with a for each row. 

Suppose that we have a sequence of matrices Ak, with entries ~ ( k ) ~ , .  

We will say that the series Ao+ A1 + A2+ . . . converges if each series 
of entries converges, i.e, if ~ ( 0 ) ~ ~  + + a(2)fj + . . . converges for every 
i and j. And if the sum of this series of components is aij ,  for each 
i and j ,  and if A is the matrix with these entries as components, then 
we say that A  is the sum of the infinite series of matrices. In  brief, 
we define an infinite sum of matrices by forming the sum for each 
component. 

1.11.1 THEOREN. If An tends to 0 (zero matrix) as n tends to infinity, 
then ( I  - A )  has an  inverse, and 

m 

( I - A ) - 1  = I + A + A Z + A 3 +  . . . = C A ~ .  
k=O 

PROOF. Consider the identity 

( I - A ) . ( I + A + A z +  . . .  +An-l)  = I - A n ,  

which is easily verified by multiplying out the left side. By hypothesis 
we know that the right side tends to I. This matrix has determinant 1. 
Hence for sufficiently large n, I  - An must have a non-zero determinant. 
But the determinant of a product of two matrices is the product of the 
determinants, hence I - A  cannot have a zero determinant. The 
determinant not being equal to zero is a sufficient condition for a 
matrix to have an inverse. Hence I  - A  has an inverse. Since this 
inverse exists, we may multiply both sides of the identity by i t :  

I + A + A 2 +  . . . +An-l = ( I - A ) - l . ( I - A * ) .  
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But the righ$ side of this new identity clearly tends to ( I -A) -1 ,  
which completes the proof. 

One can define the surnmability of matrix sequences and series 
exactly as in § 1.10, applying the averaging method to each component 
of the matrix. Then there is s generalization of the previous theorem : 
If the sequence An is summable t o  0 by some averaging method, then 
the matrix I -  A  has an inverse, and the series I  + A  + A 2 1  . . . is 
summable by the same method to (I -A)-1.  

1.11.2 DEFINITION. A square matrix A i s  positive semi-definite if 
for any column vector y ,  y*_ili/ 2 0. 

1.11.3 THEOREM, For any positive semi-dejnite matrix A there 
is  a matrix B such that A = BTB. 
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is alj. Similarly we write raj} for' a row-vector, and {aj} for a column 
vector. The following relations will illustrate this notation. 

{ad + {bij} = {aii + bij}, 
o = {O}, 

t7] = E = {I}, 
{aii}sq = {a 2jj} , 

{atilT = {ajt}, 
3{ai} = {3at}, 

{a/}{b j } = {atb j }. 

The last example shows that the product of a column vector and a 
row vector (each with r components) is a matrix (with r x r components). 
This must be contrasted with the product in the reverse order, which 
is a single component. For example, if a is a row vector, then at 
gives the sum of its components. However, ta gives an r x r matrix 
with ex: for each row. 

Suppose that we have a sequence of matrices Ak, with entries a(k)ij. 

We will say that the series Ao+A1 +A2+ ... converges if each series 
of entries converges, i.e. if a(O)o + a(1)/j + a(2)/j + ... converges for every 
i and j. And if the sum of this series of components is aij, for each 
i and j, and if A is the matrix with these entries as components, then 
we say that A is the sum of the infinite series of matrices. In brief, 
we define an infinite sum of matrices by forming the sum for each 
component. 

1.11.1 THEOREl\L If An tends to 0 (zero matrix) as n tends to infinity, 
then (1 - A) has an inverse, and 

PROOF. Consider the identity 

(I-A)· (1 +A +A2+ ... +An-l) = I-An, 

which is easily verified by multiplying out the left side. By hypothesis 
we know that the right side tends to I. This matrix has determinant 1. 
Hence for sufficiently large n, 1 - An must have a non-zero determinant. 
But the determinant of a product of two matrices is the product of the 
determinants, hence I - A cannot have a zero determinant. The 
determinant not bcing equal to zero is a sufficient condition for a 
matrix to have an inverse. Hence I-A has an inverse. Since this 
inverse exists, we may mUltiply both sides of the identity by it : 

I+A+A2+ ... +An-l = (l-A)-l.(l-An). 
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But the righ$ side of this new identity clearly tends to ( I -A) -1 ,  
which completes the proof. 

One can define the surnmability of matrix sequences and series 
exactly as in § 1.10, applying the averaging method to each component 
of the matrix. Then there is s generalization of the previous theorem : 
If the sequence An is summable t o  0 by some averaging method, then 
the matrix I -  A  has an inverse, and the series I  + A  + A 2 1  . . . is 
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CHAPTER I 

ASIC CONGE 

§ 2.1 Definition o f  a Markov process and a arkov chain. We 
recall that for a finite stochastic process we have a tree and a tree 
measure and a sequence of outcome functions fn ,  n = 0, 1 ,  2, . . . . 
The domain of fn is the tree T n  and the range is the set U n  of possible 
outcomes for the n-th experiment. The value of fn is sj  if the outcome 
of the n-th experiment is sj (see $ 1.9). In  the following definitions, 
whenever a conditional probability Pr[q /p]  occurs, it is assumed that 
p is not logically false. The reader may find it convenient from time 
to time to refer to the summary of basic notations and quantities a t  
the end of the book. 

A finite stochastic process is an independent process if 

(I)  For any statement p whose truth value depends only on the outcomes 
before the n-th, 

Br[& = sj lp] = Pr[fn = sj J. 

For such a process the knowledge of the outcome of any preceding 
experiment does not affect our predictions for the next experiment. 
For a Markov process we weaken this to allow the knowledge of the 
immediate past to influence these predictions. 

2.1.1 DEFINITION. A finite Markov process i s  a jnite stochastic 
process such that 

(11) For any statement p whose truth value depends only on the outcomes 
before the n -  st, 

We shall refer to condition II as the Markov property. For a 
Markov process, knowing the outcome of the last experiment we can 
neglect any other information we have about the past in predicting 
the future. I t  is important to realize that this is the case only if we 

24 

know exactly 'the outcome of the last experiment. For example, if 
we know only that the outcome of the last experiment was either st 
or sk then knowledge of the truth value of a statement 
earlier experiments may affect our future predictions. 

2.1.2 DEFINITION. The n-th step transition probabilities for a 
Markov process, denoted by p i j (n)  are 

p i j (n)  = Pr[fn = s j / fn- l  = si] .  

2.1.3 DEFINITION. A finite Markov chain is  a $nite Markov process 
such that the transition probabilities pu(nf do not depend on n.  I n  
this case they are denoted by p,i. The elements of U are called states. 

2.1.4 DEFINITION. The transition matrix for a Markov +sin is the 
matriz P with entries pij. The initial probability vector is the 
vector n o  = { p j ( 0 ) )  = (Pr[fo = sj]). 

For a Markov chain we may visualize a process which moves from 
state to state. I t  starts in s, with probability p(o),. If a t  any time i t  
is in state st, then i t  moves on the next "step" to s, with probability pij. 
The initial probabilities are thought of as giving the probabilities for 
the various possible starting states. The initial probability vector and 
the transition matrix completely determine the Markov chain process, 
since t,hey are sufficient to build the entire tree measure. Thus, given 
any probability vector 71.0 and any probability matrix P, there is a 
unique Markov chain (except possibly for renaming the states) which 
will have the no as initial probability vector and P as transition matrix. 

In most of our discussions we will consider a fixed transition matrix 
P ,  but we will wish to vary the initial vector n. The tree measure 
assigned will depend on the initial vector x that is chosen. Hence if 
p is any statement relative to the tree, or f is a function with domain 

[ f ] ,  and Var[f] all depend on n. We indicate this by 
, [ f ]  and Yar,[f]. The special case where n has a 1 

component (process is started in state s i )  is denoted Prt[ 
M i [ f ] ,  V a r i [ f ] .  

We shall give several examples of Markov chains in the next section. 
We conclude this section with a few brief remarks about the Markov 
property. 

It can be easily proved that the Markov property is equivalent to 
the following property more symmetric with respect to time. 

(11') Let p be any statement whose truth value depends only on outcomes 
after the n-th experiment and q be any statement whose truth value 
depends only on outcomes before the n-th experiment. Then 

CHAPTER II 

BASIC CONCEPTS OF MARKOV CHAINS 

§ 2.1 Definition of a Markov process and a Markov chain. vVe 
recall that for a finite stochastic process we have a tree and a tree 
measure and a sequence of outcome functions fn, n = 0, 1,2, .... 
The domain of fn is the tree Tn and the range is the set Un of possible 
outcomes for the n-th experiment. The value of fn is Sj jf the outcome 
of the n-th experiment is 5j (see § 1.9). In the following definitions, 
whenever a conditional probability Pr[qlp] occurs, it is assumed that 
p is not logically false. The reader may find it convenient from time 
to time to refer to the summary of basic notations and quantities at 
the end of the book. 

A finite stochastic process is an independent process if 

(I) For any statement p whose truth value depends only on the o1ttcomcs 
before the n-th, 

Pr[fn = Sj !p] = Pr[fn = Sj]. 

For such a process the knowledge of the outcome of any preceding 
experiment does not affect our predictions for the next experiment. 
For a Markov process we weaken this to allow the knowledge of the 
immediate past to influence these predictions. 

2.1.1 DEFINITION. A finite Markov process is a finite stochastic 
pmcess such that 

(II) For any statement p whose truth value depends only on the outcomes 
before the n- st, 

Pr[fn =sj!<fn- 1 =Si) I\p] = Pr[fn =s/fn- 1 =s£J. 

We shall refer to condition II as the Markov property. For a 
Markov process, knowing the outcome of the last experiment we can 
neglect any other information we have about the past in predicting 
the future. It is important to realize that this is the case only if we 
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§ 2.1 Definition o f  a Markov process and a arkov chain. We 
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measure and a sequence of outcome functions fn ,  n = 0, 1 ,  2, . . . . 
The domain of fn is the tree T n  and the range is the set U n  of possible 
outcomes for the n-th experiment. The value of fn is sj  if the outcome 
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neglect any other information we have about the past in predicting 
the future. I t  is important to realize that this is the case only if we 
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know exactly 'the outcome of the last experiment. For example, if 
we know only that the outcome of the last experiment was either st 
or sk then knowledge of the truth value of a statement 
earlier experiments may affect our future predictions. 

2.1.2 DEFINITION. The n-th step transition probabilities for a 
Markov process, denoted by p i j (n)  are 

p i j (n)  = Pr[fn = s j / fn- l  = si] .  

2.1.3 DEFINITION. A finite Markov chain is  a $nite Markov process 
such that the transition probabilities pu(nf do not depend on n.  I n  
this case they are denoted by p,i. The elements of U are called states. 

2.1.4 DEFINITION. The transition matrix for a Markov +sin is the 
matriz P with entries pij. The initial probability vector is the 
vector n o  = { p j ( 0 ) )  = (Pr[fo = sj]). 

For a Markov chain we may visualize a process which moves from 
state to state. I t  starts in s, with probability p(o),. If a t  any time i t  
is in state st, then i t  moves on the next "step" to s, with probability pij. 
The initial probabilities are thought of as giving the probabilities for 
the various possible starting states. The initial probability vector and 
the transition matrix completely determine the Markov chain process, 
since t,hey are sufficient to build the entire tree measure. Thus, given 
any probability vector 71.0 and any probability matrix P, there is a 
unique Markov chain (except possibly for renaming the states) which 
will have the no as initial probability vector and P as transition matrix. 

In most of our discussions we will consider a fixed transition matrix 
P ,  but we will wish to vary the initial vector n. The tree measure 
assigned will depend on the initial vector x that is chosen. Hence if 
p is any statement relative to the tree, or f is a function with domain 

[ f ] ,  and Var[f] all depend on n. We indicate this by 
, [ f ]  and Yar,[f]. The special case where n has a 1 

component (process is started in state s i )  is denoted Prt[ 
M i [ f ] ,  V a r i [ f ] .  

We shall give several examples of Markov chains in the next section. 
We conclude this section with a few brief remarks about the Markov 
property. 

It can be easily proved that the Markov property is equivalent to 
the following property more symmetric with respect to time. 

(11') Let p be any statement whose truth value depends only on outcomes 
after the n-th experiment and q be any statement whose truth value 
depends only on outcomes before the n-th experiment. Then 

SEC. 1 BASIC CONCEPTS OF MARKOV CHAINS 25 

know exactly 'the outcome of the last experiment. For example, if 
we know only that the outcome of the last experiment· was either 8, 

or 8A: then knowledge of the truth value of a statement p relating to 
earlier experiments may affect our future predictions. 

2.1.2 DEFINITION. The n-th step transition probabilities for a 
Markov process, denoted by pij(n) are 

pjj(n) = Pr[fn=sjlfn-1=Si]. 

2.1.3 DEFINITION. A finite Markov chain is a finite Markov process 
such that the transition probabilities Pij(n) do not depend on n. In 
this case they are denoted by Pii. The elements of U are called states. 

2.1.4 DEFINITION. The transition matrix for a Markov chain is the 
matrix P with entries Pii' The initial probability vector is the 
vector 1TO = {p/o)} = {Pr[fo = sJ]}. 

For a Markov chain we may visualize a process which moves from 
state to state. It starts in 8j with probability p(O)j. If at any time it 
is in state St, then it moves on the next "step" to Sj with probability Pli' 
The initial probabilities are thought of as giving the probabilities for 
the various possible starting states. The initial probability vector and 
the transition matrix completely determine the Markov chain process, 
since they are sufficient to build the entire tree measure. Thus, given 
any probability vector 1T0 and any probability matrix P, there is a 
unique Markov chain (except possibly for renaming the states) which 
will have the 1T0 as initial probability vector and P as transition matrix. 

In most of our discussions we will consider a fixed transition matrix 
P, but we will wish to vary the initial vector 1T. The tree measure 
assigned will depend on the initial vector 1T that is chosen. Hence if 
p is any statement relative to the tree, or f is a function with domain 
the tree, Prep], M[f] , and Var[f] all depend on 1T. We indicate this by 
writing Prn[p], Mn[f] and Var~[fJ. The special case where 1T has a 1 
in the i-th component (process is started in state 5i) is denoted Prt[p], 
Mi[f], Vari[f]. 

We shall give several examples of Markov chains in the next section. 
We conclude this section with a few brief remarks about the Markov 
property. 

It can be easily proved that the Markov property is equivalent to 
the following property more symmetric with respect to time. 

(II') Let p be any statement whose truth value depends only on outcomes 
after the n-th experiment and q be any statement whose truth value 
depends only on outcomes before the n-th experiment. Then 

Prep j\qlfn=siJ = Pr[plf,,=sj] .Pr[qlf,,=sj]. 
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This condition says essentially that, given the present, the past 
and future are independent of each other. This more symmetric 
definition suggests in turn that a Markov process should remain a 
Markov process if i t  is observed in reverse order. That the latter is 
true is seen from the following theorem. (We shall not prove this 
theorem.) 

2.1.5 THEOREM. Given a Markov process let p be any statement 
whose truth value depends only on experiments after the n-th experiment. 
Then 

Since a Markov process observed in reverse order remains a Markov 
process, it might be suspected that the same is true for a Markov 
chain. This would be the case if the "backward transition proba- 
bilities," p*$j(n) = Pr[fn = sjlfn+l =st], were independent of n. These 
probabilities may be found as follows : 

These transition probabilities would be independent of n only if the 
probability of being in a particular state a t  time n was independent of n. 
This is certainly not the case in general. For example, if the system 
is started in state 81 with probability 1, then the probability that i t  is 
there on the next step is pll .  Thus, in general, Pr[fo= sl] #Pr[fl = sl]. 
Thus a Markov chain looked a t  in reverse order will be a Markov 
process, but in general its transition probabilities will depend on time 
and hence i t  will not be a Markov chain. We will return to this 
problem in 3 5.3.  

92.2 Examples. In this section we shall give several simple 
examples of Markov chains which will be used in future work for 
illustrative purposes. The first five examples relate to what is normally 
called a "random walk." We imagine a particle which moves in a 
straight line in unit steps. Each step is one unit to the right with 
probability p or one unit to the left with probability q.  It moves 
until i t  reaches one of two extreme points which are called "boundary 
points." The possibilities for its behavior a t  these points determine 
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several different kinds of Markov chains. The states are the possible 
positions. We take the case of 5 states, states s1 and ss being the 
"boundary" states, and sz, sa, s* the "interior states." 

S 1 S 2 543 s4 S5 

E X A M P L E  1 

Assume that if the process reaches state sl or ss it remains there 
from that time on. In this case the transition matrix is given by 

E X B M F L E  2 

Assume now that the particle is "reflected" when it reaches a 
boundary point and returns co the point from which i t  came. Thus if 
it ever hits sl it-goes on the nest step back to sz. If it hits ss it goes 
on the next step back to s4 .  The matrix of transition probabilities 
becomes in this case 

E X A M P L E  3 

As a third possibility we assume that whenever the particle hits 
one of the boundary states, it goes directly to the center state s3. We 
may think of this as the process of Example 1 started a t  state sa and 
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This condition says essentially that, given the present, the past 
and future are independent of each other. This more symmetric 
definition suggests in turn that a Markov process should remain a 
Markov process if it is observed in reverse order. That the latter is 
true is seen from the following theorem. (We shall not prove this 
theorem.) 

2.1.5 THEOREM. Given a Markov proce88 let p be any 8tatement 
whose truth value depends only on experiment8 after the n-th experiment. 
Then 

Pr[f,,=sJi(f"+l=SI) i\p] = Prlfll =sji f ,,+l=Sj]. 

Since a Markov process observed in reverse order remains a Markov 
process, it might be suspected that the same is true for a Markov 
chain. This would be the case if the "backward transition proba
bilities," p*lj(n)=Pr[f,,=sjif"+l=s,], were independent of n. These 
probabilities may be found as follows: 

* () Pr[fn=sj i\fn+1 =51] 
p tj n = Pr[fn+1 =sj-]-

Pr[fn+l = s¥n = Sj]' Pr[f" = 5,] 
Pr[fn+l = St] 

pwPr[f,,=sJJ 
Pr[f,,+l=St] . 

These transition probabilities would be independent of n only if the 
probability of being in a particular state at time n was independent of n. 
This is certainly not the case in general. For example, if the system 
is started in state 81 with probability 1, then the probability that it is 
there on the next step is Pl!. Thus, in general, Pr[fO=sl]#Pr[f1=srJ. 
Thus a Markov chain looked at in reverse order will be a Markov 
process, but in general its transition probabilities will depend on time 
and hence it will not be a Markov chain. We will return to this 
problem in § 5.3. 

§2.2 Examples. In this section we shall give several simple 
examples of Markov chains which will be used in future work for 
illustrative purposes. The first five examples relate to what is normally 
called a "random walk." We imagine a particle which moves in a 
straight line in unit steps. Each step is one unit to the right with 
probability p or one unit to the left with probability q. It moves 
until it reaches one of two extreme poin"ts which are called "boundary 
points." The possibilities for its behavior at these points determine 
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several different kinds of Markov chains. The states are the possible 
positions. We take the case of 5 states, states s1 and ss being the 
"boundary" states, and sz, sa, s* the "interior states." 
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E X A M P L E  1 

Assume that if the process reaches state sl or ss it remains there 
from that time on. In this case the transition matrix is given by 
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Assume now that the particle is "reflected" when it reaches a 
boundary point and returns co the point from which i t  came. Thus if 
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several different kinds of Markoy chains. The states are the possible 
positions. We take the ca.se of 5 states, states 51 and 55 being the 
"boundary" states, and 52, 83, S4 the "interior states." 

51 52 S3 54 55 

EXAMPLE 1 

Assume that if the process reaches state 81 or 85 it remains there 
from that time on. In this case the transition matrix is given by 

81 82 83 84 S5 

S1 0 0 0 0 

S2 0 P 0 

P S2, q 0 p 0 (1) 

S,1 0 q 0 

Ss 0 0 0 

EXAMPLE 2 

Assume now that the particle is "reflected" when it reaches a 
boundary point and returns to the point from which it came. Thus if 
it ever hits 51 it 'goes on the next step back to 82. If it hits 85 it goes 
on the next step back to 84. The matrix of transition probabilities 
becomes in this case 

81 82 S3 84 85 

51 0 0 

j) S:2 0 P 0 

P S3 q 0 P (2) 

Sel 0 q 0 

s:, 0 0 

EXAMPLE 3 

As a third possibility we assume that whenever the particle hits 
one of the boundary states, it goes directly to the center state S3. We 
may think of this as the process of Example 1 started at state S3 and 
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repeated each time the boundary is reached. The transition matrix is 

E X A M P L E  4 

Assume now that  once a boundary state is reached the particle 
stays a t  this state with probability and moves to the other boundary 
state with probability 11% I n  this case the transition matrix is 

s1 sz s3 s4 s5 

(4) 

E X A M P L E  5 

As the final choice for the behavior a t  the boundary, let us assume 
that  when the particle reaches one boundary i t  moves directly to the 
other. The transition matrix is 

We next consider a modified version of the random walk. If  the 
process is in one of the three interior states, i t  has equal probability 
of moving right, moving left, or staying in its present state. If i t  is 
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on the boundary, i t  cannot stay, but  has equal probability of moving 
to any of the four other states. The transition matrix is : 

S1 S2 s3 34 s5 

E X A M P L E  7 

A sequence of digits is generated a t  random. We takepas states 
the following: sl  if a 0 occurs, sz if a 1 or Z occurs, s3 if a 3, 4, 5, or 6 
occurs, sq if a 7 or 8 occurs, s5 if a 9 occurs. This process is an  indepen- 
dent trials process, but we shall see tha t  Markov chain theory gives 
us information even about this special case. The transition matrix is 

E X A M P L E  8 

According to Finite Jlathematics (Chapter Ti ,  Section 8), in the Land 
of Oz they never have two nice days in a row. If they have a nice day 
they are just as likely to have snow as rain the next day. If they 
have snow (or rain) they have an even chance of having the same the 
nest  day. If there is a change from snow or rain, only half of the 
time is this a change to a nice day. We form a three-state Markov 
chain with states B, N, and S for rain, nice, and snow, respectively. 
The transition matrix is then 

R N S  

28 FINITE MARKOV CHAINS CHAP. II 

repeated each time the boundary IS reached. The transition matrix is 

S1 S2 Sa S4 S5 

S1 0 1 0 0 

S2 0 P 0 0 

P = S3 0 q 0 p 0 (3) 

S4 0 0 q 0 P 

S5 0 0 1 0 0 

EXAMPLE 4 

Assume now that once a boundary state is reached the particle 
stays at this state with probability 1/2 and moves to the other boundary 
state with probability 1/2. In this case the transition matrix is 

51 52 S3 S4 S5 

S1 1/2 0 0 0 1/2 

S2 0 P 0 0 

P = Sa 0 q 0 p 0 (4) 

S4 0 0 q 0 p 

Ss 1/2 0 0 0 1/2 

EXAMPLE 5 

As the final choice for the behavior at the boundary, let us assume 
that when the particle reaches one boundary it moves directly to the 
other. The transition matrix is 

S2 S3 S4 

Sl 0 0 0 

S2 0 P 0 0 

P = S3 0 q 0 p 0 (5) 

S4 0 0 q 0 P 

S5 1 0 0 0 0 

EXAMPLE 6 

We next consider a modified version of the random walk. If the 
process is in one of the three interior states, it has equal probability 
of moving right, moving left, or staying in its present state. If it is 
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repeated each time the boundary is reached. The transition matrix is 

E X A M P L E  4 

Assume now that  once a boundary state is reached the particle 
stays a t  this state with probability and moves to the other boundary 
state with probability 11% I n  this case the transition matrix is 

s1 sz s3 s4 s5 

(4) 

E X A M P L E  5 

As the final choice for the behavior a t  the boundary, let us assume 
that  when the particle reaches one boundary i t  moves directly to the 
other. The transition matrix is 

We next consider a modified version of the random walk. If  the 
process is in one of the three interior states, i t  has equal probability 
of moving right, moving left, or staying in its present state. If i t  is 
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on the boundary, i t  cannot stay, but  has equal probability of moving 
to any of the four other states. The transition matrix is : 

S1 S2 s3 34 s5 

E X A M P L E  7 

A sequence of digits is generated a t  random. We takepas states 
the following: sl  if a 0 occurs, sz if a 1 or Z occurs, s3 if a 3, 4, 5, or 6 
occurs, sq if a 7 or 8 occurs, s5 if a 9 occurs. This process is an  indepen- 
dent trials process, but we shall see tha t  Markov chain theory gives 
us information even about this special case. The transition matrix is 

E X A M P L E  8 

According to Finite Jlathematics (Chapter Ti ,  Section 8), in the Land 
of Oz they never have two nice days in a row. If they have a nice day 
they are just as likely to have snow as rain the next day. If they 
have snow (or rain) they have an even chance of having the same the 
nest  day. If there is a change from snow or rain, only half of the 
time is this a change to a nice day. We form a three-state Markov 
chain with states B, N, and S for rain, nice, and snow, respectively. 
The transition matrix is then 

R N S  
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on the boundary, it cannot stay, but has equal probability of moving 
to any of the four other states. The transition matrix is: 

Sl 52 Sa S4 85 

Sl 0 1/4 1/4 1/4 1/4 
52 1/3 1/3 1/3 0 0 

P = Sa 0 lla 1/3 1/3 0 (6) 

S4 0 0 1/3 1/3 1/3 

55 1/4 1/4 1/4 1/4 0 

EXAMPI.E 7 

A sequence of digits is generated at random. We take~as states 
the following: 81 if a 0 occurs, S2 if a 1 or 2 occurs, S3 if a 3, 4, 5, or 6 
occurs, S4 if a 7 or 8 occurs, S5 if a {) occurs. This process is an indepen
dent trials process, but we shall see that Markov chain theory gives 
us information even about this special case. The transition matrix is 

51 82 83 54 S5 

51 .1 .2 .4 .2 .1 

S2 .1 .2 .4 .2 .1 

P = S3 .1 .2 .4 .2 .1 (7) 

S4 .1 .2 .4 .2 .1 

S5 .1 .2 .4 .2 .1 

EXAMPLE 8 

According to Finite Mathematics (Chapter V, Section 8), in the Land 
of Oz they never have two nice days in a row. If they have a nice day 
they are just as likely to have snow as rain the next day. If they 
have snow (or rain) they have an even chance of having the same the 
next day. If there is a change from snow or rain, only half of the 
time is this a change to a nice day. We form a three-state Markov 
cha·in with states R, N, and S for rain, nice, and snow, respectively. 
The transition matrix is then 

(8) 
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I n  our previous examples the  Markov property clearly held. I n  
this case i t  could only be regarded as an  approximation since the 
knowledge of the weather the last two days, for example, might lead 
us to different predictions than knowing the weather only on the 
previous day. One way to improve this approximation is to take as 
states the weather for two successive days. The states would then be 
NN, NR, NS, RN, RR, RS, SN, SR, SS. New transition probabilities 
would have to be estimated. A single step would still be one day, so 
that  from NR, for example, we could move only to states RN, RR, RS. 
I n  examples of this kind i t  is possible to improve the approximation, 
still using the Markov chain theory, but  a t  the expense of increasing 
the number of states. 

SEC. 2 BASIC CONCEPTS OF MARKOV CHAINS 3 1 

The transition matrix is then 

E X A M P L E  9 

An urn contains two unpainted balls. At a sequence of times a 
ball is chosen a t  random, painted either red or black, and put  back. 
If the ball was unpainted, the choice of color is made a t  random. 
If  i t  is painted, its color is changed. We form a Markov chain by 
taking as a state three numbers (x, y, z) where z is the number of 
unpainted balls, y the number of red balls, and z the number of black 
balls. The transition matrix is then 

E X A M P L E  10 

Assume that  a student going to a certain college has each year a 
probability p of flunking out, a probability q of having to  repeat the 
year, and a probability r of passing on to the next year. W'e form a 
Markov chain, taking as states sl-has flunked out, sz-has graduated, 
SO--is a senior, se-is a junior, s5-is a sophomore, ss-is a freshman. 

A man is playing two slot-machines. The first machine pays off 
with probability c, the second with probability d. If  he loses, he plays 

the same machine again ; if he wins, he switches to the other machine. 
Let si be the state of playing the i-th machine. The transition matrix is 

As c and d take on all permissible values (0 < c < 1, 0 < d < 1) we get all 
2 x 2 Markov chains. 

E X A M P L E  1 2  

Consider the special two-state Markov chain (Example 11) with 
transition matrix 

(This can be called Example 11 a.) 
Prom this Markov chain we form a new RIarkov chain as follows. 

A state in the new chain will be a pair of states in the old chain. That 

is, the states are slsl, slsz, szsl, szsz. The new chain is in state sisj 
on the n-th step if the old chain was in state st on the n-th step and sf 
on the ( n +  1)-th step. 
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In our previous examples the Markov property clearly held. In 
this case it could only be regarded as an approximation since the 
knowledge of the weather the last two days, for example, might lead 
us to different predictions than knowing the weather only on the 
previous day. One way to improve this approximation is to take as 
Rtates the weather for two successive days. The states would then be 
NN, NR, NS, RN, RR, RS, SN, SR, SS. New transition probabilities 
would have to be estimated. A single step would still be one day, so 
that from NR, for example, we could move only to states RN, RR, RS. 
In examples of this kind it is possible to improve the approximation, 
still using the Markov chain theory,. but at the expense of increasing 
the number of states. 

EXAMPLE 9 

An urn contains two unpainted balls. At a sequence of times a 
ball is chosen at random, painted either red or black, and put back. 
If the ball was unpainted, the choice of color is made at random. 
If it is painted, its color is changed. We form a Markov chain by 
taking as a state three numbers (x, y, z) where x is the number of 
unpainted balls, y the number of red balls, and z the number of black 
balls. The transition matrix is then 

(0,1,1) 

(0,2,0) 

(0,0,2) 

(2,0,0) 

(1,1,0) 

(1,0,1 ) 

(0,1,1) 

o 
(0,2,0) 

liz 
0 

0 

0 

1/4 
0 

(0,0,2) (2,0,0) 

1! 2 0 

0 0 

0 0 

° 0 

° 0 

1/4 0 

EXAMPLE 10 

(1,1,0) (1,0,1) 

0 0 

0 ° 
0 0 (9) 

1/2 1/2 

0 liz 
1/2 0 

Assume that a student going to a certain college has each year a 
probability p of flunking out, a probability q of having to repeat the 
year, and a probability r of passing on to the next year. \Ve form a 
Markov chain, taking as states s1-has flunked out, s2-has graduated, 
s3-is a senior, 84-is a junior, s5-is a sophomore, 56-is a, freshman. 
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I n  our previous examples the  Markov property clearly held. I n  
this case i t  could only be regarded as an  approximation since the 
knowledge of the weather the last two days, for example, might lead 
us to different predictions than knowing the weather only on the 
previous day. One way to improve this approximation is to take as 
states the weather for two successive days. The states would then be 
NN, NR, NS, RN, RR, RS, SN, SR, SS. New transition probabilities 
would have to be estimated. A single step would still be one day, so 
that  from NR, for example, we could move only to states RN, RR, RS. 
I n  examples of this kind i t  is possible to improve the approximation, 
still using the Markov chain theory, but  a t  the expense of increasing 
the number of states. 
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The transition matrix is then 

E X A M P L E  9 

An urn contains two unpainted balls. At a sequence of times a 
ball is chosen a t  random, painted either red or black, and put  back. 
If the ball was unpainted, the choice of color is made a t  random. 
If  i t  is painted, its color is changed. We form a Markov chain by 
taking as a state three numbers (x, y, z) where z is the number of 
unpainted balls, y the number of red balls, and z the number of black 
balls. The transition matrix is then 

E X A M P L E  10 

Assume that  a student going to a certain college has each year a 
probability p of flunking out, a probability q of having to  repeat the 
year, and a probability r of passing on to the next year. W'e form a 
Markov chain, taking as states sl-has flunked out, sz-has graduated, 
SO--is a senior, se-is a junior, s5-is a sophomore, ss-is a freshman. 

A man is playing two slot-machines. The first machine pays off 
with probability c, the second with probability d. If  he loses, he plays 

the same machine again ; if he wins, he switches to the other machine. 
Let si be the state of playing the i-th machine. The transition matrix is 

As c and d take on all permissible values (0 < c < 1, 0 < d < 1) we get all 
2 x 2 Markov chains. 

E X A M P L E  1 2  

Consider the special two-state Markov chain (Example 11) with 
transition matrix 

(This can be called Example 11 a.) 
Prom this Markov chain we form a new RIarkov chain as follows. 

A state in the new chain will be a pair of states in the old chain. That 

is, the states are slsl, slsz, szsl, szsz. The new chain is in state sisj 
on the n-th step if the old chain was in state st on the n-th step and sf 
on the ( n +  1)-th step. 
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The transition matrix is then 

(10) 

EXA}lPLE 11 

A man is playing two slot-machines. The first machine pays off 
with probability c, the second with probability d. If he loses, he plays 
the same machine again; if he wins, he switches to the other machine. 
Let s, be the state of playing the i-th machine. The transition matrix is 

( 1- c C .). 

s~ d I-d 
(11) 

As c and d take on all permissible values (0 ~ c ~ 1, 0,;; d ,;; I) we get all 
2 x 2 Markov chains. 

EXAMPLE 12 

Consider the special two-state Markov chain (Example 11) with 
transition matrix 

p (l1a) 

(This can be called Example 1] a.) 
From this Markov chain we form a new Markov chain as follows. 

A state in the new chain will be a pair of states in the old chain. That 
is, the states are SIS), S)82, S2S), 52S2. The new chain is in state SiSj 

on the n-th step if the old chain was in state Si on the n-th step and sf 
on the (n+ l)-th step. 
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The transition matrix for the new chain (Example 12) is 

We shall see in 3 6.5 that  the study of this new chain gives us more 
detailed information about the original process than could be obtained 
directly from the two-state chain. 

5 2.3 Connection with matrix  theory. I n  this section we shall show 
the connection between Markov chain theory and matrix theory. We 
shall start with the  general finite Markov process and then specia.lize 
our results to the finite Markov chain. 

2.3.1 THEOREM. Let fn be the outcome function clt time n for n,finite 
Mnrkov process lcith trnnsition probabilities pt , (n) ,  t h ~ n  

PROOF. The statement fn  = s, is a statement relative to the tree T,. 
To find its probability, we add the weights of all paths in its truth set. 
That  is, all possible paths which end in outcome s,. Thus if j, k, . . . , u 
is a possible sequence of states 

By the Markov property this is 

If in this last sum we keep u fixed and sum over the remaining indices 
we obtain 

W f n  = sv] = 2 Pr[f,-1 = s,]p,,(n). 
I 1  

This completes the proof. 

We can write the result of this theorem in matrix form. Let a, 
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be a row vector which gives the induced measure for the outcome 
function fn. That is 

an  = {p% . . . , p(nb}, 

r [ f ,  = s j ] .  Thus, p(n)? is the probability tha t  the process 
will after n steps be in state s,. The vector is the initial probabilities 
vector. Let P ( n )  be the matrix with entries pi j (n ) .  Then the result 
of Theorem 2.3.1 may be written in the form 

for n > 1 .  By successive application of this result we have 

71, = TO. P(L). P ( 2 )  . . . . P ( n ) .  

I11 the case of a Markov chain process, all the  r r n ) ' s  are the same and 
we obtain the following fundamental theorem. 

2.3.2 THEOREM. Let xn be the induced measure ,for the outcome 
function fn for a Jinite ilfnrkov chain with initial proba,bility vector no 
and t~ans i t ion  matrix P .  Then 

This theorem shows that  the key to the study of the  induced measures 
for the outcome functions of a finite Markov chain is the study of the 
powers of the transition matJrix. The entries of these powers have 
themselves an interesting probabilistic interpretation. To see this, 

Path 
Weights 
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The transition matrix for the new chain (Example 12) is 

S151 S152 5251 8252 

SIS 1 

c~' 
1/2 0 

'~) p= 
51S2 0 1/4 

5251 1/2 1/2 0 

5252 0 0 1/4 3/4 

(12) 

We shall see in § 6.5 that the study of this new chain gives us more 
detailed information about the original process than could be obtained 
directly from the two-state chain. 

§ 2.3 Connection with matrix theory. In this section we shall show 
the connection between Markov chain theory and matrix theory. \Ve 
shall start with the general finite Markov process and then specialize 
our results to the finite :'IIarkov chain. 

2.3.1 THEOREM. Let fn be the outcome fu.nction at time n for (£ ,finite 
jl,farkov processwilh transition probabilities ]Jij(n), then 

Pr[fn =5v] = L: Pr[fn- 1 =5,,]pur(n). 

" 
PROOF. The statement fn = Sv is a statement relative to the tree Tn. 

To find its probability, we add the weights of all paths in its truth set. 
That is, all possible paths which end in outcome sv. Thus if.}, k, ... , U 

is a possible sequence of states 

Pr[fn = sv] 

= L: Pr[fo = Sj /\ ' •• t.Jn-l = Su ('.fn = sv]. 
j,k, ... , U 

= L: Pr[fo=sj/\'" /\fn-l=5u]·Pr[fn=5vlfo=sj/\'·· /\fn--l=Su]. 
j, k •... , u. 

By the IVlarkov property this is 

L: P(fo = 5j t, ... /\fn- 1 = su]puv(n). 
j, k, ... , U 

If in this last sum we keep u fixed and sum over the remaining indices 
we obtain 

Pr[fn = sv] 

This completes the proof. 

\Ve can write the result of this theorem in matrix form. Let '/Tn 
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The transition matrix for the new chain (Example 12) is 

We shall see in 3 6.5 that  the study of this new chain gives us more 
detailed information about the original process than could be obtained 
directly from the two-state chain. 

5 2.3 Connection with matrix  theory. I n  this section we shall show 
the connection between Markov chain theory and matrix theory. We 
shall start with the  general finite Markov process and then specia.lize 
our results to the finite Markov chain. 

2.3.1 THEOREM. Let fn be the outcome function clt time n for n,finite 
Mnrkov process lcith trnnsition probabilities pt , (n) ,  t h ~ n  

PROOF. The statement fn  = s, is a statement relative to the tree T,. 
To find its probability, we add the weights of all paths in its truth set. 
That  is, all possible paths which end in outcome s,. Thus if j, k, . . . , u 
is a possible sequence of states 

By the Markov property this is 

If in this last sum we keep u fixed and sum over the remaining indices 
we obtain 

W f n  = sv] = 2 Pr[f,-1 = s,]p,,(n). 
I 1  

This completes the proof. 

We can write the result of this theorem in matrix form. Let a, 
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be a row vector which gives the induced measure for the outcome 
function fn. That is 

an  = {p% . . . , p(nb}, 

r [ f ,  = s j ] .  Thus, p(n)? is the probability tha t  the process 
will after n steps be in state s,. The vector is the initial probabilities 
vector. Let P ( n )  be the matrix with entries pi j (n ) .  Then the result 
of Theorem 2.3.1 may be written in the form 

for n > 1 .  By successive application of this result we have 

71, = TO. P(L). P ( 2 )  . . . . P ( n ) .  

I11 the case of a Markov chain process, all the  r r n ) ' s  are the same and 
we obtain the following fundamental theorem. 

2.3.2 THEOREM. Let xn be the induced measure ,for the outcome 
function fn for a Jinite ilfnrkov chain with initial proba,bility vector no 
and t~ans i t ion  matrix P .  Then 

This theorem shows that  the key to the study of the  induced measures 
for the outcome functions of a finite Markov chain is the study of the 
powers of the transition matJrix. The entries of these powers have 
themselves an interesting probabilistic interpretation. To see this, 

Path 
Weights 
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be a row vector which gives the induced measure for the outcome 
function f n . That is 

71" = {p(n)l, p(n)z, ... , p(n)r}, 

where p(n)j=Pr[fn=sil. Thus. is the probability that the process 
will after n steps be in state Sj. The vector 710 is the initial probabilities 
vector. Let P(n) be the matrix with entries Pij(n). Then the result 
of Theorem 2.3.1 may be written in the form 

71n = 71n-l' P(n) 

for n;? 1. By successive application of this result we have 

71n = 71o·P(1)·P(2) . ... . P(n). 

In the case of a Markov chain process, all the F\n)'s are the same and 
we obtain the following fundamental theorem. ' 

2.3.2 THEOREM. Let -r;-n be the induced measure for the outcome 
f1mction fn for a finite 1fJ arkov chain with initial probability vector 710 
and transition matrix P. Then 

This theorem shows that the key to the study of the induced measures 
for the outcome functions of a finite Markov chain is the study of the 
powers of the transition matrix. The entries of these powers have 
themseh'es an interesting probabilistic interpretation. To see this, 

FIC1.an; 2·1 

Path 
Weights 

1/4 

1/8 

1/8 
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take as initial vector 770 the vector with 1 in the i- th component and 
0 otherwise. Then by Theorem 3.2, a,=noPn. But  noP* is the i-th 
row of the matrix Pn. Thus the i - th  row of the n-th power of the 
transition matrix gives the probability of being in each of the various 
states under the assumption that  the  process started in state si. 

I n  Example 1, let us assume that  the process starts in state s3. 
Then 770 = (0,  0 ,  1 ,  0, 0). We can find the induced measures (see 5 1.7) 
for the first three outcome functions by constructing a tree and tree 
measure for the first three experiments. This tree is given in Figure 2-1. 

From this tree and tree measure we easily compute the induced 
measures for the functions f1, 4, f3. They are 

By Theorem 2.3.2 these induced measures should also be the third 
row in the matrices P, P2,  and P3, since the starting state was sg. 
These matrices are 
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We thus see that  these matrices furnish us several tree measures 
simultaneously. 

3 2.4 Classification of states and chains. We wish to classify the 
states of a Markov chain according to whether i t  is possible to go 
from a given state to another given state. This problem is exactly 
like the one treated in $1.4. If we interpret iTj to mean that  the pro- 
cess can go from state si to state s, (not necessarily in one step), then 
all the results of that  section are applicable. 

I n  particular, the states are divided into equivalence classes. Two 
states are in the same equivalence class if they "communicate," i.e. if 
one can go from either state to the other one. The resulting partiaI 
ordering shows us the possible directions in which the process can 
proceed. 

The minimal elements of the partial ordering are of :particular 
interest. 

2.4.1 DEFINITION. T h e  minimal  elements of the partial ordering of 
equivalence classes are called ergodic sets. T h e  remaining elements 
are called transient sets. T h e  elements of a transient set are called 
transient states. T h e  elements of a n  ergodic set are called ergodic 
(or non-transient) states. 

Since every finite partial ordering must have a t  least one minimal 
element, there must be a t  least one ergodic set for every Markov chain. 
However, there need be no transient set. The latter will occur if the 
entire chain consists of a single ergodic set, or if there are several 
ergodic sets which do not communicate with others. 

From the results of 5 1.4 we see that  if a process leaves a transient 
set i t  can never return to this set, while if i t  once enters an ergodic set, 
it can never leave it. In  particular, if an ergodic set contains only 
one element, then we have a state which once entered cannot be left. 
Such a state is called absorbing. Since from such a state we cannot 
go to another state, the following theorem characterizes absorbing 
states. 

2.4.2 THEOREM. A state s, is absorbing $and only i f p t i  = 1 .  

I t  is convenient to use our classification to arrive a t  a canonical 
form for the transition matns .  We renumber the states as follows: 
The elements of a given equivalence class will receive consecutive 
numbers. The minimal sets will come first, then sets that  are one 
level above the minimal sets, then sets two levels above the minimal 
sets, etc. This will assure us that  we can go from a given state to 
another in the same class. or to a state in a n  earlier class, but not to 
a state in a later class. Tf the equivalence classes arranged as here 
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take as initial vector 7T0 the vector with 1 in the i-th component and ° otherwise. Then by Theorem 3.2, TTn = TTOP". But 7TOPn is the i-th 
row of the matrix pn. Thus the i-th row of the n-th power of the 
transition matrix gives the probability of being in each of the various 
states under the assumption that the process started in state Si. 

In Example 1, let us assume that the process starts in state 53. 

Then TTO={O, 0,1,0, O}. We can find the induced measures (see § 1.7) 
for the first three outcome functions by constructing a tree and tree 
measure for the first three experiments. This tree is given in Figure 2-1. 

From this tree and tree measure we easily compute the induced 
measures for the functions fl' f2, f3. They are 

7Tl = {a, Ih, 0, liz, O} 
TT2 = {l/4, 0, l/z, 0, 1/4} 
7T3 = {l/4, 1/4,0,1/4, 1/4}. 

By Theorem 2.3_2 these induced measures should also be the third 
row in the matrices P, p2, and P3, since the starting state was S3. 

These matrices are 

0 ° ° 0 

l! 2 0 1/2 ° 0 

P= 0 1/2 ° liz 0 

0 0 liz ° 
0 0 ° 0 1 

0 ° 0 0 

liz 1/4 ° 1/4 ° 
p2 = 1/4 0 liz 0 1/4 

0 1/4 0 1/4 1/2 

0 0 0 ° 
0 0 ° 0 

5/8 0 1/4 ° 1/8 

p3 = 1/4 1/4 ° 1! 4 1/4 
I! 8 0 1/4 0 5! 8 

0 0 0 0 
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take as initial vector 770 the vector with 1 in the i- th component and 
0 otherwise. Then by Theorem 3.2, a,=noPn. But  noP* is the i-th 
row of the matrix Pn. Thus the i - th  row of the n-th power of the 
transition matrix gives the probability of being in each of the various 
states under the assumption that  the  process started in state si. 

I n  Example 1, let us assume that  the process starts in state s3. 
Then 770 = (0,  0 ,  1 ,  0, 0). We can find the induced measures (see 5 1.7) 
for the first three outcome functions by constructing a tree and tree 
measure for the first three experiments. This tree is given in Figure 2-1. 

From this tree and tree measure we easily compute the induced 
measures for the functions f1, 4, f3. They are 

By Theorem 2.3.2 these induced measures should also be the third 
row in the matrices P, P2,  and P3, since the starting state was sg. 
These matrices are 
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We thus see that  these matrices furnish us several tree measures 
simultaneously. 

3 2.4 Classification of states and chains. We wish to classify the 
states of a Markov chain according to whether i t  is possible to go 
from a given state to another given state. This problem is exactly 
like the one treated in $1.4. If we interpret iTj to mean that  the pro- 
cess can go from state si to state s, (not necessarily in one step), then 
all the results of that  section are applicable. 

I n  particular, the states are divided into equivalence classes. Two 
states are in the same equivalence class if they "communicate," i.e. if 
one can go from either state to the other one. The resulting partiaI 
ordering shows us the possible directions in which the process can 
proceed. 

The minimal elements of the partial ordering are of :particular 
interest. 

2.4.1 DEFINITION. T h e  minimal  elements of the partial ordering of 
equivalence classes are called ergodic sets. T h e  remaining elements 
are called transient sets. T h e  elements of a transient set are called 
transient states. T h e  elements of a n  ergodic set are called ergodic 
(or non-transient) states. 

Since every finite partial ordering must have a t  least one minimal 
element, there must be a t  least one ergodic set for every Markov chain. 
However, there need be no transient set. The latter will occur if the 
entire chain consists of a single ergodic set, or if there are several 
ergodic sets which do not communicate with others. 

From the results of 5 1.4 we see that  if a process leaves a transient 
set i t  can never return to this set, while if i t  once enters an ergodic set, 
it can never leave it. In  particular, if an ergodic set contains only 
one element, then we have a state which once entered cannot be left. 
Such a state is called absorbing. Since from such a state we cannot 
go to another state, the following theorem characterizes absorbing 
states. 

2.4.2 THEOREM. A state s, is absorbing $and only i f p t i  = 1 .  

I t  is convenient to use our classification to arrive a t  a canonical 
form for the transition matns .  We renumber the states as follows: 
The elements of a given equivalence class will receive consecutive 
numbers. The minimal sets will come first, then sets that  are one 
level above the minimal sets, then sets two levels above the minimal 
sets, etc. This will assure us that  we can go from a given state to 
another in the same class. or to a state in a n  earlier class, but not to 
a state in a later class. Tf the equivalence classes arranged as here 
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We thus see that these matrices furnish us several tree measures 
sim ultaneously. 

§ 2.4 Classification of states and chains. We wish to classify the 
states of a Markov chain according to whether it is possible to go 
from a given state to another given state. This problem is exactly 
like the one treated in § 1.4. If ,':e interpret iTj to mean that the pro
cess can go from state Si to stctte Sj (not necessarily in one step), then 
all the results of that section are applIcable. 

In particular, the states are divided into equivalence classes. Two 
states are in the same equivalence class if they "communicate," i.e. if 
one can go from either state ~.) the other one. The resulting partial 
ordering shows us the possible directions in which the process can 
proceed. 

The minimal elements of the partial ordering are of particular 
interest. 

2.4.1 DEFINITION. The minimal elements of the partial ordering of 
equivalence classes are called ergodic sets. The remaining elements 
are calle.d transient sets. ThE elements of a transient set are called 
transient states. The ei£lnents of an ergodic set are called ergodic 
(or non-transient) states. 

Since every finite partial ordering must have at least one minimal 
element, there must be at least one ergodic set for every Markov chain. 
However, there need be no transient set. The latter will occur if the 
entire chain consists of a single ergodic set, or if there are several 
ergodic sets which do not communicate with others. 

From the results of § 1.4 we see that if a process leaves a transient 
set it can never return to this set, v;hile if it once enters an ergodic set, 
it can never leave it. In particular, if an ergodic set contains only 
one element, then we ha,-e a state which once entered cannot be left. 
Such a state is called absorbing. Since from such a state we cannot 
go to another state, the following theorem characterizes absorbing 
states. 

2.4.2 THEOREM. A state Si is a))sorbing if and only if Pii = 1. 

It is convenient to use Gur classification to arrive at a canonical 
form for the transition matrix. We renumber the states as follows: 
The elements of a given equivalence class will receive consecutive 
numbers. The minimal sets will come first, then sets that are one 
level above the minimal sets, then sets two levels above the minimal 
sets, etc. This will assure us that we can go from a given state to 
another in thc same class, or to a state in an earlier class, but not to 
a state in a later class. If the equivalence classes arranged as here 
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described are ul, uz, . . . , uk, then our matrix will appear as follows 
(where k is taken as 5 ,  for the sake of 'illustration) : 

Here the Pi represent transition matrices within a given equivalence 
class. The region 0 consists entirely of 0's. The matrix Ri will be 
entirely 0 if Pi is an ergodic set, but will have non-zero elements 
otherwise. 

In  this form i t  is easy to  see what happens as P is raised to powers. 
Each power will be a matrix of the same form ; in Pn we still have zeros 
in the upper region, and we simply have P*a in the diagonal regions. 
This shows that a given equivalence class can be studied in isolation, 
by treating the submatrix Pi. This will be considered in detail later. 

We can also apply the subdivision of an equivalence class considered 
in the previous chapter. We saw there that each equivalence class 
can be partitioned into cyclic classes. If there is only one cyclic 
class, then we say that the equivalence class is regular, otherwise we 
say that i t  is cyclic. 

If an equivalence class is regular, then after sufficient time has 
elapsed the process can be in any state of the class, no matter which 
of the equivalent states it started in (see $ 1.4). This means that all 
sufficiently high powers of its Pi must be positive (i.e. have only 
positive entries). If the equivalence class is cyclic, then no power of 
Pt can be positive. 

Prom this classification of states we can arrive a t  a classification 
of Markov chains. We have noted that there must be an ergodic set, 
but there need be no transient set. This will lead to our primary 
subdivision. Within this we can subdivide according to the number 
and type of ergodic sets. 

I. Chains Without Transient Sets 
If such a chain has more than one ergodic set, then there is abso- 

lutely no interaction between these sets. Hence we have two or more 
unrelated Markov chains lumped together. These chains may be 
studied separately, and hence without loss of generality we may 

assume that the entire chain is a single ergodic set. A chain consisting 
of a single ergodic set is called an ergodic chain. 

I-A. The ergodic set is regular. In  this case the chain is called a 
regular Markov chain. As we see from previous considerations, all 
sufficiently high powers of P must be positive in this case. Thus no 
matter where the process starts, after sufficient lapse of time it 
could be in any state. 

I-B. The ergodic set is cyclic. I n  this case the chain is called a 
cyclic Markov chain. Such a chain has a period d ,  and its states 
are subdivided into d cyclic sets ( d  > 1). For a given starting 
position it will move through the cyclic sets in a definite order, 
returning to  the set of the starting state after d steps. We also 
know that after sufficient t ine  has elapsed, the process can. be in 
any state of the cyclic set appropriate for the moment. 

II. Chains With Transient Sets 
In  such a chain the process moves towards the ergodic sets. As will 

be seen in the next chapter, the probability that the process is in an 
ergodic set tends to 1 ; and it cannot escape from an ergodic set once it 
enters it. Hence it is fruitful to classify such chains by their ergodicsets. 

11-A. All ergodic sets are unit sets. Such a chain is called an 
absorbing chain. In this case the process is eventually trapped in a 
single (absorbing) state. This type of process can also be character- 
ized by the fact that all the ergodic states are absorbing states. 

11-B. All ergodic sets are regular, but not all are unit sets. 

114. All ergodic sets are cyclic. 

11-D. There are both cyclic and regular ergodic sets. 

Naturally, in each of these classes we can further classify chains 
according to how many ergodic sets there are. Of particular interest 
is the question whether there are one or more ergodic sets. 

We can illustrate all of these types except PI-ID by the random walk 
examples. 

For Example 1 : The states sl and ss are absorbing states. The 
states s%, s3, sq are transient states. It is possible to go between any 
two of these states. Hence they form a single transient set, We have 
an absorbing Markov chain-that is, case 11-A. 

For Example 2 :  In this example it is possible to go from any state 
to any other state. Hence there are no transient states and there is a 
single ergodic set. Thus we have an ergodic chain. It is possible to 
return to a state only in an even number of steps. Thus the period 
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described are Ul, U2, ... , Uk, then our matrix will appear as follows 
(where k is taken as 5, for the sake of'illustration): 

Ul: 
/ PI 

U2 : R2 P2 0 

U3 : Rs P3 

U4 : R4 P4 I 

I 
U5 : Rs I p-

1 ___ '_ 

Here the Pi represent transition matrices within a given equivalence 
class. The region 0 consists entirely of O's. The matrix Rl will be 
entirely 0 if Pi is an ergodic set, but will have non-zero elements 
otherwise. 

In this form it is easy to see what happens as P is raised to powers. 
Each power will be a matrix of the same form; in pn we still have zeros 
in the upper region, and we simply have P"j in the diagonal regions. 
This shows that a given equiv<Llence class can be studied in isolation, 
by treating the submatrix Pi. This will be considered in detail later. 

We can also apply the subdivision of an equivalence class considered 
in the previous chapter. \Ve saw there that each equivalence class 
can be partitioned into cyclic classes. If there is only one cyclic 
class, then we say that the equivalence class is regular, otherwise we 
say that it is cyclic. 

If an equivalence class is regular, then after sufficient time has 
elapsed the process can be in any state of the class, no matter which 
of the equivalent states it started in (see § 1.4). This means that all 
sufficiently high powers of its Pi must be positive (i.e. have only 
positive entries). If the equivalence class is cyclic, then no power of 
Pi can be positive. 

From this classification of states we can arrive at a classification 
of Markov chains. We have noted that there must be an ergodic set, 
but there need be no transient set. This will lead to our primary 
subdivision. Within this we can subdivide according to the number 
and type of ergodic sets. 

1. Chains Without Transient Sets 

If such a chain has more than one ergodic set, then there is abso· 
lutely no interaction between these sets. Hence we have two or more 
unrelated Markov chains lumped together. These chains may be 
studied separately, and hence without loss of generality we may 
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described are ul, uz, . . . , uk, then our matrix will appear as follows 
(where k is taken as 5 ,  for the sake of 'illustration) : 

Here the Pi represent transition matrices within a given equivalence 
class. The region 0 consists entirely of 0's. The matrix Ri will be 
entirely 0 if Pi is an ergodic set, but will have non-zero elements 
otherwise. 

In  this form i t  is easy to  see what happens as P is raised to powers. 
Each power will be a matrix of the same form ; in Pn we still have zeros 
in the upper region, and we simply have P*a in the diagonal regions. 
This shows that a given equivalence class can be studied in isolation, 
by treating the submatrix Pi. This will be considered in detail later. 

We can also apply the subdivision of an equivalence class considered 
in the previous chapter. We saw there that each equivalence class 
can be partitioned into cyclic classes. If there is only one cyclic 
class, then we say that the equivalence class is regular, otherwise we 
say that i t  is cyclic. 

If an equivalence class is regular, then after sufficient time has 
elapsed the process can be in any state of the class, no matter which 
of the equivalent states it started in (see $ 1.4). This means that all 
sufficiently high powers of its Pi must be positive (i.e. have only 
positive entries). If the equivalence class is cyclic, then no power of 
Pt can be positive. 

Prom this classification of states we can arrive a t  a classification 
of Markov chains. We have noted that there must be an ergodic set, 
but there need be no transient set. This will lead to our primary 
subdivision. Within this we can subdivide according to the number 
and type of ergodic sets. 

I. Chains Without Transient Sets 
If such a chain has more than one ergodic set, then there is abso- 

lutely no interaction between these sets. Hence we have two or more 
unrelated Markov chains lumped together. These chains may be 
studied separately, and hence without loss of generality we may 

assume that the entire chain is a single ergodic set. A chain consisting 
of a single ergodic set is called an ergodic chain. 

I-A. The ergodic set is regular. In  this case the chain is called a 
regular Markov chain. As we see from previous considerations, all 
sufficiently high powers of P must be positive in this case. Thus no 
matter where the process starts, after sufficient lapse of time it 
could be in any state. 

I-B. The ergodic set is cyclic. I n  this case the chain is called a 
cyclic Markov chain. Such a chain has a period d ,  and its states 
are subdivided into d cyclic sets ( d  > 1). For a given starting 
position it will move through the cyclic sets in a definite order, 
returning to  the set of the starting state after d steps. We also 
know that after sufficient t ine  has elapsed, the process can. be in 
any state of the cyclic set appropriate for the moment. 

II. Chains With Transient Sets 
In  such a chain the process moves towards the ergodic sets. As will 

be seen in the next chapter, the probability that the process is in an 
ergodic set tends to 1 ; and it cannot escape from an ergodic set once it 
enters it. Hence it is fruitful to classify such chains by their ergodicsets. 

11-A. All ergodic sets are unit sets. Such a chain is called an 
absorbing chain. In this case the process is eventually trapped in a 
single (absorbing) state. This type of process can also be character- 
ized by the fact that all the ergodic states are absorbing states. 

11-B. All ergodic sets are regular, but not all are unit sets. 

114. All ergodic sets are cyclic. 

11-D. There are both cyclic and regular ergodic sets. 

Naturally, in each of these classes we can further classify chains 
according to how many ergodic sets there are. Of particular interest 
is the question whether there are one or more ergodic sets. 

We can illustrate all of these types except PI-ID by the random walk 
examples. 

For Example 1 : The states sl and ss are absorbing states. The 
states s%, s3, sq are transient states. It is possible to go between any 
two of these states. Hence they form a single transient set, We have 
an absorbing Markov chain-that is, case 11-A. 

For Example 2 :  In this example it is possible to go from any state 
to any other state. Hence there are no transient states and there is a 
single ergodic set. Thus we have an ergodic chain. It is possible to 
return to a state only in an even number of steps. Thus the period 
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a.ssume tha.t the entire chain is a single ergodic set. A chain consisting 
of a single ergodic set is called <in ergodic chain. 

I-A. The ergodic set is regular. In this case the chain is called a 
regular Markov chain. As Vie see from previous considerations, all 
sufficiently high powers of P must be positive in this case. Thus no 
matter where the process starts, after sufficient lapse of time it 
could be in any state. 

I-B. The ergodic set is cyclic. In this case the chain is called a 
cyclic Markov chain. Such a ehain has a period d, and its states 
are subdivided into d cyclic sets (d>l). For a given starting 
position it will move through the cyclic sets in a definite order, 
returning to the set of the starting state after d steps. We also 
know that after sufficient time has elapsed, the process can" be in 
any state of the cyclic set appropriate for the moment. 

II. Chain8 With Transient Sets 

In such a chain the process moves towards the ergodic sets. As will 
be seen in the next chapter, the probability that the process is in an 
ergodic set tends to 1 ; and it cannot escape from an ergodic set once it 
enters it. Hence it is fruitful to classify such chains by their ergodic scts. 

II-A. All ergodic sets are unit sets. Such a chain is called an 
absorbing chain. In this case the process is eventually trapped in a 
single (absorbing) state. This type of process can also be character
ized by the fact that all the ergodic states are absorbing states. 

II-B. All ergodic sets are regular, but not all are unit sets. 

II-C. All ergodic sets are cyclic. 

II-D. There are both cyclic and regular ergodic sets. 

Naturally, in each of these classes we can further classify chains 
according to how many ergodic sets there are. Of particular interest 
is the question whether there are one or more ergodic sets. 

We can illustrate all of these types except II-D by the random walk 
examples. 

For Example 1: The states 81 and 85 are absorbing states. The 
states S2, 83, S4 are transient states. It is possible to go between any 
two of these states. Hence they form a single transient set. \Ve have 
an absorbing Markov chain-that is, case II-A. 

For Example :2: In this exa;nple it is possible to go from any state 
to any other state. Hence there are no transient states and there is a 
single ergodic set. Thus we have an ergodic chain. It is possible to 
return to a state only in an even number of steps. Thus the period 
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of the states is 2. The two cyclic sets are {sl, s3, ssj and (sz, s4). 
This is type I-B. 

For Example 3 : Again we can go from any state to  any other state. 
Hence we again have an ergodic chain. It is possible to  return to 
state s3 from ss in either two or three steps. Hence the greatest 
common divisor d = 1, and the period is 1. This is type I-A. 

For Example 4 : I n  this example {sl, ss) is an ergodic set which is clearly 
regular. The set {sz, sa,s4} is the single transient set. This is type II-B. 

For Example 5 : Here we have a single ergodic set {sl, sg) which has 
period 2. The set (s2, s3, s4) is again a transient set. This is type II-C. 

$2.5 Problems to be studied. Let us consider our various types of 
chains, and ask what types of problems we would like to  answer in the 
following chapters. 

First of all we may wish to study a regular Markov chain. I n  such 
a chain the process keeps moving through all the states, no matter 
where i t  starts. Some of the questions of interest are : 

(1) If a chain starts in st, what is the probability after n steps that  
i t  will be in sj ? 

(2) Can we predict the average number of times that  the process 
is in si ? And if so, how does this depend on where the process starts? 

(3)  We may wish to  consider the  process as i t  goes from sf to sf. 
What is the mean and variance of the number of steps needed ? What 
are the mean and variance of the number of states passed? What is 
the probability tha t  the process passes through s*? 

(4) We may wish to study a certain subset of states, and observe 
the process only when i t  is in these states. How does this modify 
our previous results ? These questions are treated in Chapter IV. 

Next we may wish to  study a cyclic chain. Here the same kinds of 
questions are of interest as for a regular chain. Naturally, a regular 
chain is easier to study; and we will find that ,  once we have the 
answers for regular chains, i t  is not hard to  find the corresponding 
answers for all ergodic chains. This extension of regular chain theory 
to the theory of ergodic chains is carried out in Chapter V. 

Next we may wish to consider a Markov chain with transient states. 
There are two kinds of questions to be asked here. One will concern 
the behavior of the chain before i t  enters an ergodic set, while the other 
kind will apply after the chain has entered an ergodic set. The latter 
questions are no different from the ones considered above. Once a 
chain enters a n  ergodic set i t  can never leave it,  and hence the existence 
of states outside the set is irrelevant. Thus questions of the second 
kind can be answered by considering a chaii consisting of a single 
ergodic set, i.e. an  ergodic chain. 
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The really new questions concern the behavior of the chain up to 
the moment that  i t  enters an  ergodic set. However, for these questions 
the nature of the ergodic states is irrelevant, and we may make them 
all into absorbing states if we wish. More generally, if we wish to 
study the process while i t  is in a set of transient states, we may make 
all other states absorbing. This modified process will serve to find all 
the answers we desire. Hence the only new questions concern the 
behavior of an absorbing chain. 

Some of the questions that  are of interest concerning a transient 
state si are : 

(1) The probability of entering a given ergodic set, starting from si. 
(2)  The mean and variance of the number of times that  the process 

is in si before entering an  ergodic set, and how this number depends on 
the starting position. 

(3) The mean and variance of the number of steps needed before 
entering an ergodic set starting a t  st. 

(4) The mean number of states passed before entering an  ergodic 
set, starting a t  si. 

Chapter I11 will deal with absorbing chains, and all these questions 
will be answered. Thus we will find the most interesting questions 
about finite Markov chains answered in Chapters 111, I V ,  and IT. 

Exercises for Chapter 11 

I.  Five points are marked on a circle. A process moves from a given 
point to one of its neighbors, ~ ~ i t h  probability for each neighbor. Find 
the transition matrix of the resulting Markov chain. 

2. Three tanks fight a duel. Tank A hits its target with probability 2/3, 

tank B with probability '12, and tank C with probahility 'I3. Shots are fired 
simultaneously, and once a tanli is hit it is out of action. As a state we 
choose the set of tanks still in action. If on each step each tanli fires at its 
strongest opponent,, verify that the following transition mat,rix is correct : 

E 1 0 0 0 0 0 0  

A o i a o o o o  
B 0 0 1 0 0 0 0  

e 0 0 0 1 0 0 0  

AC 2 / 9  4:9 0  '19 2/g 0  0  

BC '16 0 l / 3  '16  0  '13 0  

ABC 0  0 0 */g '19 I / g  
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of the states is 2. The two cyclic sets are {51, S3, S5} and {S2' S4}' 
This is type I-B. 

For Example 3: Again we can go from any state to any other state. 
Hence we again have an ergodic chain. It is possible to return to 
state 83 from S3 in either two or three steps. Hence the greatest 
common divisor d= 1, and the period is 1. This is type I-A. 

For Example 4 : In this example {51, 55} is an ergodic set which is clearly 
regular. The set {S2' 53, S4} is the single transient set. This is type II-B. 

For Example 5: Here v .. e have a single ergodic set {51, 55} which has 
period 2. The set {S2' S3, S4} is again a transient set. This is type II-C. 

§ 2.5 Problems to be studied. Let us consider our various types of 
chains, and ask what types of problems we would like to answer in the 
following chapters. 

First of all we may wish to study a regular Markov chain. In such 
a chain the process keeps moving through all the Rtates, no matter 
where it starts. Some of the questions of interest are: 

(I) If a chain starts in St. what is the probability after n steps that 
it will be in Sj? 

(2) Can we predict the average number of times that the process 
is in Si? And if so, how does this depend on where the process starts'1 

(3) We may wish to consider the process as it goes from 5i to Sf. 

What is the mean and variance of the number of steps needed? ,"Vhat 
are the mean and variance of the number of states passed? What is 
the probability that the process passes through Sk ~ 

(4) We may wish to study a certain subset of states, and observe 
the process only when it is in these states. How does this modify 
our previous results? These questions are treated in Chapter IV. 

N ext we may wish to study a cyclic chain. Here the same kinds of 
questions are of interest as for a reg11lar chain. Naturally, a regular 
chain is easier to study; and we will find that, once we have the 
answers for regular chains, it is not hard. to find the corresponding 
answers for all ergodic chains. This extension of regular chain theory 
to the theory of ergodic chains is carried out in Chapter Y. 

Next we may wish to consider a Markov chain with transient states. 
There are two kinds of questions to be asked here. One will concern 
the behavior of the chain before it enters an ergodic set, while the other 
kind will apply after the chain has entered an ergodic set. The latter 
questions are no different from the ones considered above. Once a 
chain enters an ergodic set it can never leave it, and hence the existence 
of states outside the set is irrelevant. Thus questions of the second 
kind can be answered by considering a chain consisting of a single 
ergodic set, i.e. an ergodic chain. 
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of the states is 2. The two cyclic sets are {sl, s3, ssj and (sz, s4). 
This is type I-B. 

For Example 3 : Again we can go from any state to  any other state. 
Hence we again have an ergodic chain. It is possible to  return to 
state s3 from ss in either two or three steps. Hence the greatest 
common divisor d = 1, and the period is 1. This is type I-A. 

For Example 4 : I n  this example {sl, ss) is an ergodic set which is clearly 
regular. The set {sz, sa,s4} is the single transient set. This is type II-B. 

For Example 5 : Here we have a single ergodic set {sl, sg) which has 
period 2. The set (s2, s3, s4) is again a transient set. This is type II-C. 

$2.5 Problems to be studied. Let us consider our various types of 
chains, and ask what types of problems we would like to  answer in the 
following chapters. 

First of all we may wish to study a regular Markov chain. I n  such 
a chain the process keeps moving through all the states, no matter 
where i t  starts. Some of the questions of interest are : 

(1) If a chain starts in st, what is the probability after n steps that  
i t  will be in sj ? 

(2) Can we predict the average number of times that  the process 
is in si ? And if so, how does this depend on where the process starts? 

(3)  We may wish to  consider the  process as i t  goes from sf to sf. 
What is the mean and variance of the number of steps needed ? What 
are the mean and variance of the number of states passed? What is 
the probability tha t  the process passes through s*? 

(4) We may wish to study a certain subset of states, and observe 
the process only when i t  is in these states. How does this modify 
our previous results ? These questions are treated in Chapter IV. 

Next we may wish to  study a cyclic chain. Here the same kinds of 
questions are of interest as for a regular chain. Naturally, a regular 
chain is easier to study; and we will find that ,  once we have the 
answers for regular chains, i t  is not hard to  find the corresponding 
answers for all ergodic chains. This extension of regular chain theory 
to the theory of ergodic chains is carried out in Chapter V. 

Next we may wish to consider a Markov chain with transient states. 
There are two kinds of questions to be asked here. One will concern 
the behavior of the chain before i t  enters an ergodic set, while the other 
kind will apply after the chain has entered an ergodic set. The latter 
questions are no different from the ones considered above. Once a 
chain enters a n  ergodic set i t  can never leave it,  and hence the existence 
of states outside the set is irrelevant. Thus questions of the second 
kind can be answered by considering a chaii consisting of a single 
ergodic set, i.e. an  ergodic chain. 
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The really new questions concern the behavior of the chain up to 
the moment that  i t  enters an  ergodic set. However, for these questions 
the nature of the ergodic states is irrelevant, and we may make them 
all into absorbing states if we wish. More generally, if we wish to 
study the process while i t  is in a set of transient states, we may make 
all other states absorbing. This modified process will serve to find all 
the answers we desire. Hence the only new questions concern the 
behavior of an absorbing chain. 

Some of the questions that  are of interest concerning a transient 
state si are : 

(1) The probability of entering a given ergodic set, starting from si. 
(2)  The mean and variance of the number of times that  the process 

is in si before entering an  ergodic set, and how this number depends on 
the starting position. 

(3) The mean and variance of the number of steps needed before 
entering an ergodic set starting a t  st. 

(4) The mean number of states passed before entering an  ergodic 
set, starting a t  si. 

Chapter I11 will deal with absorbing chains, and all these questions 
will be answered. Thus we will find the most interesting questions 
about finite Markov chains answered in Chapters 111, I V ,  and IT. 

Exercises for Chapter 11 

I.  Five points are marked on a circle. A process moves from a given 
point to one of its neighbors, ~ ~ i t h  probability for each neighbor. Find 
the transition matrix of the resulting Markov chain. 

2. Three tanks fight a duel. Tank A hits its target with probability 2/3, 

tank B with probability '12, and tank C with probahility 'I3. Shots are fired 
simultaneously, and once a tanli is hit it is out of action. As a state we 
choose the set of tanks still in action. If on each step each tanli fires at its 
strongest opponent,, verify that the following transition mat,rix is correct : 

E 1 0 0 0 0 0 0  

A o i a o o o o  
B 0 0 1 0 0 0 0  

e 0 0 0 1 0 0 0  

AC 2 / 9  4:9 0  '19 2/g 0  0  

BC '16 0 l / 3  '16  0  '13 0  

ABC 0  0 0 */g '19 I / g  
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The really new questions concern the behavior of the chain up to 
the moment that it enters an ergodic set. However, for these questions 
the nature of the ergodic states is irrelevant, and we may make them 
all into absorbing states if we wish. More generally, if we wish to 
study the process while it is in a set of transient states, we may make 
all other states absorbing. This modified process will serve to find all 
the answers we desire. Hence the only new questions concern the 
behavior of an absorbing cha.in. 

Some of the questions that are of interest concerning a transient 
state Si are: 

(1) The probability of entering a given ergodic set, starting from s,. 
(2) The mean and variance of the number of times that the process 

is in Si before entering an ergodic set, and how this number depends on 
the starting position. 

(3) The mean and variance of the number of steps needed before 
entering an ergodic set starting at Si. 

(4) The mean number of states passed before entering an ergodic 
set, starting at St. 

Chapter III will deal with absorbing chains, and all these questions 
will be answered. Thus we will :find the most interesting questions 
about finite Markov chains answered in Chapters III, IV, and V. 

Exercises for Chapter II 

For § 2.1 

1. Five points are marked. on a circle. A process moves from a given 
point to one of its neighbors, with probability liz for each neighbor. Find 
the transition matrix of the resulting Markov chain. 

2. Three tanks fight a duel. Tank A hits its target with probability 2/3 , 

tank B with probability 1/2, and tank C with probahility 1/3. Shots are fired 
simultaneously, and once a tank is hit it is out of action. As a state we 
choose the set of tanks still in action. If on each step each tank fires at its 
strongest opponent., verify that the following transition matrix is correct: 

E ~'1.. B C AC BC ABC 
E 0 0 0 0 0 0 \ 

A 0 0 0 0 0 0 

B 0 0 0 0 0 0 

C 0 0 () 0 0 0 

AC 9' -i9 0 1/9 2/ 9 0 0 

Be 1/6 0 1/3 I! 6 0 1/3 0 

ABC 0 0 0 4/9 2/9 2/9 1/9 
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3. Modify the transition matrix in the previous exercise, assuming that  
when all tanks are in action, A fires a t  B,'B a t  6 ,  and G a t  A. 

4. We carry out a sequence of experiments as follows : At first a fair coin 
is tossed. Then, if experiment n- 1 comes out heads, we toss a fair coin ; 
if it comes out tails, we toss a coin which has probability l / n  of coming up 
heads. What are the transition probabilities? What  kind of process is 
this ? 

For $ 2.2 

5. Modify Example 1 by assuming that  when the process reaches sl i t  
goes on the next step t o  state sz. Form the new transition matrix. 

6 .  Modify the process described in Example 2 by assuming that  when the 
process reaches sl i t  stays there for the next two steps and on the third step 
moves to  state sz. Show that  the resulting process is not a Markov chain 
(with the five given states). 

7. In  Exercise 6 show that  we can treat the process as a Markov chain, by 
allowing a larger number of states. Write down the transition matrix. 

8. Modify the transition matrix of Example 7, assuming that  the digit 0 is 
twice as likely to be generated than any other digit. 

9. Modify Example 7, assuming that  the same digit is never generated 
twice in a row, but otherwise digits are equally likely to  occur. 

10. In  Example 8 allow only two states: Nice and not nice. Show that  
the process is still a Markov chain, and find its transition mat,rix. 

For $ 2.3 

11. I n  Example I l a  compute P2, P4, Pa, and P16, and write the entries 
as decimal fractions. Note the trend, and interpret your results. 

12. Show that,  no matter how Example 7 is started, the probabilities for 
being in each of the states after 1 step agree with the common row for the 
transition matrix. What are the probabilities after n steps? 

13. Assume that  Example 8 is started with initial vector vo= (2/5, '15, 2/5). 
Find nl,  nz. What is n,? 

14. The weather is nice today in the Land of Oz. What kind of weather 
is most likely to  occur day after tomorrow? 

15. I n  Example 11, assume that  c=V2 and d=1I4. The man randomly 
chooses the machine to  play first. What is the probability that  he plays the 
better machine (a) on the second play, (b) on the third play, and (c) on the 
fourth play? 

16. In  Example 2 assume that  the process is started in state s3. Construct 
a tree and tree measure for the first three experiments. Use this to  find the 
induced measure for the first three outcome functions. Verify that  your 
results agree with the probabilities found from P,  P2, and P3. 
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18. A Markov chain has the following transition matrix, with non-zero 
entries marked by x. Give a complete classification of the states and put the 
transition matrix in canonical form. 

19. Classify the following chains ss ergodic or absorbing. Which of the 
ergodic chains is regular? 

(a) P = 

1 0 0 0  

0 '13 '13 '13 
(d) P = 

0 ' 1 3  '13 '13  

For $ 2.4 

17. For the following M a r k o ~  chain, give a complete classification of the 
states and put  the transition matrix in canonical form. 
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3. Modify the transition matrix in the previous exercise, assuming that 
when all tanks are in action, A fires at B,'B at C, and C at A. 

4. We carry out a sequence of experiments as follows: At first a fair coin 
is tossed. Then, if experiment n-l comes out heads, we toss a fair coin; 
if it comes out tails, we toss a coin which has probability lin of (loming up 
heads. What are the transition probabilities 1 What kind of process is 
this 1 

For § 2.2 

5. Modify Example 1 by assuming that when the process reaches 81 it 
goes on the next step to state 82. Form the new transition matrix. 

6. Modify the process described in Example 2 by assuming that when the 
process reaches 81 it stays there for the next two steps and on the third step 
moves to state 82. Show that the resulting process is not a Markov chain 
(with the five given states). 

7. In Exercise 6 show that we can treat the process as a Markov chain, by 
allowing a larger number of states. Write down the transition matrix. 

8. Modify the transition matrix of Example 7, assuming that the digit 0 is 
twice as likely to be generated than any other digit. 

9. Modify Example 7, assuming that the same digit is never generated 
twice in a row, but otherwise digits are equally likely to occur. 

10. In Example 8 allow only two states: Nice and not nice. Show that 
the process is still a Markov chain, and find its transition matrix. . 

For § 2.3 

11. In Example lla compute p2, P4, p8, and p16, and write the entries 
as decimal fractions. Note the trend, and interpret your results. 

12. Show that, no matter how Example 7 is started, the probabilities for 
being in each of the states after 1 step agree with the common row for the 
transition matrix. What are the probabilities after n steps? 

13. Assume that Example 8 is started with initial vector 170= e/5, 1/5 , 2/5). 
Find 7T1, 7T2. What is 17n? 

14. The weather is nice today in the Land of Oz. What kind of weather 
is most likely to occur day after tomorrow! 

15. In Example 11, assume that c=l/z and d=1/4. The man randomly 
chooses the machine to play first. What is the probability that he plays the 
better machine (a) on the second play, (b) on the third play, and (c) on the 
fourth play? 

16. In Example 2 assume that the process is started in state S3. Construct 
a tree and tree measure for the first three experiments. Use this to find the 
induced measure for the first three outcome functions. Verify that your 
results agree with the probabilities found from P, pz, and P3. 

For § 2.4 

17. For the following Markov chain, give a complete classification of the 
states and put the transition matrix in canonical form. 



40 FINITE MARKOV CHAINS CHAP. I1 

3. Modify the transition matrix in the previous exercise, assuming that  
when all tanks are in action, A fires a t  B,'B a t  6 ,  and G a t  A. 

4. We carry out a sequence of experiments as follows : At first a fair coin 
is tossed. Then, if experiment n- 1 comes out heads, we toss a fair coin ; 
if it comes out tails, we toss a coin which has probability l / n  of coming up 
heads. What are the transition probabilities? What  kind of process is 
this ? 

For $ 2.2 

5. Modify Example 1 by assuming that  when the process reaches sl i t  
goes on the next step t o  state sz. Form the new transition matrix. 

6 .  Modify the process described in Example 2 by assuming that  when the 
process reaches sl i t  stays there for the next two steps and on the third step 
moves to  state sz. Show that  the resulting process is not a Markov chain 
(with the five given states). 

7. In  Exercise 6 show that  we can treat the process as a Markov chain, by 
allowing a larger number of states. Write down the transition matrix. 

8. Modify the transition matrix of Example 7, assuming that  the digit 0 is 
twice as likely to be generated than any other digit. 

9. Modify Example 7, assuming that  the same digit is never generated 
twice in a row, but otherwise digits are equally likely to  occur. 

10. In  Example 8 allow only two states: Nice and not nice. Show that  
the process is still a Markov chain, and find its transition mat,rix. 

For $ 2.3 

11. I n  Example I l a  compute P2, P4, Pa, and P16, and write the entries 
as decimal fractions. Note the trend, and interpret your results. 

12. Show that,  no matter how Example 7 is started, the probabilities for 
being in each of the states after 1 step agree with the common row for the 
transition matrix. What are the probabilities after n steps? 

13. Assume that  Example 8 is started with initial vector vo= (2/5, '15, 2/5). 
Find nl,  nz. What is n,? 

14. The weather is nice today in the Land of Oz. What kind of weather 
is most likely to  occur day after tomorrow? 

15. I n  Example 11, assume that  c=V2 and d=1I4. The man randomly 
chooses the machine to  play first. What is the probability that  he plays the 
better machine (a) on the second play, (b) on the third play, and (c) on the 
fourth play? 

16. In  Example 2 assume that  the process is started in state s3. Construct 
a tree and tree measure for the first three experiments. Use this to  find the 
induced measure for the first three outcome functions. Verify that  your 
results agree with the probabilities found from P,  P2, and P3. 
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18. A Markov chain has the following transition matrix, with non-zero 
entries marked by x. Give a complete classification of the states and put the 
transition matrix in canonical form. 

19. Classify the following chains ss ergodic or absorbing. Which of the 
ergodic chains is regular? 

(a) P = 

1 0 0 0  

0 '13 '13 '13 
(d) P = 

0 ' 1 3  '13 '13  

For $ 2.4 

17. For the following M a r k o ~  chain, give a complete classification of the 
states and put  the transition matrix in canonical form. 
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18. A Markov chain has the following transition matrix, with non· zero 
entries marked by x. Give a complete classification of the states and put the 
transition matrix in canonical form, 
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19. Cbssify the following chains as ergodic or absorbing. Which of the 
ergodic chains is regular? 

(a) 

(c) 
liZ) 
o . 
o 

(e) P = (~ 0 001) 

1/2 1/2 

o 0 

1/3 1/3 

1/3 1/3 

1/3 1h 
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20. In Example 9 classify the states. Put the transition matrix in 
canonical form. What type of chain is .this? 

21. For an ergodic chain the i-th state is made absorbing by replacing the 
i-th row in the transition matrix by a row with a 1 in the i-th component. 
Prove that the resulting chain is absorbing. 

22. In  Example 11, give conditions on c and d so that the resulting ch&n 
is 

(a) ergodic (b) regular (c) cyclic (6)  absorbing 

For the entire chapter 

23. In a certain state a voter is allowed to change his party affiliation (for 
primary elections) only by abstaining from the primary for one year. Let 
sl indicate that a man votes Democratic, sz that he votes Republican, and s3 
that he abstains, in t,he given year. Experience shows that a Democrat will 
abstain 112 the time in the following primary, a Republican will abstain 
time, while a voter who abstained for a year is equally likely to vote for 
either party in the next election. [We will refer to this as Example 13.1 

(a) Find the transition matrix. 
(b) Find the probability that a man who votes Democratic this year will 

abstain three years from now. 
(c) Classify the states. 
(d) In  a given year of the population votes Democratic, 112 Republican, 

the rest abstain. What proportions do you expect in the next primary 
election ? 

24. A sequence of experiments is performed, in each of which two fair coins 
are tossed. Let sl indicate that two heads come up, sz that a head and a tail 
come up, and s3 that two tails turn up. [We will refer to this as Example 14.1 

(a) Find the transition matrix. 
(b) If two heads turn up on a given toss, what is the probability of two 

heads turning up three tosses later ? 
(c) Classify the states. 

$ 3.1 Introduction. Let us recall the basic definitions relevant to 
an absorbing chain. I n  the classification of states, the equivalence 
classes were divided into transient and ergodic sets. The former, once 
left, are never again entered ; while the latter, once entered, are never 
again left. If a state is the only element of an  ergodic set, then i t  is 
called an  absorbing state. For such a state si the entry pit must be 1, 
and hence all other entries in this row of the transition matrix are 0. 
A chain, all of whose non-transient states are absorbing, is called an 
absorbing chain. These chains will occupy us in the present chapter. 

3.1.1 THEOREM. I n  any jni te  Harkov chain, no matter where the 
process starts, the probability after n steps that the process i s  i n  a n  ergodic 
state tends to 1 as n tends to in$nity. 

PROOF. If the process once reaches an  ergodic state, then i t  can 
never leave its equivalence class, and hence i t  will a t  a.11 future steps be 
in an  ergodic state. Suppose that  i t  starts in a transient state. I t s  
equivalence class is not minimal; hence there is a minimal element 
below it. This means that  i t  must be possible to reach some ergodic set. 
Let us suppose that  from any transient state i t  is possible to reach an  
ergodic state innot more thann  steps. (Since there are only a finite num- 
ber of states, n is simply the maximum of the number of steps required 
from each state.) Hence thereis a positive number p such that  the prob- 
ability of entering an ergodic state in a t  most n steps is a t  least p,  from 
any transient state. Hence the probability of not reaching an  ergodic 
state in n steps is a t  most (1 -p), which is less than 1. The probability 
of not reaching an  ergodic state in kn steps is less than or equal to (1 -p )k ,  
and this probability tends to 0 as k increases. Rence the theorem follows. 

3.1.2 COROLLARY. There am numbers b > 0,  0 < c  < 1 such that 
p(n)i3 < b.cn,  for any transient states si, sj. 

This is a direct consequence of the above proof. I t  shows the rate 
a t  which p(n)tj tends to 0. 

43 
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20. In Example 9 classify the states. Put the transition matrix in 
canonical form. What type of chain is this? 

21. For an ergodic chain the i-th state is made absorbing by replacing the 
i-th row in the transition matrix by a row with a 1 in the i-th component. 
Prove that the resulting chain is absorbing. 

22. In Example 11, give conditions on c and d so that the resulting chain 
is 

(a) ergodic (b) regular (c) cyclic (d) absorbing 

For the entire chapter 

23. In a certain state a voter is allowed to change his party affiliation (for 
primary elections) only by abstaining from the primary for one year. Let 
81 indicate that a man votes Democratic,s2 that he votes Republican, and S3 

that he abstains, in the given year. Experience shows that a Democrat will 
abstain l/z the time in the following primary, a Republican will abstain 1/4 
time, while a voter who abstained for a year is equally likely to vote for 
either party in the next election. [We will refer to this as Example 13.] 

(a) Find the transition matrix. 
(b) Find the probability that a man who votes Democratic this year will 

abstain three years from now. 
(c) Classify the states. 
(d) In a given year 1/4 of the population votes Democratic, l}Z Republican, 

the rest abstain. What proportions do you expect in the next primary 
election 1 

24. A sequence of experiments is performed, in each of which two fair coins 
are tossed. Let 81 indicate that two heads come up, S2 that a head and a tail 
come up. and S3 that two tails turn up. [We will refer to this as Example 14.] 

(a) Find the transition matrix. 
(h) If two heads turn up on a given toss, what is the probability of two 

heads turning up three tosses later 1 
(c) Classify the states. 
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20. In Example 9 classify the states. Put the transition matrix in 
canonical form. What type of chain is .this? 

21. For an ergodic chain the i-th state is made absorbing by replacing the 
i-th row in the transition matrix by a row with a 1 in the i-th component. 
Prove that the resulting chain is absorbing. 

22. In  Example 11, give conditions on c and d so that the resulting ch&n 
is 

(a) ergodic (b) regular (c) cyclic (6)  absorbing 

For the entire chapter 

23. In a certain state a voter is allowed to change his party affiliation (for 
primary elections) only by abstaining from the primary for one year. Let 
sl indicate that a man votes Democratic, sz that he votes Republican, and s3 
that he abstains, in t,he given year. Experience shows that a Democrat will 
abstain 112 the time in the following primary, a Republican will abstain 
time, while a voter who abstained for a year is equally likely to vote for 
either party in the next election. [We will refer to this as Example 13.1 

(a) Find the transition matrix. 
(b) Find the probability that a man who votes Democratic this year will 

abstain three years from now. 
(c) Classify the states. 
(d) In  a given year of the population votes Democratic, 112 Republican, 

the rest abstain. What proportions do you expect in the next primary 
election ? 

24. A sequence of experiments is performed, in each of which two fair coins 
are tossed. Let sl indicate that two heads come up, sz that a head and a tail 
come up, and s3 that two tails turn up. [We will refer to this as Example 14.1 

(a) Find the transition matrix. 
(b) If two heads turn up on a given toss, what is the probability of two 

heads turning up three tosses later ? 
(c) Classify the states. 

$ 3.1 Introduction. Let us recall the basic definitions relevant to 
an absorbing chain. I n  the classification of states, the equivalence 
classes were divided into transient and ergodic sets. The former, once 
left, are never again entered ; while the latter, once entered, are never 
again left. If a state is the only element of an  ergodic set, then i t  is 
called an  absorbing state. For such a state si the entry pit must be 1, 
and hence all other entries in this row of the transition matrix are 0. 
A chain, all of whose non-transient states are absorbing, is called an 
absorbing chain. These chains will occupy us in the present chapter. 

3.1.1 THEOREM. I n  any jni te  Harkov chain, no matter where the 
process starts, the probability after n steps that the process i s  i n  a n  ergodic 
state tends to 1 as n tends to in$nity. 

PROOF. If the process once reaches an  ergodic state, then i t  can 
never leave its equivalence class, and hence i t  will a t  a.11 future steps be 
in an  ergodic state. Suppose that  i t  starts in a transient state. I t s  
equivalence class is not minimal; hence there is a minimal element 
below it. This means that  i t  must be possible to reach some ergodic set. 
Let us suppose that  from any transient state i t  is possible to reach an  
ergodic state innot more thann  steps. (Since there are only a finite num- 
ber of states, n is simply the maximum of the number of steps required 
from each state.) Hence thereis a positive number p such that  the prob- 
ability of entering an ergodic state in a t  most n steps is a t  least p,  from 
any transient state. Hence the probability of not reaching an  ergodic 
state in n steps is a t  most (1 -p), which is less than 1. The probability 
of not reaching an  ergodic state in kn steps is less than or equal to (1 -p )k ,  
and this probability tends to 0 as k increases. Rence the theorem follows. 

3.1.2 COROLLARY. There am numbers b > 0,  0 < c  < 1 such that 
p(n)i3 < b.cn,  for any transient states si, sj. 

This is a direct consequence of the above proof. I t  shows the rate 
a t  which p(n)tj tends to 0. 
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CHAPTER III 

ABSORBING MARKOV CHAINS 

§ 3.1 Introduction. Let us recall the basic definitions relevant to 
an absorbing chain. In the classification of states, the equiv~lence 
classes were divided into transient and ergodic sets. The former, once 
left, are never again entered; while the latter, once entered, are never 
again left. If a state is the only element of an ergodic set, then it is 
called an absorbing state·. For such a state Sj the entry Pii must be 1, 
and hence all other entries in this row of the transition matrix are 0. 
A chain, all of whose non-transient states are absorbing, is called an 
absorbing chain. These chains will occupy us in the present chapter. 

3.1.1 THEOREM. In any finite 1'rlarkov chain, no matter where the 
process starts, the probability after n steps thai the process is in an ergodic 
state tends to 1 as n tends to infinity. 

PROOF. If the process once reaches an ergodic state, then it can 
never leave its equivalence class, and hence it will at all future steps be 
in an ergodic state. Suppose that it starts in a transient state. Its 
equivalence class is not minimal; hence there is a minimal element 
below it. This means that it must be possibJe to reach some ergodic set. 
Let us suppose that from any transient state it is possible to reach an 
ergodic state innot more than nsteps. (Since there are only a finite num
ber of states, n is simply the maximum of the number of steps required 
from each state.) Hence there is a positive number p such that the prob
ability of entering an ergodic state in at most n steps is at least p, from 
any transient state. Hence the probability of not reaching an ergodic 
state in n steps is at most (1 - p), which is less than 1. The probability 
of not reaching an ergodic state in kn steps is less than orequal to (1 - P )A;, 
and this probabili ty tends to ° as k increases. Hence the theorem follows. 

3.1.2 COROLLARY. There are numbers b>O, O<c< 1 such that 
p(n)ij:( b ·en , for any transient states Si, s1' 

This is a direct consequence of the above proof. It shO"ll's the rate 
at which p(n)ij tends to O. 

43 
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It is convenient to consider the canonical form of the matrix P in an  
aggregated version. We unite all the ergodic sets, and all the tran- 
sient sets. (Let us say that  there are s transient states, and r - s  
ergodic states.) The form then becomes 

Here again the region 0 consists entirely of 0's. The s x s submatrix Q 
concerns the process as long as i t  stays in transient states, the 
s x (r - s)  matrix R concerns the transition from transient to  ergodic 
states, and the (r -s)  x (r-s)  matrix deals with the process after i t  has 
reached an ergodic set. From Theorem 3.1.1 we see tha t  the  powers 
of Q tend to 0. Hence as we raise P to  higher and higher powers, the 
matrices approach a matrix whose last s columns are all 0. This is the 
matrix version of Theorem 3.1.1. 

Let us now consider an  absorbing chain. By its definition we see 
that  S is I(,-,,,(,-,), i.e. a n  identity matrix of the appropriate dimension. 
Thus its canonical form is 

And by the nature of the powers of P we know that  the region I remains 
I .  This corresponds to the fact tha t  once an  absorbing state is entered, 
i t  cannot be left. From Theorem 3.1.1 we know that  the probability 
that  such a state is entered, in an absorbing chain, tends to 1. Hence 
we may say that  with probability 1 the chain will enter an  absorbing 
state and stay there, i.e. that  i t  will be "absorbed." 

Let us write some of our examples from Chapter 11, fi 2.2, in the new 
canonical form. I n  Example 1 the states sl and ss are absorbing, 
hence these must be written first. We thus have 

s1 s5 S2 S3 s4 
1 0  0 0 0  

0 1  0 0 0  
P = 

q o  O Y O  

0 0  q o p  

O P  O q O  
where the regions I ,  0, R, and Q have been marked off. 
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The matrix for Example 10 is already in canonical form in 3 2.2. 
The first two states are absorbing. Hence R is 4 x 2 and & is 4 x 4 in 
this example. 

Example 9 is not an absorbing chain. It has a single ergodic set, 
consisting of the first three states. The matrix appears in canonical 
form in § 2.2. I f  we want to study this process only until i t  enters the 
ergodic set, then we may make the ergodic states absorbing. The 
resulting transition matrix is 

If we do not even care a t  which st,ate the ergodic set is entered, we may 
lump the three ergodic states into a single one, obtaining the much 
simpler matrix 

The former mat,ris preserves Q and R, while i t  modifies S ;  the latter 
preserves only Q. This is in good agreement with the interpretation 
given for Q, 22, and S earlier in this section. 

I t  should now be clear that absorbing chains serve to answer all 
questions of the second type (concerning transient states) raised in 
5 2.5. But absorbing chains are also important in t3he study of an 
ergodic set. Suppose that  we wish t o  ask a question about what happens 
as the process goes from si to s, Then n c  may wish to "stop" the 
process as soon as it reaches s j ,  which we accomplish by making sj 
an absorbing st'ate. -Ant1 since sj can be reached from all states of its 
equivalence class, the resulting chain will be an absorbing Markov 
chain. This trick will be developed in 3 6.1. 

$ 3.2 The fundamental matrix. The following basic theorem is a 
direct consequence of the matrix theorem we proved in 1.11.1, if we 
recall that Qk tmds  to 0.  
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It is convenient to consider the canonical form of the matrix P in an 
aggregated version. We unite all the ergodic sets, and all the tran
sient sets. (Let us say that there are s transient states, and r - s 
ergodic states.) The form then becomes 

f-S S 
~ .-"---, 

p= 

Here again the region 0 consists entirely of O's. The S x s submatrix Q 
concerns the process as long as it stays in transient states, the 
s x (r - s) matrix R concerns the transition from transient to ergodic 
states, and the (r - s) x (r- s) matrix deals with the process after it has 
reached an ergodic set. From Theorem 3.1.1 we see that the powers 
of Q tend to O. Hence as we raise P to higher and higher powers, the 
matrices approach a matrix whose last s columns are all O. This is the 
matrix version of Theorem 3.1.l. 

Let us now consider an absorbing chain. By its definition we see 
that S is I (r-s)X(r-s), i.e. an identity matrix of the appropriate dimension. 
Thus its canonical form is 

r-s s 

p = (_I _I_~_) 
\ R I Q s 

r-s 

And by the nature of the powers of P we know that the region 1 remains 
I. This corresponds to the fact that once an absorbing state is entered, 
it cannot be left. From Theorem 3.1.1 we know that the probability 
that such a state is entered, in an absorbing chain, tends to 1. Hence 
we may say that with probability 1 the chain will enter an absorbing 
state and stay there, i.e. that it will be "absorbed." 

Let us write some of our examples from Chapter II, § 2.2, in the new 
canonical form. In Example 1 the states S1 and 85 are absorbing, 
hence these must be written first. We thus have 

S1 85 S2 sa S4 

81 0 0 0 0 

85 0 0 0 0 
P ~-----

82 q 0 0 p 0 

S3 0 0 q 0 P 

S4 0 P 0 q 0 

where the regions I, 0, R, and Q have been marked off. 
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It is convenient to consider the canonical form of the matrix P in an  
aggregated version. We unite all the ergodic sets, and all the tran- 
sient sets. (Let us say that  there are s transient states, and r - s  
ergodic states.) The form then becomes 

Here again the region 0 consists entirely of 0's. The s x s submatrix Q 
concerns the process as long as i t  stays in transient states, the 
s x (r - s)  matrix R concerns the transition from transient to  ergodic 
states, and the (r -s)  x (r-s)  matrix deals with the process after i t  has 
reached an ergodic set. From Theorem 3.1.1 we see tha t  the  powers 
of Q tend to 0. Hence as we raise P to  higher and higher powers, the 
matrices approach a matrix whose last s columns are all 0. This is the 
matrix version of Theorem 3.1.1. 

Let us now consider an  absorbing chain. By its definition we see 
that  S is I(,-,,,(,-,), i.e. a n  identity matrix of the appropriate dimension. 
Thus its canonical form is 

And by the nature of the powers of P we know that  the region I remains 
I .  This corresponds to the fact tha t  once an  absorbing state is entered, 
i t  cannot be left. From Theorem 3.1.1 we know that  the probability 
that  such a state is entered, in an absorbing chain, tends to 1. Hence 
we may say that  with probability 1 the chain will enter an  absorbing 
state and stay there, i.e. that  i t  will be "absorbed." 

Let us write some of our examples from Chapter 11, fi 2.2, in the new 
canonical form. I n  Example 1 the states sl and ss are absorbing, 
hence these must be written first. We thus have 

s1 s5 S2 S3 s4 
1 0  0 0 0  

0 1  0 0 0  
P = 

q o  O Y O  

0 0  q o p  

O P  O q O  
where the regions I ,  0, R, and Q have been marked off. 
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The matrix for Example 10 is already in canonical form in 3 2.2. 
The first two states are absorbing. Hence R is 4 x 2 and & is 4 x 4 in 
this example. 

Example 9 is not an absorbing chain. It has a single ergodic set, 
consisting of the first three states. The matrix appears in canonical 
form in § 2.2. I f  we want to study this process only until i t  enters the 
ergodic set, then we may make the ergodic states absorbing. The 
resulting transition matrix is 

If we do not even care a t  which st,ate the ergodic set is entered, we may 
lump the three ergodic states into a single one, obtaining the much 
simpler matrix 

The former mat,ris preserves Q and R, while i t  modifies S ;  the latter 
preserves only Q. This is in good agreement with the interpretation 
given for Q, 22, and S earlier in this section. 

I t  should now be clear that absorbing chains serve to answer all 
questions of the second type (concerning transient states) raised in 
5 2.5. But absorbing chains are also important in t3he study of an 
ergodic set. Suppose that  we wish t o  ask a question about what happens 
as the process goes from si to s, Then n c  may wish to "stop" the 
process as soon as it reaches s j ,  which we accomplish by making sj 
an absorbing st'ate. -Ant1 since sj can be reached from all states of its 
equivalence class, the resulting chain will be an absorbing Markov 
chain. This trick will be developed in 3 6.1. 

$ 3.2 The fundamental matrix. The following basic theorem is a 
direct consequence of the matrix theorem we proved in 1.11.1, if we 
recall that Qk tmds  to 0.  
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The matrix for Example 10 is already in canonical form in § 2.2. 
The first two states are absorbing. Hence R is 4 x 2 and Q is 4 x 4 in 
this example. 

Example 9 is not an absorbing chain. It has a single ergodic set, 
consisting of the first three states. The matrix appears in canonical 
form in § 2.2. If we want to study this process only until it enters the 
ergodic set, then we may make the ergodic states absorbing. The 
resulting transition matrix is 

0 0 0 0 0 

0 1 0 0 0 0 

0 0 1 0 0 0 
p= ____ I 

0 0 0 0 1/2 
1/4 1/4 0 0 0 

1/4 0 0 1/2 

If we do not even care at which state the ergodic set is entered, we may 
lump the three ergodic states into a single one, obtaining the much 
simpler matrix 

The former matrix proscn'es Q and R, while it modifies S; the Jatter 
presen'es onl~' Q. This is in good agreement with the interpretation 
gi ven for Q, R, and S earlier in this section. 

It should now be clear that absorbing chains serve to answer all 
questiolls of the second type (concerning transient states) raised in 
§ ~.5. But absorbing chains are also important in t.he study of an 
ergodic set. S\1ppose that we wish to ask a question about what happens 
as the process goes from SI to 5j Thell \\ e lllay wish to "stop" the 
process as soon as it reaches s;, which we accomplish by making Sj 

an absorbing Rtate. Alld since 5j can be reached from all states of its 
equivalence class, thE" resulting chain will be an absorbing Markov 
chain. This trick will be develored in § 6.1. 

§ 3.2 The fundamental matrix. The following basic theorem is a 
direct consequence of the matrix theorem we proved in § 1.11.1, if we 
recall that Qk tends to n. 
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3.2.1 THEOREM. For any absorbkng Markov chain, I-& has a n  
inverse, and 

(I-Q)-1 = I+Q+QZ+ - .  = SQ~.  
k =  0 

3.2.2 DEFINITION. For an  absorbing Markov chain we de$ne the 
fundamental matrix to be N = ( I  -&)-I. 

3.2.3 DEFINITION, W e  deJine nj to be the function giving the total 
number of times that the process i s  in s f .  (Th i s  is  defined only for 
transient state sf.) ukj is  dejined as the function that i s  1 if the process 
is  in state sj after k steps, and is  0 otherwise. (See $$ 1.7 and 1.8 for 
the notation used in this section.) 

We will now give a probabilistic interpretation to  N. We let T be 
the set of transient states. 

3.2.4 THEOREM. {Mi[nj]} = N, where st, sj E T. 

= 2 Q* since st ,  sj  are transient 
e = o  

= N by 3.2.1, 3.2.2. 

This completes the proof. 

This theorem establishes the fact tha t  the mean of the total number 
of times the process is in a given transient state is always finite, and 
that  these means are simply given by N. 

There is an  interesting alternative proof for this result. To compute 
Mi[nj], we may add up the original position's contribution, plus each 
of the steps' contribution. The original position contributes I if and 
only if i = j. I t  is convenient to define dij, the constant function that  is 
1 if i = j ,  0 otherwise. Then we can say that  the original position 
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21. After one step we move to sr with probability ptk. 
If  the new state is absorbing, it contributes nothing to  our mean, but 
if i t  is transient, then i t  contributes Mk[n,]. Hence we have 

We will apply these results to the examples of the last section. In 
the random walk, Exaniple 1 of § 2.2, 

and hence 

[Since p + q = 1, and hence (p -c g )  2 = 1, we have that  1 - 2pq =p2 + 92.1 
We see that ,  for example, if the process starts in ss (the middle state), 
then it will be in the middle state an average of l/(pz+qz) times. This 
quantity is always between 1 and 2 .  The minimum of 1 is achieved if 
p = 0 or 1, the maximum of 2 if p = 11% I n  the former case the process 
starts a t  s3 and goes directly to one of the boundaries, hence i t  will be 
in state s3 only a t  the beginnmg. But  even in the case p=1Iz we 
expect the process to return only once on the average. 

3.2.5 EXAMPLE la .  AS an illustration we give the fundamental 
matrix for the case p = 2/3,  i.e. when it is twice as likely to move to the 
right as to the left. 

s2 S3 s4 
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3.2.1 THEOREM. For any absorbing Markov chain, I-Q has an 
inverse, and 

co 

(l-Q)-l = 1 +Q+Q2+ ... = 2 QIc. 
k=O 

3.2.2 DEFINITION. For an absorbing Markov chain we define the 
fundamental matrix to be N"" (l_Q)-l. 

3.2.3 DEFINITION. We define Dj to be the function giving the total 
number of times that the proceS8 i8 in Sj. (This is defined only for 
transient state Sj.) Ukj i8 defined as the function that is 1 if the process 
is in state Sf after k steps, and is 0 otherwise. (See §§ 1.7 and 1.8 for 
the notation used in this section.) 

We will now give a probabilistic interpretation to N. We let T be 
the set of transient states. 

3.2.4 THEORE;'!. {JUI[njJ}=N, where St, Sj E T. 

<D 

PROOF. It is easily seen that n, = 2: Ukj. 

Hence 
k=O 

{Mi[nj]} = {Mi L~ Ukj]} 

= t~)Mi[U~j]} 

= t~ ((1-P(k)if)'O+P(k)w 1)} 

'" 
= 2: {p(k)ii} 

k=1J 

'" = 2: Qk since Si, Sj are transient 
k=U 

= N by 3.2.1, 3.2.2. 

This completes the proof. 

This theorem establishes the fact that the mean. of the total number 
of times the process is in a given transient state is always finite, and 
that, these means are simply given by N. 

There is an interesting alternative proof for this result. To compute 
I1I;[nj], we may add up the original position's contribution, plus each 
of the steps' contribution. The original position contributes 1 if and 
only if i = j. It is convenient to define d;j, the constant fUllction that is 
1 if i = j, 0 otherwise. Then we can say that the original position 
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3.2.1 THEOREM. For any absorbkng Markov chain, I-& has a n  
inverse, and 

(I-Q)-1 = I+Q+QZ+ - .  = SQ~.  
k =  0 

3.2.2 DEFINITION. For an  absorbing Markov chain we de$ne the 
fundamental matrix to be N = ( I  -&)-I. 

3.2.3 DEFINITION, W e  deJine nj to be the function giving the total 
number of times that the process i s  in s f .  (Th i s  is  defined only for 
transient state sf.) ukj is  dejined as the function that i s  1 if the process 
is  in state sj after k steps, and is  0 otherwise. (See $$ 1.7 and 1.8 for 
the notation used in this section.) 

We will now give a probabilistic interpretation to  N. We let T be 
the set of transient states. 

3.2.4 THEOREM. {Mi[nj]} = N, where st, sj E T. 

= 2 Q* since st ,  sj  are transient 
e = o  

= N by 3.2.1, 3.2.2. 

This completes the proof. 

This theorem establishes the fact tha t  the mean of the total number 
of times the process is in a given transient state is always finite, and 
that  these means are simply given by N. 

There is an  interesting alternative proof for this result. To compute 
Mi[nj], we may add up the original position's contribution, plus each 
of the steps' contribution. The original position contributes I if and 
only if i = j. I t  is convenient to define dij, the constant function that  is 
1 if i = j ,  0 otherwise. Then we can say that  the original position 
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21. After one step we move to sr with probability ptk. 
If  the new state is absorbing, it contributes nothing to  our mean, but 
if i t  is transient, then i t  contributes Mk[n,]. Hence we have 

We will apply these results to the examples of the last section. In 
the random walk, Exaniple 1 of § 2.2, 

and hence 

[Since p + q = 1, and hence (p -c g )  2 = 1, we have that  1 - 2pq =p2 + 92.1 
We see that ,  for example, if the process starts in ss (the middle state), 
then it will be in the middle state an average of l/(pz+qz) times. This 
quantity is always between 1 and 2 .  The minimum of 1 is achieved if 
p = 0 or 1, the maximum of 2 if p = 11% I n  the former case the process 
starts a t  s3 and goes directly to one of the boundaries, hence i t  will be 
in state s3 only a t  the beginnmg. But  even in the case p=1Iz we 
expect the process to return only once on the average. 

3.2.5 EXAMPLE la .  AS an illustration we give the fundamental 
matrix for the case p = 2/3,  i.e. when it is twice as likely to move to the 
right as to the left. 

s2 S3 s4 
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contributes dij • After one step we move to Sk with probability Pilc. 

If the new state is absorbing, it contributes nothing to our mean, but 
if it is transient, then it contributes MIc[nj]. Hence we have 

M i [ 111] = dij + L PikMk[ n)) 
SkE T 

Hence 
{Mi[nj]} = (1 _Q)-l = N. 

\Ve will apply these results to the examples of the last section. In 
the random walk, Example 1 of § 2.2, 

(1 -Q) = 

and hence 

I 1 

{ -q 

\ 0 

52 

-P -:\ 1 

-q IJ 
S3 

P 
p2+q2 

1 
p2+q2 

q 
p2+q2 

S4 

p2 
p2+q2 

P 
p2+q2 

q+p2 
p2+q2 

[Since p + q = 1, and hence (p + q)2 = 1, we have that 1- 2pq = p2+ q2.] 
We see that, for example, if the process starts in S3 (the middle state), 
then it will be in the middle state an a\'erage of 1/(p2 + q2) times. This 
quantity is always between 1 and 2. The minimum of 1 is achieved if 
p = 0 or 1, the maximum of 2 if p = In the former case the process 
starts at S3 and goes directly to one of the boundaries, hence it will be 
in state 83 only at the beginning. But even in the case p = 1/z we 
expect the process to return on:y once on the average. 

3.2.5 EXAMPLE lao As an illustration we give the fundamental 
matrix for the case p= 2/3, i.e. when it is twice as hkely to move to the 
right as to the left. 

82 S3 84 

82 (/5 6/ 5 

" ) i5 

N=S3\3/5 9! 5 6/5 . 

S4 1/5 7/5 
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In  the college example, Example 10 of 5 2.2, remembering t,hat 
p + q + r =  1, we have 

The zeros in N indicate that no one is demoted in the college. Thus, 
for example, a junior cannot spend any time as a sophomore or fresh- 
man in the future. As an illustration we compute N (approximately) 
for the case we will call Example 10a, where the probabilities of flunking 
out, repeating, and being promoted are p = .2, q = .1, r  = .7,  respectively. 

In the urn example, Example 9 of 5 2.2, we have 
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If the process reaches (1,1:0) or (3,0,1), then from then on it is expected 
to be in that state 413 times, and in the other state 2/3 times. (The 413 
includes the original position.) From neither of these states can the 
state (2,0,0) be reached, since a painted ball always remains painted. 
If the process starts in (2,0,0), which is its natural starting position, i t  
will be in this position only once. It is expected to be in each of the 
other two states once, which is the average of 413 and 213. 

These fundamental matrices will be used throughout this chapter 
for illustrations. 

5 3.3 Applications of the fundamental matrix. We will show that a 
number of interesting quantities can be expressed in terms of the 
fundamental matrix. These results will here be $lustrated in terms of 
the random walk Example l a  (see 5 3.2.5), and all the absorbing chains 
will be worked out in the next section. 

3.3.1 DEFINITION. W e  de$ne. the following new matrices and vectors: 

Nz = N(2Ndg - I) - Nsq s x s matrix  
B = N R  s x ( r  - s )  matr ix  
7. = N( s component column vector 

7.2 = (2N - I)T - 7Sq s component column vector 

3.3.2 THEOBEM. QiV = NQ = 3 - I .  

PROOF. From 3.2.1, 3.2.2, 

N = I+Q+QQ + .  . . 
Hence, 

&N = NQ = & + Q Z + Q 3 +  . . . , 
which is the original series without I. 

3.3.3 THEOREM. {Var,[nj]] = Y2, where st, sf E 

PROOF. We recall that Var,[nj] = ?df3[nZj] - 
3.2.4 we see that 

{Wn:lP) = N g g ,  
hence we need only show that 

We will assume that these means are finite. A proof of this fact will 
be given nt the end of this section. To compute these means we again 
ask where the process can go in one step, from its starting position s i .  
I t  can go to sk with probability p ik  If the new state is absorbing, then 
we can never reach s, again, and the only possible contribution is from 
the initial state, which is dir If the new state is transient, we will be 
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In the college example, Example 10 of § 2.2, remembering that 
p+q+r= 1, we have 

C' ° ° 0 

T p+r 0 
o ) (I -Q) = ~ -r p+r 

1':r 0 -r 

53 54 85 S6 

1 

° 0 53 0 SENIOR 
P+1' 

r 
0 0 54 

(p + r)2 
JUNIOR 

p-t- r 
N = (1 _Q)-l 

1"2 1 r 

° 55 
(1'+r)3 (1'+r)2 

SOPHOMORE 
1'+r 

r3 r2 r 1 
S6 (1'+r)4 (1'+r)3 (1' + r)2 

FRESHMAN 
p+r 

The zeros in N indicate that no one is demoted in the college. Thus, 
for example, a junior cannot spend any time as a sophomore or fresh
man in the future. As an illustration we compute N (approximately) 
for the case we will call Example lOa, where the probabilities of flunking 
out, repeating, and being promoted are l' = .2, q= .1, r= .7, respectively. 

C1 

0 0 0 
) ~w. 

.86 1.11 0 o JUNIOR 
N= 

.67 .86 1.11 o SOPHOMORE 

.52 .67 .86 1.11 FRESHMAN 

In the urn example, Example \) of § 2.2, we have 

(2,0,0) 

(1,1,0). 

(1,0,1) 
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man in the future. As an illustration we compute N (approximately) 
for the case we will call Example 10a, where the probabilities of flunking 
out, repeating, and being promoted are p = .2, q = .1, r  = .7,  respectively. 

In the urn example, Example 9 of 5 2.2, we have 
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If the process reaches (1,1:0) or (3,0,1), then from then on it is expected 
to be in that state 413 times, and in the other state 2/3 times. (The 413 
includes the original position.) From neither of these states can the 
state (2,0,0) be reached, since a painted ball always remains painted. 
If the process starts in (2,0,0), which is its natural starting position, i t  
will be in this position only once. It is expected to be in each of the 
other two states once, which is the average of 413 and 213. 

These fundamental matrices will be used throughout this chapter 
for illustrations. 

5 3.3 Applications of the fundamental matrix. We will show that a 
number of interesting quantities can be expressed in terms of the 
fundamental matrix. These results will here be $lustrated in terms of 
the random walk Example l a  (see 5 3.2.5), and all the absorbing chains 
will be worked out in the next section. 

3.3.1 DEFINITION. W e  de$ne. the following new matrices and vectors: 

Nz = N(2Ndg - I) - Nsq s x s matrix  
B = N R  s x ( r  - s )  matr ix  
7. = N( s component column vector 

7.2 = (2N - I)T - 7Sq s component column vector 

3.3.2 THEOBEM. QiV = NQ = 3 - I .  

PROOF. From 3.2.1, 3.2.2, 

N = I+Q+QQ + .  . . 
Hence, 

&N = NQ = & + Q Z + Q 3 +  . . . , 
which is the original series without I. 

3.3.3 THEOREM. {Var,[nj]] = Y2, where st, sf E 

PROOF. We recall that Var,[nj] = ?df3[nZj] - 
3.2.4 we see that 

{Wn:lP) = N g g ,  
hence we need only show that 

We will assume that these means are finite. A proof of this fact will 
be given nt the end of this section. To compute these means we again 
ask where the process can go in one step, from its starting position s i .  
I t  can go to sk with probability p ik  If the new state is absorbing, then 
we can never reach s, again, and the only possible contribution is from 
the initial state, which is dir If the new state is transient, we will be 
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If the process reaches (1,1,0) or (1,0,1), then from then on it is expected 
to be in that state 4/3 times, and in the other state 2/3 times. (The 4/3 
includes the original position.) From neither of these states can the 
state (2,0,0) be reached, since a painted ball always remains painted. 
If the process starts in (2,0,0), which is its natural starting position, it 
will be in this position only once. It is expected to be in each of the 
other two states once, which is the average of 4/3 and 2/3. 

These fimdamental matrices 'will be used throughout this chapter 
for illustrations. 

§ 3.3 Applications of the fundamental matrix. We will show that a 
number of interesting quantities can be expressed in terms of the 
fundamental matrix. These results will here be jllustrated in terms of 
thc random walk Example la (see § 3.2.5), and all the absorbing chains 
will be worked out in the next section. 

3.3.1 DEFINITION. We define' the following new matrices and vectors: 

N2 = N(2Ndg-I)-NsQ 
B = NR 

T = Ng 
T2 = (2N -1)7-7,0. 

s X s matrix 
s x (r-s) matrix 
s component column vector 
s component column vector 

3.3.2 THEOREM. QN = NQ = N - I. 

PROOF. From 3.2.1, 3.2.2, 

N = I +C) +Q2.t 
Hence, 

which is the original series without 1. 

3.3.3 THEOREM. {Varj[nj]}=N2 , where Sj, Sf E T. 

PROOF. We recall that Varj[nJJ=M j [n 2j]-M1[njJ2. From Theorem 
3.2.4 we see that 

{Mt[n:_ = NsQ , 

hence we need only show that 

{Mt[n 2j]} = N( 2Ndg-1). 

We will assume that these means are finite. A proof of this fact will 
be given at the end of this section. To compute these means we again 
ask where the process can go in one step, from its starting position Sj. 

It can go to 5); with probability PC{. If the new state is absorbing, then 
we can never reach Sf again, and :he only possible contribution is from 
the initial state, which is d ij . If the new state is transient, we will be 
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in sf dtj times from the original position, and n,  times from the later steps. 
Nence, remembering that drl is a constant function and dij = dZtr, 

= Q{W[n2jl}  + 2(QN)dg+I. 
Hence 

{Mt[n2,1) = ( I  -Q)-1(2(QN)dg+I) 
= N ( 2 ( N  - I ) d g  + I )  = N(2Ndg-  1). 

The matrix (QN)dg appeared above since the factor daj has the effect 
of setting all elements off the main diagonal equal to 0. 

In our Example la ,  we have already computed N ,  and we now 
compute N z  as well. 

s2 s3 s4 

Thus we see that for any state as initial state the variance is largest for 
the middle state. We also note that N 2  is quite large compared to 
N,,; hence the means are fairly unreliable estimates for this Rlarkov 
chain. This will often be the case. 

3.3.4 DEFINITION. Let t be the function giving the number of steps 
(including the original position) in which the process is  in a transient 
state. 

If the process starts in an ergodic state, then t = 0. If the process 
starts in a transient state, then t gives the total number of steps needed 
to reach an ergodic set. In an absorbing chain this is the time to 
absorption. 
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3.3.5 THEOREM. {Wi[t]) = T; (VarZ[t]} = TZ, where st E a'. 
PROOF. It is easily seen that t = 2 mi. 

S, i T 
Nence 

since this gives the row sums of N. 
For the variance we carry out an argument similar to that in $3.3.3, 

but here the first step always counts. 

Hence 

- Xplz[tj2) = (2N - 1 ) ~  - T~~ 
In our example, 
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in Sj dtj times from the original positio~, and nj times from the later steps. 
Hence, remembering that d'j is a constant function and dis = d2jj, 

{M,[n2j]} = {2:. Pt"d21f + 2: Pt"Mk[(nj+dts)2J} 
8keT 'A:eT 

= {2: Plk(M,,[n21J + 2M,,[ns]' dis) + diS} 
8,tET 

= Q{Mt[n2jJ}+2(QN)dg+ 1 . 
Hence 

{M,[n2S]} = (I -Q)-1(2{QN)dg+1) 

= N{2{N -1)dg+1) = N{2Ndg-1). 

The matrix (QN)dg appeared above since the factor d'j has the effect 
of setting all elements off'the main diagonal equal to O. 

In our Example la, we have already computed N, and we now 
compute N 2 as well. 

C 
6/5 "') C .. 36/25 "''') N = 3/5 9/5 6/5 Nsq = 9/25 81/25 36/25 

1/5 3/5 7/5 1/25 9/25 49/25 

(':' 
0 

,D c 0 

.D N dg = 9/s 2Ndg-1 = : 13/5 

0 0 

S2 S3 84 

("'" ",,, "''') " ('" 42/25 "'l N{2Ndg-1) = 27/25 117/25 54/25 N2 =' sa, 18/25 36/25 18/25 . 

9/25 39/25 63/25 S4 8/25 3°/25 14/25 

Thus we see that for any state as initial state the variance is largest for 
the middle state. We also note that N2 is quite large compared to 
Nsq; hence the means are fairly unreliable estimates for this Markov 
chain. This will often be the case. 

3.3.4 DEFINITION. Let t be the function giving the number of steps 
(including the original position) in which the process is in a transient" 
state. 

If the process starts in an ergodic state, then t=o. If the process 
starts in a transient state, then t gives the total number of steps needed 
to reach an ergodic set. In 'an absorbing chain this is the time to 
absorption. 

i" 
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PROOF. It is easily seen that t = 2 mi. 
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Nence 

since this gives the row sums of N. 
For the variance we carry out an argument similar to that in $3.3.3, 

but here the first step always counts. 

Hence 

- Xplz[tj2) = (2N - 1 ) ~  - T~~ 
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3.3.5 THEOREM. {Mi[t)}=T; {Vari[tJ}=TZ, where Si.E T. 

PROOF. It is easily seen that t = )' nj. 
sjET 

Hence 

{Mi[t]} = ~',2 Mi[ntf} 
.S,-E T 

= Nf, 

since this gives the row sums of N. 
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For the variance we carry out an argument similar to that in §3.3.3, 
but here the first step always counts. 

Hence 

Thus 

{Mi[t2]} = { .L _ Pik" 1 + )' p,d'l:h[(t+ 1 )2J}' 
Sk E T Sk E T 

= {L PikPli;[t2J + 2lHk[t]) + I} 
sk ET 

= Q{Mi[t2]} -'- 2Q.,-+t. 

{Mi[t2]} = (1-Q)-1(2QT+g) 

= 2NQT+Ng 

= 2(N -1)1'+1' 

= (2N -J)T. 

{Var,Et]} == {Mi[t2]-M;Ct]2} = (2N-1)T-1'8q. 

In' our example, 

(2N -1) = 

7Sq = (:::;::) 

121/ 25 
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We see that one expects to reach the boundary most quickly from 
sq. This is not surprising, since i t  is easier to reach the boundary from 
an outside state than from the middle, and i t  is more probable that the 
process moves to the right. But we again note that the variance is 
sizable. 

We have computed means only for measures in which the process 
starts in a given state st. But i t  is easy to obtain from this the means 
and variances for an arbitrary initial probability vector. 

3.3.6 COROLLARY. If n is  the initial probability vector for an  
absorbing chain, and n' consists of the last s components of n, i.e. n' 
gives the initial probabilities for the transient states, then 

PROOF. This is an immediate consequence of the fact that for any 
function f, M,[f]=nMf[f], which follows from the nature of the tree 
measure. The right sides contain n' rather than n, since the various 
means are 0 if the initial state is absorbing. 

Our remaining applications will concern the question of which 
absorbing state is likely to capture the process. 

3.3.7 THEOREM. I f  bij is  the probability that the process starting in 
transient state st ends u p  in absorbing state sf, then 

PROOF. Starting in si, the process may be captured in sr in one or 
more steps. The probability of capture on a single step is pij. If this 
does not happen, the process may move either to another absorbing 
state (in which case i t  is impossible to reach sj), or to a transient state 
sk. In  the latter case there is probability bkj of being captured in the 
right state. Hence we have 

which can be written in matrix form as 

B = R+&B. 

Thus 
B = (I-Q)-lR = NR. 

An alternative proof is based on the following observation: Every 
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time that the process is in transient state sk, i t  has probability pkjr of 
going to sf. Hence it is possible to show that 

This gives directly that 

B = NR. 
In our example 

I t  is worth noting that for each starting state the sum of the two absorption 
probabilities is 1. By Theorem 3.1.1 it will always be true that NR6,-, = 
&. It is also easy to verify this directly. 

The further to the right we start, the more probable it is, of course, 
that the process will end up at the right end. It is interesting to see 
that even in the leftmost transient state the probability is somewhat 
greater for capture on the right. 

3.3.8 COROLLARY. If p, is  the a-th column of R ,  i.e. p,=pi, for 
and for $xed a ,  then Spa gives the probabilities of absorption in 

the given absorbing state s,, for any transient state as initial state. 

This corollary is useful if we are interested in a single absorbing state. 

THEOREM. If B* is the r x r matrix whose entry b*ij gives the 
probability of being absorbed i n  s j :  starting i n  si, for all states Si and sj, 
then 

Pa* = B*. 

PROOF. If S j  E T, then b*zj = 0.  Hence the last s columns of B* are 0. 
Consider sj absorbing. If si E T, then b*ij=trtj, as in 3.3.7. If si is 
also absorbing, then b*ij=dij. Hence we have 

But R + Q B =  R + Q N R = R + ( . i i ' - I ) B = N R = B .  
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We see that one expects to reach'the boundary most quickly from 
S4. This is not surprising, since it is easier to reach the boundary from. 
an outside state than from the middle, and it is more probable that the 
process moves to the right. But we again note that the variance is 
sizable. 

We have computed means only for measures in which the process 
starts in a given state Sf. But it is easy to obtain from this the means 
and variances for an arbitrary initial probability vector. 

3.3.6 CoROLLARY. If TT is the initial probability vector for an 
absorbing cha,in, and TT' CDnsist.s of the last .~ components of TT, i.e. TT' 
gives the initial probabilities for the transient states, then 

{M,,[n,]} = TT'N 

{Va.r,,[n,]} = TT'N(2Ndg-1)- (TT'N)sq 

{M .. [t]} =TT'T 

{Var,,[tJ} = TT'(2N-I)T-(TT'T)Sq. 

PROOF. This is an immediate consequence of the fact that for any 
function f, M,,[f] = TTM,[f], which follows from the nature of the tree 
measure. The right sides contain TT' rather than TT, since the various 
means are 0 if the initial state is absorbing. 

Our remaining a.pplications will concern the question of which 
absorbing state is likely to capture the process. 

3.3.7 THEOREM. If bij is the probability that the process starting in 
transient state St ends up in absorbing state Sf. then 

{bij} = B = NR, SjE T, S, E T. 

PROOF. Starting in Sl, the process may be captured in Sf in one or 
more steps. The probability of capture on a single step is Pij. If this 
does not happen, the process may move either to another absorbing 
state (in which case it is impossible to reach si), or to a transient state 
Sk. In the latter case there is. probability bkj of being captured in the 
right state. Hence we have 

blj = Pi! + 2: Plkbtf, 
SteT 

whjch can be written in matrix form as 

B = R+QB. 
Thus 

B = (I -Q)-lR = NR. 

An alternative proof is based on the following observation: Every 
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and variances for an arbitrary initial probability vector. 

3.3.6 COROLLARY. If n is  the initial probability vector for an  
absorbing chain, and n' consists of the last s components of n, i.e. n' 
gives the initial probabilities for the transient states, then 

PROOF. This is an immediate consequence of the fact that for any 
function f, M,[f]=nMf[f], which follows from the nature of the tree 
measure. The right sides contain n' rather than n, since the various 
means are 0 if the initial state is absorbing. 

Our remaining applications will concern the question of which 
absorbing state is likely to capture the process. 

3.3.7 THEOREM. I f  bij is  the probability that the process starting in 
transient state st ends u p  in absorbing state sf, then 

PROOF. Starting in si, the process may be captured in sr in one or 
more steps. The probability of capture on a single step is pij. If this 
does not happen, the process may move either to another absorbing 
state (in which case i t  is impossible to reach sj), or to a transient state 
sk. In  the latter case there is probability bkj of being captured in the 
right state. Hence we have 

which can be written in matrix form as 

B = R+&B. 

Thus 
B = (I-Q)-lR = NR. 

An alternative proof is based on the following observation: Every 
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time that the process is in transient state sk, i t  has probability pkjr of 
going to sf. Hence it is possible to show that 

This gives directly that 

B = NR. 
In our example 

I t  is worth noting that for each starting state the sum of the two absorption 
probabilities is 1. By Theorem 3.1.1 it will always be true that NR6,-, = 
&. It is also easy to verify this directly. 

The further to the right we start, the more probable it is, of course, 
that the process will end up at the right end. It is interesting to see 
that even in the leftmost transient state the probability is somewhat 
greater for capture on the right. 

3.3.8 COROLLARY. If p, is  the a-th column of R ,  i.e. p,=pi, for 
and for $xed a ,  then Spa gives the probabilities of absorption in 

the given absorbing state s,, for any transient state as initial state. 

This corollary is useful if we are interested in a single absorbing state. 

THEOREM. If B* is the r x r matrix whose entry b*ij gives the 
probability of being absorbed i n  s j :  starting i n  si, for all states Si and sj, 
then 

Pa* = B*. 

PROOF. If S j  E T, then b*zj = 0.  Hence the last s columns of B* are 0. 
Consider sj absorbing. If si E T, then b*ij=trtj, as in 3.3.7. If si is 
also absorbing, then b*ij=dij. Hence we have 

But R + Q B =  R + Q N R = R + ( . i i ' - I ) B = N R = B .  
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time that the process is in transient state Sk, it has probability Pk! of 
going to sf. Hence it is possible to show that 

This gives directly that 

In our example 

bij = ') Mj[nk]' Pic!. 
"-' 

s,i:ET 

B = NR. 

(
1/3 0 ) 

R = 0 0 

o 2/31 

82 (7/15 
B = NR = 83 1/5 

S4 \ 1/15 

It is worth noting that for each starting state the sum of the two absorption 
probabilities is 1. By Theorem 3.1.1 it will always be true that NRtr-s = 
ts. It is also easy to verify this directly. 

The further to the right we start, the more probable it is, of course, 
that the process will end up at the right end. It is interesting to see 
that even in the leftmost transient state the probability is somewhat 
greater for capture on the right. 

~.3.8 COROLLARY. If p" is the a-th column of R, i.e. pa = pia for 
Si in T and fOT fixed a, then S p" gives the probabilities of absorption in 
the g1:ven absorbing state Sa, for any transient state as initial state. 

This corollary is useful if we are interested in a single absorbing state. 

3.3.9 THEOREM. If B* is the r x r matrix whose entry b*jj gives the 
probability of being absorbed l:n 5;, starting in si,for all states Si and Sj, 

then 
PB* = B*. 

PROOF. If Sf E T, then b*i1 = O. Hence the last s columns of B* are O. 
Consider Sj absorbing. If Si E T, ,.,hen b*;j=Oij, as in § 3.3.7. If Si is 
also absorbing, then b*jj=dij . Hence we have 

I I ! 0 ) 
B* = \Bi~o-

But R+QB=R+QNR=R+ 
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$ 3.4 Examples Hence PB* =. BX. 

We thus see that the r-component column vector giving the proba- 
bilities of absorption in an absorbing state sj is a fixed vector of P, and 
its first r - s components are 0, except the j-th, which is 1. This deter- 
mines the vector. This method of finding the absorption probabilities 
is useful if we are not interested in finding N. 

In our example it is easily verified that 

EXAMPLE 3.4.1 (Example P of $ 2.2 continued). In  the random 
walk we find: 

are fixed vectors of P. 
We will now supply the missing step for Theorem 3.3.3. 

PROOF. 

In  particular, if p  = 112 (Example Lb), then 

m m 

k-0 1x0 

M t [ u k j u l j ]  is the probability that the process is in sj both on step k and 
on 1, starting in st. If we let m = min(k, I ) ,  d = Ik - 11, then this is the 
probability of being in sj after m steps, and of returning d steps later. 
Hence M t [ u k j u l i ]  = p ( m ) i j p ( d ) j j .  

And if p  = P (Example Ic), then 

= bz 2 2 cn where n = max ( l ,  1 )  
k=O l = U  

and the variances are all 0. 
This last case is easily interpreted if we remember that the process 

in this case must move to the right. 

m 

= b2 2 (2121 1)cn, which is finite. 
n=O 
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Hence PB* =.B*. 

We thus see that the r-component column vector giving the proba
bilities of absorption in an absorbing state Sj is a fixed vector of P, and 
its first r - s components are 0, except the j-th, which is 1. This deter
mines the vector. This method of finding the absorption probabilities 
is useful if we are not interested in finding N. 

In our example it is easily verified that 

are fixed vectors of P. 
We will now supply the missing step for Theorem 3.3.3. 

3.3.10 THEOREM. Mi[n 2j] i8 finite for any absorbing chain, and any 
Si, 5j E T. 

PROOF. Mi[n 2j] = M{ C~ UkJ) 
= M{~ ,~ UkjUli] 

"' <>0 

= 2.: 2.: Mi[UkjUlj]. 
k=O 1-0 

Mi[UkjUl j ] is the probability that the process is in Sj both on step k and 
on I, starting in Sj. If we let m =min(k, I), d = Ik -II, then this is the 
probability of being in Sj after m steps, and of returning d steps later. 
Hence Mi [ Ukjulf] = p(m)jjp(d) ji' 

00 00 

2: 2: p(m)jjp(d)jj 

k~O 1=0 

ro a) 

:::::: 2: 2.: (b·cm)(b.ed ) 
k=O 1=0 

co ro 

= b2 2.: 2.: cn where n = max (k, I) 
k=O 1=0 

<X) 

= b2 2: (2n+ 1 len, which is finite. 
110=0 
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§ 3.4 Examples 

EXAMPLE 3.4.1 (Example 1 ;)f § 2.2 continued). In the random 
walk we find: 

(

P+Q2 P 

N = p2~q2 q 1 

q2 q 

1+2p 

2 

1 + 2q 

(
1+2P ) 4pq 

TZ = (p2 + q2)2 2 

1 +2q 

p3 ) 
pZ 

pq+p3 

In particular, if p = 1/2 (Example 1 b), then 

C ':') c: 
2 ';') N = 1 2 N 2 = 2 

1/2 1 3/21 2 3/ 4 

T ~ (;) " (:) C 'I,) B= 1/2 1/2 . 

\8 1/4 3( 4 

And if p= 1 (Example Ie), then 

N 

and the variances are all O. 
This last case is easily interpreted if we remember that the process 

in this case must move to the right. 
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EXAMPLE 3.4.2 (Example 10 of. $ 2.2 continued). In the college 

process we have, letting t = r - 
p + r '  

The probability of graduating from each class depends only on the 
r 

ratio t = -. This ratio is the conditional probability that  the man 
p + r  

is rather than flunked out, given that  he leaves his present 
clilss. Having successive powers of this ratio can be interpreted as 
saying that  each time he leaves his class he must be promoted rather 
than flunked out, but i t  does not matter how long he stays in his present 
class. The formulas simplify greatly if we eliminate the possibility of 
having a man repeat the class, that  is if q = O .  I n  that  case, 
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B is unchanged. 
I n  the numerical Example 10a (cf. 5 3.2 .5)  we have : 

FLUNK GRADUATE 

OUT 

Thus a student must reach the junior year before he has a better than 
even chance of graduating. 
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EXAMPLE 3.4.2 (Example 10 of. § 2.2 continued). In the college 

process we have, letting t = _r_: 
p+r 

N __ 1_ t 
- (p+r) t2 

(

1 

:, ~ f) 
1 

N2 = (p+r)2 

t3 

( 
qt+:-tz 

qt2 + t2_t4 

qt3+t3_t6 

o 
q 

qt + t - t2 

qt2+t2_t4 

(
l_t) 

7'=~·1-t2 
P i_t3 

1_t4 

o 
o 
q 

qt + t - t 2 ~) 

( 

q(l-t) ) 
1 q(l_t2)+t-2t2+t3 

"7"2 = p(p+r) q(1-t3)+t+t2-4P+t4+t. 

q( 1- t 4) + t + t 2 + t 3 - 6t 4 + t 5 + t 6 + t 7 

( ~=:2 :2) B= . 
I-t 3 t a 

I-t4 t4 

The probability of graduating from each class depends only on the 

ratio t = _r_. This ratio is the conditional probability that the man 
p+r 

is promoted rather than flunked out, given that he leaves his present 
class. Having successive powers of this ratio can be interpreted as 
saying that each time he leaves his class he must be promoted rather 
than flunked out, but it does not matter how long he stays ill his present 
class. The formulas simplify greatly if we eliminate the possibility of 
having a man repeat the class, that is if q = O. In that case, 

r 
t = P + r = r, and 
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EXAMPLE 3.4.2 (Example 10 of. $ 2.2 continued). In the college 

process we have, letting t = r - 
p + r '  

The probability of graduating from each class depends only on the 
r 

ratio t = -. This ratio is the conditional probability that  the man 
p + r  

is rather than flunked out, given that  he leaves his present 
clilss. Having successive powers of this ratio can be interpreted as 
saying that  each time he leaves his class he must be promoted rather 
than flunked out, but i t  does not matter how long he stays in his present 
class. The formulas simplify greatly if we eliminate the possibility of 
having a man repeat the class, that  is if q = O .  I n  that  case, 
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B is unchanged. 
I n  the numerical Example 10a (cf. 5 3.2 .5)  we have : 

FLUNK GRADUATE 

OUT 

Thus a student must reach the junior year before he has a better than 
even chance of graduating. 
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(, 0 0 

~) ( 0 

0 0 

~) 1 0 r-r2 0 0 
N= N 2 = 

r r2- r4 r-r2 0 

r3 r2 r r3_ r6 r2- r4 r-r2 

(' ) (' ) l+r 1 
T= 1"2 = pr . 

1 +r+r2 1 + 3r+r2 

1 +r +r2 + r3 1 + 3r + 6r 2 + 3r3 + r4 

B is unchanged. 
In the numerical Example lOa (cf. § 3.2.5) we have: 

(

1.11 

N = .86 

.67 

.52 

(

.12 

.31 
Nz = 

.37 

.37 

T = (~:~~\ 
2.65 ) 

3.17) 

o 
1.11 

.86 

.67 

o 
.12 

.31 

.37 

o 
o 
1.11 

.86 

o 
o 

.12 

.31 

.43 ( .12) 
72 = 1.13 

2.22 

FLUNK GRADUATE 

OUT 

( :~~ 
B-

.53 

.63 

.78) SENIOR 

.60 JUNIOR 

.4 7 SOPHOMORE 

.37 FRESHMAN 

57 

Thus a student must reach the junior year before he has a better than 
even chance of graduating. 
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EXAMPLE 3.4.3 (Example 9 of 5 2.2). In the urn example the five 
vectors and matrices are : 

Since the process must leave s4 immediately and cannot return, there is 
0 variance for the number of times in this state. Of the remaining 
variances the diagonal elements are smallest-this is due to the 
stabilizing effect of having to count the original position. 

The B matrix needs special interpretation in this case. Since the 
states sl, sz, and s3 were not absorbing in the original process, the 
"absorption probabilities" must be interpreted as probabilities of 
entering the ergodic set a t  the given state. Thus, for example, if the 
process starts with both balls unpainted (state s4), then there is pro- 
bability that the first time both balls are painted there will be one 
of each color, that they will both be red, and 114 that they will both 
be black. It should be noted that these probabilities are the same 
as if we had assigned the two balls colors independently and a t  
random. 

5 3.5 Extension of results. We will see that results obtained in 
5 3.3 can be applied to a wider variety of problems. 

3.5.1 DEFINITION. A set S of states is  an  open set if from every state 
i n  S it is  possible to go to a state i n  S .  

It is easy to think of examples of open sets : A set consisting of a single 
state is open (unless the state is absorbing), so is a set of transient 
states, so is a proper subset of an ergodic set, etc. The following 
theorem characterizes these sets. 
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3.5.2 THEOREM. A set S of states is  open if and only if no ergodic set 
i s  a subset of S. 

PROOF. If an ergodic set is contained in S, then there is no escape 
from this set once it is entered ; hence S is not open. 

On the other hand we know that from every state we can reach an 
ergodic state. And from an ergodic state we can reach all the elements 
of its ergodic set. Hence if there is no ergodic set contained in S, 
then for every element of S we can find an ergodic state in S which can 
be reached from the given state. Hence S is open. 

3.5.3 THEOREM. I f  S is  an open set of states, and all the states in S 
are made absorbing states, then the resulting Harkov chain is  absorbing, 
and its transient states are the elements of S .  

PROOF. Since S is open, from every state of i t  we can reach a state 
in S-which must be an absorbing state. ence the chain is absorbing. 
And since from each element of S we can reach an absorbing state, the 
elements of S must all be transient states in the new process. 

3.5.4 THEOREM. Let S be an open set of s states. Let Q be the 
s x s submatrix of P corresponding to these states. Let p, be the s- 
component column vector with components pi,, where the st are the 
elements of S and s, E S. Let the process start in sf. Then: 

( 1 )  The ij-component of N= (I-&)-I is  the mean number of times 
the process i s  in sj before leaving S. 

(2) The ij-components of X z  = N(2Nd, - I )  - N,, i s  the variance of 
the same function. 

(3) The i-th component of T = 2\'[ is  the mean number of steps needed 
to leave S .  

(4) The i-th component of 7 2  = (2.N - I)T - -rsq is  the variance of the 
same function. 

(5) The i-th cmponent of Yp, is  the probability that the process goes 
to s, when it leaves S. 

PROOF. The various parts of this theorem are a direct consequence 
of the corresponding results in $ 3.3, due to Theorem 3.5.3. 

As an application of this theorem consider the following problem. 
Let sf and sk be any two states in a regular Markov chain. Assume 
that the process is started a t  a third state. What is the probability 
of reaching sk before sj? This probability may be found from 
3.5.4(5) by choosing8 to be the set of all states in the ergodic set except 
sj and sc. 
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EXAMPLE 3.4.3 (Example 9 of § 2.2). In the urn example the five 
vectors and matrices are: 

N ~ (: ,;, ) 
N, ~ (: 

1/3 ') -/3 

4/3 4/9 2/3 

2/a 4/3 2ja 4/9 

r= G) r, ~ (;) 
Sa 

Since the process must leave S4 immediately and cannot return, there is 
o variance for the number of times in this state. Of the remaining 
variances the diagonal elements are smallest-this is due to the 
stabilizing effect of having to count the original position. 

The B matrix needs special interpretation in this case. Since the 
states 81, 82, and S3 were not absorbing in the original process, the 
"absorption probabilities" must be interpreted as probabilities of 
entering the ergodic set at the given state. Thus, for example, if the 
process starts with both balls unpainted (state 54), then there is pro
bability 1/2 that the first time both balls are painted there will be one 
of each color, 1/4 that they will both be red, and 1/4 that they will both 
be black. It should be noted that these probabilities are the same 
as if we had assigned the two' balls colors independently and at 
random. 

§ 3.5 Extension of results. We will see that results obtained in 
§ 3.3 can be applied to a wider variety of problems. 

3.5.1 DEFINITION. A set S of staies is an open set if from every slale 
in S it is possible to go to a state in S. 

It is easy to think of examples of open sets: A set consisting of a single 
state is open (unless the state is absorbing), so is a set of transient 
states, so is a proper subset of an ergodic set, etc. The following 
theorem characterizes these sets. 
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EXAMPLE 3.4.3 (Example 9 of 5 2.2). In the urn example the five 
vectors and matrices are : 

Since the process must leave s4 immediately and cannot return, there is 
0 variance for the number of times in this state. Of the remaining 
variances the diagonal elements are smallest-this is due to the 
stabilizing effect of having to count the original position. 

The B matrix needs special interpretation in this case. Since the 
states sl, sz, and s3 were not absorbing in the original process, the 
"absorption probabilities" must be interpreted as probabilities of 
entering the ergodic set a t  the given state. Thus, for example, if the 
process starts with both balls unpainted (state s4), then there is pro- 
bability that the first time both balls are painted there will be one 
of each color, that they will both be red, and 114 that they will both 
be black. It should be noted that these probabilities are the same 
as if we had assigned the two balls colors independently and a t  
random. 

5 3.5 Extension of results. We will see that results obtained in 
5 3.3 can be applied to a wider variety of problems. 

3.5.1 DEFINITION. A set S of states is  an  open set if from every state 
i n  S it is  possible to go to a state i n  S .  

It is easy to think of examples of open sets : A set consisting of a single 
state is open (unless the state is absorbing), so is a set of transient 
states, so is a proper subset of an ergodic set, etc. The following 
theorem characterizes these sets. 
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3.5.2 THEOREM. A set S of states is  open if and only if no ergodic set 
i s  a subset of S. 

PROOF. If an ergodic set is contained in S, then there is no escape 
from this set once it is entered ; hence S is not open. 

On the other hand we know that from every state we can reach an 
ergodic state. And from an ergodic state we can reach all the elements 
of its ergodic set. Hence if there is no ergodic set contained in S, 
then for every element of S we can find an ergodic state in S which can 
be reached from the given state. Hence S is open. 

3.5.3 THEOREM. I f  S is  an open set of states, and all the states in S 
are made absorbing states, then the resulting Harkov chain is  absorbing, 
and its transient states are the elements of S .  

PROOF. Since S is open, from every state of i t  we can reach a state 
in S-which must be an absorbing state. ence the chain is absorbing. 
And since from each element of S we can reach an absorbing state, the 
elements of S must all be transient states in the new process. 

3.5.4 THEOREM. Let S be an open set of s states. Let Q be the 
s x s submatrix of P corresponding to these states. Let p, be the s- 
component column vector with components pi,, where the st are the 
elements of S and s, E S. Let the process start in sf. Then: 

( 1 )  The ij-component of N= (I-&)-I is  the mean number of times 
the process i s  in sj before leaving S. 

(2) The ij-components of X z  = N(2Nd, - I )  - N,, i s  the variance of 
the same function. 

(3) The i-th component of T = 2\'[ is  the mean number of steps needed 
to leave S .  

(4) The i-th component of 7 2  = (2.N - I)T - -rsq is  the variance of the 
same function. 

(5) The i-th cmponent of Yp, is  the probability that the process goes 
to s, when it leaves S. 

PROOF. The various parts of this theorem are a direct consequence 
of the corresponding results in $ 3.3, due to Theorem 3.5.3. 

As an application of this theorem consider the following problem. 
Let sf and sk be any two states in a regular Markov chain. Assume 
that the process is started a t  a third state. What is the probability 
of reaching sk before sj? This probability may be found from 
3.5.4(5) by choosing8 to be the set of all states in the ergodic set except 
sj and sc. 
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3.5.2 THEOREM. A set S of states is open if and only if no ergodic set 
is a subset of S. 

PROOF. If an ergodic set is contained in S, then there is no escape 
from this set once it is entered; hence S is not open. 

On the other hand we know that from every state we can reach an 
ergodic state. And from an ergodic state we can reach all the elements 
of its ergodic set. Hence if there is no ergodic set contained in S, 
then for every element of S we can find an ergodic state in 8 which can 
be reached from the given state. Hence S is open. 

3.5.3 THEOREM. If S i8 an open set of states, and all the states in S 
are made ab80rbing states, then the resulting Markov chain is absorbing, 
and its transient states are the elements of S. 

PROOF. Since S is open, from every state of it we can reach a state 
in 8-which must be an absorbing state. Hence the chain is absorbing. 
And since from each element of S we can reach an absorbing state, the 
elements of S must all be transient states in the new process. 

3.5.4 THEOREM. Let S be an open set of s states. Let Q be the 
s x s submatrix of P corresponding to these states. Let pa be the 8-

component column vector with components pia, where the Sj are the 
elements of S and Sa E S. Lee :he process start in Sj. Then: 

(1) The ij-component of N = (1 _Q)-l is the mean number of times 
the process is in Sf beJore leaving S. 

(2) The ij-components oj N2=N(2Nag-I)-Nsq i8 the variance of 
the same function. 

(3) The i-th component of T = 111 ~ is the mean number of steps needed 
to leave S. 

(4) The i-th component of Tz=(2N -I)T-TsQ is the variance of the 
same function. 

(5) The i-th component of N po, is the probability that the proceS8 goe8 
to So, when it leaves S. 

PROOF. The various parts of this theorem are a direct consequence 
of the corresponding results in § 3.3, due to Theorem 3.5.3. 

As an application of this theorem consider the following problem. 
Let 81 and S/c be any two states in a regular Markov chain. Assume 
that the process is started at a third state. What is the probability 
of reaching 8/c before 811 This probability may be found from 
3.5.4(5) by choosing S to be the set of all states in the ergodic set except 
Sj and Sic. 
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3.5.5 EXAMPLE. Consider the random walk Example 6 of Chapter 
II. The transition matrix is 

0 l / 4  '14 '!4 '14 

l / 3  l / 3  ' 13  0 0 

0 l / 3  9'3 113 0 
0 0 l / 3  I13 I13 

'14 l / 4  ' 1 4  '14 0 

and since from any state we can move to any other state in two steps, 
the Markov chain is regular. Hence any proper subset of the states is 
open. Let S consist of the last three states. 

The N matrix tells us the mean number of times that the.process is in 
each of the last three states, before it goes to one of the first two states. 
We see that the numbers are small if the process starts in the last state. 
But this is intuitively clear, since in this case it has a 112 probability 
of "escaping" on the first step. For the same reason, the mean number 
of times that it is in the last state is small, no matter where the process 
starts. However, from Nz we see that the former numbers have much 
greater variances than the latter. 
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From T we see that it takes longest to escape from s4, which has no 
connection to g. Indeed, the differences in mean number of steps to 
escape can be accounted for by the number of connections the three 
states have with outside states. Sote that while the means differ 
considerably, the variances are roughly the same. 

Finally, the vector Npl gives us the "exit probabilities" for state sl, 
i.e. the probabilities (depending on starting state) of going to sl when 
the process leaves S ;  or, stated otherwise, the probability of hitting sl 
before hitting sz. These probabilities seem to depend very simply on 
the number of steps necessary to reach sl from the starting state 
(going through S). 

THEOREM. Let ri be the,function giving the number of times that 
the process remains in the non-absorbing state si once the state is en'tered 
(including the entering step). Then 

(a) 

Varilr~I = p,q'(P (b) 

And the conditional probability of the process going to sj, given that i t  
leaves si, is  

PROOF. The set whose only element is si is an open set. We apply 
Theorem 3.5.4 to this set. I n  this case N is a I x 1 matrix, and hence 
identical with T ;  its only component is l/(l-pit). Hence (a) is a 
consequence of either (1) or (3) of Theorem 3.5.4. Similarly, N z = ~ 2 ,  

and (b) is a consequence of either (2) or (4) of Theorem 3.5.4. We 
obtain (c) from 3.5.4(5) by choosing the vector pj whose only com- 
ponent is p v  Since st is not absorbing, pit < 1, hence our quantities 
are well defined. 

One type of concept that we have not investigated as yet is illustrated 
by the question of whether the process ever enters a given transient 
state. This and related questions are taken up in Theorems 3.5.7, 
3.5.8, and 3.5.9. For these theorems we will let nj be the number of 
times that the process is in transient state sj, rn be the total number 
of transient states it will ever be in, and hif be the probability 
that the process will ever go to transient state sj, starting in transient 
state st (not counting the initial state). 
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3.5.5 EXAMPLE. Consider the random walk Example 6 of Chapter 
II. The transition matrix is 

" C 1/4 1/4 1!4 ') S2 1/3 1/3 1/3 0 

P = 8a 0 1/3 1/3 1/3 o , 
84 0 0 1/3 l/S l/S 

85 1/4 1/4 1/4 1/4 0 

and since from any state we can move to any other state in two steps, 
the Markov chain is regular. Hence any proper subset of the states is 
open. Let S consist of the last three states. 

" C 1/3 

,~.) Q = s" 1/3 1/3 
S5 1/4 1/4 

C· 12/9 "') N = 15/9 24/9 8/9 

9/9 9/9 12/9 

(""" 
324/81 "''') N2 = 27°/81 36°/81 66/ 81 

216/81 27°/81 36/81 

C') C"") T = 47/9 T2 = 1114/81 

3°/9 1062/81 

C) NPI = 2/9 . 
. 3/9 

The N matrix tells us the mean number of times that the 'process is in 
each of the last three states, before it goes to one of the first two states. 
We see that the numbers are small if the process starts in the last state. 
But this is intuitively clear, since in this case it has a 1/2 probability' 
of "escaping" on the first step. For the same reason, the mean number 
of times that it is in the last state is small, no matter where the process 
starts. However, from N 2 we see that the former numbers have much 
greater variances than the latter. 
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3.5.5 EXAMPLE. Consider the random walk Example 6 of Chapter 
II. The transition matrix is 

0 l / 4  '14 '!4 '14 

l / 3  l / 3  ' 13  0 0 

0 l / 3  9'3 113 0 
0 0 l / 3  I13 I13 

'14 l / 4  ' 1 4  '14 0 

and since from any state we can move to any other state in two steps, 
the Markov chain is regular. Hence any proper subset of the states is 
open. Let S consist of the last three states. 

The N matrix tells us the mean number of times that the.process is in 
each of the last three states, before it goes to one of the first two states. 
We see that the numbers are small if the process starts in the last state. 
But this is intuitively clear, since in this case it has a 112 probability 
of "escaping" on the first step. For the same reason, the mean number 
of times that it is in the last state is small, no matter where the process 
starts. However, from Nz we see that the former numbers have much 
greater variances than the latter. 
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From T we see that it takes longest to escape from s4, which has no 
connection to g. Indeed, the differences in mean number of steps to 
escape can be accounted for by the number of connections the three 
states have with outside states. Sote that while the means differ 
considerably, the variances are roughly the same. 

Finally, the vector Npl gives us the "exit probabilities" for state sl, 
i.e. the probabilities (depending on starting state) of going to sl when 
the process leaves S ;  or, stated otherwise, the probability of hitting sl 
before hitting sz. These probabilities seem to depend very simply on 
the number of steps necessary to reach sl from the starting state 
(going through S). 

THEOREM. Let ri be the,function giving the number of times that 
the process remains in the non-absorbing state si once the state is en'tered 
(including the entering step). Then 

(a) 

Varilr~I = p,q'(P (b) 

And the conditional probability of the process going to sj, given that i t  
leaves si, is  

PROOF. The set whose only element is si is an open set. We apply 
Theorem 3.5.4 to this set. I n  this case N is a I x 1 matrix, and hence 
identical with T ;  its only component is l/(l-pit). Hence (a) is a 
consequence of either (1) or (3) of Theorem 3.5.4. Similarly, N z = ~ 2 ,  

and (b) is a consequence of either (2) or (4) of Theorem 3.5.4. We 
obtain (c) from 3.5.4(5) by choosing the vector pj whose only com- 
ponent is p v  Since st is not absorbing, pit < 1, hence our quantities 
are well defined. 

One type of concept that we have not investigated as yet is illustrated 
by the question of whether the process ever enters a given transient 
state. This and related questions are taken up in Theorems 3.5.7, 
3.5.8, and 3.5.9. For these theorems we will let nj be the number of 
times that the process is in transient state sj, rn be the total number 
of transient states it will ever be in, and hif be the probability 
that the process will ever go to transient state sj, starting in transient 
state st (not counting the initial state). 
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From T we see that it takes lO<lgest to escape from S4, which has no 
connection to S. Indeed, the differences in mean number of steps to 
escape can be accounted for by the number of connections the three 
states have with outside states. Note that while the means differ 
considerably, the variances are roughly the same. 

Finally, the vector NPI gives us the "exit probabilities" for state 81, 

i.e. the probabilities (depending on starting state) of going to 81 when 
the process leaves S; or, stated otherwise, the probability of hitting Sl 

before hitting 82. These probabilities seem to depend very simply on 
the number of steps necessary to reach Sl from the starting state 
(going through S). 

3.5.6 THEOREM. Let fi be the function giving the number of times that 
the process remains in the non-absorbing state Si once the state is entered 
(including the entering step). Then 

(a) 

(b) 

And the conditional probability of the process going to Sj, given that it 
leaves St, is 

(c) 

PROOF. The set whose only element is Si is an open set. We apply 
Theorem 3.5.4 to this set. In this case N is a 1 x 1 matrix, and hence 
identical with T; its only component is 1/(1-Pill. Hence (a) is a 
consequence of either (1) or (3) of Theorem 3.5.4. Similarly, N 2 =T2, 

and (b) is a consequence of either (2) or (4) of Theorem 3.5.4. We 
obtain (c) from 3.5.4(5) by choosing the vector Pi whose only com
ponent is Pij. Since Si is not absorbing, Pii < 1, hence our quantities 
are well defined. 

One type of concept th"t we ha ve not investigated as yet is illustrated 
by the question of whether the process ever enters a given transient 
state. This and related questiOY1S are taken up in Theorems 3.5.7, 
3.5.8, and 3.5.9. For these theorems we will let nj be the number of 
times that the process is in transient state Sj, m be the total number 
of transient states it will ever be in, and hij be the probability 
that the process will ever go to transient state Sf, starting in transient 
state Sj (not counting the initial state). 

3.5.7 THEOREM. 
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This theorem determines the probability of going to a given transient 
state exactly k times. The theorem is an immediate consequence of 
the following consideration : To go to a given state k times one must go 
there a t  least once, then one must return k - 1 times, and one must not 
return again. 

PROOF. The me&n number of transient states occupied is equal to 
the sum of the probabilities of ever being in the various states. If the 
process starts in st, the probability of ever being in sf is htj if i f j ,  
and is 1 if i = j. 

If we apply Theorem 3.6.7 to Example 1, we obtain 

We see, for example, that if q = 0, then all entries on and below the main 
diagonal are 0. This means that if the process is sure to move to the 
right, then it can never re-enter the starting state, nor can i t  enter a 
state to the left of the starting state. 
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If q = 0 the vector ,+ = , which is obvious in this case since it moves 

directly to the right boundary, passing through the intermediate states 
only once. 

THEOREM. The mean and variance of the number of changes of 
state i n  an  absorbing c h i n  can be ~alculated by setting p i  =0 for all 
transient states, and dividing each row by its row-sum. The i-th 
component of the new 7 gives the mean number of changes of state for the 
original process. The variance of the same function is  given by the 
new 72. 

PROOF. Assume that the Markov chain is started in a non-absorbing 
state. We form a new process in which the n-th outcome function is 
defined as follows: If the original chain is absorbed a t  state sk before 
making n changes of state, then L = sx. If not, fT, is the state to whic 
the process moved on the n-th change of state. The new process is 
clearly a Markov chain. The transition probabilities are the same as 
P for st absorbing. For st non-absorbing 

From this new transition matrix we can obtain the mean and variance 
of the time to absorption for the process bl,  f 2 ,  . . . . This time repre- 
sents the number of changes of state in the original chain started in 
state sc. 

We can also find the mean number of times that the process does not 
change its state while i t  is among the transient states. This is found 
by taking the mean number of times to reach the absorbing states and 
subtracting the mean number of changes of state. 

If we want to illustrate Theorem 3.5.10 by the college example, 
Example 10 of § 2.2, we set pt.~ = 0, i = 3, 4, 5, 6, and renormalize : 
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or 

or 

PROOF. 
{Mi[DJ]} = {di;} + {hjJMj[nj]} 

{niJ} = I + {h[Jnfj} 

Hence 
II = (N -1)Ndg-1• 

3.5.8 THEOREM. {Prt[n,-d1j=k]}= 

{
E-H ilk=O 
H.Hdgk-l[1 -Hdg] = (N -I)Ndg-2(I -Ndg-1)k-l if k > 0 

This theorem determines the probability of going to a given transient 
state exactly k times. The theorem is an immediate consequence of 
the following consideration: To go to a given state k times one must go 
there at least once, then one must return k-l times, and one must not 
return again. 

3.5.9 THEOREM. 

JL = {M;[mJ} = [H +(1 -Hdg)Jg = NNdg-lg. 

PROOF. The me~n number of transient states occupied is equal to 
the sum of the probabilities of ever being in the various states. If the 
process starts in St, the probability of ever being in sJ is hif if i =I j, 
and is 1 if i = j. 

If we apply Theorem 3.5.7 to Example 1, we obtain 

pq 
P 

p2 
1-pq I-P7 

H= 
q 

2pq 
I-pq 

q2 
q 

l-pq 

We see, for example, that if q = 0, then all entries on and below the main 
diagonal are O. This means that if the process is sure to move to the 
right, then it can never re-enter the starting state, nor can it enter a 
state to the left of the starting state. 

1 (1 +P2 +P3) 
f-L = -- 2-pq . 

I-pq 
1 + q2+ q3 
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This theorem determines the probability of going to a given transient 
state exactly k times. The theorem is an immediate consequence of 
the following consideration : To go to a given state k times one must go 
there a t  least once, then one must return k - 1 times, and one must not 
return again. 

PROOF. The me&n number of transient states occupied is equal to 
the sum of the probabilities of ever being in the various states. If the 
process starts in st, the probability of ever being in sf is htj if i f j ,  
and is 1 if i = j. 

If we apply Theorem 3.6.7 to Example 1, we obtain 

We see, for example, that if q = 0, then all entries on and below the main 
diagonal are 0. This means that if the process is sure to move to the 
right, then it can never re-enter the starting state, nor can i t  enter a 
state to the left of the starting state. 
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If q = 0 the vector ,+ = , which is obvious in this case since it moves 

directly to the right boundary, passing through the intermediate states 
only once. 

THEOREM. The mean and variance of the number of changes of 
state i n  an  absorbing c h i n  can be ~alculated by setting p i  =0 for all 
transient states, and dividing each row by its row-sum. The i-th 
component of the new 7 gives the mean number of changes of state for the 
original process. The variance of the same function is  given by the 
new 72. 

PROOF. Assume that the Markov chain is started in a non-absorbing 
state. We form a new process in which the n-th outcome function is 
defined as follows: If the original chain is absorbed a t  state sk before 
making n changes of state, then L = sx. If not, fT, is the state to whic 
the process moved on the n-th change of state. The new process is 
clearly a Markov chain. The transition probabilities are the same as 
P for st absorbing. For st non-absorbing 

From this new transition matrix we can obtain the mean and variance 
of the time to absorption for the process bl,  f 2 ,  . . . . This time repre- 
sents the number of changes of state in the original chain started in 
state sc. 

We can also find the mean number of times that the process does not 
change its state while i t  is among the transient states. This is found 
by taking the mean number of times to reach the absorbing states and 
subtracting the mean number of changes of state. 

If we want to illustrate Theorem 3.5.10 by the college example, 
Example 10 of § 2.2, we set pt.~ = 0, i = 3, 4, 5, 6, and renormalize : 
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If q = 0 the vector f.L = (D' which is obvious in this case since it moves 

directly to the right boundary, passing through the intermediate states 
onlyonce. 

3.5.10 THEOREM. The mean and variance of the number of changes of 
state in an absorbing chain can be calculated by setting Pit = 0 for all 
transient states, and dividing each row by its row-sum. The i-th 
component of the new 7 gives the mean number of changes of state for the 
original process. The variance of the same function is given by the 
new 72. 

PROOF. Assume that the Markov chain is started in a non-absorbing 
state. \Ve form a new process in which the n-th outcome funct"lon is 
defined as follows: If the original chain is absorbed at state Sk before 
making n changes of state, th~n in = Sk;. If not, in is the state to which 
the process moved on the n-th change of state. The new process is 
clearly a Markov chain. The transition probabilities are the same as 
P for s, absorbing. For s, non-2bsorbing 

PH = Pr,[f1=iJ <) 

From this new transition matrix we can obtain the mean and variance 
of the time to absorption for the process ii, £2, . . .. This time repre
sents the number of changes of state in the original chain started in 
state St. 

We can also find the mean number of times that the process does not 
change its state while it is among the transient states. This is found 
by taking the mean number of times to reach the absorbing states and 
subtracting the mean number of changes of state. 

If we want to illustrate Theorem 3.5.10 by the college example, 
Example 10 of § 2.2, we set Pit = 0, i = 3,4, 5, 6, and renormalize: 

1 0 ° 0 0 0 

0 1 0 0 0 0 

F= .22 .78 0 0 0 0 

2') . ~ 0 .78 0 0 0 

.22 0 0 .78 0 0 

2':> 0 0 0 .78 0 
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By comparing these results with Example 3.4.2, we note tha t  the 
mean number of steps to  absorption is somewhat higher than the mean 
number of changes of state (but not by much, since repetition of a 
state is rare), and that  the variance of the former is considerably higher 
than that  of the latter. 

Another interesting use of conditional probabilities for absorbing 
chains is the following. Assume that  for an  absorbing chain we start 
in a non-absorbing state and compute all probabilities relative to the 
hypothesis tha t  the process ends up in a given absorbing state, say sl. 
Then we obtain a new absorbing chain with a single absorbing state sl. 
The non-absorbing states will be as before, except that  we have new 
transition probabilities. We compute these as follows. Let p be the 
statement "the original process is absorbed in state sl." Then if st 
is a non-absorbing state, the transition probabilities for the new 
process are 

This formula applies for j= 1 if we interpret bll = 1. The standard 
form for I' may be obtained as follows. The matrix R is a column 

vector with R = } Let Do be a diagonal matrix with diagonal 

entries bll, for sj non-absorbing. Then 

0 = D-loQDo. 

From this we see that  

$a = D-10&nDo 
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fj = 6 and + may be obtained from I?. 

EXAMPLE. Consider Example l a ,  $ 3.2.5. Let us consider the 
process obtained by assuming that  the original chain is absorbed in 
state sl. Then the new matrix is 

so that  
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C' 
O. 0 

~) 1 0 
N = . 

• 61 .78 

.47 .61 .78 

(1.00\ C) 1.78 .17 
7 = 72 = 

\ 2.38) .68 

2.85 1.51 

By comparing these results with Example 3.4.2, we note that the 
mean number of steps to absorption is somewhat higher than the mean 
number of changes of state (but not by much, since repetition of a 
state is rare), and that the variance of the former is considerably higher 
than that of the latter. 

Another interesting use of conditional probabilities for absorbing 
chains is the following. Assume that for an absorbing chain we start 
in a non-absorbing state and compute all probabilities relative to the 
hypothesis that the process ends up in a given absorbing state, say SI. 

Then we obtain a new absorbing chain with a single absorbing state Sl. 

The non-absorbing states will be as before, except that we have new 
transition probabilities. \-Ve compute these as follows. Let p be the 
statement "the original process is absorbed in state SI." Then if Si 

is a non-absorbing state, the transition probabilities for the new 
process are 

Pri[P I [1 = Sj] . Pri[rl = Sj] 

l'ri[p] . 

This formula applies for j = I if we interpret bll = 1. The standard 
form for P may be obtained as follows. The matrix 11 is a column 

. h R- {'Pill vector WIt = ~r Let Do be a diagon.al matrix with diagonal 

entries bjl, for Sj non-absorbing. Then 

From this we see that 
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By comparing these results with Example 3.4.2, we note tha t  the 
mean number of steps to  absorption is somewhat higher than the mean 
number of changes of state (but not by much, since repetition of a 
state is rare), and that  the variance of the former is considerably higher 
than that  of the latter. 

Another interesting use of conditional probabilities for absorbing 
chains is the following. Assume that  for an  absorbing chain we start 
in a non-absorbing state and compute all probabilities relative to the 
hypothesis tha t  the process ends up in a given absorbing state, say sl. 
Then we obtain a new absorbing chain with a single absorbing state sl. 
The non-absorbing states will be as before, except that  we have new 
transition probabilities. We compute these as follows. Let p be the 
statement "the original process is absorbed in state sl." Then if st 
is a non-absorbing state, the transition probabilities for the new 
process are 

This formula applies for j= 1 if we interpret bll = 1. The standard 
form for I' may be obtained as follows. The matrix R is a column 

vector with R = } Let Do be a diagonal matrix with diagonal 

entries bll, for sj non-absorbing. Then 

0 = D-loQDo. 

From this we see that  

$a = D-10&nDo 
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fj = 6 and + may be obtained from I?. 

EXAMPLE. Consider Example l a ,  $ 3.2.5. Let us consider the 
process obtained by assuming that  the original chain is absorbed in 
state sl. Then the new matrix is 

so that  
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and 
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N = D-1o[I +Q+Q2+ ... ]Do 

= D-10NDo. 

B = g and T may be obtained from R. 
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EXAMPLE. Consider Example la, § 3.2.5. Let us consider the 
process obtained by assuming that the original chain is absorbed in 
state S1. Then the new ma,trix Q is 

82 S3 S4 

. C' 0 

O)C 
2 ; 

OW" 
() 

° ) 
13 

Q = () 15/3 o lis 0 2/s 0 3/15 0" 

() 0 15h 0 lis o 0 0 1/15 

(,:. 
2j; 

,~,) 0 

1 

80 that 

81 S2 S3 S4 

"(' 
0 0 

,~,) p = S2 5~7 0 2/7 

Ss \.J 7/9 0 

S4 0 0 

C' 
0 

O)C 
6/5 

'Me" 
0 () \ 

IV = 0 15/3 o 3/ 5 9! 5 'f') c 
3/15 

'f:.) 0 0 15 ,1/5 3! 5 7/5 0 0 

C 
18/35 'f") 7! 5 9/5 2! 5 

7! 5 9/5 7/s 

C") T= ISis . 
23/5 
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Exercises for Chapter III 

For § 3.1 

1. Put  the following matrices in the canonical form for absorbing chains. 

2. Apply Theorem 3.1.1 to  a n  absorbing chain with a single absorbing 
state. 

3. Apply the result of the previous exercise to  an ergodic chain in which 
one state has been made absorbing. (See Chapter 11, Exercise 21.) 

4. I n  Example 8 of $ 2.2 make state R into an absorbing state. What 
does Theorem 3.1.1, applied to the resulting absorbing chain, say about the 
weather in the Land of Oz? (That is, what do we learn about the original 
chain?) 

For 5 3.2 

5. Compute the fundamental matrix for the absorbing chain with transition 
matrix. 

s1 S2 S3 

6. Compute the fundamental matrix for Example 11 of Chapter 11 when 
c=0,  and d # 0 .  

7. Make Example 9 of $ 2.2 into an absorbing chain by making all of the 
ergodic states absorbing. Find the fundamental matrix and interpret the 
entries of the first row of this matrix. 

8. Show that  if the fundamental matrix N is given for an absorbing chain, 
then N-1 exists and Q = I - N-1. 

9. Prove that  NQ = N - I. 
10. Check the results of Exercise 9, above, in Example 9 of 3 2.2. 
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For § 5.8 

11. If an absorbing chain has only one absorbing state, what can be said 
about the matrix B?  In  Example 8 of 3 2.2 make R an absorbing state, 
compute N and B, and verify your statement. 

12. Change Example 7 of $ 2.2 into an absorbing chain by assuming that  
the process is stopped if a 0 or 9 is reached. Construct the new transition 
matrix, in canonical form. 

13. In  the example of Exercise 12, above, compute N ,  N z ,  B, T, 7 2 .  

14. I n  Example 8 of $ 2.2 make N into an absorbing state. Compute the 
fundamental matrix for the resulting Markov chain. Find N z ,  B, 7, 72- 

Interpret the results in terms of the original chain. 
15. Compute N for the tank duel (Exercise 2 of Chapter 11). From this 

find the mean length of the duel and the probability of each possible ending. 
16. Carry out the computations of Exercise 15, above, for the moZfied 

tank duel (Exercise 3 of Chapter 11). Which duel is more favorable to  
tank A ? 

17. In  Example 10a (of 3.2.5) find the probabilities of graduation by the 
method resulting from Theorem 3.3.9, that is, by finding a certain fixed 
column vector for the transition matrix. 

18. The chain of Example l a  (cf. 3 3.2.5) is started by means of a random 
device which make all five states equally likely as starting states. Find the 
means and variances of the number of times in the various transient states, 
and of the number of steps to absorption. 

For $ 3.5 

19. In  Example 9 of $2.2, assume that initially both balls are unpainted. 
Find the mean number of draws before the first time that  both balls are 
painted. When this occurs, what is the probability that  both balls are red? 

20. It is snowing in the Land of Oz today. Find the mean number of 
changes of weather that will occur before the next rainy day. Find the proba- 
bility that there is a t  least one nice day before a rainy day. 

21. For Example 1 of $ 2.2 with p=1/2, assume that  it  is known that the 
process is absorbed in state sl. Find the transition matrix for the new 
conditional process. Find the mean time to absorption. 

22. Compute the following quantities for the tank duel (see Exercise 2 of 
Chapter 11). 

(a) The mean and variance of the number of rounds for which all three 
tanks remain active. 

(b) The probability that  a t  some stage A and G will still be active, but 
no longer active. 

(c) The probability that a t  some stage A and will still be active, but G is 
no longer active. 

(d) The probability that  A and B will be eliminated on the same round. 
(e) P, fi, i, assuming that  C wins the duel. 
(f) P ,  8, i, assuming that  no tank survives. 
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Exercises for Chapter III 

For § 3.1 

CHAP. III 

1. Put the following matrices in the canonical form for absorbing chains. 

51 52 Sa 

51 e l/S ,~,) 
P = 82 1 

53 1/3 1/2 1/6 

(a) 

81 52 53 84 

(b) 

81 

C 
0 0 

D 
82 0 0 

p= 
8S 1/4 1/4 

84 0 0 

2. Apply Theorem 3.1.1 to an absorbing chain with a single absorbing 
state. 

3. Apply the result of the previous exercise to an ergodic chain in which 
one state has been made absorbing. (See Chapter II, Exercise 21.) 

4. In Example 8 of § 2.2 make state R into an absorbing state. What 
does Theorem 3.1.1, applied to the resulting absorbing chain, say about the 
weather in the Land of Oz? (That is, what do we Jearn about the original 
chain?) 

For § 3.2 

5. Compute the fundamental matrix for the absorbing chain with transition 
matrix. 

6. Compute the fundamental matrix for Example 11 of Chapter II when 
c=O, and d=l=O. 

7. Make Example 9 of § 2.2 into an absorbing chain by making all of the 
ergodic states absorbing. Find the fundamental matrix and interpret the 
entries of the first row of this matrix. 

8. Show that if the fundamental matrix N is given for an absorbing chain, 
then N-1 exists and Q=I -N-1. 

9. Prove that NQ=N -I. 
10. Check the results of Exercise 9, above, in Example 9 of § 2.2. 
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Exercises for Chapter III 

For § 3.1 

1. Put  the following matrices in the canonical form for absorbing chains. 

2. Apply Theorem 3.1.1 to  a n  absorbing chain with a single absorbing 
state. 

3. Apply the result of the previous exercise to  an ergodic chain in which 
one state has been made absorbing. (See Chapter 11, Exercise 21.) 

4. I n  Example 8 of $ 2.2 make state R into an absorbing state. What 
does Theorem 3.1.1, applied to the resulting absorbing chain, say about the 
weather in the Land of Oz? (That is, what do we learn about the original 
chain?) 

For 5 3.2 

5. Compute the fundamental matrix for the absorbing chain with transition 
matrix. 

s1 S2 S3 

6. Compute the fundamental matrix for Example 11 of Chapter 11 when 
c=0,  and d # 0 .  

7. Make Example 9 of $ 2.2 into an absorbing chain by making all of the 
ergodic states absorbing. Find the fundamental matrix and interpret the 
entries of the first row of this matrix. 

8. Show that  if the fundamental matrix N is given for an absorbing chain, 
then N-1 exists and Q = I - N-1. 

9. Prove that  NQ = N - I. 
10. Check the results of Exercise 9, above, in Example 9 of 3 2.2. 
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For § 5.8 

11. If an absorbing chain has only one absorbing state, what can be said 
about the matrix B?  In  Example 8 of 3 2.2 make R an absorbing state, 
compute N and B, and verify your statement. 

12. Change Example 7 of $ 2.2 into an absorbing chain by assuming that  
the process is stopped if a 0 or 9 is reached. Construct the new transition 
matrix, in canonical form. 

13. In  the example of Exercise 12, above, compute N ,  N z ,  B, T, 7 2 .  

14. I n  Example 8 of $ 2.2 make N into an absorbing state. Compute the 
fundamental matrix for the resulting Markov chain. Find N z ,  B, 7, 72- 

Interpret the results in terms of the original chain. 
15. Compute N for the tank duel (Exercise 2 of Chapter 11). From this 

find the mean length of the duel and the probability of each possible ending. 
16. Carry out the computations of Exercise 15, above, for the moZfied 

tank duel (Exercise 3 of Chapter 11). Which duel is more favorable to  
tank A ? 

17. In  Example 10a (of 3.2.5) find the probabilities of graduation by the 
method resulting from Theorem 3.3.9, that is, by finding a certain fixed 
column vector for the transition matrix. 

18. The chain of Example l a  (cf. 3 3.2.5) is started by means of a random 
device which make all five states equally likely as starting states. Find the 
means and variances of the number of times in the various transient states, 
and of the number of steps to absorption. 

For $ 3.5 

19. In  Example 9 of $2.2, assume that initially both balls are unpainted. 
Find the mean number of draws before the first time that  both balls are 
painted. When this occurs, what is the probability that  both balls are red? 

20. It is snowing in the Land of Oz today. Find the mean number of 
changes of weather that will occur before the next rainy day. Find the proba- 
bility that there is a t  least one nice day before a rainy day. 

21. For Example 1 of $ 2.2 with p=1/2, assume that  it  is known that the 
process is absorbed in state sl. Find the transition matrix for the new 
conditional process. Find the mean time to absorption. 

22. Compute the following quantities for the tank duel (see Exercise 2 of 
Chapter 11). 

(a) The mean and variance of the number of rounds for which all three 
tanks remain active. 

(b) The probability that  a t  some stage A and G will still be active, but 
no longer active. 

(c) The probability that a t  some stage A and will still be active, but G is 
no longer active. 

(d) The probability that  A and B will be eliminated on the same round. 
(e) P, fi, i, assuming that  C wins the duel. 
(f) P ,  8, i, assuming that  no tank survives. 
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For § 3.3 

11. If an absorbing chain has only one absorbing state, what can be said 
about the matrix B? In Example 8 of § 2.2 make R an absorbing state, 
compute Nand B, and verify your statement. 

12. Change Example 7 of § 2.2 into an absorbing chain by assuming that 
the process is stopped if a 0 or 9 is reached. Construct the new transition 
matrix, in canonical form. 

13. In the example of Exercise 12, above, compute N, N2, B, 'T, 'T2. 

14. In Example 8 of § 2.2 make N into an absorbing state. Compute the 
fundamental matrix for the resulting Markov chain. Find N 2, B, 'T, 'T2' 

Interpret the results in terms of the original chain. 
15. Compute N for the tank duel (Exercise 2 of Chapter II). From this 

find the mean length of the duel and the probability of each possible ending. 
16. Carry out the computations of Exercise 15, above, for the moa.ified 

tank duel (Exercise 3 of Chapter II). Which duel is more favorable to 
tank A? 

17. In Example lOa (of § 3.2.5) find the probabilities of graduation by the 
method resulting from Theorem 3.3.9, that is, by finding a certain fixed 
column vector for the transition matrix. 

18. The chain of Example la (cf. § 3.2.5) is started by means of a random 
device which make all five states equally likely as starting states. Find the 
means and variances of the number of times in the various transient states, 
and of the number of steps to absorption. 

For § 3.5 

19. In Example 9 of § 2.2, assume that initially both balls are unpainted. 
Find the mean number of draws before the first time that both balls are 
painted. When this occurs, what is the probability that both balls are red? 

20. It is snowing in the Land of Oz today. Find the mean number of 
changes of weather that will occur before the next rainy day. Find the proba
bility that there is at least one nice day before a rainy day. 

21. For Example 1 of § 2.2 with p=1/2, assume that it is known that the 
process is absorbed in state 81. Find the transition matrix for the new 
conditional process. Find the mean time to absorption. 

22. Compute the following quantities for the tank duel (see Exercise 2 of 
Chapter II). 

(a) The mean and variance of the number of rounds for which all three 
tanks remain active. 

(b) The probability that at some stage A and C will still be active, but B is 
no longer active. 

(e) The probability that at some stage A and B will still be active, but C is 
no longer active. 

(d) The probability that A and B will be eliminated on the same round. 
(e) P, il, T, assuming that C wins the duel. 
(f) P, N, T, assuming that no tank survives. 



68 FINITE MARKOV CHAINS CHAP. I11 

23. In  the tank duel (Exercise 2 of Chapter 11) let tank A have probability 
of hitting, tank B probability 315, and tank C an unspecified probability p 

(with p < 3 1 5 ) .  

(a) Set up the transition matrix. 
(b)  Find the probability that  tank C is the survivor. 
(c) I n  the answer obtained in (b),  let p tend to 0. 

Interpret your result. 

For the entire chapter 

24. Seven boys are playing with a ball. 
The first boy always throws it  to the second boy. 
The second boy is equally likely to  throw it  to  the third or the seventh. 
The third boy keeps the ball if he gets it .  
The fourt,h boy always throws i t  to  the sixth. 
The fifth boy is equally likely t o  throw it  to  the fourth, sixth, or seventh 

boy. 
The s ~ x t h  boy always throws it to the fourth. 
The seventh boy is equally likely to  throw it  to  the first or fourth boy. 

(a) Set up the transition matrix P. 
(b) Classify the states. 
(c) Pu t  P into canonical form. 
(d) Give an interpretation for the chain ending up in one of the ergodic sets. 
(e) The ball is given to the fifth boy. Find the mean and variance of the 

number of times that  the seventh boy has the ball, and find the mean 
and variance of the time to reach an ergodic set. 

25. Given an absorbing Markov chain, we play a game as follows: 

We start in a specified state, and carry the chain out till i t  reaches an absorb- 
ing state. If we reach s,, we receive a payment of c,. Form the column 
vector y whose i-th component is the mean of the payment if we start in s f .  

(a) Prove that Py = y. 
(b)  Prove that  for absorbing state sa the a-th component of y is c,. 
(c) Prove that these two conditions determine y. (HIST: Consider the 

limit of Pny.) 
(d)  Let y, be the vector giving the probabilities of absorption in s,. 

Show that y can be expressed in terms of the y,. 

a s k  theorems. I n  this section we shall s tudy  t h e  behavior of 
a regular Markov chain. W e  recall t h a t  a regular Markov chain is one 
t h a t  has  n o  transient sets, a n d  has a single ergodic se t  with on& one 
cyclic class. 

4.1.1 DEFINITION. The trmsition matrix for a regular Markov 
chain is called a regular transition matrix. 

4.1.2 THEOREM. A transition matrix i s  regular if and only if for 
some N ,  PN has no zero entries. 

It was shown in Chapter I1 t h a t  a Markov chain was regular if a n d  
only if i t  is possible t o  be i n  a n y  s ta te  after some number N of steps, no 
matter  what  the  starting s tate .  T h a t  is, if a n d  only if P" has no zero 
entries for some AT. 

4.1.3 THEOREM. Let P be an  r x r transition matrix having no zero 
entries. Let E be the smallest entry of P. Let x be any r-component 
column vector, having maximum component M o  and minimum com- 
ponent mo, and let M1 and m i  be the ma,ximum and minimum com- 
ponent,~ for the vector Px .  Then M 1  < M o ,  m l >  mo, and 

PROOF. L e t  x' be t h e  vector obtained from x by  replacing all com- 
ponents, except one mo component, b y  Mo. Then x<x ' .  Each  
component of Px' is of t h e  form 

where a 3 E .  Thus  each such component is < Mo - E ( M ~  - mo). B u t  
since x < x',  we have 
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23. In the tank duel (Exercise 2 of Chapter II) let tank A have probability 
3/4 of hitting, tank B probability 3/ 5 , and tank C an unspecified probability p 
(with p < 3/5). 

(a) Set up the transition matrix. 
(b) Find the probability that tank C is the survivor. 
(c) In the answer obtained in (b), let p tend to O. 

Interpret your result. 

For the entire chapter 

24. Seven boys are playing with a ball. 
The first boy always throws it to the second boy. 
The second boy is equally likely to throw it to the third or the seventh. 
The third boy keeps the ball if he gets it. 
The fourth boy always throws it to the sixth. 
The fifth boy is equally likely to throw it to the fourth, sixth, or seventh 

boy. 
The sixth boy always throws it to the fourth. 
The seventh boy is equally likely to throw it to the first or fourth boy. 

(a) Set up the transition matrix P. 
(b) Classify the states. 
(c) Put P into canonical form. 
(d) Give an interpretation for the chain ending up in one of the ergodic sets. 
(e) The ball is given to the fifth boy. Find the mean and variance of the 

number of times that the seventh boy has the ball, and find the mean 
and variance of the time to reach an ergodic set. 

25. Given an absorbing Markov chain, we playa game as follows: 

\Ve start in a specified state, and carry the chain out till it reaches an absorb
ing state. If we reach Sa, we receive a payment of Ca. Form the column 
vector y whose i-th component is t.he mean of the payment if we start in Si. 

(a) Prove that Py=y. 
(b) Prove that for absorbing state Sa the a-th component of y is Ca. 

(c) Prove that these two conditions (letermine y. (HI~T: Consider the 
limit of pny .) 

(d) Let Ya be the vector giving the probabilities of absorption in Sa. 

Show that y can be expressed in terms of the Ya. 
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23. In  the tank duel (Exercise 2 of Chapter 11) let tank A have probability 
of hitting, tank B probability 315, and tank C an unspecified probability p 

(with p < 3 1 5 ) .  

(a) Set up the transition matrix. 
(b)  Find the probability that  tank C is the survivor. 
(c) I n  the answer obtained in (b),  let p tend to 0. 

Interpret your result. 

For the entire chapter 

24. Seven boys are playing with a ball. 
The first boy always throws it  to the second boy. 
The second boy is equally likely to  throw it  to  the third or the seventh. 
The third boy keeps the ball if he gets it .  
The fourt,h boy always throws i t  to  the sixth. 
The fifth boy is equally likely t o  throw it  to  the fourth, sixth, or seventh 

boy. 
The s ~ x t h  boy always throws it to the fourth. 
The seventh boy is equally likely to  throw it  to  the first or fourth boy. 

(a) Set up the transition matrix P. 
(b) Classify the states. 
(c) Pu t  P into canonical form. 
(d) Give an interpretation for the chain ending up in one of the ergodic sets. 
(e) The ball is given to the fifth boy. Find the mean and variance of the 

number of times that  the seventh boy has the ball, and find the mean 
and variance of the time to reach an ergodic set. 

25. Given an absorbing Markov chain, we play a game as follows: 

We start in a specified state, and carry the chain out till i t  reaches an absorb- 
ing state. If we reach s,, we receive a payment of c,. Form the column 
vector y whose i-th component is the mean of the payment if we start in s f .  

(a) Prove that Py = y. 
(b)  Prove that  for absorbing state sa the a-th component of y is c,. 
(c) Prove that these two conditions determine y. (HIST: Consider the 

limit of Pny.) 
(d)  Let y, be the vector giving the probabilities of absorption in s,. 

Show that y can be expressed in terms of the y,. 

a s k  theorems. I n  this section we shall s tudy  t h e  behavior of 
a regular Markov chain. W e  recall t h a t  a regular Markov chain is one 
t h a t  has  n o  transient sets, a n d  has a single ergodic se t  with on& one 
cyclic class. 

4.1.1 DEFINITION. The trmsition matrix for a regular Markov 
chain is called a regular transition matrix. 

4.1.2 THEOREM. A transition matrix i s  regular if and only if for 
some N ,  PN has no zero entries. 

It was shown in Chapter I1 t h a t  a Markov chain was regular if a n d  
only if i t  is possible t o  be i n  a n y  s ta te  after some number N of steps, no 
matter  what  the  starting s tate .  T h a t  is, if a n d  only if P" has no zero 
entries for some AT. 

4.1.3 THEOREM. Let P be an  r x r transition matrix having no zero 
entries. Let E be the smallest entry of P. Let x be any r-component 
column vector, having maximum component M o  and minimum com- 
ponent mo, and let M1 and m i  be the ma,ximum and minimum com- 
ponent,~ for the vector Px .  Then M 1  < M o ,  m l >  mo, and 

PROOF. L e t  x' be t h e  vector obtained from x by  replacing all com- 
ponents, except one mo component, b y  Mo. Then x<x ' .  Each  
component of Px' is of t h e  form 

where a 3 E .  Thus  each such component is < Mo - E ( M ~  - mo). B u t  
since x < x',  we have 

CHAPTER IV 

REGULAR MARKOV CHAINS 

§ 4.1 Basic theorems. In this section we shall study the behavior of 
a regular Markov chain. We recall that a regular Markov chain is one 
that has no transient sets, and has a single ergodic set with onfy one 
cyclic class. 

4.1.1 DEFINITION. The transition matrix for a regular Markov 
chain is called a regular transition matrix. 

4.1.2 THEOREM. A transition matrix is regular if and only if for 
some N, P N has no zero entries. 

It was shown in Chapter II that a Markov chain was regular if and 
only if it is possible to be in any state after some number N of steps, no 
matter what the starting state. That is, if and only if pN has no zero 
entries for some N. 

4.1.3 THEOREM. Let P be an r x r transition matrix having no zero 
entries. Let € be the smallest entry of P. Let x be any r-component 
column vector, having maximum component Mo and minimum com
ponent mo, and let M 1 and ml be the ma.ximum and minimum com
ponents for the vector Px. Then lFI 1 ~ Mo, ml;" mo, and 

M1-ml ~ (1-2€)(Mo-mo). 

PROOF. Let x' be the vector obtained from x by replacing all com
ponents, except one mo component, by Mo. Then x ~ x'. Each 
component of Px' is of the form 

a·mo+(l-a)·Mo = Mo-a(Mo-mo) 

where a;" E. Thus each such component is ~ M 0 - €(M 0 - mo). But 
since x ~ x', we have 

Ml ~ .ll1o-€(Mo-mo). (1) 
(\9 
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If we apply this result to the vector - x we obt,ain 

Adding (1) and (2)  we have 

This theorem gives us a simple proof of the following fundamental 
theorem for regular Markov chains. 

4.1.4 THEOREM. If P i s  a regular transition matriz then 

(i) The  powers Pn approach a probability matrix A .  
(ii) Each rou  of A i s  the same probability vecto? a = {a l ,  az,  . . . , a,), 

tha.t is A = ( a .  
(iii) The  components of a are positive. 

PROOF. We shall first assume that  P has no zeros. Let c be the 
minimum entry. Let p j  be a column vector with a 1 in t)he j-th 
component and 0 otherwise. Let M, and 7nn be t,he maximum and 
minimum components of the vector Ppj. Since Pnpj  = P .  Pn-1 P j ,  

we ha,ve, from Theorem 4.1.3, that  2 X 2  8 M 3  8 . . . and 
m l <  7722 < m s  < . . . and 

for n 2 1.  If we let, d, = 1W, - nz,, this tells us that' 

Thus as n tends to  infirtit,y d ,  goes to 0,111, and m, approach a common 
limit, and therefore Pnpj tends to a vector with all  component,^ the 
same. Let ai be this common value. I t  is clear that ,  for all n, 
m ,  < aj < M,. In  particular, since O <  and ilill < 1, we have that  
0 < ai < I .  Now P n p j  is the j- th column of Pn. Thus the j - th  column 
of Pn tends to a vector with all components the same value ni. That is, 
Pn tends to a nlatrix A with all rows the same vector a = { a l ,  aa: . . .,a,}. 
Since the row-sums of Pn are always 1 ,  the same must be true of the 
limit. This completes the proof for t,he case where the matrix has all 
positive entries. 

Consider next the case that  P is only assumed to be regular. Let N 
be such tha t  P" has no zero entries. Let E' be the smallest ent>ry of 
PN. Applying the first part of the proof to  the matrix PN, we have 
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d i n g  to 0. Thus d ,  tends to  zero and the rest of the proof is the 
me as in the proof for all positive entries. 

4.1.5 COROLLARY. Let P be a regular transition matris.  Set  
a f  = lim p(n)tr. Then  there are constants b and r with 0 < r < .t 8wh that 

fl-m 

p(n)t, = a~ + e(n),j 
with le(n)ij/ < b e .  

PROOF. We know that  ie(")trl Cd,. Let M be such that  PN has no 
zero ent.ries. Let E be the smallest entry of P". Choose r = (1 - 2 c ) l l N  

and b = l / ( l - 2 ~ ) = r - N .  If n=kAT,  then from (3), d,<m. If 
n = kN + n l ,  where 0 < nl c N ,  then since d ,  is non-increasing, 
d, < m-I< rn . r -N= brn. The bound here obtained for e(n)tf  is useful 
for proving theorems, but it is very conservative as an estimate for 
the rate of convergence of p(n)tf .  

THEOREM. If P i s  a regular transition matrix and A and a 
are us given in Theorem 4.1.4, then 

(a) For a n y  probability vector n ,  n.Pn approaches the vector a as 
as n tends to in$nity. 

( b )  The  vector a i s  the unique probability vector such that aP = a. 
(e) P A = A F = A .  

PROOF. If .rr is a probability vector, then n[ = 1 ; hence nA =n[a = a. 
But x . 9 "  approaches 7 . A .  Hence i t  approaches a. This proves 
part (a). 

Since the powers of P approach A ,  P + l =  P n .  F approaches A,  but 
it also approaches A P ; hence A P  = A. Similarly PA = A ,  proving ( e ) .  
Any one row of this matrix equation states that  aP = a. We now show 
that a is unique. Let p  be any probability vector such that  BP=p. 
By (a), /?. Pn approaches a. But since ,6P = p ,  fL?n =/3. Hence a =p. 
Thus we have proved (b). 

The matrix A and vector a will be referred to as the limiting matrix 
and limiting vector for the Markov chain determined by P. 

Theorem 4.1.6 shows that  for a regular transition matrix there is a. 
row vector a which remains "fixed"' when multiplied by P .  Any 
other vector a' such that  alP=a' is proportional to  the probability 
vector a. The following theorem shows that  any fixed column vector 
for P is proportional to 5. 

4.1.7 THEOREM. I f  P i s  a regular transition matrix and p =(ri)  is a 
column vector such that 

Therefore the sequence d,, wh~ch is norl-increasing, has a subsequence 
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If we apply this result to the vector - x we obtain 

-mi ~ -mo- .. (-mo+Mo}. 

Adding (1) a.nd (2) we have 

M1-ml ~ Mo-mo-2 .. (~~fo-mo) 
= (1- 2 .. )(M 0 - mol· 

CHAP. IV 

(2) 

This theorem gives us a simple proof of the following fundamental 
theorem for regular Markov chains. 

4.1.4 THEOREM. If P is a regular transition matrix then 

(i) The powers pn approach a probability matrix A. 
(ii) Each row of A is the same probability veetot a = {aI, a2, ... , an}, 

that is A = ga. 
(iii) The components of a are positive. 

PROOF. \Ve shall first assume that P has no zeros. Let .. be the 
minimum entry. Let Pi be a column vector with a 1 in the j-th 
component and 0 otherwise. Let 111n and mn be the maximum and 
minimum components of the vector pnpj. Since pnpi=p·pn-Ipi, 
we have, from Theorem 4.1.3, that MI~M2-;;,M3~ .. ·and 
ml,;:;m2,;:;m3';:; ... and 

Mn-mn';:; (1-2 .. )(Mn - I -m,,-I) 

for n ~ I. If we let dn = M n - mn , this tells us that 

dn ,;:; (1-2 .. )n·do = (1-2 .. )n. 

Thus as n tends to infinity dn goes to 0, jVI" and mn approach a common 
limit, and therefore Pnpi tends to a vector with all components the 
same. Let at be this common value. It is clear that, for all n, 
mn ,;:;aj,;:;ltln . In particular, since O<ml and ~~11< 1, we have that 
0< aj < 1. Now pnpj is the j-th column of pn. Thus the j-th column 
of pn tends to a vector with all components the same value aj. That is, 
pn tends to a matrix A with all rows the same vector a = {aI, a2, ... , ar}. 
Since the row-sums of pn are alway.s 1, the same must be true of the 
limit. This completes the proof for the case where the matrix has all 
positive entries. 

Consider next the case that P is only assumed to be regular. Let N 
be such that plY has no zero entries. Let E' be the smallest entry of 
plY. Applying the first part of the proof to the matrix PN, we have 

(3) 

Therefore the sequence d n , which is non·increasing, has a subsequence 
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If we apply this result to the vector - x we obt,ain 

Adding (1) and (2)  we have 

This theorem gives us a simple proof of the following fundamental 
theorem for regular Markov chains. 

4.1.4 THEOREM. If P i s  a regular transition matriz then 

(i) The  powers Pn approach a probability matrix A .  
(ii) Each rou  of A i s  the same probability vecto? a = {a l ,  az,  . . . , a,), 

tha.t is A = ( a .  
(iii) The  components of a are positive. 

PROOF. We shall first assume that  P has no zeros. Let c be the 
minimum entry. Let p j  be a column vector with a 1 in t)he j-th 
component and 0 otherwise. Let M, and 7nn be t,he maximum and 
minimum components of the vector Ppj. Since Pnpj  = P .  Pn-1 P j ,  

we ha,ve, from Theorem 4.1.3, that  2 X 2  8 M 3  8 . . . and 
m l <  7722 < m s  < . . . and 

for n 2 1.  If we let, d, = 1W, - nz,, this tells us that' 

Thus as n tends to  infirtit,y d ,  goes to 0,111, and m, approach a common 
limit, and therefore Pnpj tends to a vector with all  component,^ the 
same. Let ai be this common value. I t  is clear that ,  for all n, 
m ,  < aj < M,. In  particular, since O <  and ilill < 1, we have that  
0 < ai < I .  Now P n p j  is the j- th column of Pn. Thus the j - th  column 
of Pn tends to a vector with all components the same value ni. That is, 
Pn tends to a nlatrix A with all rows the same vector a = { a l ,  aa: . . .,a,}. 
Since the row-sums of Pn are always 1 ,  the same must be true of the 
limit. This completes the proof for t,he case where the matrix has all 
positive entries. 

Consider next the case that  P is only assumed to be regular. Let N 
be such tha t  P" has no zero entries. Let E' be the smallest ent>ry of 
PN. Applying the first part of the proof to  the matrix PN, we have 
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d i n g  to 0. Thus d ,  tends to  zero and the rest of the proof is the 
me as in the proof for all positive entries. 

4.1.5 COROLLARY. Let P be a regular transition matris.  Set  
a f  = lim p(n)tr. Then  there are constants b and r with 0 < r < .t 8wh that 

fl-m 

p(n)t, = a~ + e(n),j 
with le(n)ij/ < b e .  

PROOF. We know that  ie(")trl Cd,. Let M be such that  PN has no 
zero ent.ries. Let E be the smallest entry of P". Choose r = (1 - 2 c ) l l N  

and b = l / ( l - 2 ~ ) = r - N .  If n=kAT,  then from (3), d,<m. If 
n = kN + n l ,  where 0 < nl c N ,  then since d ,  is non-increasing, 
d, < m-I< rn . r -N= brn. The bound here obtained for e(n)tf  is useful 
for proving theorems, but it is very conservative as an estimate for 
the rate of convergence of p(n)tf .  

THEOREM. If P i s  a regular transition matrix and A and a 
are us given in Theorem 4.1.4, then 

(a) For a n y  probability vector n ,  n.Pn approaches the vector a as 
as n tends to in$nity. 

( b )  The  vector a i s  the unique probability vector such that aP = a. 
(e) P A = A F = A .  

PROOF. If .rr is a probability vector, then n[ = 1 ; hence nA =n[a = a. 
But x . 9 "  approaches 7 . A .  Hence i t  approaches a. This proves 
part (a). 

Since the powers of P approach A ,  P + l =  P n .  F approaches A,  but 
it also approaches A P ; hence A P  = A. Similarly PA = A ,  proving ( e ) .  
Any one row of this matrix equation states that  aP = a. We now show 
that a is unique. Let p  be any probability vector such that  BP=p. 
By (a), /?. Pn approaches a. But since ,6P = p ,  fL?n =/3. Hence a =p. 
Thus we have proved (b). 

The matrix A and vector a will be referred to as the limiting matrix 
and limiting vector for the Markov chain determined by P. 

Theorem 4.1.6 shows that  for a regular transition matrix there is a. 
row vector a which remains "fixed"' when multiplied by P .  Any 
other vector a' such that  alP=a' is proportional to  the probability 
vector a. The following theorem shows that  any fixed column vector 
for P is proportional to 5. 

4.1.7 THEOREM. I f  P i s  a regular transition matrix and p =(ri)  is a 
column vector such that 

Therefore the sequence d,, wh~ch is norl-increasing, has a subsequence 
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tending to O. Thus d", tends to zero and the rest of the proof is the 
same as in the proof for all positive entries. 

4.1.5 COROLLARY. Let P be a regular transition matrix. Let 
aj = lim p("')jj. Then there are constants band r with 0< r< 1 BUCh that 

with le(lI)jil ::;;; br". 

PROOF. We know that le(n)jjl ::;;; dll • Let N be such that pN has no 
zero entries. Let" be the smallest entry of PN. Choose r= (1- 2E)1/N 
and b=1/(l-2,,)=r-N • If n=kN, then from (3), dn ::;;;rll • If 
n=kN+nl> where O::;;;nl::;;;N, then since d", is non-increasing, 
d.,::;;; ""-""::;;; rn. r-N = brn. The bound here obtained for e(n)/j is useful 
for proving theorems, but it is very conservative as an estimate for 
the rate of convergence of p(n)/J. 

4.1.6 THEOREM. If P is a regular transition matrix and A and 0: 

are as given in Theorem 4.1.4, then 

(a) For any probability vector 1T, 1T'P" approaches the vector 0: as 
as n tends to infinity. 

(b) The vector ex is the unique probability vector such that o:P = 0:. 

(c) PA =AP=A. 

PROOF. If 1T is a probability vector, then 1Tg= 1; hence 1TA =1Tgo: = ex. 
But 1T' pn approaches 7T' A. Hence it approaches ex. This proves 
part (a). 

Since the powers of P approach A, p.,+l=pn.p approaches A, but 
it also approaches AP; hence AP=A. Similarly PA =A, proving (c). 
Anyone row of this matrix equation states that exP = 0:. We now show 
that 0: is unique. Let {3 be any probability vector such that {3P = {3. 
By (a), {3. P'" approaches ex. But since f3P = f3, f3P" = f3. Hence 0: = f3. 
Thus we have proved (b). 

The matrix A and vector 0: will be referred to as the limiting matrix 
and limiting vector for the Markov chain determined by P. 

Theorem 4.1.6 shows that for a regular transition matrix there is a 
row vector 0: which remains "fixed" when multiplied by P. Any 
other vector 0:' such that ex' P = ex' is proportional to the probability 
vector 0:. The following theorem shows that any fixed column vector 
for P is proportional to f 

4.1.7 THEOREM. If P is a regular transition matrix and p ={r/} is a 
column vector such that 

Pp = p 

then p = c . g jor some constant c. 
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PROOF. Since P p  = p, Pep  = P p  = p and in general Pnp = p. Hence 
also A p = p .  Thus r,=ap. But this states that  all components of p 
have the same value. That is p = c[ for some constant c. 

In Chapter I1 we saw that  if the process is st,arted in each of the 
states with probabilities given by T ,  then the probabilities for being in 
each of the states after n steps are given by nPn.  For large n Theorem 
4.1.6 states that  x P n  is approximately a.  Since a depends only on P 
and not on 7,  this may be described by saying tha,t, for a regular 
Markov chain, the long range predictions are independent of the initial 
vector. Let us illustrate this in terms of Example 8 of Chapter II. 
The transition matrix for this example is 

a N S 

To find the vector a =  ( a l ,  a2, a s ) ,  we must find a probability vector 
such that a P =  a.  That is, we must satisfy the following set of equa- 
tions : 

1 = al+ az+ as 

The unique solution to these equations is 

The limit matrix A is then 

Corollary 4.1.5 states that  this hmit is reached geometrically. This 
being a very fast kind of convergence, we would expect that ,  even for 
moderately large values of n ,  Pn should be approximated by A .  The 
matrix P5 is 

a N s 
R /.4004 .2002 .3904\ 
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Each row of P5 gives the probability of each kind of weather five days 
after a particular kind of day. For example, the first row gives the 
probabilities for each kind of weather five days after a rainy day. The 
fact that  the rows are so nearly equal means that  today's weather in 
the Land of Oz may be considered to have very little effect on our pre- 
dictions for five days from now. 

5 4.2 Law of large numbers for regular arkov chains. As we have 
seen in § 4.1, for a regular Narkov chain there is a limiting probability 
aj of being in state s j  independent of the starting state. I n  this section 
we shall prove that  ai also represents the fraction of the time that  the 
process can be expected to be in state sj for a large number of steps. 
This result will also be independent of the starting state. 

To state the above result precisely, we shall need to introduce some 
new functions. Let u(n)j be a function with domain the tree U n  and 
with value 1 if the n-th step was to state sj and 0 otherwise. R7e 

define y(n)j = u(*)$. Then y(nij is again a function with domain 
k=l 

the tree U n  and value the number of times (not counting the initial 
position) that  the process is in state s j  during the first n steps. The 
function v(nbj = y(n) j /n  gives the fraction of times in the first n steps that  
the process moves to state sf. 

4.2.1 THEOREM ( T h e  Law of Large Wumbers). Consider a regular 
Markov chain with limiting vector a= ( a i ,  az,  . . . , a,). For any  
initial vector n, 

(a)  
and for any E > O 

(b )  
as n tends to infinity. 

PROOF. According to Theorem 1.8.10, to prove this theorem it is 
sufficient to prove that  ,,[(v(n)) - a,)2]+0 as n t 
prove this i t  is sufficient to prove that ,  for every i, 

Let mk,t  = Rp,[(u(k), - u,)(u(l), - a j ) ] .  Then we must prove that 
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PROOF. Since Pp=p. P2p=Pp=p and in general pnp=p Hence 
also Ap = p. Thus T; = ap. But this states that all components of p 
have the same value. That is p = ct for some constant c. 

In Chapter II we saw that if the process is started in each of the 
states with probabilities given by 7T, then the probabilities for being in 
each of the states after n steps are given by n pn. For large n Theorem 
4.1.6 states that npn is approximately a. Since a depends only on P 
and not on 7T, this may be described by saying that, for a regular 
Markov chain, the long range predictions are independent of the initial 
vector. Let us illustrate this in terms of Example 8 of Chapter II. 
The transition matrix for this example is 

R N S 

:(:;: 1:4 :;:). 
S 14 1/4 liz 

To find the vector a = (aj, az, as), we must find a probability vector 
such that ct.P = ct.. That is, we must satisfy the following set of equa
tions: 

al+ az+ a3 

al )!2al+l/zaz+J/4aS 

az = 1/4aJ + 1/4a 3 

a3 = J/ 4a) + l/ZaZ+ I/ZaS. 

The unique solution to these equations is 

ct. = CZ/5, lis, z/s). 

The limit ma.trix A is then 

A (
.4 .2 .4) 
\': :: :: . 

Corollary 4.1.5 states that this limit is reached geometrically. This 
being a very fast kind of convergence, 1ve would expect that. even for 
moderately large values of n, pn should be approximated by A. The 
matrix p5 is 

R N S Reo, .2002 3904) 
ps = N .4004 . 1992 .4004 . 

S .3994 .2002 .4004 
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PROOF. Since P p  = p, Pep  = P p  = p and in general Pnp = p. Hence 
also A p = p .  Thus r,=ap. But this states that  all components of p 
have the same value. That is p = c[ for some constant c. 

In Chapter I1 we saw that  if the process is st,arted in each of the 
states with probabilities given by T ,  then the probabilities for being in 
each of the states after n steps are given by nPn.  For large n Theorem 
4.1.6 states that  x P n  is approximately a.  Since a depends only on P 
and not on 7,  this may be described by saying tha,t, for a regular 
Markov chain, the long range predictions are independent of the initial 
vector. Let us illustrate this in terms of Example 8 of Chapter II. 
The transition matrix for this example is 

a N S 

To find the vector a =  ( a l ,  a2, a s ) ,  we must find a probability vector 
such that a P =  a.  That is, we must satisfy the following set of equa- 
tions : 

1 = al+ az+ as 

The unique solution to these equations is 

The limit matrix A is then 

Corollary 4.1.5 states that  this hmit is reached geometrically. This 
being a very fast kind of convergence, we would expect that ,  even for 
moderately large values of n ,  Pn should be approximated by A .  The 
matrix P5 is 

a N s 
R /.4004 .2002 .3904\ 
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Each row of P5 gives the probability of each kind of weather five days 
after a particular kind of day. For example, the first row gives the 
probabilities for each kind of weather five days after a rainy day. The 
fact that  the rows are so nearly equal means that  today's weather in 
the Land of Oz may be considered to have very little effect on our pre- 
dictions for five days from now. 

5 4.2 Law of large numbers for regular arkov chains. As we have 
seen in § 4.1, for a regular Narkov chain there is a limiting probability 
aj of being in state s j  independent of the starting state. I n  this section 
we shall prove that  ai also represents the fraction of the time that  the 
process can be expected to be in state sj for a large number of steps. 
This result will also be independent of the starting state. 

To state the above result precisely, we shall need to introduce some 
new functions. Let u(n)j be a function with domain the tree U n  and 
with value 1 if the n-th step was to state sj and 0 otherwise. R7e 

define y(n)j = u(*)$. Then y(nij is again a function with domain 
k=l 

the tree U n  and value the number of times (not counting the initial 
position) that  the process is in state s j  during the first n steps. The 
function v(nbj = y(n) j /n  gives the fraction of times in the first n steps that  
the process moves to state sf. 

4.2.1 THEOREM ( T h e  Law of Large Wumbers). Consider a regular 
Markov chain with limiting vector a= ( a i ,  az,  . . . , a,). For any  
initial vector n, 

(a)  
and for any E > O 

(b )  
as n tends to infinity. 

PROOF. According to Theorem 1.8.10, to prove this theorem it is 
sufficient to prove that  ,,[(v(n)) - a,)2]+0 as n t 
prove this i t  is sufficient to prove that ,  for every i, 

Let mk,t  = Rp,[(u(k), - u,)(u(l), - a j ) ] .  Then we must prove that 

SEC. 2 REGULAR yL\RKOV CHAINS 73 

Each row of p5 gives the probability of each kind of weather five days 
after a particular kind of day. For example, the first row gi\'es the 
probabilities for each kind of weather five days after a rainy day. The 
fact that the rows are so nearly equal means that today's weather in 
the Land of Oz may be considered to have very little effect on our pre
dictions for five days from now, 

§ 4.2 Law of large numbers for regular Markoy chains. As we have 
seen in § 4.1, for a regular Markov chain there is a limiting probability 
aj of being in state S1 independent of the starting state. In this section 
we shall prove that aj also represents the fraction of the time that the 
process can be expected to be in state Sj for a large number of steps. 
This result will also be independent of the starting state. 

To state the above result precisely, we shall need to introduce some 
new functions. Let u(n)j be a function with domain the tree Un and 
with value I if the n-th step was to state 5j and 0 otherwise. '\\-e 

n 

define y(n)j = .2 U(k)j' Then y(n 1j is again a function with domain 
k~l 

the tree Un and value the number of times (not counting the initial 
position) that the process is in state 5j during the first n steps. The 
function y(n)j = y(n)j!n gives the fraction of times in the first n steps that 
the process moves to state 8J. 

4.2.1 THEOREM (The Law of Large Numbers). Consider a regular 
Markov chain with limiting vector a = (aI, az, ... , arlo For any 
initial vector 7T, 

(a) 
and for any t > 0 

(b) 

as n tends to infinity, 

PROOF. According to Theorem 1.8.10, to prove this theorem it is 
sufficient to prove that Mn[(y(n'j - aj)2J ....... 0 as n tends to infinity. To 
prove this it is sufficient to prove that, for every i, Mi[(v(n\ - aj)2J~0. 

Thl; [ ( k~ (U(k)j/n) - aj fJ 
= ~2M;[C~(U(k)j-aj))1 

Let mk,I=Mi[(u(k)j-Uj)(u(l)j-aj)l Then we must prove that 

i i mk,l""'" 0 
1~1 k~l 

(1) 
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as n tends to infinity. Multiplying out the expression for mkS1 we have 

Let m = min ( k ,  1 )  and d = lk - El. Then 

Using Corollary 4.1.5, we have 

where je(n)ij/ < brn with O <  r <  1. Hence for a suitably chosen constant 
c, 

lmk,rl < c(rm +rd+rk+ r2) .  ( 2 )  

Each value of m ,  d, k ,  and 1 occurs < 2n  times in the sum in (1). Mence, 
using ( 2 ) ,  we have 

The right side of this inequality tends to 0 as n tends to infinity; 
hence, also the left side, as was to be proved. 

Let us apply this theorem to the Land of Oz example. We found in 
$ 4.1.5 that  a =  (2j5, ' I 5 ,  2 i 5 )  Thus we can now say that  for a large 
number of days we can expect about ' I s  of the days to be rainy, 115 

of the days to be nice, and 215 of the days to be snowy. 
Consider the special case of an independent trials process. Such a 

process is a Markov chain with transition mat,rix having all rows the 
same vector a and with initial probability vector chosen to be a. The 
law of large numbers for an  independent trials process is thus a special 
case of the theorem just proved. The proof for this case is very much 
simpler. I n  fact, in this case Pl l , [~(n)~]=aj  for a,ll n; hence also 
M , [ V ( ~ ) ~ ]  = aj. Also mkVl = 0 for k # 1 and m k , k  = 02, a constant for all k. 
Hence 

This tends to 0 as n tends to infinity. 
Another special case of interest is a general Narkov chain process 

which is started by an initial probability vector n = a. In this case also 
. [ ~ ( n ) ~ ]  = M , [ V ( ~ ) ~ ]  = aj for all n .  Hence 

However, i t  is not possible, in this case, to give a simple expression for 
this variance as a function of n ,  as was possible in the independent case. 
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We shall consider this variance in $ 4.6, where we shall give an 
asymptotic expression for it.  

amentali matrix for regular c aim. I n  Chapter III 
we found that ,  for an absorbing chain, the matrix (I-&)-I played a 
fundamental role. (& was the matrix obtained by truncating the 
transition matrix to include only the non-absorbing states.) We shall 
see that  there is a corresponding fundamental matrix for regular chains. 

4.3.1 THEOREM. Let P be the transition matrix for a regular Markov 
chain. Let A be the limiting matrix. Then  Z =  ( I -  ( P -  A) ) -1  
u i s t s  and 

PROOF. We shall prove that  ( P -  A)n= Pn -A .  Since Pn - A-0, 
our theorem will then follow from the matrix theorem proved in 
$ 1.11.1. We have A2=[afa=fcr=A, hence A k = A ,  and 

3.2 DEFINITION. Let P be a regular transition matrix. The  
matrix Z = (I - (P - A )  )-I i s  called the fundamental matrix for th3 
Harkov chain determined by Y. 

We shall see that  the matrix Z is the basic quantity used to compute 
most of the interesting descriptive quantities for the behavior of a 
regular Markov chain. We shall first establish certain important 
properties of the matrix which will be useful in later work. 

4.3.3 THEOREM. Let Z be the fundamental nzatrix for a regular 
Markov chain with transition matrix P ,  limiting vector a ,  and limiting 
matrix A. Then  

(a) P Z = Z P  

(b) a =  t 
(c) aZ = a 

(d) I - Z = A - P Z .  

PROOF. Part (a) follows from the infinite series representation for Z 
and the fact that  P comlnutes with each term in this infinite series. 
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as n tends to infinity. Multiplying out the expression for mk.1 'we have 

mk,1 = Mi[U(k)ju(l)j] - ajMi[u(kli ]- 0iM/[U(I)j] + 02j . 

Let m=min (k, I) and d= Ik-ll. Then 

Using Corollary 4,1.5, we have 

mk,l = aj(e(m)ji + e(d);} - elk);} - eU)ii) + e(m)ije(d)jj 

where le(n);il ~ brn with 0< r< 1. Hence for a suitably chosen constant 
c, 

Imk,!; ~ c(rm+rd+rk+rl). (2) 

Each value of m, d, k, and I occurs ,-;; 2n times in the sum in (1). Hence, 
using (2), we have 

4c 2n 
~ n2 "1- r 

8e 
n(l- r)' 

The right side of this inequality tends to 0 as n tends to infinity; 
hence, also the left side, as was to be proved. 

Let us apply this theorem to the Land of Oz example. We found in 
§ 4.1.5 that a=(2/s, 115, 2tS ). Thus we can now say that for a large 
number of days we can expect about 2/5 of the days to be rainy, 1/5 
of the days to be nice, and 2/5 of the clays to be snowy. 

Consider the special case of an independent trials process. Such a 
process is a Markov chain with transition matrix having all rows the 
same vector a and with initial probability vector chosen to be a. The 
law of large numbers for an independent trials process is thus a special 
case of the theorem just proved. The proof for this case is very much 
simpler. In fact, in this case Malu(n)j]=Oj for all n; hE:nce also 
Ma[v(n)jJ=aj. Also mk,Z=O for k#l and mk,k=a2 , a constant for all k. 
Hence 

n 

This tends to 0 as n tends to infinity. 
Another special case of interest is a general Markov chain process 

which is started by an initial probability vector 1T = a. In this case also 
Ma[u(n)j] = Ma[v(n)j] =aj for all n. Hence 

Ma[(v(n)} - OJ)2] = Vara[v(n)j]. 

However, it is not. possible, in this case, to gi\'e a simple expression for 
this variance as a function of n, as was possible in the independent case. 
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as n tends to infinity. Multiplying out the expression for mkS1 we have 

Let m = min ( k ,  1 )  and d = lk - El. Then 

Using Corollary 4.1.5, we have 

where je(n)ij/ < brn with O <  r <  1. Hence for a suitably chosen constant 
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lmk,rl < c(rm +rd+rk+ r2) .  ( 2 )  

Each value of m ,  d, k ,  and 1 occurs < 2n  times in the sum in (1). Mence, 
using ( 2 ) ,  we have 

The right side of this inequality tends to 0 as n tends to infinity; 
hence, also the left side, as was to be proved. 

Let us apply this theorem to the Land of Oz example. We found in 
$ 4.1.5 that  a =  (2j5, ' I 5 ,  2 i 5 )  Thus we can now say that  for a large 
number of days we can expect about ' I s  of the days to be rainy, 115 

of the days to be nice, and 215 of the days to be snowy. 
Consider the special case of an independent trials process. Such a 

process is a Markov chain with transition mat,rix having all rows the 
same vector a and with initial probability vector chosen to be a. The 
law of large numbers for an  independent trials process is thus a special 
case of the theorem just proved. The proof for this case is very much 
simpler. I n  fact, in this case Pl l , [~(n)~]=aj  for a,ll n; hence also 
M , [ V ( ~ ) ~ ]  = aj. Also mkVl = 0 for k # 1 and m k , k  = 02, a constant for all k. 
Hence 

This tends to 0 as n tends to infinity. 
Another special case of interest is a general Narkov chain process 

which is started by an initial probability vector n = a. In this case also 
. [ ~ ( n ) ~ ]  = M , [ V ( ~ ) ~ ]  = aj for all n .  Hence 

However, i t  is not possible, in this case, to give a simple expression for 
this variance as a function of n ,  as was possible in the independent case. 
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We shall consider this variance in $ 4.6, where we shall give an 
asymptotic expression for it.  

amentali matrix for regular c aim. I n  Chapter III 
we found that ,  for an absorbing chain, the matrix (I-&)-I played a 
fundamental role. (& was the matrix obtained by truncating the 
transition matrix to include only the non-absorbing states.) We shall 
see that  there is a corresponding fundamental matrix for regular chains. 

4.3.1 THEOREM. Let P be the transition matrix for a regular Markov 
chain. Let A be the limiting matrix. Then  Z =  ( I -  ( P -  A) ) -1  
u i s t s  and 

PROOF. We shall prove that  ( P -  A)n= Pn -A .  Since Pn - A-0, 
our theorem will then follow from the matrix theorem proved in 
$ 1.11.1. We have A2=[afa=fcr=A, hence A k = A ,  and 

3.2 DEFINITION. Let P be a regular transition matrix. The  
matrix Z = (I - (P - A )  )-I i s  called the fundamental matrix for th3 
Harkov chain determined by Y. 

We shall see that  the matrix Z is the basic quantity used to compute 
most of the interesting descriptive quantities for the behavior of a 
regular Markov chain. We shall first establish certain important 
properties of the matrix which will be useful in later work. 

4.3.3 THEOREM. Let Z be the fundamental nzatrix for a regular 
Markov chain with transition matrix P ,  limiting vector a ,  and limiting 
matrix A. Then  

(a) P Z = Z P  

(b) a =  t 
(c) aZ = a 

(d) I - Z = A - P Z .  

PROOF. Part (a) follows from the infinite series representation for Z 
and the fact that  P comlnutes with each term in this infinite series. 
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We shall consider this variance in § 4.6, where we shall give an 
asymptotic expression for it. 

§ 4.3 The fundamentai matri.x for regular chains. In Chapter III 
we found that, for an absorbing chain, the matrix (l-Q)-l played a 
fundamental role. (Q was the matrix obtained by truncating the 
transition matrix to include only the non-absorbing states.) We shall 
see that there is a corresponding fundamental matrix for regular chains. 

4.3.1 THEOREM. Let P be the transition matrix for a regular Markov 
chain. Let A be the limiting matrix. Then Z = (1- (P - A»-l 
exists and 

., 
Z = 1+ .I (pn-A). 

n~l 

PROOF. We shall prove that (p-A)n=pn-A. Since pn-A--+O, 
our theorem will then follow from the matrix theorem proved in 
§ 1.11.1. We have A2=tata=ta=A, hence Ak=A, and 

n 

(p-A)n = .I (_ l)n-tp'An-t 
i-a 

pn-A. 

4.3.2 DEFINITION. Let P be a regular transition matrix. The 
matrix Z=(l-(P-A»-l is called the fundamental matrix for the 
J11 arkov chain determined by P. 

We shall see that the matrix Z is the basic quantity used to compute 
most of the interesting descriptive quantities for the behavior of a 
regular Markov chain. We shall first establish certain important 
properties of the matrix which will be useful in later work. 

4.3.3 THE ORE'>!, Let Z be the fundamental matrix jar a regular 
Markov chain with transition matrix P, limiting vectoT a, and limiting 
matrix A. Then 

(a) PZ = ZP 

(b) Zt= t 
(e) aZ = a 

(d) J-Z = A-PZ. 

PROOF. Part (a) follows from the infinite series representation for Z 
and the fact that P commutes with each term in this infinite series. 
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Par t  (b) states that  Z has row-sums 1. This again follows from the 
infinite series representation for Z since the first matrix I has row- 
sums 1 and each of the matrices Pn-A have row-sums 0. Part  (c) 
follows from tshe infinite series representation for Z, since a1 = a  and 

m 

a(Pn- A )  = O .  To prove (d) we multiply Z = I +  1 (Pn- A )  by 
n- 1 

I  - P obtaining 

( I - P ) Z  = ( 1 - P ) + ( P - A )  
= I - A .  

We shall use the Land of Oz example as our standard example of the 
applications of the Z matrix. For this example P and A are 

TO find the matrix Z  we must find the inverse of the matrix 

.9 - .05  .15 

-.l 1.2 -.I 

.15 -.05 .9 

Doing this we obtain 

While the fundamental matrix Z  has several properties in eomnlon 
with a transition matrix, we see from this example that  it does not 
necessarily have non-negative entries. 

An example where the Z matrix turns out to be a very simple matrix 
is the case of an independent trials process. In this case P  = A so that  
Z = ( I  - ( P  - A)  )-"I. Thus for an independent trials .process the 
Z  matrix is the identity matrix. 

Let be the number of times that  the process is in state sf in the 
first n stages, i.e. the initial position plus n - l stages. 

An immediate consequence of this theorem is the following : 

.5 COROLLARY. FOT a n y  two initial distributions n and n' 

I f  we choose a particular starhing state, say i, then Theorem 4.3.4 
states tha t  

- naj -+ - af).  

Thus we see that  for large n the mean number of times in state sj, 
sbarting a t  state si, differs from naf  by approximately zij - a3 
tha t  by Theorem 4.2.1 the mean of the fraction of times in state sf 
approaches a3 independent of the starting state. Thus the entries of 
( Z  -A)  give us an  interesting quantiSy for regular chains for which the 
initial state does have an influence. We can compare two starting 
states, since by Corollary 4.3.5 

Another interesting corollary to Theorem 4.3.4 is the following. 

COROLLARY. Let c = 2 qf. T h e n  

as  n approaches infinity,  independent of 71.. 

Therefore the sum approaches 
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Part (b) states that Z has row-sums 1. This again follows from the 
infinite series representation for Z since the first matrix I has row
sums I and each of the matrices pn - A have row-sums O. Part (c) 
follows from the infinite series representation for Z, since (XI = a and 

00 

a(pn-A)=O. To prove (d) we multiply Z=I+ L (pn-A) by 

1- P obtaining 

(I-P)Z = (I-P)+(P-A) 

= I-A. 

n-l 

\Ve shall use the Land of Oz example as our standard example of the 
applications of the Z matrix. For this example P and A are 

R N S R N S 

T' 1/4 'I,) C 
1/5 'f') 

R 

P = N liz 0 1/2 A 2/5 1/5 2/5 N. 

S 1/4 1/4 l/Z 2 I 1/5 2/5 S /5 

To find the matrix Z we must filld the inverse of the matrix 

(9 -.05 -:) I-P+A - 1 1.2 

.15 -.05 .9 

Doing this we obtain 

R N S 

86 3 -1:) R 

Z 
",,( 6 

63 N. 

-14 3 86 S 

While the fundamental matrix Z has several properties in common 
with a transition matrix, we see from this example that it does not 
necessarily have non-negative entries. 

An example where the Z matrix turns out to be a very simple matrix 
is the case of an independent trials process. In this case P = A so that 
Z=(l-(P-A»-l=l. Thus for an independcnt trials 'process the 
Z matrix is the identity matrix. 

Let y(n)j be the number of times that the process is in state s1 in the 
first n stages, i.e. the initial position plus n-l stages. 
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Par t  (b) states that  Z has row-sums 1. This again follows from the 
infinite series representation for Z since the first matrix I has row- 
sums 1 and each of the matrices Pn-A have row-sums 0. Part  (c) 
follows from tshe infinite series representation for Z, since a1 = a  and 

m 

a(Pn- A )  = O .  To prove (d) we multiply Z = I +  1 (Pn- A )  by 
n- 1 

I  - P obtaining 

( I - P ) Z  = ( 1 - P ) + ( P - A )  
= I - A .  

We shall use the Land of Oz example as our standard example of the 
applications of the Z matrix. For this example P and A are 

TO find the matrix Z  we must find the inverse of the matrix 

.9 - .05  .15 

-.l 1.2 -.I 

.15 -.05 .9 

Doing this we obtain 

While the fundamental matrix Z  has several properties in eomnlon 
with a transition matrix, we see from this example that  it does not 
necessarily have non-negative entries. 

An example where the Z matrix turns out to be a very simple matrix 
is the case of an independent trials process. In this case P  = A so that  
Z = ( I  - ( P  - A)  )-"I. Thus for an independent trials .process the 
Z  matrix is the identity matrix. 

Let be the number of times that  the process is in state sf in the 
first n stages, i.e. the initial position plus n - l stages. 

An immediate consequence of this theorem is the following : 

.5 COROLLARY. FOT a n y  two initial distributions n and n' 

I f  we choose a particular starhing state, say i, then Theorem 4.3.4 
states tha t  

- naj -+ - af).  

Thus we see that  for large n the mean number of times in state sj, 
sbarting a t  state si, differs from naf  by approximately zij - a3 
tha t  by Theorem 4.2.1 the mean of the fraction of times in state sf 
approaches a3 independent of the starting state. Thus the entries of 
( Z  -A)  give us an  interesting quantiSy for regular chains for which the 
initial state does have an influence. We can compare two starting 
states, since by Corollary 4.3.5 

Another interesting corollary to Theorem 4.3.4 is the following. 

COROLLARY. Let c = 2 qf. T h e n  

as  n approaches infinity,  independent of 71.. 

Therefore the sum approaches 
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4.3.4 THEOREM. For any regular Markov chain, and any initial 
vector "IT, 

{M,,[y(n)f]}-ncc-+17(Z-A) = 17Z-a. 

PROOF. For any i, 

Thus 

Therefore 

11-1 n-1 

2: Mt[U(k)j] 2: p(lC)/j. 

}=o .. -0 

»-1 

{Mi[y(n),)-naj} = 2: (Pk-A) -+ Z-A. 
k=O 

77{M.[y(n)j1- na,} -+ 77(Z - A) = 77Z - a. 

An immediate consequence of this theorem is the following: 

4.3.5 COROLLARY. For any two initial distributions 77 and 77' 

{Mw[y(r.)j] - M~·[y(1l)jJ} -+ (7T - 17')Z. 

If we choose a particular starting state, say i, then Theorem 4.3,4 
states that 

fill[Y(")j] - naj ->- (Zij -aj). 

Thus wc see that for large n the mean number of times in state Sj, 

starting at state SI, differs from lWj by approximately Zij - aj We recall 
that by Theorem 4.2.1 the mean of the fraction of times in state Sj 

approaches aj indepe:'ldent of the starting state. Thus the entries of 
(Z - A) give us an interesting quantity for regular chains for which the 
initial state does have an influence. We can compare two starting 
states, since by Corollary 4.3.5 

MI[y(n)j] - Mk[y(1l)J] ->- ZiJ - Zkj· 

Another interesting corollary to Theorem 4.3.4 is the following. 

4.3.6 COROLLARY. Let c = 2: ZJj. Then 

2: (Mj[y(n)j]-M,,[y(n)j]) -r c-1 
j 

as n approaches infinity, independent of 77. 

PROOF. By Coronary 4.3.5 

M;[y'(n)j] - Mo [y(n)5] -+ Zjj - (77Z),. 

Therefore the sum approaches 

2: ZjJ - 17 Z~ = c - 1. 



7 8 FINITE MARKOV CHAINS 

This corollary has the following interpretation. For any x ,  
Mj[y(")j] M,[jF(*)j], Hence j[jF(*)jJ gives the largest possible mean 
number of times in sj. The corollary states that  the deviations from 
this maximum, summed over all states, approach a limit which is 
independent of the choice of n. 

5 4.4 First passage times. I n  this section we shall study the length of 
time to  go from a state si to a state sj  for the first time. We shall see tha t  
the mean of this time is easily obtained from the fundamental matrix. 

4.4.1 DEFINITION. For a regular Markov chain, the first passage 
time fk is  a function whose value is  the number of steps before entering 
sk,for thejirst time after the initial position. 

4.4.2 THEOREM. For any i, Ml[fk]  isjinite. 

PROOF. Assume first that  i #  k. Form a new Markov chain by 
making state s k  into an  absorbing state. The resulting Markov chain 
is an  absorbing Markov chain with a single absorbing state, sk. The 
mean time to go from si to s j  in the given chain is the same as the mean 
time before absorption in the new chain. The mean time before 
absorption is finite by Theorem 3.2.4. 

If  i = k ,  then 
Mt[fi] = pii + 2 pikMk[fi] 

k#i 

which is finite by the first part of the proof. 
4.4.3 DEFINITION. The mean first passage matrix, denoted by M ,  
is the matrix with entries mi, = M,[fJT 
I t  then follows from 1.8.9 that ,  for an  initial vector n, the mean 

first passage times are the components of the vector nM. 
4.4.4 THEOREM. The matrix M satisjies the equation 

PROOF. We calculate Mi[fj] by taking the mean of the conditional 
means, given the outcome of the first experiment. This gives 

This proves the theorem. 

This matrix is denoted by 2 in later works by the authors. 
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.4.5 THEOREM. Let a = {al ,  az, . . . , a,) be the limiting probability 
eclor for P .  Then m,i = l /al .  

PROOF. Multiplying equation ( 1  

Therefore 
anlag = aE = v. 

This states that  atmi, = 1 for every i, or mii = lla,. 

4.4.6 THEOREM. Equation, (1) of Theorem 4.4.4 has a unique 
solution. 

PROOF. Let AM and M' be two solutions for (1). Then from the 
proof of Theorem 4.4.5 we have a x a g  = aMIdg = 7. Hence Mdg = MIdg. 
This gives 

Jf- H' = P ( M -  M') .  

But this means that  each column of M - B' is a fixed column vector for 
P. Hence by Theorem 4.1.7 each column is a constant vector. Since 
M - M '  has 0's on the diagonal, these vectors must all be 0 vectors. 
Hence M = M'. 

4.4.7 THEOREM. The mean first passage matrix M is  given by 

ikf = ( I -  Z+EZd,)D ( 2 )  
where D  is  the diagonal matriz with diagonal elements dit = l / a z .  

PROOF. By Theorems 4.4.4 and 4.4.6 we need only show that  M 
as defined by (2) satisfies equation ( I )  above. 

Let 
H = ( I - z + E z d g ) D ,  

Then 
iM-D = ( - Z + E Z d g ) D  

and 

P ( M  - D )  = ( - P Z  + E Z d g ) D  

= M + ( - I + Z - P Z ) D .  

By Theorem 4.3.3(d) this is 

P ( J f -  D )  = M -  AD 

= N - E .  

By ( 2 ) ,  D  = Hd,. Hence -W = Y ( M -  17l~,) +E. 
4.4.8 THEOREX. Let P be the transition matrix for an independent 
trials process. Then M = ( l /p , , ) .  
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This corollary has the following interpretation. For any 77, 

Mj[y(n)j] ~ M~[j(n) j]. Hence l'fIj[y(n) j] gives the largest possible mean 
number of times in Sj. The corollary states that the deviations from 
this maximum, summed over all states, approach a limit which is 
independent of the choice of 77. 

§ 4.4 First passage times. In this section we shall study the length of 
time to go from a state Si to a state sf for the first time. We shall see that 
the mean of this time is easily obtained from the fundamental matrix. 

4.4.1 DEFINITION. For a regular Markov chain, the first passage 
time fk is a function whose value is the number of steps before entering 
Sk for the first time after the initial position. 

4.4.2 THEOREM. For any i, Mi[fk ] is finite. 

PROOF. Assume first thati f k. Form a new Markov chain by 
making state Sk into an absorbing state. The resulting Markov chain 
is an absorbing Marko\· ehain with a single absorbing state, Sk. The 
mean time to go from 5i to Sj in the given chain is the same as the mean 
time before absorption in the new chain. The mean time before 
absorption is finite by Theorem 3.2.4. 

Ifi=k, then 

lUt[f;] = Pi; + .L PikMk[f;J 
k¢i 

which is finite by the first part of the proof. 

4.4.3 DEFINITION. The mean first passage matrix, denoted by M, 
is the matrix with entries ml ; = Mj[fj). T 

It then follows from 1.8.9 that, for an initial vector 11, the mean 
first passage times are the components of the vector 771tI. 

4.4.4 THEOREM. The matrix M satisfies the equation 

(1) 

PROOF. We calculate Mi[fj ] by taking the mean of the conditiona,l 
means, given the outcome of the first experiment. This gives 

That is, 

l\i;[fj] = 2: Pik(Mk[fj ] + 1) + Pi} 
k¥j 

= L PikMk[fj ] + 1 
k-:tj 

L PiklUklfj] - PijMj[fj] + 1.. 
k 

mlj = .L )J/kmkj - ptjm}} + 1. 
k 

This proves the theorem. 

t This matrix is denoted by M in later works by the authors. 
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This corollary has the following interpretation. For any x ,  
Mj[y(")j] M,[jF(*)j], Hence j[jF(*)jJ gives the largest possible mean 
number of times in sj. The corollary states that  the deviations from 
this maximum, summed over all states, approach a limit which is 
independent of the choice of n. 

5 4.4 First passage times. I n  this section we shall study the length of 
time to  go from a state si to a state sj  for the first time. We shall see tha t  
the mean of this time is easily obtained from the fundamental matrix. 

4.4.1 DEFINITION. For a regular Markov chain, the first passage 
time fk is  a function whose value is  the number of steps before entering 
sk,for thejirst time after the initial position. 

4.4.2 THEOREM. For any i, Ml[fk]  isjinite. 

PROOF. Assume first that  i #  k. Form a new Markov chain by 
making state s k  into an  absorbing state. The resulting Markov chain 
is an  absorbing Markov chain with a single absorbing state, sk. The 
mean time to go from si to s j  in the given chain is the same as the mean 
time before absorption in the new chain. The mean time before 
absorption is finite by Theorem 3.2.4. 

If  i = k ,  then 
Mt[fi] = pii + 2 pikMk[fi] 

k#i 

which is finite by the first part of the proof. 
4.4.3 DEFINITION. The mean first passage matrix, denoted by M ,  
is the matrix with entries mi, = M,[fJT 
I t  then follows from 1.8.9 that ,  for an  initial vector n, the mean 

first passage times are the components of the vector nM. 
4.4.4 THEOREM. The matrix M satisjies the equation 

PROOF. We calculate Mi[fj] by taking the mean of the conditional 
means, given the outcome of the first experiment. This gives 

This proves the theorem. 

This matrix is denoted by 2 in later works by the authors. 
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.4.5 THEOREM. Let a = {al ,  az, . . . , a,) be the limiting probability 
eclor for P .  Then m,i = l /al .  

PROOF. Multiplying equation ( 1  

Therefore 
anlag = aE = v. 

This states that  atmi, = 1 for every i, or mii = lla,. 

4.4.6 THEOREM. Equation, (1) of Theorem 4.4.4 has a unique 
solution. 

PROOF. Let AM and M' be two solutions for (1). Then from the 
proof of Theorem 4.4.5 we have a x a g  = aMIdg = 7. Hence Mdg = MIdg. 
This gives 

Jf- H' = P ( M -  M') .  

But this means that  each column of M - B' is a fixed column vector for 
P. Hence by Theorem 4.1.7 each column is a constant vector. Since 
M - M '  has 0's on the diagonal, these vectors must all be 0 vectors. 
Hence M = M'. 

4.4.7 THEOREM. The mean first passage matrix M is  given by 

ikf = ( I -  Z+EZd,)D ( 2 )  
where D  is  the diagonal matriz with diagonal elements dit = l / a z .  

PROOF. By Theorems 4.4.4 and 4.4.6 we need only show that  M 
as defined by (2) satisfies equation ( I )  above. 

Let 
H = ( I - z + E z d g ) D ,  

Then 
iM-D = ( - Z + E Z d g ) D  

and 

P ( M  - D )  = ( - P Z  + E Z d g ) D  

= M + ( - I + Z - P Z ) D .  

By Theorem 4.3.3(d) this is 

P ( J f -  D )  = M -  AD 

= N - E .  

By ( 2 ) ,  D  = Hd,. Hence -W = Y ( M -  17l~,) +E. 
4.4.8 THEOREX. Let P be the transition matrix for an independent 
trials process. Then M = ( l /p , , ) .  
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4.4.5 THEOREM. Let a = {ai, az, ... , ar} be the limiting probability 
vector for P. Then mii = Ijai. 

PROOl? Multiplying equation (1) above by a we have 

alJ,1 = aP(M -Mdg)+aE 

= a(~i}J -Mctg)+aE. 
Therefore 

This states that aim/j = 1 for e,"ery i, or mji = l,'(z". 

4.4.6 THEOREM. Eq'<wtion (1) of Theorem 4.4.4 has a unique 
soi'ution. 

PROOF. Let J1 and M' be two solutions for (1). Then from the 
proof of Theorem 4.4.5 we have aMdg =aM'ag=7). Hence Mdg=M'dg. 
This gives 

M - M' = P(JJJ - M'). 

But this means that each column of M - jW is a fixed column vector for 
P. Hence by Theorem 4.1.7 each column is a constant vector. Since 
M -.1."[, has 0'8 on the diagonal, these vectors must all be 0 vectors. 
Hence M =.M'. 

4.4.7 THEOREM. The mean first pa.ssage matrix M is given by 

M = (1 - Z +EZdg)D (2) 

where Dis the diagonal matrix with diagonal elements d/j= 1 la/. 

PROOF. By Theorems 4.4.4 and 4.4.6 we need only show that M 
as defined by (2) satisfies equation (1) above. 

Let 
M = (1- Z+EZag)D. 

Then 
M-D = (-Z+EZdg)D 

and 

P(M-D) = (-PZ+EZdg)D 

J1 +(-1 +Z-PZ)D. 

By Theorem 4.3.3(d) this is 

P(M-D) = M-AD 

= .1.1{ -E. 

By (2), D=]rlctg . Hence cvI =.P(M -Mag)+E. , 
4.4.8 THEORE)!. Lei P be the transition matrix for an indE.pendent 
trials process. Then llJ = {lPij}. 
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PROOF. From Theorem 4.4.7 and the fact that Z = I  for an inde- 
pendent trials process, we have M =  ED. For an independent trials 
process the limit matrix A = P. Hence pi! = ar and l/ai = l /p i j .  Thus 
M = ED = { l / p t l ) .  

We now illustrate the calculation of the mean first passage matrix 
for the Land of Oz example. We have found. a to be (215 ,  115, 215). 

Hence the matrix D is 

The Z matrix was found in $ 4.3. From this, usihg Theorem 4.4.7 
we obtain M by M = (I - Z + EZdg)D.  Carrying out this calculation 
we obtain 

R N S  

Thus, for example, if i t  is raining in the Land of Oz today the mean 
number of days before a nice day is 4. The mean number of days 
before another rainy day is 5 1 2 ;  before a snowy day 

We shall next prove a theorem which connects the diagonal elements 
of Z with the mean time to reach sl for the initial probability vector 
n=a. We have seen previously that the mean number of times in 
state sj is particularly simple in this case. This choice of initial vector 
is of special importance for the following reason. Assume that a 
regular Markov chain has gone through a large number of steps before 
it is observed. Then Theorem 4.1.6 suggests that a natural choice for 
the new initial vector n is a. The probabilities for any later time are 
then also given by a. In this case we say that the process is observed 
i n  equilibrium. 

4.4.9 THEOREM. For a regular Markov chain 

PROOF. Multiplying (2) by a we have 

In  $4.3 we compared the mean number of Limes p)$ in a state s, 
under the assumption of two different starting distributions. 
make the same comparison for the function f,. 

THEOREM. For any two initial probability vectors n and n' 

PROOF. 

,,,[fj]) = nM - n'M 

= (n - n')(I - Z + EZag)D. 

= (n-ni)(I-Z)D. 

In the Land of Oz example we see that 

Thus the mean Lime to the first snowy day is shorter starting with a 
nice day than it is starting with a rainy day. 

We will conclude this section by showing that the 
completeiy determined by the numbers mi?, for if  
these numbers as the non-zero entries of the matrix R = M -  D. This 
matrix has n(n- I )  non-zero entries, which suffices to determine the 
chain. When we give the chain in terms of P, we specify nz entries, 
but these satisfy n relations, since P must have row-sums P. 
there is no natural way of specifying just n(n- I )  entries of P, 
& is a natural way of giving this minimum information. 

4.4.12 THEOREM. For any regular Markov Chain 

(a) The matrix i@ has an inverse 
(b) a = (c - 1) (fl-lf)T 

(c) P = I +  (D-E)@-~ .  

PRORF. From equation (1) in $ 4.4.4 we have 

hence 
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PROOF. From Theorem 4.4.7 and the fact that Z = 1 for an inde
pendent trials process, we have M =ED. For an independent trials 
process the limit matrix A = P. Hence Pij =Gj and l/aj = l/ptj. Thus 
M=ED={ljpjj}. 

We now illustrate the calculation of the mean first passage matrix 
for the Land of Oz example. We have found. a to be (2/5, 1/5, 2/5). 
Hence the matrix D is 

D 

o 

5 

o 
The Z matrix was found in § 4.3. From this, usihg Theorem 4.4.7 
we obtain M by M = (1 - Z + E Zdg)D. Carrying out this calculation 
we obtain 

R N S 

RC 4 
'O! ) 

f 3 

1'rf = N 8/s 5 8/3 . 

S 1°/3 4 5/z 

Thus, for example, if it is raining in the Land of Oz today the mean 
number of days before a nice day is 4. The mean number of days 
before another rainy day is 5/2; before a snowy day 1°/3. 

We shall next prove a theorem which connects the diagonal elements 
of Z with the mean time to reach Sj for the initial probability vector 
7T = a. vVe have seen previously that the mean number of times in 
state Sj is particularly simple in this case. This choice of initial vector 
is of special importance for the following reason. Assume that a 
regular Markov chain has gone through a large number of steps before 
it is observed. Then Theorem 4.1. 6 suggests that a natural choice for 
the new initial vector 7T is a. The probabilities for any later time are 
then also given by a. In this case we say that the process is observed 
in equilibrium. 

4.4.9 THEOREM. Por a regular Markov chain 

aJ.lf = {M.[fj ]} = 7JZdgD = {Zjj/aj}. 

PROOF. Multiplying (2) by cx we have 

cxJ.l1 = ct.(I - Z +EZag)D 

= (a-a+7JZ dg)D 

aM = 'l}ZdgD. 
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PROOF. From Theorem 4.4.7 and the fact that Z = I  for an inde- 
pendent trials process, we have M =  ED. For an independent trials 
process the limit matrix A = P. Hence pi! = ar and l/ai = l /p i j .  Thus 
M = ED = { l / p t l ) .  

We now illustrate the calculation of the mean first passage matrix 
for the Land of Oz example. We have found. a to be (215 ,  115, 215). 

Hence the matrix D is 

The Z matrix was found in $ 4.3. From this, usihg Theorem 4.4.7 
we obtain M by M = (I - Z + EZdg)D.  Carrying out this calculation 
we obtain 

R N S  

Thus, for example, if i t  is raining in the Land of Oz today the mean 
number of days before a nice day is 4. The mean number of days 
before another rainy day is 5 1 2 ;  before a snowy day 

We shall next prove a theorem which connects the diagonal elements 
of Z with the mean time to reach sl for the initial probability vector 
n=a. We have seen previously that the mean number of times in 
state sj is particularly simple in this case. This choice of initial vector 
is of special importance for the following reason. Assume that a 
regular Markov chain has gone through a large number of steps before 
it is observed. Then Theorem 4.1.6 suggests that a natural choice for 
the new initial vector n is a. The probabilities for any later time are 
then also given by a. In this case we say that the process is observed 
i n  equilibrium. 

4.4.9 THEOREM. For a regular Markov chain 

PROOF. Multiplying (2) by a we have 

In  $4.3 we compared the mean number of Limes p)$ in a state s, 
under the assumption of two different starting distributions. 
make the same comparison for the function f,. 

THEOREM. For any two initial probability vectors n and n' 

PROOF. 

,,,[fj]) = nM - n'M 

= (n - n')(I - Z + EZag)D. 

= (n-ni)(I-Z)D. 

In the Land of Oz example we see that 

Thus the mean Lime to the first snowy day is shorter starting with a 
nice day than it is starting with a rainy day. 

We will conclude this section by showing that the 
completeiy determined by the numbers mi?, for if  
these numbers as the non-zero entries of the matrix R = M -  D. This 
matrix has n(n- I )  non-zero entries, which suffices to determine the 
chain. When we give the chain in terms of P, we specify nz entries, 
but these satisfy n relations, since P must have row-sums P. 
there is no natural way of specifying just n(n- I )  entries of P, 
& is a natural way of giving this minimum information. 

4.4.12 THEOREM. For any regular Markov Chain 

(a) The matrix i@ has an inverse 
(b) a = (c - 1) (fl-lf)T 

(c) P = I +  (D-E)@-~ .  

PRORF. From equation (1) in $ 4.4.4 we have 

hence 
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4.4.10 THEOREM. Let c= 2Zi/. Then MaT=cf 

PROOF. 

MaT = (I-Z+EZdg)DaT 

= (1- Z + EZdg)g 

= g('7Zd~) = eg. 

81 

In § 4.3 we compared the mean number of times y(n), in a state Sj 

under the assumption of two different starting distributions. We can 
make the same comparison for the function ff. 

4.4.11 THEOREM. For any two initial probability vectors 7T and TT' 

PROOF. 

{M.[ffJ-M,,{f,]} = TTM-TT'M 

= (TT-TT')(I-Z+EZdg)D. 

= (TT-TT')(I-Z)D. 

In the Land of Oz example we see that 

MN[fs]-MR[fsJ = 8/S _10/S = - 2/3. 

Thus the mean time to the first snowy day is shorter starting with a 
nice day than it is starting with a rainy day. 

We will conclude this section by showing that the Markov chain is 
completelY determined by the numbers mij, for i # j. We shall use 
these numbers as the non-zero entries of the matrix.M =M -D. This 
matrix has n(n-l) non-zero entries, which suffices to determine the 
chain. When we give the chain in terms of P, we specify n Z entries; 
but these satisfy n relations, since P must have row-sums 1. But 
there is no natural way of specifying just n(n-l) entries of P, while 
fJ. is a natural way of giving this minimum information. 

4.4.12 THEOREM. For any regular .Markov chain 

(a) The matrix Iv! has an inverse 

(b) a = (e-I) (M-lg)T 

(c) P = 1+ (D-E)JVJ-l. 

PROOF. From equation (1) in § 4.4.4 we have 

!Yf+D = pM +E; 
hence 

(P-I)M = D-E. (3) 
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If  &' has no inverse, then there is a non-zero column vector y such that  
M y  = 0. Hence from (3 )  

( D - E ) ~  = ( P -  I ) M ~  = o 
Dy = Ey 

y = D-lEy = D-llvy = (vy)aT, 

where 1 = vy is a number. And since y # 0 ,  1 # 0. 

But, clearly, A ? c ~ > 0 ,  and we have a contradiction. Therefore, i@ has 
an inverse. Formula (c) is then an  immediate consequence of (3).  
To prove ( b )  we make use of $ 4.4.9 and the fact that  DaT= [. 

We can now find a from formula ( b ) ,  and the condition that  a[= 1 .  
This determines D, and then formula (c) will yield P. Thus the chain 
is determined by A?. 

$4.3 Variance of the first passage time. I n  the previous section we 
found that  the Z matrix enabled us to find the mean first passage time 
from si to sj. I n  this section we shall show that  tJhe Z matrix also 
provides us with the variance of the first passage time. 

We recall that  f j  is the function whose value'gives the number of 
steps required to reach sj for the first time aftmer the initial step. We 
have found Rf,[fj]. Hence to find Vari[ff] i t  is only necessary to find 
Mi[f2?] and use the fact that  Vari[fj] = Mi[Pj] - Mi[fj]2. We denote by 
W' the matrix W = {Mi[fZj]}. 

4.5.1 THEOREM. T h e  matrix TV scctisjles the equation 

FROOF. Taking conditional means we have 
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From Theorem 4.4.7 we have M - Mdg = ( - Z + EZag)D.  Putting 
this in (2) we have (1).  

4.5.2 TREOREM. The  values for Mi[&] are given by 

paoos. Multiplying equation (1) through by a and using the fact 
that  aP = a,  we have 

or, since aZ = a,  and aD = aE = 7,  

Written in matrix form, this is (3). 

4.5.3 THEOREM. T h e  unique solution to ( 1 )  i s  

PROOF. The uniqueness proof is the same as that  given for the 
matrix M in Theorem 4.4.6. It is then only a matter of verifying that 
the expression given for W satisfies (1). We omit the details of this. 

From the matrix W it is an easy matter to find the {Var,[f,]}. We 
denote by iM2 = {Var,[f,]). Then Mz = W - .MS4 

Let us find these variances for the Land of Oz example. We have 
previously found i M ,  D, and Z for this example, so tha t  to find W ,  the 
only new matrix we need is Z&f. This is 

From the formula W = 1kf(2ZdgD - I )  + 2 ( Z N  - E(ZH)dg)  we find 
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If 111 has no inverse, then there is a non-zero column vector y such that 
My=O. Hence from (3) 

(D-E)y = (P-I)i1,1y = 0 

Dy = Ey 

y = D-IEy = D-l('1Y = (7)y)a T , 

where l=7)Y is a number. And since y;fO, l;f 0. 

a7' = (lll)y 

MaT = (lll)ICity = O. 

But, clearly, iVIa7' > 0, and we have a contradiction. Therefore, 111 has 
an inverse. Formula (c) is then an immediate consequence of (3). 
To prove (b) we make use of § 4.4.9 and the fad that DaT =r 

(J1 + D)r:t7' = cg 

l1,1a7' = (c-l)g 

r:t7' = (c-l)M-lf 

r:t = (c-l)(l'Ci!-lg)7'. 

We can now find a from formula (b), and the condition that ~ = 1. 
This determines D, and then formula (c) will yield P. Thus the chain 
is determined by .M. 

§ 4.5 Variance of the first passage time. In the previous section we 
found that the Z matrix enabled us to find the mean first passage time 
from Si to 5j. In this section we shall show that t,he Z matrix also 
provides us with the variance of the first passage time. 

'rVe recall that fj is the function whose value'gives the number of 
steps required to reach Sj for the first time after the initial step. We 
have found l\i,~fiJ. Hence to find Vari[f)] it is only necessary to find 
Mi[f2j] and use the fact that Vari[fjJ=lHi[f2j]-l\-IMjJ2. We denote by 
TV the matrix TV = {Mi[f2j]}. 

4.5.1 THEOREM. The matrix W satisfies the 6quation 

TV = P[W - Wdg] - 2P[Z-EZdg}D + E. 

PROOF. Taking conditional means we have 

Or 

lVI/[f2j] = 2: PikMk[(fj + 1 )2] + PiJ 
k,c} 

= 2: PikThI ,,[f2j ] + 2'2 PikMAfj ] + l. 
k:;r,j k ':1':-j 

TV = P[TV - TVdg} + 2P[M -Mdg) + E. 

(1 ) 

(2) 

t.'.~. 
~' 
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If  &' has no inverse, then there is a non-zero column vector y such that  
M y  = 0. Hence from (3 )  

( D - E ) ~  = ( P -  I ) M ~  = o 
Dy = Ey 

y = D-lEy = D-llvy = (vy)aT, 

where 1 = vy is a number. And since y # 0 ,  1 # 0. 

But, clearly, A ? c ~ > 0 ,  and we have a contradiction. Therefore, i@ has 
an inverse. Formula (c) is then an  immediate consequence of (3).  
To prove ( b )  we make use of $ 4.4.9 and the fact that  DaT= [. 

We can now find a from formula ( b ) ,  and the condition that  a[= 1 .  
This determines D, and then formula (c) will yield P. Thus the chain 
is determined by A?. 

$4.3 Variance of the first passage time. I n  the previous section we 
found that  the Z matrix enabled us to find the mean first passage time 
from si to sj. I n  this section we shall show that  tJhe Z matrix also 
provides us with the variance of the first passage time. 

We recall that  f j  is the function whose value'gives the number of 
steps required to reach sj for the first time aftmer the initial step. We 
have found Rf,[fj]. Hence to find Vari[ff] i t  is only necessary to find 
Mi[f2?] and use the fact that  Vari[fj] = Mi[Pj] - Mi[fj]2. We denote by 
W' the matrix W = {Mi[fZj]}. 

4.5.1 THEOREM. T h e  matrix TV scctisjles the equation 

FROOF. Taking conditional means we have 
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From Theorem 4.4.7 we have M - Mdg = ( - Z + EZag)D.  Putting 
this in (2) we have (1).  

4.5.2 TREOREM. The  values for Mi[&] are given by 

paoos. Multiplying equation (1) through by a and using the fact 
that  aP = a,  we have 

or, since aZ = a,  and aD = aE = 7,  

Written in matrix form, this is (3). 

4.5.3 THEOREM. T h e  unique solution to ( 1 )  i s  

PROOF. The uniqueness proof is the same as that  given for the 
matrix M in Theorem 4.4.6. It is then only a matter of verifying that 
the expression given for W satisfies (1). We omit the details of this. 

From the matrix W it is an easy matter to find the {Var,[f,]}. We 
denote by iM2 = {Var,[f,]). Then Mz = W - .MS4 

Let us find these variances for the Land of Oz example. We have 
previously found i M ,  D, and Z for this example, so tha t  to find W ,  the 
only new matrix we need is Z&f. This is 

From the formula W = 1kf(2ZdgD - I )  + 2 ( Z N  - E(ZH)dg)  we find 
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From Theorem 4.4.7 we have J·J-Mdg=(-Z+EZdg)D. Putting 
this in (2) we have (1). 

4.5.2 THEOREM. The values for Mi [f2 i ] are given by 

Wdg = D(2ZdgD - 1 ). (3) 

PROOF. Multiplying equation (1) through by a and using the fact 
that aP=a, we have 

aW = a[W- Wdg] - 2a[Z- EZdg]D + 7]; (4) 

or, since aZ = a, and aD = aE = '/, 

This gives 
Cf.in'U = - 1 + 2zii /ai 

or 

Written in matrix form, this is (3). 

4.5.3 THEOREM. Theu.nique solution to (1) is 

W = },J(2ZdgD-1)+2(ZM-E(ZM)dg). 

PROOF. The uniqueness proof is the same "s that given for the 
matrix JI in Theorem 4.4.6. It is then only a matter of verifying that 
the expression given for W s"tisfies (l). We omit the details of this. 

From the matrix W it is an easy matter to find the {Var;[fjJ}. We 
denote by M2={VarilfjJ}. Then ;JIz= W -111sQ ' 

Let us find these variances for the Land of Oz example. \Ve have 
previously found Jl, D, and Z for this example, so that to find W, the 
only new matrix we need is Z],I. This is 

(

176 1 / 3 

Z ·/'11 = 1/75 203' 

259 2/3 

303 

363 

303 

259 2/3) 
203 . 

1761/ 3 

From the formula TV = M(2ZdgD -1) + 2(ZM - E(ZM)dg) we find 

W = (:~: :: :~:), 
54'~ 28 71/ 6 
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and subtracting Maq from this we obtain 

We observe that the variance Vari[fj] in this example depends very 
little on the choice of the starting state si. The first passage times for a 
regular chain are quite similar to absorption times for an absorbing 
Markov chain. They both have variances which are in general large 
compared to their means. 

The formulas for W and for M z  are very much simplified for the case 
of an independent trials process. 

4.5.4 THEOREM. For an independent trials process 

If' = ED("- I )  = ((l/ptj)(d/p<j-l)j 
and 

M Z  = E(D2- 19) = { ( I / I ~ ? ) ~ -  I/~A,}. 

PROOF. We recall that for an independent trials process Z is the 
identity matrix and ill = ED. Thus, using Theorem 4.5.3, 

The alternative expressions for W and M z  given in the statement of 
the theorem follow from the fact that pij =l)lj for all i. 

8 4.6 Limiting covariance. Let f and g be two functions defined on 
the states of a regular chain. Let f(si) = f i  and g(si) = 9%. Let f in )  and 

g(nJ be the values of these functions on the n-th step. We are interested 
in finding 

I t  can be shown that this limit exists and is independent of n. 
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PROOF. We shall assume the result that the limit is independent of 
n and prove the theorem for the case == a. 

and 

Hence, 
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and subtracting 1Il.q from this we obtain 

(

67/12 12 62/9) 
J.V z = 56/9 12 56/9 . 
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W = ED("2D-I)+2(ED-ED) 
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lvl2 = W -M.Q 

= 2ED2_ED-(ED)sQ 

= E(D2_D). 

The alternative expressions for Wand .M 2 given in the statement of 
the theorem follow from the fact that Pij = pjj for all i. 

§ 4.6 Limiting covariance. Let f and g be two functions defined on 
the states of a regular chain. Let f(s;) = ii and g(sd = gi. Let f(n) and 
gin) be the values ofthe~e functions on the n-th step. We are interested 
in finding 

1 [ " " ] }~~ n Cov~ k~1 f(kJ, 1':;1 g(k) • 

It can be shown that this limit exists and is independen~ of 1T. 

4.6.1 THEOREM. 

1 [" "] lim - Cov" .2 f(k), 1.2~ 1 g(k) 
H-+OO n k-l 

. 
.2 iiciJgj 

i, j = 1 
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where 
eli = atZij + aJZj; - aidij - aial' 

PROOF. We shall assume the result that the limit is independent of 
7r and prove the theorem for the case 7r = a. 

and 

Hence, 

Now 

" r 
n L L (Pro[u(k)i = 1/\ U(l)j = 1Jlig'j - Pra[u(k)j = l]j;ajg'j 

<,,1=1 ;,j=1 

n 'r 

l' L L (Pro[u(k)i= 1 ;\u(l)j = lJfi9'i - aiad/gi)' 
... k,l= 1 1,)=1 

'.' 1 
f(k), 2: g(I)J' 

1=1 

r 

if Ie < I 

if Ie > I 

k = l. 

+ L (aid;! - aiaf)!igJ' 
i,j= t 

(1) 

(2) 
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Collecting terms with the same d = 11 - kl ,  we have 

m  

Since Z = 2 ( P -  A ) d  converges, it is Cesaro-summable (see § 1.10), 
d=O 

that is 
a-1  ,-d 

Z = Iim 2 - ( P  - A)&. 
n +  m d = ~  

Hence 

Then from (3)  

= 2 fi(atzij + W I I .  -a& - aiaj)gj. 
i,j=l 

This completes the proof. 

I f f  and g are the same function, then the above theorem gives us 

4.6.2 COROLLARY. 

1 
lirn - ~ a r . [ ~  W] = 2 f t c i ~ .  

n - t m  n. i ,3=1 

We shall need a slight extension of this last result. Suppose that f 
is not simply a function of the state, but f =  1 with probability f i  on 
state si and 0 with probability 1- f*. We may think of f as deter- 
mined as follows: We carry out the Markov chain, and if the process is 
in st on a given step we flip a biased coin (probability fi for heads) to 
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determine whether f is I or 0. Again, W is the value of the function 
on the n-th step. Then the above argument for the limiting variance 
applies except that in (1) a slight change must be made when k=l.  
Here, the term f21 should be simply f f ,  and we have a, correction term 

Thus we have proved 

THEOREM. I f  f is  a function that takes on the value 1 with 
probability ji i n  st, and is O otherwise, then 

We can also extend the result to two such functions. If these take 
on their values independently of each other, then the proof of 4.6.1 
applies exactly. This proves 

.4 THEOREM. I f  f and g are functions that take on the value P 
i n  st with probabilities fi and gr, respectively, idependently of m h  
other, and if the fumt iow are O otherwise, then 

One application of the covariance is to obtain correlation coefficients. 
Let f and g be as in Theorem 4.6.1. Then 

ividing numerator and denominator of the right side by n ,  and using 
4.6.l and 4.6.2, we have 
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Collecting terms with the same d= Il-kl, we have 

- COva 2: £(.1:), 2: g(l) = 1 [ n n] 
n k=l 1=1 

r 

+ 2: (a,dfj-afaj)!,gj. 
i,;=l 

<X) 

Since Z = L: (P-A)d converges, it is Cesaro-summable (see § 1.10), 
d~O 

that is 

Hence 

,,-1 n-d 
Z = lim L: - (P-A)d. 

n_ ct:I d-O n 

Z-I = lim "i,1 n-d (Pd-A), 
"'-+- co d=1 n 

,,-1 

Zfj - d'j = lim L: 
n-+co d=l 

Then from (3) 

lim .!. COV.[ i f(.I:) , i g(l)] 
n .... oo n k-l l-l 

r 

L: [adlgj(zIJ -djj ) + aJ!tgj(zj,- dlj) + (a,dlj - aja'J)!,gj] 
i,;-l 

r 

= L: !,(a,z,j+ajzJj-atd'J-ataJ)gj. 
i,;=l 

This completes the proof. 

If f and g are the same function, then the above theorem gives us 

4.6.2 COROLLARY. 

1 [n ] r 
"li.:n", n Var" k~ f(k) = i,"f:./,Cjj/J. 

We shall need a slight extension of this last result. Suppose that f 
is not simply a function of the state, but f= 1 with probability It on 
state Sf and 0 with probability 1-k We may think of f as deter
mined as follows: We carry out the Markov chain, and if the process is 
in 5, on a given step we flip a biased coin (probability /1 for heads) to 

r:. 



86 F I N I T E  MARKOV CHAINS 
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determine whether f is 1 or O. Again, f(lI) is the value of the function 
on the n-th step. Then the above argument for the limiting variance 
applies except that in (1) a slight change must be made when k=l. 
Here, the termf2 j should be simply fl> and we have a correction term 

, 
L: aifl(l-f,)· 
;-1 

Thus we have proved 

4.6.3 THEOREM. If f is a function that takes on the value 1 with 
probability f. in s;, and is 0 otherwise, then 

lim - Var" 2: f(le) = 2: f,C/lft + 2: aifj(l- ft}· 1 [n ] r r 

n-POO n .1:-1 i, j=1 i=l 

We can also extend the result to two such functions. If these take 
on their values independently of each other, then the proof of 4.6.1 
applies exactly. This proves 

4.6.4 THEOREM. If f and g are functions that take on the value 1 

in St with probabilities ft and gj, respectively, independently of each 
other, and if the functions are 0 otherwise, then 

1 [n n ] r lim - Cov" 2: f(k) , 2: gIl) = 2: f,CtJgj. 
n~ 00 n k=l 1=1 i,j=l 

One application of the covariance is to obtain correlation coefficients. 
Let f and g be as in Theorem 4.6.1. Then 

4.6.5 DEFINITION. 

cov,,[i f(k), .Ig(Z)] 
k-1 1=1 

Dividing numerator and denominator of the right side by n, and using 
4.6.1 and 4.6.2, we have 

4.6.6 THEOREM. 

lim corr,,[ i f(k) , i gO)] 
n -t> !Xl ,\:=1 1=1 

i f,ctjgJ 
i.j=l 
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Another important application of Theorem 4.6.1 is t he  following: ' 
Let A and R be any two sets of states. Let y @ ) ~  and y ( n ) ~  be respec- 1 
tively the number of times in set A in the first n steps and the number ! 
of times in set B in the first n steps. For these functions we have the 
following theorem. , 

PROOF. Let f be a function which is 1 on the states of A and 0 on 
all other states. Let g be a function which is 1 on states of 
otherwise. 

Hence the theorem follows from 4.6.1. 
From this theorem we see that  

Taking A and B in 4.6.7 to  be sets with a single element, we see 
that  cij represents the limiting covariance for the number of times in 
states i and j in the first n steps. The values of cii give the limiting 
variances for the number of times in state st. We are often interested 
only in these variances, we denote them by the vector ,I3. The limiting 

If i = j, the correlation for the number of times in sg and sf  is - 
dTcC13' 

correlation is 1. 
For an independent trials process cij = aidll - aiaj, and hence all the 

formulas found above simplify. For example, if i f j ,  the limiting 
correlation is 

The diagonal entries of C ,  i.e. the limiting variances, have the following 
important use. Let ,I3 = {b f )  = {c f j ) .  Then ,6 is a vector which gives the 
limiting va.riances for the number of times in each state. These 
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variances appear in the following important theorem (called the Central 
Limits Theorem for Markov Chains). 

THEOREM. For a n  ergodic chain, let y(n)l be the number o j  
times in state sj in the $rst n steps and let a= (al) and ,B=(br) respec- 
tively be the $xed vector and the vector of limiting variances. T h e n  
ij gf, # 0, for any  numbers r < s ,  

as n-oo, for any  choice of startin.g state k .  

The proof of this theorem is beyond the scope of this book and appears 
only in the more advanced books on probability theory. However, for 
a discussion of this theorem in the case of independent trials processes 
see FXS Chapter 3. It is not possible to evaluate the integral in this 
theorem exactly, but  for illustrative purposes we mention that  the 
value for r = - 1 and s = 1 is approximately .68l, for r = - 2 and s = 2 it 
is approximately .954, and for r = - 3 and s = 3 it  is .997. 

EXAMPLE. Let us consider the Land of Oz example. For this 
example we have found, 

and 

This is all the information we need to compute the matrix C={ci j )  
Carrying out this computation we find 

The diagonal entries of C give us the limiting variance ,6 = (134/375, 

36/375,  134/375) for being in each of the states. Thus the Central Limit 
Theorem would say, for example, that  
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Another important application of Theorem 4.6.1 is the following: 
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tively the number of times in set A in the first n steps and the number 
of times in set B in the first n steps. For these functions we have the 
following theorem. 

4.6.7 THEOREM. 

. 1 
hm - Cov,,[y(n) A, yin) B] 

n ..... 00 n 
2: Cjf' 

Sj in A 
sf in B 

PROOF. Let f be a function which is 1 on the states of A and 0 on 
all other states. Let g be a function which is 1 on states of Band 0 
otherwise. 

" n 

yin) A = 2: f(k) and yin) B 2: g(l). 

k~l 1=1 

Hence the theorem follows from 4.6.1. 
From this theorem we see that 

4.6.8 COROLLARY. 

lim Corr,,[y(n)A, y(n)B] 

n ..... '" 

2: CiJ 
sjin A 
si in B 

JSi~AClj' Si~B 
Sj in A sJ in B 

Cli 

Taking A and Bin 4.6.7 to be sets with a single element, we see 
that Clj represents the limiting covariance for the number of times in 
states i and j in the first n steps. The values of Cii give the limiting 
variances for the number of times in state St. \Ve are often interested 
only in these variances, we denote them by the vector {3. The limiting 

1 . f h b f" . d' C/j corre atlOn or t CHum er 0 tllnes m 8t an Sj IS • ; __ . 
v Cit· Cjf 

correlation is 1. 

Hi =j, the 

For an independent trials process CIj = aid!j - ala" and hence all the 
formulas found above simplify. For example, if i '" j, the limiting 
correlation is 

-al Cl f J ajaj 
yaf(l-a;)aj(l-al) = - (l-at)(l-aj)' 

The diagonal entries of 0, i.e. the limiting variances, have the following 
important use. Let {3 = {bj} = {Ci'}' Then {3 is a vector which gi'Q'es the 
limiting variances for the number of times in each state. These 
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Limits Theorem for Markov Chains). 
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tively be the fixed vector and the vector of limiting variances. Then 
if bJ'I=O, for any numbers r< s, 
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theorem exactly, but for illustmtive purposes we mention that the 
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EXAM:FLE. Let us consider the Land of Oz example. For this 
example we have found, 

and 
R N S 

I 86 3 -14\) 

z= J! 75 ( 6 63 6 . 
I So} \ -14 3 

This is all the information we need to compute the matrix C = {elj}. 
Carrying out this computation we find 

It N S 

! 134 -18 " 6) R -J. ... 

C= >!",( 18 36 -18 N. 

-116 -18 134 S 

The diagonal entries of C give us the limiting va;'iance /3={134/375, 
36/375 , 134/375} for being in each of the states. Thus the Central Limit 
Theorem would say, for example, that 

y<n)N-n/5 

V (36/s75 )n 
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would for large n have approximately a normal distribution. From 
this we may estimate that  the number of days in 375 days which would 
be nice would be unlikely (probability about .046) to deviate from 75 
by more than 12. 

Assume that  we are interested only in bad weather or only in good 
weather. Then we would want to  consider the number of times the 
process is in the set A1 = (R, S} and the number of times i t  is in the set 
A2= {N). Let ti, be the limiting covariance for the number of times 
in set A* and A,. Then from 4.6.7 we know that  we can obtain 
& {tii} by simply adding elements of C. For example, 

It is easily verified that  the row-sums of C must be 0. Since C is 
symmetric, the column-sums must also be 0. For a 2 x 2 matrix this 
tells us tha t  the entries must all have the same absolute value. Thus 
we would expect 6 to have the special form that  we found. 

5 4.7 Comparison of two examples. I n  this section we shall compare 
the basic quantities for two regular Markov chains with the same 
limiting vector. One will be an independent trials example and the 
oGher will be a dependent example. The two examples are the random 
walk Example 3 of Chapter 11 with ~ = l / ~  (denoted by Example 3a) 
and Example 7 .  The transition matrix for Example 3a is 

The transition matrix for Example 7 is 
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The limiting vector for each of these chains is a =  (.I, 2, .4, .2, .I). 
Thus by the Law of Large Numbers we can expect in each ease about 
.P of the steps to be to  sl, about .2 to sz, etc. 

For a regular Markov chain the fundamental matrix is given by 
Z = ( I  - P + A)-].. Hf this is computed for Example 3a we obtain 

For an  independent trials process, Z is the identity matrix. Hence 
for Example 7, Z = I. 

The first information we obtain from Z relates to the number of 
times in a state in the first n steps. Let y(n) ,  be the number of times 
in state sj in the first n steps (counting the initial state). Then by 
Theorem 4.3.4 

For the independent case this limit is replaced by equality. I n  the 
dependent case, zq gives us a comparison of Pf]  for fixed sj and 
different starting states st. For example, i ample 3% 21% > 221  > 
231 > z51> 2 4 1 .  Thus for large n 

~ [ y ( ~ ) i ]  > R % z [ ~ ( ~ ) I ]  > 3 [ y c n ) d  > MdY(")i] > 

The fact that  the process may be expected to be more often in sl 
starting from s5 than from s4 may be seen also from the fact that  to 
reach sl from either of these states i t  is necessary to go through s3. 
From ss the first step is to sg while from s4 i t  is either to s3 or to s5. 

We can also find from Z the limiting variance for ~ ( n ) j / l / n .  This 
is given by 

,5! = { q ( 2 z j j -  1 - a j ) ) .  

I n  Example 3a this gives 

8 = (.066, .P04, .016, .P04, .OM). 

For the independent trials process /3 = {ar(l - a j ) } .  Thus for Example 7, 

j3 = (.09, .16, .24, .16, .09). 

The variance in the independent case is in each ease larger than the 
corresponding variance in the dependent case. The variance for s3 
is much larger. This means that  we can make more accurate predic- 
tions about 7 ( n ) 3  in Example 3a than in Example 7 .  For example, the 
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(j = {Cti} by simply adding elements of C. For example, 

C12 = CRN+CSN = _18/375-18/375 = _36/375 = _12/125' 

Al A2 

_12/125). 

12/125 

It is easily verified that the row-sums of C must be n. Since C is 
symmetric, the column-sums must also be O. For a 2 x 2 matrix this 
tells us that the entries must all have the same absolute value. Thus 
we would expect C to have the special form that we found. 

§ 4.7 Comparison of two examples. In this section we shall compare 
the basic quantities for two regular Markov chains with the same 
limiting vector. One will be an independent trials example and the 
other will be a dependent example. The two examples are the random 
walk Example 3 of Chapter II with p = 1/2 (denoted by Example 3a) 
and Example 7. The transition matrix for Example 3a is 

S1 82 Sa S4 55 

" C 0 1 0 0) 82 liz 0 1/2 0 0 

P = 8a 0 1/2 0 liz o . 
84 0 0 1/2 0 1~2 
85 0 0 0 

The transition matrix for Example 7 is 

Sl S2 s3 84 S5 

" C .2 .4 .2 

) 82 .1 .2 .4 .2 .1 

P = 83 .1 .2 .4 .2 .1 . 

84 .1 .2 .4 .2 .1 

S5 .1 .2 .4 .2 .1 
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would for large n have approximately a normal distribution. From 
this we may estimate that  the number of days in 375 days which would 
be nice would be unlikely (probability about .046) to deviate from 75 
by more than 12. 

Assume that  we are interested only in bad weather or only in good 
weather. Then we would want to  consider the number of times the 
process is in the set A1 = (R, S} and the number of times i t  is in the set 
A2= {N). Let ti, be the limiting covariance for the number of times 
in set A* and A,. Then from 4.6.7 we know that  we can obtain 
& {tii} by simply adding elements of C. For example, 

It is easily verified that  the row-sums of C must be 0. Since C is 
symmetric, the column-sums must also be 0. For a 2 x 2 matrix this 
tells us tha t  the entries must all have the same absolute value. Thus 
we would expect 6 to have the special form that  we found. 

5 4.7 Comparison of two examples. I n  this section we shall compare 
the basic quantities for two regular Markov chains with the same 
limiting vector. One will be an independent trials example and the 
oGher will be a dependent example. The two examples are the random 
walk Example 3 of Chapter 11 with ~ = l / ~  (denoted by Example 3a) 
and Example 7 .  The transition matrix for Example 3a is 

The transition matrix for Example 7 is 
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The limiting vector for each of these chains is a =  (.I, 2, .4, .2, .I). 
Thus by the Law of Large Numbers we can expect in each ease about 
.P of the steps to be to  sl, about .2 to sz, etc. 

For a regular Markov chain the fundamental matrix is given by 
Z = ( I  - P + A)-].. Hf this is computed for Example 3a we obtain 

For an  independent trials process, Z is the identity matrix. Hence 
for Example 7, Z = I. 

The first information we obtain from Z relates to the number of 
times in a state in the first n steps. Let y(n) ,  be the number of times 
in state sj in the first n steps (counting the initial state). Then by 
Theorem 4.3.4 

For the independent case this limit is replaced by equality. I n  the 
dependent case, zq gives us a comparison of Pf]  for fixed sj and 
different starting states st. For example, i ample 3% 21% > 221  > 
231 > z51> 2 4 1 .  Thus for large n 

~ [ y ( ~ ) i ]  > R % z [ ~ ( ~ ) I ]  > 3 [ y c n ) d  > MdY(")i] > 

The fact that  the process may be expected to be more often in sl 
starting from s5 than from s4 may be seen also from the fact that  to 
reach sl from either of these states i t  is necessary to go through s3. 
From ss the first step is to sg while from s4 i t  is either to s3 or to s5. 

We can also find from Z the limiting variance for ~ ( n ) j / l / n .  This 
is given by 

,5! = { q ( 2 z j j -  1 - a j ) ) .  

I n  Example 3a this gives 

8 = (.066, .P04, .016, .P04, .OM). 

For the independent trials process /3 = {ar(l - a j ) } .  Thus for Example 7, 

j3 = (.09, .16, .24, .16, .09). 

The variance in the independent case is in each ease larger than the 
corresponding variance in the dependent case. The variance for s3 
is much larger. This means that  we can make more accurate predic- 
tions about 7 ( n ) 3  in Example 3a than in Example 7 .  For example, the 

SEC. 7 REGULAR MARKOV CHAINS 91 

The limiting vector for each of these chains is a= (.1, .2, .4, .2, .1). 
Thus by the Law of Large Numbers we can expect ill each case about 
.1 of the steps to be to 51, about .2 to 82, etc. 

For a regular Markov chain the fundamental matrix is given by 
Z = (1 - P + A )-1. If this is computed for Example 3a we 0 btain 

81 82 Ss S4 85 

"( .88 

-.04 '0') -.04 -") .,,~ 

82 .33 .86 .12 -.14 - .17 

Z = S3 - .02 .16 .72 .16 - .02 . 

S4 - .17 -.14 . 12 .86 .33 

S5 - .12 -.04 .32 -.04 .8& 

For an independent trials process, Z is the identity matrix. Hence 
for Example 7, Z = I. 

The first information we obtain from Z relates to the number of 
times in a state in the first n steps. Let y(n)j be the number of times 
in state Sf in the first n steps (counting the initial state). Then by 
Theorem 4.3.4 

M,[y(n)j] - naj ---+ Zij - aj. 

For the independent case this limit is replaced by equality. In the 
dependent case, Zlj gives us a comparison of Mt[y(n)jJ for fixed 8j and 
different starting states Sj. For example, in Example 3a, ZI1 > Z21 > 
Z31 > Z51 > Z41. Thus for large n 

M1[y(1l) d > M 2[y(n) 1J > M3[y(n) 1] > l't1 5[y(n) 1] > M4[y(n) 1]. 

The fact that the process may be expected to be more often in 81 

starting from S5 than from S4 may be seen also from the fact that to 
reach· Sl from either of these states it is necessary to go through S3. 

From Ss t!1e first step is to S3 while from 54 it is either to S3 or to Ss. 

We can also find from Z the limiting variance for y(n)j/vn. This 
is given by . 

f = {aj(2zjj -l-aj)}. 

In Example 3a this gives 

f3 = (.066, .104, .016, .104, .066). 

For the independent trials process f3 = {aj( 1-aj)}. Thus for Example 7, 

f3 = (.09, .16, .24, .16, .09). 

The variance in the independent case is in each case larger than the 
corresponding variance in the dependent case. The variance for S3 

is much larger. This means that we can make more accnrate predic
tions about y(n)3 in Example 3a than in Example 7. For example, the 



9 2 FINITE MARKOV CHAINS CHAP. PV 

Central Limit Theorem tells us that  in 1000 steps the number of occur- 
rences of SQ in Example 3a will, with probabilityz.95, not deviate 
from 400 by more than 22/1000. ,016 = 8. In  Example 7 we could, 
with the same probability, only say that  the number of occurrences of 
sa would deviate from 400 by less than 22/-4= 31. 

Let us next compute the covariance matrix and some correlations. 
For Example 3a we have 

For the limiting correlation between s l  and each of the five states we 
have (rounded): (1.00, .51, - .49, - .70, - .52). 

For Example 7 the covariance matrix is 

The limiting correlations with sl are: (1.00, - .IT, - .28, - .17, - .11). 
I t  is to be expected that  often the limiting correlations between two 

different states will be negative, since-generally-the more often the 
process enters one state, the less often it will be in the other state. For 
the independent process all the correlations between pairs of different 
states are negative, though quite small. But for Example 3a the 
correlations are fairly large, and the correlation between s l  and sz is 
positive. 

We next consider the function f j  which gives the number of steps 
taken to reach s j  for the first time. The values of Mi[fj] are given by 
the matrix M = (I - Z  + EZd,)D. For Example 3a this is 
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For an independent trials process the formula for .hi' reduces to 
=ED. Thus for Example 7 

In the independent case the mean time to reach sj is independent of 
the starting state. This is not true for the dependent case. I n  fact, 
the mean time required to reach s l  from s2 is on l i  about half that  
required for any other starting state. We observe that  the mean 
time to return to a state, t [ & ] ,  is the same in the two examples. 
This is because these means depend only on a. 

The variances Vart[fj] are given by 

M z  = M(2ZdgD - 1) + 2 ( 2 H  - E ( Z M ) a g )  - MsQ. 

For Example 3a this is 

For the independent trials case the formula for .Mz reduces to 
Jf 2 = E(D2 - D). Thus for Example 7 we have 

As in the case of the means, in the independent case, Example 7, the 
variances do not depend on the starting state. Unlike the case of the 
means this is almost true for the variances in the dependent case 
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Central Limit Theorem tells us that in 1000 steps the number of occur
rences of S3 in Example 3a will, with probability~ .95, not deviate 
from 400 by more than 2Y lOOO·.016=8. In Example 7 we could, 
with the same probability, only say that the number of occurrences of 
S3 would deviate from 400 by less than 2Y lOOO· .24~31. 

Let us next compute the covariance matrix and some correlations. 
For Example 3a we have 

( .066 
.042 - .016 - .058 _03) 

.042 .104 .008 - .096 -.058 

C = -.016 .008 .016 . 008 - .016 . 

-.058 -.096 .008 .104 .042 

-.034 .058 -.016 .042 .066 

For the limiting correlation bet\veen 81 a.nd each of the five states we 
have (rounded): (1.00, .51, - .49, - .70, - .52). 

For Example 7 the covariance matrix is 

( -:: - .02 -.04 - .02 _0) 
.16 -.08 -.04 -.02 

C= - .04 -.08 .24 -.08 -.04 . 

-.02 -.04 -.08 . 16 - .02 

-.01 -.02 -.04 -.02 .00 

The limiting correlations with S1 are: (1.00, - .17, - .28, - .17, - .11). 
It is to be expected that often the limiting correlations between two 

different states will be negative, since-generally-the more often the 
process enters one state, the less often it 'will be in the other state. For 
the independent process all the correlations between pairs of different 
states are negative, though quite small. But for Example 3a the 
correlations are fairly large, and the correlation between S1 alld 8'2 is 
positive. 

We next consider the function fj which gives the number of steps 
taken to reach Sj for the first time. The values of M;[fj] are given by 
the matrix M = (1- Z +EZdg)D. For Example 3a this is 

S1 S2 S3 S4 S5 

"C 
4.5 1 4.5 

10 ) 82 5.5 5 1.5 5 10.5 

;,VI = sa 9 3.5 2.5 3.5 9 . 

S4 10.5 5 1.5 5 5.5 

85 10 4.5 1 4.5 10 
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Central Limit Theorem tells us that  in 1000 steps the number of occur- 
rences of SQ in Example 3a will, with probabilityz.95, not deviate 
from 400 by more than 22/1000. ,016 = 8. In  Example 7 we could, 
with the same probability, only say that  the number of occurrences of 
sa would deviate from 400 by less than 22/-4= 31. 

Let us next compute the covariance matrix and some correlations. 
For Example 3a we have 

For the limiting correlation between s l  and each of the five states we 
have (rounded): (1.00, .51, - .49, - .70, - .52). 

For Example 7 the covariance matrix is 

The limiting correlations with sl are: (1.00, - .IT, - .28, - .17, - .11). 
I t  is to be expected that  often the limiting correlations between two 

different states will be negative, since-generally-the more often the 
process enters one state, the less often it will be in the other state. For 
the independent process all the correlations between pairs of different 
states are negative, though quite small. But for Example 3a the 
correlations are fairly large, and the correlation between s l  and sz is 
positive. 

We next consider the function f j  which gives the number of steps 
taken to reach s j  for the first time. The values of Mi[fj] are given by 
the matrix M = (I - Z  + EZd,)D. For Example 3a this is 
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For an independent trials process the formula for .hi' reduces to 
=ED. Thus for Example 7 

In the independent case the mean time to reach sj is independent of 
the starting state. This is not true for the dependent case. I n  fact, 
the mean time required to reach s l  from s2 is on l i  about half that  
required for any other starting state. We observe that  the mean 
time to return to a state, t [ & ] ,  is the same in the two examples. 
This is because these means depend only on a. 

The variances Vart[fj] are given by 

M z  = M(2ZdgD - 1) + 2 ( 2 H  - E ( Z M ) a g )  - MsQ. 

For Example 3a this is 

For the independent trials case the formula for .Mz reduces to 
Jf 2 = E(D2 - D). Thus for Example 7 we have 

As in the case of the means, in the independent case, Example 7, the 
variances do not depend on the starting state. Unlike the case of the 
means this is almost true for the variances in the dependent case 
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For an independent trials process the formula for M reduces to 
M=ED. Thus for Example 7 

S1 S2 S3 84 S5 

"C 
5 2.5 5 1) 82 10 5 2.5 5 10 

M = S3 10 5 2.5 5 10 . 

S4 10 5 2.5 5 10 

Ss 10 5 2.5 5 10 

In the independent case the mean time to reach S1 is independent of 
the starting state. This is not true for the dependent case. In fact, 
the mean time required to reach 81 from S2 is only about half that 
required for any other starting state. We observe that the mean 
time to return to a state, Mt[fl ], is the same in the two examples. 
This is because these means depend only on Ct. 

The variances Varj[f1] are given by 

M2 = M(2ZdgD-1)+2(ZM-E(ZM)dg)-Msq. 

For Example 3a this is 

S1 S2 S3 84 S5 

" ( 66 
123/4 0 123/ 4 

66 ) S2 531/4 13 1/4 13 661/4 

Ma = S3 66 123/4 1/4 123/ 4 66 . 

54 661/ 4 13 1/4 13 531/4 

55 66 123/4 0 123/ 4 66 

For the independent trials case the formula for .M 2 reduces to 
J.1Iz=E(DLD). Thus for Example 7 we have 

81 S2 Sa 54 55 

51 

CO 
20 15/4 20 9) S2 90 20 15/4 20 90 

JJ.f 2 = 53 90 20 15/4 20 90 . 

54 90 20 15/4 20 90 

55 90 20 15/4 20 90 

As in the case of the means, in the independent case, Example 7, the 
variances do not depend on the starting state. Unlike the case of the 
means this is almost true for the variances in the dependent case 
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Example 3a. We note finally that ,  as in the case of the variances for 
y(n)j, the variances for fj are in each case greater for the independent 
case than for the dependent. 

jj 4.8 The general two-state case. I n  this section we give for future 
reference the basic quantities for Example 11 of Chapter II. We 
recall that  this was the general Markov chain with two states. The 
transition matrix was written in the form 

We assume that  O < c < l and O < d < 1 but c and d are not both 3 .  
This will give us the general regular two-state Markov chain. 

The limiting vector a is 

The fundamental matrix Z = (I - P + A)-' is 

The mean first passage matrix itl is 

and the variance matrix for the first passage time is 

The limiting variance for the number of times in state sj is given by 
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Compare this variance for the dependent case with the independent 
case having the same limiting vector. This independent process would 
have transition matrix 

and the limiting variance for the number of times in sj would be 

Thus the limiting variance for the number of times in s l  will be greater 
in the dependent case if and only if 

That is, if the sum of the diagonal elements is greater than the sum of 
the off-diagonal elements. Or in other words, if the probabilities for 
remaining in a state have a sum greater than the  probabilities for a 
change of state. 

The covariance matrix is 

Thus cu > O if i = j, but cij < 0 if i # j. The limiting correlations are 
+ 1 and - P in the two cases, respectively. 

1. Find the limiting matrix A for Example 13. (See Exercise 23, 
Chapter II.) 

2. Find the limiting matrix R for Example 14. (See Exercise 24, 
Chapter 11.) 

3. Show that the four-state chain in Example 12 is regular. Find the 
fixed vector a. What is the relation of this vector to the fixed vector for the 
two-state chain which determined the four-state chain? 

4. Show that if a is the fixed probability vector for a chain with transition 
matrix P, then it is also a fixed vector for the chain with transition matrix 
Pn. 

5. Prove that if a transition matrix has column sums 1, then the fixed 
vector has equal components. 
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Example 3a. \Ve note finally that, as in the case of the variances for 
y(n)" the variances for fJ are in each case greater for the independent 
case than for the dependent. 

§ 4.8 The general two-state case. In this section we give for future 
reference the basic quantities for Example 11 of Chapter II. '\Ve 
recall that this was the general Markov chain with two states. The 
transition matrix was written in the form 

(
I-C 

p= 
d 

We assume that 0< c"; 1 and 0< d,.; 1 but c and d are not both 1. 
This will give us the general regular two-state Markov chain. 

The limiting vector a is 

. de) 
a = (c+d' c+d . 

The fundamental matrix Z = (I - P + A )-1 is 

(

d+_C 

1 c+d 
z=-

c+d d 
d-

c+d 

The mean first passage matrix 11-1 is 

M= 

'-':d). 
c+-

c+d 

and the variance matrix for the first passage time is 

(C(2-d~-d) 

.112 = 
I-d 
d2 

The limiting variance for the number of times in state Sf is given by 

{3 = (Cd(2-C-d), 
(e + d)3 

Cd('2-e-d l ). 
(c +d)3 
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Example 3a. We note finally that ,  as in the case of the variances for 
y(n)j, the variances for fj are in each case greater for the independent 
case than for the dependent. 

jj 4.8 The general two-state case. I n  this section we give for future 
reference the basic quantities for Example 11 of Chapter II. We 
recall that  this was the general Markov chain with two states. The 
transition matrix was written in the form 

We assume that  O < c < l and O < d < 1 but c and d are not both 3 .  
This will give us the general regular two-state Markov chain. 

The limiting vector a is 

The fundamental matrix Z = (I - P + A)-' is 

The mean first passage matrix itl is 

and the variance matrix for the first passage time is 

The limiting variance for the number of times in state sj is given by 
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Compare this variance for the dependent case with the independent 
case having the same limiting vector. This independent process would 
have transition matrix 

and the limiting variance for the number of times in sj would be 

Thus the limiting variance for the number of times in s l  will be greater 
in the dependent case if and only if 

That is, if the sum of the diagonal elements is greater than the sum of 
the off-diagonal elements. Or in other words, if the probabilities for 
remaining in a state have a sum greater than the  probabilities for a 
change of state. 

The covariance matrix is 

Thus cu > O if i = j, but cij < 0 if i # j. The limiting correlations are 
+ 1 and - P in the two cases, respectively. 

1. Find the limiting matrix A for Example 13. (See Exercise 23, 
Chapter II.) 

2. Find the limiting matrix R for Example 14. (See Exercise 24, 
Chapter 11.) 

3. Show that the four-state chain in Example 12 is regular. Find the 
fixed vector a. What is the relation of this vector to the fixed vector for the 
two-state chain which determined the four-state chain? 

4. Show that if a is the fixed probability vector for a chain with transition 
matrix P, then it is also a fixed vector for the chain with transition matrix 
Pn. 

5. Prove that if a transition matrix has column sums 1, then the fixed 
vector has equal components. 

SEC. 8 REGULAR MARKOV CHAINS 95 

Compare this variance for the dependent case with the independent 
case having the same limiting vector. This independent process would 
have transition mc.t.rix 

(
C!d 

p= 
d 

c+d 

':d). 
c+d 

and the limiting variance for the number of times in Sj would be 

ed ) 
(C+d)2 . 

Thus the limiting variance for the number oHimes in S1 will be greater 
in the dependent case if and only if 

2-c-d > c+d. 

That is, if the sum of the diagonal elements is greater than the sum of 
the off-diagonal elements. Or in other words, if the probabilities for 
remaining in a state have a sum greater than the probabilities for a 
change of state. 

The covariance matrix is 

cd(2-c-d) c= (C+d)3 ( 1 -1). 
-1 1 

Thus eii > 0 if i = j, but elj < 0 if i 0# j. The limiting correlations are 
+ 1 and - 1 in the two cases, respectively. 

1. Find the 
Chapter II.) 

2. Find the 
Chapter 11.) 

lilniting 

limitin" b 

Exercises for Chapter IV 

FOT § 4.1 

r!1atrix A for Example 

matrix A for Example 

13. (See Exercise 23, 

14. (See Exercise 24, 

3. Show that the four-state chain in Example 12 is regular. Find the 
fixed vector a. vVhat is the relation of this vector to the fixed vector for the 
two-state chain which determiDed the four-state chain? 

4. Show that if a is the fixed probability vector for a chain with transition 
matrix P, then it is also a fixed vector for the chain with transition matrix 
pn. 

5. Prove that if a transition matrix has column sums 1, then the fixed 
vector has equal components. 
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6. Given a probability vector a with positive components, determine a 
regular transition matrix which will have this as its fixed vector. 

For $ 4.2 

7. For Example 14 find the mean and variance for the number of times in 
state s1 in the first n steps. 

8. Consider the Markov chaiil with transition matrix 

Start the process in s2, and compute the mean of v(*)l for n= l ,  2,  3, 4 ,  5 ,  6. 
Compare these results with al.  

For $ 4.3 

9. Find the fundamental matrix for Example 11  when c = and d = 114. 
10. Find the limit of the difference between t8he mean number of nice 

days in the Land of Oz in the first n days, starting with a rainy day and 
starting with a nice day. 

11. Find the fundamental matrix for the chain in Exercise 8 above. 
Interpret 211 -221. 

12. Find the fundamental matrix for Example 14. (Use the result of 
Exercise 2 above.) 

13. Find the fundamental matrix for Example 13. (Use the result of 
Exercise 1 above.) 

For $ 4.4 
14. Find the mean first passage matrix for Example 14. (Use the result, 

of Exercise 12 above.) 
15. Find the mean first passage matrix for Example 13. (Use the result 

of Exercise 13 above). 
16. Verify Theorems 4.4.9 and 4.4.10 for Example 13. 
17. Prove that for an independent trials process, it1 has all rows the same. 
18. Given that the mean first passage matrix of a chain has the form 

determine the transition matrix 
19. Give two different transition matrices which have the same funda- 

mental matrix, and hence show that  the fundamental matrix does not deter- 
mine the transition matrix. 

20. Prove that  P has constant column sums if and only if has constant 
row-sums. 
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For $ 4.5 

21. Find M2 for Example 14. 
22. Using the result of Exercise 15 above, find Hz for Example 13. 
23. Find Mz for Example 11 with c = and d = =I4. 
24. A die is rolled a number of times. Find the mean and variance for 

the number of rolls between occurrences of two 6's. 
25. Find the mean and variance of the k s t  passage times in Exercise 8 

above. 

26. Find the limiting covariance matrix for Example ti1 with c=Ij2  and 
d = 114. 

27. Find the limiting covariance matrix for Example 13. Interpret the 
diagonal entries. 

28. On a nice day a man in the Land of Oz takes his umbrella with proba- 
bility onarainy day with probability 1 andona  snowy day withprobability 
314. Find the limiting variance for the number of days that  he will take his 
umbrella. 

29. For an absorbing chain let nj be the number of Limes in state sj 
before absorption. Using the method of proof for Theorem 4.6.1, show that  

or $ 4.8 

30. Find the limiting variance of the number of times in a state when c=d. 
Wow does this vary with c ?  Interpret your formula as d. 

31. Find the limiting vector and the mean first passage matrix for the 
case where c=2d .  How do these vary with c ?  Interpret your resulk as 
6-+o . 

32. Consider the following transition matrix for a Markov chain. 

(a) I s  the chain regular? 
(b) Find a, A ,  and 2. 
(c) Find M and Mz. 
(d) Find the covariance matrix. 
(e) Use absorbing-chain methods to  find the mean time t a  go from 93 to 

sl. Check your answer against part (c). 
33. Let PI and Pz be two different transition matrices for a three-skate 
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6. Given a probability vector a with positive components, determine a 
regular transition matrix which will have this as its fixed vector. 

For § 4.2 

7. For Example 14 find the mean and variance for the number of timcs in 
state 81 in the first n steps. 

8. Consider the Markov chain with transition matrix 

81 $2 

P = 81 (0 1 ) 
82 1/2 1/2 . 

Start the process in 82, and compute the mean of V(n)1 for n = 1, 2, 3, 4, 5, 6. 
Compare these results with al. 

For § 4.3 

9. Find the fundamental matrix for Example II when c=l/z andd= 1/4. 
10. Find the limit of the difference between the mean number of nice 

days in the Land of Oz in the first n days, starting with a rainy day and 
starting with a nice day. 

11. Find the fundamental matrix for the chain in Exercise 8 above. 
Interpret Zn-Z21' 

12. Find the fundamental matrix for Example 14. (Use the result of 
Exercise 2 above.) 

13. Find the fundamental matrix for Example 13. (Use the result of 
Exercise 1 above.) 

For § 4.4 
14. Find the mean first passage matrix for Example 14. (Use the result 

of Exercise 12 above.) 
15. Find the mean first passage matrix for Example 13. (Use the result 

of Exercise 13 above). 

16. Verify Theorems 4.4.9 and 4.4.10 for Example 13. 
17. Prove that for an independent trials process, )vI has all rows the same. 

18. Given that the mean first passage matrix of a chain has the form 

determine the transition matrix. 
19. Give two different transition matrices which have the same funda· 

mental matrix, and hence show that the funda.mental ma.trix does not deter· 
mine the transition matrix. 

20. Prove that, P has constant column sums if and only if Ii? has constant 
row·sums. 
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6. Given a probability vector a with positive components, determine a 
regular transition matrix which will have this as its fixed vector. 

For $ 4.2 

7. For Example 14 find the mean and variance for the number of times in 
state s1 in the first n steps. 

8. Consider the Markov chaiil with transition matrix 

Start the process in s2, and compute the mean of v(*)l for n= l ,  2,  3, 4 ,  5 ,  6. 
Compare these results with al.  

For $ 4.3 

9. Find the fundamental matrix for Example 11  when c = and d = 114. 
10. Find the limit of the difference between t8he mean number of nice 

days in the Land of Oz in the first n days, starting with a rainy day and 
starting with a nice day. 

11. Find the fundamental matrix for the chain in Exercise 8 above. 
Interpret 211 -221. 

12. Find the fundamental matrix for Example 14. (Use the result of 
Exercise 2 above.) 

13. Find the fundamental matrix for Example 13. (Use the result of 
Exercise 1 above.) 

For $ 4.4 
14. Find the mean first passage matrix for Example 14. (Use the result, 

of Exercise 12 above.) 
15. Find the mean first passage matrix for Example 13. (Use the result 

of Exercise 13 above). 
16. Verify Theorems 4.4.9 and 4.4.10 for Example 13. 
17. Prove that for an independent trials process, it1 has all rows the same. 
18. Given that the mean first passage matrix of a chain has the form 

determine the transition matrix 
19. Give two different transition matrices which have the same funda- 

mental matrix, and hence show that  the fundamental matrix does not deter- 
mine the transition matrix. 

20. Prove that  P has constant column sums if and only if has constant 
row-sums. 
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For $ 4.5 

21. Find M2 for Example 14. 
22. Using the result of Exercise 15 above, find Hz for Example 13. 
23. Find Mz for Example 11 with c = and d = =I4. 
24. A die is rolled a number of times. Find the mean and variance for 

the number of rolls between occurrences of two 6's. 
25. Find the mean and variance of the k s t  passage times in Exercise 8 

above. 

26. Find the limiting covariance matrix for Example ti1 with c=Ij2  and 
d = 114. 

27. Find the limiting covariance matrix for Example 13. Interpret the 
diagonal entries. 

28. On a nice day a man in the Land of Oz takes his umbrella with proba- 
bility onarainy day with probability 1 andona  snowy day withprobability 
314. Find the limiting variance for the number of days that  he will take his 
umbrella. 

29. For an absorbing chain let nj be the number of Limes in state sj 
before absorption. Using the method of proof for Theorem 4.6.1, show that  

or $ 4.8 

30. Find the limiting variance of the number of times in a state when c=d. 
Wow does this vary with c ?  Interpret your formula as d. 

31. Find the limiting vector and the mean first passage matrix for the 
case where c=2d .  How do these vary with c ?  Interpret your resulk as 
6-+o . 

32. Consider the following transition matrix for a Markov chain. 

(a) I s  the chain regular? 
(b) Find a, A ,  and 2. 
(c) Find M and Mz. 
(d) Find the covariance matrix. 
(e) Use absorbing-chain methods to  find the mean time t a  go from 93 to 

sl. Check your answer against part (c). 
33. Let PI and Pz be two different transition matrices for a three-skate 
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For § 4.5 

21. Find 1'>12 for Example 14. 
22. Using the result of Exercise 15 above, find },f 2 for Example 13. 
23. Find .J12 for Example 11 ,vith c=1/2 and d=l/4. 
24. A die is rolled a number of times. Find the mean and variance for 

the number of rolls between occurrences of two 6's. 
25. Find the mean and variance of the rust passage times in Exercise 8 

above. 

For § 4.6 

26. Find the limiting covariance matrix for Exam pie 11 with c = lIz and 
d=lh· 

27. Find the limiting covariance matrix for Example 13. Interpret the 
diagonal entries. 

28. On a nice day a man in the Land of Oz takes his umbrella with proba· 
bility liz, on a rainy day with probability 1 and on a snowy day with probability 
3/4. Find the limiting variance for the number of days that he will take his 
umbrelia. 

29. For an absorbing chain let ilj be the number of times in state Sf 
before absorption. Using the method of proof for Theorem 4.6.1, show that 

.M.,[nt·nj] = nkjnjl+nUnjj-dtjnkU 

where N = {njf} is the fundamental matrix. Find Covk[ni,nj] and Var,,(ntJ. 

For § 4.8 

30. Find the limiting variance of the number of times in a state when c= d. 
How does this vary with c 1 Interpret your formula as ~. 

31. Find the limiting vector and the mean rust passage matrix for the 
case where c = 2d. How do these vary with c? Interpret your results as 
c-+O. 

For the entire chapter 

32. Considcr the following transition matrix for a iyfarkov chain. 

t/2 
P = \3~4 

(a) Is the chain regular? 
(b) Find «, A, and Z. 
(c) Find M and N 2 . 

(d) Find the covariance matrix. 

1 

(e) Use absorbing. chain methods to find the mean time to go from 83 to 
Sl. Check your answer against part (e). 

33. Let PI and P2 be two different transition matrices for a three. state 
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Markov chain. By a random device we select one of these matrices and carry 
out the resulting chain. (Say PI is selected with probability p.) 

(a) Is this process a Markov chain 1 
(b) Show that the probability of being in a given state tends to a limit, 

and show how these probabilities may be obtained from the fixed 
vectors of the two matrices. 

34. Suppose that  in Exercise 33 we use the random device before each 
step, to decide which rnatrix to apply on that step. 

(a) Is this process a Markov chain ? 
(h) Show that the limiting probabilities for being in the various states are 

normally not the same as those obtained in Exercise 33(b). 

ndamental matrix. We will now generalize the results 
obtained in the last chapter. There they were proved for regular 
chains, and now we will extend them to a n  arbitrary chain consisting 
of a single ergodic set, i.e. to an  ergodic chain. We know that  such a 
chain must be either regular or cyclic. A cyclic chain consists of d 
cyclic classes, and a regular chain may be thought of as the special 
case where d = 1. The results to be obtained will be generalizations of 
the previous results in the sense that  if we set d = 1 in them, we obtain 
a result from the previous chapter. As a matter of fact, in most of 
the results d will not appear explicitly, so that  the result of the previous 
chapter will be shown to hold for all ergodic chains. 

An ergodic chain is characterized by the fact that  i t  consists of a 
single ergodic class, that  is, it is possible to go from every state to 
every other state. However, if d > 1, then such transition is possible 
only for special n-values. Thus no power of P i s  positive, and different 
powers will have zeros in different positions, these zeros changing 
cyclically for the powers. Hence Pn cannot converge. This is the 
most important difference between cyclic and regular chains. 

But while the powers fail to converge, we have the following weaker 
result. 

5.1.1 TXEOREM. For any ergodic chain the sequence of powers Pn 
is Euler-summable to a limiting matrix A ,  and this limiting matrix is 
of the form A = [ a ,  with a a positive probability vector. 

PROOF. Consider the matrix ( k l i  ( 1  - k ) P ) ,  for some k,  O <  k <  1. 
This matrix is again a transition matrix. Since i t  has positive entries 
in all places where P is positive, the new rnatrix also represents an  
ergodic chain. And since the diagonal entries are positive, i t  is 
possible to return to a state in one step, and hence d =  l. Thus the 
new chain is regular. 
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result. 
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CHAPTER V 

ERGODIC MARKOV CHAINS 

§ 5.1 Fundamental matrix. 'Ve will now generalize the results 
obtained in the last chapter. There they were proved for regular 
chains, and now we will extend· them to an arbitrary chain consisting 
of a single ergodic set, i.e. to an ergodic chain. \Ve know that such a 
chain must be either regular or cyclic. A cyclic chain consists of d 
cyclic classes, and a regular chain may be thought of as the special 
case where d = 1. The results to be obtained will be generalizations of 
the previous results in the sense that if we set d = 1 in them, we obtain 
a result from the previous chapter. As a matter of fact, in most of 
the results d will not ,"ppear explicitly, so that the result ofthe previous 
chapter will be shown to hold for all ergodic chains. 

An ergodic chain is characterized by the fact that it consists of a 
single ergodic class, that is, it is possible to go from every state to 
every other state. Howcver, if d> 1, then slich transition is possible 
only for special n-values. Thus no power of P is positive, and different 
powers will have zeros in different positions, these zeros changing 
cyclically for the powers. Hence pn cannot converge. This is the 
most important difference between cyclic and regular chains. 

But while the powers fail to converge, we have the following weaker 
result. 

5.1.1 THEOREM. For any ergodic chain the sequence oj powers pn 
is E1tler-s1tmmable to a limiting matrix A, and this limiting matrix is 
of the form A = get, l{.·ith a a posiliDe probab·iliiy Dector. 

PROOF. Consider the matrix (kI+(l-k)P), for some k, O<k<l. 
This matrix is again a transition matrix. Since it has positive entries 
in all places where P is positive, the new matrix also represents an 
ergodic chain. And since the diagonal entries are positive, it is 
possible to return to a state in one step, and hence d = 1. Thus the 
new chain is regular. 
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From $4.1.4 we know that  ( k I +  (1 - k)P)n tends to a matrix A=[a, 
with a probability vector a > 0. Thus 

A = lirn (k I+( l -k )P)n  
n--r m 

A = lim 2 
n - m  i = ~  (1 

But this states precisely that  the sequence P n  is Euler-summable t o  A 
(see $ 1.10). Indeed, i t  is Euler-summable for every value of k. 

5.1.2 THEOREM. If P i s  an  ergodic transition matrix, and A and 
a are as i n  Theorem 5.1.1, then 

(a) For any probability vector n, the sequence xPn i s  Euler-summable 
to a. 

(b) The vector a is the unique $xed probability vector of P .  
(c) PA=AP=A,  

PROOF. If we multiply (1) by x we obtain tha t  the Euler sun1 of the 
sequence nPn is xA = n[a= a, which proves (a). 

Since a was obtained from the limiting matrix of (kI  + (1 - k)P), i t  
is the unique fixed probability vector of this regular transition matrix. 
But this matrix must have the same fixed vectors as P, since 

n(kI + (1- k)P) = n 
implies that  

x ( l - k ) P  = n( l -k)  
and since k + 1 ,  

n P  = n. 

This proves (b). Par t  (c) follows from the fact that  P[= [ for any 
transition matrix, and that  aP = 1. 

We thus see that  a and A have nearly the same properties in the 
ergodic case as they did for regular chains ; only, (a) had to be weakened 
to summability in place of convergence. We will now show that  ergodic 
chains have a fundamental matrix which behaves just like the funda- 
mental matrix of regular chains. 

5.1.3 THEOREM. If P i s  an  ergodic transition mutris, then the inverse 
matrix Z = (I - (P - A))-1 exists, and 

(a) P Z  = Z P  
(b) ZE = !$ 
(c) aZ = a 
(d) ( I - P ) Z  = I - A .  

PROOF. Since the sequence p n  is Euler-summable t o  A by 5 5.1.1, 
and since ( P  - A)n = Pn - A hy $ 6.l.2(c), the  sequence (P - A)n is 
Euler-summable to 0. Hence the inverse Z exists (see 3 l.11). 
Furthermore, the series 

I +  2 (P-A) 
z - 1  

( 2 )  

is Euler-sumrnable to 2. Then (b) and (c) follow from the fact tha t  
I[ = 5,  a1 = a,  and multiplying Pt -A by eihher ( on the right or by a 
on the left yields 0. Result (a) is obtained by multiplying (2) by 
I- P. 

While for the theorems so far, Euler-summability of Pn sufficed, we 
will need the following stronger results. 

5.1.4 TNEOREM. Jf P is a n  ergodic transition malrix, 
(a)  The sequence P n  i s  Cesaro-summable to A. 

m 

(b) The series I  + 2 (PC A )  is Cesa~o-summable to 2. 

PROOF. If n = kd, then in n steps after starting a t  s, we must be in a 
state in the cyclic class of s t .  And if k is sufficiently large, we may be 
in any state in the class. Hence Pd may be thought of as the tran- 
sition matrix of a Markov chain with d separate ergodic sots, each of 
which is non-cyclic. Therefore, P k d  tends to a liniiting matrix Ao, 
whose ij-entry is 0 if st and sj are not in the same cyclic class, and 
otherwise the ij entry is gotten by taking the components of a belonging 
to the cyclic class and renormalizing them. 

If 0 < I < d, then Pkd+' tends to PLRo as k tends to infinity. Hence 
the sequence P n  has these d convergent subsequences, and hence 
(see $ 1.10) P n  is Cesaro-summable to the average of the limits. 
two different summation methods cannot give different answers, hence 
A must be this average; that  is, 

and P is Cesaro-summable to  A. It is then an immediate consequence 
that  since P i -A  is Cesaro-summatile to 0, (b) must hold. 

Let us restate the surnmability result (b) as a limit. 

Since we have now succeeded in generalizing many basic properties 
of Z to ergodic chains, and since d did not appear explicitly, we may 
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We thus see that a and A have nearly the same properties in the 
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to summability in place of convergence. We will now show that ergodic 
chains have a fundamental matrix which behaves just like the funda
mental matrix of regular chains. 

5_1.3 THEOREM. Jj P is an ergodic transition matrix, then the inverse 
matrix Z=(I-(P-A))-l exists, and 

(a) PZ = ZP 
(b) Zt = t 
(c) aZ = a 
(d) (J-P)Z = I-A. 
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PROOF. If n = kd, then in n steps after starting a t  s, we must be in a 
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Let us restate the surnmability result (b) as a limit. 
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PROOF. Since the sequence pn is Euler-summable to A by § 5.1.1, 
and since (p-A)n=pn-A by § 5.1.2(c), the sequence (P-A)" is 
Euler-summable to o. Hence the inverse Z exists (see § l.Il). 
Furthermore, the series 

'" 1+ 2: (Pi-A) ( ')\ 
~I 

i=l 

is Euler-summable to Z. Then (b) and (c) follow from the fact that 
1~=~, a1=a, and multiplying Pi-A by either~ on the right or by ex 
OIl the left yields O. Result (d) is obtained by multiplying (2) by 
I-P. 

While for the theorems so far, Euler-summability of pn sufficed, we 
will need the following stronger results. 

5.1.4 THEOREM. If P is an ergodic tran.s':tion matrix, 

(a) The sequence pn is Cesaro-summable to A. 
'" (b) The series 1 + .L (.Pi-A.) is Cesaro-summable to Z. 

i==l 

PROOF. If n = lcd, then in n steps after starting at SI we must be in a 
state in the cyclic class of St. And if k is sufficiently large, we may be 
in any state in the class. Hence pd may be thought of as the tran
sition matrix of a Markov chain with d separate ergodic sets, each of 
which is non-cyclic. Therefore, pkd tends to a limiting matrix Ao, 
whose ij-entry is 0 if Si and Sf are not in the same cyclic class, and 
otherwise the ij entry is gotten by taking the components of a belonging 
to the cyclic class and renormalizing them. 

If 0 ~ k d, then pka+1 tends to PlAo as k tends to infinity. Hence 
the sequence pn has these d convergent subsequences, and hence 
(see § 1.10) pn is Cesaro-summable to the average of the limits. But 
two different summation methods cannot give different answers, hence 
A must be this average; that is, 

d-I 

A = (lid) .L PIAo, (3) 
1=0 

and Pis- Cesaro-summable to A. It is then an immediate consequence 
that since P'-A is Cesaro-sum mabIe to 0, (h) must hold. 

Let us restate the summability result (b) as a limit. 

1L n-i 
5.1.5 COROLLARY. 1 + lim .L -- (Pi-A) = Z. 

n-+oo i=l n 

Since we have now succeeded in generalizing many basic properties 
of Z to ergodic chains, and since d did i10t appear explicitly, we may 
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now assert that  many of the results of Chapter IV hold for all ergodic 
chains. I n  particular this applies to  all results concerning the mean 
first passage time matrix M and the variance of first passage time 
matrix H z ,  that  is to all results in $5 4.4 and 4.5. We also have all 
the results of § 4.6 concerning limiting variances and covariances, 
since in the proof of § 4.6.1 we needed only the surnmability (5.1.5) of 
the infinite series for Z ,  not its convergence. And thus all the basic 
formulas of $5 4.4, 4.5, and 4.6 may be applied to any ergodic chain. 

I t  is worth making a special comment on $ 4.4.12. We now know 
that  fl. determines the transition matrix of any ergodic chain by 
means of the formula P= I + (D-E)R-~.  Thus, in particular, @ 
determines whether (or not) the chain is cyclic. This is quite surprising, 
and i t  wouId be highly desirable to find necessary and sufficient con- 
ditions (i) that  be the mean first passage matrix of an  ergodic chain, 
and (ii) that  i t  represent a regular rather than a cyclic chain. One 
would like these conditions to be simpler than computing P from .i@ 
and then checking P. 

What results on regular chains have we not generalized so f a r?  
The most important such results are: The geometric estimate $ 4.1.5, 
the Law of Large Numbers 4.2.1, and the results in §$ 4.3.4-4.3.6 
on Y ( n ) , .  To be able to discuss these we shall have to find some sort 
of an  upper bound on p@)tl - a$. 

I t  is clear that  the geometric bound of $ 4.1.5 cannot apply to this 
difference in the cyclic chain, since p(n),? will frequently be 0, and 
hence the difference-in absolute value-is ar infinitely often. How- 
ever i t  can be shown, using the ideas of the proof of § 5.1.4, that  if we 
add up d consecutive terms, tha t  is, form 

1=0 

then this sum is bounded geometrically. This suffices to prove the 
Law of Large Numbers, if in 5 4.2.1 we take sums d terms a t  a time. 
This method also allows us to prove analogues of $9 4.3.4-4.3.6, but 
we will not take these up. 

$5.2 Examples of cyclic chains. The simplest possible cyclic chain 
is obtained from the two-state Example 11 by choosing c = d = I .  We 
will call this Example I la .  The transition matrix is 

From the proof of $ 5.1.1 we know that  A may be obtained as the 

limiting matrix of ( " 2 ) l  t ("i)B = (l/e)E. But this is its own limiting 
matrix. Hence 

I t  is very e a q  to find M directly, and to see tha t  M z  must have all 
components 0. Similarly, the limiting variances are 0. 

As a less trivial example we take up the random walk Example 2 
for p = 11, (denoted by Example 2a). Its transition matrix is 

Starting from an even-numbered state, the process can be in even- 
numbered states only in an even number of steps, and in an  odd- 
numbered state in an odd number of steps; hence the even and odd 
states form two cyclic classes. Computing the other quantities we 
find : 
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now assert that many of the results of Chapter IV hold for all ergodic 
chains. In particular this applies to all results concerning the mean 
first passage time matrix jr] and the variance of first passage time 
matrix llh', that is to all results in §§ 4.4 and 4.5. We also have all 
the results of § 4.6 concerning limiting variances and covariances, 
since in the proof of § 4.6.1 we needed only the summability (5.1.5) of 
the infinite series for Z, not its convergence. And thu~ all the basic 
formulas of §§ 4.4, 4.5, and 4.6 may be applied to any ergodic chain. 

It is worth making a special comment on § 4.4.12. We now know 
that .if? determines the transition matrix of any ergodic chain by 
means of the formula P=] + (D-E)jfI-l. Thus, in particular, .if? 
determines whether (or not) the chain is cyclic. This is quite surprising, 
and it would be highly desirable to find necessary and sufficient con
ditions (i) that J! be the mean first passage matrix of an ergodic chain, 
and (ii) that it represent a regular rather than a cyclic chain. One 
would like these conditions to be simpler than computing P from Jf 
and then checking P. 

What results on regular chains have we not generalized so far? 
The most important such results are: The geometric estimate § 4.1.5, 
the Law of Large Numbers § 4.2.1, and the results in §§ 4.3.4-4.3.6 
on y(n)j. To be able to discuss these we shall have to find some sort 
of an upper bound on p(n)jj-aj. 

It is clear that the geometric bound of § 4.1.5 cannot apply to this 
difference in the cyclic chain, since p(n)ij will frequently be 0, and 
hence thc difference-in absolute value-is aj infinitely often. How
ever it can be shown, using the ideas of the proof of § 5.1.4, that if we 
add up d consecutive terms, that is, form 

d··l 2 (p(n+l)jj - aj), 
1=0 

then this sum is bounded geometrically. This suffices to prove the 
Law of Large Numbers, if in § 4.2.1 we take sums d terms at a time. 
This method also allows us to prove analogues of §§ 4.3.4-4.3.6, but 
we will not take these up. 

§ 5.2 Examples of cyclic chains. The simplest possible cyclic chain 
is obtained from the two-state Example 11 by choosing c""d= 1. We 
"l'ilI call this Example lla. The transition matrix is 

p = (~ ~)-
From the proof of § 5.1.1 we know that A may be obtained as the 
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now assert that  many of the results of Chapter IV hold for all ergodic 
chains. I n  particular this applies to  all results concerning the mean 
first passage time matrix M and the variance of first passage time 
matrix H z ,  that  is to all results in $5 4.4 and 4.5. We also have all 
the results of § 4.6 concerning limiting variances and covariances, 
since in the proof of § 4.6.1 we needed only the surnmability (5.1.5) of 
the infinite series for Z ,  not its convergence. And thus all the basic 
formulas of $5 4.4, 4.5, and 4.6 may be applied to any ergodic chain. 

I t  is worth making a special comment on $ 4.4.12. We now know 
that  fl. determines the transition matrix of any ergodic chain by 
means of the formula P= I + (D-E)R-~.  Thus, in particular, @ 
determines whether (or not) the chain is cyclic. This is quite surprising, 
and i t  wouId be highly desirable to find necessary and sufficient con- 
ditions (i) that  be the mean first passage matrix of an  ergodic chain, 
and (ii) that  i t  represent a regular rather than a cyclic chain. One 
would like these conditions to be simpler than computing P from .i@ 
and then checking P. 

What results on regular chains have we not generalized so f a r?  
The most important such results are: The geometric estimate $ 4.1.5, 
the Law of Large Numbers 4.2.1, and the results in §$ 4.3.4-4.3.6 
on Y ( n ) , .  To be able to discuss these we shall have to find some sort 
of an  upper bound on p@)tl - a$. 

I t  is clear that  the geometric bound of $ 4.1.5 cannot apply to this 
difference in the cyclic chain, since p(n),? will frequently be 0, and 
hence the difference-in absolute value-is ar infinitely often. How- 
ever i t  can be shown, using the ideas of the proof of § 5.1.4, that  if we 
add up d consecutive terms, tha t  is, form 

1=0 

then this sum is bounded geometrically. This suffices to prove the 
Law of Large Numbers, if in 5 4.2.1 we take sums d terms a t  a time. 
This method also allows us to prove analogues of $9 4.3.4-4.3.6, but 
we will not take these up. 

$5.2 Examples of cyclic chains. The simplest possible cyclic chain 
is obtained from the two-state Example 11 by choosing c = d = I .  We 
will call this Example I la .  The transition matrix is 

From the proof of $ 5.1.1 we know that  A may be obtained as the 

limiting matrix of ( " 2 ) l  t ("i)B = (l/e)E. But this is its own limiting 
matrix. Hence 

I t  is very e a q  to find M directly, and to see tha t  M z  must have all 
components 0. Similarly, the limiting variances are 0. 

As a less trivial example we take up the random walk Example 2 
for p = 11, (denoted by Example 2a). Its transition matrix is 

Starting from an even-numbered state, the process can be in even- 
numbered states only in an even number of steps, and in an  odd- 
numbered state in an odd number of steps; hence the even and odd 
states form two cyclic classes. Computing the other quantities we 
find : 
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limiting matrix of (liz)] + (1/2)P=(1/2)E. B"G.t this is its own limiting 
matrix. Hence 

A = (lh)E, 

Z = ( 3/2 
\ _1/2 

d = 2, 

j112 = (O 0°). 
\0 

It is very easy to find M directly, and to see that M 2 must have all 
components O. Similarly, the limiting variances are o. 

As a less trivial example we take up the random walk Example 2 
for p = 1/2 (denoted by Example 2a). Its transition matrix is 

" C 0 0 0) 82 1/2 0 \'2 0 0 

P = Sa 0 1/2 0 1/2 o . 
84 0 0 l/Z 0 1/2 

S5 0 0 0 1 01 
Starting from an even-numbered state, the process can be in even
numbered states only in an even number of steps, and in an odd
num bered state in an odd number of steps; hence the even and odd 
states form two cyclic classes. Computing the other quantities we 
find: 

a = (1(8. 1/4,1/4,1/4, l/S) 

( 2: 
18 -2 -14 -) 22 2 -10 -7 

Z = 1/16 -1 2 14 2 -1 . 

-7 -10 2 22 

2: -9 -14 -2 18 

Sl S2 S3 S4 85 

81 8 ,~ 9 16~ 
82 (; 4 3 8 15 

M = 83 5 4 5 1:; 
S4 15 8 3 4, 

85 \16 9 4 
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112 0 8 48 160 

112 24 8 48 160 

152 40 8 40 152 

160 48 8 24 112 

160 48 8 0 112 

I t  is interesting to  examine some of the entries of ilf and of Mg. 
From either end state we can go to any state only by passing through 
the neighboring state. Hence the first row of 31 is, with one exception, 
1 greater than the second row, and similarly for the fifth and fourth 
rows. The one exception is stepping into the neighboring state itself. 
The third row is the average of the second and fourth, plus 1, except 
for stepping into a neighboring state. 

I n  Hz i t  is worth noting the equal entries. Some of the equalities 
are due to the symmetry of the process. But this does not account, 
for example, for the third column being constant. The second and 
fourth entries are the same in this column by symmetry. The other 
three are also 8, because from one of the states in the first cyclic set 
we must enter the second cyclic set, and then the variance is 8. The 
two 0 entries are due to the fact that  from an end state we al-uays go 
to its neighbor in one step. 

It is also interesting to think of the middle column in Jif and Mz 
as arising from making sa absorbing, and asking for the mean and 
variance of the number of steps needed for absorption. The resuftmg 
process behaves in all essential features like 5 3.4.1 (with p =  and 
hence the numbers 3, 4, and 8 are the samc. as the entries of 7 and 7 2  

there obtained. 
We shall conclude by computing the covariance matrix. 

From this we obtain the limiting variances 

P = ( 7 / 3 2 ,  3/81 '!8, 3/8, i / 3 d .  

The fact that  ~ 2 3  = c 4 3  = 0 means that the limiting correlations 
between sz and SQ, and sq and s3, are 0. On the other band the correla- 
tion between sl and sz is 8 1 4 8 4 c . 8 7 .  The reason for this is fairly 
obvious from the transition matrix. 
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e saw in 5 2.1 that  a 
process observed in reverse order would be a Markov process with 
transition probabilities given by 

where f,, is the n-th outcome function. It was observed also that ,  if 
the forward process is a Markov chain, the reverse process will be a 
Markov chain only if s,[fn = s j ]  does not depend on n. This will be 

e case if the pro ss is started in equilibrium. In this case 
.Ifn = st] = a, for all n, and pt j (n)  becomes 

5.3.11 DEFINITION. Let P be the transition matrix for an ergodic 
Xarkov chain. Let a be the $xed probability vector for P. Then the 
reverse Markov chdn  for P is  a Harkov chain with Irandlion .matrix 
given by 

To justify the above definition we must show that  1 is a transition 
matrix. By Theorem 5.1.2 the at's are all positive, so that  is 
defined and non-negative. 

I?t = DPTD-l(= DPTCXT = D(LLP)T = DCXT = f. ence is a tran- 
sition matrix. 

5.3.2 DEFINITIOK. A &farkov chain is reversible if P= 
5.3.3 THEOREM. A Markov chain is  reversible if and only ij 
D-1P is  a symmetric matrix. 

PROOF. I? = DPTD-1. Hence P = if a n d  only if 
B-rp = P T P ) - ~  = ( ~ - 1 p ) ~ .  

That is, if and only if D-IP is a symmetric matrix. 

A reversible Markov chain in equilibrium will appear the same 
looked a t  backwards as forwards. An alternative way to describe 
reversibility is the following. A process is reversible if, in equilibrium, 
for any sf and s j  the probability of st followed by sj  is the same as the 
probability of sf followed by st. That is, if for every n, si, sj  

This last equation will be true if atpij = a;pjt or if pgj = agrc/ai .  That 
is, if pi,= for every i, j. 
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M2 = S3 152 40 8 40 152 . 

S4 160 48 8 24 ll2 

55 160 48 8 0 112 

It is interesting to examine some of the entries of ill and of M 2. 

From either end state we can go to any state only by passing through 
the neighboring state. Hence the first ro,v of M is, with one exception, 
1 greater than the second row, and similarly for the fifth and fourth 
rows. The one exception is stepping into the neighboring state itself. 
The third row is the average of the second and fourth, plus 1, except 
for stepping into a neighboring state. 

In M 2 it is worth noting the equal entries. Some of the equalities 
are due to the symmetry of the process. But this does not account, 
for example, for the third column being constant. The second and 
fourth entries are the same in this column by symmetry. The other 
three are also 8, because from one of the states in the first cyclic set 
we must enter the second cyclic set, and then the variance is 8. The 
two 0 entries are due to the fact that from an end state we alwa.ys go 
to its neighbor in one step. 

It is also interesting to think of the middJe column in M and J"f1 2 

as arising from making 83 absorbing, and asking for the mean and 
variance of the number of steps needed for absorption. The resulting 
process behaves in all essential features like § 3.4.1 (with p= liz), and 
hence the numbers 3, 4, and 8 are the same as the entries of 7 and 72 

there obtained. 
\Ve shall conclude by computing the covariance matrix. 

G ~ '/" ( -: 

8 -2 -8 -) 12 0 -12 -8 

0 4 0 -; -8 1 ,') 0 12 - ~ 

-5 -8 -2 8 

From this we obtain the limiting variances 

f3 = (7/32,3/8, l/S, 31s, 7/ 32 ). 
The fact that C23 = C43 = 0 means that the limiting correlations 

between 82 and 53, and 84 and 83, are O. On the other hand.the correla
tion between 81 and 82 is 8/Y84:::::.87. The reason for this is fairly 
obvious from the transition matrix. 
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112 0 8 48 160 

112 24 8 48 160 

152 40 8 40 152 

160 48 8 24 112 

160 48 8 0 112 

I t  is interesting to  examine some of the entries of ilf and of Mg. 
From either end state we can go to any state only by passing through 
the neighboring state. Hence the first row of 31 is, with one exception, 
1 greater than the second row, and similarly for the fifth and fourth 
rows. The one exception is stepping into the neighboring state itself. 
The third row is the average of the second and fourth, plus 1, except 
for stepping into a neighboring state. 

I n  Hz i t  is worth noting the equal entries. Some of the equalities 
are due to the symmetry of the process. But this does not account, 
for example, for the third column being constant. The second and 
fourth entries are the same in this column by symmetry. The other 
three are also 8, because from one of the states in the first cyclic set 
we must enter the second cyclic set, and then the variance is 8. The 
two 0 entries are due to the fact that  from an end state we al-uays go 
to its neighbor in one step. 

It is also interesting to think of the middle column in Jif and Mz 
as arising from making sa absorbing, and asking for the mean and 
variance of the number of steps needed for absorption. The resuftmg 
process behaves in all essential features like 5 3.4.1 (with p =  and 
hence the numbers 3, 4, and 8 are the samc. as the entries of 7 and 7 2  

there obtained. 
We shall conclude by computing the covariance matrix. 

From this we obtain the limiting variances 

P = ( 7 / 3 2 ,  3/81 '!8, 3/8, i / 3 d .  

The fact that  ~ 2 3  = c 4 3  = 0 means that the limiting correlations 
between sz and SQ, and sq and s3, are 0. On the other band the correla- 
tion between sl and sz is 8 1 4 8 4 c . 8 7 .  The reason for this is fairly 
obvious from the transition matrix. 
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e saw in 5 2.1 that  a 
process observed in reverse order would be a Markov process with 
transition probabilities given by 

where f,, is the n-th outcome function. It was observed also that ,  if 
the forward process is a Markov chain, the reverse process will be a 
Markov chain only if s,[fn = s j ]  does not depend on n. This will be 

e case if the pro ss is started in equilibrium. In this case 
.Ifn = st] = a, for all n, and pt j (n)  becomes 

5.3.11 DEFINITION. Let P be the transition matrix for an ergodic 
Xarkov chain. Let a be the $xed probability vector for P. Then the 
reverse Markov chdn  for P is  a Harkov chain with Irandlion .matrix 
given by 

To justify the above definition we must show that  1 is a transition 
matrix. By Theorem 5.1.2 the at's are all positive, so that  is 
defined and non-negative. 

I?t = DPTD-l(= DPTCXT = D(LLP)T = DCXT = f. ence is a tran- 
sition matrix. 

5.3.2 DEFINITIOK. A &farkov chain is reversible if P= 
5.3.3 THEOREM. A Markov chain is  reversible if and only ij 
D-1P is  a symmetric matrix. 

PROOF. I? = DPTD-1. Hence P = if a n d  only if 
B-rp = P T P ) - ~  = ( ~ - 1 p ) ~ .  

That is, if and only if D-IP is a symmetric matrix. 

A reversible Markov chain in equilibrium will appear the same 
looked a t  backwards as forwards. An alternative way to describe 
reversibility is the following. A process is reversible if, in equilibrium, 
for any sf and s j  the probability of st followed by sj  is the same as the 
probability of sf followed by st. That is, if for every n, si, sj  

This last equation will be true if atpij = a;pjt or if pgj = agrc/ai .  That 
is, if pi,= for every i, j. 
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§ 5.3 Reverse l\Iarkov chains. \Ve saw in § 2.1 that a Markov 
process observed in reverse order would be a Markov process with 
transition probabilities given by 

() Prn[fn-l=Sj]Prw[fn=s¥,,-l=Sj] 
Pif n = --=----'-''=~ __ -+---'-' 

Pr,,[fn = St] 

where fn is the n-th outcome function. It was observed also that, if 
the forward process is a Markov chain, the reverse process will be a 
Markov chain only if PI" ,,[fn = sf] does not depend on n. This will be 
the case if the process is started in equilibrium. In this case 
Pr a[fn = 5t] = at for all n, and Pij(n) becomeS 

5.3.1 DEFIXITIO~. Let P be the transition matrix for an ergodic 
~il arkol' chain. Let a be the fixed probabnity vector for P. Then the 
renrse ::Harkov chain for Pis a l;J arkov chain with transition matrix 
given by 

r ., 

p = {p'e~ = j (iJpjt ~ = DPT D-l. 
JJ l at ) 

To justify the above definition we must show that P is a transition 
matrix. By Theorem 5.1.2 the a/s are all positive, so that Pi! is 
defined and non-negative. 

Ft=DPTD-1t=DPTaT=D(aP)T=DaT=r Hence P is a tran
sition matrix. 

5.3.2 DEFINITION. A Markov chain i8 reversible if P= P. 
5.3.3 THEOREM. A Markov chain is reversible if and only if 
D-lP ,is a symmetric matrix. 

PROOF. F=DPTD-l. Hence P=P if and'only if 

D-lP = pT D-l = (D-IP)T. 

That is, if and only if D-lP is a symmetric matrix. 

A reversible Markov cl;tain in equilibrium win appear the same 
looked at backwards as forwards. An alternative way to describe 
reversibility is the follo\ving. A process is reversible if, in equilibrium, 
for any s, and Sf the probability of SI followed by Sf is the same as the 
probability of Sf followed by St· That is, if for every n, Si, Sf 

Pra[fn = 5i /\fn+l = Sf] = Pralfn = Sf /In+l = 5i]. 

This last equation will be true if a/po = a;pJi or if PH = ajpjI/at. That 
is, if Pit = Pif for every i, j. 
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It is obvious that  any periodic chain with period greater than 2 
cannot be reversible. I n  fact for such a chain, any state which can 
be reached on the next step could not have been the result of the last 
step. Thus only chains of period 1 and 2 can be reversible. I t  is 
clear that  if such a chain is reversible i t  will have the same period. 

As an  example of a reversible chain of period 1, we can consider the 
Land of Oz example. I n  this case we find: 

which is a symmetric matrix. Hence by Theorem 5.3.3 the chain is 
reversible. An example of a reversible chain with period 2 is given 
by Example 2a. In this case the matrix D-IP is 

This is again a symmetric matrix. 
Given an ergodic cl~ain, we now ask for the relation between this 

chain and the associated reverse chain. We shall find the relation 
between the fixed vectors and the fundanlental matrices and hence, 
from these, any quantities which depend on them. We shall denote 
A ,  2 ,  M ,  etc. for the reverse chain by A, 2, i@, etc. 

5.3.4 THEOREM. The,fixed probabiliiy vector for P and is  the same. 
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2 = DZTD-1. 

PROOF. $3 = (.r-ifj+&l. 

From the form of A il, is clear that  A = DATD-1. From Theorem 
5.3.4, A=A. T ~ U S  

2 = ( I  - DPTD-I+ DATD-l)-I 
= D(P - PT + AT)-iL)-I 
= DZTD-1. 

THEOREM. Any quantity whose value depends only on Zdg 
and A i s  the same for the yeverse process as for the forward process. 

PBOOB. By Theorem 5.3.5, 2 d g =  Zdg, and by 5 5.3.4, A  ̂ =A.  

An example of the application of the above theorem is the mean 
and variance of the first passage time to  state st, if we start in sf or if 
we have as initial vector a. Similarly, the limiting variance for the 
number of times in a state depends only on Zag and A. Hence these 
quantities are the same for the forward and reverse processes. Addi- 
tional examples are provided by the following theorem. 

Thus all results that  depend only on the covariance matrix are the 
same for the reverse process. 

The theorem then follows from $ 5.3.5. 

THEOREM. T?' - W = ( Z D  - (ZD)T)(2Zd,D - 31) 
+ 2(ZZD - (Z2D)T).  

PROOF. 
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It is obvious that any periodic chain with period greater than 2 
cannot be reversible. In fact for such a chain, any state which can 
be reached on the next step could not have been the result of the last 
step. Thus only chains of period 1 and 2 can be reversible. It is 
clear that if such a chain is reversible it will have the same period. 

As an example of a reversible chain of period 1, we can consider the 
Land of Oz example. In this case we find: 

c 0 

O)C 
1/ 4 'I,) 

D-1P = : 1/5 o 1/2 0 1/2 
0 Z/5 1/4 1/4 l/Z 

R N S 

R 

C 
1/ 10 'I,") '/ :, =N 0 1/10 , 

S I,' 10 1/10 1/5 

which is a symmetric matrix. Hence by Theorem 5.3.3 the chain IS 

reversible. An example of a reversible chain 'with period 2 is given 
by Example 2a. In this case the matrix D-lP is 

C 
1,/ S 0 0 0) liS 0 l/S 0 0 

D-'P ~ : lis 0 1/8 o . 
0 1 i 0 J~8 ! 8 

0 0 J ! 8 

This is again a symmetric matrix. 
Given an ergodic chain, we now ask for the relation between this 

chain and the associated reverse chain. We shall find the relation 
between the fixed vectors and the fundamental matrices and hence, 
from these, any quantities which depend on them. \Ve shall denote 
A, Z, M, etc. for the reverse chain by A, Z, M, etc. 

5.3.4 THEOREM. The .fixed probability veeto)' for P and j> is the same. 

PROOF. Let 

Then 

aP = a. 

aj' = aDPT D-l 

= 1)PT D-l 
= (Pf)T j)-l 

= 1)D-l 

= a. 
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It is obvious that  any periodic chain with period greater than 2 
cannot be reversible. I n  fact for such a chain, any state which can 
be reached on the next step could not have been the result of the last 
step. Thus only chains of period 1 and 2 can be reversible. I t  is 
clear that  if such a chain is reversible i t  will have the same period. 

As an  example of a reversible chain of period 1, we can consider the 
Land of Oz example. I n  this case we find: 

which is a symmetric matrix. Hence by Theorem 5.3.3 the chain is 
reversible. An example of a reversible chain with period 2 is given 
by Example 2a. In this case the matrix D-IP is 

This is again a symmetric matrix. 
Given an ergodic cl~ain, we now ask for the relation between this 

chain and the associated reverse chain. We shall find the relation 
between the fixed vectors and the fundanlental matrices and hence, 
from these, any quantities which depend on them. We shall denote 
A ,  2 ,  M ,  etc. for the reverse chain by A, 2, i@, etc. 

5.3.4 THEOREM. The,fixed probabiliiy vector for P and is  the same. 
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2 = DZTD-1. 

PROOF. $3 = (.r-ifj+&l. 

From the form of A il, is clear that  A = DATD-1. From Theorem 
5.3.4, A=A. T ~ U S  

2 = ( I  - DPTD-I+ DATD-l)-I 
= D(P - PT + AT)-iL)-I 
= DZTD-1. 

THEOREM. Any quantity whose value depends only on Zdg 
and A i s  the same for the yeverse process as for the forward process. 

PBOOB. By Theorem 5.3.5, 2 d g =  Zdg, and by 5 5.3.4, A  ̂ =A.  

An example of the application of the above theorem is the mean 
and variance of the first passage time to  state st, if we start in sf or if 
we have as initial vector a. Similarly, the limiting variance for the 
number of times in a state depends only on Zag and A. Hence these 
quantities are the same for the forward and reverse processes. Addi- 
tional examples are provided by the following theorem. 

Thus all results that  depend only on the covariance matrix are the 
same for the reverse process. 

The theorem then follows from $ 5.3.5. 

THEOREM. T?' - W = ( Z D  - (ZD)T)(2Zd,D - 31) 
+ 2(ZZD - (Z2D)T).  

PROOF. 
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5.3.5 THEOREM. 

PROOF. 
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2 = DZTD-l. 

2 = (I-P+A)-l. 

107 

From the form of A it is clear that A = DAT D-l. From Theorem 
5.3.4, A=A. Thus 

2 = (I -DPTD-l+DATD-l)-l 
= D(I-PT+AT)-lD-l 
= DZTD-l. 

5.3.6 THEOREM. Any quantity whose value depends only on Zdg 
and A is the same for the reverse process as for the forward process. 

PROOF. By Theorem 5.3.5, tag= Zctg, and by § 5.3.4, A =A, 

An example of the application of the above theorem is the mean 
and variance of the first passage time to state St, if we start in Sl or if 
we have as initial vector cx. Similarly, the limiting variance for the 
number of times in a state depends only on Zdg and A. Hence these 
quantities are the same for the forward and reverse processes. Addi
tional examples are provided by the following theorem. 

5.3.7 THEOREM. 

PROOF. eii = aizi} + ajZji - aid!} - alaj 

= ai(ajZji!a,) + aj(aiZti!aj) - ajdtj - aiaj 

= ajZji + a jZjj - a/dtj - a,at 

= Cij· 

Thus all results that depend only on the covariance matrix are the 
same for the reverse process. 

5.3.8 THEOREM. £1-M = (ZD)-(ZD)T. 

PROOF. £1-M = (l-t+EZdg)D-(I-Z+EZag)D 
= (Z-t)D. 

The theorem then follows from § 5,3.5. 

5.S.9 THEOREM. lV- W = (ZD-(ZD)T)(2ZdgD-31) 
+ 2(Z2D- (Z2D)T). 

PROOF. 

w-W = (£1-M)(2Z dgD-I)+2(Z£1-ZM)-2E(t£1-ZM)dg. (1) 

M-M = ZD-(ZD)T. (2) 
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Since Z.@= (2 - g2+ EZd,)D, and Z M =  (2- Z2+ EZdg)D, we have 

ZB-ZM = ( 2 - z ) D + ( z ~ - Z ~ D  
= (ZD)T - (ZD) + (Z2D) - (Z2D)*. (3) 

Since this is the difference of a matrix and its transpose, i t  has O 
diagonal entries, hence 

( Z B -  ZN).l)dg = 0. (4) 

We obtain our theorem by combining ( I ) ,  (2), (3), and (4). 

We shall now illustrate the application of the above theorems for a 
A 

process which is not reversible. Such a process is the random walk 
Example 3a. Here 

and a = (.1, .2, .4, .2, .I). From this we find 

Most of the entries in this matrix are obvious. For example, if the 
process is ever in state s l  i t  must hare  come from sz, hence lilz= 1. 
The fixed vector for j? is again a = (. 1, .2, .4.  .2, . I ) .  

In  Chapter I V  we found 2 for this example to be 
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From this we find 2 = 

91 8 2  83 S4 S5 

.88 .66 -.08 -.34 -.I2 
-.02 .86 .32 -.14 - .02 

.08 .06 .72 .06 .08 

- .02 - .14 .32 .86 -.02 

-.12 -.34 -.08 .66 .88 

We found Jf to be : 
s1 S2 s 3  S4 S5 

10 4.5 P 4.5 10 

5.5 5 1.5 5 10.5 

9 3.5 2.5 3.5 9 

10.5 5 1.5 5 5.5 

10 4.5 1 4.5 10 

From this we obtain L@ = Jf + (ZH) - (ZD)T j : 

S I  Sz  S3 S4 85 

10 1 2 6 10 

9 5 1  5 9 

8 4 2.5 4 8 

9 5 1  5 9 

10 6 2 P 10 
We found W t o  be 

S1 S2 S3 84 S5 

166 33 1 33 166 

83.5 38 2.5 38 176.5 

147 25 6.5 25 147 

176.5 28 2.5 28 83.5 

166 33 1 33 166 

prom this we obtain @ = + (ZD - (ZD)T)(2%dgD - 31) t 2(Z21) - 
(Z2Ld)T) : 
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Since Zk=(Z_Z2+EZdg)D, and ZM=(Z_Z2+EZdg)D, we have 

Zk- ZM = (Z - Z)D + (ZL Z2)D 
= (ZD)T_(ZD)+(Z2D)-(Z2D)T. (3) 

Since this is the difference of a matrix and its transpose, it has 0 
diagonal entries, hence 

(Zk- Z21·f)dg = O. (4) 

We obtain our theorem by combining (1), (2), (3), and (4). 

We shall now illustrate the application of the above theorems for a 
process which is not reversible. Such a process is the random walk 
Example 3a. Here 

81 82 83 84 85 

81 

('1' 
0 0 

,1) 82 0 liz 0 

P = 83 l/z 0 1/2 

84 0 liz 0 

Ss 0 0 

and a= (.1, .2, .4, .2, .1). From this we find 

81 82 S3 84 Ss 

81 

G· 
0 0 

'D 
S2 0 1 0 

P = S3 1/4 0 1/4 

84 0 1 0 

8s 0 0 

Most of the entries in this matrix are obvious. For example, if the 
process is ever in state 81 it must have come from 82, hence P12 = 1. 
Thefixedvectorforpisagaina=(.l, .2,.4, .2, .1). 

In Chapter IV we found Z for this example to be 

81 82 83 84 8S 

81 (88 -.04 .32 -.04 -') 52 .33 .86 .12 - .14 - .17 

Z = S3 -.02 . 16 .72 .16 -:~: . 
84 - .17 - .14 .12 .86 

Ss - .12 -.04 .32 -.04 .88 
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diagonal entries, hence 

( Z B -  ZN).l)dg = 0. (4) 

We obtain our theorem by combining ( I ) ,  (2), (3), and (4). 

We shall now illustrate the application of the above theorems for a 
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Example 3a. Here 

and a = (.1, .2, .4, .2, .I). From this we find 

Most of the entries in this matrix are obvious. For example, if the 
process is ever in state s l  i t  must hare  come from sz, hence lilz= 1. 
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In  Chapter I V  we found 2 for this example to be 
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91 8 2  83 S4 S5 
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-.02 .86 .32 -.14 - .02 

.08 .06 .72 .06 .08 

- .02 - .14 .32 .86 -.02 

-.12 -.34 -.08 .66 .88 

We found Jf to be : 
s1 S2 s 3  S4 S5 

10 4.5 P 4.5 10 

5.5 5 1.5 5 10.5 

9 3.5 2.5 3.5 9 

10.5 5 1.5 5 5.5 

10 4.5 1 4.5 10 

From this we obtain L@ = Jf + (ZH) - (ZD)T j : 

S I  Sz  S3 S4 85 

10 1 2 6 10 

9 5 1  5 9 

8 4 2.5 4 8 

9 5 1  5 9 

10 6 2 P 10 
We found W t o  be 

S1 S2 S3 84 S5 

166 33 1 33 166 

83.5 38 2.5 38 176.5 

147 25 6.5 25 147 

176.5 28 2.5 28 83.5 
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prom this we obtain @ = + (ZD - (ZD)T)(2%dgD - 31) t 2(Z21) - 
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From this we find t=DZTD-l to be 

81 82 S3 S4 S5 

" (88 .66 -.08 -.34 -.12\ 
S2 - .02 .86 .32 -.14 -.02 

t = S3 .08 .06 .72 .06 00,/ 
S4 - .02 -.14 .32 .86 -.02 

S5 - .12 -.34 . -.08 .66 .88 

We found M to be: 
S1 82 S3 S4 S5 

S1 (:5 4.5 1 4.5 10 ) 
82 5 1.5 5 

10.5 .. 
M = Sa 3.5 2.5 3.5 9 . 

S4 10.5 5 1.5 5 5.5/ 
S5 10 4.5 1 4.5 10 

From this we obtain M =11,1 + (ZD- (ZD)T): 

81 52 S3 S4 S5 

S1 

( 
1 2 6 

1~) S2 5 1 5 

Sf = S3 4 2.5 4 8 . 

54 5 1 5 9 

S5 .10 6 2 1 10 
We found W to be 

51 52 S3 84 55 

51 (66 33 1 33 

166 ) 82 83.5 38 2.5 38 176.5 

W = Sa 

~~~.5 
25 6.5 25 147 . 

84 28 2.5 28 83.5 

S5 1611 33 1 33 166 

From this we obtain W = TV + (ZD- (ZD)T)(2ZdgD-3J) + 2(Z2D-
(Z2D)T) : 

/166 I 4 49 16) M 147 38 1 38 147 

W= \130 29 6.5 29 130 . 

147 38 38 147 

166 49 4, 1 166 
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Hence 

66 0 0 13 66 

66 13 0 13 66 

a 2  = 66 13 '14 13 66 

66 13 0 13 66 

66 13 0 0 66 

The zeros and  t h e  equal variances a re  easily deduced from p. 

Exercises for Chapter V 

For $ 5.1 

1. Compute the limiting matrix A and the fundamentai matrix for the 
ergodic chain with transition matrix 

2.  Compute M and M z  for the chain in Exercise 1 above. 
3. Find the covariance matrix 6' for the chain in Exercise 1 above. 
4. I n  Example 2 let p=2l3. Find the fixed probability vector and the 

fundamental matrix. 
5. For the example of Exercise 4 above find the mean first passage matrix. 

Check your results by obtaining P from g. 
6. Given that  for an ergodic chain 

show that the chain is cyclic. 
7.  Prove that  the matrix 

is not the first passage matrix of an ergodic chain. 
8. Let P be the transition matrix for an ergodic chain. Let t' be the matrix 

P with diagonal entries replaced by 0's and the rows renormalized to have 
sum 1. Show that the resulting chain is again ergodic ; and if n = {ai) is the 
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fixed vector for the original chain, then ci={aj(l -p j f ) )  is proportional to 
the fixed vector for the new chain. What is the interpretation of the 
components of the new fixed vector in terms of the original chain? 

9. Carry out the procedure indicated in the previous exercise for the Land 
of Oz example. 

10. Find the reverse transition matrix for the chain in Exercise 1 above. 
Compute the fundamental matrix for this reverse chain from the fundamental 
matrix for the original chain. 

I I. For which values of p is the chain in Exercise 1 reversible ? 
12. Find the reverse transition matrix for Example 2 with p=2I3. Com- 

pute the fundamental matrix for the reverse chain and compare your result 
with the result of Exercise 4 above. 

13. Compute .@ for the example of the last exercise directly from the 
fundamental matrix there found. Compute i@ from M (see Exercise 5) 
using Theorem 5.3.8, and compare your answers. 

14. Prove that every independent process is reversible. 
15. Prove that every two-st,ate ergodic chain is reversible. 
16. Prove that  if an ergodic chain has a symmetric transition matrix 

(i.e., ptj =  pi^), then the chain is reversible. 
17. Show for an ergodic chain that  

(a) If the chain is reversible, then Pij$)fkpki = pjipwpi~. 
(b) If the transition matrix has all positive entries, then the above condi- 

tion assures reversibility. [HINT: Show that  for fixed i the row 
vector h = {pii/pji$ is a fixed vector of P. Hence this vector must be 
proportional to a , ]  

For the entire chapter 

18. The general (finite) random walk is defined as follows. The states are 
numbered so, sl, . . ., sn. If the process is in s f ,  then i t  moves to  st-1 with 
probability q t ,  i t  stays in st with probability r t ,  and moves to scil with 
probability pt. (Where pi +qt +ri = 1 ,  qo = 0,  ;on = 0.) 

(a)  hinder what conditions is a random walk ergodic ? 
(b) From the equation nl' = a prove, by mathexatical induction, that 

af+~qr+l = a m .  
(c) Prove that an ergodic random walk is reversible. 
(d) Find a formula for the fixed vector a.  
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Hence 

(" 0 0 13 6) 66 13 0 13 66 

lW 2 = 66 13 1/4 13 66 . 

66 13 0 13 66 

66 13 0 0 66 

The zeros and the equal variances are easily deduced from P. 

Exercises for Chapter V 

For § 5.1 

I. Compute the limiting matrix A and the fundamental matrix for the 
ergodic chain with transition matrix 

2. Compute M and M 2 for the chain in Exercise 1 above. 
3. Find the covariance matrix C for the chain in Exercise 1 above. 
4. In Example 2 let p = 2h. Find the fixed probability vector and the 

fundamental matrix. 
5. For the example of Exercise 4 above find the mean first passage matrix. 

Check your results by obtaining P from M. 
6. Given that for an ergodic chain 

M = (~ : :)\, 

144 

show that the chain is cyclic. 
7. Prove that the matrix 

is not the first passage matrix of an ergodic chain; 
8. Let P be the transition matrix for an ergodic chain. Let P be the matrix 

P with diagonal entries replaced by O's and the rows renormalized to have 
sum 1. Show that the resulting chain is again ergodic"; and if a = {aj} is the 
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Hence 

66 0 0 13 66 

66 13 0 13 66 

a 2  = 66 13 '14 13 66 

66 13 0 13 66 

66 13 0 0 66 

The zeros and  t h e  equal variances a re  easily deduced from p. 

Exercises for Chapter V 

For $ 5.1 

1. Compute the limiting matrix A and the fundamentai matrix for the 
ergodic chain with transition matrix 

2.  Compute M and M z  for the chain in Exercise 1 above. 
3. Find the covariance matrix 6' for the chain in Exercise 1 above. 
4. I n  Example 2 let p=2l3. Find the fixed probability vector and the 

fundamental matrix. 
5. For the example of Exercise 4 above find the mean first passage matrix. 

Check your results by obtaining P from g. 
6. Given that  for an ergodic chain 

show that the chain is cyclic. 
7.  Prove that  the matrix 

is not the first passage matrix of an ergodic chain. 
8. Let P be the transition matrix for an ergodic chain. Let t' be the matrix 

P with diagonal entries replaced by 0's and the rows renormalized to have 
sum 1. Show that the resulting chain is again ergodic ; and if n = {ai) is the 
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fixed vector for the original chain, then ci={aj(l -p j f ) )  is proportional to 
the fixed vector for the new chain. What is the interpretation of the 
components of the new fixed vector in terms of the original chain? 

9. Carry out the procedure indicated in the previous exercise for the Land 
of Oz example. 

10. Find the reverse transition matrix for the chain in Exercise 1 above. 
Compute the fundamental matrix for this reverse chain from the fundamental 
matrix for the original chain. 

I I. For which values of p is the chain in Exercise 1 reversible ? 
12. Find the reverse transition matrix for Example 2 with p=2I3. Com- 

pute the fundamental matrix for the reverse chain and compare your result 
with the result of Exercise 4 above. 

13. Compute .@ for the example of the last exercise directly from the 
fundamental matrix there found. Compute i@ from M (see Exercise 5) 
using Theorem 5.3.8, and compare your answers. 

14. Prove that every independent process is reversible. 
15. Prove that every two-st,ate ergodic chain is reversible. 
16. Prove that  if an ergodic chain has a symmetric transition matrix 

(i.e., ptj =  pi^), then the chain is reversible. 
17. Show for an ergodic chain that  

(a) If the chain is reversible, then Pij$)fkpki = pjipwpi~. 
(b) If the transition matrix has all positive entries, then the above condi- 

tion assures reversibility. [HINT: Show that  for fixed i the row 
vector h = {pii/pji$ is a fixed vector of P. Hence this vector must be 
proportional to a , ]  

For the entire chapter 

18. The general (finite) random walk is defined as follows. The states are 
numbered so, sl, . . ., sn. If the process is in s f ,  then i t  moves to  st-1 with 
probability q t ,  i t  stays in st with probability r t ,  and moves to scil with 
probability pt. (Where pi +qt +ri = 1 ,  qo = 0,  ;on = 0.) 

(a)  hinder what conditions is a random walk ergodic ? 
(b) From the equation nl' = a prove, by mathexatical induction, that 

af+~qr+l = a m .  
(c) Prove that an ergodic random walk is reversible. 
(d) Find a formula for the fixed vector a.  
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fixed vector for the original chain, then a={aJ(l-pjj)} is proportional to 
the fixed vector for the new chain. What is the interpretation of the 
components of the new fixed vector in terms of the original chain 1 

9. Carry out the procedure indicated in the previous exercise for the Land 
of Oz example. 

For § 5.3 

10. Find the reverse transition matrix for the chain in Exercise 1 above. 
Compute the fundamental matrix for this reverse chain from the fundamental 
matrix for the original chain. 

n. For which values of p is the chain in Exercise 1 reversible 1 

12. Find the reverse transition matrix for Example 2 withp=2/J. Com
pute the fundamental matrix for the reverse chain and compare your result 
with the result of Exercise 4 above. 

13. Compute M fo!' the example of the last exercise directly from the 
fundamental matrix there found'. Compute lit from M (see Exercise 5) 
using Theorem 5.3.8, and compare your answers. 

14. Prove that every independent process is reversible. 
15. Prove that every two,state ergodic chain is reversible. 
16. Prove that if an ergodic chain has a symmetric transition matrix 

(i.e., Pij = Pit), then the chain is reversible. 
17. Show for an ergodic chain that 

(a) If the chain is reversible, then PijPjkPkl = PjiPkjPik. 

(b) If the transition matrix has ali positive entries, then the above condi
tion assures reversibility. [HINT: Show that for fixed i the row 
vector'\ = {JiijiPii} is a fixed vector of P. Hence this vector must be 
proportional to a. J 

For the entire chapter 

18. The general (finite) random walk is defined as follows. The states are 
num bered So, 51, ' .. , Sn. If the process is in St, then it moves to 51-1 with 
probability ql, it stays in 5i with probability Tj, and moves to 8Hl with 
probability Pi. (Where Pi +qi +Tj = 1, qo = 0, pn = 0.) 

(a) Under what conditions is a random walk ergodic? 
(b) From the equation aP = a prove, by mc.thematical induction, that 

aHlqH1 = alpi· 
(0) Prove that an ergodic random walk is reversible. 
(d) Find a formula for the fixed vector a. 



ER RESULTS 

$6.1 Application of absorbing chain theory to ergodic chains. We 
have seen that the 2 matrix enables us to find the mean and variance 
of the first passage time to state si. Assume now that we are interested 
in more detailed behavior of the process in going to sj. For example, 
we might ask for the mean number of times that it will be in each of 
the other states before reaching s, for the first time. The answer to 
this and other similar questions is furnished by applying the absorbing 
Markov chain theory. To do this we change our process by making 
s, into an absorbing state. The resulting process will be an absorbing 
process with a single absorbing state. The behavior of this process 
before absorption is exactly the same as the behavior of the original 
process before hitting sj for the first time. Hencc we can translate 
all of the information we have about an absorbing Markov chain 
into information about our original chain. In particular it provides 
us with an alternative way to find the mean and variance of the first 
passage time from s.~ to sj, these being the mean and variance of the 
time before absorption in the new process. Since any proper subset 
of an ergodic set is an open set, we can apply the results of $ 3.5 to 
obtain the behavior of our process before it hits a subset for the first 
time. 

Let us illustrate the above ideas with the Land of Oz example. 
Assume that we arc interested in the behavior of the process before 
the first rainy day. We make state 1IC absorbing and have the new 
absorbing Markov chain with transition matrix : 
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The basic results for this absorbing chain are obtsined kern the 
fundamental matrix a= (I-Q)-1 where & is $he matrix obtained by 
considering only non-absorbing states. FOT example, Iet nj be the 
number of times the process is in state sj before being absorbed. Then 

%[nl] are given by the matrix N ,  in &his case 

For example, calculated from a nice day, the mean number of nice 
days before the next rainy day is 413. 

matrix 

Let L be the function which gives the totail number of steps before 
absorption. Then, from Theorem 3.3.5, vie have that the column 
vector T =  (Ml[t]) is given by T = N ( .  In the example we are eon- 
sidering, this is 

The function t represents in the original process the time to reach 
state B for the first time. Thus the mean first passage time to B, 
starting in state M, is 813, and, starting in state S it is 1013. These values 
agree with those found in the matrix M calculated from the Z matrix 
in $ 4.4. Similarly, from Theorem 3.3.5, we have that the 
given by tile column vector 7 2  = (2N -1)~- T,~. CalcuIating this, we 
have 

The vector 7.2 gives us the variance of the time before absorption. In 
terms of the original process this is the variance of the first passage 
time to state R. Again the above values check with those found from 
the matrix iV2 obtained in 3 4.5. 

By successively making each state absorbing we could find all the 
non-diagonal elements of M and M 2  for an ergodic chain. However, 
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of the first passage time to state Sj. Assume no,"v that we are interested 
in more detailed behavior of the process in going to sf. For example, 
we might ask for the mean number of times that it will be in each of 
the other states before reaching Sj for the first time. The a.nswer to 
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Markov chain theory. To do this we change our process by making 
Sj into an absorbing state. The resulting process will be a.n absorbing 
process with a single absorbing state. The behavior of this process 
before absorption is exactly the same as the behavior of the original 
process before hitting Sj for the first time. Hence we can translate 
all of the information we have about an absorbing Markov chain 
into information about our original chain. In particular it provides 
us with an alternative way to find the mean and variance of the first 
passage time from Si to Si, these being the mean and variance of the 
time before absorption in the new p"'ocess. Since any proper subset 
of an ergodic set is an open set, we can apply the results of § 3.5 to 
obtain the behavior of our process before it hits a subset for the first 
time. 

Let us illustrate the above ideas with the Land of Oz example. 
Assume that we are interested in the behavior of the process before 
the first rainy day. vVe make state It absorbing and have the new 
absorbing Ma.rkov chain with transition matrix: 

R N S 

R 

C' 
0 ,;,) P=N 0 

S 1/4 1/4 1 j 2 
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absorption. Then, from Theorem 3.3.5, vie have that the column 
vector T =  (Ml[t]) is given by T = N ( .  In the example we are eon- 
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The function t represents in the original process the time to reach 
state B for the first time. Thus the mean first passage time to B, 
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agree with those found in the matrix M calculated from the Z matrix 
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given by tile column vector 7 2  = (2N -1)~- T,~. CalcuIating this, we 
have 

The vector 7.2 gives us the variance of the time before absorption. In 
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The basic results for this absorbing chain are obtp.ined from the 
fundamental matrix N = (/ _Q)-l where Q is the matrix obtained by 
considering only non-absorbing states. For example, let nj be the 
num ber of times the process is in state s1 before being absorbed. Then 
the values ofM;[nj] are given by the matrix N, in this case 

For example, calculated from a nice day, the mean number of nice 
days before the next rainy day is 4/3. We can find Vari[u;] from the 
matrix 

is" S 

N (:/!} 4) 
S "/3 4°/9 . 

Let t be the ftmction which gives the total number of steps before 
absorption. Then, from Theorem 3.3.5, we have that the column 
veotor 7=[lUi (tJ} is given by 7=Nf In the example we are con
sidering, this is 

The function t represents in the original process the time to reach 
state R for the first time. Thus the mean first passage time to R, 
starting in state N, is 8/3, and, starting in state S it, is lOp. These values 
agree with those found in the matrix 1.f calculated from the Z matrix 
in § 4.4. Similarly, from Theorem 3.3.5, we have that the Var![t] is 
given by the column vector 72 = (2N -1)7 - Tsq. Calculating this, we 
ha,ve 

72 = (56/9'). 
\ 52/9/ 

The vector 72 gives us the variance of the time before absorption. In 
terms of the original process this is the variance of the first passage 
time to state R. Again the above values check with those found from 
the matrix .1.l1z obtained in § 4.5. 

By successively making each state absorbing we could find all the 
non-diagonal elements of jYf and Jfz for an ergodic chain. However, 



114 FINITE MARKOV CHAINS CHAP. VI 

the use of the 2 matrix is much more natural and convenient. We 
would normally use the absorbing methods only to obtain the more 
detailed information not available by the Z matrix methods. 

As an example of a cyclic chain we consider Example 2a. We make 
states sl  and sz absorbing. We then have 

The entries of N and N z  give the mean and variance of the number of 
times that the process is in each state before reaching sz. (The state 
sl can only be reached through sz.) The vectors T and T Z  give the 
mean and variance of the steps needed to reach sz, hence of the first 
passage times. We ean verify that the components of T and T:: agree 
with the corresponding entries (in the second column) of M and M:: in 
$ 5.2. 

As a second application of absorbing theory to ergodic chains, 
consider the following problem. Assume that we have an ergodie 
Markov chain with r states and that the process is observed only when 
i t  is in a subset S of the states having s elements. A new Markov 
chain is obtained: A single step in the new process corresponds in the 
old process to  the transition (not necessarily in one step) from a state 
in S to another state in S. Let sj and st be two states of S. The new 
transition probability will be found by finding the probability that the 
original process starting in s, hits S for the first time a t  state sf, This 
is the probability that it goes to sj in one step, plus the probability 
that i t  goes to a state in g and from this state enters S for the first 
time a t  state sj. Using the results of Chapter 111 we can easily find 
these transition probabilities. To do this we relabel the states so 
that those in S come first. We then write the transition matrix P 
in the form 

s 5 
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The new process will be an s-state Xarkov chain with transition 
matrix which we denote by P. We shall now find this nzatrix. 
Assume a starting state in S. Then the probability of going to each 
of the states in S on the first step is given by the matrix T. To take 
more than one step, i t  must enter a state of g, with probabilities given 
by U .  Then from a given state of i t  enters S for the first time a t  
state s:, with probabilities given by (I-&)-1PZ (see Theorem 3.3.7).  
Putting ail of this information together, we have that 

It is easily seen that P again represents an esgodic chain. 

6.1.1. THEOREM. Let a = (al, az, . . . , a,, a,+l, . . . , a,) be the $zed 
probability vector for P. Then a1 = (al, az, . . . , a,), normalized to 
have sum 1, is the $xed probability vector for fi. 
PROOF. Since an ergodic chain has a unique probability vector fixed 

point, it is sufficient to prove that a1 is a fixed vector for fi. Let 
a:: = (a,+ 1, . . . , a,). Then we can write a = (aI. ap). Since a is a fixed 
vector for P we have 

a1 = alal+azR 
and 

a:: = alU+az&. 

From this h s t  equation we have az(1-&) = alU or 

Putting this result in the first equation we have 

which states that a1 is a fixed vector for p. 
As an example of the above procedure let us consider Example 6. 

The transition matrix for this random walk example is 

s1 S2 s3 s4 S5 

0 '14 '14 '1% '14 

'13 l / 3  

0 'I3 

' 1 3  0 Q 

1/3 113 0 

0 0 1 
11.4 I/* I/', 0 

The fixed vector for this Markov chain is a =  (4/38, '/38, l2is8, 9/38,  4/38). 

Assume now that the process is observed only when it is in sl and sn. 
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the use of the Z matrix is much more natural and convenient. We 
would normally use the absorbing methods only to obtain the more 
detailed information not available by the Z matrix methods. 

As an example of a cyclic chain we consider Example 2a. We make 
states 81 and S2 absorbing. We then have 

YI = 84 

S
S5

3 
(222 

2 

4 

4 

The entries of Nand N 2 give the mean and variance of the number of 
times that the process is in each state before reaching S2. (The state 
SI can only be reached through S2.) The vectors T and T2 give the 
mean and variance of the steps needed to reach S2, hence of the first 
passage times. We can verify that the components of T and T2 agree 
with the corresponding entries (in the second column) of}J and M 2 ·in 
§ 5.2. 

As a second application of absorbing theory to ergodic chains. 
consider the following problem. Assume that we have an ergodic 
Markov chain with r states and that the process is observed only when 
it is in 11 subset S of the states having s elements. A new Markov 
chain is obtained: A single step in the new process corresponds in the 
old process to the transition (not necessarily in one step) from a state 
in S to another state in S. Let Sf and Sj be two states of S. The new 
transition probability will be found by finding the probability that the 
original process starting in Si hits S for the first time at state Sf. This 
is the probability that it goes to Sf in one step, plus t,he probability 
that it goes to a state in S and from this state enters S for the first 
time at state Sf. Using the results of Chapter III we can easily find 
these transition probabilities. To do this we relabel the states so 
that those in S come first. We then write the transition matrix P 
in the form 

S 
P= 

S 
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would normally use the absorbing methods only to obtain the more 
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sl can only be reached through sz.) The vectors T and T Z  give the 
mean and variance of the steps needed to reach sz, hence of the first 
passage times. We ean verify that the components of T and T:: agree 
with the corresponding entries (in the second column) of M and M:: in 
$ 5.2. 

As a second application of absorbing theory to ergodic chains, 
consider the following problem. Assume that we have an ergodie 
Markov chain with r states and that the process is observed only when 
i t  is in a subset S of the states having s elements. A new Markov 
chain is obtained: A single step in the new process corresponds in the 
old process to  the transition (not necessarily in one step) from a state 
in S to another state in S. Let sj and st be two states of S. The new 
transition probability will be found by finding the probability that the 
original process starting in s, hits S for the first time a t  state sf, This 
is the probability that it goes to sj in one step, plus the probability 
that i t  goes to a state in g and from this state enters S for the first 
time a t  state sj. Using the results of Chapter 111 we can easily find 
these transition probabilities. To do this we relabel the states so 
that those in S come first. We then write the transition matrix P 
in the form 

s 5 
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The new process will be an s-state Xarkov chain with transition 
matrix which we denote by P. We shall now find this nzatrix. 
Assume a starting state in S. Then the probability of going to each 
of the states in S on the first step is given by the matrix T. To take 
more than one step, i t  must enter a state of g, with probabilities given 
by U .  Then from a given state of i t  enters S for the first time a t  
state s:, with probabilities given by (I-&)-1PZ (see Theorem 3.3.7).  
Putting ail of this information together, we have that 

It is easily seen that P again represents an esgodic chain. 

6.1.1. THEOREM. Let a = (al, az, . . . , a,, a,+l, . . . , a,) be the $zed 
probability vector for P. Then a1 = (al, az, . . . , a,), normalized to 
have sum 1, is the $xed probability vector for fi. 
PROOF. Since an ergodic chain has a unique probability vector fixed 

point, it is sufficient to prove that a1 is a fixed vector for fi. Let 
a:: = (a,+ 1, . . . , a,). Then we can write a = (aI. ap). Since a is a fixed 
vector for P we have 

a1 = alal+azR 
and 

a:: = alU+az&. 

From this h s t  equation we have az(1-&) = alU or 

Putting this result in the first equation we have 

which states that a1 is a fixed vector for p. 
As an example of the above procedure let us consider Example 6. 

The transition matrix for this random walk example is 

s1 S2 s3 s4 S5 

0 '14 '14 '1% '14 

'13 l / 3  

0 'I3 

' 1 3  0 Q 

1/3 113 0 

0 0 1 
11.4 I/* I/', 0 

The fixed vector for this Markov chain is a =  (4/38, '/38, l2is8, 9/38,  4/38). 

Assume now that the process is observed only when it is in sl and sn. 
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The new process will be an s-state :vfarkov cha,in with transition 

matrix which we denote by P. We shall now find this ma,trix. 
Assume a starting state in S. Then the probability of going to each 
of the states in S on the first step is given by the matrix T. To take 
more than one step, it must enter a state of S, with probabilities given 
by U. Then from a given state of S it enters S for the first time at 
state 81 with probabilities given by (I-Q)-lR (see Theorem 3.3.7). 
Putting all of this information together, we have that 

J5 = T+ U(l-Q}-lR. 

It is easily seen that P again ;-epresents an ergoclic chain. 

6.1.1. THEoREM. Lei 0: = (aI, a2, ... , as, asH, ... ,a,.) be the fixed 
probability vector for P. Then cq = (aI, a2, ... ,as), normalized to 
have S7lrn 1, is the fixed probability vector for J5. 

PROOF. Since an ergodic chain has a unique probability vector fixed 
point, it is sufficient to prove that al is a fixed vector for P. Let 
az = (asOl, ... ', arlo Then we can write a = (aI, ,"2). Since a is a fixed 
vector for P we have 

and 
<X2 = al U + '"zQ. 

From this last equation we have a2(I-Q)=a1U or 

a2 = a 1U(i _Q)-l. 

Putting this result in the first equation we have 

(il = a1T+o:jU(I -Q)-lR 

which states that <Xl is a fixed vector for P. 
As an example of the above procedure let us consider Example 6. 

The transition matrix for this random walk eX2.mple is 

SI 82 53 54 s5 

51 0 
1 j 41 1/4 

52 11/3 1/3 1/ 3 0 0 
1--·--

P = S3 0 1/ 3 1/ 3 1/3 0 

S4 0 0 1/3 1/3 l' i3 

S5 1/4 1 j 4 1/4 1/4 0 

The fixed vector for this Markov chain is a= (4/ 38 • 9/3s, 12/38 • 9/3s, 4/38). 
Assume now that the process is observed only when it is in 81 and 82. 
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Then we find the new transition matrix as follows. From the dis- 
cussion of this example in 3.5.5 we have 

Thus the new transition probabilities are 

The fixed vector for F" is oi= (4113, 9/13) which is simply the first two 
components of a normalized to have sum 1. 

For a cyclic example, let us consider the random walk Example 2a. 
We observe the process in S 

; oi = (l/5, 2/5,  2 /5 ) .  

P differs only slightly from the first three states of P. The process 
can leave S only through s3, and must return there. Hence only 3333 
is clianged. We note that, in accordance with 5 6.11.1, oi consists of 
the first three components of a normalized. 
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§ 6.2 AppEcalion of ergodic chain theory to absorbing 
chains. In the preceding section we saw that absorbing Mark 

ory could furnish us with new information about ergodic chains. 
e shall now show that certain results of absorbing chain theory can 

be obtained by using the theory of ergodic chains. 
We will need the following generalization of $ 5.1.2(b). 

2.1 THEOREM. Every Markov chain with a singk ergodic set has a 
unique probability vector $zed point. This uector has positive com- 
ponents for the ergodic slates, and zero for the transient states. 

PROOF. Let us write the transition matrix in canonical form. 

The matrix S is the transition matrix of the ergodic set;  hence it has 
a limiting vector a1 > O .  Let a= (al ,  a ~ ) ,  where a 2  is a vector with s 
components all 0. Then we see that a is a probability vector fixed 
point of P. Conversely, let us suppose that ,B=(j31, pz) is a probability 
vector fixed point. Then / l z & = p 2 .  Hence /32Qn=pz, and ,&= 
lim p 2 & n =  0. Thus PI is a probability vector fixed point of S ; hence 

n - + m  
by 5 5.1.2jb) we have tgl= "I, and ,B = a. 

Assume now that we have an absorbing Markov chain with r states, 
r - s of which are absorbing, and s non-absorbing. As usual we shall 
label the absorbing states so that they come first. The transition 
matrix then has the form : 

We now change this process into a new process as follows. Let 
n=(pl, p 2 , .  . . , p r )  be the initial probability vector for the given 
process. Whenever this process reaches an absorbing state i t  is 
started over again with the same initial vector T .  The resulting 
process is a new Markov chain with transition matrix given by 
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Then we find the new transition matrix as follows. From the dis
cussion of this example in 3.5.5 we have 

(

21/9 12/9 

(l-Q)-l = 15/9 24/ 9 

9/ 9 9/9 

Thus the new transition probabilities are 

P = T + U(I -Q)-lR 

C' 
12/9 '1,)(' D = C;3 1/4) + C4 1/4 1/ ' 

04
) 15/ 9 24/9 8/ 9 0 

1/3 I/S 0 
9/9 9/9 12/9 1/ 4 

Ch = 1°1z7 
5in ) 

17~ 27 . 

The fixed vector for Pis a= (4/ 13, 9/d which is simply the first two 
components of a normalized to have sum 1. 

For a cyelieexample, let ns consider the random walk Example 2a. 
We observe the process in S {SI' 82, S3}. 

0 1 0 
I 

0 0 

liz 0 l/Z 0 0 

p= 0 1/2 0 liz 0 IX = (1,'8, "/4,1/4, 1/4, lfg). 

0 0 l/Z 0 "/2 

0 0 0 1 0 

C' 
1 

,~,)+( : ~)c: -1~2r"G 0 "~2). P= 0 
0 

l' o / \ 1/2 2 

P ~ (:' 0 ,; ) a = (1/5,2/ 5,2/5). 2 , 

1 .. , 2 

P differs only slightly from the first three states of P. The process 
can leave S only through S3, and must return there. Hence only P33 
is changed. We note that, in accordance with § 6.1.1, ii consists of 
the first three components of a normalized. 
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the first three components of a normalized. 
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§ 6.2 AppEcalion of ergodic chain theory to absorbing 
chains. In the preceding section we saw that absorbing Mark 

ory could furnish us with new information about ergodic chains. 
e shall now show that certain results of absorbing chain theory can 

be obtained by using the theory of ergodic chains. 
We will need the following generalization of $ 5.1.2(b). 

2.1 THEOREM. Every Markov chain with a singk ergodic set has a 
unique probability vector $zed point. This uector has positive com- 
ponents for the ergodic slates, and zero for the transient states. 

PROOF. Let us write the transition matrix in canonical form. 

The matrix S is the transition matrix of the ergodic set;  hence it has 
a limiting vector a1 > O .  Let a= (al ,  a ~ ) ,  where a 2  is a vector with s 
components all 0. Then we see that a is a probability vector fixed 
point of P. Conversely, let us suppose that ,B=(j31, pz) is a probability 
vector fixed point. Then / l z & = p 2 .  Hence /32Qn=pz, and ,&= 
lim p 2 & n =  0. Thus PI is a probability vector fixed point of S ; hence 

n - + m  
by 5 5.1.2jb) we have tgl= "I, and ,B = a. 

Assume now that we have an absorbing Markov chain with r states, 
r - s of which are absorbing, and s non-absorbing. As usual we shall 
label the absorbing states so that they come first. The transition 
matrix then has the form : 

We now change this process into a new process as follows. Let 
n=(pl, p 2 , .  . . , p r )  be the initial probability vector for the given 
process. Whenever this process reaches an absorbing state i t  is 
started over again with the same initial vector T .  The resulting 
process is a new Markov chain with transition matrix given by 
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§ 6.2 Application of ergodic cha.in theory to absorbing Markov 
chains. In the preceding section We saw that absorbing Markov chain 
theory could furnish us with new information about ergodic chains. 
We shall now show that certain results of absorbing chain theory can 
be obtained by using the theory of ergodic chains. 

We will need the following generalization of § 5.1.2(b). 

6.2.1 THEOREM. Every .i1>larkov chain ledh a single ergodic sd has a 
unique probability vector fixed point. ThislJector has positive com
ponents for the ergodic states, and zero for the transient states. 

PROOF. Let us write the transition matrix in canonical form. 

The matrix S is the transition matrix of the ergodic set; hence it has 
a limiting yector al > o. Let a = (aI, az), where a2 is a vector with s 
components all O. Then we see that a is a pro babiIity vector fixed 
point of P. Conversely, let us suppose that /3= (/3I, /3z) is a probability 
vector fixed point. Then {3zQ={3z. Hence ,B 2Qn={32, and (3z= 
lim /32Qn = O. Thus f31 is a probability vector fixed point of S; hence 

by § 5.1.2(b) we have /3 1=al, and f3=a. 

Assume now that we have an absorbing Markov chain with r states, 
r - 8 of which are absorbing, and 8 non-absorbing. As usual we shall 
label the absorbing states so that they come first. The transition 
mat.rix then has the form: 

\Ve now change this process into a new process as follows. Let 
17 = {Pl, P2, ... ,Pr} be the initial probability vector for the given 
process. \Vhenever this process reaches an absorbing state it is 
started over again with the same initial vector 17. The resulting 
process is a new Markov chain with transition matrix given by 

P' (

PI, Pz, ... , pr-s 

Pl, PZ, ... , pr-s 

~~, ... ,Pr-8 

R 

I Pr-Hl, ... , Pr 

\ Pr-s+l, ... ~ , Pr 

I pc-HI,· .. , Pr 

\ Q 
) 
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The matrix P' is obtained by making all rows corresponding to absorb- 
ing stat,es the same vector n. Let nl= ( P I ,  . . . , p,,) and vz = 

( P ~ - ~ + ~ ,  . . . , p r )  Then P' may be written in the form : 

6.2.2 TBEOREM. The matrix P' represents a Markov chain with a 
single ergodic set. 

PROOF. Let I be the set of states for which n has positive components. 
Let d be the set of all states to which the process can go starting in B. 
It is clear that from s,, a= 1 ,  2 ,  . . . , r -s, we can go only to states 
in J. However, from any state we can go to some s,, since the original 
chain was absorbing. Hence all states in 3 are transient. 

Since from any state we can go to an s,, and from this to all states 
in I, and hence in J, we see that J is an ergodic set. Hence the new 
process has the single ergodic set J, and at  least one s,  E J. 

Let a be the fixed probability vector for P'. Write a in the form 
a = ( a ~ ,  UZ) where a1 = ( a l ,  az, . . . , a,.-s) and az = (a,-,+I, a,-,+2, . . . , a,). 
Then, since aP' = a,  we have the two equations 

1 
By $6.2.1 we know that al>O, hence a&,-,>O. Let a=- a. 

a 1 €r-* -- " 

The result ci=(cl, ciz)  will still be a fixed vector; remembering that 
81Sr-s = 1, our equations become 

From equation (2') we have 

This inverse exists because the original chain was absorbing. From 
Theorem 3.3.5 we see that c2 gives us the mean number of times in 
each of the states before absorption, for the given initial probability 
vector n. 

Using the result just obtained in equation (1') we have 
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The vector gives the probability in the original process of being 
absorbed a t  each absorbing state on the initial step, and v2(1-Q)-1.,72 
gives this probability for being absorbed in each absorbing state if the 
initial step is to a rton-absorbing state. Hence 61 gives the proba- 
bilities for absorption in each of the given states, for the initial 
probability vector 7;. 

We thus see that the single vector ci furnishes us with both absorption 
probabilities and the mean number of times in a transient state before 
absorption. This method is more economical than the method of 
Chapter 111, if we are interested in a, given initial probability vector. 
I t  must be remembered, however, that Chapter 116 furnishes the 
solution for any initial vector. 

Let us carry ont this procedure for the random walk Example 1. 
The transition matrix is 

s1 s5 S 2  S 3  54 

Let n= (0, 0, 0, 1, 0).  Then the new Marliov chain obtained by 
the above procedure is 

This is the same as Example 3 of $ 2.2, with the states reordered. 
The fised vector is 

From this we see that, in the original process, the absorption proba- 
bilities are qz/(pZ+q2) for state sl and pz j (pz+qz )  for state ss. The 
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The matrix P' is obtained by making all rows corresponding to absorb
ing states the same vector 7T. Let 7Tl = (PI, ... ,Pr-.) and 7T2 = 
(Pr-s+l, ... ,Pr)' Then P' may be written in the form: 

6.2.2 THEOREM. The matrix pi represents a Markov chain with a 
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Let J be the set of all states to which the process can go starting in I. 
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chain was absorbing. Hence all states in j are transient. 

Since from any state we can go to an Sa, and from this to all states 
in I, and hence in J, we see that J is an ergodic set. Hence the new 
process has the single ergodic set J, and at least one Sa E J. 

Let a be the fixed probability vector for P'. Write a in the form 
a= «((1, ((2) where al = (aI, a2, ... , ar-B) and Ct2 = (ar-HI, a T- s+2, ... , aT)' 

Then, since CtP' = Ct, we have the two equations 

cqgT-s7Tl + CtzR = Ctl 

cQgr-s11'2 + Ct2Q = a2· 

(1) 

(2) 

1 
By §6.2.1 we know that al>O, hence algr-s>O. l .. et a=-/;-a. 

alsr-. 
The result cl = {aI, a2} will still be a fixed vector; remembering that 
algr-s = 1, our equations become 

7Tl +a2R = 0:1 

11'2 + cl2Q = a2. 
From equation (2') we have 

cl2 = 11'2(1 _Q)-l. 

(1 ') 

(2') 

This inverse exists because the original chain was absorbing. From 
Theorem 3.3.5 we see that a2 gives us the mean number of times in 
each of the states before absorption, for the given initial probability 
vector 7T. 

Using the result just obtained in equation (I') we have 
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From equation (2') we have 

This inverse exists because the original chain was absorbing. From 
Theorem 3.3.5 we see that c2 gives us the mean number of times in 
each of the states before absorption, for the given initial probability 
vector n. 

Using the result just obtained in equation (1') we have 
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absorbed a t  each absorbing state on the initial step, and v2(1-Q)-1.,72 
gives this probability for being absorbed in each absorbing state if the 
initial step is to a rton-absorbing state. Hence 61 gives the proba- 
bilities for absorption in each of the given states, for the initial 
probability vector 7;. 

We thus see that the single vector ci furnishes us with both absorption 
probabilities and the mean number of times in a transient state before 
absorption. This method is more economical than the method of 
Chapter 111, if we are interested in a, given initial probability vector. 
I t  must be remembered, however, that Chapter 116 furnishes the 
solution for any initial vector. 

Let us carry ont this procedure for the random walk Example 1. 
The transition matrix is 

s1 s5 S 2  S 3  54 

Let n= (0, 0, 0, 1, 0).  Then the new Marliov chain obtained by 
the above procedure is 

This is the same as Example 3 of $ 2.2, with the states reordered. 
The fised vector is 

From this we see that, in the original process, the absorption proba- 
bilities are qz/(pZ+q2) for state sl and pz j (pz+qz )  for state ss. The 
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The vector 71'1 gi.ves the probability in the original process of being 
absorbed at each absorbing state on t.he initial step, and Tf2(I - Q)-l R 
gives this probability for being absorbed in each absorbing state if the 
initial step is to a non-absorbing state. Hence al gives the proba
bilities for absorption in each of the given states, for the initi8J 
probability vector 17. 

We thus see that the single vector a furnishes us with both absorption 
probabilities and the mean number of times in a transient sta,te before 
absorption. This method is more economical than the method of 
Chapter III, if we are interested in a given initial probability vector. 
It must be remembered, however, that Chapter III furnishes the 
solution for any initial vector. 

Let us carry out this procedure for the random walk Example 1. 
The transition matrix is 

81 85 82 Sa 54 

Sl 

/~ 
0 0 0 

D 
S5 1 0 0 

p= 52 M q 0 0 p 
~ 

S3 \. 0 0 q 0 

S4 \0 P 0 q 

Let 17=(0,0,0,1,0). Then the new Markov chain obtained by 
the above procedure is 

Sl 55 82 S3 S4 

81 

85 

P' = S2 

83 

S4 GlHD 
This is the SaGlE' as Example 3 of § 2.2, with the states reordered. 

The fixed vector is 

a 

Thus 

1 (2 2 ) 
'1, ., + 2 q ,p , q, 1, P . 
~'P" q 

1 
a = ~+ 2 (q2, p2, q, 1, pl. p q 

From this we see that, in the original process, the absorption proba
bilities are q2/(p2+q2) for state 81 and p2/(p2+q2) for state S5. The 
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mean number of times in each of the states sz, S Z ,  S* are q/(pz+qZ), 
l/(p2+ q21, and p/(p2+ q2) respectively. This is in agreement with the 
results found in $ 3.4.1. 

If we let n= (0 ,  0 ,  0, 0, 1), then the resulting chain is cyclic with 
d = 2. The same is true if n = (0, 0, c,  0 ,  d ) ,  d = l - c. M7e will work 
out this example. 

I n  calculating c i t  is simplest not to find cc first. I n  solving the 
equation aP' =a, the condition GI + t i 2  = 1 is very helpful. 

If we let p = q = we obta,in 

The first two components furnish the probabilities of absorption in 
s l ,  s g  for the chain starting with x. As is to be expected, the larger c 
is, the more likely i t  is that  the process is absorbed in sl. The last 
three components furnish the mean number of times in a sta,te before 
absorption. I t  is interesting to note that  for sa this is 1, no matter 
what c is. 

,4n interesting application of the last result can be made to ergodic 
chain theory. Let P be the transition matrix for an ergodic chain 
with fixed probability vector a. Let us make one of the states, say s l ,  
into an absorbing state. Then every time this process reaches sl we 
will start i t  again with t'he probabilities x = {pljf Then by the above 
result the fixed vector for this new process will give us the mean 
number of times in each state before absorption. But the new process 
is just the original process, and time before absorption means time 
bet'ween occurrences of state sl. Hence by re-normalizing a to have 
first component 1 we will obt'ain the mean number of times in each 
state between occurrences of state sl for the original ergodic chain. 
Since sl was arbitrary, this gives us the following theorem : 

6.2.3 THEOREM. Let a be the $xed probability vector for a n  ergodic 
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chain. Then  the mean number of times in state sj between occurrences 
of state si i s  a j /ai .  

Note that  if the transition matrix dbr the chain has column sums 1, 
then the Axed vector has all components equal. This means, by this 
theorem, that  the mean number of times in each of $he other states, 
between occurrences of a given state, is the same. 

6.2.4 COROLLARY. Let 6 be the vector obtained from u by deleting 
component I ;  let p be the 15th row of P with component 1 deleted; let & 
be the matrix obtained from P by deleting row 1 and column I ;  and let 
N = (I-Q)-1, T= Nf. T h e n  

PROOF. In (a) the left side is the mean number of times in each 
of the other states between occurrences of sl. The right side is the 
same quantity computed from absorbing chain theory. I n  (b) we 
have mil computed from regular and absorbing chain theory, respect- 
ively. 

2.5 TNEOREM. I f  Z i s  the fundamental matrix of u n  ergodic chain, 
and A i s  its lirnzting matrix,  and i': i s  the fundamental matrix of the 
ubsorbing chain obfained by making si absorbing, and we construct N* 
from N by insc~ t ing  crn 1-th row and 1-th column of all zeros, then 

 ROOF. Without loss of generality we may choose i= l. Then, 
using the notatio:~ of $ 6.2.4, P and A are of the form 

and hence, 

I - A  = 

and 
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mean number of times in each of the states S2, S3, S4 are + q2), 
Ij(p2+q2), andpJ(p2+ q2) respectively. This is in agreement with the 
results found in § 3.4.1. 

If we let 17 = (0, 0, 0, 0, 1), then the resulting chain is cyclic with 
d = 2. The same is true jf 17 = (0, 0, C, 0, d), d = 1-c. We will work 
out this example. 

:: (~ ~ : ~ ~) 
P' = S2 q 0 0 pO. 

Sa OOgOp 

S4 0 P 0 q 0 

In calculating a it is simplest not to find a first. In solving the 
equation uP' = a, the conclition al + a2 = 1 is very helpful. 

1 a = ~+ 2 (q2+p2qc_pq 2d,p2+pq 2d_p2qc, 
P q 

q+p 2c-pqd,1-qc-pd,p+q2d-pqc). 

If we let p=q= liz, we obtain 

The first two components furnish the probabilities of absorption in 
Sl, S5 for the chain starting with 1T. As is to be expected, the larger c 
is, the more likely it is that the process is absorbed in Sl. The last 
three components furnish the mean number of times in a sta.te before 
absorption. It is interesting to note that for S3 this is 1, no matter 
vvlmt cis. 

An interesting application of the last result can be made to ergodic 
chain theory. Let P be the transition matrix for an ergodic chain 
with fixed probability vector a. Let us make one of the states, say 51, 

into an absorbing state. Then every time this process reaches 81 we 
will start it again with the probabilities 'iT = [Plj}. Then by the above 
result the fixed vector for this new IJrocess ""ill give us the mean 
number of times in each stat.e before absorption. But the new process 
is just the original process, and time before absorption means time 
between occurrences of state 51. Hence by re-normalizing a to have 
first component 1 we will obtain the mean number of times in each 
state between occurrences of state 81 for the original ergodic chain. 
Since 81 was arbitrary, this gives us the following theorem: 

6.2.3 THEOREM. Lei a be the fixed probability vector for an ergodic 
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mean number of times in each of the states sz, S Z ,  S* are q/(pz+qZ), 
l/(p2+ q21, and p/(p2+ q2) respectively. This is in agreement with the 
results found in $ 3.4.1. 

If we let n= (0 ,  0 ,  0, 0, 1), then the resulting chain is cyclic with 
d = 2. The same is true if n = (0, 0, c,  0 ,  d ) ,  d = l - c. M7e will work 
out this example. 

I n  calculating c i t  is simplest not to find cc first. I n  solving the 
equation aP' =a, the condition GI + t i 2  = 1 is very helpful. 

If we let p = q = we obta,in 

The first two components furnish the probabilities of absorption in 
s l ,  s g  for the chain starting with x. As is to be expected, the larger c 
is, the more likely i t  is that  the process is absorbed in sl. The last 
three components furnish the mean number of times in a sta,te before 
absorption. I t  is interesting to note that  for sa this is 1, no matter 
what c is. 

,4n interesting application of the last result can be made to ergodic 
chain theory. Let P be the transition matrix for an ergodic chain 
with fixed probability vector a. Let us make one of the states, say s l ,  
into an absorbing state. Then every time this process reaches sl we 
will start i t  again with t'he probabilities x = {pljf Then by the above 
result the fixed vector for this new process will give us the mean 
number of times in each state before absorption. But the new process 
is just the original process, and time before absorption means time 
bet'ween occurrences of state sl. Hence by re-normalizing a to have 
first component 1 we will obt'ain the mean number of times in each 
state between occurrences of state sl for the original ergodic chain. 
Since sl was arbitrary, this gives us the following theorem : 

6.2.3 THEOREM. Let a be the $xed probability vector for a n  ergodic 
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chain. Then  the mean number of times in state sj between occurrences 
of state si i s  a j /ai .  

Note that  if the transition matrix dbr the chain has column sums 1, 
then the Axed vector has all components equal. This means, by this 
theorem, that  the mean number of times in each of $he other states, 
between occurrences of a given state, is the same. 

6.2.4 COROLLARY. Let 6 be the vector obtained from u by deleting 
component I ;  let p be the 15th row of P with component 1 deleted; let & 
be the matrix obtained from P by deleting row 1 and column I ;  and let 
N = (I-Q)-1, T= Nf. T h e n  

PROOF. In (a) the left side is the mean number of times in each 
of the other states between occurrences of sl. The right side is the 
same quantity computed from absorbing chain theory. I n  (b) we 
have mil computed from regular and absorbing chain theory, respect- 
ively. 

2.5 TNEOREM. I f  Z i s  the fundamental matrix of u n  ergodic chain, 
and A i s  its lirnzting matrix,  and i': i s  the fundamental matrix of the 
ubsorbing chain obfained by making si absorbing, and we construct N* 
from N by insc~ t ing  crn 1-th row and 1-th column of all zeros, then 

 ROOF. Without loss of generality we may choose i= l. Then, 
using the notatio:~ of $ 6.2.4, P and A are of the form 

and hence, 

I - A  = 

and 
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chain. Then the mean number of times in stale Sj between occurrences 
of state Si is ajlai. 

Note that if the transition matrix for the chain has column sums 1, 
then the fixed vector has all components equal. This means, by this 
theorem, that the mean number of times in each of the other states, 
between occurrences of a given state, is the same. 

6.2.4 COROLLARY. Let Ii be the vector obtained from a by deleting 
component l; let p be the l-th row of P with component l deleted; let Q 
be the matrix obtained from P by deleting row l and column l; and let 
N=(I-Q)-l, -:-=Ng. Then 

1 
-Ii = pN, 
ai 

1 - = l+pT 
al 

(a) 

(b) 

PROOF. In (a) the left side is the mean number of times in each 
of the other states between occurrences of S/. The right side is the 
same quantity computed from absorbing chain theory. In (b) we 
have mil computed from regular and absorbing chain theory, respect- . 
ively. 

6.2.5 THEOREM. If Z is the fundamental matrix of an ergodic chain, 
and A is its limiting matrix, and N is the fundamental matrix of the 
absorbing chain obtained by making SI absorbing, and we construct N* 
f)'om N by inserting an l-th row and l-Ih column of all zeros, then 

Z = A+(I-A)N*(I-A). (3) 

PROOF. \Vithout loss of generality Vie may choose i= 1. Then, 
using the notation of § 6.2.4, P and A are of the form 

P= (-~-r-p) 
~-Q~ \ Q 

A= 

and hence, 

1 _ A = (_1 -_a_1 ___ -_a_-_), 

-al~ 1-~a 

and 

N* i \ ( 
0 ' 0 \ 

ON)" 
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Then 

alp7 -pN+ p 7 ~  
( I - P ) N "  ( I -A'  - 4 - a ~ [  I-& 

Making use of 5 6.2.4, 
( I - P ) N *  ( I -A)  = I - A  

[I -P+A][A+(I-A)N*(I-A)]  = A + ( I - P ) N * ( I - A )  
= A + ( I - A )  
= I. 

Hence 
A+( I -A)N*( I -A)  = ( I -P+A)-1  = Z. 

I t  is interesting to note that  in (3) we may use any N* obtained by 
making any one state absorbing. 

COROLLARY. If in 6.2.5 we let N = {n(')ig) and N(  = {t(l)~), 
and n(Otr = = t(0, = 0 if i = l ,  then 

These quantities are obtained directly from $ 6.2.5, making use of 
5 4.4.7 for (b). These formulas may he used to  derive many interesting 
results. A few of these are given below. The number n(l)ii is the 
number of times the process is in s f ,  starting in si, before reaching sl 
for the first time. 

n(l)ii n(l)ii ai. 
(b) mjl +mlf = (c) - = - 

% n(i)11 at 

PROOF. From 3 6.2.6(b), if i, j # l ,  
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Hence (b) follows. 

(see $ &I),  

as we saw in $ 4.3. Using results from 5 4.4 and from 6.1, we can 
illustrate Corollaries 6.2.6 and 6.2.7.  

.8 Combining states. Assume that  we are given an r-state 
Markov chain with transition matrix P and initial vector .rr. Let 
A =  {Al, Az, . . . , At) be a partition of the set of states. We form a 
new process as follows. The outcome of the j - th  experiment in the 
new process is the set A k  that contains 6he outcome of the j- th step 
in the original chain. We define branch probabilities as follows: At 
the zero level we assign 

(1) 
At She first level we assign 

122 

Then 
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/ 0 I -IPN ) 
(I-P)X* = \01 

(I-P)N* (I-A) = (
aWT - pN + PTa). 
-al~ 1 git 

Making use of § 6.2.4, 
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(I -P)N* (I-A) = I-A 
[I-P+A][A+(I-A)N*(I-A)) = A+(I-P)N*(I-A) 

= A+(I-A) 
= I. 

Hence 
A+(I-A)N*(I-A) = (I-P+A)-l = Z. 

It is interesting to note that in (3) we may use any N* obtained by 
making anyone state absorbing. 

6.2.6 COROLLARY. If in § 6.2.5 we let N = {n(l)tj} and Ng = {t(l)d, 
and n(l)tj = n(l)j; = l(l)i = 0 1/ i = l, then 

Zij = aj + n(/)ij- 2: akn(llkj-aj[U)j +aj 2: akt(l)k. (a) 
k *1 k * I 

mij = (l/a'j)(n(l)jj - n(l)lj + dij ) + t(lli - t(l)j. (b) 

These quantities are obtained directly from § 6.2.5, making use of 
§ 4.4.7 for (b). These formulas may be used to derive many interesting 
results. A few of these are given below. The number n(lllj is the 
number of times the process is in Sj, starting in 5i, before reaching Sl 

for the first time. 

6.2.7 COROLLARY. 

n(l)jj 
(a) m/j+mjl = mil+-- (I-h(l)ij), for i',j 7'= l. 

aj 

n(l)jj n(l)jj aj 
(b) mjl+mlj = -_. (c) -- = -. 

aj n(j) II al 

PROOF. From § 6.2.6(b), ifi,j7'=l, 

mij + mjl = mij + t(l)j = (lfaj)(n(l)jj - n(l)ij + d ij ) + (nil 

I-h(lltj = 1-n(l)jj-dij n(l)jj-n(l)ii+dij 

n(l)jj n(l)}} 

Hence (a) follows. 
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Then 

alp7 -pN+ p 7 ~  
( I - P ) N "  ( I -A'  - 4 - a ~ [  I-& 

Making use of 5 6.2.4, 
( I - P ) N *  ( I -A)  = I - A  

[I -P+A][A+(I-A)N*(I-A)]  = A + ( I - P ) N * ( I - A )  
= A + ( I - A )  
= I. 

Hence 
A+( I -A)N*( I -A)  = ( I -P+A)-1  = Z. 

I t  is interesting to note that  in (3) we may use any N* obtained by 
making any one state absorbing. 

COROLLARY. If in 6.2.5 we let N = {n(')ig) and N(  = {t(l)~), 
and n(Otr = = t(0, = 0 if i = l ,  then 

These quantities are obtained directly from $ 6.2.5, making use of 
5 4.4.7 for (b). These formulas may he used to  derive many interesting 
results. A few of these are given below. The number n(l)ii is the 
number of times the process is in s f ,  starting in si, before reaching sl 
for the first time. 

n(l)ii n(l)ii ai. 
(b) mjl +mlf = (c) - = - 

% n(i)11 at 

PROOF. From 3 6.2.6(b), if i, j # l ,  
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Hence (b) follows. 

(see $ &I),  

as we saw in $ 4.3. Using results from 5 4.4 and from 6.1, we can 
illustrate Corollaries 6.2.6 and 6.2.7.  

.8 Combining states. Assume that  we are given an r-state 
Markov chain with transition matrix P and initial vector .rr. Let 
A =  {Al, Az, . . . , At) be a partition of the set of states. We form a 
new process as follows. The outcome of the j - th  experiment in the 
new process is the set A k  that contains 6he outcome of the j- th step 
in the original chain. We define branch probabilities as follows: At 
the zero level we assign 

(1) 
At She first level we assign 

SEC. 3 

Hence (0) follows. 

Hence (c) follows. 

FURTHER RESULTS 

1II11+m11 n(l)jj/U1 

mlj + mjl = n(J)Il!al' 

123 

If in the Land of Oz example we make R absorbing, we obtain 
(see § 6.1), 

3 

( 

86 

6 63 

-14 3 

, I 
- -/5 

-14) 
6 = Z 

86 

as we saw in § 4.3. Using results from § 4.4 and from § 6.1, we can 
illustrate Corollaries 6.2.6 and 6.2.7. 

mss = (l/a·s)(nss-nss) +tN-ts 

= (5/z)(8/3_4/s)+8/3_10/3 = 8/3 

nSS . 
mSR + mRS = - or 1°/3+ 1°/3 = (8/s)/(2/5)' 

as 

§ 6.3 Combining states. Assume that we are given an r-state 
Markm' chain with transition matrix P and initial vector 'IT. Let 
A={Al' A 2, .•• , At} be a partition of the set of states. We form a 
new process as follows. The outcome of the j-th experiment in the 
new process is the set Ak that contains the outcome of the j-th step 
in the original chain. We define branch probabilities as follows: At 
the zero level we assign 

(1) 
At the first level we assign 

Pr~[fl E A11fo E AiJ-
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I n  general, a t  the n-th level we assign branch probabilities, 

The above procedure could be used to reduce a process with a very 
large number of stat,es to a process with a smaller number of states. 
We call this process a lumped process. It is also often the case in 
applications that  we are only interested in questions which relate to 
this coarser analysis of the possibilities. Thus i t  is important to be 
able to determine whether the new process can be treated by Markov 
chain methods. 

6.3.B DEFINITION. W e  shall say that a Markov chain i s  lumpable 
with respect to a partition A={A1, Az ,  . . . , AT) if for every starting 
vector 71 the lumped process de$ned by ( 1 )  and ( 2 )  i s  a Markov chain 
and the transition probabilities do not depend on the choice of 7;.  

We shall see in the next section that ,  a t  least for regular chains, 
the condition that  the transition probabilities do not depend on x 

follows from the requirement that  every starting vector give a Xarkov 
chain. 

Let pi,,= 2 pix. Then  pi^, represents the probability of moving 

from state st into set Aj in one step for the original Markov chain. 

6.3.2 THEOREM. A necessary and suficient condition for a Markov 
chain to be lumpable with respect to a partition A={A1, Az, . . . , A,) 
is  that for every pair of sets At and Ai, pkn, have the same value for 
every st in At. These common values form the transition matrix 
for the lumped cha,in. 

PROOF. For the chain to be lumpable i t  is clearly necessary that  

Pr,[fi Ai 1 fo E A ]  

be the same for every n for which i t  is defined. Call this common 
value $if. I n  particular this must be the same for x having a 1 in its 
k-th component, for state sk in At. Hence P E A ,  = h [ f l  E Af] = $ij for 
every sk in At. Thus the condition given is necessary. To prove i t  is 
sufficient, we must show that  if the condition is satisfied the probability 
( 2 )  depends only on A, and At. The probability ( 2 )  may be written 
in the form 

Pr,,[fl 6 At1 

where x' is a vector with non-zero components only on the states of A,. 
I t  depends on n and on the first n outcomes. However, if 

for all sk in A,, then i t  is clear also that  Pr,,[fl E At] = Thus the 
probability in (2) depends only on A, and Ai. 
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6.3.3 EXAMPLE. Let us consider the Land of Oz example. Eecall 
that  P is given by 

R N S  

Assume now that  we are interested only in "good" and "bad" 
weather. This suggests lumping R and S. We note that  the proba- 
bility of moving from either of these states to M is the same. Hence 
if we choose for our partition A =  ({N), (R,SJ)= ( 
for lumpability is satisfied. The new transition 

Note that  the condition for lumpabiiity is not satisfied for the 
partition A = ({B), IN$)) since ~ N A ~  = P N R  = 112 and ~ S A ~  = p ~ n  = I/*. 

Assume now t8hat we have a Markov chain which is lurnpable with 
respect to a partition A={Al, . . . , As). We assume that  the original 
chain had r states and the lumped chain has s states. Let U be the 
s x  r matrix whose i-th row is the probability vector having equal 
components for states in Ai and 0 for the remaining states. Let V be 
the r x s matrix with the j- th column a vector with 1's in the corn- 
ponents corresponding to states in Af and 0's otherwise. Then the 
lumped transition matrix is given by 

I n  the Land of Oz example this is 
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In general, at the n-th level we assign branch probabilities, 

Pr,,[fn E Atifn-1 E As 1\ ... ,\f1 E Aj I\fo E Ai]. (2) 

The above procedure could be used to reduce a process with a very 
large number of stat,es to a process with a smaller number of states. 
We call this process a lumped process. It is also often the case in 
applications that we are only interested in questions which relate to 
this coarser analysis of the possibilities. Thus it is important to be 
able to determine whether the new process can be treated by Markov 
chain methods. 

6.3.1 DEFINITION. We shall say that a Markov chain is lumpable 
with respect to a partition A={A), A2, ••• ,Ar} if for every starting 
vector 7T the lu.mped process defined by (1) and (2) is a Markov cha.in 
and the transition probabilities do not depend on the choice of 7T. 

We shall see in the next section that, at least for regular chains, 
the condition that the transition probabilities do not depend on 7T 

follows from the requirement that every starting vector give a Markov 
chain. 

Let PiA, = 2: Pik· Then PiAj represents the probability of moving 
Sk E Aj 

from state Si into set Aj in one step for the original Markov chain. 

6.3.2 THEOREM. A necessary and sufficient condition for a lVarkov 
chain to be lumpable wl:th respect to a partition A = {AI, Az, ... , As} 
is that for every pair of sets Ai and Aj , PkA; have the same value for 
every Sk in Aj • These common values {pjj} form the transition malTix 
for the lumped cha,in. 

PROOF. For the chain to be lumpable it is clearly necessary that 

Pr~[fl E Ailfo E Aj] 

be the same for every 7T for which it is defined. Call this common 
value Pij. In particular this must be the same for 7T having a 1 in its 
k-th component, for state Sk in Ai. Hence P1c4/ = Prk[fl E Aj] = Pii for 
every SA; in Ai. Thus the condition given is necessary. To prove it is 
sufficient, we must show that if the condition is satisfied the probability 
(2) depends only on As and At. The probability (2) may be written 
in the form 

Pr,,·[f1 EAt] 

where 7T' is a vector with non-zero components only on the states of As. 
It depends on" and on the first n outcomes. Howe"l-er, ifPrk[fl EAt] = 

pst for all Sk in As, then it is clear also that Pr",[fl E AIJ = pst. Thus t.he 
probability in (2) depends only on As and At. 
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I n  general, a t  the n-th level we assign branch probabilities, 

The above procedure could be used to reduce a process with a very 
large number of stat,es to a process with a smaller number of states. 
We call this process a lumped process. It is also often the case in 
applications that  we are only interested in questions which relate to 
this coarser analysis of the possibilities. Thus i t  is important to be 
able to determine whether the new process can be treated by Markov 
chain methods. 

6.3.B DEFINITION. W e  shall say that a Markov chain i s  lumpable 
with respect to a partition A={A1, Az ,  . . . , AT) if for every starting 
vector 71 the lumped process de$ned by ( 1 )  and ( 2 )  i s  a Markov chain 
and the transition probabilities do not depend on the choice of 7;.  

We shall see in the next section that ,  a t  least for regular chains, 
the condition that  the transition probabilities do not depend on x 

follows from the requirement that  every starting vector give a Xarkov 
chain. 

Let pi,,= 2 pix. Then  pi^, represents the probability of moving 

from state st into set Aj in one step for the original Markov chain. 

6.3.2 THEOREM. A necessary and suficient condition for a Markov 
chain to be lumpable with respect to a partition A={A1, Az, . . . , A,) 
is  that for every pair of sets At and Ai, pkn, have the same value for 
every st in At. These common values form the transition matrix 
for the lumped cha,in. 

PROOF. For the chain to be lumpable i t  is clearly necessary that  

Pr,[fi Ai 1 fo E A ]  

be the same for every n for which i t  is defined. Call this common 
value $if. I n  particular this must be the same for x having a 1 in its 
k-th component, for state sk in At. Hence P E A ,  = h [ f l  E Af] = $ij for 
every sk in At. Thus the condition given is necessary. To prove i t  is 
sufficient, we must show that  if the condition is satisfied the probability 
( 2 )  depends only on A, and At. The probability ( 2 )  may be written 
in the form 

Pr,,[fl 6 At1 

where x' is a vector with non-zero components only on the states of A,. 
I t  depends on n and on the first n outcomes. However, if 

for all sk in A,, then i t  is clear also that  Pr,,[fl E At] = Thus the 
probability in (2) depends only on A, and Ai. 
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6.3.3 EXAMPLE. Let us consider the Land of Oz example. Eecall 
that  P is given by 

R N S  

Assume now that  we are interested only in "good" and "bad" 
weather. This suggests lumping R and S. We note that  the proba- 
bility of moving from either of these states to M is the same. Hence 
if we choose for our partition A =  ({N), (R,SJ)= ( 
for lumpability is satisfied. The new transition 

Note that  the condition for lumpabiiity is not satisfied for the 
partition A = ({B), IN$)) since ~ N A ~  = P N R  = 112 and ~ S A ~  = p ~ n  = I/*. 

Assume now t8hat we have a Markov chain which is lurnpable with 
respect to a partition A={Al, . . . , As). We assume that  the original 
chain had r states and the lumped chain has s states. Let U be the 
s x  r matrix whose i-th row is the probability vector having equal 
components for states in Ai and 0 for the remaining states. Let V be 
the r x s matrix with the j- th column a vector with 1's in the corn- 
ponents corresponding to states in Af and 0's otherwise. Then the 
lumped transition matrix is given by 

I n  the Land of Oz example this is 
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6.3.3 EXAMPLE. Let us consider the Land of Oz example. Recall 
that P is given by 

R N S 

R I 1/4 'I,) :' 2 

P=N 0 1/2 . 
S 1 " 1/4 1/2 .' 

Assume now that ,ve are interested only in "good." and "bad" 
weather. This suggests lumping R.and S. We note that the proba
bility of moving from either of these states to N is the same. Hence 
if we choose for our partition A = ({N}, {R,S}) = (G, .8), the condition 
for lump ability is satisfied. The new transition matrix is 

G B 

G (0 P= 
B 1/4 

Note that the condition for lumpabihty is not satisfied for the 
partition A=({R] {N,S}) since PSA , =PNR=1/2 andpsA, =PSR=1/4. 

Assume now that we have a :vlarkov chain which is lumpable with 
respect to a partition A={Al, .... As}. We assume thaJ, the original 
chain had r states and the lumped chain has 8 states. Let U be the 
8 x r matrix whose i-th row is the probability vector having equal 
components for states in Ai and 0 for the remaining states. Let V be 
the r x s matrix with the j-th column a vector with 1 's in the com
ponents corresponding to states in Aj and O's otherwise. Then the 
lumped transition matrix is given by 

P = UPV. 

In the Land of Oz example this is 

U P V 

CO
2 

(/2 
1/4 '1,)(" ~) p- ° \ 1/2 0 liz 1 

0 1 2/ i 

\ 1/4 1/4 1/2 0 

U PV 

C ':') C~2 
o ' 

C~4 3~J 1J 1° 0 {4 3/4 
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Note that  the rows of P V  corresponding to the elements in the 
same set of the partition are the same. This will be true in general 
for a chain which satisfies the condition for lumpabilit,y. The matrix 
U then simply removes this duplication of rows. The choice of U is 
by no means unique. In  fact, all that  is needed is that  the i- th row 
should be a probability vector with non-zero components only for 
states in Ai.  We have chosen, for convenience, the vector with equal 
components for these states. Also i t  is convenient for proofs to 
assume that  the states are numbered so that  those in A1 come first, 
those in A z  come next, etc. In  all proofs we shall unttersta,nd that  this 
had been done. 

The following result will be useful in deriving formulas for lumped 
chains. 

6.3.4 THEOREM. I f  P  i s  the transition matrix of a chain lumpuble 
w i f h  respect to the partition A, and i f  the matrices U nnd,V are deJined 
-as above-with vespect to this partition, then 

V U P V  = P V .  ( 3 )  

PROOF. The matrix V U has the form 

where W 1 ,  Wz, and W 3  are probability matrices. Condition ( 3 )  states 
.that the columns of PV are fixed vectors of V U .  But since the chain 
s lumpable, the probability of moving from a state, of At to the set Rj 
is the same for all st,ates in At. 'lence the components of a column of 
PV corresponding to Aj are all the same. Therefore they form a 
fixed vector for Hrj. This proves (3) .  

6.3.5 THEOREM. I f  Y, A, U ,  and T' are as i n  Theorem 6.3.4, then 
corrdition (3) i s  eq~iimlent to lumprrbility. 

PROOF. We have already seen that (3)  is implied by lumpability. 
Conversely, let us suppose that  (3)  holds. Then the columns of P V  
are fixed vectors for V U .  But each HIj is the transition matrix of an 
ergodic chain, hence its only fixed column vectors are of the form cc. 
Hence all the components of a colun~n of PV corresponding to one set 
Aj must be the same. That is, the chain is lumpable by $ 6.3 .2 .  
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Note that  from (3) 

P2 = U P V U P V  
= U P V  

and in general 
Pm = V P n V .  

This last fact could also be verified directly from $he process. 

Assume now that  P is an  absorbing chain. We shall restrict our 
discussion to  the case where we lump only states of the same kind. 
That is, any subset of our partition will contain only absorbing states 
or only non-absorbing states. We recall tha t  the  standard form for 
an absorbing chain is 

We shall write U in the form 

where entries of UI refer to absorbing states and entries of Uz to non- 
absorbing states. Similarly we write Kin the form 

Then, if we consider the condition for lumpability, B U P V = P V ,  
we obtain in terms of the above matrices the equivalent set of con- 
ditions : 

Y,UlYl  = V1 (4s) 

V ~ U Z R V I  = R V 2  (4b) 

Since U 1  V l  = I ,  the first condition is automatically satisfied. 
The standard form for the transition matrix is obtained from 
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should be a proba,bility vector with non-zero components only for 
states in Ai. \Ve have chosen, for convenience, the vector with equal 
components for these states. Also it is convenient for proofs to 
assume that the states are numbered so that those in A) come first, 
those in A2 come next, etc. In all proofs we shall understand that this 
had been done. 

The following result, will be useful in deriving formulas for lumped 
chains. 

6.3.4 THEOREM. If P is the transition matrix of a chain lumpable 
with respect to the partition A, and If the malriccs U and'V are defined 
-as above-with resljecl to this partition, thin 

VUPV = PV. (3) 

PROOF. The matrix VU has the form 

( 

Wl I 0 ' 0 ) 

VU = --~--iw:--o- , 
--1-----

o 0 I Wa 

where W), W 2, and W 3 are probability matrices. Condition (3) states 
.that the columns of PV are fixed vectors of VU. But since the chain 
IS lumpable, the probability of moving from a state of Ai to the set Aj 
is the same for all states in Ai. hence the components of a column of 
PV corresponding to Ai are all the same. Therefore they form a 
fixed vector for Wj. This proves (3). 

6.3.5 THEOREM. If P, A, [T, and V are as in Theorem 6.3.4, then 
condition (3) is equivalent to lumpability. 

PROOF. We have already seen that (3) is implied by lumpability. 
Conversely, let us suppose that (3) holds. Then the columns of PV 
are fixed vectors for V U. But each Wj is the transition matrix of an 
ergodic chain, hence its only fixed column vectors are of the form cr 
Hence all the components of a column of P V corresponding to one set 
Aj must be the same. That is, the chain is ]nmp"ble by § 6.3.2. 
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Note that  from (3) 

P2 = U P V U P V  
= U P V  

and in general 
Pm = V P n V .  

This last fact could also be verified directly from $he process. 

Assume now that  P is an  absorbing chain. We shall restrict our 
discussion to  the case where we lump only states of the same kind. 
That is, any subset of our partition will contain only absorbing states 
or only non-absorbing states. We recall tha t  the  standard form for 
an absorbing chain is 

We shall write U in the form 

where entries of UI refer to absorbing states and entries of Uz to non- 
absorbing states. Similarly we write Kin the form 

Then, if we consider the condition for lumpability, B U P V = P V ,  
we obtain in terms of the above matrices the equivalent set of con- 
ditions : 

Y,UlYl  = V1 (4s) 

V ~ U Z R V I  = R V 2  (4b) 

Since U 1  V l  = I ,  the first condition is automatically satisfied. 
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Note that from (3) 

and in general 
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f>2 = UPVUPV 

VP 2 V 

p71 = UPnV. 

This last fact could also be verified directly from the process. 
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Assume now that P is an absorbing chain. "We shall restrict our 
discussion to the case where we lump only states of the same kind. 
That is, any subset of our partition will contain only absorbing states 
or only non-absorbing states. We recall that the standard form for 
an absorbing chain is 

p= (_1 I~). 
RIQ 

We shall write U in the form 

( 
U " 0 \ 
1. \ 

V= -o-I~t 
where entries of VI refer to absorbing states and entries of U2 to non
absorbing states. Similarly we write V in the form 

Then, if we consider the condition for lumpability, VU PV = PV, 
we obtain in terms of the above matrices the equivalent set of con
ditions: 

rr 
Ii 1 

Since U 1 V 1 = I, the first conciiti01, is automatically satisfied. 

(4a) 

(4b) 

(4c) 

The standard form for the transition matrix P is obtained from 

f> = UPV 

f> = (~I_O )(_1 1_0 )(~I~_). 
\ 0 I U 2 R I Q ° \ V 2 
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Multiplying this out we obtain 

Hence we have 

fi = UzRBl  
& = U2QVz. 

From condition (4c) we obtain 

More generally we have 

From the infinite series representation for the fundamental matrix 
N we have 

ig = I+Q+@+ . . . 
= hl2PV2+ UzQV2+ . . . 
= Uz(Z+Q+Q2+ . . . )Vz 

10 = U2NVz. 

From this we obtain 

4 = UzNVz[  
i = U2Nl 
4 = Uzr 

Hence all three of the quantities X, T ,  and B are easily obtained for the 
lumped chain from the corresponding quantities for the original chain. 

An important consequence of our result i'= U ~ T  is the following. 
Let Ai be any non-absorbing set, and s k  be a state in Af. We can 
choose the i- th row of r J 2  to be a probability vector with li in the s k  

component. But this means that  t,= t k  for all s k  in A,. Hence when 
a chain is lumpable, the mean time to absorption must be the same 
for all starting states s k  in the same set At 

-4s an example of the above, let us consider the random walk example 
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with transition matrix 

We take the partitioil A =  ((sl, s53, isZ, sq), {s~ ) ) .  For this partition 
the condition for lumpability is satisfied. Notice that  this would not 
have been the case if we have unecjual probabilities for moving to the 
right or left. 

From the original chain we found 

The corresponding quantities for the lumped process are 
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Multiplying this out we obtain 

( 
11 0 ) 

p = [T2RVI I U2QV-; . 

Hence we have 

R = UZRV 1 

Q = U ZQV 2• 

From condition (4c) we obtain 

More generally we have 

Q2 = U2QV 2U2QV2 

= U2Q2V2• 

Qn = UzQnV2 • 

CHAP. VI 

From the infinite series representation for the fundamental matrix 
N we have 

From this we obtain 

and 

R = I +Q+(P+ ... 

U zIV 2 + U2QVZ+ 
[72(1 +Q+Q2+ ... )V2 

B = U 2NV2 . 

f = U2NV2~ 
f = UzN~ 
f = UZT 

B = BR = U ZNV ZU2 RV1 

fJ = L'2NRVl 

fJ = U 2BV j • 

Hence all three of the quantities S, T, and B are easily obtained for the 
lumped chain from the corresponding quantities for the original chain. 

An important consequence of our result f = U 2T is the following. 
Let Ai be any non-absorbing set, and Sk be a state in Ai. \Ye can 
choose the i-th row of U 2 to be a probability vector with 1 in the Sk 

component. But this means that ti = Ik for all Sk in Ai. Hence when 
a chain is lumpable, the mean time to absorption must be the same 
for all starting states Sk: in the same set Ai 

As an example of the above, let us consider the random walk example 
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Multiplying this out we obtain 
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with transition matrix 

We take the partitioil A =  ((sl, s53, isZ, sq), {s~ ) ) .  For this partition 
the condition for lumpability is satisfied. Notice that  this would not 
have been the case if we have unecjual probabilities for moving to the 
right or left. 

From the original chain we found 

The corresponding quantities for the lumped process are 
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with transition matrix 

S5 o 0 I ~ ~ ~ 
p = 52 -;1-;-O-I~!2~;-

53 0 0 11/2 0 1/2 
54 0 1/2 0 liz 0 

\Ve take the partition A=({Sl, S5}, {52, 54}, {S3}), For this partition 
the condition for lumpabiIity is satisfied, Notice that this would not 
have been the case if we have unequal probabilities for moving to the 
right or left, 

From the original chain we found 

S2 83 84 

52 rl ' 

1 ';') N = S3 2 

S4 \ \ 2 3/z 

T= (:1 
3) 

51 S5 

52 

C :;:) B= 53 

54 1/4 3/4 
The corresponding quantities for the lumped process are 

0\ / ~ 
0 0 0 )( 0 C' 'I, 0 0 

0 0 o 1 0 

P = 0 0 1 '2 0 
'/ '/0 

0 0 liz O· 0 0 

o 0 0 0- \~" 0 1/2 0 1/2 0 0 

~) 1/2 0 liz o \0 
Al Az ..13 

Al I 1 0 ,;.) = A2 
\ 1~2 0 

A3 0 
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Assume now that  we have an ergodic chain which satisfies the con- 
dition for lumpability for a partition A. The resulting chain will be 
ergodic. Let 2 be the limiting matrix for the lumped chain. Then 
we know that  

I n  particular, this sta,tes tha i  the components of G are obtained from 
a by simply adding components in a given set. Similarly from the 
infinite series representation for the fundamentnl matrix 2 we have 

There is in general no simple relation between 31 and &. However, 
the mean time to go from a state in At to the set Aj, in the original 
process, is the same for all states in A,.  To see this we need only make 
the statcs of A, absorbing. We know that  the mean time to absorption 
is the same for all starting states chosen from a given set. If, in 

SEC. 3 FURTHER RESULTS 131 

addition, A$ happens to consist of a single state, bhen may be 
found from A?. 

We can also compute the covariance matrix of the lumped process. 
As a matter of fact we know (see 3 4.6.7) tha t  the covamiances are 
easily obtainable from C even if the original process is not lumpable 
with respect to the partition, that  is, if the lumped process is not a 
Markov chain. I n  any ease 

e = 2 Ckt. 
ln A, 

s l ~ n  A, 

Let us carry out these computations for the Land of Oz example. 
For A we have 

From the fundan;entai matrix $ we find, 

N 
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'~')C 
1 

:::)(: 
0\ 

C~Z 
0 

~) N 2 

1/2 I 

Az As 

Az 

G :) A3 

f = C~2 
0 '~')(:) A2 C\ 

A3 4) 

C~2 ·c :;:)Gl 0 l~Z) 1/2 B= 
1/4 j 4 

Az 

C)· As 

} .. ssume now that we have an ergodic chain which satisfies the con
dition for lumpability for a partition A. The resulting chain will be 
ergodic. Let A be the limiting matrix for the lumped chain. Then 
we know that 

n 

A = lim UP~+UP2V+ +UPnV 
n 

A = UAV. 

In particular, this RtR,t.es that thc components of a are obtained from 
a by simply adding components in a givcn set, Similarly from the 
infinite series repref'entatioll for the fundamental matrix Z we have 

Z = UZV. 

There is in general no simple rehtion between fif and M. However, 
the mean time to go from 8. state in At to the set A j , in the original 
process, is the same for all states in Ai, To >'ce this we need only make 
the state" of Ai absorbing. We know that the mean time to absorption 
is the same for all starting states chosen from a given set. If, in 
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N 
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addition, Aj happens to consist of a single state, then '"LIt may be 
found from M. 

\Ve can also compute the covariance matrix of the lumped process. 
As a matter of fact we know (see § 4.6.7) that the covariances are 
easily obtainable from C even if the original process is not lump able 
with respect to the partition, that is, if the lumped process is not a 
Markov chain. In any case 

CO = 2: Okl· 

sk in Ai 
S l in Ai 

Let us carry out these computations for the Land of Oz example. 
For A we have 

c;z 
1 Ole: 

1/5 'I,) (0 
;) A= 1/5 2/5 \ 1 0 liz 

2!. l! 5 2/5 0 1 0 

Cs 
1/5 

4~5) 
4 i 5 

/ 0 ,;J( 
86/ 75 3/75 -"1")(" z= I 6/ 75 63/75 6/ 75 I 

\ 1/2 0 
\ -- 3/ 75 86/ 75 0 

C3J,s 
3/75 

12/75) 
72/ 75 

c= ( 12/125 - 12/125) 
_12/125 12/125 

R N S 

R 

C' 
4 

>0
1') M =N Sja 5 S /3 . 

S 10/3 4 5/2 

From the fundamental matri" Z we find, 

N B 
N 15 

5~J kf= 
B \4 
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Note that  the mean time to reach N from either R or S is 4. Here 
N in the lumped process is a single element set. This common value 
is the mean time in the lumped chain to go from B to N. Similarly, 
the value 5 is obtainable from M .  We observe that  the mean time 
to go from N to B is considerably less than the mean time to go from 
N to either of the states in B in the original process. 

§ 6.4 Weak lumpability. I n  practice if one wanted to apply Xarkov 
chain ideas to a process for which the states have been combined, 
with respect to a partition A={.41, Az, . . . , it is most natural to 
require that  the resulting process be a MarBov chain no matter what 
choice is made for the starting vector. However, there are some 
interesting theoretical considerations when we require only that  a t  
least one starting vector lead to a Markov chain. When this is the 
case we shall say that  the process is weakly lumpable with respect to the 
partition A. We shall investigate the consequences of this weaker 
assumption in this section. We restrict the discussion to regular 
chains. The results of this section are based in part on results of 
C. K. Burke and M. Rosenblatt.? 

For a given starting vector n,  to determine whether or not the 
process is a Markov chain we must examine probabilities of the form 

For a given ?r the process will be a Markov chain if these probabilities 
do not depend upon the outcomes before the n-th. 

We must find conditions under which the knowledge of the outcomes 
before the last one does not affect the probability (1). Let us see how 
such knowledge could affect it. Given the information in ( I ) ,  we know 
that  after n steps the underlying chain is in a state in A,, but we do 
not know in which state i t  is. We can, however, assign probabilities 
for it#s being in each state of A,. We do this as follows: For any 
probability vector 8, we denote by pj the probability vector formed by 
making all components corresponding to states not in A3 equal to 0 

and the remaining components proportional to those of p. We shall 
say that  ,i3j is p restricted to Aj. (If ,R has all components 0 in Aj we do 
not define pi.) Consider now the information given in (1). The fact 
that  f o  E Ai may be interpreted as changing our initial vector to d .  
Learning then that  f l  E Ai may be interpreted as changing this vector 
to (nipif. We continue this process until we have taken into account 
all of the information given in (1). We are led to a certain assignment 
of probabilities for the states in A,. From these probabilities we can 

7 C. K. Burke and M. Rosenbiatt, "A Markovian function of a Markov chain," Annals 
of Mathematical Slalistics, 29: 1 1  12-1 122, 1958. 
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easily compute the probability of a transition to At on the next step. 
But note that this probability may be quite different for different kinds 
of information. For example, our information may place high proba- 
bility for being in a state from which i t  is certain that  we move to At.  
A different history of the process may place low probability on this 
state. These considerations give us a clue as to when we could expect 
that  the past could be ignored. Two different cases are suggested. 
First would be the case where the information gained from the past 
would not do us any good. For example, assume that  the probability 
for moving to the set At from a state in A, is the same for all states 
in A,. Then clearly the probabilities for being in each state of A, 
would not affect our predictions for the next outcome in the lumped 
process. This is the condition we found for lumpability in § 6.3 .2 .  
B second condition is suggested by the following: Assume that  no 
matter what the past information is, we always end up with the same 
assignment of probabilities for being in each of the states in A,. Then 
again the past can have no influence on our predictions. We shall 
see that  this case can also arise. 

We have indicated above that  the information given in (1) can be 
represented by a probability vector restricted to A,. This vector is 
obtained from the initial vector n by a sequence of transformations, 
each time taking into account one more bit of information. That is, 
we form the sequence 

7Tl = T I  

nz = (nTIP)J 
573 = imp)" (2) 

717n = (nm-lPiS 

We denote by Y, the totality of vectors obtained by considering all 
finite sequences A*, .Ai, . . . , A,, ending in A,. 

4.1 THEOREM. Th.e lumped chain i s  a Ma,rkov c h i  
ctor ?r i f  and only z:f for every s and 1 the probabilit 

the same ;for every /3 in HI,. T h i s  common value i s  the transition 
probability ,for mocing ,from sef As to set At i n  the lumped process. 

YIIOOF. The probabdity (1) can be represented in the form 
EFra[l; E At] for a suitable 8 in T,. To do this we use the first n outcomes 
for the construction (2).  By hypothesis this probability depends only 
on s and t as required. Hence the lumped process is a Markov chain. 
Conversely, assume that  the lumped chain is a Markov chain for initial 
vector n. Let ,B be any vector in Y,. Then p is obtained f ~ o m  a 
possible sequence, say of length n, A$, A,, . . . , A,. Let theso be the 
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Note that the mean time to reach N from either R or S is 4. Here 
N in the lumped process is a single element set. This common yalue 
is the mean time in the lumped chain to go from B to N. Similarly, 
the value 5 is obtainable from M. We observe that the mean time 
to go from N to B is considerably less than the mean time to go from 
N to either of the states in B in the originaJ process. 

§ 6.4 Weak lumpability. In practice if one wanted to apply Markov 
chain ideas to a process for which the states have been combined, 
with respect to a partition A = {AI, A2, ... , An}, it is most natural to 
require that the resulting process be a Markov chain no matter what 
choice is made for the starting vector. However, there are some 
interesting theoretical considerations when we require only that at 
least one starting vector lead to a Markov chain. When this is the 
case we shall say that the process is weakly lumpable with respect to the 
partition A. "Ve shall investigate the consequences of this weaker 
assumption in this section. We restrict the discussion to rcgul&r 
chains. The results of this section are based in part on results of 
C. K. Burke and M. Rosenblatt. t 

For a given starting vector 77", to determine ,.,-hether or not the 
process is a Markov chain we must examine probabilities of the form 

(1) 

For a given 77" the process will be a "Markov chain if these probabilities 
do not depend upon the outcomes before the n-th. 

We must find conditions under which the knowledge of the outcomes 
before the last one does not affect the probability (1). Let. us see how 
such knowledge could affect it. Given the information in (1), we know 
that after n steps the underlying chain is in a state in As, but we do 
not know in which state it is. We can, however, assign probabilities 
for it,s being in each state of As. We do this as follows: For any 
probability vector fJ, we denote by fJj the probability vector formed by 
making all components corresponding to states not in Ai equal to 0 
and the remaining components proportional to those of fJ. We shall 
say that fJi is /8 restn:cted to Ai. (If fJ has all components 0 in Ai we do 
not define fJj.) Consider now t,he information given in (1). The fad 
that fo E Ai may be interpreted as changing our initial vector to 77"i. 

Learning then that fl E Aj may be interpreted as changing this vector 
to (n/P)i. vVe continue this process until we have taken into account 
all of the information given in (1). We are led to a certain assignment 
of probabilities for the states in As. From these probabilities we can 

t C. K. Burke and. M. Rosenblatt, ·'A Markovian function of a Markov chain,·' Annals 
oj Mathematical Statistics, 29: 1112-1122, 1958. 
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Note that  the mean time to reach N from either R or S is 4. Here 
N in the lumped process is a single element set. This common value 
is the mean time in the lumped chain to go from B to N. Similarly, 
the value 5 is obtainable from M .  We observe that  the mean time 
to go from N to B is considerably less than the mean time to go from 
N to either of the states in B in the original process. 

§ 6.4 Weak lumpability. I n  practice if one wanted to apply Xarkov 
chain ideas to a process for which the states have been combined, 
with respect to a partition A={.41, Az, . . . , it is most natural to 
require that  the resulting process be a MarBov chain no matter what 
choice is made for the starting vector. However, there are some 
interesting theoretical considerations when we require only that  a t  
least one starting vector lead to a Markov chain. When this is the 
case we shall say that  the process is weakly lumpable with respect to the 
partition A. We shall investigate the consequences of this weaker 
assumption in this section. We restrict the discussion to regular 
chains. The results of this section are based in part on results of 
C. K. Burke and M. Rosenblatt.? 

For a given starting vector n,  to determine whether or not the 
process is a Markov chain we must examine probabilities of the form 

For a given ?r the process will be a Markov chain if these probabilities 
do not depend upon the outcomes before the n-th. 

We must find conditions under which the knowledge of the outcomes 
before the last one does not affect the probability (1). Let us see how 
such knowledge could affect it. Given the information in ( I ) ,  we know 
that  after n steps the underlying chain is in a state in A,, but we do 
not know in which state i t  is. We can, however, assign probabilities 
for it#s being in each state of A,. We do this as follows: For any 
probability vector 8, we denote by pj the probability vector formed by 
making all components corresponding to states not in A3 equal to 0 

and the remaining components proportional to those of p. We shall 
say that  ,i3j is p restricted to Aj. (If ,R has all components 0 in Aj we do 
not define pi.) Consider now the information given in (1). The fact 
that  f o  E Ai may be interpreted as changing our initial vector to d .  
Learning then that  f l  E Ai may be interpreted as changing this vector 
to (nipif. We continue this process until we have taken into account 
all of the information given in (1). We are led to a certain assignment 
of probabilities for the states in A,. From these probabilities we can 

7 C. K. Burke and M. Rosenbiatt, "A Markovian function of a Markov chain," Annals 
of Mathematical Slalistics, 29: 1 1  12-1 122, 1958. 
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easily compute the probability of a transition to At on the next step. 
But note that this probability may be quite different for different kinds 
of information. For example, our information may place high proba- 
bility for being in a state from which i t  is certain that  we move to At.  
A different history of the process may place low probability on this 
state. These considerations give us a clue as to when we could expect 
that  the past could be ignored. Two different cases are suggested. 
First would be the case where the information gained from the past 
would not do us any good. For example, assume that  the probability 
for moving to the set At from a state in A, is the same for all states 
in A,. Then clearly the probabilities for being in each state of A, 
would not affect our predictions for the next outcome in the lumped 
process. This is the condition we found for lumpability in § 6.3 .2 .  
B second condition is suggested by the following: Assume that  no 
matter what the past information is, we always end up with the same 
assignment of probabilities for being in each of the states in A,. Then 
again the past can have no influence on our predictions. We shall 
see that  this case can also arise. 

We have indicated above that  the information given in (1) can be 
represented by a probability vector restricted to A,. This vector is 
obtained from the initial vector n by a sequence of transformations, 
each time taking into account one more bit of information. That is, 
we form the sequence 

7Tl = T I  

nz = (nTIP)J 
573 = imp)" (2) 

717n = (nm-lPiS 

We denote by Y, the totality of vectors obtained by considering all 
finite sequences A*, .Ai, . . . , A,, ending in A,. 

4.1 THEOREM. Th.e lumped chain i s  a Ma,rkov c h i  
ctor ?r i f  and only z:f for every s and 1 the probabilit 

the same ;for every /3 in HI,. T h i s  common value i s  the transition 
probability ,for mocing ,from sef As to set At i n  the lumped process. 

YIIOOF. The probabdity (1) can be represented in the form 
EFra[l; E At] for a suitable 8 in T,. To do this we use the first n outcomes 
for the construction (2).  By hypothesis this probability depends only 
on s and t as required. Hence the lumped process is a Markov chain. 
Conversely, assume that  the lumped chain is a Markov chain for initial 
vector n. Let ,B be any vector in Y,. Then p is obtained f ~ o m  a 
possible sequence, say of length n, A$, A,, . . . , A,. Let theso be the 
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easily compute the probability of a transition to At on the next step. 
But note that this probability may be quite different for different kinds 
of information. For example, our information may plaee high proba
bility for being in a state from which it is certain that we move to At. 
A different history of the process may place low probability on this 
state. These considerations give us a clue as to when we could expect 
that the past could be ignored. Two different cases are suggested. 
First would be the case where the information gained from thc past 
would not do us any good. :For example, assume that the probability 
for moving to the set A/ from a state in As is the same for all states 
in As. Then clearly the probabilities for being in each state of As 
would not affect our predictions for the next outcome in the lumped 
process. This is the condition we found for lump ability in § 6.3.2. 
A second condition is suggested by the following: Assume that no 
matter what the past information is, we always end up with the same 
assignment of probabilities for being in each of the states in As. Then 
again th" past can have no influence on our predictions. V/e shall 
see that this case can also arise. 

We have indicated above that the information given in (1) can be 
represented by a probability vector restricted to As. This vector is 
obtained from the initial vector 1T by a sequence of transformations, 
each time taking into account one more bit of information. That is, 
we form the sequence 

07 1 1T! 

} 
1T2 ( 1T IP)} 

1T3 (07ZP)k (2) 

11m = ( 1Tm-I P ls 

vVe denote by Y s the totality of vectors obtained by considering aJl 
finite sequences Ai, Aj , .... As, ending in A". 

6.4.1 THEORE)!. 'l'he lumped chain is a 111 arkov chain for the initial 
vector 1T if and only if for every sand t the probability PrtJ{f1 E At] is 
the same for every f3 in Y s. This common valve is the transition 
probability for moving from set As to set At in the lumped process. 

PHOOF. The probability (1) can be represented in the form 
Pr~[fl E At] for a suitable f3 in 1',. To do this we use the first n outcomes 
for the constmction (2). By hypothesis this probability depends only 
on.s and t as required. Hence the lumped process is a Markov chain. 
Conversely, assume that the lumped chain is a Markov chain for initial 
vector 7T. Let j3 be any vector in Ys. Then j3 is obtained from a 
possible sequence, say of length n, Ai, A j , ... , As. Let these be the 
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given outcomes used to compute a probability of the form (1). This 
probability is PrB[f E At] and by the Markov property must not 
depend upon the outcomes before At. Hence it has the same value 
for every ,B in Y,. 

6.4.2 EXAMPLE. Consider a Markov chain with transition matrix 

Let A =  ({sl), (sZ, s3)). Consider any vector of the form (1 - 3a, a ,  
2a). Any such vector multiplied by P  will again be of this form. 
Also any such vector restricted to Al  or A2 will be such a vector. 
Hence for any such starting vector the set U1 will contain the single 
element (1, 0, 0) and Yz the single element (0, 113, 2 1 3 ) .  Thus the 
condition of 5 6.4.1 is satisfied trivially for any such starting vector. 
On the other hand assume that  our starting vector is n =  (0, 0, 1). 
Let nl = ( n P ) 2 =  (0, 1, 0) and 7 r 2 =  (nlP)2= (0,  'I6, 5/6). Then nl and 
772 are in Yz and Pr,,[& E All = 0 while Pr,,[fl E .A1] = 35/48. Hence this 
choice of starting vector does not lead to a Markov chain. 

We see that  i t  is possible for certain starting vectors to lead to 
Markov chains while others do not. We shall now prove that  if there 
;s any starting vector which gives a Markov chain, then the fixed 
vector a does. 

6.4.3 THEOREM. Assume that a regular Narkov chain is weakly 
lumpable with respect to A=(A1, A2, . . . , -4s: Then the starting 
vector a will give a Markov chain for the lumped process. The tran- 
sition probabilities will be 

A n y  other starting vector ,which yields a Markov chai?~ for the lwmped 
process will give the same transition probabilities. 

PROOF. Since the chain is weakly lumpable there must be some 
starting vector n which leads to a Markov chain. Let its transition 
matrix be ($ir). For this vector n 

for all sets for which this probability is defined. But this may be 
written as 

P,p- a [ f ~  E &Ifl E Ai Afo E Ah]. 
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Letting n tend to infinity we have 

We have proved that  the probability of the for n f l ) ,  with a as 
starting vector, does not depend upon the past beyond the last out- 
come for the case n= 1. The general case is similar. Therefore, for a 
as a starting vector, the lumped process is a Markov chain. I n  the 
course of the proof we showed that  $if for a starting vector n is the 
same as for a,  hence i t  will be the same for any starting vector which 
yields a Markov chain. 

By the previous theorem, if we are testing for weak lumpability we 
may z,ssurne that  the process is started with the  initial veckor a. I n  
this ease the transition matrix can be written in the form 

P = V P V  

where V is as before buk U  is a matrix with i-tlm row a{. When we 
have lumpability there is a great deal of freedom in the choice of U 
and in that  case we chose a more convenient U .  We do not have this 
freedom for weak lumpability. 

We consider now conditions for which we can expect to have weak 
lumpabiiity. If the chain is to be a Markov chain when lumped then 
we can compute P 2  in two ways. Computing i t  directly from the 
underlying chain we have fj2= U P V .  By squaring ij we have 
U P V U P V .  Renee i t  must be true that  

One sufficient condition for this is 

V U P Y  = PV. (3) 

This is the condition for lumpability expressed in terms of our new U. 
I t  is necessary and sufficient for lumpability, and hence sufficient for 
weak lumpability. ,4 seeo~ld condition which would be sufficient for 
the above is 

U P V U  = UP. (4) 

This condition states the rows of U P  are fixed vectors for V U .  The 
matrix V U  is now of the form 
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given outcomes used to compute a probability of the form (1). This 
probability is Prp[f1 E At] and by the Markov property must not 
depend upon the outcomes before At. Hence it has the same value 
for every fJ in Y s . 

6.4.2 EXAMPLE. Consider a :Markov chain with transition matrix 

ftq A2 

P ~ :: ( :;: i :;: :~:) 
Let A ({S1}, {52, 53}). Consider any vector of the form (1- 3a, a, 

2a). Any such vector multiplied by P will again be of this form. 
Also any such vector restricted to Al or A2 will be such a vector. 
Hence for any such starting vector the set Y 1 will contain the single 
element (1,0,0) and Y2 the single element (0,1/3 ,2/ 3 ). Thus the 
condition of § 6.4.1 is satisfied trivially for any such starting vector. 
On the other hand assume that our starting vector is 7T = (0, 0, I). 
Let 1Tl=(7TP)2=(O, 1,0) and "Z=(7T1P)2=(0, 1/6 , 51s). Then 7Tl and 
7T2 are in Y2 and Prrr.[fl EO A 1]=0 while Pr"2[f1 E A 1]=35j4S. Hence this 
choice of starting vector does not lead to a Markov chain. 

We see that it is possible for certain starting vectors to lead to 
Markov chains while others do not. We shall now prove that if there 
is any starting vector which gives a }Larkov chain, then the fixed 
vector a does. 

6.4.3 THEOREM. Assume that a regular N arkov chain is weakly 
lumpable with resped to A={Al' A2 , ..• ,As}. Then the starling 
vector a will give a Markov chain for the lumped process. The tran
sition probabilities will be 

pJj = Prai[fl E Aj]. 

Any other starting vector which yields a Markov chain for the lumped 
process will give the same transition probabilities. 

PROOF. Since the chain is weakly lumpable there must be some 
starting vector 7T which leads to a :\larkov chain. Let its transition 
matrix be {Pi;}. For this vector 7T 

for all sets for which this probability is defined. But this may be 
written as 
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given outcomes used to compute a probability of the form (1). This 
probability is PrB[f E At] and by the Markov property must not 
depend upon the outcomes before At. Hence it has the same value 
for every ,B in Y,. 

6.4.2 EXAMPLE. Consider a Markov chain with transition matrix 

Let A =  ({sl), (sZ, s3)). Consider any vector of the form (1 - 3a, a ,  
2a). Any such vector multiplied by P  will again be of this form. 
Also any such vector restricted to Al  or A2 will be such a vector. 
Hence for any such starting vector the set U1 will contain the single 
element (1, 0, 0) and Yz the single element (0, 113, 2 1 3 ) .  Thus the 
condition of 5 6.4.1 is satisfied trivially for any such starting vector. 
On the other hand assume that  our starting vector is n =  (0, 0, 1). 
Let nl = ( n P ) 2 =  (0, 1, 0) and 7 r 2 =  (nlP)2= (0,  'I6, 5/6). Then nl and 
772 are in Yz and Pr,,[& E All = 0 while Pr,,[fl E .A1] = 35/48. Hence this 
choice of starting vector does not lead to a Markov chain. 

We see that  i t  is possible for certain starting vectors to lead to 
Markov chains while others do not. We shall now prove that  if there 
;s any starting vector which gives a Markov chain, then the fixed 
vector a does. 

6.4.3 THEOREM. Assume that a regular Narkov chain is weakly 
lumpable with respect to A=(A1, A2, . . . , -4s: Then the starting 
vector a will give a Markov chain for the lumped process. The tran- 
sition probabilities will be 

A n y  other starting vector ,which yields a Markov chai?~ for the lwmped 
process will give the same transition probabilities. 

PROOF. Since the chain is weakly lumpable there must be some 
starting vector n which leads to a Markov chain. Let its transition 
matrix be ($ir). For this vector n 

for all sets for which this probability is defined. But this may be 
written as 

P,p- a [ f ~  E &Ifl E Ai Afo E Ah]. 
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Letting n tend to infinity we have 

We have proved that  the probability of the for n f l ) ,  with a as 
starting vector, does not depend upon the past beyond the last out- 
come for the case n= 1. The general case is similar. Therefore, for a 
as a starting vector, the lumped process is a Markov chain. I n  the 
course of the proof we showed that  $if for a starting vector n is the 
same as for a,  hence i t  will be the same for any starting vector which 
yields a Markov chain. 

By the previous theorem, if we are testing for weak lumpability we 
may z,ssurne that  the process is started with the  initial veckor a. I n  
this ease the transition matrix can be written in the form 

P = V P V  

where V is as before buk U  is a matrix with i-tlm row a{. When we 
have lumpability there is a great deal of freedom in the choice of U 
and in that  case we chose a more convenient U .  We do not have this 
freedom for weak lumpability. 

We consider now conditions for which we can expect to have weak 
lumpabiiity. If the chain is to be a Markov chain when lumped then 
we can compute P 2  in two ways. Computing i t  directly from the 
underlying chain we have fj2= U P V .  By squaring ij we have 
U P V U P V .  Renee i t  must be true that  

One sufficient condition for this is 

V U P Y  = PV. (3) 

This is the condition for lumpability expressed in terms of our new U. 
I t  is necessary and sufficient for lumpability, and hence sufficient for 
weak lumpability. ,4 seeo~ld condition which would be sufficient for 
the above is 

U P V U  = UP. (4) 

This condition states the rows of U P  are fixed vectors for V U .  The 
matrix V U  is now of the form 
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Letting n tend to infinity we have 

Pra[fz E Allfl E All\fc E A k ] = pjj. 

We have proved that the probability of the forn (1), with a as 
starting vector, does not depend upon the past beyond the last out
come for the case n = 1. The general case is similar. Therefore, for a 
as a starting vector, the lumped process is a Markov chain. In the 
course of the proof we showed that Pij for a starting vector '1T is the 
same as for a, hence it will be the same for any starting vector which 
yields a Markov chain. 

By the previous theorem, if Vie are testing for weak lumpability we 
may assume that the process is started with the initial vector a. In 
this case the transit,ion matrix P can be written in the form 

P = UPV 

where V is as before but U is a matrix with i-th row a i • When we 
have lumpability there is a great deal of freedom in the choice of U 
and in that case we chose a more convenient U. \Ve do not have this 
freedom for weak lumpability. 

We consider now conditions for which we can expect to have weak 
lumpability. If the chain is to be a Markov chain when lumped then 
we can compute P2 in two ways. Computing it directly from the 
underlying chain we have P2= UpzV. By squaring P we have 
UPVUPV. Hence it must be true that 

CPVUPV = UPPV. 

One sufficient condition for this is 

VUPV = PV. (3) 

This is the condition for lumpability expressed in terms of our new U. 
It is necessary and sufficient for lumpability, and hence sufficient for 
weak lumpability. A second condition which would be sufficient for 
the above is 

UPVU = UP. (4) 

This condition states the rows of UP are fixed vectors for VU. The 
matrix V U is now of the form 

vu 
(

WI 0 0 \ 
----~--- \ 

. 0 Ii Wz 0 i, \ -----1-) 
\ 0 o! W3 
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where Wf is a transition matrix having all rows equal to a.'. To say 
that  the i-th row of U P  is a fixed vector for IrU means that  this 
vector, restricted to A,, is a fixed vector for W,. But this means that  
the components of this vector must be proportional to a,. Hence we 
have 

(a"), = a?. ( 5 )  

This means that  if we st,art with a ,  the set Yi, obtained by construction 
(i?), consists, for each i ,  of a single element, namely a$. Conversely, 
if each such set has only a single element, then (5) is sat,isfied and 
hence also (4).  To say that  Y i  has only one element for each i is to 
say that  when the last outcome was Ai the knowledge of previous 
outcomes does not influence the assignment of the probabilities for 
being in each of the sta.tes of Ai. Hence we have found that  (4)  is 
necessary and sufficient for the past beyond the last outcome to  
provide no new information, and is sufficient for weak lumpability. 

Example 6.4.2 is a case where (4)  is satisfied. Recall that  we found 
that  each Pi had only one element. 

We can sumn~arize our findings as follows: We stated in the intro- 
duction that  there are two obvious ways t,o make the information 
contained in the outcon~es before the last one useless. One way is to 
require that  even if we know the exact state of the original process 
our predictions would be unchanged. This is condition (3). The 
other is to require t,hat we get no information a t  all from the past 
except the last step. This is condition (4).  Each leads to  weak 
lumpability. We have thus proved : 

6.4.4. THEOREM. Either condition (3) or condition (4)  is suflcienl 
for weak lumpabilily. 

There is an interesting connection between (3) and (4) in terms of 
the process and its associated reverse process (see 5.3). 

6.4.5 THEOREM. A regular chain satisjies (3) if a d  only ii the 
reverse chain satisjks (4) .  

PROOF. Assume that  a process satisfies (3) .  Then 

V U P V  = PV 

Let Po be the transition matrix for the reverse process, theii P =  
DPToD-1. Hence 

TUDPToD-1V = DPToD--'V 

We observe that  VTD-l=D-lU.  Furthermore, V U D  is a sym- 
metric matrix so that V U D =  D U T P  or DU* VTD-1= V U. CTsiXlg 
these two facts, our last equation becomes 

Multiplying on the left by gives condition (4) for Po. The proof 
of the converse is similar. 

6.4.6 THEOREM. If a given process i s  weakly lwmpaijle with respect 
to a partition A, then so is the reverse process. 

PROOF. We must prove that  all probabilities of the form 

depend only on Ar and .Aihj. We can write this probability in the form 

My hypothesis the forward process is a Markov chain, so  that  the 
first term in the numerator does not depend on Ai. Hence this whole 
expression is simply 

which depends only on A+ and Aj. 

.4.7 T ~ E o ~ s a l . .  A reversible regular Mcrkov chain is reversible 
when lumped. 

PROOF. By reversibility, 

Hence 
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where Wj is a transition matrix having all rows equal to a f . To say 
that the i-th TOW of UP is a fixed vector for Vl} means that this 
vectoI', restrict,ed to Aj , is a fixed vector for Wi. But this means that 
the components of this vectot must be proportional to ctf. Hence we 
have 

(alp)j = ai . (5) 

This means that if we start with a, the set fi' obtained by construction 
(2), consists, for each i, of a single element, namely a i . Conversely, 
if each such set has only a single element, then (5) is satisfied and 
hence also (4). To say that Yi has only one element for each i is to 
say that when the last outcome was Ai the knowledge of previous 
outcomes does not influence the assignment o£ the probabilities for 
being in each of the states of Ai. Hence we have found that (4) is 
necessary and sufficient for the past beyond the last outcome to 
provide no new information, and is sufficient for weak lumpability. 

I':xamvle 6.4.2 is a case where (4) is satisfied. RecaJ1 that we found 
that each Y i had only one element. 

We can summarize our findings as follows: We stated in the intro
duction that there are two obvious ways to make the information 
contained in the outcomf>S before the last one useless. One way is to 
require that eyen if we know the exact state of the original process 
our predictions would be unchanged. This is condition (3). The 
other is to require that we get no information at all from the past 
except the last step. This is condition (4), Each leads to weak 
lumpability. \Ve have tlms proved: 

6.4.4. THEOREM. E£ther condition (:3) or cand'ilion (4) is s1Lfficient 
Jor weak lumpability. 

There is an interesting connection between (3) and (4) in terms of 
the process and its associated reverse process (see § 5.3). 

6.4.5 THEOREM. A regular chain satisfies (3) iJ and only iJ the 
reverse chain satis.fies (4). 

PROm'. Assume that a process sati;;fies (3). Then 

VCPV = PV. 

Let Po be the transition matrix for the reverse process, then P = 

DPToD-l. Hence 

VUDPTOD-IV 

or, transposing, 
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where Wf is a transition matrix having all rows equal to a.'. To say 
that  the i-th row of U P  is a fixed vector for IrU means that  this 
vector, restricted to A,, is a fixed vector for W,. But this means that  
the components of this vector must be proportional to a,. Hence we 
have 

(a"), = a?. ( 5 )  

This means that  if we st,art with a ,  the set Yi, obtained by construction 
(i?), consists, for each i ,  of a single element, namely a$. Conversely, 
if each such set has only a single element, then (5) is sat,isfied and 
hence also (4).  To say that  Y i  has only one element for each i is to 
say that  when the last outcome was Ai the knowledge of previous 
outcomes does not influence the assignment of the probabilities for 
being in each of the sta.tes of Ai. Hence we have found that  (4)  is 
necessary and sufficient for the past beyond the last outcome to  
provide no new information, and is sufficient for weak lumpability. 

Example 6.4.2 is a case where (4)  is satisfied. Recall that  we found 
that  each Pi had only one element. 

We can sumn~arize our findings as follows: We stated in the intro- 
duction that  there are two obvious ways t,o make the information 
contained in the outcon~es before the last one useless. One way is to 
require that  even if we know the exact state of the original process 
our predictions would be unchanged. This is condition (3). The 
other is to require t,hat we get no information a t  all from the past 
except the last step. This is condition (4).  Each leads to  weak 
lumpability. We have thus proved : 

6.4.4. THEOREM. Either condition (3) or condition (4)  is suflcienl 
for weak lumpabilily. 

There is an interesting connection between (3) and (4) in terms of 
the process and its associated reverse process (see 5.3). 

6.4.5 THEOREM. A regular chain satisjies (3) if a d  only ii the 
reverse chain satisjks (4) .  

PROOF. Assume that  a process satisfies (3) .  Then 

V U P V  = PV 

Let Po be the transition matrix for the reverse process, theii P =  
DPToD-1. Hence 

TUDPToD-1V = DPToD--'V 

We observe that  VTD-l=D-lU.  Furthermore, V U D  is a sym- 
metric matrix so that V U D =  D U T P  or DU* VTD-1= V U. CTsiXlg 
these two facts, our last equation becomes 

Multiplying on the left by gives condition (4) for Po. The proof 
of the converse is similar. 

6.4.6 THEOREM. If a given process i s  weakly lwmpaijle with respect 
to a partition A, then so is the reverse process. 

PROOF. We must prove that  all probabilities of the form 

depend only on Ar and .Aihj. We can write this probability in the form 

My hypothesis the forward process is a Markov chain, so  that  the 
first term in the numerator does not depend on Ai. Hence this whole 
expression is simply 

which depends only on A+ and Aj. 

.4.7 T ~ E o ~ s a l . .  A reversible regular Mcrkov chain is reversible 
when lumped. 

PROOF. By reversibility, 

Hence 
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and 
VTD-1P oD[}TVTD-l = VTD-IPO• 

\Ve observe that VT D-1 = [;--IU. Furthermore, VUD is a sym
metric matrix so that VUD=DUTVT or DUTVTD-l= vU. Using 
these two facts, our last equation becomes 

D-1UPOVU = D-lUPO• 

Multiplying on the left by [; gives condition (4) for Po. The proof 
of the converse is similar. 

6.4.6 THEOREM. If a given pj·oce.ss is weakly lurnpable with respect 
to a partition A, then so is the reverse procu;s. 

PROOF. We must prove that all probabilities of the form 

Pra[fl e Adf2 e Aj /\f3 E A,,!\ ... /\f" EAt] 

depend only 011 A, and A j . We can write this probability in the form 

Pra[fl E Ai !\f2 E Aj 1\£3 E An l\ ... /\{n E Atl 
Pra [f2 E Aj /\f3 e A" /\ ... !\f" EAt] 

Pralfn E At II ... !\f3 E A,,]f2 E Aj /\£1 E Ad Prolfl e Ai l\f2 E Aj] 
Pl'a[fn eAt \ ... /f3 e A"ffz E Aj) Pr.[f2 E Aj] 

By hypothesis the forward process is a :'.'larkov chain, .so that the 
first term in the numerator does not clepend em At. Hence this whole 
expression is simply 

Prarfl E Ai /I,[z E Aj] 
--Pr.[f2 E Ai] 

which depends only on Ai and Aj . 

6.4.7 THEOREM. A reversible Tegular .. M a.rkov chain is reversible 
when lumped. 

PROOF. By reversibility, 

P=DPTD-l 

and 

p = l.lPV. 

Hence 

P = UDPTD-IV. 
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We have seen that VTD-l= b - 'U .  Nence U D =  b V T .  Also 
D-1V = U T ~ - 1 .  Thus we have 

This means that the lumped process is reversible. 

6.4.8 THEOREM. FOT a reversible regular Markov chain, weak 
lumpability implies Eump,ability. 

PROOF. Let P be the transition matrix for a regular reversible chain. 
Then, if the chain is weakly lumpable, 

U P P V  = U P V U P V  

Since U .- d VTD-1, we have 

B V T D - ~ P ( I -  V U ) P V  = 0, 

or, multiplying through by d-1 and using the fact that for a reversible 
chain D I P =  PTD-1, we have 

VTPTD-I(I - V U ) P V  = 0.  

Let W =  D-1- D-1VU. Then W =  D-1- U r b - l U .  We shall show 

that W is semi-definite. That is, for any vector ,B, BTWP is non- 
negative. It is sufficient to prove that 

1 nkb2k > & 
I; in A, kin Ai 

where & is the i-th diagonal entry of b, or equivalently 

2 at&b2r > 2 (~kCZtbk)~. 
t i n  Ai k In A i  

But since the coefficients akdt are non-negative and have sum 1, this 
is a standard inequality of probability theory. It can be proved by 
considering a function f which takes on the value bk with probability 
a&. Then Ae inequality expresses that.  
$ 1.8.5, this simply asserts that the variance of f is non-negative. 

Since Wt is semi-definite, W = X T X  for some matrix X. Thus 
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This can be true only if 

X B V  = 0. 
ence 

XTX'PV = 0,  
or 

D-'(1- JrO)PV = 0 ,  
or 

( I -  V U ) P V  = 0. 
Nence 

P V  = V U P V .  

Note that while we have given necessary and sufficient conditions 
for lumpdbility wiLh respect to a partition ik, we have not given 
necessary and sufficient conditions for weak lumpabtlity. We have 
given two different sufficient conditions (3) and (4). Pt might be 
hoped that for weak lumpability one of the two conditions would have 
to be satisfied. It is, however, easy to  get an example where neither 
is satisfied as follows: If we take a Markov chain and find a method 
of combining states to give a Xmkov chain, we can then ask whether 
the new chain can be combined. If so, the result can be considered a 
combining of states in the original chain. To get our counterexample, 
we take a chain for which we can combine states by condition (3) and 
then combine states in the new chain by condition (4) ;  the result 
considered as a lumping of the original chain will obviously be a 
Markov chain, but it will satisfy neither (4) nor (3). Consider a 
Markov chain with transition matrix 

For the partition A=f{sl),  ( $ 2 ,  s3), ( ~ 4 ) )  the strong condition (3) is 
satisfied. Hence we obtain a lumped chain with transition matrix 

81 Ae A3 

But this is Example 6.4.2, which satisfies (4). Hence we can lump it 
by ({All, {Az, 8 3 ) ) .  The result is a lumping of the original chain by 
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We have seen that VTD-l=D-lU. Hence UD=DVT. Also 
D-l V = UT jj-l. Thus we have 

f> = DVT pTUT D-l, 
and hence 

This means that the lumped process is reversible. 

6.4.8 THEOREM. For a reversible regular Markov chain, weak 
lumpability implies 11Imp,ability. 

PROOF. Let P be the transition matrix for a regular reversible chain. 
Then, if the chain is weakly lumpable, 

UPPV = UPVUPV 
or 

U P(I - VU)PV = o. 
Since U = DVT D-l, we have 

jjVT D-IP(I - VU)PV = 0, 

or, multiplying through by f)-I and using the fact that for a reversible 
chain D-lP= pT D-l, we have 

VTPTD-l(I - VU)PV = O. 

Let W=D-l_D-lVU. Then W=D-LUTD-IU. ""Ve shall show 
that W is semi-definite. That is, for any vector f3, f3TWf3 is non
negative. It is sufficient to prove that 

L akb2k ~ rl/ ( :2 akbk)2 
k in At' k in Ai 

where rlt is the i-th diagonal entry of iJ, or equivalently 

.L ak d;b 2k ~ 
kin Ai 

L (a;;d;bk ) 2 . 

k [n Ai 

But since the coefficients akdi are non-negative and have sum I, this 
is a standard inequality of probability theory. It can be proved by 
considering a function f which takes on the value bl< with probability 
akd!. Then \.;,," inequality expresses that. M[f2] ~ (M[f])2; and, by 
§ 1.8.5, this simply asserts that the variance of f is non-negative. 

Since WI is semi-definite, W =XTX for some matrix X. Thus 

VT PTXTXPV = 0 
or 

(XPV)T(XPV) = o. 
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We have seen that VTD-l= b - 'U .  Nence U D =  b V T .  Also 
D-1V = U T ~ - 1 .  Thus we have 

This means that the lumped process is reversible. 

6.4.8 THEOREM. FOT a reversible regular Markov chain, weak 
lumpability implies Eump,ability. 

PROOF. Let P be the transition matrix for a regular reversible chain. 
Then, if the chain is weakly lumpable, 

U P P V  = U P V U P V  

Since U .- d VTD-1, we have 

B V T D - ~ P ( I -  V U ) P V  = 0, 

or, multiplying through by d-1 and using the fact that for a reversible 
chain D I P =  PTD-1, we have 

VTPTD-I(I - V U ) P V  = 0.  

Let W =  D-1- D-1VU. Then W =  D-1- U r b - l U .  We shall show 

that W is semi-definite. That is, for any vector ,B, BTWP is non- 
negative. It is sufficient to prove that 

1 nkb2k > & 
I; in A, kin Ai 

where & is the i-th diagonal entry of b, or equivalently 

2 at&b2r > 2 (~kCZtbk)~. 
t i n  Ai k In A i  

But since the coefficients akdt are non-negative and have sum 1, this 
is a standard inequality of probability theory. It can be proved by 
considering a function f which takes on the value bk with probability 
a&. Then Ae inequality expresses that.  
$ 1.8.5, this simply asserts that the variance of f is non-negative. 

Since Wt is semi-definite, W = X T X  for some matrix X. Thus 

SEC. 4 FURTHER RESULTS 139 

This can be true only if 

X B V  = 0. 
ence 

XTX'PV = 0,  
or 

D-'(1- JrO)PV = 0 ,  
or 

( I -  V U ) P V  = 0. 
Nence 

P V  = V U P V .  

Note that while we have given necessary and sufficient conditions 
for lumpdbility wiLh respect to a partition ik, we have not given 
necessary and sufficient conditions for weak lumpabtlity. We have 
given two different sufficient conditions (3) and (4). Pt might be 
hoped that for weak lumpability one of the two conditions would have 
to be satisfied. It is, however, easy to  get an example where neither 
is satisfied as follows: If we take a Markov chain and find a method 
of combining states to give a Xmkov chain, we can then ask whether 
the new chain can be combined. If so, the result can be considered a 
combining of states in the original chain. To get our counterexample, 
we take a chain for which we can combine states by condition (3) and 
then combine states in the new chain by condition (4) ;  the result 
considered as a lumping of the original chain will obviously be a 
Markov chain, but it will satisfy neither (4) nor (3). Consider a 
Markov chain with transition matrix 

For the partition A=f{sl),  ( $ 2 ,  s3), ( ~ 4 ) )  the strong condition (3) is 
satisfied. Hence we obtain a lumped chain with transition matrix 

81 Ae A3 

But this is Example 6.4.2, which satisfies (4). Hence we can lump it 
by ({All, {Az, 8 3 ) ) .  The result is a lumping of the original chain by 
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This can be true only if 

XPV = O. 
Hence 

XTXPV = 0, 
or 

D~l(I - VU)PT' = 0, 
or 

(1 - VU)PV = O. 
Hence 

PV = VUPV. 

Sote that while we have given necessary and sufficient conditions 
for lumpability with respect to a partition A, we have not given 
necessary and' sufficient conditions for weak lumpability. We have 
given two different sufficient conditions (3) and (4). It might be 
hoped that for weak lumpaoility one of the two conditions would have 
to be satisfied. It is, however, easy to get an example where neither 
is satisfied as follows: If we take a Markov chain and find a method 
of combining states to give a ),![arkov chain, we can then ask whether 
the new chain can be combined. If so, the result can be considered a 
combining of states in the original chain. To get our counterexample, 
we t?"ke a chain for which we can combine states by condition (3) and 
then combine states in the new chain by condition (4); the result 
considered as a lumping of the original chain will obviously be a 
Markov chain, but it will satisfy neither (4) nor (3). Consider a 
Markov chain with transition matrix 

Al ( 1/4 t 1/16 3/16 l~) 
o I 1/12 1/12 i 5/6 

P = A2 I o 1/12 1/12 ~ 

A3 7/8 1/32 3/32 i 0 

For the partition A= ({Sl}, {S2' S3}, {S4}) the strong condition (3) is 
satisi'led. Hence we obtain a lumped chain with transition matrix 

Al Az A3 

Al 

(~. 
1( 4 1/2\ 

P = Az 1/ fi 5~6r 
A3 7 (8 

But this is Example 6.4.2, which satisfies (4), Hence we can lump it 
by ({At), {A2' A3})' The result is a lumping of the original chain by 
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A=({sl), {sz, sg, sq)). It is easily checked that  neither (3)  nor (4) is 
satisfied in the original process for this partition. 

We conclude with some remarks about a lumped process when the 
condition for weak lurnpability is not satisfied. We assume that  P is 
regular. Then if the process is started in equilibrium 

$tj = Br,[f%+~ E &Ifn E At] 

is the same for every n. Hence the matrix p~s={&~) may still be 
interpreted as a one-step transition matrix. Also 

is the same for all n. The vector &=(a^i) will be the unique fixed 
vector for p. I t s  components may be obtained from a by simply 
adding the ccmponents corresponding to  each set. Similarly we may 
define two-step transition probabilities by 

$(2)ir = Pr,[fn+z E E At]. 

The two-step transition matrix will then be p(2) =($(Z)tj). I t  will no 
longer be true that  p2= p(2). 

We can also define the mean first passage matrix J?l for the lumped 
process. It cannot be obtained by our Markov chain formulas. To 

obtain & i t  is necessary first to find m t , ~ , ,  the mean time to go from 
state i to set A$ in the original process. We can do this by making 
all of the elements of Aj absorbing and find the mean time to absorp- 
tion. (A slight modification is necessary if i is in Aj.) From these 
we obtain the mean time to go from Ai to A?, by 

mil = 2 a*kmk,A, 
k In A, 

where a*k is the k-th component of at. 

5 6.5 Expanding a arkov chain. I n  the last two sections we 
showed that  under certain conditions a Markov chain would, by 
lumping states together, be reduced to a smaller chain which gave 
interesting information about the original chain. By this process we 
obtained a more manageable chain a t  the sacrifice of obtaining less 
precise information. In this section we shall show that  i t  is possible 
to go in the other direction. That is, to obtain from a Markov chain 
a larger chain which gives more detailed information about the process 
being considered. We shall base the presentation on results obtained 
by S. Hudson in his senior thesis a t  Dartmouth College. 

Consider now a Markov chain with states sl, sz, . . . , s,. We form 
a new Markov chain, called the expanded process, as follows. A state 
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is a pair of states (st, sj) in the original chain, for which ptr >O. We 
denote these states by s(u,. Assume now that in the  original chain the 
transition from st t o  sj and from sj to si, occurs on two successive steps. 
We shall interpret this as a single step in the expanded process from 
the state s(tj, to the state stjx). With this convention, transition 
from state s(tjj to state s(k~, in the expanded process is possible only if 
j = k. Transition probabilities are given by 

5.1 EXAMPLE. Consider the Land of Oz example. The states 
for the expanded process are RE, RN, RS, NB, NS, SR, SN, SS. Note 
that  NN is not a state, since ~ N N  = 0 in the original process. The 
transition matrix for the expanded process is 

Let us first see how the classification of states for the expanded 
process compares with the original chain. We note that  p(n)(tj)(kl) = 
p(n-l)jkpkl> 0 if and only if p(n-l)jk > 0. Hence if the original chain is 
ergodic, so will the expanded process be, and if the original chain is of 
period cl, then the expanded chain will also be of period d, A state 
s(ej, in the expanded process is absorbing only if i = j and only if state 
sj is absorbing in the original chain. 

Assume that  the original chain is an absorbing chain. Let s(u, be 
a non-absorbing state in the expanded process. Since the original 
chain was absorbing, there must be an absorbing state sk such that  i t  
is possible to go from sj to sk. Thus i t  is possible to go from s(fj, to 
s{kk) in the expanded process. Thus the expanded process is also 
absorbing. 

I t  is interesting to observe that  from the expanded process we can 

140 FINITE MARKOV CHAINS CHAP. VI 

A = ({81}, {S2, 83, 54}). It is easily checked that neither (3) nor (4) is 
satisfied in the original process for this partition. 

We conclude with some remarks about a lumped process when the 
condition for weak lumpability is not satisfied. We assume that Pis 
regular. Then if the process is started in equilibrium 

Pii = Pra[fn+l E Ajlfn E Ad 

is the same for every n. Hence the matrix P = {Pii} may still be 
interpreted as a one-step transition matrix. Also 

is the same for all n. The vector a = {at} will be the unique fixed 
vector for P. Its components may be obtained from IX by simply 
adding the components corresponding to each set. Similarly we may 
define two-step transition probabilities by 

f.Pl jj = Pra[fn+z E Ajlfn EAt]. 

The two-step transition matrix will then be F(2) = {p(2){j}. It will no 
longer be true that P2 = P(2). 

We can also define the mean first passage matrix M for the lumped 
process. It cannot be obtained by our Markov chain formulas. To 
obtain M it is necessary first to find mi,A j , the mean time to go from 
state i to set Aj in the original process. We can do this by making 
all of the elements of Aj absorbing and find the mean time to absorp
tion. (A slight modification is necessary if i is in Ad From these 
we obtain the mean time to go from At to A j , by 

mij = 2: a*kmk,A,. 
kin Aj 

where a*k is the k-th component of ai . 

§ 6.5 Expanding a f¥larkov chain. In the last two sections we 
showed that under certain conditions a Markov chain would, by 
lumping states together, be reduced to a snmller chain which gave 
interesting information about the original chain. By this process we 
obtained a more manageable chain at the sacrifice of obtaining less 
precise information. In this section we shall show that it is possible 
to go in the other direction. That is, to obtain from a Markov chain 
a larger chain which gives more detailed information about the process 
being considered. We shall base the presentation on results obtained 
by S. Hudson in his senior thesis at Dartmouth College. 

Consider now a Markov chain with states 81, S2, ... , Sr- \Ve form 
a new Markov chain, called the expanded process, as follows. A state 
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A=({sl), {sz, sg, sq)). It is easily checked that  neither (3)  nor (4) is 
satisfied in the original process for this partition. 

We conclude with some remarks about a lumped process when the 
condition for weak lurnpability is not satisfied. We assume that  P is 
regular. Then if the process is started in equilibrium 

$tj = Br,[f%+~ E &Ifn E At] 

is the same for every n. Hence the matrix p~s={&~) may still be 
interpreted as a one-step transition matrix. Also 

is the same for all n. The vector &=(a^i) will be the unique fixed 
vector for p. I t s  components may be obtained from a by simply 
adding the ccmponents corresponding to  each set. Similarly we may 
define two-step transition probabilities by 

$(2)ir = Pr,[fn+z E E At]. 

The two-step transition matrix will then be p(2) =($(Z)tj). I t  will no 
longer be true that  p2= p(2). 

We can also define the mean first passage matrix J?l for the lumped 
process. It cannot be obtained by our Markov chain formulas. To 

obtain & i t  is necessary first to find m t , ~ , ,  the mean time to go from 
state i to set A$ in the original process. We can do this by making 
all of the elements of Aj absorbing and find the mean time to absorp- 
tion. (A slight modification is necessary if i is in Aj.) From these 
we obtain the mean time to go from Ai to A?, by 

mil = 2 a*kmk,A, 
k In A, 

where a*k is the k-th component of at. 

5 6.5 Expanding a arkov chain. I n  the last two sections we 
showed that  under certain conditions a Markov chain would, by 
lumping states together, be reduced to a smaller chain which gave 
interesting information about the original chain. By this process we 
obtained a more manageable chain a t  the sacrifice of obtaining less 
precise information. In this section we shall show that  i t  is possible 
to go in the other direction. That is, to obtain from a Markov chain 
a larger chain which gives more detailed information about the process 
being considered. We shall base the presentation on results obtained 
by S. Hudson in his senior thesis a t  Dartmouth College. 

Consider now a Markov chain with states sl, sz, . . . , s,. We form 
a new Markov chain, called the expanded process, as follows. A state 
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is a pair of states (st, sj) in the original chain, for which ptr >O. We 
denote these states by s(u,. Assume now that in the  original chain the 
transition from st t o  sj and from sj to si, occurs on two successive steps. 
We shall interpret this as a single step in the expanded process from 
the state s(tj, to the state stjx). With this convention, transition 
from state s(tjj to state s(k~, in the expanded process is possible only if 
j = k. Transition probabilities are given by 

5.1 EXAMPLE. Consider the Land of Oz example. The states 
for the expanded process are RE, RN, RS, NB, NS, SR, SN, SS. Note 
that  NN is not a state, since ~ N N  = 0 in the original process. The 
transition matrix for the expanded process is 

Let us first see how the classification of states for the expanded 
process compares with the original chain. We note that  p(n)(tj)(kl) = 
p(n-l)jkpkl> 0 if and only if p(n-l)jk > 0. Hence if the original chain is 
ergodic, so will the expanded process be, and if the original chain is of 
period cl, then the expanded chain will also be of period d, A state 
s(ej, in the expanded process is absorbing only if i = j and only if state 
sj is absorbing in the original chain. 

Assume that  the original chain is an absorbing chain. Let s(u, be 
a non-absorbing state in the expanded process. Since the original 
chain was absorbing, there must be an absorbing state sk such that  i t  
is possible to go from sj to sk. Thus i t  is possible to go from s(fj, to 
s{kk) in the expanded process. Thus the expanded process is also 
absorbing. 

I t  is interesting to observe that  from the expanded process we can 
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is a pair of states (Si' Sj) in the original chain, for which Pij>O. We 
denote these states by S(!j). Assume now that in the original chain the 
transition from SI to Sf and from Sf to Sk occurs on two successive steps. 
We shall interpret this as a single step in the expanded process from 
the state S (tj) to the state S(j}(). -With this convention, transition 
from state 8(/1) to state S(kl) in the expanded process is possible only if 
j = k. Transition probabilities are given by 

P(ii)(}l) = Pjl, 

P(ij)(kl) = 0 for j '* k. 
Or 

6.5.1 EXAMPLE. Consider the Land of Oz example. The states 
for the expanded process are RR, R!". RS, NR, NS, SR, SN, SS. Note 
that NN is not a state, since PUN = 0 in the original process. The 
transition matrix for the expanded process is 

RR RN RS NIt NS SR SN SS 

RR 1/2 1/4 1 .I ~ 0 0 0 0 

)'\ 
J" 

RN 0 0 0 1/2 1/2 0 0 

RS 0 0 0 0 0 1/4 1/4 
NR 1/2 1/4 1/4 0 0 0 0 

NS 0 0 0 0 0 1/4 1/4 1~2 r SR 1/2 l' 1/4 0 0 0 0 J 4 

SN 0 0 0 liz 1/2 0 0 

l~J SS 0 0 0 0 0 l' 1/4 i 4 

Let us first see how the classification of states for the expanded 
process compares with the original chain. We note that p(ll) (ij)(kl) = 

p(n-l)jkPkl > 0 if and only if p(n-l)jk > O. Henee if the original chain is 
ergodic, so will the expanded process be, and if the original chain is of 
period d, then the expanded chain will also be of period d. A state 
S(ij) in the expanded process is absorbing only if i =j and only if state 
Sj is absorbing in the original chain. 

Assume that the original chain is an absorbing chain. Let S(ij) be 
a non-absorbing state in the expanded process. Since the original 
chain was absorbing, there must be an absorbing state Sk ,mch that it 
is possible to go from Sf to Sk. Thus it is possible to go from 8(lj) to 
S(kk) in the expanded process. Thus the expanded process is also 
absorbing. 

It is interesting to observe that from the expanded process we can 
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go back to the original process by lumping states. For this we form 
the partition A={A1 ,  A t ,  . . . , A,) of the states in the extended chain, 
with Ai the set of all sta,tes of the form s ( k ~ .  Then the condition for 
lumping is that p ( k ~ ~ ,  should not depend on k. But this is true by 
the Markov property for the original chain. The lumped process is 
then the same as the original chain. I n  our example, the partition is 

A = {(BE, SIR, NR), (SN, RN), (RS, NS, SS)}. 

We next compare the basic quantities for our expanded process 
with the corresponding quantities for the original chain. We shall 
treat only the regular case. The okher cases may be treated similarly. 

6.5.2 THEOREM. Let a = {ac} be the fixed vector for a regular chain 
with transition matrix P. Let 8={a( i j ) )  be the fixed vector for the 
expanded chain. Then 

acrr) = aipu. 

PROOF. It is obvious that arpgj is positive. Also, 

Hence we need only prove that 8 = { ~ , ~ p i j }  is a fixed vector for the 
transition matrix for the expanded process. That is, 

In our example, this gives for the fixed vector 

Kote that the result we have proved is intuitively obvious, since acij, 
represents the probability that after a large number of steps the process 
will be in state si and then move to state s,. The probability that this 
will occur is clearly arpij. 

6.5.3 THEOREM. The funda.menta1 matrix for the expanded chain is  

We next consider the mean first passage times for the expanded 
process. 

PROOF. From the matrix expression for H in terms of the funda- 
mental matrix we have 

Again, as was to be expected, r n ( i j , ( k ~ )  does not depend on i. 
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go back to the original process by lumping states, For this we form 
the partition A = {Al, Az, . , . , Ar} of the states in the extended chain, 
with Ai the set of all states of the form 8(.1:1). Then the condition for 
lumping is that P(kl)A, should not depend on k. But this is true by 
the Markov property for the original chain. The lumped process is 
then the same as the original chain, In our example, the partition is 

A = {(RR, SR, NR), (SN, RN), (RS, NS, SS)}. 

\Ve next compare the basic quantities for our expanded process 
with the corresponding quantities for the original chain. "Ve shall 
treat only the regular case. The other cases may be treated similarly. 

6.5.2 THEOREM. Let a = {at} be the fixed vector for a regular chain 
with transition matrix P. Let a={a(/j)} be the fixed vector for the 
expanded chain. Then 

at/f) = alplj. 

PROOF. It is obvious that a/Plj is positi\·e. Also, 

2: a(jj} = 2: a/pi} = 2: aj = 1. 
(iiI i,j j 

Hence we need only prove that a = {a'IPif} is a fixed vector for the 
transition matrix for the expanded process. That is, 

But 

2: a(lf)p(ij) (kl) = a(kl). 
(ij) 

2: a(lj)p(/f) (kl) = 2: a,p1lPlldjk 
(ij) i, j 

== 2: ajpj1djk 
) 

= akPlc1 

= a(kl)' 

In ou'r example, this gives for the fixed vector 

a = (.2, .1, .1, .1, .1, .1, .1, .2). 

Note that the result we have proved is intuitively obviou~, since a(jj) 

represents the probability that after a large number of steps the process 
will be in state s, and then move to state Sj. The probability that this 
will occur is clearly ajp!!. 

6.5.3 THEORE:'L The fundamental matrix for the expanded chain is 

2 = {Z(tj)(kl)} = {d(ij)(kl) + (Zjk-ak)Pkl}. 
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Hence we need only prove that 8 = { ~ , ~ p i j }  is a fixed vector for the 
transition matrix for the expanded process. That is, 

In our example, this gives for the fixed vector 

Kote that the result we have proved is intuitively obvious, since acij, 
represents the probability that after a large number of steps the process 
will be in state si and then move to state s,. The probability that this 
will occur is clearly arpij. 

6.5.3 THEOREM. The funda.menta1 matrix for the expanded chain is  

We next consider the mean first passage times for the expanded 
process. 

PROOF. From the matrix expression for H in terms of the funda- 
mental matrix we have 

Again, as was to be expected, r n ( i j , ( k ~ )  does not depend on i. 
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PROOF. 

'" 
Z(/i) (kl) = dO}) (.1:1) + L (p(n) (4j)(k1) - a(kl») 

n~l 

00 

== dlljl(k!) + 2: (p(n-l)jkPkl - akPkt) 
,,-1 

00 

= d(jj)(kl) + Pk1 2: (p(n)jk-ak) 
n-O 

= dW)(kl) + PkZ(Zjk - Ok)' 

For our example 

RR RN RS NR NS sa SN S8 

RR /1.373 .181 .187 - .OSO -.080 -.147 - .1<11 -.293 

RN -.160 .920 -.080 .320 .320 -.080 -.080 -.160 

RS -.293 - .147 .853 -.080 -.080 .187 .187 .373 

Z= 
NR .373 .187 .187 .920 -.080 - .147 -.147 -.293 

NS - .293 -.147 -.147 -.080 .920 .187 .187 .373 

SR .373 .187 .187 - .080 -.080 .853 -.147 -.293 

SN - .160 -.080 -.080 .320 .320 - .080 .920 -.160 

S8 - .293 - .147 -.147 -.080 - .080 .187 .187 1.373 

We next consider the mean first passage times for the expanded 
process. 

6.5.4 THEOREM. 

1 (Zjk-Zl/;') 
m(lj)(.~I) = -- - "-'----' 

OkP};! ak 

PROOF. From the matrix expression for J1 in terms of the funda
mental matrix we have 

1n(/j) (kl) 
. 1 

= (d(ll)«!) - Z{ii)(kl) + Z(k!) (kl») -
a(};I) 

= [d(j1J (k1) - Pkl(Zjk - ak) 

= [1-Pk/(2Jk- ZIli:)]_1-
O"Pkl 

= _1 __ (Zjk-Zlk). 

OkPki ak 

Again, as was to be expected, m(I!)(k/) does not depend on i. 
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For our example, we obtain 

I n  comparison, the mean first passage matrix for the original chain is 

R N S  
R / 2 . 5  4 3.3\ 

Consider next the reverse transition matrix for the expanded pro- 
cess. The transition probabilities are 

Hence 

and 

Hence the reverse process for the expanded process is simply the 
reverse process for the original chain expanded. 

One application of the expanded process is the following: I t  often 
happens that  the transitiorl matrix P for a chain is not known and 
must be estimated from data. If a large number n of outcomes for 
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the process are known, then an obvious estimate is 

where y(n)ir is the number of transitions from state si to state s f ,  and 
ycn)i is the number of times the process is in state sf. To study the 
properties of this estimate i t  is necessary to study the properties of 
y(*)ii an3 y(n)t  for a Markov chain. In particular, the limiting vari- 
ances and covariances for these quantities are important. We know 
that  we can obtain the limiting covariances for y(n) t ,  y (n ) j  from the 
fundamental matrix for the basic chain. But how do we obtain the 
limiting covariances for y(n) ( i j ) ,  y  ( n )  ? We simply observe that  these 
are the limiting covariances for the number of times in a pair of states 
for the expanded chain. Hence we can express these covariances in 
terms of 2 and & for the expanded process. We can then use Theorems 
6.5.2, 6.5.3 to express the limiting covariances in terms .of quantities 
relating to the original chain. Carrying out this computation gives : 

.5.5 THEOREM. The lim,iting cocariances for the expanded chains 
are given by 

For our example these covariances are 

Exercises for Chapter VI 

1. Consider Example .7 with p = ' 1 2 .  Assume that the process is observed 
only when it is in  the set jsz, s3, s4). Find t,he resuking transition matrix. 
Find M for the new process. What do the entries of M mean in terms of the 
original chain? 
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For our example, we obtain 

RR RN RS NR NS SR SN SS 
RR 5 7 1/3 62/ 3 10 10 10 102/3 81/ 3\ 

RN 7 2/3 10 91/3 6 6 [)l; 3 10 ~2! --
J ,,3 

RS 81! 3 102/3 10 10 10 G2/s 71/3 5 

if = 
NR 5 7 1/3 6 2/3 10 10 10 102/ 3 8 1 ' .3 

NS 81/3 102/ 3 10 10 10 G2/3 71/3 5 

SR 5 71/3 6 2/ 3 10 10 10 102,3 81/3 
SN 7 2/3 10 9 1/ 3 6 6 9 1/3 10 72/a 

SS 81/ 3 102/3 10 10 IO 6 2 / 3 7 1 / 3 5 

In comparison, the mean first passage matrix for the original chain is 

R N S 

R 

C' 
4 

~~) M = N 2.7 5 
;.~ . 

S 3.3 4 

Consider next the reverse transition matrix for the expanded pro
_ cess. The transition probabilities are 

Hence 

and 

(1 (kl)P(kl) (ii) 

alii) 

P(ij)(kl) = 0 if i =I 

P(ii) (ki\ 
a(ki)p (tt) (i}) 

alii) 

(liPi} 

= (1kPki 

(Ii 

= Pik. 
Hence the reverse process for the expanded process is simply the 
reverse process for the original chain expanded. 

One application of the expanded process is the following: It often 
happens that the transition matri x P for a chain is not known and 
must be estimated from data. If a large number n of outcomes for 

I 
I 
f 
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cess. The transition probabilities are 

Hence 

and 

Hence the reverse process for the expanded process is simply the 
reverse process for the original chain expanded. 

One application of the expanded process is the following: I t  often 
happens that  the transitiorl matrix P for a chain is not known and 
must be estimated from data. If a large number n of outcomes for 
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the process are known, then an obvious estimate is 

where y(n)ir is the number of transitions from state si to state s f ,  and 
ycn)i is the number of times the process is in state sf. To study the 
properties of this estimate i t  is necessary to study the properties of 
y(*)ii an3 y(n)t  for a Markov chain. In particular, the limiting vari- 
ances and covariances for these quantities are important. We know 
that  we can obtain the limiting covariances for y(n) t ,  y (n ) j  from the 
fundamental matrix for the basic chain. But how do we obtain the 
limiting covariances for y(n) ( i j ) ,  y  ( n )  ? We simply observe that  these 
are the limiting covariances for the number of times in a pair of states 
for the expanded chain. Hence we can express these covariances in 
terms of 2 and & for the expanded process. We can then use Theorems 
6.5.2, 6.5.3 to express the limiting covariances in terms .of quantities 
relating to the original chain. Carrying out this computation gives : 

.5.5 THEOREM. The lim,iting cocariances for the expanded chains 
are given by 

For our example these covariances are 

Exercises for Chapter VI 

1. Consider Example .7 with p = ' 1 2 .  Assume that the process is observed 
only when it is in  the set jsz, s3, s4). Find t,he resuking transition matrix. 
Find M for the new process. What do the entries of M mean in terms of the 
original chain? 
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the process are known, then an obvious estimate is 

yin),} 

Pii = yin), 

where y(n)j} is the number of transitions from state Si to state Sf, and 
yin>; is the number of times the process is in state St. To study the 
properties of this estimate it is necessary to study the properties of 
y(n)i} and yin)! for a Markov chain. In particular, the limiting vari
ances and eovariances for these quantities are important. 'Ve know 
that we can obtain the limiting eovariances for y(n)j, y(n)j from the 
fundamental matrix for the basic chain. But how do we obtain the 
limiting covariances for y(n)(!j) , y(n)(k/) 1 'Ve simply observe that these 
are the limiting eovada.nees for the number of times in a pair of states 
for the expanded chain. Hence we can express these covarianees in 
terms of Z and Q. for the expanded process. We ca·n then use Theorems 
6.5.2, 6.5.3 to express the limiting covariances in terms 'of quantities 
relating to the original chain. Carrying out. this computation gives: 

6.5.5 THEORE;\1. The limiting Cl)varianc(;s for the expanded chains 
ai'e given by 

I 
C(lt) (kl) = aipijplcZZjk -;- a.'cpkZpijZZi + akPkZd(ij)(kl) - 3atPijaIcPk/. 

For our example these covariances are 

c = 

.300 

.001 

.001 - .012 .001 - .065 - .01:2 - .065 - .157 

.074 - .033 - .041 .007 .001 - .026 - .065 

- .012 - .033 .061 

.001 

.001 - .033 .027 .001 - .012 

.007 - .065 .001 

- .065 

-.012 

-.065 

- .157 

.041 

.007 

.001 

.026 

.06:3 

.074 - .026 - .033 

- .033 -.OZ(i .074 .001 

O·)~ . _I - .033 .001 .061 

.001 .007 .041 - .033 

- .012 - .06:') .001 - .01:2 

Exercises for Chapter VI 

For S 5.1 

.041 .001 

- .033 - .012 

.074 .001 

.OOJ .309 

1. Consider Example 2 with p = 1/2. Assume that the process is observed 
only when it is in the set {52. 53, 54}. Find t.he resulting transition matrix. 
Find }v! for the new process. What do the entries of }r[ mean in t.erms of the 
original chain~ 
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2. The following table gives the probability of a team ending up in a 
certain p~s i t~ ion  next year, given what its posttion is this year. For each 
position in title second division, calculate the mean number of years to  reach 
the first division. 

1 1  2 3 4 5 6 7 8 1  

3. Consider a chain with a single ergodic set, which has transient states. 
Let si be a transient state and sf a n  ergodic state. Let fj be the time required 

to reach sf, g the first ergodic state reached and t the time required to  reach 
the ergodic set. Then 

Mdfjl = 
si ergodic 

Use this result to  find, for Example 4 with ~ = 2 / ~ ,  the mean time to reach 
state sl for the first time starting in state ss. 

4. It is raining in the Land of Oz. Find the mean number of days until 
each kind of weather has occurred a t  least once. 

5. Prove that  when a process is observed only when in a subset of an 
ergodic chain, the resulting process is also an ergodic chain. 

For $ 6.2 

6. Find the mean number of rainy days between nice days in the Land of 
02. 

7. For the Markov chain in Exercise 2 of Chapter I I ,  assume that when the 
duel ends a new duel is started. Find the fixed vector for the resulting chain. 
Use this to  determine the absorption probabilities and the mean number of 
times in each state for the original chain. 

8. Consider the chain with transition matrix 

s1 sz s3 

Find the fundamental matrix Z by making state sl into an absorbing state, 
calculating N ,  and using the result of Theorem 6.2.5.  Find mlz t m z l  by 
using Corollary 6.2.7. 

9. From 6.2.5 deduce the identity 
I - A = ( I - P ) N * ( I - A ) .  
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10. For Exaiuple 2 with p = 112, which of the following partitions produces 
a Markov chain when lumped ? 

(8) A = ({slr ~ 3 ,  ~ j ) ,  ( ~ 2 ,  ~4) ) .  
(b) B = (@I, 951, {SZ, ~41, b3)). 
Which produce Markov chains if p + 1 
11. Show that  Example 3(a) is lumpable with respect to  the partition 

A =({sl, ss), {sz, s4), (~3)).  Find the fundamental matrix for the Iumped 
chain from the fundamental matrix for the original chain (see $4.7). 

12. Find a three-cell partition which makes Example 6 lurnpa,ble. 
13. Let P be the transition matrix of an independent trials chain and a be 

any number with O<a< l. Show that Pr=aP)+  (1 -a ) I  is lumpable with 
respect to  any partition. 

14. Show that  Example 12 is lumpable with respect to the partition 
A = ((slsl, szs& (S~SZ, SZSZ)). NOW is the resulting 'c., rmsition matrix related 
to the two-state chain which determined the four-state chain? 

16. Prove that for a lumpable ergodic chain, & = a  V .  
16. Give an example of a Xarkov chain which is not itself a n  independent 

trials chain, but which can be lumped to an independent trials chain. Check your answer by computing Z and U Z V .  

For 3 6.4 
17. Show that the Markov chain with transition matrix 

is weakly lumpable, but not lumpable, with respect, to  A=({sl), isz, ss}). 
Find the transition matrix for the lumped process. Show that  the reverse 
process is lumpable. 

18. Show that the Markov chain with transition matrix 

is weakly lumpable with respect t o  (isl, sg, s3), (s4, ~$1). 

19. For the Land of Oz example, Pet Al = {R, N) and .A2 =IS). Compute 
r,[fi E -4llfi E -411 and Pa,[& e AIJP; E Al A fo E All.  Use the result to show 

that the chain is not weakly lumpable with respect to  A =  (A1, Az). 
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2. The following table gives the probability of a team ending up in a 
certain pOflition next year, given what its position is this year. For each 
position in tile second division, calculate the mean number of years to reach 
the first division. 

; 1 2 3 4 5 6 7 81 

PST 1.3 .3 .3 .1 0 0 0 0 I FIRST DIVISlO N ~ 2ND 1.1 .2 .2 .2 .2 .1 0 0 
3RD .1 .1 .2 .2 .1 .1 .1 .1 

',4TH. 0 .1 .1 .2 .2 .2 .1 .1 

f5TH I 0 
.05 .05 .2 .3 .2 .1 .1 

SECOND DIVISION 
6TH 0 0 .1 .1 .2 .3 .2 .1 

17TH. 0 0 0 0 .1 .3 .3 .3 
LSTH I 0 0 0 0 .1 .2 .4 .3 

3. Consider a chain with a single ergodic set, which has transient states. 
Let 81 be a transient state and s, an ergodic state. Let fj be the time required 
to reach s1, g the first ergodic state reached and t the time required to reach 
the ergodic set. Then 

Mj[fj] = ') Pr,[g = sk][MAf,]+M/[t]g = Sk]J. 
811: e;gOdlc 

Use this result to find, for Example 4 with p = 2/3, the mean time to reach 

state 81 for the first time starting in state 53. 

4. It is raining in the Land of Oz. Find the mean number of days until 
each kind of weather has occurred at least once. 

5. Prove that when a process is observed only when in a subset of an 
ergodic chain, the resulting process is also an ergodic chain. 

For § 6.2 

6. Find the mean number of rainy days between nice days in the Land of 
Oz. 

7. For the Markov chain in Exercise 2 of Chapter II, assume that when the 
duel ends a new duel is started. Find the fixed vector for the resulting chain. 
Use this to determine the absorption probabilities and the mean number of 
times in each state for the original chain. 

8. Consider the chain with transition matrix 

51 52 S3 

P =:: (1~4 ~ 3~4)' 
83 0 1 0 

Find the fundamental matrix Z by making state 51 into an absorbing state, 
calculating N, and using the result of Theorem 6.2.5. Find m12+m;n by 
using Corollary 6.2.7. 

9. From 6.2.5 deduce the identity 
I -A = (I - P)N*(1 -A). 

, 
I 
( 
! 

I 
f 
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respect to  any partition. 

14. Show that  Example 12 is lumpable with respect to the partition 
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to the two-state chain which determined the four-state chain? 
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16. Give an example of a Xarkov chain which is not itself a n  independent 
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For 3 6.4 
17. Show that the Markov chain with transition matrix 

is weakly lumpable, but not lumpable, with respect, to  A=({sl), isz, ss}). 
Find the transition matrix for the lumped process. Show that  the reverse 
process is lumpable. 
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For § 6.3 

10. For Example 2 with p = 1/2, which of the following partitions produces 
a Markov chain when lumped! 

(a) A = ({SI' 53, S5}, {S2,54})' 

(b) B = ({51, S5}, {Sz, S4}, {S3})' 
Which produce Markov chains if p4=-lj2? 

11. Show that Example 3 (a) is lump able with respect to the partition 
A = ({51, 55}, {S2' S4}, {53}). Find the fundamental matrix for the lumped 
chain from the fundamental matrix for the original chain (see § 4.7). 

12. Find a three-cell partition which makes Example 61umpable. 

13. Let P be the transition matrix of an independent trials chain a"d a be 
any number with O<a<l. Show that P'=aP+(l-a)] islumpable with 
respect to any partition. 

14. Show that Example 12 is lumpabJe with respect to the partition 
A = ({S1SI, S2SI}, {SlS2, szsz}). How is the resulting transition matrix related 
to the two-state chain which determined the four-state chain 2 

15. Prove that for a lump able ergodic chain, a=a V. 
16. Give an example of a Markov chain which is not itself an independent 

trials chain, but which can be lumped to an independent trials chain. Check 
your answer by computing Z and UZV. 

For § 6.4 

17. Show that the Markov chain with transition matrix 

Sl (1/2 1/4 1/4) 
S2 1/2 1/2 0 

s3 \ 0 1/4 3/4 

is weakly lumpable, but not lumpable, with respect to A = ({51}, {S2, 53})' 
Find the transition m«trix for the lumped process. Show that the reverse 
process is lumpable. 

18. Show that the .Markov chain with transition matrix 

:: ( ~0/4 
P = 83 

84 1/16 

85 lIs 

l/S 5/s 

o 

o 1/3 

is weakly lumpable with respect to ([51, 82, S3}, {S4, S5}). 

19. For the Land of Oz example, let A1={R, N} and A2={S}, Compute 
Pr.[f2 E A11fl E Al] and Pra [f2 E AII!'l E Al Afo E AI]. Use the result to show 
that the chain is not weakly lumpable wit,h respect to A = (AI, A2). 
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20. Prove that if P is lumpable with respect to a given partition, and if P 
has column sums 1, then PT is weakly lumpable with respect to the same 
partition. 

21. A coin is tossed a sequence of times. Represent this as a two-state 
Markov chain. Form the expanded process. Find M and H z  for the 
expanded chain. Interpret the diagonal entries in terms of the original 
chain. 

22. Let P be the transition matrix of an independent trials chain. Find 
formulas for Z and M of the expanded chain. Check the latter against 
Exercise 21. 

23. Let P be the transition matrix of an independent trials chain. Find 
a formula for the limiting covariances of the expanded chain. [HIXT: 
Write the formula in the form akaL( . . . ).I Use this formula to compute 
the limiting covariances in Exercise 21. 

e will consider four simple, related random 
walks. The first three are walks on a line, with states 0, 1, . . . , n :  

0 1 2  i-1 i i+l n - l  n 

I n  each of the first three types of random walks we have probabiliby p 
of moving to  the right (from i to i + 1) and probability q of moving to  
the left (from i to  i - I ) ,  for states i = 1, 2, . . . , n - l. The three types 
differ in their behavior at the "boundaries," 0 and n. 

AARW: A random walk having both 0 and n as absorbing states. 
APRW : A random walk having 0 as an  

absorbing state, while n is "partially re- 
flecting." That  is, a t  n it moves back t o  
n- l with probability q and stays a t  n 
with probability p. 

P P R W :  A random walk partially re- 
flecting a t  both boundaries. That  is it is 
like ABRW a,t n, and a t  0 i t  moves to  1 
with probability p and stays a t  0 with 
probability q .  

The fourth random walk will move 
on a circle, with states numbered 1, 2 .  FIGURE 7-2 

. . . , n, as in Figure 7-2. 

CRW: The process moves on the circle, taking one step clockwise 
with probability p, and counterclockwise with probability g. 
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CHAPTER VII 

APPLICATIONS OF MARKOV CHAINS 

§ 7.1 
walks. 

Random walks. vVe will consider four simple, related random 
The first three are v;alks on a line, with states 0, I, ... , n: 

I 
o 2 i-I i i+l n-l n 

FIGURE 7·1 

In each of the first three types of random walks we have probability p 
of moving to the right (from i toi + 1) and probability q of moving to 
the left (from i to i-I), for states i = 1, 2, ... , n - 1. The three types 
differ in their behavior at the "boundaries," 0 and n. 

AAR'V: A random walk having both 0 and n as absorbing states. 
APRW: A random w2.lk having 0 as an 

absorLing state, while n is "partially re
flecting." That is, at n it moves back to 
n-1 with probability q and stays at n 
with probability p. 

PPRW: A random walk partially re
flecting at both boundaries. That is it is 
like APlnV at n, and at 0 it moves to 1 
with probability p and stays at 0 with 
probability q. 

The fourth random walk will move 
on a circle, with states numbered 1, 2, 
... , n, as in Figure 7·2. 

3 

i+1 p 

FIGURE 7·2 

CR\V: The process moves on the circle, taking one step clockwise 
with probability p, and counterclockwise with probability q. 

14\l 
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We wid illustrate each of these random walks for n= 5. Since the 
behavior is often quite different forp = 112 than for any other p-value, we 
will carry out the illustration for both p = l / z  and p = 213.  Then we wiU 
solve each random walk. It will be convenient to let T stand for plq. 

Let us first consider AARW. This is an absorbing chain with two 
absorbing states 0 and n. 

AARW for n=5 ,  p="z 

0 5 

B = 

AARW for n = 5, p = 213 

Ssc. I APPLICATIONS OF MARKOV CRAINS l5l 

/45 42 36 24\ 

1 
The matrix I - Q has the form 

when n = 5 .  In  general it has entries ~ $ 1  (i, j= 1 ,  2 ,  . . . , n- 1) which 
are 0 except that 811 = 1, sf-1,j = --p, s j + ~ , f  = - q. We note from the 
numerical examples that the entries of N decrease on both sides of the 
diagonal. N will have the form 

except where p = 112,  here the solution simplifies to 

Let us verify the solution for p# l/z, by computing f l ( 1 - & I .  I ts  
i,j-th entry is 

We recall that s k j  # 0 only for k = j - l, j, j t 1. Suppose that j < i. 
Then all terms in the second sum are 0. The first snm simplifies to 
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We will illustrate each of these random walks for n = 5. Since the 
behavior is often quite different for p = 1/2 than for any other p-value, we 
will carry out the illustration for both p = 1/2 and p = 2/3. Then we will 
solve each random walk. It will be convenient to let r stand for p/q. 

Let us first consider AARW. This is an absorbing chain with two 
absorbing states 0 and n. 

AARW for n=5, p= 1/2 

p= 

o 
5 

1 

2 

3 

4 

o 5 1 234 

1 0 0 0 0 0 

o 1 0 0 0 0 

o 1/2 0 0 

1/2 0 1/2 0 

o 1/2 0 1/2 
o 0 1/2 0 

o 

1 (.8 
2 .6 

B= 
3 .4 

4 .2 

5 

.2) .4 

.6 

.8 

AARW for n=5, p=2/a 

o 5 

o 
1 

1 

o 
o 

2 

o 
o 

3 

o 
o 

4 

o 
o 

o 
5 

1 

2 
p= 

3 

4 

1 

o 

l/a 

o 
o 
o 

o 
o 
o 

2/3 

o 0 

2/3 0 

o 2/3 
1/3 0 
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C 
42 36 

24) 21 63 54 36 
N = 1/31 : 27 63 42 

9 21 45 

0 5 

C) n 16) 1 

174 24 2 
T = 1/31 B = 1/31 

28 3 141 

78 30 4 

The matrix 1-Q has the form 

( I 

-p 0 

-D 
-q 1 -p 

I-Q = ~ -q 1 

0 -q 

when n= 5. In general it has entries 811 (i,j = 1,2, ... , n -1) which 
are 0 except that 8jj= 1, 8j-1.1= -p, 81+1,j= -q. We note from the 
numerical examples that the entries of N decrease on both sides of the 
diagonal. N will have the form . 

1 {(ri-l)(rn-l-l) 
n1 = . i (p-q)(rn-l) (r'-I)(rn-i-ri-i) 

except where p = 1/2, here the solution simplifies to 

2 {j(n-i) ifj ~ i 
nil = ii' i(n-j) ifj ~ i. 

ifj ~ i 
ifj ~ i 

(1) 

(2) 

Let us verify the solution for P'j61/z, by computing N(I -Q). Its 
i,j-th entry is 

1 [±(rk-l)(rn-i-I)8kJ+ nil (ri-l)(rn-i-rk-i)8kJ]' 
(p-q)(rn-l) k=l k=i+1 

We recall that 8wl: 0 only for k = j - 1, j, j + 1. Suppose that j < i. 
Then all terms in the second sum are O. The first sum simplifies to 

rn-i-l 
(p _ q)(rn _ I) [(rf-l-l)( - p) + (rl - 1)( I) + (r1+L 1)( - q)] 

= (p~nq~j(::~ 1) [rl( -~ + l-rq) + (p-l +q)] = O. 
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The answer for j > i  is also 0. Hence all off-diagonal entries are 0. 
Let us compute the three non-zero terms for the i,i-th entry. 

Thus N = (I - & ) - I  as required. 
The solution for p=l12 may be verified similarly. We can also 

obtain i t  by a limit process from the general solution: We write p - q  
as q(r  - I) ,  and we let q-+l /e ,  r-1. 

Let us next compute 7. 

(n - i -  1)rn-i- 

Or more simply, 

An interesting question to consider is finding the maximum value 
of ti.  For p=l12 we see that  ti increases till the middle, and then 
decreases symmetrically. If n is even, the mid-point i =n/2 yields 
t i =  (n,'2)2. For the general case we can write down the ratio of two 
terms, and find the value of i for which this ratio is one. This will not 
vield an integer in general, but the i nearest will give a maximum. 
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We find the approximate solution 

If p > q ,  tha t  is r > I ,  then the resulting tma, is of the order of magnitude 
of (n  - i ) p  - q )  Thus we see that  if p # 112 the absorption time is 
of a lower order of magnitude for large n than for p = ' I z .  For example, 
if p = 2/,, and hence r = 2, imax = logen, and tmaX is about 3(n - logzn) 
for large n. For the very small n=5 of our example im,= 2.3, and 
i =  2 is the mavimurn point, but the value t,,, obtained is too large 
for so small an n. 

Finally, we shall compute B. I t  is sufficient to find bin, since 
bio = 1 -bin. We note that  ri, is 0 except for rn-l,, =p. 

Hence 

Similarly, 
Din = i,'n if p = l j z .  ( 6 )  

For p = the solution is very intuitive. The probability of ending 
up a t  the right-hand boundary is proportional to the original distance 
from the left-hand boundary. But the solution for p # has some 
surprising features. Let us study the case p > 1 1 2 ,  that  is r > 1.  We 
find that  for a given starting position i the probability of ending up a t  
n is not negligible for any n. Indeed, if we keep i fixed and let n 
tend to infinity, b i ,  approaches the limit I-+. If i is fairly large 
this probability will be close to 1 no matter how large n is! Even 
for i = 1 we have a probability ( r  - l ) / r  of ending up a t  n. The absosp- 
tion time in this case is about n/p, surprisingly small. For p = 213 

this probability is l iz .  This means that  if p = 2/3  we may put the right- 
hand boundary n as far out as we wish, start the process a t  i =  1, 
and still have a better than even chance of ending up a t  n rather 
than a t  0. 

This particular random wa.lk is often referred to as "gambler's 
ruin:" We may think of two men playing a certain game repeatedly 
in which player A has probability p of winning. Let i dollars be his 
original capital, n-i  the fortune of his opponent, and assume that  1 
d o l l .  4s bet each time. Then A's fortune carries out the random 
walk AARW with the given p. Absorption a t  n means that  A ends 
up with all the money, while absorption a t  0 means that  he is ruined. 
We see that  for a fair game (p = 112) the probability of ruin is equal to 
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The answer for j >i is also O. Hence all off-diagonal entries are O. 
Let us compute the three non-zero terms for the i,i-th entry. 

1 [(rl-I- l)(rn-t-l)(-p)+(ri-l)(rn-i-l)(l) 
(p - q)(rn - 1) 

+ (rL l)(rn - i - r)( - q)] 

1 lrn(-Z':+l-q)+rn-t(p-l+q) 
(p - q) (rn - 1) L r 

rn(p-q)+(q-p) 

(p-q)(rn-l) 
1. 

Thus N = (l-Q)-l as required. 
The solution for p = 1/2 may be verified similarly. We can also 

obtain it by a limit process from the general solution: We write p-q 
as q(r-l), and we let q-;.1/2, r-;.l. 

Let us next compute T. 

n-l 
tt = 2: nti = --.,.---~ 

j=l (p-q)(rn-l) 

(n - i)l" - nrn - l + i 
(p-q)(rn-l) 

Or more simply, 

Similarly, 

[ i (ri - I )(r"-t - 1) +. ni,l (ri - 1 )(rn- i 
)=1 J=~+l 

ii = i(n-i) if p = 1/2. 

(3) 

(4) 

An interesting question to consider is finding the maximum value 
of /·i. For p = 1/2 we see thctt Ii increases till the middle, and then 
decreases symmetrically. If n is even, the mid-point i = n'2 yields 
ti = (n/2)2. For the general case we can write down the ratio of two 
terms, and find the value of i for which this ratio is one. This will not 
yield an integer in general, but the i nearest will give a maximum. 
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Similarly, 
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For p = the solution is very intuitive. The probability of ending 
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hand boundary n as far out as we wish, start the process a t  i =  1, 
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This particular random wa.lk is often referred to as "gambler's 
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'.Ve find the i"pproximate solution 

i max = logr((r-l)n). 

If p > q, that is r> 1, then the resulting tmax is of the order of magnitude 
of (n - imax)/(p - q). Thus we see that if p # 1/2 the absorption time is 
of a lower order of magnitude for large n than for p = 1/2. For example, 
if p and hence r = 2, i max = logzn, and tmax is about 3(n -log2n) 
for large n. For thc ycry small n= 5 of our example i max = 2.3, and 
t 2 is the ma~'imum point, but the value tmax obtained is too large 
for so small an n. 

Finally, we shall compute B. It is sufficient to find bin, since 
bto = I - bin. IVe note that rin is 0 except for Tn-l,n = p. 

Hence 

n-] 

bin = L narkn 
k~l 

Similarly. 

(p-q)(rn-l) 

if P =f. 1 (5) 

if P = 1;2. (6) 

For p = the solution is very intuitive. The probability of ending 
up at the right-hand bounda,ry is proportional to the original distance 
from the left-h;lIld boundary. But the solution for p =f. has some 
surprising features. Let us study the case p> that is r> 1. vVe 
find that for a giyen starting positioni the probability of ending up at 
n is not negligible for any n. Indeed, if we keep ~. fixed and let n 
tend to infinity, bin approaches the limit 1- r- t . Hi is fairly large 
this probability will be close to 1 no matter how large n is! Even 
fori = 1 we have a probability (r - 1 of ending up at n. The absorp
tion time in this case is about nip, surprisingly smalL For 1) = 2/3 
this pro bability is This means that if p = 2! 3 we may put the right
hand boundary n as far out as we wish, start the process at i = 1, 
and still have a better than enoll chance of ending up at n r,.ther 
than at O. 

This particular randorn \valk is often referred to as "ganlbler's 
ruin:" v\' e may think of tv;o men playing a certain game repeatedly 
in which player A hels p of winning. Let i dollars be his 
original capital, n - i the fortune of his opponent, and assume that 1 
dolh" ~s bet each tinl(~. T'hf~n ... 4 1S fortune ca.rries out the random 
v;:alk AAR\V with the given p. Absorption at n means that A ends 
up with all the money, 'while absorption at 0 means that he is ruined. 
\Ve see that for a fair game (p = 1 the probability of ruin is equal to 



154 FINITE MARKOV CHAINS CHAP. VII  

the fraction of the two fortunes held by the opponent. But the nature 
of the solution changes drastically if player A has an advantage in 
the game. I n  this case he has a good chance of winning out even if his 
opponent has a much greater capital. For example, if he has p= z13,  
that  is r= 2 (meaning the odds are 2 :  1 in his favor), then he has a 
better than even chance of ruining a rich opponent even if he has only 
1 dollar to start with! 

We will briefly mention two applications of this result. First of 
all, gambling houses can exist due to it.  They fix the odds so that  
r >  I .  Then by making sure that  their original capital i is large 
enough (measured in terms of the size of one wager), they will have 
probability I - r - f ,  very near to 1, of staying in business no matter 
how much is bet a t  their gambling tables. We also see that  the 
absorption time is enormous, which is the reason that gambling houses 
have not yet acquired all the money in the world. For r near to  1, 
(3) is roughly equal to (4).  We may estimate, very conservatively, 
t ha t  the  gambling house can cover 10,000 bets, while the gamblers 
can provide 1,000,000 bets. Then i(n - i) is about 1010, which would 
put the absorption time into thousands of years. This leaves ample 
opportunity for the  raising of new gamblers. 

A second application is to  a simple model for the p~inciple of natural 
selection in the theory of evolution. Suppose that  on an  isolated 
island the population of some species is fixed a t  n by the supply of 
food. Let us suppose that  a mutant is born with a slightly better 
chance of survival than the regular member of the species. A simple 
model of the struggle for survival is given by assuming that  in each 
generation the mutants gain one place with probability p >  112 or lose 
one place with probability q. We then know that  the mutants have 
probability of more than ( r -  I ) / r  of taking over the island. If p =  5 1 ,  
this probability is .04; if p= .6, the probability is 113. Hence we see 
that  relatively minor advantages can result in the survival of the 
mutants. 

While this simple model serves to illustrate how mutants may take 
, over a large species, the estimate for the absorption time is unrealistic. 

Even for p=.6 and n as small as 100 we obtain nip or about 167 
generations before the mutants take over. This brings out the 
unrealistic nature of the assumption that  only one place is changed in 
each generation. For a realistic time for absorption we need a more 
sophisticated model. 

We will now show that  the solutions for the other three random 
walks may be obtained from AARW by various tricks. Let us first 
illustrate APRW for n = 5. 

APPLICATIONS O F  155 

3 6 12 24 48 

3 9 18 36 72 

3 9 21 42 84 

3 9 21 45 90 

3 9 21 45 93 

The N matrix for APE 
$be following observations. Consider i >j. If  t h e  process 
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the fraction of the two fortunes held by the opponent. But the nature 
of the solution changes drastically if player A has an advantage in 
the game. In this case he has a good chance of winning out even if his 
opponent has a much greater capital. For example, if he has p = 2/3, 
that is r= 2 (meaning the odds are 2: 1 in his favor). then he has a 
better than even chance of ruining a rich opponent even if he has only 
1 dollar to start with! 

We will briefly mention two applications of this result. First of 
all, gambling houses can exist due to it. They fix the odds so that 
r> 1. Then by making sure that their original capital i is large 
enough (measured in terms of the size of one wager), they will have 
probability l-r- i , very near to 1, of staying in business no matter 
how much is bet at their gambling tables. We also see that the 
absorption time is enormous, which is the reason that gambling houses 
have not yet acquired all the money in the world. For r near to 1, 
(3) is roughly equal to (4). We may estimate, very conservatively, 
that the gambling house can cover 10,000 bets, while the gamblers 
can provide 1,000,000 bets. Then i(n-i) is about 1010; which would 
put the absorption time into thousands of years. This leaves ample 
opportunity for the raising of new gamblers. 

A second application is to a simple model for the principle of natural 
selection in the theory of evolution. Suppose that on an isolated 
island the population of some species is fixed at n by the supply of 
food. Let us suppose that a mutant is born with a slightly better 
chance of survival than the regular member of the species. A simple 
model of the struggle for survival is given by assuming that in each 
generation the mutants gElin one place with probability p> 1/2 or lose 
one place with probability q. We then know that the mutants have 
probability of more than (r-1 of taking over the island. Ifp=.51, 
this probability is .04; if p= .6, the probability is 1/3, Hence we see 
that relatively minor advantages can result in the survival of the 
mutants. 

While this simple model serves to illustrate how mutants may take 
over a large species, the estimate for the absorption time is unrealistic. 
Even for p=.6 and n as small as 100 we obtain or about 167 
generations before the mutants take over. This brings out the 
unrealistic nature of the assumption that only one place is changed in 
each generation. For a realistic time for absorption we need a more 
sophisticated model. 

We will now show that the solutions for the other three randor:1 
walks may be obtained from AAR\V by varions tricks. Let us first 
illustrate APR\V for n = 5. I 

I 
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that  is r= 2 (meaning the odds are 2 :  1 in his favor), then he has a 
better than even chance of ruining a rich opponent even if he has only 
1 dollar to start with! 

We will briefly mention two applications of this result. First of 
all, gambling houses can exist due to it.  They fix the odds so that  
r >  I .  Then by making sure that  their original capital i is large 
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chance of survival than the regular member of the species. A simple 
model of the struggle for survival is given by assuming that  in each 
generation the mutants gain one place with probability p >  112 or lose 
one place with probability q. We then know that  the mutants have 
probability of more than ( r -  I ) / r  of taking over the island. If p =  5 1 ,  
this probability is .04; if p= .6, the probability is 113. Hence we see 
that  relatively minor advantages can result in the survival of the 
mutants. 

While this simple model serves to illustrate how mutants may take 
, over a large species, the estimate for the absorption time is unrealistic. 

Even for p=.6 and n as small as 100 we obtain nip or about 167 
generations before the mutants take over. This brings out the 
unrealistic nature of the assumption that  only one place is changed in 
each generation. For a realistic time for absorption we need a more 
sophisticated model. 

We will now show that  the solutions for the other three random 
walks may be obtained from AARW by various tricks. Let us first 
illustrate APRW for n = 5. 
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The N matrix for APE 
$be following observations. Consider i >j. If  t h e  process 
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APRW for n=5, p=1/2 

0 1 2 3 4 5 

0 1 0 0 0 0 0 

1 1/2 0 1/2 0 0 0 

2 0 1/2 0 1/2 0 0 
p= 

3 0 0 l/Z 0 1/2 0 

4 0 0 0 l/Z 0 1/2 
5 0 0 0 0 1/2 1/2 

1 

G 
2 2 2 

D T~GD 
2 4 4 4 

N = 3 4 6 6 

4 4 6 8 

5 4 6 8 

APRW for n=5, p= 2/3 

0 1 2 3 4, 5 

0 1 0 0 0 0 0 

1 l/S 0 2/3 0 0 0 

2 0 l/s 0 2/ 3 0 0 

P=3 0 0 lis 0 2/3 0 

4 0 0 0 l/S 0 2/3 
5 0 0 0 0 1/3 2/3 

l( 6 12 24 4) ( 93) 2 3 9 18 36 72 138 

N = 3 3 9 21 42 84 T = 159 . 

4 3 9 21 45 90 168 

5 3 9 21 45 93 171 

The N matrix for APRW may be obtained from AARW through 
the following observations. Consider i >j. If the process 

G e ® 8 

k j n 

FIGURE 7·3 
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starts in i, it must eventually enter j. Hence hcj =nij/njj = 1, and 
nil = njj. (This is conspicuous in N above.) If  k < j ,  then hkj may be 
gotten as the probability of ending up a t  j  in AARW with n = j. Hence 
n k j  = hkjnjj = bk jn j j ,  with bki from AARW. Thus it suffices Lo find njj. 

Let us first compute the case p = 1 /2 .  We note that  & (except for the 
last row and column) is a submatrix of Q for larger n. And in the 
larger Q these rows and colurnns are filled out with 0's. Hence nii is 
independent of n. But as we let n+co in AARW, the difference 
between i t  and APRW disappears. Hence njj for APRTV is the limit 
as n+co of njj for AARW. Thus 

nfj = 2j i f i  j 1 

The same argument is applicable if r < 1 .  Thus 

We can also obtain nij for i # j from AT for AARW by letting n+w. 
For r  > 1 the above argument breaks down, since no matter how large 

n is in AAIZW, the probability of ending up a t  n does not become 
negligible. But here we make use of the fact that  if in AAEW we 
renumber state i as 12-i, we have the original process with p and q 
interchanged. We then find that the above formulas also hold for 
r > l .  

For T we obtain 

Since there is only one absorbing state, a.ii absorption probabilities 
are I .  

I n  both AARW and APRW there is a simple relation betxeen nsj 

and nji. I n  fact i t  may be verified from our formulas for these quen- 
tities that  

We shall see that  there is a simple probabilistic proof of this fact. 
Assume that  j i  i. Let d = i -  j .  Then any path which allows the 

process to go from i to j in n steps must take d more steps to the left 
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than to the right. Hence the probability that  the process starting a t  
i will follow such a path is 

$,kqk'd 

where 2k + d = n .  On the other hand each such path, looked a t  back- 
wards, may be considered a path from j to i .  For the process to follow 
this path i t  must make d more steps to the right than to the left. 
Hence the probabilitp that ,  starting a t  j ,  the process will follow this 
path is 

p k + d q k .  

There are the same number of paths from i to j in n steps as there 
are from j  to i, but  the ratio of the probability for each path is 

Note that  this also shors  that  when p = then r  = I ,  rLE) = nji. 

We now turn to the regular chains, starting with PPIZW. 
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starts in i, it must eventually enter j. Hence hij = nij/njj = 1, and 
n/j=nJ}. (This is conspicuous in N above.) If k<j, then hk ; may be 
gotten as the probability of ending up at j in AAH;W with n = j. Hence 
nkj = hkjnjj = bkjnjj, with b kj from AARW. Thus it suffices to find njj. 

Let us first compute the ca,se p = I! 2. We note that Q (except for the 
last row and column) is a submatrix of Q for larger n. And in the 
larger Q these rows and columns are filled out with O's. Hence nii is 
independent of n. But as we let n-+oo in AARW, the difference 
between it and APRW disappears. Hence njj for APRW is the limit 
as n-+oo of njj for AARW. Thus 

niJ = 2j if i ? j 

nij = ~. 2j = 2i if i ~ j 
J 

} fo, p. ~ 'I,. 
The same argument is applicable if r < 1. Thus 

ri - 1 
nij =--

p-q 

ri - ri-i ri - 1 ri - r j - i 
nij = --_._- = ---

ri-I p-q p-q 

ifi?j} forpof l !2. 

if i .,,; j 

(7) 

(8) 

We can also obtain nij for iofj from N for AAR\V by letting n-+oo. 

For r> 1 the above argument breaks down, since no matter how large 
n is in AAH,W, the probability of ending up at n does not become 
negligible. But here we make use of the fact that if in AARW we 
renumber state i as n - i, we have the original process with p and q 
interchanged. We then find that the above formulas also hold for 
r> 1. 

For T we obtain 

(2n-i+ 1)£ 

t, = _1_. [:-"Tl-rn-i+l_ i ] ifp #- 1/2. 
p-q, r-l 

(0) 

Since there is only one absorbing state, all absorption prohabilities 
are 1. 

In both AAR\V and APR\V there is a simple relation between ntj 

and njt. In fact it may be verified from our formulas for these quan
tities that 

We shall see that there is a simple probabilistic proof of this fact.. 
Assume that j < i. Let d = i - j. Then any path which allows the 

process to go from i to j in n steps must take d more steps to the left 
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larger Q these rows and colurnns are filled out with 0's. Hence nii is 
independent of n. But as we let n+co in AARW, the difference 
between i t  and APRW disappears. Hence njj for APRTV is the limit 
as n+co of njj for AARW. Thus 

nfj = 2j i f i  j 1 

The same argument is applicable if r < 1 .  Thus 

We can also obtain nij for i # j from AT for AARW by letting n+w. 
For r  > 1 the above argument breaks down, since no matter how large 

n is in AAIZW, the probability of ending up a t  n does not become 
negligible. But here we make use of the fact that  if in AAEW we 
renumber state i as 12-i, we have the original process with p and q 
interchanged. We then find that the above formulas also hold for 
r > l .  

For T we obtain 

Since there is only one absorbing state, a.ii absorption probabilities 
are I .  

I n  both AARW and APRW there is a simple relation betxeen nsj 

and nji. I n  fact i t  may be verified from our formulas for these quen- 
tities that  

We shall see that  there is a simple probabilistic proof of this fact. 
Assume that  j i  i. Let d = i -  j .  Then any path which allows the 

process to go from i to j in n steps must take d more steps to the left 
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than to the right. Hence the probability that  the process starting a t  
i will follow such a path is 

$,kqk'd 

where 2k + d = n .  On the other hand each such path, looked a t  back- 
wards, may be considered a path from j to i .  For the process to follow 
this path i t  must make d more steps to the right than to the left. 
Hence the probabilitp that ,  starting a t  j ,  the process will follow this 
path is 

p k + d q k .  

There are the same number of paths from i to j in n steps as there 
are from j  to i, but  the ratio of the probability for each path is 

Note that  this also shors  that  when p = then r  = I ,  rLE) = nji. 

We now turn to the regular chains, starting with PPIZW. 
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than to the right. Hence the probability that the process starting at 
i will follow such a path is 

p"qk+ct 

where 2k + d = n. On the other hand each such path, looked at back
wards, may be considered a path fromj to i. For the process to follow 
this path it must make d more steps to the right than to the left. 
Hence the probability that, starting at j, the process will follow this 
path is 

pk+ctq". 

There are the same number of paths from i to j in n steps as there 
are from j to i, but the ratio of the probability for each path is 

p"qk+d qd ,_ 
-- = - = rJ~. 
p/ctdq" pd 

Hence, p(n)ij = ri-ip(n)j;. But then 

'" ro 
nij = 2: p(n);j = r j - i 2: p(n)j; = ri-inji. 

n=O n=O 

Note that this also shows that when p= 1/2, then r= 1, nij=nji. 

We now turn to the regular chains, starting with PPRW. 

PPRW for n=5, p=l/2 
0 2 3 4 5 

0 liz liz 0 0 0 0 

1 liz 0 1/2 0 0 0 

2 0 1/2 0 1/2 0 0 
p= 

3 0 0 1/2 0 1/2 0 

4 0 0 0 1/2 0 

5 0 0 0 0 1/2 

a= (l/s, lis, 1/6, lis, 1/6, 1/6) 

0 1 2 3 4 5 

0 6 2 6 12 20 30 

1 10 6 4 10 18 28 

2 18 8 6 6 14 24 
M 

3 24 14 6 6 8 18 

4 28 18 10 4 6 10 

5 30 20 12 6 2 6 
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PPRW for n = 5,  = 213 

0 1 2 3 4  

CHAP. VIH 

5 

We may obtain APRW from PPRVV by making 0 absorbing. Thus, 
if we know a for PPRW, we may obtain Ikf from N of APR,W b:y 
Corollary 6.2.6, 

1 
mi! = - (nj j  - nit)  + tt - t j  for i # j .  

a! 
1 

If p =  112,  we have column sums 1, and hence a=- 
n+1' .  

Thus we 

obtain 

( 2 n - i + l ) i - ( 2 n - j + l ) j  i > (11) 

For p# 112 the above example suggests that ni+l =rat. Indeed, 
this yields a fixed vector, as can be seen from writing our equations as 
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Thus 

Then 

mi! = 
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J 
Let us compare man with m , , ~  If p=] - /2 ,  man =mno=n(n+ I), 

which is of the order n2 for large n. But if p # we observe a com- 
pletely different behavior. Say r > 1 ,  then 

is roughly I . n  for large n. Hence i t  takes a surprisingly short 
P - Q  

A 

time to go "all the way" in the favored direction. 

r 
which is roughly .fl for large n. Since r > l ,  this increases 

( p - q ) ( r -  l )  
exponentially in n. For very large n i t  will take a tremendously 
long time to go "all the way" in the wrong direction. This type of 
behavior is typical of random walks. We will see another example of 
this in the Ehrenfest model. 

Finally we consider GRW. 
CRW for n = 5, p = 

1 2 3 4 5  
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PPRW for n=5, p=2/s 

0 1 2 3 4 5 

0 1/3 2/3 0 0 0 0 

1 1/3 0 2/3 0 0 0 

2 0 1/3 0 2/3 0 0 
p= 

3 0 0 lla 0 2/3 0 

4 0 0 0 lis 0 2/3 
5 0 0 0 0 l/a 2/3 

ex = (1/63,2/63, 4/aa, 8/63, 16/63, 32/63) 

0 1 2 3 4 5 

0 63 3/2 15/4 51/8 147/16 

1 93 63/2 9/4 39/ 8 123116 
2 138 45 63/ 4 21/ 8 87/I6 

M= 
3 159 66 21 63/ S 45/16 

4, 168 75 30 9 63/16 

5 171 78 33 12 3 

We may obtain APRW from PPRW by making 0 absorbing. Thus, 
if we know ex for PPRW, we may obtain M from N of APRW by 
Corollary 6.2.6, 

1 
mlj = - (njj-njj)+t,-tj for i of- j. 

aj 

I 
If p= 1/2, we have column sums 1, and hence ex=--Tj. Thus we 

n+l 
obtain 

mij = {~2:~i+l)i-(2n-j+1)j ~ :~1 p = liz· 
j(j+l)-i(i+l) i < jJ 

( 11) 

For p #- 1/2 the above example suggests that aHl = mj. Indeed, 
this yields a fixed vector, as can be seen from writing our equations as 

pan-l + pa" = an 

p 
or r ai+l + qrat- 1 = at 

1 
or a,,-l = - an· 

r 
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PPRW for n = 5,  = 213 
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CHAP. VIH 
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We may obtain APRW from PPRVV by making 0 absorbing. Thus, 
if we know a for PPRW, we may obtain Ikf from N of APR,W b:y 
Corollary 6.2.6, 

1 
mi! = - (nj j  - nit)  + tt - t j  for i # j .  

a! 
1 

If p =  112,  we have column sums 1, and hence a=- 
n+1' .  

Thus we 

obtain 

( 2 n - i + l ) i - ( 2 n - j + l ) j  i > (11) 

For p# 112 the above example suggests that ni+l =rat. Indeed, 
this yields a fixed vector, as can be seen from writing our equations as 
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J 
Let us compare man with m , , ~  If p=] - /2 ,  man =mno=n(n+ I), 

which is of the order n2 for large n. But if p # we observe a com- 
pletely different behavior. Say r > 1 ,  then 

is roughly I . n  for large n. Hence i t  takes a surprisingly short 
P - Q  

A 

time to go "all the way" in the favored direction. 

r 
which is roughly .fl for large n. Since r > l ,  this increases 

( p - q ) ( r -  l )  
exponentially in n. For very large n i t  will take a tremendously 
long time to go "all the way" in the wrong direction. This type of 
behavior is typical of random walks. We will see another example of 
this in the Ehrenfest model. 

Finally we consider GRW. 
CRW for n = 5, p = 

1 2 3 4 5  
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Thus 

Then 
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r-1 
Q, = --- ri rn +1 -1 . 

I [rn-1+1- r,,"':;+l . .] 
-. -(t-J) 
p-q r-1 

1 [.. rJ - ri ] 
p_q' (J-t - (r-1)r i+1 

i = j I 

>j 

i < j 

159 

Let us compare mOn with mno. If p=lh, moC'=mno=n(n+I), 
which is of the order n Z for large n. But if p i= liz, we observe a com
pletely different behavior. Say r> 1, then 

rnOn = _1_. [n- rn-1 ] 
p-q (r-l)r" 

is roughly _1_. n for large n. Hence it takes a surprisingly short 
p-q 

time to go "all the way" in the favored direction. 

1 [r1>+1- r ] 
m 71 0 = pq' --r=-l-n 

which is roughly (p-q;'(r-l) ·r" for large n. Since r> 1, this increases 

exponentially in n. For very large n it will take a tremendously 
long time to go "all the way" in the wrong direction. This type of 
behavior is typical of random walks. We will see another example of 
this in the Ehrenfest model. 

Finally we consider CRW. 
CRW for n= 5, p= 1/2 

2 

liz 
o 

liz 
o 
o 

3 4 

o 
o 

5 
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CRW for n = 5, p = 213 

1 
This process always has a=-q,  since P always has column sums 1. 

n 
This is also obvious from the fact that  no position in the circle is 
distinguished. For the same reason we expect that  mtf should depend 
only on how far i and j are apart (and on the direction if p#li2). 
This is certainly so in the examples above. 

If state n is made absorbing in CRW, we obtain BARW-with 0 
and n identified. Hence M for CRW is obtainable from N for ABRW. 
But there is an even simpler method. If we want mil, we renumber 
the states so that  j becomes n, and then mil is just an absorption time 
for AARw. Specifically, if the distance from j to i (clockwise) is (1, 
then mij = td .  Thus 

where d is the clockwise distance from j to i. 
The remarks made for T of AARW are applicable here. Thus, for 

example, the distance (clockwise) that  it takes longest to travel is 
approximately log,((r- l)n). M'e also note that  mil is generally of a 
lower order of magnitude for any p # than for p = 

Let us next find the transition matrices for the reverse processes 
of PPRW and CRW. 
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For BPRW, remembering that  ag+l =ra t ,  

Hence the process is reversible, contrary to  one's intuition. But  for 
CRW at+l= ai, hence 

Hence the revorse process is a CEW with p replaced by p, as one would 
expect. I t  is reversible only when p = q = 112. 

Let us close by giving a practical application for PPRW. We 
consider a gambling house that  wishes to keep a close check on its 
roulette wheel. Suppose that  it is a wheel having in addillon to the 
numbers 1 to 36, half of which are red and half black, the numbers 0 
and 00 which are not colored. We will devise a simpie automatic 
check to  see that  the house is taking its share of the bets on red. We 
set up an electric counter which starts a t  0 and adds 1 epery time red 
comes up, subtracts 1 every time red fails to come up. The counter 
does not go below 0. If the counter reaches a specified number n,  
then it rings a belJ, and the honse changes the wheel. 

If the wheel is properly balanced, then we have PPRW with 
p = = 9/19. ~el'ce Tt Gill take a very long time to reach n. The 
house adjusts n so that  mo, corresponds to its normal periodic servicing 
of the wheel. However, if the wheel fails to function properly-for 
example, if p rises to 112, in which case the honse no longer makes a 
profit-then the bell will ring much sooner. A sinlilar check on black 
will assure that  the house continues to  make its profit on ail bets. 

Let us consider a concrete example of this. Suppose that  n=40 is 
selected. Then man for proper functioning is about 18,000. If the 
wheel is turned 400 times in a day, the bell will ring on the average 
once in 45 days, allowing for normal servicing. But if p rises to 112, 

then mo, = 1640, and the bell will ring after four days. If p rises above 
the break-even figure ( that  is, the house is losing money), then the bell 
will ring very quickly. 

5 7.2 Applications to sports. Let us apply some of our results to the 
game of tennis. We will first consider the problem of a single game of 
tennis played between two players. We will assume that  player A 
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CRW for n=5, p=2j3 

2 3 4 5 

1 

0' 
2 ! 0 0 

T) 
.' 3 

2 0 2/3 0 

P=3 1/3 0 2/3 
4 0 1/3 0 2/3 

5 2/3 0 0 lis 0 

I 

c~" 
78/ 31 141/31 174/31 "'I,,) 2 5 78/31 141 j 31 174/31 

.11-1 3 174/31 147/al 5 78/31 141/31 

4 141/31 174/31 147/ 31 5 78/ 31 

5 78/31 141/ 31 174/ 31 147/31 5 

This process always has a = ~'7' since P always has column sums l. 

This is also obvious from the fact that DO position in the circle is 
distinguished. For the same reaSOD we expect that mlj should depend 
only on how fari and j are apart (and on the direction if p =f. 1/ 2 ). 

This is certainly so in the examples above. 
If state n is made absorbing in CRW, we obtain AARW-with 0 

and n identified. Hence M for CRW is obtainable from N for AARW. 
But there is an even simpler method. If we want mij, we renumber 
the states so that j becomes n, and then rfiij is ju~t an absorption time 
for AARW. Specifically, if the distance from j to i (clockwise) is d, 
then mij = td· Thus 

mii = n 

mij = -' -.~n 
1 ;' Tn - rn - d d} 

p -q l Tn - 1 

mjj = d(n-d) 

p =f. 1/2, i =f. j 

p Ih,i=f.j 

where d is the clockwise distance from j to i. 

( 13) 

The remarks made for T of AARVil are applicable here. Thus, for 
example, the distance (clockwise) that it takes longest to travel is 
approximately logr((r-l)n). We also note that mij is generally of a 
lower order of magnitude for any p =f. 1,2 than for p = 1 j 2. 

Let us next find the transition matrices for the reverse processes 
of PPRW and CRW. 
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CRW for n = 5, p = 213 

1 
This process always has a=-q,  since P always has column sums 1. 

n 
This is also obvious from the fact that  no position in the circle is 
distinguished. For the same reason we expect that  mtf should depend 
only on how far i and j are apart (and on the direction if p#li2). 
This is certainly so in the examples above. 

If state n is made absorbing in CRW, we obtain BARW-with 0 
and n identified. Hence M for CRW is obtainable from N for ABRW. 
But there is an even simpler method. If we want mil, we renumber 
the states so that  j becomes n, and then mil is just an absorption time 
for AARw. Specifically, if the distance from j to i (clockwise) is (1, 
then mij = td .  Thus 

where d is the clockwise distance from j to i. 
The remarks made for T of AARW are applicable here. Thus, for 

example, the distance (clockwise) that  it takes longest to travel is 
approximately log,((r- l)n). M'e also note that  mil is generally of a 
lower order of magnitude for any p # than for p = 

Let us next find the transition matrices for the reverse processes 
of PPRW and CRW. 
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For BPRW, remembering that  ag+l =ra t ,  

Hence the process is reversible, contrary to  one's intuition. But  for 
CRW at+l= ai, hence 

Hence the revorse process is a CEW with p replaced by p, as one would 
expect. I t  is reversible only when p = q = 112. 

Let us close by giving a practical application for PPRW. We 
consider a gambling house that  wishes to keep a close check on its 
roulette wheel. Suppose that  it is a wheel having in addillon to the 
numbers 1 to 36, half of which are red and half black, the numbers 0 
and 00 which are not colored. We will devise a simpie automatic 
check to  see that  the house is taking its share of the bets on red. We 
set up an electric counter which starts a t  0 and adds 1 epery time red 
comes up, subtracts 1 every time red fails to come up. The counter 
does not go below 0. If the counter reaches a specified number n,  
then it rings a belJ, and the honse changes the wheel. 

If the wheel is properly balanced, then we have PPRW with 
p = = 9/19. ~el'ce Tt Gill take a very long time to reach n. The 
house adjusts n so that  mo, corresponds to its normal periodic servicing 
of the wheel. However, if the wheel fails to function properly-for 
example, if p rises to 112, in which case the honse no longer makes a 
profit-then the bell will ring much sooner. A sinlilar check on black 
will assure that  the house continues to  make its profit on ail bets. 

Let us consider a concrete example of this. Suppose that  n=40 is 
selected. Then man for proper functioning is about 18,000. If the 
wheel is turned 400 times in a day, the bell will ring on the average 
once in 45 days, allowing for normal servicing. But if p rises to 112, 

then mo, = 1640, and the bell will ring after four days. If p rises above 
the break-even figure ( that  is, the house is losing money), then the bell 
will ring very quickly. 

5 7.2 Applications to sports. Let us apply some of our results to the 
game of tennis. We will first consider the problem of a single game of 
tennis played between two players. We will assume that  player A 
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For PPRW, remembering that ll!+l=raj, 

al+l 
Pi,HI = -- Pl+l,1 = rq = P = pi,HI 

al 

ai 1 
PHI,; = -- pi,l+l = -r P = q = PHl,i. 

a/+! 
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Hence the process is reversible, contrary to one's intuition. But for 
CRW a,+l = at, hence 

, ai+l 
PI,HI = -- PI+l,i = q 

at 
, at 

Pi-I-l,i = -- pi,Hl = p. 
aHl 

Hence the reverse process is a CR\V with P replaced by g, as one would 
expect, It is reversible only when p = q = 1/2. 

Let us close by giving a practical application for PPE',V. \Ve 
consider a gambling house that wishes to keep a close check on its 
roulette wheel. Suppose that it is a wheel having in addiLioll to the 
numbers 1 to 36, half of \vhich are red and half black, the numbers 0 
and 00 which are not colored. We will devise a simple automatic 
check to see that the house is taking its share of the bets on red. \Ve 
set up an electric counter which starts at 0 and adds 1 every time red 
comes up, subtracts 1 every time red fails to come up. The counter 
does not go below O. If the counter reaches a specified number n, 
then it rings a bell, and the house changes the wheel. 

If the wheel is properly balanced, then we have PPRW with 
P = 18/38 = 9/19. Hence it will take a very long time to reach n. The 
house adjusts n so that mOn corresponds to its normal periodic servicing 
of the wheel. However, if the wheel fails to function properly-for 
example, if p rise;; to 1/2, in which case the house no longer makes a 
profit-then the bell will ring much sooner. A similar check on black 
will assure that the house continues to make its profit on all bel,. 

Let us consider a concrete example of this. Suppose that n =10 is 
selected. Then mOn for proper functioning is about 18,000. If the 
wheel is turned 400 times in a day, the bell will ring on the average 
once in 45 days, allowing for normal servicing. But if p rises to 
then mOn = 1640, and the bell will ring after four days. If p rises above 
the break-even figure (that. is, the house is losing money), then the bell 
will ring very quickly. 

§ 7.2 Applications to sports. Let us <1pply some of our results to the 
game of tennis. We will first consider the problem of a single game of 
tennis played between two players. We will assume that player A 
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has probability p of winning any given point, and player B has 
probability q < p. 

If we keep score in the ordinary manner, there are 20 possible scores 
during a game. These are : 0-0, 0-15, 15-0, 0-30, 15-15, 30-0, 0-40, 
15-30, 30-15, 40-0, 15-40, 30-30, 40-15, 30-40, 40-30, Advantage B, 
Deuce, Advantage A ,  Game B, Game A .  However, i t  is easily seen 

that  we may lump the following pairs: (30-30, Deuce), {30-40, 
Advantage B), (40-30, Advantage A). The resulting random walk is 
then represented by Figure 7-4. 

The game of tennis may conveniently be broken down into two 
stages. At the beginning the process goes through some of the lower 
twelve states, always moving up, and in four or five steps i t  arrives a t  
one of the five states in the top row. This we will refer to  as the 

SEC. 2 APPLICATIONS OF MARMOV CHAINS 1163 

prelimCnary process. The preliminary process is of an extremely simple 
nature. It is followed by a random walk of type AARW, with n= 4. 
The state Game B is the absorbing state 0 of AARW, and Game A is 
the absorbing state n. 

We will describe the entire process as an AARW random walk, with 
initial probabilities furnished by the preliminary process. These initial 
probabilities T =  (co, e l ,  cz, c3, 6.4 are given by an elementary proba- 
bility calculation. We find that  

If p  = cG = 3/16, c1 = c2= 3/8, ca = lIs, c4 = 3/16.  Using the basic 
quantities of AARW with n = 4 ,  

( r  - l ) ( r3  - 1) ( r  - l ) (r3-r \  ( r -  l ) (r3-r2)  

N = 
1 

( r  - l } ( r 2  - 1) ( r 2 -  (rz - I ) ( +  - r )  
( P  - q)(r4 - 1) 

( r  - a ) 2  ( r  - l ) ( r2 -  1) ( r -  l ) ( ( r 3 -  1) 

we can find all interesting quantities. The most interesting one is, 
of course, the probability that A will win. For p = l i z  we obtain 

This was to be expected, by symmetry. If p >XIz, we obtain 

1 - [q" (1 + 4 ~ ) .  0 i 4p2q3(r4 - r3)  + Gpzqz(r4 - r2) + 4p392(r4 - r )  
r4- 1 

+p4(P + 4q)(r4 - B)] 

which simplifies to 

p4(1- 16g4) 
PA  = 

p4-q4  
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has probability p of winning any given point, and player B has 
probability q ~p. 

If we keep score in the ordinary manner, there are 20 possible scores 
during a game. These are: 0-0, 0-15, 15-0, 0-30, 15-15, 30-0, 0-40, 
15-30, 30-15, 40-0, 15-40, 30-30, 40-15, 30-40, 40-30, Advantage B, 
Deuce, Advantage A, Game B, Game A. However, it is easily seen 

FIGURE 7·4 

that we may lump the following pairs: {30-30, Deuce), {30-40, 
Advantage B}, {40-30, Advantage A}. The resulting random walk is 
then represented by Figure 7-4. 

The game of tennis may conveniently be broken down into two 
stages. At the beginning the process goes through some of the lower 
twelve states, always moving up, and in four or five steps it arrives at 
one of the five states in the top row. This we will refer to as the 
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has probability p of winning any given point, and player B has 
probability q < p. 

If we keep score in the ordinary manner, there are 20 possible scores 
during a game. These are : 0-0, 0-15, 15-0, 0-30, 15-15, 30-0, 0-40, 
15-30, 30-15, 40-0, 15-40, 30-30, 40-15, 30-40, 40-30, Advantage B, 
Deuce, Advantage A ,  Game B, Game A .  However, i t  is easily seen 

that  we may lump the following pairs: (30-30, Deuce), {30-40, 
Advantage B), (40-30, Advantage A). The resulting random walk is 
then represented by Figure 7-4. 

The game of tennis may conveniently be broken down into two 
stages. At the beginning the process goes through some of the lower 
twelve states, always moving up, and in four or five steps i t  arrives a t  
one of the five states in the top row. This we will refer to  as the 
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prelimCnary process. The preliminary process is of an extremely simple 
nature. It is followed by a random walk of type AARW, with n= 4. 
The state Game B is the absorbing state 0 of AARW, and Game A is 
the absorbing state n. 

We will describe the entire process as an AARW random walk, with 
initial probabilities furnished by the preliminary process. These initial 
probabilities T =  (co, e l ,  cz, c3, 6.4 are given by an elementary proba- 
bility calculation. We find that  

If p  = cG = 3/16, c1 = c2= 3/8, ca = lIs, c4 = 3/16.  Using the basic 
quantities of AARW with n = 4 ,  

( r  - l ) ( r3  - 1) ( r  - l ) (r3-r \  ( r -  l ) (r3-r2)  

N = 
1 

( r  - l } ( r 2  - 1) ( r 2 -  (rz - I ) ( +  - r )  
( P  - q)(r4 - 1) 

( r  - a ) 2  ( r  - l ) ( r2 -  1) ( r -  l ) ( ( r 3 -  1) 

we can find all interesting quantities. The most interesting one is, 
of course, the probability that A will win. For p = l i z  we obtain 

This was to be expected, by symmetry. If p >XIz, we obtain 

1 - [q" (1 + 4 ~ ) .  0 i 4p2q3(r4 - r3)  + Gpzqz(r4 - r2) + 4p392(r4 - r )  
r4- 1 

+p4(P + 4q)(r4 - B)] 

which simplifies to 

p4(1- 16g4) 
PA  = 

p4-q4  
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preliminary process. The preliminary process is of an extremely simple 
nature. It is followed by a random walk of type AARW, with n = 4. 
The st.ate Game B is the absorbing state 0 of AARW, and Game A is 
the absorbing state n. 

We will describe the entire process as an AARW random walk, with 
initial probabilities furnished by the preliminary process. These initial 
probabilities 7T = (co, Cl, Cz, C3, C4) are given by an elementary proba
bilit.y calculation. We find that 

Co = q4(1 + 4p), Cl = 4p 2q3, C2 = 6p2q2, 

C3 = 4p3qZ, C4 = p4(1 + 4q). 

If p=1/2, Co=3/16, 01=1/8, C2=3/ 8, C3=1/S, C4=3/1S. Using the basic 
quant.ities of AARW with n=4, 

((r- -1) 

N= 1 ,\(r-1 1) 
(p-q)(rLl) 

\(r~ 1)2 

r 4 - r3 . 
4---1 

r4-1 

(r - 1)(r3 - r) 

(1 2 _ 1)2 

(r-1)(r2- 1) 

1 r 4 _r2 r-"\ T = 4---2 {b i4} = _._1_ r4 _ r2 ~ p "# I/Z 
p-q r 4 -1 r4-1 } 

r 4 - r 
\r4 -r 

4---3 
r 4 -1 

C 
1 ';') I ~ G) C) V~2 

N= 2 {b i4 } = 1~2 P = 1/2 
liz 1 3/2 3 14 

we can find all interesting quantities. The most interesting one is, 
of course, t.he probability that A will win. For p= 1/2 we obtain 

(3/16).0+(1'8)'(1(1)+(38).(12)+(1/8).(3/4)+(3/16)-1 = 

This was t.o be expected, by symmetry. If p > 1/2, we obtain 

_1_[q4(1 + 
r4 - 1 

which simplifies to 

.0+ 4p2q3(r4 - r3) + 6p2q2(r4 - r2) + 4p2q2(r4 - r) 

+ p"( 1 -1- 4q)(r4 -1)] 
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For example, if p = .51, then p~ = .525, and if p = .6, then p~ = ,736. 
For the absorption time and the number of times in a state we will 
carry out the computation only when p = 'Ip. The interesting cases 
are ones where p is near 112, and absorption times do not depend very 
drastically on p. 

When p=1/2 we find that  the mean number of times in the three 
interesting transient states is: 1 for Deuce, and for Advantage B 
and for Advanta,ge A. The absorption time is 914. To find the actual 
length of the game, we must also take into account the preliminary 
stage. If  we do, we find that  the mean length of a tennis game 
between equally matched opponents is 2714 = 6914. Since t.he minimum 
length of the game is 4, this shows that  for equally matched players 
the average length is not much above the minimum. 

Should it prove from records that  games actually are much longer 
than this, and that  the average number of times in Deuce is well above 
1, as seems to be the case, then i t  would indicate that the present model 
for tennis is too simple. Perhaps a player "plays harder" when he is 
behind. This would lead to a somewhat more comp1icat)ed random 
walk. 

Let ns return to the probability that  the better player A wins. This 
is always greater for a game than for an  individual point. Thus, the 
game serves to magnify the difference between the two players. This 
is further magnified since several games are played in a set,, and several 
sets in a match. The probabilities for a set, in which a player must 
win a t  least six games, but by a margin of a t  least two, may be com- 
puted just as above. We are led to the same AARW, but with a 
longer preliminary st,age. A match is won by the first player winning 
three sets. This is a stmightforward computation. The following 
figures will illustrate the magnifi~at~ion achieved in sets and 
matches : 

71 = .51 1) = .6 

Probability of winning point .510 ,600 
Probability of winning game .525 .736 

Probability of winning set .573 ,966 

Probability of winning match ,635 ,9996 

Thus there is always a good chance that  the better player will win 
the match. And if there is a fairly significant difference between 
players, then i t  is practically certain that  the better player wins. 

Let us compare these results for tennis with the World Series in 
baseball. Here the team that  first wins four games is declared winner. 
If we assume that team A has probabiiity p of winning any one game, 
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then we find that  

pn = p4((l + 4q + ?5y3 + 20q3), 

where the various terms correspond to series of 4 ,  5, 6> and 7 games 
respectively. If  p = .51, p~ = ,522,  while if p = .6,  then pA = .7PO. 
The World Series also magnifies differences between teams, but not 
nearly as well as a match of tennis-or even a single game of tennis. 

I f  we compute the mean length of a series, we find this to be 
t = 4(p4 t q 4 )  t 20(p4q t pq4) + 60(pJq2 +pZy4)  + 140(p4q3+p3q4). This is 
largest (5 .81)  when p = 112, and decreases monotonically to 3 as p is 
increased to 1 .  Hence we should be able to estimate p from the 
observed length of World Series. I n  the 50 World Series played under 
the stated rules from 1905 to 1957, 10 ended in four games, 13 in five 
games, 12 in six games, and 16 in seven games. This yields a mean 
length of 5.64, which would a,gree very well with p=j18. This would 
suggest that  the teams playing in the World Series have, on the average, 
not been matched too closely. 

Let us now consider the efficiency of various procedures in magnifying 
the differences between players or teams. VVe have found that  tennis 
(one game) gives slightly more magnification than Lhe World Series, 
b h  i t  also requires more steps on the average. To be able to compare 
the efficiency of two rules. we will have to take them so that  the mean 
length of a series is the same. 

Tennis may be compared to the World Series as follows: The latter 
requires four wins, while the former reqnires that  the winner have 
four wins and be ahead by two. This is really a hybrid between two 
types of procedures. The pure procedure wouid be to require that  the 
winner end up ahead by four points. It can easily be seen that  this 
rule gives much more magnificat,ion than the other, but  also requires 
a great deal more time. Let us therefore consider two classes of 
rules. 

RULE KTn : The jrst person to win  n points is  declared winner.. 

RULE A, : The Jirst person to get ahend of his opponent by n points is 
declared winner. 

We will compare these two rules, selecting n in each case so that  the 
mean length of a game be a given large number, which we will denote 
by 2 7 2 ,  and seeing how much they magnify differences. Since we will 
be interested particularly in large n ,  we will allow asymptotic approxi- 
mations. Since we are particularly interested in magnification of very 
small differences, we will let the players difFer by E ,  that  is let p= 
( I  t € ) / 2  and q =  ( 1  - ~ ) j 2 ,  and compute the final difference just to the 
first order term in E .  
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For example, if p=.51, then PA=.525, and if p=.6, then PA=.736. 
For the absorption time and the number of times in a state we will 
carry out the computation only when p= liz. The interesting cases 
are ones where p is near liz, and absorption times do not depend very 
drastically on p. 

When p = 1/2 we find that the mean number of times in the three 
interesting transient states is: 1 for Deuce, and 5 j 8 for Advantage B 
and for Advantage A. The absorption time is 9/4. To find the actual 
length of the game, we must also take into account the preliminary 
stage. If we do, we find that the mean length of a tennis game 
between equally matched opponents is 27/4 = 63/4. Since the minimum 
length of the game is 4, this shows that for equally matehed players 
the average length is not much above the minimum. 

Should it prove from records that games actually are much longer 
than this, and that the average number of times in Deuce is well above 
1, as seems to be the case, then it would indicate that the present model 
for tennis is too simple. Perhaps a player "plays harder" when he is 
behind. This would lead to a somewhat more complicated random 
walk. 

Let us return to the probability that the better player A wins. This 
is always greater for a game than for an individual point. Thus, the 
game serves to magnify the difference between the two players. This 
is further magnified since several games are played in a set, and several 
sets in a match. The probabilities for a set, in which a player must 
win at least six games, but by a margin of at least two, may be com
puted just as above. We are led to the same AARW, but with a 
longer preliminary stage. A match is won by the first player winning 
three sets. This is a straightforward compntation. The following 
figures will illustrate the magnification achieved in sets and 
matches: 

Probability of winning point 

Probability of winning game 

Probability of winning set 

Probability of winning match 

]) = .51 P = .6 
.510 .600 

.525 .736 

.573 .966 
.635 .9996 

Thus there is always a good chance that the better player will win 
the match. And if there is a fairly significant difference between 
players, then it is practically certain that the better player wins. 

Let us compare these results for tennis with the World Series in 
baseball. Here the team that first wins four games is declared winner. 
If we assume that team A has probability p of winning anyone game, 
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For example, if p = .51, then p~ = .525, and if p = .6, then p~ = ,736. 
For the absorption time and the number of times in a state we will 
carry out the computation only when p = 'Ip. The interesting cases 
are ones where p is near 112, and absorption times do not depend very 
drastically on p. 

When p=1/2 we find that  the mean number of times in the three 
interesting transient states is: 1 for Deuce, and for Advantage B 
and for Advanta,ge A. The absorption time is 914. To find the actual 
length of the game, we must also take into account the preliminary 
stage. If  we do, we find that  the mean length of a tennis game 
between equally matched opponents is 2714 = 6914. Since t.he minimum 
length of the game is 4, this shows that  for equally matched players 
the average length is not much above the minimum. 

Should it prove from records that  games actually are much longer 
than this, and that  the average number of times in Deuce is well above 
1, as seems to be the case, then i t  would indicate that the present model 
for tennis is too simple. Perhaps a player "plays harder" when he is 
behind. This would lead to a somewhat more comp1icat)ed random 
walk. 

Let ns return to the probability that  the better player A wins. This 
is always greater for a game than for an  individual point. Thus, the 
game serves to magnify the difference between the two players. This 
is further magnified since several games are played in a set,, and several 
sets in a match. The probabilities for a set, in which a player must 
win a t  least six games, but by a margin of a t  least two, may be com- 
puted just as above. We are led to the same AARW, but with a 
longer preliminary st,age. A match is won by the first player winning 
three sets. This is a stmightforward computation. The following 
figures will illustrate the magnifi~at~ion achieved in sets and 
matches : 

71 = .51 1) = .6 

Probability of winning point .510 ,600 
Probability of winning game .525 .736 

Probability of winning set .573 ,966 

Probability of winning match ,635 ,9996 

Thus there is always a good chance that  the better player will win 
the match. And if there is a fairly significant difference between 
players, then i t  is practically certain that  the better player wins. 

Let us compare these results for tennis with the World Series in 
baseball. Here the team that  first wins four games is declared winner. 
If we assume that team A has probabiiity p of winning any one game, 
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then we find that  

pn = p4((l + 4q + ?5y3 + 20q3), 

where the various terms correspond to series of 4 ,  5, 6> and 7 games 
respectively. If  p = .51, p~ = ,522,  while if p = .6,  then pA = .7PO. 
The World Series also magnifies differences between teams, but not 
nearly as well as a match of tennis-or even a single game of tennis. 

I f  we compute the mean length of a series, we find this to be 
t = 4(p4 t q 4 )  t 20(p4q t pq4) + 60(pJq2 +pZy4)  + 140(p4q3+p3q4). This is 
largest (5 .81)  when p = 112, and decreases monotonically to 3 as p is 
increased to 1 .  Hence we should be able to estimate p from the 
observed length of World Series. I n  the 50 World Series played under 
the stated rules from 1905 to 1957, 10 ended in four games, 13 in five 
games, 12 in six games, and 16 in seven games. This yields a mean 
length of 5.64, which would a,gree very well with p=j18. This would 
suggest that  the teams playing in the World Series have, on the average, 
not been matched too closely. 

Let us now consider the efficiency of various procedures in magnifying 
the differences between players or teams. VVe have found that  tennis 
(one game) gives slightly more magnification than Lhe World Series, 
b h  i t  also requires more steps on the average. To be able to compare 
the efficiency of two rules. we will have to take them so that  the mean 
length of a series is the same. 

Tennis may be compared to the World Series as follows: The latter 
requires four wins, while the former reqnires that  the winner have 
four wins and be ahead by two. This is really a hybrid between two 
types of procedures. The pure procedure wouid be to require that  the 
winner end up ahead by four points. It can easily be seen that  this 
rule gives much more magnificat,ion than the other, but  also requires 
a great deal more time. Let us therefore consider two classes of 
rules. 

RULE KTn : The jrst person to win  n points is  declared winner.. 

RULE A, : The Jirst person to get ahend of his opponent by n points is 
declared winner. 

We will compare these two rules, selecting n in each case so that  the 
mean length of a game be a given large number, which we will denote 
by 2 7 2 ,  and seeing how much they magnify differences. Since we will 
be interested particularly in large n ,  we will allow asymptotic approxi- 
mations. Since we are particularly interested in magnification of very 
small differences, we will let the players difFer by E ,  that  is let p= 
( I  t € ) / 2  and q =  ( 1  - ~ ) j 2 ,  and compute the final difference just to the 
first order term in E .  
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then we find that 

PA = JI4(1->-4q+10q2+::0qZ), 

where the various terms correspond to series of 4, 5, 6, and 7 games 
respectively. If p=.51, pA=.522, while if p=.6, then PA=.710. 
The World Series also magnifies differences between teams, but not 
nearly as well as a match of tennis-or even a single game of tennis. 

If we compute the mean length of a series, ,ve find this to be 
t = 4(p' -7- q4) + 20(p4q + pq") + 60(p4q2 + p2q4) .'- gO(p4q3 + p3q4). This is 
largest (;j.8)) when p= 1 and decreases monotonically to 4 as p is 
increased to I. Hence we should he able to estimate p from the 
observed length of World Series. In the 50 World Series played under 
the stated rules from 1905 to 1957,10 ended in four games, 13 in five 
games, 12 in six games, and 15 in seven games. This yields a mean 
length of 5.64, which would agree very ·well with p = 5/8. This would 
suggest that the teams ph1ying in the World Series have, on the average, 
not been matched too closel~'. 

Let us now consider the efficiency Cifvarious procedures in magnifying 
the differences between players or teams. We have found that tennis 
(one game) gives slightly more magnification than the World Series, 
b'ut it also requires more steps on the average. To bc able to compare 
the efficiency of two rules. we will have to take them so that the mE':1l1 

length of a series is the same. 
Tennis may be compi.Lred to the World Series as follows: The latter 

requires fOllr wins, while the former requires that the winner have 
four wins and be ahead by two. This is really a hybrid between two 
types of procedures. The pure procedure would be to require that the 
winner end up ahead by four poillts. It can easily bc seen that this 
rule gives much mOTe magnification than the other, but also requires 
a great deal more tirne. Let us therefore consider two classe~ of 
rules. 

RULE IV n: The first person to win n points is declared winner. 

RULE An: The first person to get ahead of his opponent by n points is 
declared winner. 

vVe will compare these two rules, selecting n in each case so that the 
mean length of a game he a given large number, which we will denote 
by N2, awl seeing how much they magnify differences. Since we will 
be interested particularly in large n, we will allow asymptotic approxi
mations. Since we are particularly interested in magnifiGiLtion of very 
SDlall differences, we will let the players differ by E, that is let p = 
(1 + E»). and q = (1- E)/2, and compute the final difference just to the 
first order term in E. 
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The following id en ti tie.^ will be nseful : 

n+k 

k = O  

k=O 

If we use Wn, the probabilitv that  the better player wins is 
n- 1 n - l + k  

PA = P n Z  ( )Ok 
1-0 

2n,-1 2n-2 
= LL-Z 28 ( ~ l - . [ n ~ - l - ~  j n-  1)]) 

Using Stirling's formula+ and simplifying we obtain 

The expected length of the game (for which we may use p  = 112) is 

We will simply use t z 2%. Thus if we want t 2 N2, we must choose 
N 

- 
N2 

n = -- This yields pa z + - 2  
2 

4 3; ., p,-psz1\'J; r ;  and thus a 

magnification factor is N - or about .8N J" 
t See W .  Feller, lnlroduction Lo Probabtlzty Theory and 11s ApplicaLions, John Wiiey 

& Son, Inc., New York, 1957, Chapter 2 .  
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The method A, may be represented as AARW from 0 to 2n, starting 
a t  n. Hence 

Here we find that the terms in E cancel and that  €2 terms must be 
carried. We find 

For the mean length we find (using p a liz) t = n(2n - n)  z n B .  Thus - -  
N 

we choose n = X ,  and obtain p~ z 112 +- E ,  p~ - - p s a N ~ ;  yielding a 
2 

magnification factor of 8. 
We thus find that N'a2,r and A,v are comparable, in the sense thaL 

each yields an approsinlate mean time of iL72. The former magnifies 
minute differences by about .8N, while the latter multiplies them by N .  
Thus the An rule is more efficient. Any rnlxture of the two, as in 
tennis, will lie in between, and hence will also be less efEcient than An. 

3 7.3 Ehrenfest model for diffusion. There is a simple lnodel for a 
system of statistical mechanics which is due to T. Ehrenfest. I n  this 
model we consider a gas which is contained in a volume that  is divided 
into two regions A and B by a permeable membrane. We assume that  
the gas has s molecules. At each instant of time a molecnle is chosen 
a t  random from the set of s molecules and moved from the region that  
i t  is in to the other region. We are interested in the way in which the 
composition of the two regions changes with time. For example, if 
we start with all the molecules in one region, how long on the average 
will i t  be before each regions has half the molecules? Such questions 
can be answered by using the methods of Markov chains. 

We form a Narkov chain as follows : We assume first that  the mole- 
cules are identifiable. We take as states a vector y =  (xl, xz, . . . , z,) 
where xr is 1 if the j- th molecule is in region A ,  and 0 otherwise. Know- 
ing the state tells us the exact composition of A and hence also of B. 
There are 2 s  states. If tho process is in state y ,  then choosing a molecule 
a t  random and moving it to the other region means that  we change 
the state y to a state S by simply changing one coordinate of y. It is 
clear that  from y there are s states to which tho process can move and 
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The following identities will be useful: 

i (n + k) = (2n + 1) 
k~O k n , 

i e~+k)k = 11,(/2n+ 1) _ (2n+ 1) 
k~O \ k . n n-I 

i (n+k)(~)k = 2n 
k~O! k ~ 

i (n+k)(~)k.k = (n+1)2"- 2n,,~1 (2n) 
k~O k 2 '" n 

If we \1Se W n, the probability that the better player wins is 

PA = plI nf (n-1 +k)" qk 
k-O k 

= 1 + n€ (2 11 - 1 _ t [n2 n - 1 _ 2n - 1 (2n - 2)1) 
2n , 2n- 1 \ n - I J 

Using Stirling's formula! and simplifying we obtain 

PA ::::: ~+J?:: E 2 1T 

The expected length of the game (for which we may use P = 1/2) is 

n-l (n-1 + I)' 
t = 2· (1/2)n 2 ! (n + lc)(1/z)k 

k={) k 

= (1/z)1I-1 [n211-1 + n2,,--1 _ 2,n = I (2n - 2)l 
2n 1 ,n- 1 ...l 

2 • r ::::: 2n- v;' v n. 
We will simply use t::::: 2n, Thus if we want t::::: NZ, we must choose 

N2 N)2 n=2' This yields PA::::: 1/2+ V:r;;:'" PA-PB:::::N :;;.E; and thus a 

magnification factor is N J~ or about .8.V. 

t See W. Feller, Introduction to Probability Theory and 1ts Applications, John ,VHey 
& Son, Inc., New York, 1957, Chapter 2. 
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The method A, may be represented as AARW from 0 to 2n, starting 
a t  n. Hence 

Here we find that the terms in E cancel and that  €2 terms must be 
carried. We find 

For the mean length we find (using p a liz) t = n(2n - n)  z n B .  Thus - -  
N 

we choose n = X ,  and obtain p~ z 112 +- E ,  p~ - - p s a N ~ ;  yielding a 
2 

magnification factor of 8. 
We thus find that N'a2,r and A,v are comparable, in the sense thaL 

each yields an approsinlate mean time of iL72. The former magnifies 
minute differences by about .8N, while the latter multiplies them by N .  
Thus the An rule is more efficient. Any rnlxture of the two, as in 
tennis, will lie in between, and hence will also be less efEcient than An. 

3 7.3 Ehrenfest model for diffusion. There is a simple lnodel for a 
system of statistical mechanics which is due to T. Ehrenfest. I n  this 
model we consider a gas which is contained in a volume that  is divided 
into two regions A and B by a permeable membrane. We assume that  
the gas has s molecules. At each instant of time a molecnle is chosen 
a t  random from the set of s molecules and moved from the region that  
i t  is in to the other region. We are interested in the way in which the 
composition of the two regions changes with time. For example, if 
we start with all the molecules in one region, how long on the average 
will i t  be before each regions has half the molecules? Such questions 
can be answered by using the methods of Markov chains. 

We form a Narkov chain as follows : We assume first that  the mole- 
cules are identifiable. We take as states a vector y =  (xl, xz, . . . , z,) 
where xr is 1 if the j- th molecule is in region A ,  and 0 otherwise. Know- 
ing the state tells us the exact composition of A and hence also of B. 
There are 2 s  states. If tho process is in state y ,  then choosing a molecule 
a t  random and moving it to the other region means that  we change 
the state y to a state S by simply changing one coordinate of y. It is 
clear that  from y there are s states to which tho process can move and 
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The method An may be represented as AARW from 0 to 2n, starting 
at n. Hence 

r2n -rn 

PA = r2n-1' 

Here we find that the terms in E cancel and that €2 terms must be 
carried. We find 

_1 n 
~ /2+"2 E. 

1(2+ 1!z(1 +3n)£ 

1 + (l + 2n)£ 

For thi? mean length we find (using p;:: t=n(2n-n);::n2. Thus 
N 

we 'choose n=N, and obtain PA;:: +2" E, PA-PB;::N€; yielding a 

magnification factor of N. 
We thus find that W S '/2 and AN are comparable, in the sense that 

each yields an approximate mean time of N2. The former magnifies 
minute differences by about .3S, while the latter multiplies them by N. 
Thus the An rule is more efficient. Any mixture of the two, as in 
tennis, will lie ill between, and hence will also be less emcient than An. 

§ 7.3 Ehrenfest model for diffusion. There is a simple model for a 
system of statistical mechanics which is due to T. Ehrenfest. In this 
model we con8ider a gas which is contained in a volume that is divided 
into two regions A and B by a permeable membrane. vVe assume that 
the gas has s molecules. At each instant of time a molecule is chosen 
at random from the set of 8 molecules and moved from the region that 
it is in to the other region. We are interested in the way in which the 
composition of the two regions changes with time. For example, if 
we start with all the molecules in one region, how long on the average 
will it be before c2,ch regions has half the molecules! Such questions 
can be answered by using the methods of Markov chains. 

We form a ::\larkov chain as follows: We assume first that the mole
cules are identifiable. "Ve take as states a vector y= (Xl, X2, ... ,x.) 
where Xj is 1 if the j-th molecule is in region A, and 0 otherwise. Know
ing the state tells us the exact composition of A and hence also of B. 
There are ;28 states. If the process is in state y, then choosing a molecule 
at random and moving it to the other region means that we change 
the state y to a state 0 by simply changing one coordinate of y. It is 
clear that from y there are s states to which the process can move and 
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these transitions occur each with probability 11s. I t  is possible to go 

from any state y to any other state 6 in a sequence of steps, but i t  is 
possible to go from y to y only in an even number of steps; and it is 
possible in two steps. Hence we have an ergodic chain with period 2. 
It is clear also that we can go from y to 6 in one step if and only if we 
go from 6 to y in one step. If possible, the probability in each case is 
11s. Hence the transition matrix is symmetric. This tells us two 

things. First, the process is a reversible process. Secondly, the fixed 

probability vector is a constant vector with components l / fS .  

The fixed vector is CL=(l/8, '18, ','a, '/a, ' 1 8 ,  118, ' 1 8 ) .  From this 

we see, for example, that the mean number of steps required to return 
to any one state is 8. We also 
have, by Theorem 6.2.3, that 
the mean number of times in 
each of the states between 
occurrences of a particular 
state is 1. In  general, for a 
chain with s states the mean 
time to return to a state will 
be 2s and the mean number of 
times in state 6 between occur- 
rences of a state y is 1. 

There is a simple random 
walk intcrpretatioll for the 
process we are considering. 

F ~ o u n ~  7 - 6  
The vectors y are the corner 

points of an s-dimensional cube. The possible states to which the 
process can move from y in one step are the corner poixlts connected 
to y by an edge. There are s such points, and the prohabi!ity of 
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moving to any one is 11s. For the case s=3, we have the cube in 
Figure 7-5. 

w e  define the distance between two states y and 6 ,  denoted by 
d(y, 6), to be the minimum number of steps required to go from y to 6. 
In  terms of the coordinates of y and 6 this is 

S 

d(y,6) = 2 l ~ t - y t j .  
% = I  

I t  is clear from the random walk interpretation that the mean time 
to go from y to S depends only on the &stance between y and 6. Let 
m s d  be this mean time for two points a distance d apart. For fixed s, 
we compute m d  = snsd as follows. Let y and 6 be two points a distance 
d apart. This means that they have exactly d coordinates different. 
On one step there are d choices which will make the process one unit 
closer Lo 6 ,  and s - d choices which will make it one unit farther from 6. 
Hence, considering the possible first steps, we have 

where we let mo = ms+1 = 0. These equations have a unique solution 
which may be written as follows. Let 

d 

m d =  'T; &s,-i, 0 < d < 8. 
4 

2 = 1  

The values of Qsi for vaines of s up to 6 me given in Figi~re 7-6. 
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these transitions occur each with probability 1/8. It is possible to go 
from any state i' to any other state 8 in a sequence of steps, but it is 
possible to go from y to y only in an even .Dumber of steps; and it is 
possible in two steps. Hence we have an ergodic chain with period 2. 
It is clear also that we can go from y to S in one step if and only if we 
go from 8 to y in one step. If possible, the probability in each case is 
lis. Hence the transition matrix is symmetric. This tells us two 
things. First, the process is a reversible process. Secondly, the fixed 
probability vector is a constant vector with components 1/2'. 

The transition matrix for the case 8 = 3 is 

000 001 010 100 011 101 llO HI 

000 0 1/3 lja 1/3 0 0 0 0 

001 1/3 0 0 0 \/3 1 ! 
j 3 0 0 

010 1/3 0 0 0 1/3 0 l/3 0 

100 l/s 0 0 0 0 lja 1/3 0 

011 0 lis 1/3 0 0 0 0 :;:; 101 0 1/3 0 1/3 0 0 0 

llO 0 0 1/3 1..' 0 0 0 1/3 ,3 

III 0 0 0 0 1/3 1 j '3 1/ 3 0 

The fixed vector is a= (l/s, I/S, lis, lis, lis, lis, l/S, l/S). From this 
we see, for example, that the mean number of steps required to return 

(011) 

(OlO),I'-__ ...Y 

(110) 

FIGURE 7·5 

(100) 

to anyone state is 8. We also 
have, by Theorem 6.2.3, that 
the mean number of times in 
each of the states between 
occurrences of a particular 
state is 1. In general, for a 
chain with s states the mean 
time to return to a state will 
be 2" and the mean number of 
times in state S between occur
rences of a state y is 1. 

There is a simple random 
walk interpretation for the 
process we are considering. 
The vectors 'Yare the corner 

points of an s-dimensional cube. The possible states to which the 
process can move from 'Y in one step are the corner points connected 
to 'Y by an edge. There are s such points, and the probability of 
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these transitions occur each with probability 11s. I t  is possible to go 
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moving to any one is 11s. For the case s=3, we have the cube in 
Figure 7-5. 

w e  define the distance between two states y and 6 ,  denoted by 
d(y, 6), to be the minimum number of steps required to go from y to 6. 
In  terms of the coordinates of y and 6 this is 

S 

d(y,6) = 2 l ~ t - y t j .  
% = I  

I t  is clear from the random walk interpretation that the mean time 
to go from y to S depends only on the &stance between y and 6. Let 
m s d  be this mean time for two points a distance d apart. For fixed s, 
we compute m d  = snsd as follows. Let y and 6 be two points a distance 
d apart. This means that they have exactly d coordinates different. 
On one step there are d choices which will make the process one unit 
closer Lo 6 ,  and s - d choices which will make it one unit farther from 6. 
Hence, considering the possible first steps, we have 

where we let mo = ms+1 = 0. These equations have a unique solution 
which may be written as follows. Let 

d 

m d =  'T; &s,-i, 0 < d < 8. 
4 

2 = 1  

The values of Qsi for vaines of s up to 6 me given in Figi~re 7-6. 
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moving to anyone is lis. For the case s = 3, we have the cube in 
Figure 7-5. 

We define the distance between two states y and 0, denoted by 
d(y, 0), to be the minimum number of steps required to go from y to o. 
In terms of the ooordinates of y and (3 this is 

s 

diy,S) = 2: lXi-yd· 
i=l 

It is clear from the random walk interpretation that the mean time 
to go from y to 0 depends only on the distance between y and o. Let 
m Sa be this mean time for two points a distance d apart. For fixed s, 
we compute rnd = m'd as follows. Let y and S be two points a distance 
d apart. This means that they have exactly d coordinat.es different. 
On one step there are d choices which will make the process one unit 
closer to 0, and s - d choices which will make it one unit farther from o. 
Hence, considering the possible first steps, we have 

d s~d 
rna. = l+-md-l+--md+l, 0 < d,::; s, s 8 

where we let mo = 1ns+l = O. These equations have a unique solution 
which may be written as follows. Let 

then 

s\ 
i (lcJ 

2: (S-1\)' k~O 

. i , 

It 

ma. = L Q8s_ i , 
i=l 

0,1,.,.,s-1, 

0< d :s; s. 

The values of QSi for valnes of 8 up to 6 are given in Figure 7-6. 

VALUES FOR QS, 

FIGURE 7·6 
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For values of s up to 6 the values of mad are given in Figure 7-7. 

VALUES FOR msd 

We note that  the means for a given s increase as we increase the 
distance. This is to be expected. However, they increase very slowly. 

We shall call the above chain the microscopic chain. I n  physical 

applications this chain is often not as interesting as one obtained 
from i t  by lumping. The macroscopic chain is a Markov chain obtained 
from the microscopic chain by lumping all stales having the same 
number of molecules in region A .  Let us verify that  the condition 
for lumpability is satisfied. Let Vi be the set of all states in the 
microscopic process with i molecules in region A. The set Vi has 

('?I elements. From any element of Vr the process mores to one of 

, , 
probabiliby of moving to  Vit l  is ( a - i l l s  and the probability of moving 
to Vi-l  is i / s .  These probabilities are the same for all elements of "it. 

Hence the condition for lumpability is satisfied, and we obtain a new 
Markov chain with states V o ,  V1, Vz, . . . , V,. The transition proba- 
bilities are 

pr,r-1 = ils 
p i ,  = 0 otherwise. 

We shall refer to this new process as the macroscopic process. 
By the results of § 6.3 we know that  the lumped process will again 

be ergodic and reversible. I t  is again of period 2. The fixed vector 6 
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for the lumped process is easily obtained from a. The component P, 
is the sum of the components of a for states in Vi. Since there itre 

states in VI we have 

Hence 

By Theorem 6.2.3 we see that  the mean number of times in any state 
Vt,  between occurrences of state 

I n  particular the mean number of times in each state between 

occurrences of 0 is 

For our example s =  3 the partition Tor the lumping is W =  ((000), 
(100, 010, 001>, {110, 101, 0111, ( I l l ) ) .  The transition matrix is 

For the macroscopic chain we are also primarily interested in the 
mean first passage times. We know that  in general I t  is not easy to 
obtain the mean first passage times for the lumped chain from the 
original chain. However, in the case we are considering we are 
helped by two special features of the process. First, for the lumped 
chain we can obtain all of the values of mij  from the knowledge of 
only m,o. I n  fact, since i t  is possible to go from Vg+1 to Vo only by 
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For values of 8 up to 6 the values of mSa are given in Figure 7-7. 
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We note that the means for a given 8 increase as we increase the 
distance. This is to be expected. However, they increase very slowly. 

We shall call the above chain the microscopic chain. In physical 
applications this chain is often not as interesting as one obtained 
from it by lumping. The macroscopic chain is a Markov chain obtained 
from the microscopic chain by lumping all states having the same 
number of molecules in region A. Let us verify that the condition 
for lumpability is satisfied. Let Vi be the set of all states in the 
microscopic process with i molecules in region A. The set Vi has 

G) eleme:1ts. From any element of Vi the process moves to one of 

(i; 1) elements of Vi+l or to one of (i ~ 1) elements in Vi-I· The 

probability of moving to Vi+l is (s-il!s and the probability of moving 
to Vi - I is i/s. These probabilities are the same for all elements of Vi. 
Hence the condition for lumpability is satisfied, and we obtain a new 
Markov chain with states Vo, VI, Vz, ... , V •. The transition proba
bilities are 

P',I+l = 1 - ijs 

PI,i-l = i/s 

PI.1 = 0 otherwise. 

\Ve shall refer to this new process as the macroscopic process. 
By the results of § 6,3 we know that the lumped process will again 

be ergodic and reversible. It is again of period 2. The fixed vector a. 

f 
! 



170 FINITE MARKOV CHAINS CHAP. VII  
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microscopic process with i molecules in region A. The set Vi has 

('?I elements. From any element of Vr the process mores to one of 

, , 
probabiliby of moving to  Vit l  is ( a - i l l s  and the probability of moving 
to Vi-l  is i / s .  These probabilities are the same for all elements of "it. 

Hence the condition for lumpability is satisfied, and we obtain a new 
Markov chain with states V o ,  V1, Vz, . . . , V,. The transition proba- 
bilities are 

pr,r-1 = ils 
p i ,  = 0 otherwise. 

We shall refer to this new process as the macroscopic process. 
By the results of § 6.3 we know that  the lumped process will again 

be ergodic and reversible. I t  is again of period 2. The fixed vector 6 
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for the lumped process is easily obtained from a. The component P, 
is the sum of the components of a for states in Vi. Since there itre 

states in VI we have 

Hence 

By Theorem 6.2.3 we see that  the mean number of times in any state 
Vt,  between occurrences of state 

I n  particular the mean number of times in each state between 

occurrences of 0 is 

For our example s =  3 the partition Tor the lumping is W =  ((000), 
(100, 010, 001>, {110, 101, 0111, ( I l l ) ) .  The transition matrix is 

For the macroscopic chain we are also primarily interested in the 
mean first passage times. We know that  in general I t  is not easy to 
obtain the mean first passage times for the lumped chain from the 
original chain. However, in the case we are considering we are 
helped by two special features of the process. First, for the lumped 
chain we can obtain all of the values of mij  from the knowledge of 
only m,o. I n  fact, since i t  is possible to go from Vg+1 to Vo only by 
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for the lumped process is easily obtained from a. The component .21 
is the sum of the components of a for states in Vi. Since there are 

G) states in Vi we have 

G) 
aj =--, 

2' 
HelICe 

Cl ~{~n 
By Theorem 6.2.3 we see that the mean number of times in any state 

Vi, between occurrences of state Vj, is 

(8\ 
}l. 
'8) C; 

In particular the mean number of times III each state between 

(~,.). occurrences of 0 is • 

For our example 8 = 3 the partition for the lumping is V = ({OOO}, 
{lOO, 010, OOI}, {IIO, 101, Oll}, {ill}). The transition matrix is 

Vo VI Vz Vs 

Vo 

(~3 
I 0 

~\ VI 0 2/3 
Vz \: 2! 3 ° 1~3) 
Vs 0 1 

For the macroscopic chain we are also primarily interested in the 
mean first passage times, We know that in general it is not easy to 
obtain the mean first passage times for the lumped chain from the 
original ohain. However, in the case we are considering we are 
helped by two special features of the process. First, for the lumped 
chain we can obtain all of the values of miJ from the knowledge of 
only miD. In fact, since it is possible to go from VH1 to Vo only by 
going through Vi we have 

mHl,i = ml+l,O-m"o 

and, by symmetry, 

o ~ t < 8. 
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Thus we need only find the mean times to go from any state to Vo. 
In lumping, the set which became state Vo was a set with only one 
element, namely the vector y = (0, 0. 0.  . . . , 0). Hence the mean time 
to go from state V i  in the lumped chain to Vo is the same as the mean 
time to go frorn any element in the set Vi to y =  (0 ,  0, 0 ,  . . . , 0). But  
any such element is a distance i from this vector. Hence this mean 
time is msi. Using our results for the microscopic process we have the 
values mil for the macroscopic process. These are best expressed as 
follows : 

6 - 2  s-z-1 

mi,~+l = ms-t.o-ms-~-l.o = 2 &Ss-r- 2 QSs-r = &St 
k =  1 P = l  

0 < i < s - l .  

To go from Vi t o  Vf we must go through every intermediate point. 
Wence 

j- 1 

mil = 2 &8* for i < j 
L.=i  

and 
s-j-1 

mil = ms-t,s-j = 2 &Sk for i > j. 
k ~ r - i  

From the vector a, 
2s 

From these values we obtain 

Let n(i+')tr be the mean number of times in state Vi before reaching 
state Viil,  the process is started in state Vd.  Then by $ 6.2.7(b) we 
have 

n(i+Uit = mi,i+i fmf+i.t  
?nt( 
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Assume now that  s is even. From j l )  we obtain 

Also, since ms,z,o =ms,z,s, we have 

From the point of view of physical interpretations the most interest- 
ing ease is where there is a large number of molecules. For this we 
would like to find estimates for rno,,,z and m,/z,o. The first represents 
the time taken to go from no molecules in the given region to an equal 
number in each. The second is the tirne taken to go from an equal 
number in each to 0 in region A .  If the model is t o  have any similarity 
to actual physical situations we would expect that  the time to equalize 
the molecules would be much shorter than the time to reach an extreme 
situation from equalization. 

We consider first rno,,,z. WE estimate dhe time reqclired to go from 
Vi to Vi+l. We know that the mean number of times in Vt before 
rea,ching Vi+l is s / (s  - i) = 1 i i j ( s  - i ) .  Each time i t  is in Vi (except for 
the last tirne) a t  least two steps are taken in going to  Vi-l and back to 
Vi. Wence the mean time to go from Vi to ViTl is a t  least 

i s t i  
14-2--, = -; 

8-2  8 - 2  

Hcnce we may find a lower bound for mo,,,z by finding 

S/Z;l a + i  2 --- 
,=o 8 - 2  

This sum is greater than : 

d s  = s ( 2  log 2 - - 2 .  

Hence s(2  log 2 - 1 ; ~ )  - 2 is a lower bound for mo,,12. -4 better lower 
bound is obtained as fo1ion.s. We assumed above that  each time the 
process went frorn Vi-.l to V i ,  it did so in one step. If instead we use 
our lower bound for the mean time to go from ViPl to V,  we have a 
new lox-er bound for the tirne to go from "Ji to Vi+l. This is 

172 FINITE MARKOV CHAINS CHAP. VII 
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k~ l k~ 1 

O,::;i<s-l. 

To go from Vi to Vj we must go through every intermediate point. 
Hence 

and 

j-I 

mij 2: Q'k for i < j 
l:==i 

.-j-1 

mij m.-l,s-j = L Qs;: for i > j. 
I;:=,-i 

From the vector a, 

From these values we obtain 

m~,i+l + m1'+l,i 
(1 ) 

Let n({+l)jj be t.he mean number of times in state Vi before reaching 
state Vl+1 , the process is started in state Vi. Then by § 6.2.7 (b) we 
have 

('tl' mi,itl +'lnt+l,i 
n' 'if = ------

mjj 

8 
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bound is obtained as fo1ion.s. We assumed above that  each time the 
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new lox-er bound for the tirne to go from "Ji to Vi+l. This is 

SEC. 3 APPLICATIONS OF MARKOV CHAINS 173 

Assume now that s is even. From (1) we obtain 

rnO,./2 + 'ins/z,o 

8/2-1 I 

2' L -(S-l)' 
t=O . 

t 

Also, since ms/2,O=ms/2,s, we have 

mo,. = mO,BIZ + m sl2,& = 
,/2-1 1 

2s 6 e~ 1)' 
(2) 

From the point of view of physical i:lterpretations the most interest
ing case is where there is a large number of molecules. For this we 
would like to find estimates for mO. s/2 and m sf2. o. The first represents 
the time taken to go from no molecules in the given region to an equal 
number in each. The second is the time taken to go from an equal 
num ber in each to 0 in region A. If the model is to have any similarity 
to actual physicEd situations we would expect that the time to equalize 
the molecules would be much shorter than the time to Ieach an extreme 
situation from equalization. 

'We consider first mo,s/Z. \Ve estimate the time required to go from 
V, to V i 'l. 'We know that the mean number of times in Vi before 
reaching Vi+1 is s/(s-i) = 1 +i/(s- i). Each time it is in V, (except for 
the last time) at least two steps are taken in going to V;-1 and back to 
Vi, Hence the mean time to go from Vi to VI -d is at least 

i s+i 
1+2--. = --.' 

S-I· s-~ 

Hence we may find a lower bound for mO,s/2 by finding 

This sum is greater than: 

--:2+ ~-dx = s(21og::- 11z)-2. j'S/2 S+X 

o 8-X 

Hence 8(2 log 2 - 1 i 2) - 2 is a lower bound for mO.s/2. A better lower 
bound is obtained as follows. 'We assumed above that each time the 
process went from Vi -- 1 to Vi, it did so in OIle step. If instead we use 
our lower bound for the mean time to go from Vi - 1 to Vi we have a 
new lower bound for the time to go from Vi to Vi+l' This is 

1+- 1+--- = 1+ . . . i ( S -1-- i-i) 28i 
s-i s-i+ 1 (8-t)(s-~+1) 
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The sum of these values between Vo and v81s1 is greater t 

Using the first two t e rns  in the  Taylor series for log (s+ 2)/(s i 1) we 
obtain the estimate 

- 5 + sp/z - 2 log 2) 

for our improved lower bound. 
We next obtain an upper bound for mo,,,z. We have 

- - 

Hence, 

= sp/4 + 112 log 8). 

This approximation can be improved by using a better estimate for 
the terms of the sum where 1 is large. Thus we have found that  

- 5 + s(5I2 - 2 log 2 )  < rn,,,,, < + 112 log s]. 

It would appear that  these values are asymptoticaily of a greater 
order of magnitude than a constant times s, but less than a constant 
times s log s. We see from these estimates that  the process takes a 
very short time to go from 0 to 4 2 .  For s =  100 the minimum time i t  
could take is 50 and the actual mean time required is about 140. 
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Consider next mo,,. We know from (2) that  

where I < A < 2. 

Our estimates for rno,,,z show that  this quantity is of a lower order of 
magnitude than mo,,. Hence the above estimates serve also for 
ma/~,s = ma/2,0 and we have 

where 1 < A ,< 2 .  

Thus, as predicted, the mean time to go from equalization to ihe 
extreme of 0 molecules is very much larger than to go from 0 to 
equalization. For s= 100 the first time is approximately 2'00 or about 
PO00 billion billion billion while the second is only 140. 

Other interesting quantities are mo,o and m,,z,,,2. For these we 
have 

For s=  100, rnso,so is approximately 12.5. 
We conclude this section with some remarks about the macroscopic 

chain and reversibility. It is sometimes argued thac a process of the 
type we have considered has a "direction" because of the very great 
tendency to move toward equalization. It is true that  if the process 
is started out of equilibrium-say, in state 0-then i t  will certainly 
move towards the center. However, if the process is observed after 
it has been going for a long time, then we may consider it as started in 
equilibrium and in this case the process will appear the same looked 
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The sum of these values between Vo and V,12-1 is greater than 

r-12 ( 2SX) -4+ J 1 + dx o (8-X)(S-x+ 1) 

= - 4+8[1/2- 2 log 2 +S(8+ 1) log:: n 
Using the first two terms in the Taylor series for log (8+ 2)/(s+ 1) we 
obtain the estimate 

-5+8(5/2-2Iog 2) 

for our improved lower bound. 
We next obtain an upper bound for mO,8/2. We have 

./2-1 1 I 8 

mO,./2 = 2: ('S - 1) 2: (k) 
1-0 k-O 

l 

(S)[1 l l(l+l) 
l + 8-l+ 1 + (s-l+ 1)(s-l+ Z) + 

l1 ] 
+ (s-l+ 1) .. . s 

Hence, 

mO,s/2 ~ 

./2-1 (~) 

6 e~l) 
8-l 
s- 2l 

i ('-ll/2 S 
~ --z- dx+ 1/4S 

o s- X 

= S(1/4 + Ihlog 8). 

s/2-1 

2 8~ZI 
1=0 

This approximation can be improved by using a better estimate for 
the terms of the sum where l is large. Thus we have found that 

-5+s(51z-2Iog2) < mO. BI2 < S[I/4+1/21ogs]. 

It would appear that these values are asymptotically of a greater 
order of magnitude than a constant times s, but less than a con:;tant 
times slog s. \Ve see from these estimates that the process takes a 
very short time to go from 0 to s/Z. For 8 = 100 the minimum time it 
could take is 50 and the actual mean time required is about 140. 
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Consider next mG... We know from (2) that 

But 

Hence 

Thus 

I 1+-- :;;; 
8-1 

s12-1 

mo,. = 28 2: (8-1\' ,~O • ,I 
~ J 

s12-1 1 

L ('8-1\ :;;; 
i=O i j 

1 1 8/2-1 
+--+--,' 

8-1 e~l) 

mo,. ~ 28( 1 +~) where 1 ~ A :;;; 2. 
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Our estimates for mO,./2 show that this quantity is of a lower order of 
magnitude than mo.s. Hence the above estimates serve also for 
m./2,g=7ns;2.0 and we have 

msl20 - 2'{1+::) where 1 :;;; A ~ 2. , . \ 8 

Thus, as predicted, the mean time to go from equalization to the 
extreme of 0 molecules is very much larger than to go from 0 to 
equalization. For s = 100 the nrst time is approximately 2100 or about 
1000 billion billion billion ',vhile the second is only 140. 

Other interesting quantities are mo,O and ';'812,8/2. For these we 
have 

mo,O = 28 

28 J;;;-
-( 8 \ ~ '2 8 . 

s/2) 

ms/2,s/2 = 

For s = 100, mSO,50 is approximately 12.5. 
We conclude this section with some remarks about the macroscopic 

chain and reversibility. It is sometimes argued that 2~ process of the 
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tendency to move toward equalization. It is true that if the process 
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equilibrium and in this case the process will appear the same looked 
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a t  in the reverse direction as in the forward. For example, if the 

process is then observed in V, the probability that  i t  moves to state 
V,-l is the same as the probability that  i t  came from V,-l. Another 
way to put this is the following. If a sequence of outcomes for a large 
number of steps is recorded and then handed to  a physicist, he would 
be unable to tell whether he was given them in the order of increasing 
time or in the order of decreasing time. 

3 7.4 Applications fo genetics. A problem that  is frequently 
discussed in genetics is the following: Two animals are mated. From 

their offspring, two are selected by some method, and these are mated. 
Then the procedure is repeated. This type of problem may be treated 
as a Markov chain. As stat,es we take the possible combinations of 
parents, and the transition probabilities are determined by the laws of 
genetics, from the assu~nptions concerning the way parents are selected. 

The simplest such problem is obt,ained if we classify pareilts only 
according to the pair of genes they carry in one position in the chromo- 
somes. We will discuss this case. Here we may forther simplify the 
problem by assuming that  the gene is either a or I.: and hence that  any 
individual animal must be of type aa or ab or bb. For exan~ple: if a 
dominates b, then aa is a pure dominant, a6 is a hybrid, and bb is a pure 
recessive animal. Then a pair of parents must be of one of the following 
six types: (aa,  an) ,  (bb, bb),  (nu,, ab) ,  (bb, a,b), (aa,  bb),  (ub, ah).  This 
problem, for the simple case that  the new pments are selected a t  
random from the offspring, is treated in Feller and in FM. 

We will discuss a class of problems of which the above problem is a 
special case. We will assume that  one offspring is selected a t  random, 
and that  this offspring selects a mate. In  its selection it is k times as 
likely to pick a given animal unlike itself than a given animal like 
itself. Thus k measures how strongly "opposites attract each other." 
I n  this we take into account that  in a simple dominance situation, 
aa  and a21 type animals are alike as far as appearances are concerned. 
The resulting transition matrix is 
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The first two states are absorbing. They correspond to  having 
developed a pure strain: pure dominant in the first state, and pure 
recessive in the second. We will compute the fundamental matrix N :  
the vector T, and the matrix B. 

(aa,  n o )  (bb, 66) 

4 k 2 t 2 3 k t 0  4k2+ 5 k + 3  

R = 
I Ok + 3 8kz+ PSk -!- 9 

4(%+ + ) ( k  + 3) 18?i+6 8k"+10k+6 

1Sk+ 6 8k2+ 10k+ 6 

Since we know that .vc-e will eventually end up with a pure strain, the 
two most interesting questions concern the number of generations 
needed to reach a pure strain and the probability uf getting pure 
dominants or pure recessives. In particular, we will be interested in 
the effect that k has on these quantities. 

-4 large k has the effect of producing more mised matings. Hence we 
would expect a large k to slow down the process. Indeed, every entry 
in T is rnonotolte increasing in k .  Some typical values of this vector are 

We see that  increa.sirig ti- a41 slow down the process considerably, 
especially if we start in one of the last three states. The fact that  
the t i n ~ e  to absorption from (on, bii) is always o m  more than from 
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number of steps is recorded and then handed tD a physicist, he would 
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§ 7.4 Applications to genetics. A problem that is frequently 
discussed in genetics is the following: Two animajs are mated. From 
their offspring, two are selected by some method, and these are mated. 
Then the procedure is repeated. This type of problem may be treated 
as a Markov chain. As states we take the possible combinations of 
parents, and the transition probabilities are determined by the laws of 
genetics, from the assumptions concerning the way parents are selected. 

The simplest such problem is obtained if we classify parents only 
according to the pair of genes they carry in one position in the chromo
somes. We will discuss this case. Here we may further simplify the 
problem by assuming that the gene is either a or b, and hence that any 
individual animal must be of type aa or ab or bb. For example, if a 
dominates b, then aa is a pure dominant, ab is a hybrid, and bb is a pure 
recessive animal. Then a pair of parents must be of one of the following 
six types: (aa, aa), (bb, bb), (aa, ab), (bb, ab), (aa, bb), (ab, ab). This 
problem, for the simple case that the new pClrents are selected at 
random from the offspring, is treated in Feller and in FM. 

We will discuss a class of problems of which the above problem is a 
special case. We will assume that one offspring is selected at random, 
and that this offspring selects a mate. In its selection it is k times as 
likely to pick a given animal unlike itself than a given animal like 
itself. Thus k measures how strongly "opposites attract each other." 
In this we take into account that in a. simple dominance situation, 
aa and ab type animals are alike as far as appearances are concerned. 
The resulting transition matrix is 

(lUI, aa) 0 0 0 0 0 
I 

(bb, bb) 0 I 0 0 0 0 
--------

(aa, alJ) 1/4 0 ! 1/2 0 0 1/4 

0 
1 

0 
k 1 

P = (bb, ab) 2(k+ 1) (k+ 1) 
0 

~(k -=t=Ti 
0 0 0 0 0 

(aa, bb) 1 . 1 2k(k+ J) k(",+ 1) 
(ab, ab) 4(3k + 1)1 k + 3 (k+3)(3k+ J)(k+ 3)(3k+l) k+3 
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process is then observed in V, the probability that  i t  moves to state 
V,-l is the same as the probability that  i t  came from V,-l. Another 
way to put this is the following. If a sequence of outcomes for a large 
number of steps is recorded and then handed to  a physicist, he would 
be unable to tell whether he was given them in the order of increasing 
time or in the order of decreasing time. 

3 7.4 Applications fo genetics. A problem that  is frequently 
discussed in genetics is the following: Two animals are mated. From 

their offspring, two are selected by some method, and these are mated. 
Then the procedure is repeated. This type of problem may be treated 
as a Markov chain. As stat,es we take the possible combinations of 
parents, and the transition probabilities are determined by the laws of 
genetics, from the assu~nptions concerning the way parents are selected. 

The simplest such problem is obt,ained if we classify pareilts only 
according to the pair of genes they carry in one position in the chromo- 
somes. We will discuss this case. Here we may forther simplify the 
problem by assuming that  the gene is either a or I.: and hence that  any 
individual animal must be of type aa or ab or bb. For exan~ple: if a 
dominates b, then aa is a pure dominant, a6 is a hybrid, and bb is a pure 
recessive animal. Then a pair of parents must be of one of the following 
six types: (aa,  an) ,  (bb, bb),  (nu,, ab) ,  (bb, a,b), (aa,  bb),  (ub, ah).  This 
problem, for the simple case that  the new pments are selected a t  
random from the offspring, is treated in Feller and in FM. 

We will discuss a class of problems of which the above problem is a 
special case. We will assume that  one offspring is selected a t  random, 
and that  this offspring selects a mate. In  its selection it is k times as 
likely to pick a given animal unlike itself than a given animal like 
itself. Thus k measures how strongly "opposites attract each other." 
I n  this we take into account that  in a simple dominance situation, 
aa  and a21 type animals are alike as far as appearances are concerned. 
The resulting transition matrix is 
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The first two states are absorbing. They correspond to  having 
developed a pure strain: pure dominant in the first state, and pure 
recessive in the second. We will compute the fundamental matrix N :  
the vector T, and the matrix B. 

(aa,  n o )  (bb, 66) 

4 k 2 t 2 3 k t 0  4k2+ 5 k + 3  

R = 
I Ok + 3 8kz+ PSk -!- 9 

4(%+ + ) ( k  + 3) 18?i+6 8k"+10k+6 

1Sk+ 6 8k2+ 10k+ 6 

Since we know that .vc-e will eventually end up with a pure strain, the 
two most interesting questions concern the number of generations 
needed to reach a pure strain and the probability uf getting pure 
dominants or pure recessives. In particular, we will be interested in 
the effect that k has on these quantities. 

-4 large k has the effect of producing more mised matings. Hence we 
would expect a large k to slow down the process. Indeed, every entry 
in T is rnonotolte increasing in k .  Some typical values of this vector are 

We see that  increa.sirig ti- a41 slow down the process considerably, 
especially if we start in one of the last three states. The fact that  
the t i n ~ e  to absorption from (on, bii) is always o m  more than from 
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The first two states are absorbing. They correspond to having 

developed a pure strain: pure dominant in the first state, and pure 
recessive in the second. \Ve will compute the fundamental matrix N, 
the vector T, and the matrix B. 

J\' = _:---:-l-.---cc 
(2k+l)(k+3) 

'4(k2+5lc+2) 

( 
2(3k+ 1) 

x 4(3lc+1) 

4(3k+ 1) 

2k(k+ 1)2 

(4k 2 +9lc+3)(k+ l) 

4lc(k+ 1)2 

4k(k + 1)2 

lc(k+ 1) 

k(k+ 1) 

(4lc 2 + 9k + 3) 

2k(k+l) 

(3k+ 1)(k+3) \ (00, ab) 

(3k+ l)(k+ 3) \ (bb, ab) 

2(3k+ l)(k+ 3) ! (00. ab) 

2(3k+l)(k+3) (ab.ab) 

T = 
(2k+l)(k+3) 

(a a, ab) 

(b/', rib) 

(aa, bb) 

(ab, ab) 

(aa, aa) 

B = ] 
4(:2k+ l)(k+ 3) 

14k2 + :23k + [) 

( 9k+3 

_ 18k + 6 

\ 18k + 6 

(bb, Vb) 

4k 2 + 5k+ 3) 
Bk 2 +19k+9 

Sk 2+ 10k+ 6 

8k 2 + 10k+ 6/ 

(aa, aa) 

(Ob, ab) 

(aa, bb) 

(ab, aa) 

Since we know that we will eventually end up with a pure strain, the 
two most interesting questions concern the number of generations 
needed to reach a pure strain and the -probability of getting pme 
dominants or pure recessives. In particular, we will be illterested in 
the effect that t· has on these quantities. 

A large k has the effect of producing more mixed matings. Hence we 
would expect a large J: to slow down the process. Indeed, every entry 
in T is monotone illcreasing in t. Some typical values of this vector are 

132/ 3 \ c;:) c::) /10.11\ 

(!:;: ) 1611) 
1- 91 . 62/3 8.28 ~d~::l 31/3 52/"3 ,7.:28 

k=O k=l /-_.) 1:=7 

We see that increasing k will slow down the process considerably, 
especially if we start in one of the la,st three states. The fact that 
the time to absorption from (00, bb) is always one more than from 
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(ab, ab)  is due to the fact that from the former state we always go to the 
latter in one step (a pure dominant and a pure recessive parent must 
have hybrid offspring). 

The effect of k on the probability of absorption is not so clear. 
One would guess that large k favors the recessive strain, since then both 
dominants and hybrids would tend to select recessive mates. Indeed, 
for k >  1 the probability of absorption in (bb, bb) increases with k. 
But for k <  1 a surprising situation develops. As k is decreased from 
1, the probability of absorption in (aa ,  a a )  increases, until it reaches a 

ame value as a t  maximum a t  k = 1 / 3 ,  and then decreases back to the s- 
k = 1. Thus k =0  and k = 1 yield the same absorption probabilities. 
This means that, if in nmating like always selects like, the probability 
of absorption is the same as for random mating (though of course the 
time to  absorption is much less than for random mating). Some typical 
values for the probability of absorption in (aa,  a a )  are 

The fact that the last two entries are always the same is due to the 
already observed fact that the process always goes directly from 
(aa,  bb) to (ab, ab). The probability from (bb, ab) is half this much: 
since when the process leaves (66, ab) ,  it is equally likely to go to 
(ab, ab)  or to be absorbed in (bb, bb). Similarly, the value a t  (aa,  ab)  
is half the (ab,  ab)  value, plus I / >  It is interesting to note ehak for 
random mating the probability of absorption in (aa,  a a )  is proportional 
to the number of a genes present a t  the start. 

Let us collect the quantities for tthe special case of random mating, 
k =  1. 

We also compute 

The standard deviation in 7 is around 4.7 for every entry. This is of 
the same order of magnitude as the entries of T, hence we may expect 
very large fluctuations. 

We observe from P that the process satisfies the condition for lumpa- 
bility if we combine the first two states and combine the next two states. 
This partition has a simple interpretation. The state (bb, bb) results 
from (aa ,  a a )  by interchanging a arid b, and (bb, ab)  results from 
(aa,  ab)  similarly. On the other hand (aa,  bb) and (ab, ab)  are un- 
changed. Hence the partition represents the process if we do not care 
which gene is the domlnant gene. The first state of the new process, 
which we may denote by (aa,  a a ) ,  represents any pair of like pure 
parents. The second state, to be denoted by (aa. ab) ,  represents one 
pure and one hybrid parent. The remaining two states represent the 
combination of unlike pure parents, and of two hybrid parents, re- 
spectively. The lumped transition matrix is 

To obtain N for the lumped process. we add the first two coluntns. 
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k = 1. Thus k = 0 and k = 1 yield the same absorption probabilities. 
This means that if in mating like always selects like, the probability 
of absorption is the same as for random mating (though of course the 
time to absorption is much less than for random mating). Some typical 
values for the probability of absorption in (aa, aa) are 

('75) (.77\ (.75) (.71\ (.61) .25 .27. .25 .21 \ .11 

.50 .54 ) .50 .42' .22' 

.50 .54, .50 \.42) .22 

k=l k=7 

The fact that the last two entries are always the same is due to the 
already observed fact that the process always goes directly from 
(aa, bb) to (ab, ab). The probability from (bb, ab) is half this much: 
since when the process leaves (bb, ab), it is equally likely to go to 
(ab, ab)or to be absorbed in (bb, bbl. Similarly, the value at (aa, ab) 
is half the (ab, ab) value, pIllS 1/2. It is interesting to note that for 
random mating the probability of absorption in (aa, aa) is proportional 
to the number of a genes present at the start. 
k :~~ us collect the qnant,ities for the special case of random mating, , 

0 0 0 0 0 (arL, aa) 

0110000 (bb bb) 

------.---------
1/4 0 

I 
t (2 0 0 I( 4 (au,ob) 

p= 
1/4 1/2 I! 4 (UJ, ab) 0 I 0 0 

0 0 0 0 0 I (aa, bb) 

1/ 16 1/16 1/4 1/4 t! 8 (ab,ab) 
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Let us collect the quantities for tthe special case of random mating, 
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The standard deviation in 7 is around 4.7 for every entry. This is of 
the same order of magnitude as the entries of T, hence we may expect 
very large fluctuations. 

We observe from P that the process satisfies the condition for lumpa- 
bility if we combine the first two states and combine the next two states. 
This partition has a simple interpretation. The state (bb, bb) results 
from (aa ,  a a )  by interchanging a arid b, and (bb, ab)  results from 
(aa,  ab)  similarly. On the other hand (aa,  bb) and (ab, ab)  are un- 
changed. Hence the partition represents the process if we do not care 
which gene is the domlnant gene. The first state of the new process, 
which we may denote by (aa,  a a ) ,  represents any pair of like pure 
parents. The second state, to be denoted by (aa. ab) ,  represents one 
pure and one hybrid parent. The remaining two states represent the 
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To obtain N for the lumped process. we add the first two coluntns. 

! 
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C 
2/3 1/ G 4/3\ 

N = 2/3 8/3 J /a 4/3 \ 
41/3 4/3 4/3 Bia ) 
4/3 4/3 lla 8/3 

/45(6\ (/4 ') . 45/6 \ 
B= 

I 1/4 3 j 4 
T= I 62/3 I ( 1'2 1/2 

\52/3) 
\ I 
\llt) l/Z I" 

'We also compute 

(5/8 1/ s 

:~:) ~,~ ",.c:) 1 , 5/8 1/8 
H= /4 

\ l/Z 1/2 1(.1 . 816 

liz 1/2 1/4 5/ S 816 

The standard deviation in T is around 4.7 for every entry. This is of 
the same order of magnitude as the entries of T, hence we may expect 
very large fluctuations. 

\Ve observe from P that the prO('cBs satisfies the condition for lumpa
bility if we combine the first two states and combine the next two states. 
This partition has a simplc int.erpretation. The state (bb, bb) results 
from (aa, aa) by interchanging a and h, and (bb, ab) results from 
(aa, ab) similarly. On the other hand (aa, bb) a.nd (ab, ab) are un
changed. Hence the partition represents the process if we do not care 
which gene is the dominant gene. The first state of the new process, 
which we may denote by (aa, aa), represents any pair of like pure 
parents. The second state, to be denoted by (aa, ab), represents one 
pure and one hybrid parent. The remaining two states represent the 
combination of unlike pure parents, and of two hybrid parents, re
spectively_ The lumped transition matrix is 

·c 0 0 

':') 
(aa, aa) 

1/2 0 (aa, ab) 
p= 

0 0 0 (aa, bb) 

lis 1/2 1/8 1/ 4 (ab, ab) 

To obtain N for the lumped process. \ve add the first two columns, 
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which correspond to lumped transient states: 1 

We then observe that  the first two rows are identical, as must be the 
case for lumpability. Hence we have 

and 

The vector .F is also obtainable directly from T. The latter has identical 

entries for the two states to  be lumped, as must be the case. and con- 
traction yields +. For many purposes the lumped process yields 
sufficient information. (Of course, i t  does not yield any interesting 
information as far as the absorption probabilities are concerned, since 
there is only one absorbing state after lumping.) For example, 7 is 
completely determined by $. 

The last two columns of &, corresponding to single-state cells, are 
obtainable directly from H .  But  the first column is new. G z  is directly 

obtainable from 7 2 .  

A generalization of this lumped process is discussed ili Kempthorne. j 
We still restrict ourselves to a single position in the chromosomes. but 
we no longer assume that  only two types of genes can occur in this 
position. There may be any number of different kinds of genes. We 

consider the process in the lumped form: We care about the number of 
different genes present and about their combination, but we do not 
distinguish states that  differ only in having the genes permuted. Thus 

t 0. Kernpthorne, An Int~odxcfion lo QenelicStntistics, New York ,  John Wiley & Son, 
Inc., 1050. 
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we have the following seven states: 

0 0 0  

' / z  0 '14 

0 0 1  

'/8 '12 '18 '14 

0 0 " 2  

ed the equivalence classes in the transition matrix. 
The equivalence classes are determined by the number of &&rent genes 
present in the parents. Clearly, this number either stays the same or 
i t  decreases, hence the process can move from an equivalence class with 
a given number of genes only to one with fewer genes, i.e. from t 
bottom up in P. The single state with only one type of gene present is 
absorbing. The four-state lumped process we considered above 
corresponds to the two top equivalence classes in the present chain. 
Since numbers concerning these classes are not affected by equivalence 
classes lower down, all quantities we are about to compute will a p e e  in 
their upper left corner with those previously found. 

N = 
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which correspond to lumped transient states: 
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(ab, ab) 

The vector'; is also obtainable directly from T. The latter has identical 
entries for the two states to be lumped, as must be the case, and con
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obtainable from T2. 

A generalization of this lumped proceBs is discussed ill Kempthorne.t 
\Ve still restrict ourselves to a single position in the chromosomes, but 
we no longer assume that only two types of genes can occur in this 
position. There may be any number of different kinds of genes. \Ve 
consider the process in the lumped form: We care about the num ber of 
different genes present and about their Gombination, but 'we do not 
clistinguish states that differ only in having the genes permuted. Thus 

to. Kempthorne, An Introduction to GeneticStMistics. New York. John \Vilt,y & Son. 
Inc., 1950. 
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a given number of genes only to one with fewer genes, i.e. from t 
bottom up in P. The single state with only one type of gene present is 
absorbing. The four-state lumped process we considered above 
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Since numbers concerning these classes are not affected by equivalence 
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N = 
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we have the following seven states: 

81: (aa,aa) 

S2: (00" ab) 

Sa: (aa, bb) 

S4: (a.b, ab) 

S5: (00" be) 

S6: (ab, ac) 

87: (ab, cd) 

The transition matrix is: 

r 0 0 0 ,_0 _0 I_~ 81 

-I 
1/4 I liz 0 1/4 000 S2 I 

I ~/8 I 
0 0 I o () I 0 8S 

p= l/ z lis 1/4 0 0 I 0 84 

\ o I 0 () 
"/ 2 0 1/2 0 85 

. 1/16 I 11", 0 3/16 l/S 3/8 0 86 

o \ 0 0 1/4 0 1/2 1/4 5; 

We have indicated the equivalence classes in the transition matrix. 
The equivalence classes are determined by the number of different genes 
present in the parents. Clearly, this number either stays the same or 
it decreases, hence the process can move from an equivalence class with 
a given number of genes only to one with fewer genes, i.e. from the 
boUom up in P. The single state with only one type of gene present is 
absorbing. The four-state lumped process we considered I1bove 
corresponds to the two top equivalence classes in the present chain. 
Since numbers concerning these classes are not affected by equivalence 
classes lower down, all quantities we are about to compute will agree in 
their upper left corner with those previously found. 
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We note tha t  sz, s4, and s6 are the "likely states," in the sense that  if 
the process starts low enough for it to be possible to reach the state 
there is always a fairly good chance of reaching the state. The other 
states are quite unlikely no matter how the process is started. I t  is 
quite surprising that  starting in s7-that is, starting with four diflr'erent 
genes-we expect to reach a pure strain in 72j3  generations. But i t  
must be remembered that  the standard deviation of this quantity is 
4.97, and hence much longer processes are not too unlikely. 

5 7.5 Learning theory. This section will be devoted to the study of 
a mathematical model for certain kinds of learning, due to W. K. Estes. 
We will discuss only some relatively simple special cases, but the 
techniques here used are applicable to more general situations. 

In  a typical experiment the subject is placed in front of a pair of 
lighh, and he is asked to guess whether the light on his left or the light 
on his right will be turned on next. Thus, he has two possible responses. 
We denote by A. the guess "left," and by A1 the guess "right." The11 
the experimenter turns on one of the lights. Let Eo mean turning 
on t,he left light, and El the right light. The procedure is repeated a 
large number of times, and a record is kept of the sequence of both 
At arid E i .  The purpose of the theory is to predict, for given behavior 
of the experimenter, how the subject's guesses will change in the long 
run. A variety of experiments has shown that  the model is in good 
agreement with the facts. 
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I n  a large class of interesting experiments the experimenter will 
choose his actions with fixed probabilities, depending only on the 
action of the subject. These probabilities may be given in Figure 
7-8. 

That is, a guess "left" (Ao) is reinforced by turning on the left light 
(Eo) with probability I - v ;  otherwise the right light is turned on. 
And a guess "right" is reinforced with probability I - w. Bere v and 
w are numbers between O and I, which are kept fixed for the duration 
of the experiment. 

While v and w are usually positive numbers, the  cases in which they 
are not lead to  interesting experiments. For example, if v = 0 and 
w > 0, then A0 is always reinforced, but 8 1  is only occasionally rein- 
forced. The case v > 0 and w = 0 is similar. If v = w = 0, then every 
action of the subject is reinforced. 

Another class of interesting special cases is where a t  w= I. Here 
l - v=w and v =  1 - w, and hence the probability of Ea or of El is 
independent of the action of the subject. 

The model assumes that  the subject has a certain unknown number s 
of stimulus elements. Each stinnulus element is a t  each stage of the 
experiment connected to one of "ce two possible responses A$, the 
original connections not being known. E t  is then assumed that the 
following takes place a t  each stage of the experiment: 

(1) The subject "samp1es" a subsez of the stimufas elements, by 
means of an independent trials process, in which any one stimulus 
element is sampled with probability t or not sampled with probability 
I-t .  

( 2 )  If in the sampled set there are k stimulus elements connected to 
A. and 1 to .Al, then the subject performs A1 with probability I / ( k + I ) .  
Some convention is necessary if no st imuhs element is sampled; we 
will assume that  the probability of A1 is the same in this case as if all 
stimulus elements had been sampled. 

(3) If  the experimenter performs Eo, then any stimulus element that  
was previously connected to  Al and which was just sampled by the 
subject is reconnected to Ah Similarly, after El, all the sampled 
stimulus elements are connected to Al .  
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45/6\ 82 211 3/36 \ 

::;) :: 222/ 3 , 

22'/, ) 7"= 7"2 

71/ 6 55 2311/12 
62/ 3 SF, 242/3 

7 2/ 3 57 242/3 

82 S3 S4 55 86 87 

7/10 1/8 1/2 0 0 0 

8/10 1/4 I 0 0 0 

H 8/10 I! 4 5/8 0 0 0 

8/10 5h4 5/ 
i 6 l! 10 I! 2 0 

8/10 1/6 2/3 1/5 7/16 0 

8/ 10 7/ 36 7/9 2/ 15 2)3 I/J 
"\Ve note that 52, 54, and 86 are the "likely states," in the sense that if 
the process starts low enough for it to be possible to rCiLch the state 
there is always a fairly good chance of reaching the state. The other 
states are quite unlikely no matter how the process is started. It is 
quite surprising t.hat starting in s7-that if!. starting with four different 
genes-we expect to reach a pllTe strain in 72/3 generations. But it 
must be remembered that the standard deviation of this quantity is 
4.97, and hence much longer processes are not too unlikely. 

§ 7.5 Learning theory. This section will be devoted to the study of 
a ma"Lhematical model for cerLain kinds of learning, due to '.V. K. Estes. 
lYe will discuss only some relatively simple special cases, but the 
techniques here used are applicable to more general situations. 

In a typical experiment the subject is placed in front of a pair of 
lights, and he is asked to guess whether the light 011 his left or the light 
on his right will be turned on next. Thus, he has two possible responses. 
We denote by Ao the guess "left," and by Al the guess "right." Then 
the experiment.er turns on one of t.he lights. Let Eo mean turning 
on the left light, and EJ the right light. The procedure is repeated a 
large number of times, and a record is kept, of the sequence of both 
Ai and Ei. The purpose of the theory is to predict, for given behaVior 
of the experimenter, how the subject's guesses will change in the long 
run. A variety of experiments has shown that the model is in good 
agreement with the facts. 
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We note tha t  sz, s4, and s6 are the "likely states," in the sense that  if 
the process starts low enough for it to be possible to reach the state 
there is always a fairly good chance of reaching the state. The other 
states are quite unlikely no matter how the process is started. I t  is 
quite surprising that  starting in s7-that is, starting with four diflr'erent 
genes-we expect to reach a pure strain in 72j3  generations. But i t  
must be remembered that  the standard deviation of this quantity is 
4.97, and hence much longer processes are not too unlikely. 

5 7.5 Learning theory. This section will be devoted to the study of 
a mathematical model for certain kinds of learning, due to W. K. Estes. 
We will discuss only some relatively simple special cases, but the 
techniques here used are applicable to more general situations. 

In  a typical experiment the subject is placed in front of a pair of 
lighh, and he is asked to guess whether the light on his left or the light 
on his right will be turned on next. Thus, he has two possible responses. 
We denote by A. the guess "left," and by A1 the guess "right." The11 
the experimenter turns on one of the lights. Let Eo mean turning 
on t,he left light, and El the right light. The procedure is repeated a 
large number of times, and a record is kept of the sequence of both 
At arid E i .  The purpose of the theory is to predict, for given behavior 
of the experimenter, how the subject's guesses will change in the long 
run. A variety of experiments has shown that  the model is in good 
agreement with the facts. 
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I n  a large class of interesting experiments the experimenter will 
choose his actions with fixed probabilities, depending only on the 
action of the subject. These probabilities may be given in Figure 
7-8. 

That is, a guess "left" (Ao) is reinforced by turning on the left light 
(Eo) with probability I - v ;  otherwise the right light is turned on. 
And a guess "right" is reinforced with probability I - w. Bere v and 
w are numbers between O and I, which are kept fixed for the duration 
of the experiment. 

While v and w are usually positive numbers, the  cases in which they 
are not lead to  interesting experiments. For example, if v = 0 and 
w > 0, then A0 is always reinforced, but 8 1  is only occasionally rein- 
forced. The case v > 0 and w = 0 is similar. If v = w = 0, then every 
action of the subject is reinforced. 

Another class of interesting special cases is where a t  w= I. Here 
l - v=w and v =  1 - w, and hence the probability of Ea or of El is 
independent of the action of the subject. 

The model assumes that  the subject has a certain unknown number s 
of stimulus elements. Each stinnulus element is a t  each stage of the 
experiment connected to one of "ce two possible responses A$, the 
original connections not being known. E t  is then assumed that the 
following takes place a t  each stage of the experiment: 

(1) The subject "samp1es" a subsez of the stimufas elements, by 
means of an independent trials process, in which any one stimulus 
element is sampled with probability t or not sampled with probability 
I-t .  

( 2 )  If in the sampled set there are k stimulus elements connected to 
A. and 1 to .Al, then the subject performs A1 with probability I / ( k + I ) .  
Some convention is necessary if no st imuhs element is sampled; we 
will assume that  the probability of A1 is the same in this case as if all 
stimulus elements had been sampled. 

(3) If  the experimenter performs Eo, then any stimulus element that  
was previously connected to  Al and which was just sampled by the 
subject is reconnected to Ah Similarly, after El, all the sampled 
stimulus elements are connected to Al .  
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FIGURE 7-8 

That is, a guess "left" (Ao) is reinforced. by turning on the left light 
(Eo) with probability 1- v; otherwise the right light is turned on. 
And a guess "right" is reinforced with probability 1 - w. Here v and 
ware numbers betv;een 0 and I, which are kept fixed for t.he duration 
of the experiment. 

'While " and ware usually positive numbers, the cases in whic:, they 
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means of an independent trials process, in which anyone stimulus 
element i.s sampled with probability t or not sampled with probability 
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(2) If in the sampled set there arc k stimulus elemel1ts connected to 
Ao and l to AI, then the subject performs Al with probability l/(k+l). 
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will assume that the probability of Al is the same in this case as if all 
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was previously connected to Al and which was just sampled by the 
subject is reconnected to Ao. Similarly, after E l , ;;.11 the sampled 
stimulus clements arc connected t.o AI· 



184 FINITE MARKOV CHAIPiS CRAP. VIP 

We can represent the model as an (s + 1) state Markov chain, in which 
state s+ occurs when exactly i stimulus elements are connected to W1, 
and i = O ,  1, . . . , s. All the interesting quantities depend only on 
how many stimulus elements are connected each way, and hence these 
quantities are functions on the chain. For example, the probability of 
action A1 from state st is obtained as follows: 

I i 
Prc[Al] = ( S i i ) ( l ) l m ( l  -1)- - + (1 - t ) ~  -. 

k = O  1=0 
m S 

k, t not both 0 

where k is the number of stimulus elements sampled from those con- 
nected to Ao, 1 from those connected to A1, m = k + 1, and the last term 
arises from the assumption concerning the case where no stimulus 
element is sampled. We rewrite this as a sum on m, and then use a 
binomial identity: 

It will be convenient to let the column vector y = represent these {;) . . . 
probabilities. 

Let us next construct the transition matrix P. For this we must 
take into account all four possibilities in Figure 7-8. The combination 
of Al and Eo, with a transition from st dourn to sj has probabilities w X ,  
where 

i - j j i  ) - j + k - t + ; - k . -  ifj < i 
" ? =  "-9 i - j + k  

0 ifj 2 i 

The downward transition sl to sj, by means of the combination A0 and 
Eo, has probabilities (1 - v)(Y - X), where 

, 4 j ) " - , ( ~ t ) j  ifj < i 
Ycr = 

0 i f j  > i 
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HIP we lets*,, = s,-,, s-j, and y*t5 = ys-s, then vX* and (1 - WJ)( Fh - X* 
represent the probabilities of upwards transition. Thus 

) 

The final term represents the cases 'vhere no stimulus element is sampled, 
which were not included in the two previous terms. 

We wish to compute P y .  First we find Yy .  

i 
= ( I - t ) .  

S 

Hence 
Py = (I - t)?. 

Quite similarly, 
Y*y = I C + ( l - t ) y .  

And by a somewhat longer argument we find that 

If we write P y  by means of ( I ) ,  and make use of ( A ) ,  (3),  and (4 ) ,  we 
obtain 

P y  = ~ [ t 5 + ( 1 - 2 t - ( 1 - t ) ' ) ~ - ( P - t ) ~ ]  
+ ? ~ [ t [ + ( 1 - " - ( ( 1 - t ) S ) ~ - Z [ - ( 1 - t ) ~ ]  
+ t [ + - ' ( 1 - f ) Y - t ~ - ( I - 2 t - ( 1 - t ) 6 ) y  
+ (v+ LP- B)(1 - t ) S y .  

This simplifies to 

Py  = vt( i-jf - (v+ u;)t]y. (5) 

Let us introduce the vector 6 = y - - iV :W)f for the cases where u 
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We can represent the model as an (8 + 1) state Markov chain, in which 
state Sj occurs when exactly i stimulus elements are connected to AI, 
and i = 0, 1, ... , 8. All the interesting quantities depend only on 
how many stimulus elements are connected each way, and hence these 
quantities are functions on the chain. For example, the probability of 
action Al from state SI is obtained as follows: 

~i i (S-i)(i)tm(l_t}8-m"£ + (l-t}sL 
k=O 1=0 k l m 8 

k,l not both 0 

where k is the number of stimulus elements sampled from those con
nected to Ao, l from those connected to AI, m = k + l, and the last term 
arises from the assumption concerning the case where no stimulus 
element is sampled. vVe rewrite this as a sum on rn, and then use a 
binomial identity: 

~ " (8 - 1) (i) l i L. tm(1-t}8-m L. - + (1-t)8-
m=l k+l=m k l m 8 

8 (S)i i = 2: tm( 1 - t),-m - + (1- t)8 -
m=l m 8 8 

i • (8\ = - 2: )tm(l-t)s-m 
S m=On~ 

i 
S 

It "dll be convenient to let the column vector y = f ~~I represent these 
l 8 ) • 

probabilities. 
Let us next construct the transition matrix P. For this we must 

take into account all four possibilities in Figure 7-8. The combination 
of Al and Eo, with a transition from 51 down to 81 has probabilities loX, 
where 

~ _ {S~ (S-i)(. i 'j1tH+k(1-t)H+J-k .. i-:J 
"'Ij - k -:0 k t - J t - J + k 

o 

if j < i 

ifj ~ i 

The downward transition Sj to s" by means of the combination Ao and 
Eo, has probabilities (1- v)( Y - X), where 

{( . i .)th(l-t)J 
YH = ~-J 

o 

ifj ~ i 

ifj > i 
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HIP we lets*,, = s,-,, s-j, and y*t5 = ys-s, then vX* and (1 - WJ)( Fh - X* 
represent the probabilities of upwards transition. Thus 

) 

The final term represents the cases 'vhere no stimulus element is sampled, 
which were not included in the two previous terms. 

We wish to compute P y .  First we find Yy .  
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= ( I - t ) .  

S 

Hence 
Py = (I - t)?. 

Quite similarly, 
Y*y = I C + ( l - t ) y .  

And by a somewhat longer argument we find that 

If we write P y  by means of ( I ) ,  and make use of ( A ) ,  (3),  and (4 ) ,  we 
obtain 
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Ifwe let x*jj = Xs-i, -'-I, and = Ys-i, s-j, then vX* and (1- w)( y* - X*) 
represent the probabilities of upwards transition. Thus 

P = wX+vX*+(l-v)(Y-X)+(l-w)(Y*-X*)+(v+w-l)(l-t)'l, 

or 

P = v(X +X*- Y) +w(X +X*- Y*) + (Y + Y*) - (X +X*) 
+ (v +w - 1)(1- t )sI. (1) 

The final term represents the eases where no stimulus element is sampled, 
which were not included in the two previous terms, 

"We wish to compute PI'. First we find Yy. 

i yjk~ = ~ (. i )ti-/t(l-t)k~ 
k=O S 1:=0 t-k 8 

1 i I " 
= - L k\i t)tH;(l_t)k 

8 k=1 k 

= i * (i-I)' ti-kll_t 1k Sr;;1 k- 1 \ I 

'i-l (' 1) ___ t" t-L. ii-I-I( 1 - t )1+1 
8 1=0 l, 

i" ) = « -t . 
oS 

Hence 
Yy = (1-t)y. 

Quite similarly, 
Y*y = tf+(l-t)y. 

And by a somewhat longer argument we find that 

(X+X*)y = t[+(l-Zt-(l-t)')y. 

(2) 

(3) 

(4) 

If we write PI' by means of (1), and make use of (2), (3), and (4), we 
obtain 

PI' = v[tf+(l-:2t-(l-ty)y-(l-t)yJ 
+w[tf+ (1- "2t- (l-t)s)y-tt-(l-t)y) 
+ tg + :2( 1 - t )1' - tf - (1 - 2t - (I - t lo)y 
+ (v+w-l)(l-t)-'y. 

This simplifies to 

PI' = vtf+[1-(1I+w)t]y. (5) 

Let 11S introduce the vector ,,= I' - ('_V_,)" g for the cases where 11 
Y+ u" 
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and w are not both 0. I t  will be shown later that  8  has an important 
interpretation in the model. 

or 

and 

The values of v and w determine the nature of the Markov chain. If 
O< v < l and 0 < w < 1 ,  then P > 0 and hence the chain is regular. 
If v = 0, then i = 0 is an absorbing state ; and if w = 0, then i = s is an  
absorbing state. Hence if either v or w is 0 ,  we have an absorbing chain. 
If  v= w = 0 ,  then we have two absorbing states. 

Let us find the probabdity of an A1 response after n steps. This 
will be gi-n by the vector Pnr. the probability depending on the  
starting state. If v = w  = O ,  then Py  = y  from (5), hence Pny = y .  The 
probability of an  Al response is unchanged. I n  the other cases, 
(7) provides the answer 

P"y = [z)/(v + w)][ + [ I -  (v i- w)t]n8. 

The first term (as will be seen below) is the limiting probability for 
an A1 response, and the second is the deviation due to the initial 
position. 

Let us first discuss the regular case. Were v > 0 and w > 0. Since 
O < t i l , w e h a v e j l - ( v + w ) t j i l .  From(7). 

and thus 

This proves that  the limiting probability of an A l  response is v/(v -!- w ) .  
Applying this to Figure 7-8 we find that  the limiting probability of an 
El actjion by the esperimenter is 

Thus in equilibrium the probabilities for the experimenter and the 
subject are in agreement. 
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I t  is interesting to note that  the subject does not maximize the number 
of correct guesses. Instead, he brings about an equilibrium in which he 
is guessi;,,: "right" with the same frequency with which "right" comes 
U P  

Since v/(v + w) is the mean number of A1 responses per t r ~ a l  in equili- 
brirrm, and since i/s is the mean number when in state si, the vector 

S =  { ( v ~ w ) ]  gives the deviation between the mean number of 

A1 responses in a given state and in equilibrium. 
From (61, ('21, 

( I - P + A ) 8  = (v+u~)t6 

Thus t'he tot,aI deviation from equilibrium (for the number of .A1 
responsesj is proportional to the deviation vector 6. Eence the total 
deviation may be large because ils for the starting state may have been 
far from the equilibrium vl(v + w), or because t is small. 

To obtain the limiting variance for the number of A1 responses, we 
must use 5 4.6, since we have a function on dhe chain which takes on the 
value 1 in si with probability fi =ijs. 'iVhile we have no general 
formula for this Smiting variance, in any concrete example i t  is easy to 
compute i t  from $ 4.6. 

Let us next consider the case of an absorbing chain with one absorbing 
state i = 0 ,  that  is, v = 0 and w r 0.  (The case v r 0,  w = 0 is similar.) 
In this case 8  = y .  Let 9 be gotten from y by deleting its Erst component 
(which is 0). From (b), 

This case is one in which the subject is being conditioned to give A. 
responses. If he gives an A0 response, it is always reinforced. But an  
A1 response is also reinforced occasionall!;, with probability 1 - w. AT? 
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and ware not both O. It will be shown later that S has an important 
interpretation in the modeL 

Pi) = py_('_V_)~ = [l-(V+W)t]y-(-V~)[l-(V+W)t]f 
v+w} V+i/J 

or 
PS = [l-(v+w)t]S (6) 

and 
pnS = [l-(v+w)t]nS. (7) 

The values of v and w determine the nature of the Markov chain. If 
0< v ~ I Lind 0 < w ~ 1, then P > 0 and hence the chain is regular. 
If v = 0, then i = 0 is an absorbing state; and if U' = 0, then i = 8 is an 
absorbing sUtte. Hence if either v or w is 0, we have an absorbing chain. 
Ifv=w=o, then we have two absorbing states. 

Let us find the probability of an Al response after n steps. This 
will be givan by the vector pny, the probability depending on the 
starting state. If v = w "" 0, then Py = y from (5), hence pny = y. The 
probability of an Al response is unchanged. In the other cases, 
(7) providcs the answer 

pny = [v!(v+w)lf + [1- (v+w)t]no. 

Thc first term (as will be seen below) is the limiting probability for 
an Al response, and the second is the deviation due to the initial 
position. 

Let us first discuss the regular case. Here v> ° and u' > O. Since 
0<1< I, we have 11- (v+'w)ti < 1. From (7), 

AS = 0 

ao = a(y- (_V )t) = 0 
v+w 

and thus 

v 
cry = v+w' (8) 

This proves that the limiting probability of an Al response is v/(v + i))). 
Applying this to Figure 7-8 we find that the limiting probability of an 
El act,jon by the experimenter is 

w v v 
-~·v+--·(l-w) = -_. 
v+w v+w v+w 

Thus in equilibrium the probabilities for the experimenter and the 
subject are in agreement. 
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and thus 
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Thus in equilibrium the probabilities for the experimenter and the 
subject are in agreement. 
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I t  is interesting to note that  the subject does not maximize the number 
of correct guesses. Instead, he brings about an equilibrium in which he 
is guessi;,,: "right" with the same frequency with which "right" comes 
U P  

Since v/(v + w) is the mean number of A1 responses per t r ~ a l  in equili- 
brirrm, and since i/s is the mean number when in state si, the vector 

S =  { ( v ~ w ) ]  gives the deviation between the mean number of 

A1 responses in a given state and in equilibrium. 
From (61, ('21, 

( I - P + A ) 8  = (v+u~)t6 

Thus t'he tot,aI deviation from equilibrium (for the number of .A1 
responsesj is proportional to the deviation vector 6. Eence the total 
deviation may be large because ils for the starting state may have been 
far from the equilibrium vl(v + w), or because t is small. 

To obtain the limiting variance for the number of A1 responses, we 
must use 5 4.6, since we have a function on dhe chain which takes on the 
value 1 in si with probability fi =ijs. 'iVhile we have no general 
formula for this Smiting variance, in any concrete example i t  is easy to 
compute i t  from $ 4.6. 

Let us next consider the case of an absorbing chain with one absorbing 
state i = 0 ,  that  is, v = 0 and w r 0.  (The case v r 0,  w = 0 is similar.) 
In this case 8  = y .  Let 9 be gotten from y by deleting its Erst component 
(which is 0). From (b), 

This case is one in which the subject is being conditioned to give A. 
responses. If he gives an A0 response, it is always reinforced. But an  
A1 response is also reinforced occasionall!;, with probability 1 - w. AT? 
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It is interesting to note that the subject does not maximize the number 
of correct guesses. Instead, he brings about an equilibrium in which he 
is guessiTcg "right" with the same frequency with which "right" comes 
up. 

Since v/(v + w) is the mean number of Al responses per trial in equili
brium, and since i/s is the mean number when in state Bt, the vector 

3 = {~- {_V_)JI gives the deviation between the mean number of 
8 \V+W 

Al responses in a given state and in equilibrium. 
From (6), (7), 

(I-P+A)8 = (v+w)t3 

ZO = _1_3 
(v+w)/ 

1 
(Z-A)S = ---8 

(v+w)t 

1 
(Z-A)y = (v+W)t'" (9) 

Thus the total deviati(;n from equilibrium (for the number of Al 
responses) is proportional to the deviation vector S. Hence the total 
deviation may be large because for the starting state may have heen 
far from the equilibrium + wi, or because t is small. 

To obtain the limiting variance for the number of A1 responses, we 
must use § 4.6, since we have a function on the chain which takes on the 
value I in Si with probability f/ = i/s. While we have no general 
formula for this limiting yariance, in any concrete example it is easy to 
compute it from § 4.6. 

Let us next consider the case of an absorbing chain with one absorbing 
state i = 0, that is, v = 0 and w > O. (The case v> 0, w = 0 is similar.) 
In. this case 8 =y. Let y be gotten from y by deleting its first component 
(which is O\. From (6), 

Py = Po = (l-n·t)8 = (i-wt)y 

Qy = (I-wt)y 

(1 - Q)y = (wt)y 
y _ • 1 _ 
h- -" (10) 
-i-we"~ 

This case is one in which the subject is being conditioned to give Ao 
responses. If he gives an Ao response, it is always reinforced. But an 
Al response is also reinforced occasionally, ,""ith probability 1 - w. Ny 
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gives the mean of the total number of Al (or "wrong") responses. For 
starting state sl this is llwt. ip. Thus there may be a large number of 
errors for one of three reasons: The fraction ils of stinlulus elenlents that 
need reconditioning was high a t  the start ; or the learning parameter t is 
low ; or w is low, that is, an Al response is frequently reinforced. 

It is sometimes reasonable to assume that the stimulus elements 
were originally connected a t  random. This gives us an initial proba- 

bility vector rr = 1. Then the mean of the total number of 

"wrong" responses is 

We could expect to average this number of A1 responses in a lar:ge 
homogeneous population. This is one simple way of estimating t. 

Finally we discuss the case v = w = 0, where every action of the subject 
is reinforced. Then both i = Q and i = s  arc absorbing states, and the 
most interesting question is whether the subject ends up conditioned 
to A0 or to Al responses. 

From ( 5 )  we see that in this case P y  = y. But y has a 0 component 
for so, and 1 for s,, hence (see Theorem 3.3.9) y gives the probabilities 
for absorption in ss. Thus the probability of being conditioned entirely 
to 8 1  responses is equal to the fraction of stimulus elements originally 
connected to A1. 

To obtain more detailed information about the model we will have 
to make a simplifying assumption. Since in most applications the 
learning parameter t is quite small, we shall assume that terms of higher 
order in t are negligible. This may also be interpreted psychologically. 
If we drop terms in powers oft higher than the first, we assume that the 
sampling of more than one stimulus element a t  a time is quite unlikely. 
Under this assumption P is considerably simplified: 

P%,t+l = (s-i) tv 

pt,i-1 = itw 
pdr = 1 - t (iw + (s  - i)v) 
pn = 0 otherwise. 

Let us consider first the regular case under this simplifying assump- 
tion. The most important quantity laeking in our previous treatment 
was the vector of limiting probabilities a. We shall show that under: 
our present assumption 
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Let us compute aP. 

We then find that the two v-terms cancel each other and the two 
w-terms also cancel, and hence the expression in brackets is 0. Thus 
the right side reduces to aj, and hence or = (ad) is the fixed vector of P. 
Thus we know that if t is small, the limiting probabilities are very 
nearly given by this a. Indeed a is the limit of the limiting probabilities 
as t - 4 .  

I t  is interesting to note that for w = v= l,'st the process we obtain is 
the same as that obtained for the macroscopic process in the Ehrenfest 
model. 

Kext let us consider an absorbing ease, say w > 0 and v = 0, that is, 
where the subject is being conditioned to response Ao. Then 

and all other entries are 0. The matrix I -& = {cir) where cil = i tw, 
and C i , t - l =  - itw, and all other entries are 0. We will show that 

Let us compute N ( 1 -  Q). 
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Let us compute aP. 

We then find that the two v-terms cancel each other and the two 
w-terms also cancel, and hence the expression in brackets is 0. Thus 
the right side reduces to aj, and hence or = (ad) is the fixed vector of P. 
Thus we know that if t is small, the limiting probabilities are very 
nearly given by this a. Indeed a is the limit of the limiting probabilities 
as t - 4 .  

I t  is interesting to note that for w = v= l,'st the process we obtain is 
the same as that obtained for the macroscopic process in the Ehrenfest 
model. 

Kext let us consider an absorbing ease, say w > 0 and v = 0, that is, 
where the subject is being conditioned to response Ao. Then 
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Let us compute aP . 

.i ukPkf = [aj-lPj-1,1+<1JPjj+Uf;.lPJtU] 
k~O 
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[(j ~ l)VH WH +1(S-j -+- l)tv+ G)VfWS-J[l-t(jW+(S-j)V)] 

+ C: I )Vf+lU'S-j-l(j + 1 )tW] /(v + W)8 

tvi)J)$-j [(. S \ (S) 
= aj +-(--. . 1,'(S-j+l)w- . (jw+(s-j)v) 

v+W)$ J- / J 

+(. s IJ\U+l)V]' 
,J+ 

\Ve then find that the two v-terms canoel each other and the two 
w-terms also cancel, and hence the expression in brackets is O. Thus 
the right side reduces to aj, and hence a = {ai} is the fixed vector of P. 
Thus we know that if t is small, the limiting probabilities are very 
nearly given by this a. Indeed IX is the limit of the limiting probabilities 
as t-+o. 

It is interesting to note that for w = v = l!st the process we obtain is 
the same as that obt&ined for the macroscopic process in the Ehrenfest 
model. 

Next let us consider an absorbing case, say w>O and v=O, that is, 
where the subject is being conditioned to response Ao. Then 

Jli,i-l = itw 

PH = l-itw 

and all other entries are O. The matrix l-Q = {Ctf} where Cit = itw, 
and C;,1_1 = - itw, and all other entries are O. "Ve will show that 

nij = 1 Utw if j ~ i 

o otherwise. 

Let us compute N(I-Q). 

, 
2: nikCkj = nij(jtw)+nu+l[-(j+l)tw] 
k=l 

ifi<j: 0+0=0 

if i = j: 
if i > j: 

(11 jtw)J'tw + 0 = 1 

(lUtw)jtw+ (l/U _c l)tw)( - (j + l)iw) 1-1 
= 0, 
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which verifies that  N is the desired inverse. I t  is interesting to note 
tha t  N depends on i, j ,  t, but  not on s. We then obtain 

Thus the time of conditioning is inversely proportional to t and to u;, 
and depends on the number of stimulus elements that  need to he 
conditioned from A1 to Ao. The time will be large if t is small. It 
will be large if w is small-that is, A1 is frequently reinforced. But 
since the series l / j  diverges, the time may also be large because many 
stimuli elements were originally conditioned to 81 .  

Finally we shall consider the case of two absorbing states, ui = 1; = 0.  
Mere the first-order terms in t drop out, and hence we will have to carry 
out our computation in terms of t 2 .  

A computation quite similar to the one above will verify tha,t 

and hence 

Again the sum may be large because t is small or because there are 
many terms (s is large). But in this ease ti is inversely proportional to 
t 2, and hence we expect a much longer time for conditioning. 

There is one special case in which more precise information is avail- 
able without the above simplifying assumption. This is the case 
where v + w = 1 ,  or w = 1 - v. Were the a,ction of the experimenter is 
independent of what the subject does. We found an exact solution 
for a in this case, in terms of simple recursion equati0ns.t 

I t  was shown that  tJhe limiting probabilities may also be obtained 
from the following auxiliary process: We start with s stimuli elements 
completely unconditioned. We select a subset of these, picking each 
stimulus element with probability t .  Then by a random device we 
assign these to A. with probability u; or to Al with probability 1 - w. 
We then apply the same procedure to the remaining stimuli elements, 
till all are assigned. Then the limiting probability ai for the original 
process is simply the probability of assigning i stimuli elements to A1 

t Cf. J. G. Kemeny and J. L. Snell, "Mrtrkov Processes in Learning Theory," Psycho- 
metrika, 22 (No. 3):221-230, 1957. 
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in our auxiliary process. These probabilities are easily obtained for 
any s of reasonable size. 

cations h mobi&ty theory. In this section we shall 
consider the application of Xarkov chain ideas to  a problem in sociology, 
the problem of intergenerational occupational mobility. The results 
of this section were prepared jointly with J. Berger. The problem may 
be stated as follows. A partition A={Al, Az, . . . , A,) is made of the 
set of all occupations. The cells are called the occupa6ional classes. 
These are usually ordered wikh respect to some socially relevant 
criterion, for example, prestige of occupation. The question is then 
asked, to  what extent does the occupational class of the father, grand- 
father, etc., affect the occupational class of the son? I n  any such study 
a matrix is constructed which represents for each class the fraction of 
the sons that  would be expected to go into each of the occupations. 

We shall take as our basic example a matrix constructed from data 
co!lected by Glass and Mall from England and Wales for 1949.1 
Following Prais,f we classify the occupations as upper, middle, and 
lower. The estimated matrix is 

UPPER MIDDLE LOWEPt 

UPPER /.448 .484 .068\ 

We see, for example, that  of the upper class, 44.8 percent of the sons 
went to the upper class, 48.4 percent to the middle, and 6.8 percent to 
the lower. 

There are two ways to make use of P. One is t'o consider a t  each 
state the total population, and predict the fraction of the population 
which will be in each of the occupational classes. We shall call this 
the "collective process". 

A second wag is to study a single family history. From this point of 
view we consider this history as the outcomes of a Markov chain with 
transition matrix P. We shall cali this the "individual process." 
We assume every family has exactly one son. 

We proceed now to discuss the relation of the basis: concepts of 
Markov chain theory to these two processes. 

We begin with the assumptions for a Markov chain. The basic 
7 D. V. Glass and J. R. Hall, "Social Mobility in Grei~t  Britain: A Study of Inter. 

generat,ion Changes in Status," in D. V. Glass (Ed.) ,  Social A.io6ility in Great Britain, 
London, Routledre & lieeiln Paul. 1954. - - 

f S. J. Pmis, "Measuring Social Mobility," Journal o f  the Royal Statistical Socie%, 
118 : 5G-60. 1956. 
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Pi,i-l = Pi,i+l = (lj2)i(s -1)t2 

PH = l-i(s-i)t 2• 

A computation quite similar to the one above will verify that 

nij = (2jt 2s)(ijj) if i ,,;; j. 

(2jf2s)(s -1: )/(8 - j) if i ~ j. 

and hence 

Again the sum may be large because t is small or because there are 
many terms (8 is large). But in this case ti is inversely proportional to 
t 2, and hence we expect a much longer time for conditioning. 

There is one special case in which more precise information is avail
able without the above simplifying assumption. This is the casc 
w here v + w = 1, or w = I - v. Here the action of the ex perimen ter is 
independent of what the subject does. We found an exact solution 
for a in this case, in terms of simple recursion equations. t 

It was shown that the limiting probabilities may also be obtained 
from the following auxiliary process: \Ve start with 8 stimuli elements 
completely unconditioned. \Ve select a subset of these. picking each 
stimulus element with probability t. Then by a random device we 
assign these to Ao with probability w or to Al with probability 1 w. 
We then apply the same procedure to the remaining stimuli elements, 
till all are assigned. Then the limiting probability ai for the original 
process is simply the probability of assigning i stimuli elements to Al 

t Cf. J. G. Kerneny and J. L. Snell, "yfarkov Processes in Learning Theory," Psycho
metl'ika, 22 (No.3): 221-230, 1957. 
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There are two ways to make use of P. One is t'o consider a t  each 
state the total population, and predict the fraction of the population 
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We assume every family has exactly one son. 
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generat,ion Changes in Status," in D. V. Glass (Ed.) ,  Social A.io6ility in Great Britain, 
London, Routledre & lieeiln Paul. 1954. - - 

f S. J. Pmis, "Measuring Social Mobility," Journal o f  the Royal Statistical Socie%, 
118 : 5G-60. 1956. 
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in our auxiliary process. These probabilities are easily obtained for 
any 8 of reasonable size. 

§ 7.6 Applications to mobility theory. In this section we shall 
consider the application of Markov chain ideas to a problem in sociology, 
the problem of intergenerational occupational mobility. The results 
of this section were prepared jointly with J. Berger. The problem may 
be stated as follows. A partition A = {AI, A 2 , ••• , AT} is made of the 
set of all occupations. The cells are called the occupational classes. 
These are usually ordered with respect to some socially relevant 
criterion, for example, prestige of occupation. The question is then 
asked, to what extent does the occupational class of the father, grand
father, etc., affect the occupational class of the son? In any snch study 
a matrix is constructed which represents for each class the fraction of 
the sons that would be expected to go into each of the occupations. 

VIe shall take as our basic example ~. matrix constructed from data 
collected by Glass and Hall from England and Wales for 1949.t 
Following Prais,t we classify the occupations as upper, middle, and 
lower. The estimated matrix is 

UPPER MIDDLE LOWER 

UPPER (448 .484 .068\ 

P = MIDDLE \.054 .699 .247)' 
LOWER .011 .503 .486 

We see, for example, that of the upper class, 44.8 percent of the sons 
went to the upper class, 48.4 percent to t.he middle, and 0.8 percent to 
the lower. 

There are two ways to make use of P. One is to consider at each 
state the total po})ulation, and predict the fraction of the population 
which will be in each of the occupational classes. We shall can this 
the "collective process". 

A second way is to study a single family bistory. From this point of 
view we consider this history as the outcomes of a Markov chain with 
transition matrix P. \\7e shall call this the "individual process." 
\Ve assume every family has exactly one son. 

We proceed now to discuss the relation of the basic concepts of 
Markov chain theory to these two processes. 

We begin with the assumptiolls for a Markov chain. The basic 

t D. V. Glacs and J. R. Holl. "Social )lobility in Gre<1t Britain: A Study of Inter
generation Changes in Status." in D. V. Glass (Ed.), Social ]lIability in Great Brit.ain, 
London, Routledge & Kegan Paul, 1954. 

t S, J. Prais, "Measuring Social ltfobiht.y,'· Journal of the Royal Stntistica.l Society, 
lIS: 56-60, 1 %5. 
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assumption is that the knowledge of the past beyond the last outcome 
does not influence our predictions. I n  the individual process this would 
mean, for example, that the knowledge of the occupation of the grand- 
father would not affect our predictions for the son. 

We also assume that the same P serves for every generation. This 
is clearly not completely realistic. However, there is still a great deal 
of interest in studying what would happen if the present P were to 
continue to be appropriate. 

It is also assumed that changes in distributions in occupational 
classes from one generation to the next are to be accounted for only by 
the process described by P ; that is to say, for purposes of this analysis 

\ 
we ignore the effect of differential reproduction and migration rates, as 
these may be related to occupations of the system. 

The classification of states has obvious interpretations in mobility. 
An ergodic set is a set of occupations from which it is impossible to leave. 
In  most industrialized societies we would expect only one ergodic set. 
However, if we take as state the pair, occupation and race, then dis- 
crimination against a certain race may cause the resulting chain to 
have more than one ergodic set. When studying occupations, a son 
can have the same occupation as his father. Thus we would not 
expect cyclic chains. An absorbing state would mean that for a given 
occupation the son must follow his father's footsteps. Again, in 
industrialized societies occupations do not usually have this property. 
We shall therefore assume that our basic chain is regular. 

Let us next see the interpretation of the powers of P .  For the 
individual process the ij-th entry of Pn will give the probability that, 
after n generations the family will be in the j-th occupation class if it 
started in the i-th. For the collective process, p(n)ij represents the 
fraction of the descendants of people in the i-th occupational class that 
will be in the j-th occupational class after n generations. If we start 
with fractions T =  ( p l ,  pz, p3 )  in each of the classes, then after n genera- 
tions there will be fractions given by nPn.  In our example, assume 
that there are a t  present 20 percent in the upper class, 70 percent in the 
middle class, and 10 percent in the lower class. Then after one 
generation the percentages are 12.9, 63.6, and 23.5. We obtain these 

by 
/.448 .4S4 .068\ 

The fixed probability vector a has the following interpretations. In 
the individual process i t  represents the long-range predictions for the 
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occupation of an individual. Our basic theorem for regular chains tells 
us that these predictions are independent of the present occupational 
class. For the collective process, the fixed vector gives the equilibrium 
fractions. When these fractions are realized, the fractions in successive 
generations remain the same. No matter whal the initial fractions are, 
they will, after a number of generations, be close to those given by the 
fixed vector. 

In  our example, the fixed vector is a = (.067, .624, 339) .  The actual 
fraction in each of the classes from the data which determined the 
matrix P was c?= (.076, ,834, .290). Thus we can see that the system 
may be considered to be nearly in equilibrium. 

The mean first passage times have the usual interpretation for the 
individual process but do not seem to have a natural interpretation for 
the collective proeess. For our example, the mean first passage time 
matrix is 

U L 
&r /K4.9 2.1 5.6\ 

The standard deviations for the first passage times are 

U L 

Since t,he standard deviations of the first passage times are of the 
same order of magnitude as the means, the means are not to be taken as 
typical values. However, the relative size is of inlerest. For example, 
the mean time to go from lower to upper is about five times as big as 
the mean time to go from upper to lower. 

Assume now that $he individual process is in equilibrium. Then the 
reverse transition matrix gives the probabilities for the father's occupa- 
tion when that of the son is known. If P is reversible, then, given that 
a man is in class t, the probability that his son will be in a given occu- 
pational class j is the same as the probability that his father was in this 
class j. The condition for reversibility has an interesting interpretation 
for the collective process. Recall that the condition for reversibility 
may be expressed by saying that D-lP should be a symmetric matrix. 
In other words, that aipij =ajpji. In the coilective proeess aiprj repre- 
sents, in equilibrium, the fraction of the people in the i-th occupational 
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assumption is that the knowledge of the past beyond the last outcome 
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expect cyclic chains. An absorbing state would mean that for 11 given 
occupation the son must follow his father's footsteps. Again, in 
industrialized societies occupations do not usually have this property. 
We shall therefore assume that our basic chain is regular. 

Let us next see the interpretation of the powers of P. For the 
individual process the ij-th entry of pn will give the probability that, 
after n generations the family will be in the j-th occupation class if it 
started in the i-tho For the collective process, p(n)/j represents the 
fraction of the descendants of people in the i-til occupational class that 
will be in the j-th occupational class after n generations. If we stRrt 
with fractions 71"= (Pl, P2, Ps) in each of the classes, then after n genera
tions there will be fractions given by 71"Pn. In our example, assume 
that there are at present 20 percent in the upper class, 70 percent in the 
middle class, and 10 percent in the lower class. Then after one 
generation the percentages are 12.9,63.6, and 23.5. We obtain these 
by 

(.200 .700 (

.448 .484 

.100) .054 .699 

.Oll .503 

.068) 

.247 = (.129 

.486 

. 636 .235) . 

The fixed probability vector a has the following interpretations. In 
the indiviciu2J process it represents the long-range predictions for the 
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assumption is that the knowledge of the past beyond the last outcome 
does not influence our predictions. I n  the individual process this would 
mean, for example, that the knowledge of the occupation of the grand- 
father would not affect our predictions for the son. 

We also assume that the same P serves for every generation. This 
is clearly not completely realistic. However, there is still a great deal 
of interest in studying what would happen if the present P were to 
continue to be appropriate. 

It is also assumed that changes in distributions in occupational 
classes from one generation to the next are to be accounted for only by 
the process described by P ; that is to say, for purposes of this analysis 

\ 
we ignore the effect of differential reproduction and migration rates, as 
these may be related to occupations of the system. 

The classification of states has obvious interpretations in mobility. 
An ergodic set is a set of occupations from which it is impossible to leave. 
In  most industrialized societies we would expect only one ergodic set. 
However, if we take as state the pair, occupation and race, then dis- 
crimination against a certain race may cause the resulting chain to 
have more than one ergodic set. When studying occupations, a son 
can have the same occupation as his father. Thus we would not 
expect cyclic chains. An absorbing state would mean that for a given 
occupation the son must follow his father's footsteps. Again, in 
industrialized societies occupations do not usually have this property. 
We shall therefore assume that our basic chain is regular. 

Let us next see the interpretation of the powers of P .  For the 
individual process the ij-th entry of Pn will give the probability that, 
after n generations the family will be in the j-th occupation class if it 
started in the i-th. For the collective process, p(n)ij represents the 
fraction of the descendants of people in the i-th occupational class that 
will be in the j-th occupational class after n generations. If we start 
with fractions T =  ( p l ,  pz, p3 )  in each of the classes, then after n genera- 
tions there will be fractions given by nPn.  In our example, assume 
that there are a t  present 20 percent in the upper class, 70 percent in the 
middle class, and 10 percent in the lower class. Then after one 
generation the percentages are 12.9, 63.6, and 23.5. We obtain these 

by 
/.448 .4S4 .068\ 

The fixed probability vector a has the following interpretations. In 
the individual process i t  represents the long-range predictions for the 
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occupation of an individual. Our basic theorem for regular chains tells 
us that these predictions are independent of the present occupational 
class. For the collective process, the fixed vector gives the equilibrium 
fractions. When these fractions are realized, the fractions in successive 
generations remain the same. No matter whal the initial fractions are, 
they will, after a number of generations, be close to those given by the 
fixed vector. 

In  our example, the fixed vector is a = (.067, .624, 339) .  The actual 
fraction in each of the classes from the data which determined the 
matrix P was c?= (.076, ,834, .290). Thus we can see that the system 
may be considered to be nearly in equilibrium. 

The mean first passage times have the usual interpretation for the 
individual process but do not seem to have a natural interpretation for 
the collective proeess. For our example, the mean first passage time 
matrix is 

U L 
&r /K4.9 2.1 5.6\ 

The standard deviations for the first passage times are 

U L 

Since t,he standard deviations of the first passage times are of the 
same order of magnitude as the means, the means are not to be taken as 
typical values. However, the relative size is of inlerest. For example, 
the mean time to go from lower to upper is about five times as big as 
the mean time to go from upper to lower. 

Assume now that $he individual process is in equilibrium. Then the 
reverse transition matrix gives the probabilities for the father's occupa- 
tion when that of the son is known. If P is reversible, then, given that 
a man is in class t, the probability that his son will be in a given occu- 
pational class j is the same as the probability that his father was in this 
class j. The condition for reversibility has an interesting interpretation 
for the collective process. Recall that the condition for reversibility 
may be expressed by saying that D-lP should be a symmetric matrix. 
In other words, that aipij =ajpji. In the coilective proeess aiprj repre- 
sents, in equilibrium, the fraction of the people in the i-th occupational 
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occupation of an individuaL Our basi;:; theorem for regular chains tells 
us that these predictions are independent of the present occupational 
class. For the collective process, the fixed vector gives the equilibrium 
fractions. \Vhen these fractions are realized, the fractions in successive 
generations remain the same. No matter what the initial fractions are, 
they will, after a number of generations, be close to those given by the 
fixed vector. 

In our example, the fixed vector is a= (.067, .624, .309). The actual 
fraction in each of the classes from the data which determined the 
matrix P was a= (.078, .834, .290). Thus we can see that the system 
may be consid.ered to be nearly in equilibrium. 

The mean first passage times have the usual interpretation for the 
individual process but do not seem to have a natural interpretation for 
the collective process. For our example, the mean first passage time 
matrix is 

U M L 

U C' 2.1 ::} M = M 25.1 1.6 

L 26.5 1.9 3.2 

The standard deviations for the first passage times are 

U M L 
L 122.5 1.5 'i) M(250 1.2 3.9 

L 25.1 lA 3.5 1 

Since the standard deviations of the first passage times are or the 
same order of magnitude as the means, the means are not to be taken as 
typical values. However, the relative size is of interest. For example, 
the mean time to go from lower to upper is about five times as big as 
the mean time to go from upper to lower. 

Assume now that the individual process is in equilibrium. Then the 
reverse transition matrix giYcs the probabilities for the father's occupa
tion when that of the son is known. If P is reversible, then, given that 
a man is in class t, the probability that his son will be in a given occu
F<tional class j is the same as the probability that his father was in this 
class j. The condition for reversibility has an interesting interpretation 
for the collective process. Recall that the condition for reversibility 
may be expressed by saying that D-IP should be a symmetric matrix. 
In other words, that (1iPij = O;Pij. In the collective process alPij l'epre
sents, in equilibrium, the fraction of the people in the i-th occupational 
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class which move in one generation from the i- th to the j-th class. 
Also alprc represents the fraction which move from the j- th class to  
the i-th class. Hence the condition for reversibility means that  there 
should be an "eq~isl exchange" between classes. If there is an equal 
exchange then clearly the total numbers in each class will remain fixed, 
i.e. the process will be in equilibrium. However, equal exchange is a 
much stronger condition. The above discussion suggests that  for 
the collective process the matrix D-1P is an interesting matrix. We 
call this matrix the exchange matrix. For our basic example, the ex- 
change matrix is 

U M L  
U /.030 .032 .OM\ 

Note that there is approximately equal exchange between the 
classes.? 

Finally we consider the question of lumpability for mobility pro- 
cesses. This is particularly important for the following reason. If we 
decide that  the Markov assumption is reasonable for a certain method of 
classification, then we cannot arbit,rarily treat a coarser classification 
as a Markov chain. This is because t,he coarser classification is obtained 
from the finer by lumping states. We know that  only under very 
special conditions will this again result in a Markov chain. Of course 
the method of classification itself has a great deal to do with whether 
or not the Markov assumpt,ion is realistic. Hence the coarser analysis 
may be taken as a Markov chain even when the condition for lurnpa- 
bility is not satisfied. However, we must then admit that  the finer 
analysis is not a Markov chain. We cannot have boih, unless the con- 
dit,ion for lumpability is satisfied. 

We shall illustrate the above ideas in terms of some actual mobility 
studies. The example that  we have been considering was actually 
obtained from a finer analysis of the data obtained by Glass and Hall 
for England and Wales in 1949. These authors used seven classes. 
They are: 

1. Professional and high administrative. 
2. Nanagerial and executive. 
3. Inspectional, supervisory, and other non-manual (higher grade). 

t For n more detailed discussion of t.he exchange propert,ies of a system see J. Berger 
and J. L. Snell, " On the Concept of Equal Exchange," Behavioral Science, 2, (No. 2) :  
111-118, 1957. 
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4. Same (lower grade). 
5 .  Skilled manual and routine grades of non-manual. 
6. Semi-skilled manual. 
7. Unskilled manual. 

Prom their data we obt>ain the transition matrix 

Our previous example was obtained from this study by calling {1,2) 
the upper class, (3,4,5j the middle class, and {6,7) the lower class. 

The fixed vector is 

The above transition matrix was estimated from a sample of 3497. 
The distribution of the occupations in this sample was 

cr' = (.030 '046 .094 .13I ,409 . I70 .121). 

We see that these numbers are fairly close to the equilib- >ium vector. 

The diagonal entries of M are the reciprocals of the fixed vector. 
Since the fixed vector is close to the actual fraction of people in each 
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class which move in one generation from the i-th to the j-th class. 
Also aJPii represents the fraction which move from the j-th class to 
the i-th class. Hence the condition for reversibility means that there 
should be an "eql"11 exchange" between classes. If there is an equal 
exchange then clearly the total numbers in each class will remain fixed, 
i.e. the process will be in equilibrium. However, equal exchange is a 
much stronger condition. The above discussion suggests that for 
the collective process the matrix D-IP is an interesting matrix. \Ve 
call this matrix the exchange matrix. For our basic example, the ex
change matrix is 

U l\1 L 

U CO .032 005) 
D-IP = IH .034 .436 .154 . 

L .003 .155 .150 

~ote that there is approximately equal exchange between the 
classes. t 

Finally we consider the question of lumpability for mobility pro
cesses. This is particularly important for the following reason. If we 
decide that the Markov assumption is reasonable for a certain method of 
cl11ssification, then we cannot arhitrarily treat a coarser classification 
as a Markov chain. This is because the coarser classification is obtained 
from the finer by lumping states. "Ve know that only under very 
special conditions will this again result in a Markov chain. Of course 
the method of classific11tion itself has a great deal to do with whether 
or not the Markov assumption is realistic. Hence the coarser analysis 
may be taken as a :'vlarkov chain even when. the condition for lumpa
bility is not satisfied. However, we must then admit that the finer 
analysis is not a Markov cha.in. We cannot have both. unless the con
dition for Jumpability is satisfied. 

We shall illnst.rate the above ideas in terms of some actual mobility 
studies. The example that we have heen considering was actually 
obtained from a finer analysis of the d11ta obtained by GJass and Hall 
for England and Wales in HJ4D. These authors used seven classes. 
They are: 

1. Professional and high administrative. 
2. Managerial and executive. 
3. Inspectional, supervisory, and other non-manual (higher grade), 

t 'For a more detalled discussion of the exchange properties of a system see J. Berger 
and J. L. Snell. "On the Concept of Equal Exchange," Behavioral Science, 2, (.No.2): 
111-118,1957. 
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class which move in one generation from the i- th to the j-th class. 
Also alprc represents the fraction which move from the j- th class to  
the i-th class. Hence the condition for reversibility means that  there 
should be an "eq~isl exchange" between classes. If there is an equal 
exchange then clearly the total numbers in each class will remain fixed, 
i.e. the process will be in equilibrium. However, equal exchange is a 
much stronger condition. The above discussion suggests that  for 
the collective process the matrix D-1P is an interesting matrix. We 
call this matrix the exchange matrix. For our basic example, the ex- 
change matrix is 

U M L  
U /.030 .032 .OM\ 

Note that there is approximately equal exchange between the 
classes.? 

Finally we consider the question of lumpability for mobility pro- 
cesses. This is particularly important for the following reason. If we 
decide that  the Markov assumption is reasonable for a certain method of 
classification, then we cannot arbit,rarily treat a coarser classification 
as a Markov chain. This is because t,he coarser classification is obtained 
from the finer by lumping states. We know that  only under very 
special conditions will this again result in a Markov chain. Of course 
the method of classification itself has a great deal to do with whether 
or not the Markov assumpt,ion is realistic. Hence the coarser analysis 
may be taken as a Markov chain even when the condition for lurnpa- 
bility is not satisfied. However, we must then admit that  the finer 
analysis is not a Markov chain. We cannot have boih, unless the con- 
dit,ion for lumpability is satisfied. 

We shall illustrate the above ideas in terms of some actual mobility 
studies. The example that  we have been considering was actually 
obtained from a finer analysis of the data obtained by Glass and Hall 
for England and Wales in 1949. These authors used seven classes. 
They are: 

1. Professional and high administrative. 
2. Nanagerial and executive. 
3. Inspectional, supervisory, and other non-manual (higher grade). 

t For n more detailed discussion of t.he exchange propert,ies of a system see J. Berger 
and J. L. Snell, " On the Concept of Equal Exchange," Behavioral Science, 2, (No. 2) :  
111-118, 1957. 
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4. Same (lower grade). 
5 .  Skilled manual and routine grades of non-manual. 
6. Semi-skilled manual. 
7. Unskilled manual. 

Prom their data we obt>ain the transition matrix 

Our previous example was obtained from this study by calling {1,2) 
the upper class, (3,4,5j the middle class, and {6,7) the lower class. 

The fixed vector is 

The above transition matrix was estimated from a sample of 3497. 
The distribution of the occupations in this sample was 

cr' = (.030 '046 .094 .13I ,409 . I70 .121). 

We see that these numbers are fairly close to the equilib- >ium vector. 

The diagonal entries of M are the reciprocals of the fixed vector. 
Since the fixed vector is close to the actual fraction of people in each 
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4. Same (lower grade). 
5. Skilled manual and rontine grades of non-manual. 
6. Semi -skilled manual. 
7. Unskilled manual. 

From their data we obtain the transition matrix 

1 2 3 4 5 6 7 
, 

0.388 0.147 0.202 0.062 0.140 0.047 0.016 

0.107 0.267 0.227 0.120 0.207 0.053 0.020 

0.035 0.101 0.188 0.l91 0.357 0.067 0.061 

p= 0.021 0.039 0.li2 0.:212 0.431 0.124 0.062 

0.009 0.024 0.075 0.123 0.473 0.171 0.125 

0.000 O.Ol~ 0.041 (loOS8 0.391 0.312 0.155 

0.000 0.008 0.036 0.083 0.364 0.235 0.274 

Our previous example was obtained from this study by calling {1,2} 
the upper class, {3,4,5} the middle class, and {5,7} the lower class. 

The fixed vector is 

a = (.023 .041 .088 .127 A10 .182 .129). 

The above transition m.atrix was estimated from a sample of 3497. 
The distribution of the oceupp,tions in this sample was 

Ii = (.030 .046 .0\)4 .131 .409 .170 .121). 

VYe see that these numbers are fairly close to the equilibrium vector. 

2 3 4 5 6 7 

1 43.9 26.2 \J.n 9.2 4.0 8.4 11.5 

:t 63.1 24.2 10.1 8 . .5 3.5 8.1 1l.1 

3 70.3 30.5 11.4 8.0 2.9 7.6 10.3 

.ill = 4 72.3 33.0 12.7 7.t) 2.6 7.0 10.0 

5 73.7 33.9 13.5 8.7 2.4 6.5 9.3 

6 74.9 34.6 14.1 9.l 2.6 5.5 8.8 

7 75.0 34.8 14.3 9 ., <) ~ 5.9 7.7 .~ "'.1 

The diagonal entries of M are the reciprocals of the fixed vector. 
Since the fixed vector is close to the actual fraction of people in each 
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class, when this fraction is small the mean time to return is corres- 
pondingly large. For a given occupational class i t  is interesting to 
compare the mean time to reach this class, starting in each of the other 
classes. We observe that  in general the mean time to go from any 
state i to a given state j decreases as i gets closer to  state j .  Positions 
of these occupational classes correspond to their relative social prestige, 
and hence "closer" means closer in terms of prestige. 

We have discussed only regular chain concepts in this section. We 

know that  absorbing chain ideas can be fruitfully used to study regular 
chains. For example, we can study the behavior of the middle classes 
3,4,5 by making the upper classes I and 2 and lower classes 6 and 7 
into absorbing states. Doing this, we obtain an  absorbing chainwith 
matrices Q and R given by 

The basic quantities for this chain are : 

3 4 6 

From T we obtain the mean time to leave the set {3,4,5) for thefirst 
time for each starting state in the set. We see that  this is between 
3 and 4 for each starting state. From B we find the probabilities of 
leaving by moving to each of the states 1,2,6,7. Combining states 
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1 and 2, and 6 and 7 we can find the probability of moving out of each 
of the middle classes by moving to the upper or to the lower class. 
These probabilities are : 

In  each case the probability of ieaving by way of the iower class is 
much higher than leaving by way of the upper class. 

I t  is interesting to observe that  the probability of leaving the middle 
class by way of the upper class decreases the iower $he level of the 
occupational class. 

As mentioned earlier, our basic example in this section was obtairled 
by combining states in this seven-state chain. The partition used was 
A =  ({1,2), {3,4,5), {6,7)). The first set being the upper class, the 
second the middle class, and the third the lower class. It is interesting 
then to check the condition for lumpability with respect to this parti- 
tion. To do this we must find t,he matrix P V  (see $6.3). We obtain, 

To satisfy the condition for lcrnpabiliiy i t  is necessary that  the 
components of a column of this vector be constant within the sets 
A1, A2. A3. This is certainly not the case. For example the probability 
of moving to AI is quite differenb for the states of Ag. I t  is ,033 from 
state 5 ,  .060 from state 4, and . I36 from state 3. Thus we would not be 
justified in treaeing both of our processes as Rlarkov chains. 

If we choose to believe that  the seven-state chain is a Markov chain, 
then the three-state process is not a Marlrov chain, but  in equilibrium 
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class, when this fraction is small the mean time to return is corres
pondingly large. For a given occupational class it is interesting to 
compare the mean time to reach this class, starting in each of the other 
classes. We observe that in general the mean time to go from any 
state i to a given state j decreases as i gets closer to state j. Positions 
of these occupational classes correspond to their relative social prestige, 
and hence "closer" means closer in terms of prestige. 

\Ve have discussed only regular chain concepts in this section. We 
know that absorbing chain ideas can be fruitfully used to study regular 
chains. For example, we can study the behavior of the middle classes 
3,·4,,5 by making the upper classes 1 and 2 and lower classes 6 and 7 
into absorbing states. Doing this, we obtain an absorbing chain 'with 
matrices Q and R given by 

,l 4 5 

.191 

Q = 4 .112 'C8 .212 .431 
357) 

5 .075 .123 .473 

2 6 

3 (.035 .101 .067 

R = 4 .021 .039 .124 

5 .009 .024 .171 

7 

.0(1) 

.062 . 

.125 

The basic quantities for this chain are: 

3 4 6 

3C' .38 1.45 \ 
3 1347) 

.N 4 .36 1.60 155) T~4(3.51 
5 .29 .45 2.47 5 3.21 

2 6 7 

'("8 .20 .42 

:~) B = 4 .06 .14 .49 

5 .04 .11 .49 .36 

From T we obbdn the mean time to Je,Lve the set {3,4,5} for the first 
time for each starting state in the set. We see that this is between 
3 and 4 for each starting state. From B we find the probabilities of 
leaving by moving to each of the states J,2,6,7. Combining states 
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class, when this fraction is small the mean time to return is corres- 
pondingly large. For a given occupational class i t  is interesting to 
compare the mean time to reach this class, starting in each of the other 
classes. We observe that  in general the mean time to go from any 
state i to a given state j decreases as i gets closer to  state j .  Positions 
of these occupational classes correspond to their relative social prestige, 
and hence "closer" means closer in terms of prestige. 

We have discussed only regular chain concepts in this section. We 

know that  absorbing chain ideas can be fruitfully used to study regular 
chains. For example, we can study the behavior of the middle classes 
3,4,5 by making the upper classes I and 2 and lower classes 6 and 7 
into absorbing states. Doing this, we obtain an  absorbing chainwith 
matrices Q and R given by 

The basic quantities for this chain are : 

3 4 6 

From T we obtain the mean time to leave the set {3,4,5) for thefirst 
time for each starting state in the set. We see that  this is between 
3 and 4 for each starting state. From B we find the probabilities of 
leaving by moving to each of the states 1,2,6,7. Combining states 
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1 and 2, and 6 and 7 we can find the probability of moving out of each 
of the middle classes by moving to the upper or to the lower class. 
These probabilities are : 

In  each case the probability of ieaving by way of the iower class is 
much higher than leaving by way of the upper class. 

I t  is interesting to observe that  the probability of leaving the middle 
class by way of the upper class decreases the iower $he level of the 
occupational class. 

As mentioned earlier, our basic example in this section was obtairled 
by combining states in this seven-state chain. The partition used was 
A =  ({1,2), {3,4,5), {6,7)). The first set being the upper class, the 
second the middle class, and the third the lower class. It is interesting 
then to check the condition for lumpability with respect to this parti- 
tion. To do this we must find t,he matrix P V  (see $6.3). We obtain, 

To satisfy the condition for lcrnpabiliiy i t  is necessary that  the 
components of a column of this vector be constant within the sets 
A1, A2. A3. This is certainly not the case. For example the probability 
of moving to AI is quite differenb for the states of Ag. I t  is ,033 from 
state 5 ,  .060 from state 4, and . I36 from state 3. Thus we would not be 
justified in treaeing both of our processes as Rlarkov chains. 

If we choose to believe that  the seven-state chain is a Markov chain, 
then the three-state process is not a Marlrov chain, but  in equilibrium 
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1 and 2, and 6 and 7 we can find the probability of moving out of each 
of the middle classes by moving to the upper or to the lower class. 
These probabilities are: 

U L 

3(' "') . ,-
4 .20 .81 

5 \ .15 .85 

In each case the probability of leaving by way of the lower class is 
much higher than leaving by way of the upper class. 

It is interesting to observe that the probability of leaving the middle 
class by way of the upper class decreases the lower the level of the 
occupational class. 

As mentioned earlier, our basic example in this section W,iS obtained 
by combining states in this se\'en-state chain. The partition used was 
A= ({1,2}, {3,4,5}, {6,7}). The first set being the upper class, the 
second the middle class, and the third the lower class. It is interesting 
then to check the condition for lumpability with respect to this parti
tion. To do this we must find t.he matrix PV (see §6.3). III'"e obtain, 

Al Az A3 
.534 .404 .062 

2 .374 .553 .073 

3 .136 .736 .128 

PV = 4 .060 .754 .128 

5 .033 .671 .2BG 
-~--------

6 .013 .520 .467 

7 .008 .48:3 .500 

To satisfy the condition for lumpability it is necessary that the 
components of a column of this vector be constant within the sets 
AI, A 2. A 3 . This is certainly not the case. For example the probability 
of mo~'ing to Al is quite different for the states of A z. It is .033 from 
state 5, .060 from state 4, and .136 from state 3. Thus we would not be 
justified in treating both of om processes as Markov chains. 

If we choose to belic\'e that the seven-state chain is a Markov chain, 
then the three-state process is not a Markov chain, but in equilibrium 
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the matrix p, the vector 6, and the matrix are all well defined. Pf 
we compute these matrices by the method given in $ 6.4, we obtain, 

U M E  

P = 

B = (.06 .63 .31) 

We see that these quantities are all quite close to those obtained 
by treating the three-state chain as a Markov chain. 

The next example we consider is obtained from data collected by 
N. Rogofft in a study made from marriage-license applications for 
Marion County, Indiana. The interest in this example lies in the fact 
that data were obtained for two different time periods, 1905 to 1912 
and 1938 through the first half of 1941. Hence i t  is possible to compare 
the transition matrices for these two different time periods. Within 
the first sample there were 10,253 and within the second, 9,892. In  
the Rogoff study a very fine analysis of the occupations is made. 
However, for illustrative purposes, we have made a coarse analysis. 
This classification may be considered as non-manual, manual, and 
farming. We treat first the 1910 case. The transition matrix is 

NON-MANUAL MANUAL FARM 

NON-MANUAL .594 .396 .009 

P = MANUAL .211 

FARM .252 

The fixed vector is ff1910=(.343 .648 ,009). The actual fractions 
in each of the classes are given by 

61910 = (.3110 .658 .034) 

Note that the equilibrium vector predicts significantly fewer farmers 
than there actually are. This would suggest that the 1940 data should 
show a decrease in the fraction in farming. 

t K. Rogoff, Recent Trends zn Occupattonal Moh~lzty,  Glencoe, I l l . ,  The Free Press, 
1953. 
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For the 1940 case we find 

NON-MANUAL MANUAL FARM 

NON-MANUAL / .622 2 7 5  .003 \ 

B = MANUAL 2 7 4  

The fixed vector is a1940= (.420 .576 .004). The actual fraction in 
in each class in 1940 is given by 

As predicted, the fraction of farmers has signifieankly decreased. It is 
interesting to observe that the equilibrium vectors for 1910 and 1940 
predict larger fractions in the upper e l ~ s  than there actually are. In 
the case of England the equilibrium vector predicted smaller numbers 
in the upper classes. 

The final example that we discuss illustrates equal exchange. The 
data was obtained from a study made by Blumen, Kogan, and McCarthy 
on labor m0bility.t This was a very large study based on social security 
records. A l-percent sample of all workers who are or have been in 
covered employment since the inception of the social security syskrn 
in 1937 has been kept. The study was based on a I0-percent sample 
from this record. I t  presents the following transition matrix for the 
group of males in the age braeke* 20 to 24. We omit a discussion of 
the classification used in :he study. 

The fixed vector is 

The actual fractions in the classes considered were 

t I. Rlumen, &I. Kogan, P. J. McCarthy, The Industrial Mobility of Labor as a Prob- 
ability Process, Cornell Studies in Industrial and Labor Relations, Vol. VII,  1955. 
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the matrix P, the vector ii, and the matrix .if are all well defined. If 
we compute these matrices by the method given in § 6.4, we obtain, 

U 1\'1 1 

UC .50 
07) P = M .05 .70 .25 

1 .01 .50 .48 

Ii (.06 .63 .31) 

U M 1 

U C' 2.0 59) 
M=M 26.3 1.6 6.3 

L 28.0 2.0 3.0 

We see that these quantities are all quite close to those obtained 
by treating the three-state chain as a Markov chain. 

The next example we consider is obtained from data collected by 
N. Rogofft in a study made from marriage-license applications for 
Marion County, Indiana. The interest in this example lies in the fact 
that data were obtained for two different time periods, 1905 to 1912 
and 1938 through the first half of 1941. Hence it is possible to compare 
the transition matrices for these two different time periods. Within 
the first sample there were 10,253 and within the second, 9,892. In 
the Rogoff study a very fine analysis of the occupations is made. 
However, for illustrative purposes, we have made a coarse analysis. 
This classification may be considered as non-manual, manual, and 
farming. We treat first the 1910 case. The transition matrix is 

NON-MANUAL MANUAL FARM 

NON-MANUAL ( .594 .396 
009 ) 

P = MANUAL .211 .782 .007 . 

FARM . 252 .641 .108 . 

The fixed vector is al910 = (.343 .648 .009). The actual fractions 
in each of the classes are given by 

&1910 = (.:HO .658 .034) 

Note that the equilibrium vector predicts significantly fewer farmers 
than there actually are. This would suggest that the 1940 data should 
show a decrease in the fraction in farming. 

tN. Rogoff, Recent Trends in Occupational },Johility, Glencoe, Ill., The Free Press, 
1!J53. 



198 FINITE MARKOV C H A I N S  CHAP. V I I  

the matrix p, the vector 6, and the matrix are all well defined. Pf 
we compute these matrices by the method given in $ 6.4, we obtain, 

U M E  

P = 

B = (.06 .63 .31) 

We see that these quantities are all quite close to those obtained 
by treating the three-state chain as a Markov chain. 

The next example we consider is obtained from data collected by 
N. Rogofft in a study made from marriage-license applications for 
Marion County, Indiana. The interest in this example lies in the fact 
that data were obtained for two different time periods, 1905 to 1912 
and 1938 through the first half of 1941. Hence i t  is possible to compare 
the transition matrices for these two different time periods. Within 
the first sample there were 10,253 and within the second, 9,892. In  
the Rogoff study a very fine analysis of the occupations is made. 
However, for illustrative purposes, we have made a coarse analysis. 
This classification may be considered as non-manual, manual, and 
farming. We treat first the 1910 case. The transition matrix is 

NON-MANUAL MANUAL FARM 

NON-MANUAL .594 .396 .009 

P = MANUAL .211 

FARM .252 

The fixed vector is ff1910=(.343 .648 ,009). The actual fractions 
in each of the classes are given by 

61910 = (.3110 .658 .034) 

Note that the equilibrium vector predicts significantly fewer farmers 
than there actually are. This would suggest that the 1940 data should 
show a decrease in the fraction in farming. 

t K. Rogoff, Recent Trends zn Occupattonal Moh~lzty,  Glencoe, I l l . ,  The Free Press, 
1953. 
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For the 1940 case we find 

NON-MANUAL MANUAL FARM 

NON-MANUAL / .622 2 7 5  .003 \ 

B = MANUAL 2 7 4  

The fixed vector is a1940= (.420 .576 .004). The actual fraction in 
in each class in 1940 is given by 

As predicted, the fraction of farmers has signifieankly decreased. It is 
interesting to observe that the equilibrium vectors for 1910 and 1940 
predict larger fractions in the upper e l ~ s  than there actually are. In 
the case of England the equilibrium vector predicted smaller numbers 
in the upper classes. 

The final example that we discuss illustrates equal exchange. The 
data was obtained from a study made by Blumen, Kogan, and McCarthy 
on labor m0bility.t This was a very large study based on social security 
records. A l-percent sample of all workers who are or have been in 
covered employment since the inception of the social security syskrn 
in 1937 has been kept. The study was based on a I0-percent sample 
from this record. I t  presents the following transition matrix for the 
group of males in the age braeke* 20 to 24. We omit a discussion of 
the classification used in :he study. 

The fixed vector is 

The actual fractions in the classes considered were 

t I. Rlumen, &I. Kogan, P. J. McCarthy, The Industrial Mobility of Labor as a Prob- 
ability Process, Cornell Studies in Industrial and Labor Relations, Vol. VII,  1955. 
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For the 1940 case we find 

NON-MANUAL MANUAL FAR]',! 

NON-MANUAL f .622 .375 .003 \ 

} P = MANUAL 

\ 
.274 .721 .005 

FARM .265 .694 .042 

The fixed vector is CX1940= (.420 .576 .004). The actual fraction in 
in each class in 1940 is given by 

IX1940 = (.373 .616 .Oll). 

As predicted, the fra.ction of farmers has significantly decreased. It is 
interesting to observe that the equilibrium vectors for 1910 and 1940 
predict larger fractions in the upper class than there actually are. In 
the case of England the equilibrium vector predicted smaller numbers 
in the upper classes. 

The final example that we discuss illustrates equal exchange. The 
data was obtained from a study made by Blumen, Kogan, and McCarthy 
on labor mobility. t This was a very large study based on social security 
records. A I-percent sample of all workers who are or have been in 
covered employment since the inception of the social security system 
in 1937 has been kept. The study was based on a 10-percent sample 
from this record. It presents the following transition matrix for the 
group of males in the age bracket 20 to 24. 'We omit a discussion of 
the classification used in the study. 

2 3 4 5 

(832 0.033 0.013 0.028 0095) 2 0.046 0.788 0.016 0.038 0.112 

p= 3 0.038 0.034 0.785 0.036 0.107 

4 0.054 0.045 0.017 0.728 0.156 

5 0.082 0.055 0.023 0.071 0.759 

The fixed vector is 

a = (.270 .184 .076 . l48 .322) . 

The actual fractions in the classes considered were 

IX = (.282 .170 .068 . 137 .343) . 

t 1. Blumen, M. Kogan, P. J. McCarthy, The Industrial ldobility oj Labor a. a Prob
ability Proce8s, Cornell Studies in IndnstrisJ and Labor Relations, Vol. VII, 1955. 
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The most interesting feature of this example is the exchange matrix. 
This is 

The almost perfect symmetry of this matrix indicates that this system 
may be considered to be in equal exchange in equilibrium, or that the 
process is reversible. 

Leonhief model. In the Leontief input-output 
model, we consider an economy in which there are r industries and we 
make the simplifying assumption that each industry produces exactly 
one kind of goods. We regard the natural factors of production such 
as land, timber, minerals, etc. as free, and do not consider them as 
entering into the cost of finished goods. In general, the industries are 
interconnected in the sense that each must buy a certain amount 
(positive or zero) of the other's products in order to run its industry. 
We shall define technological coeficients as follows : qrj is the amount of 
the output of industry j that must be purchased by industry i in order 
that industry i may produce $1 worth of its own goods. Let Q be 
the r x r matrix with entries qtj. By their definition, the technological 
coefficients are non-negative. 

It is easy to see that the sum of the qij, for i fixed, gives the total value 
of the inputs needed by the i-th industry in order to produce $1 worth 
of its goods. If the i-th industry is to be profitable, or a t  least to break 
even, this sum must be less than or equal to the value of its output, i.e. 
q t 1 +  q12 + . . . + qtr < 1. For obvious reasons we shall call the i-th 
industry profitable if the strict inequality holds and profitless if the 
equality holds. We make the assumption that every industry is either 
profitable or profitless and thus rule out the possibility of unprofitable 
industries. 

We can restate the above conditions as 

Having discussed the inputs of the industries we nest discuss their 
outputs. Let xi denote the monetary value of the output of the i-th 
industry and let n = ( x l ,  x2, . . . , z,) be the row vector of outputs. 
Since the i-th industry needs an amount zrqtr of the output of the j-tfn 
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industry, the vector of inputs needed by the industries is simply 4. 
Then the j-th component of n& gives the total value of the output %hat 
must be produced by the j-th industry in order to meet %he inter- 
industry demand for its product. 

Let us assume that the economy supplies for consumption an amount 
cr of the output of the i-th industry. Let y = (c l ,  cz, . . . , c,) be the 
consumption vector ; we shall require that 

The requirement that the production vector of the economy be 
adjusted so that the inter-industry needs as well as the consumption 
needs may be fulfilled is now easy to write in vector form ; it is 

Rewriting (4) as 

41-&) = y ,  

we see that i t  is a set of r simultaneous equations in r unknowns. 
To be economically meaningful, we must find mon-negative solutions 

to ( 5 ) .  Since the demand vector y may be arbitrary, we see that 
equations ( 5 )  are in general non-homogeneous and will have a solution 
if and only if the matrix 1 -& has an inverse. oreover, the solutions 
to ( 5 )  will be non-negative for every y if and only if (I - $1)-1 has all non- 
negative components. We must therefore search for necessary and 
sufficient conditions that the inverse of I  - & be non-negative. 

We will solve this problem by imbedding our model in a Marbov 
chain. (This solution was worked out by the authors jointly with 
6. L. Thompson.) 

By the Markov chain associated with a n  input-output model we shall 
mean a Markov chain with the following properties : 

(i) The states are the r processes of the model plus one additional 
absorbing state so, called the banking state. 

(ii) The transition matrix P is defined as follows : 

The intuitive interpretation of this is the following: If industry i 
receives a dollar for its use, then i t  spends it by buying pif from industry 
j. The remainder of the dollar, if any-that is, the amount pto-is 
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The most interesting feature of this example is the exchange matrix. 
This is 

{'" .009 .004 .008 026) 2 .008 .145 .003 .007 .021 

D-1P = 3 .003 . 002 .060 .003 .008 . 

4 .008 .007 .002 .108 .023 

5 .026 .021 .007 .023 .244 

The almost perfect symmetry of this matrix indicates that this system 
may be considered to be in equal exchange in equilibrium, or that the 
process is reversible. 

§ 7.7 The open Leontief model. In the Leontief input-output 
model, we consider an economy in which there are r industries and we 
make the simplifying assumption that each industry produces exactly 
one kind of goods. We regard the natural factors of production such 
as land, timber, minerals, etc. as free, and do not consider them as 
entering into the cost of finished goods. In general, the industries are 
interconnected in the sense that each must buy a certain amount 
(positive or zero) of the other's products in order to run its industry. 
We shall define technological coefficients as follows: glj is the amount of 
the output of industry j that must be purchased by industry i in order 
that industry i may produce $1 worth of its own goods. Let Q be 
the r x r matrix with entries gij. By their definition, the technological 
coefficients are non-negative. 

It is easy to see that the sum of the gij, for i fixed, gives the total value 
of the inputs needed by the i-th industry in order to produce $1 worth 
of its goods. If the i-th industry is to be profitable, or at least to break 
even, this sum must be less than or equal to the value of its output, i.e. 
qn+qi2+ ... +girCo 1. For obvious reasons we shall call the i-th 
industry profitable if the strict inequality holds and profitless if the 
equality holds. We make the assumption that every industry is either 
profitable or profitless and thus rule out the possibility of unprofitable 
industries. 

We can restate the above conditions as 

(1 ) 

(2) 

Having discussed the inputs of the industries we next discuss their 
outputs. Let Xj denote the monetary value of the output of the i-th 
industry and let 11= (Xl, X2, .•• ,xr ) be the row vector of outputs. 
Since the i-th industry needs an amount Xigij of the output of the j-th 
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The most interesting feature of this example is the exchange matrix. 
This is 

The almost perfect symmetry of this matrix indicates that this system 
may be considered to be in equal exchange in equilibrium, or that the 
process is reversible. 

Leonhief model. In the Leontief input-output 
model, we consider an economy in which there are r industries and we 
make the simplifying assumption that each industry produces exactly 
one kind of goods. We regard the natural factors of production such 
as land, timber, minerals, etc. as free, and do not consider them as 
entering into the cost of finished goods. In general, the industries are 
interconnected in the sense that each must buy a certain amount 
(positive or zero) of the other's products in order to run its industry. 
We shall define technological coeficients as follows : qrj is the amount of 
the output of industry j that must be purchased by industry i in order 
that industry i may produce $1 worth of its own goods. Let Q be 
the r x r matrix with entries qtj. By their definition, the technological 
coefficients are non-negative. 

It is easy to see that the sum of the qij, for i fixed, gives the total value 
of the inputs needed by the i-th industry in order to produce $1 worth 
of its goods. If the i-th industry is to be profitable, or a t  least to break 
even, this sum must be less than or equal to the value of its output, i.e. 
q t 1 +  q12 + . . . + qtr < 1. For obvious reasons we shall call the i-th 
industry profitable if the strict inequality holds and profitless if the 
equality holds. We make the assumption that every industry is either 
profitable or profitless and thus rule out the possibility of unprofitable 
industries. 

We can restate the above conditions as 

Having discussed the inputs of the industries we nest discuss their 
outputs. Let xi denote the monetary value of the output of the i-th 
industry and let n = ( x l ,  x2, . . . , z,) be the row vector of outputs. 
Since the i-th industry needs an amount zrqtr of the output of the j-tfn 
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industry, the vector of inputs needed by the industries is simply 4. 
Then the j-th component of n& gives the total value of the output %hat 
must be produced by the j-th industry in order to meet %he inter- 
industry demand for its product. 

Let us assume that the economy supplies for consumption an amount 
cr of the output of the i-th industry. Let y = (c l ,  cz, . . . , c,) be the 
consumption vector ; we shall require that 

The requirement that the production vector of the economy be 
adjusted so that the inter-industry needs as well as the consumption 
needs may be fulfilled is now easy to write in vector form ; it is 

Rewriting (4) as 

41-&) = y ,  

we see that i t  is a set of r simultaneous equations in r unknowns. 
To be economically meaningful, we must find mon-negative solutions 

to ( 5 ) .  Since the demand vector y may be arbitrary, we see that 
equations ( 5 )  are in general non-homogeneous and will have a solution 
if and only if the matrix 1 -& has an inverse. oreover, the solutions 
to ( 5 )  will be non-negative for every y if and only if (I - $1)-1 has all non- 
negative components. We must therefore search for necessary and 
sufficient conditions that the inverse of I  - & be non-negative. 

We will solve this problem by imbedding our model in a Marbov 
chain. (This solution was worked out by the authors jointly with 
6. L. Thompson.) 

By the Markov chain associated with a n  input-output model we shall 
mean a Markov chain with the following properties : 

(i) The states are the r processes of the model plus one additional 
absorbing state so, called the banking state. 

(ii) The transition matrix P is defined as follows : 

The intuitive interpretation of this is the following: If industry i 
receives a dollar for its use, then i t  spends it by buying pif from industry 
j. The remainder of the dollar, if any-that is, the amount pto-is 
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industry, the vector of inputs needed by the industries is simply trQ. 
Then the j-th component of 77Q gives the total value of the output that 
must be produced by the j-th industry in order to meet the inter
industry demand for its product. 

Let us assume that the economy supplies for consumption an amount 
Cj of the output of the i-th industry. Let y= (CI' Cz, ... , cr) be the 
consumption vector; we shall require that 

y ~ o. (3) 

The requirement that the production vector of the economy be 
adjusted so that the inter-industry needs as well as the consumption 
needs may be fulfilled is now easy to write in vector form; it is 

77 = -n-Q+y. (4) 

Rewriting (4) as 

77(1 -Q) = y, (5) 

we see that it is a set of r simultaneous equations in r unknowns. 
To be economically meaningful, we must find non-negative solutions 

to (5). Since the demand vector y may be arbitrary, we see that 
equations (5) are in general non-homogeneous and will have a solution 
if and only if the matrix 1-Q has an inverse. Moreover, the solutions 
to (5) will be non-negative for every y if and only if (1- Q)-l has all non
negative components. We must therefore search for necessary and 
sufficient conditions that the inverse of 1-Q be non-negative. 

We will solve this problem by imbedding our model in a Markov 
chain. (This solution wa.s worked out by the authors jointly with 
G. L. Thompson.) 

By the 1',farkov chain associated with an input-output model we shall 
mean a Markov chain with the following properties: 

(i) The states are the r processes of the model plus one additional 
absorbing state So, called the banking state. 

(ii) The transition matrix P is defined as follows: 

poo = 1 
PO} = 0 
Plj = qlj , 
PiO = 1- 2: gij 

j=l 

j > 0 
i,j > 0 

i > O. 

The intuitive interpretation of this is the following: If industry i 
receives a dollar for its use, then it spends it by buying Pij from industry 
j. The remainder of the dollar, if any-that is, the amount Plo-is 
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the  profit, and we may think of i t  as being deposited in a bank. The 
fact that  the banking state is an  absorbing state, means that  the bank 
gets money but does not spend it. 

We immediately see that  if Q is a matrix satisfying ( I )  and (2),  then 
a non-negative solution to equations (5) exists for every r >  0 ,  if and 
only if the associated Markov chain is absorbing, with the banking state 
so as its only absorbing state. If so is the only absorbing state for an 
absorbing chain, then ( I  - &)-I = N exists and is non-negative ; hence 
7~ = -yN is the desired solution. Otherwise ( I  -&)-I, which gives the 
mean number of times in various states before reaching so, would have 
to have infinite entries, i.e. cannot exist. 

There is a simple economic interpretation of this result. We see that  
from every state i t  must be possible to "reach" the banking state. 
Only a profitable industry "reaches" the bank directly. A profitless - - 
industry must reach the bank through a profitable one. Hence our 
condition states that  every indz~stry must be either projitable ov must 
depend on a profitable industry. For example, if we assume that  every 
industry depends on labor, and that  labor is a profitable industry 
(which presumably means that  labor is paid more than subsistence 
wages), then our condition will be met, and all demands can be ful- 
filled. 

If the above condition is violated, then the economy cannot fulfill all 
possible demands. Let us ask what kinds of demands i t  can fulfill. 
First of all we consider the case that  there is no profitable industry. 
This means that  each industry needs all it produces to pay for raw 
materials, and i t  would seem that  i t  could meet no outside demand. 
That this is indeed the case is easily proved. 

If there is no profitable industry, then each row of Q has row sum 1, 
hence Q t =  5. If we multiply equation (4) by t on the right, we find 
that  

hence = 0. This says tha t  the sum of all the demands is 0. Hence 
no (positive) demand can be fulfilled. 

Let us now consider the general case where our condition is violated. 
The associated Markov chain is not an absorbing chain with the single 
absorbing state. Then there must be an  ergodic set other than {so:, 
i.e. a closed group of industries none of which is profitable, and which 
depend on no industry outside the group. Let us take the set of all 
such industries, that  is the union of all ergodic sets other than {so). 
The submatrix Q of these industries has the property Qt = [, as above, 
and hence can fulfill no outside demand. Thus the entire economy 
can fulfill no demands of goods produced by these industries. And 
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any goods whose production required raw materials from ~ h e s e  indus- 
tries also cannot be supplied, since these would act as outside demands 
on the closed group of industries. 

Eowever, if we remove this dosed group of profitless industries and 
all industries depending on them, the remaining industries (if any) 
will fulfill our requirement, and hence can satisfy arbibrary demands. 
These results can be summarized : If there are industries which depend 
on no profitable industry, then these cannot fulfill a n  outside demand, 
and neither can any industry depending on them. The remaining 
industries can fulfill any  outside demand. I n  Germs of states this 
means that  any ergodic state (other than so), or any transient state 
from which such a state is reachable, can fulfill no demand. 

To find what industries can support a demand, we use the fo'ollowing 
simple algorithm for the classification of states : 

(a) Make a check opposite each row of & whose row-sum is less than 
1 ; that  is, check each row corresporiding to a profitable industry. 

(b) Check the columns having the same indices as the rows already 
marked and then check, in these columns, rows which have 
positive entries. 

(c) Iterate (bj until i t  produces no new rows. Then one of two 
possibilities may occur : 

(1) All rows are checked. 
(2) Kot all rows are checked. 

If case (e l )  occurs then the associated Markov chain is absorbing 
with the single absorbing state so. Hence any non-negative demand 
can be met. If case (c2) occurs, then the roars which are not checked 
correspond to the maximal profitless closed group. We can find all 
states depending on these by marking these rows (removing previous 
check marks) and applying (b) repeatedly. Any state so marked will 
not be able to fulfill an  outside demand. 

We thus see that  the entire question of what outside demands can 
be met by the economy is settled by a very simple algorithm. The 
"computation" requires finding the row-sums. and then simple itera- 
tions in which only the positivity of components is checked. This 
algorithm is practical even for very large matrices. 

The industries which can meet no outside demand form a totally 
useless segment of the economy. From here on we will assume that  
they have been deleted ; then ( I  - &)-I exists. 

Nest  we want to raise the question: If an order for one dollar's 
worth of good is given by a customer to industry i, how much of it 
ends up in the hands of the various industries? 
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the profit, and we may think of it as being deposited in a bank. The 
fact that the banking state is an absorbing state, means that the bank 
gets money but does not spend it. 

We immediately see that ifQ iE a matrix satisfying (1) and (2), then 
a non-negative solution to equations (5) exists for every r?O, if and 
only if the associated Markov chain is absorbing, with the banking state 
So as its only absorbing state. If So is the only absorbing state for an 
absorbing chain, then (I _Q)-l = X exists and is non-negative; hence 
7T=yN is the desired solution. Otherwise (l-Q)-l, which gives the 
mean number of times in various slat.es before reaching so, would have 
to have infinite entries, i.e. cannot exist. 

There is a simple economic interpretation of this result. 'We see that 
from every state it must be possible to "reach" the banking state. 
Only a profitable industry "reaches" the bank directly. A profiUess 
industry must reach the bank through a profitable one. Hence our 
condition states that every ind1lstry must be either profitable or must 
depend on a profitable;:nduslry. For example, if we assume that every 
industry depends on labor, and that labor is a profitable industry 
(which presumably means that labor is paid more than subsistence 
wages), then our condition \vill be met, and ill! demands can be ful
fined. 

If the above condition is violated, then the economy cannot fulfill all 
possible demands. Let us ask what kinds of demands it can fulfill. 
First of all we consider the case that there is no profitable industry. 
This means that each industry nceds all it produces to pay for raw 
materials, and it would seem that it could meet no outside demand. 
That this is indeed the case is easily proved. 

If there is no profitable industry, then each row of Q hilS row sum 1, 
hence Qf = r If we multiply equation (4) by f on the right, we find 
that 

hence yf == O. This says t.hat t.he sum of all the demands is O. Hence 
no (positive) demand can be fulfilied. 

Let us now consider the general case where 0111' condition is violated. 
The associated Markov chain is not an absorbing chain with t,he single 
absorbing sta,te. Then there must be an ergodic set other than {so], 
i.e. a closed group of industrics none of which is profitable, and which 
depend on no industry outside the group. Let us take the set of all 
such industries, that is the union of all ergodic sets other than {so}. 
The submatrix Q of t.hese industries has the property Qf = f, as above, 
and hence can fulfill no outside demand. Thus the entire economy 
can fulfill no demands of goods produced by these industries. And 
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the  profit, and we may think of i t  as being deposited in a bank. The 
fact that  the banking state is an  absorbing state, means that  the bank 
gets money but does not spend it. 

We immediately see that  if Q is a matrix satisfying ( I )  and (2),  then 
a non-negative solution to equations (5) exists for every r >  0 ,  if and 
only if the associated Markov chain is absorbing, with the banking state 
so as its only absorbing state. If so is the only absorbing state for an 
absorbing chain, then ( I  - &)-I = N exists and is non-negative ; hence 
7~ = -yN is the desired solution. Otherwise ( I  -&)-I, which gives the 
mean number of times in various states before reaching so, would have 
to have infinite entries, i.e. cannot exist. 

There is a simple economic interpretation of this result. We see that  
from every state i t  must be possible to "reach" the banking state. 
Only a profitable industry "reaches" the bank directly. A profitless - - 
industry must reach the bank through a profitable one. Hence our 
condition states that  every indz~stry must be either projitable ov must 
depend on a profitable industry. For example, if we assume that  every 
industry depends on labor, and that  labor is a profitable industry 
(which presumably means that  labor is paid more than subsistence 
wages), then our condition will be met, and all demands can be ful- 
filled. 

If the above condition is violated, then the economy cannot fulfill all 
possible demands. Let us ask what kinds of demands i t  can fulfill. 
First of all we consider the case that  there is no profitable industry. 
This means that  each industry needs all it produces to pay for raw 
materials, and i t  would seem that  i t  could meet no outside demand. 
That this is indeed the case is easily proved. 

If there is no profitable industry, then each row of Q has row sum 1, 
hence Q t =  5. If we multiply equation (4) by t on the right, we find 
that  

hence = 0. This says tha t  the sum of all the demands is 0. Hence 
no (positive) demand can be fulfilled. 

Let us now consider the general case where our condition is violated. 
The associated Markov chain is not an absorbing chain with the single 
absorbing state. Then there must be an  ergodic set other than {so:, 
i.e. a closed group of industries none of which is profitable, and which 
depend on no industry outside the group. Let us take the set of all 
such industries, that  is the union of all ergodic sets other than {so). 
The submatrix Q of these industries has the property Qt = [, as above, 
and hence can fulfill no outside demand. Thus the entire economy 
can fulfill no demands of goods produced by these industries. And 
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any goods whose production required raw materials from ~ h e s e  indus- 
tries also cannot be supplied, since these would act as outside demands 
on the closed group of industries. 

Eowever, if we remove this dosed group of profitless industries and 
all industries depending on them, the remaining industries (if any) 
will fulfill our requirement, and hence can satisfy arbibrary demands. 
These results can be summarized : If there are industries which depend 
on no profitable industry, then these cannot fulfill a n  outside demand, 
and neither can any industry depending on them. The remaining 
industries can fulfill any  outside demand. I n  Germs of states this 
means that  any ergodic state (other than so), or any transient state 
from which such a state is reachable, can fulfill no demand. 

To find what industries can support a demand, we use the fo'ollowing 
simple algorithm for the classification of states : 

(a) Make a check opposite each row of & whose row-sum is less than 
1 ; that  is, check each row corresporiding to a profitable industry. 

(b) Check the columns having the same indices as the rows already 
marked and then check, in these columns, rows which have 
positive entries. 

(c) Iterate (bj until i t  produces no new rows. Then one of two 
possibilities may occur : 

(1) All rows are checked. 
(2) Kot all rows are checked. 

If case (e l )  occurs then the associated Markov chain is absorbing 
with the single absorbing state so. Hence any non-negative demand 
can be met. If case (c2) occurs, then the roars which are not checked 
correspond to the maximal profitless closed group. We can find all 
states depending on these by marking these rows (removing previous 
check marks) and applying (b) repeatedly. Any state so marked will 
not be able to fulfill an  outside demand. 

We thus see that  the entire question of what outside demands can 
be met by the economy is settled by a very simple algorithm. The 
"computation" requires finding the row-sums. and then simple itera- 
tions in which only the positivity of components is checked. This 
algorithm is practical even for very large matrices. 

The industries which can meet no outside demand form a totally 
useless segment of the economy. From here on we will assume that  
they have been deleted ; then ( I  - &)-I exists. 

Nest  we want to raise the question: If an order for one dollar's 
worth of good is given by a customer to industry i, how much of it 
ends up in the hands of the various industries? 
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First of all we must ask what the total demand is on the various 
industries. We have a y vector whose i-th component is 1, and which 
has 0's as other components. Hence n= yAT is simply the i-th row of 
N .  This gives a direct interpretation to the entries of fl; ncj is the 
amount industry j must produce to fill a dollar order for industry i. 
Since industry j makes pjo profit on a unit production, the answer to 
Our question is that if industry i is given a dollar, the profit of industry 
j will be ntjpjo. 

The sum of all the profits is x n t r p j o  = bto = l (since so is the only 
1 

absorbing state). This shows that a dollar spent by the consumer ends 
up as profit in the hands of the profit-making industries. 

A related question is the following: If a dollar order is given to 
~ndustry i, how much activity does this result i n ?  It wiil result in nrj 
units of production in industry j. The sum of these is t i ,  the i-th 
component of T .  This is normally much greater than 1. For an order 
y, the total production is -yN[= yr. 

Let us consider an example. Suppose that the technological co- 
efficients for six industries are given by 

then 

From the first column we see that sl, sz, and ss are the profitable indus- 
tries. The classification of states is given by Figure 7-9. 

Here (s4, s5) is the ergodic set of industries which are profitless and 
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do not depend on profitable industries. Industry ss is profitable, but it 
depends on the former. Hence s4, ss, ss are useless, aad may be 

deleted. Industry $3 is profitless but not useless. The deleted transi- 
tion matrix is 

Thus, for example, a unit order to sz will stimulate a total of 6 dollars' 
production, 813 from s1, 413 from SZ, and 2 from SQ. On this dollar 
order sl makes a profit of 8 / 3 . 1 / 4 =  313, sz makes 4 / 3 . 1 j 4 =  P/Q, and 
SQ makes 2.0 = 0 (SQ is profitless). 

If we place an outside demand of y= (1,3,2) on the economy, then 
yN = (20,4,16) units will have to be produced by the various industries. 
The total production is worth y~ = 40 dollars. 

We note that P is lumpable into the partition [(so), (sl, szj, (sQ)]. The 
lumped process yields 
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Let us consider an example. Suppose that the technological co
efficients for six industries are given by 

1/2 0 1/4 0 0 0 

1/4 1/4 1/4 0 0 0 

1/2 0 1/2 0 0 0 
Q 

0 0 0 1/4 3/4 0 

0 0 0 0 0 

0 1/4 0 1/4 0 1/4 
then 

0 0 0 0 0 0 80 

1/4 1/2 0 1/4 0 0 0 SI 

1/4 1/4 1/4 1/4 0 0 0 82 

p= 0 1/2 0 1/2 0 0 0 83· 

0 () 0 0 1/4 3/4 0 84 

0 0 0 0 1 0 0 85 

1/4 0 1/4 0 1(4 0 1/4 86 

From the first column we see that SI, 52, and 86 are the profitable indus
tries. The classification of states is given by Figure 7-9. 

Here {S4, 55} is the ergodic set of industries which are profitless and 
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deleted. Industry S3 is profitless but not useless. The deleted transi-
tion matrix is 

p~C' 
0 0 0\ So 

1/2 {) ';')" 1/4 If 4, 1/4 1/4 52 

{) 1/2 0 1/2 83 

Hence 

Thus, fOT eX<1mple, a unit order to 82 will stimulate a total of 6 dollars' 
production, 8/3 from S1, 4/3 from 82, and 2 from S3. On this dollar 
order 81 makes a profit of 8/3 .1/4 =2/3, S2 makes 4/3 ,1/4 =1/3 , and 
S3 ma,kes 2.0 = 0 (S3 is profitless). 

If we place an outside demand of y= (1,3,2) on the econom.y, then 
yN = (20,4,16) units will have to be produced by the various industries. 
The total production is worth y-r = 40 dollars. 

We note that Pis lumpable into the partition [{so}, {SI' S2}, {53}]' The 
lumped process yields 

(;, 0 ,;,) F= 1/2 N=(: :) 7 = (:). 
\ 0 1/2 1/2 

For 

y = (4,2) yS = (24,16) yT = 40. 
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The "lumped" industries sl and sz are here considered as acting as one 
"industrial group." This process will yield the total demands on the 
industrial group, but not the breakdown into industrial demands. 

For practical problems the comput,ations may be prohibitive. 
Hence we are often happy to solve a lumped version of the economy. 
The condition for lumpability becomes the following : Any industry 
in one industriaJ group makes the sa,me total per unit demands on the 
members of (its own or) another industrial group. (Then all industries 
in the group ma,ke the same per unit profit.) While these conditions 
are unlikely to be met exactly, they may be put to a good approxima- 
tion. This allows us to take industrial groups as basic entities, and 
yields a smaller and more manageable model. 

We thus see that  even in a non-probabilistic model a grea,t deal of 
information can be obtained from Markov chain theory. 

Page 

r&] denote the mean d u e  of the function f, 
variance of f, and probsbility of the statement p when the chain 
is started in state s,. 

P9 E = jr,,] matrix with entries r,j 

19 p = jr,] row vector with component .rr 

19 = (c,) column vector with component c, 

[ column vector with all entrles 1 

7 row vector with all entries I 

E matrix with all entries 1 

20 1 identity matrix 

0 matrix M ith all entries 0 

21 AT is the transpose of A 

2P A,, results from A by squaring each entry 

21 A d g  results from A by setting off-diagonal entries equal to 0 

25 A j n i te  Markov &in is a stochastic process which moves through 
a finite number of states, and for which the probability of entering 
a certa.in state depends only on the last state occupied. 

35 An ergodic set of states is a set in which every state can be reached 
from every other slate, and which cannot be left once i t  is entered. 

35 A transient set of states is a set in which every state can be reached 
from every other state, and which can be left. 

35 An ergodic state is an element of an ergodic set. 
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I-Summary of Basic Notation 
Page 

25 Mi[f], Varl[f], Pri[P] denote the mean value of the function f, 
variance of f, and probability of the statement p when the chain 
is started in state St. 

19 R = {rij} matrix with entries rij 

19 p = row vector with component rj 

19 y= column vector ·with component Cj 

20 g column vector with all entries 1 

20 '7 row vector with all entries 

20 E matrix with all entries 

20 I identity matrix 

20 0 matrix with all entries 0 

46 

21 

21 

21 

._ fl jf i=j 
(I,) - lO jf i of j 

AT is the transpose of A 

Asq rcsults from A by squaring each entry 

A dg results from A by setting off·diagonal entries equal to 0 

II-Basic Definitions 

25 A finite },f arkov chain is a stochastic process which moves through 
a finite number of states, ar,cl for which the probability of entering 
a certain state depends on the last state occupied. 

35 An ergodic set of states is a set in which every state can be reached 
from every other state, and which cannot be left once it is entered. 

35 A transient set of states is a set in which every state can be reached 
from every other state, and which can be left,. 

35 An ergodic state is an element of an ergodic set. 
207 
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35 A transient state is an element of a transient set. 

35 An absorbing state is a state which onoe entered is never left. 

37 An absorbing chain is one all of whose ergodic states are absorbing; 
or-equivalently-which has at least.one absorbing state, and 
such that an absorbing state can be reached from every state. 

37 An ergodic chain is one whose states form a single ergodic set; or
equivalently-a chain in which it is possible to go from every 
state to every other state. 

37 A eyclic chain is an ergodic chain in which each state can only be 
entered at certa,in periodic intervals. 

37 A regular chm:n is an ergodic chain that is not cyclic. 

III-Basic Quantities for Absorbing Chains 

STANDARD FORM FOR TRANSITION MATRIX 

44 , 1 to) p=(--RIQ 

46 nj number of times in state Sj before absorption 

46 Uk} function that is 1 ifprocess is in 5j after k steps, 0 otherwise 

50 number of steps taken before absorption 

52 bij probability starting in state SI that the process is absorbed 
in state Sj 

61 fj number of times in transient state SI before leaving the state 

61 hij probability starting in Sj that the process is ever in Sj 

61 m total number of transient states entered before absorption 

46 N = {M,[nj}} 

49 N2=(Yart[njJ} 

49 T={M;[t]} 

49 T2={Vari(tJ) 

49 B = {bi}} 

62 f-L = {M;[m]} 

63 P transition matrix for process of changes of state 
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IV-Basic Formulas for Absorbing Chains 
Page 

46 N = (I _Q)-1 (Fundamentai matrix) 

49 N 2 = N( 2Ndg- I )-Nsq 

49 B=NR 

61 H=[N-IjNdg-1 

49 T=Nf; 

49 T2=(2N-l)T-Tsq 

1 
til M.[ri)=-, --

1 -Pfi 

61 PH 
Var;[riJ=(-,~' "-f2 

i-PH 

62 JL = (N Ndg-l)~ 

V-Basic Quantities for Ergodic Chains 

76 a = fal} fixed probability vector for P 

. 1 
88 eij = hm -:- COVk[Yi(nl,Yj(n)] 

n -+ r:o 12, 

88 (3= {Dj} vector of limiting variances for the number of times in each 
of the states aJ(2zjj -aj) [see p. 91] 

70 A matrix with each row a 

79 D diagonal matrix with j-th entry l/aj 

105 P t,:ansition matrix for the re\'erse process 

75 Z=(l-P+A)-l CFundamentalmatrix) 

81 c= LZii 
j 

78 111 = {mij} matrix of mean number of steps required to reach So 

for the first time, starting in St 

82 W = {'Wij} matrix of variances for the number of steps required 
to reach Sf, starting in state SI 

76 Yj(n) number of times in state Sj in the first n steps 
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VI-Basic Formulas for Ergodic Chains 
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105 P=DPTD-l 

VIE-Some Bask Exam 
Page Example 

47 l a  

90 3a. 

108 3a 

48 IOU 

42 14 

APPENDICES 211 

VHkI-Generalization of a Fun 

John G. Kemeny 

ABSTRACT 

It is shown that, lor a finite ergodic Markov chain, basic descriptive quantities, 
such as the stationary vector and mean first-passage matrix, may be calculated using 
any one of a class of fundamental matrices New applications of the use of these 
operators are discussed. 

INTRODUCTION 

The motivation lor this paper is to generalize the concept of the funda- 
mental matrix of a finite ergodic Markov chain (see [4]). The approach will be 
to consider a class of linear equations, of which the Markov chain case is a 
subclass. It will be shown that one gains new insight into previous work on 
ergodic chains, and that the generalized operator has interesting new applica- 
tions. 

We assume that we are dealing with an n-dimensional vector space, for 
some fixed n > 1. Unless otherwise indicated, in our formulas capital letters 
will denote n-by-n matrices, lowercase letters denote ncomponent column 
vectors, and Greek letters denote ncomponent row vectors. 

A CLASS OF LINEAR EQUATIONS 

A standard approach to the computation of key quantities for finite 
Markov chains is to compare the value of an unknown quantity z with its 
expected value after one step. This leads to an equation of the fonn 
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VI-Basic Formulas for Ergodic Chains 
Page 

105 P=DPTD-l 

78 M = {mii) = (1 - Z+EZdg)D 

81 M=M-Mdg 

83 W = {WiJ} = M(2ZdgD-I) + 2(ZM -E(ZJ1)dd 

85 C = {eij} = {a/Zij + ajZji - aid;j - aiaj} 

1 
79 mii=

aj 

81 aM =7)ZdgD 

81 MaT=cf 

81 a=(c-l)[(M)-lfF 

81 P=I+(D-E)(Jl)-l 
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VHI-Generalization of a Fundamental Matrix 

John C. Kemeny 

ABSTRACT 

It is shovn; that, lor a finite ergodic Markov chain, basic descriptive quantities, 
such as the stationary vector and mean first-passage matrix, may be calculated using 
allY one of a class of fundamental matrices. New applications of the use of these 
cperators are discussed. 

INTRomXTIO:,\ 

The motivation for this paper is to generalize the concept of the funda
mental matrix of a finite ergodic Markov chain (see [4]). The approach will be 
to consider a class of linear equations, of which the Markov chain case is a 
subclass. It ~ill be shown that one gains new insight into previous work on 
ergodic chains, and that the generalized operator has interesting new applica
tions. 

\Ve assume that we are dealing with an n-dimensional vector space, for 
some fixed n> 1. Unless otherwise indicated, in our formulas capital letters 
will denote n-by-n matrices, lowercase letters denote n-component column 
vectors, and Greek letters denote n-component TO\V vectors. 

A CLASS OF LINEAE EQUATIONS 

A standard approach to the computation of key quantities for finite 
Markov chains is to compare the value of an unknown quantity x with its 
expected value after one step. TI,is leads to an equation of the fonn 

x=Px (1) 



where P is the transition matrix and the components of f are known 
quantities. Let us write this class of equations in a standard form: 

We wish to consider equations of this form in general, using the speciai case 
of Markov chains only as motivation. It  is well known that the nature of the 
solutions of (2) is determined by studying the homogeneous equation 

( I -  P)x=O. (3) 

I 
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If this equation has only the solution x=O, then (2) has a unique solution: if 
there is a nonzero solution of (3), then (2) has either no solution or infinitely 
many solutions, depending on the nature off. 

The case where (3) has only the trivial solution is the easy case. Then I -  P 
is nonsingular, and the solution of (2) is x = ( d - P ) - ' f .  This is the case for a 
finite transient (absorbing) Markov chain, where P is the transition matrix 
restricted to transient states. Therefore, the computation of basic quantities 
for such chains is simple (see [4], Chapter 3). 

The case we wish to consider is one in which I  - P is singular. Specifically, 
we shall assume that it has a on~-dimensional kernel. (This is always the case 
for finite ergodic chains.) 

ASSUMPTION. The hon~ogeneous equation (3) has a nonzero solution 
x =  h ,  and every solution of (3) is a multiple of h. 

It should be noted that h is a fixed point of the transformation P, i.e., 
P h = h .  From linear algebra we know that there is also a fixed point of P 
acting on row vectors, aP=a. From now on we shall use h and a: for these 
fixed points. It should be remembered that they are determined only up to a 
constant mrdtiple. In the case of an ergodic chain, l z  may be chosen as the 
vector dl of whose components are I, and a  as the all-positive probability 
vector of limiting probabilities. 

We shall next demonstrate that there is a simple modification of the 
matrix I -P which is nonsingular, and which may be used to solve (2). The 
modification allows us .to choose row and column vectors ,L3 and g almost 
arbitrarily, giving a great deal of flexibility to the generalization. The reader 

should keep in mind that while the product fig is a number, the product g/3 is 
an n-by-n matrix. 

THEOREM 1, ERf /3 and g be any two vectors such that P I 1  and ag  are 
nonzem. Then the inverse 

z= ( a - ~ + g p ) - '  

exists. 

Proof. Suppose that 

( I -P+&)x=O. 

Then 

We tndtlply the equation by a, and use the fact that aP=cc. This yields 
(ag)(px)=O. But a g f . 0 ;  hence px=Q. Thus (6) reduces to x=Px. By our 
Assumption, x=ch, where c is a constant. Then O=@x=c(,Bh),  and /3lz#O, 
hence c=O. Thus ( 5 )  has only the solution x=O, and hence the matrix IS 

nonsingdar. d 

Let us next derive some properties of 2. From (41, 

if we multiply this equation on the right by h, and use Ph=h, we obtain 
(Zg) (ph)=h ,  or 

In exlictly the same manner, using that Z is a right inverse, we obtain 

I ,m= -a. 
ag  
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wheI'e P is the transition matrix and the components of f are known 
quantities. Let us write this class of equations in a standard form: 
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finite transient (absorbing) Markov chain, where P is the transition matrix 
restricted to transient states. Therefore, the computation of basic quantities 
for such chains is simple (see [4J, Chapter 3). 

The case we wish to consider is one in which 1-P is singular. Specifically, 
we shall assume that it has a one-dimensional kernel. (This is always the case 
for finite ergodic chains.) 

ASSUMPTION. The homogeneous equation (3) has a nonzero solution 
x=h, and every solution of (3)is a multiple of h. 

It should be noted that h is a fixed point of the transfo.rmation P, i.e., 
Ph == h. From linear algebra we know that there is also a fixed point of P 
acting on row vectors, aP= Ci. From now on we shall use h and DC for thcse 
fixed points. It should be remembered that they arc detcrmined only up to a 
constant multiple. In the case of an ergodic chain. h may be chosen as the 
vector a!.I of whose components are 1, and a as the aD-positive probability 
vector of limiting probabilities. 

We shall next demonstrate that there is a simple modification of the 
matrix I - P which is nonsingular, and which may be used to solve (2). The 
modification allows us· to choose row and column vectors (3 and g almost 
arbitrarily, giving a great deal of flexibility to the generalization. The reader 
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If this equation has only the solution x=O, then (2) has a unique solution: if 
there is a nonzero solution of (3), then (2) has either no solution or infinitely 
many solutions, depending on the nature off. 

The case where (3) has only the trivial solution is the easy case. Then I -  P 
is nonsingular, and the solution of (2) is x = ( d - P ) - ' f .  This is the case for a 
finite transient (absorbing) Markov chain, where P is the transition matrix 
restricted to transient states. Therefore, the computation of basic quantities 
for such chains is simple (see [4], Chapter 3). 

The case we wish to consider is one in which I  - P is singular. Specifically, 
we shall assume that it has a on~-dimensional kernel. (This is always the case 
for finite ergodic chains.) 

ASSUMPTION. The hon~ogeneous equation (3) has a nonzero solution 
x =  h ,  and every solution of (3) is a multiple of h. 

It should be noted that h is a fixed point of the transformation P, i.e., 
P h = h .  From linear algebra we know that there is also a fixed point of P 
acting on row vectors, aP=a. From now on we shall use h and a: for these 
fixed points. It should be remembered that they are determined only up to a 
constant mrdtiple. In the case of an ergodic chain, l z  may be chosen as the 
vector dl of whose components are I, and a  as the all-positive probability 
vector of limiting probabilities. 

We shall next demonstrate that there is a simple modification of the 
matrix I -P which is nonsingular, and which may be used to solve (2). The 
modification allows us .to choose row and column vectors ,L3 and g almost 
arbitrarily, giving a great deal of flexibility to the generalization. The reader 

should keep in mind that while the product fig is a number, the product g/3 is 
an n-by-n matrix. 

THEOREM 1, ERf /3 and g be any two vectors such that P I 1  and ag  are 
nonzem. Then the inverse 

z= ( a - ~ + g p ) - '  

exists. 

Proof. Suppose that 

( I -P+&)x=O. 

Then 

We tndtlply the equation by a, and use the fact that aP=cc. This yields 
(ag)(px)=O. But a g f . 0 ;  hence px=Q. Thus (6) reduces to x=Px. By our 
Assumption, x=ch, where c is a constant. Then O=@x=c(,Bh),  and /3lz#O, 
hence c=O. Thus ( 5 )  has only the solution x=O, and hence the matrix IS 

nonsingdar. d 

Let us next derive some properties of 2. From (41, 

if we multiply this equation on the right by h, and use Ph=h, we obtain 
(Zg) (ph)=h ,  or 

In exlictly the same manner, using that Z is a right inverse, we obtain 

I ,m= -a. 
ag  
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should keep in mind that while the product f3g is a number, the product g{3 is 
an n-by-n matrix. 

THEOREM 1. Let f3 and g be any two 1:ectors such that f3h and ag are 
nonzero. 71ten the inverse 

Z== (I_P+gj3)-l (4) 

exists. 

Proof. Sllppose that 

(I-P+g/3)x=O. (5) 

Then 

x== Px- g{f3x). (6) 

We multiply the equation by C/, and use the fact that aP= 0:. This yields 
(ag)(f3x)=O. But ag~O; hence {3x=O. Thus (6) reduces to x=Px. By our 
Assumption, x=ch, where c is a constant. Then O=f3x=c([3h), and [3h=l=O; 
hence c == O. Thus (.5) has only the solution x= 0, and hence the matrix is 
nonsingular. l1li 

Let us next derive some properties of Z. From (4), 

z(I-p+gf3)=l. (7) 

if we multiply this equation on the right by /1, and use Ph=h, we obtain 
(Zg)(j3h)=h, or 

In exactly the same manner, using that Z is a right inverse, we obtain 

1 
f,Z= -ex. 

ag 
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Thus from Z we can obtain the fixed points h and a. Substituting (8) into (71, 
we find that 

and dually, 

We are now ready to demonstrate the usefulness of Z in solving the 
equation (2).  

THEOREM 2. The equation (2) has a solution i f  and only if a f=O. If a 
solution exists, one may specify the value of px arbitrarily, say px=c ( c  a 
constant ), and one obtains the unique solution 

Proof. Multiplying (2 )  by a shows that af=O is a consequence; hence 
this is a necessary condition for the existence of a solution. Let us next 
multiply (2 )  by Z and make use of (10). We obtain 

And if we impose the condition px=c ,  then we see that (12) is the only 
possible solution. Conversely, if we substitute (12) into (2 )  and use 411), we 
find that x  satisfies the equation. (Recall that af=O and Ph=h.) And if we 
multiply (12) by ,8 and use ($9, we verify that the solution also satisfies the 
condition px = c. &ill? 

We have thus shown both the necessary and sufficient condition for the 
existence of a solution and precisely how much additional may be required of 
a solution. Since p may be any row vector such that j3hf 0, we have a very 
flexible tool. And the choice of P in Z is naturally determined by the nature of 
the side condition px= c. 

There is a dual result which shows the role of g. Its proof exactly parallels 
the proof of Theorem 2: 
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THEOREM 3. The equation 

has a solution if and only if+bz=O. If a solution exists, one m y  specify the 
value <g arbitrady, say 5g=c,  nnd one obtains the unique solution 

A SPECIAL CASE 

Assume that ah f .0 .  Then we may choose them so that ah= l. Let p=a 
and g= h. AU our conditions are met, and Bh=ag= 1. For an ergodic Markov 
chain the resulting operator 

z*=(I- ha)-', a h = l ,  (15) 

is c&ed the "fundamental matrix." For it (8) and (9) take the simple form 

Z*h=h and a Z * = a ,  (18) 

and (12) and (14) take the forms 

We s h d  next show that any Z may be expressed in terms of Z*, and 
conversely. Ht will be convenient to introduce the constants 
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Thus from Z we can obtain the fixed points h and iX, Substituting (8) into (7), 
we find that 

and dually, 

1 
Z(I-P)=l- -hB {3h ' , 

(I-p)Z 
1 

[- -gao 
ag 

(10) 

(11) 

We are now ready to demonstrate the usefulness of Z in solving the 
equation (2). 

THEOREM 2. The equation (2) has a solution if and only if o:f=O. If a 
solution exists, one may specify the value of f3x arbitrarily, say f3x = c (c a 
constant), and one obtains the unique solution 

c 
x=Zf+ f3h h. (12) 

Proof. Multiplying (2) by 0: shows that a. f= 0 is a consequence; hence 
this is. a necessary condition for the existence of a solution. Let us next 
multiply (2) by Z and make use of (10). We obtain 

x- ;h h(f3x)=Zf. 

And if we impose the condition f3x::::c, then we see that (12) is the only 
possible solution. Conversely, if we substitute (12) into (2) and use (11), we 
find that x satisfies the equation. (Recall that af=O and Ph=h.) And if we 
multiply (12) by f3 and use (9), we verify that the solution also satisfies the 
condition f3x=c. iIIII 

We have thus shown both the necessary and sufficient condition for the 
existence of a solution and precisely how much additional may be required of 
a solution. Since f3 may be any row vector such that f3 h =1= 0, we have a very 
flexible too!. And the choice of f3 in Z is naturally detennined by the nature of 
the side condition f3x=c. 

There is a dual result which shows the role of g. Its proof exactly parallels 
the proof of Theorem 2: 
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we find that 
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And if we impose the condition px=c ,  then we see that (12) is the only 
possible solution. Conversely, if we substitute (12) into (2 )  and use 411), we 
find that x  satisfies the equation. (Recall that af=O and Ph=h.) And if we 
multiply (12) by ,8 and use ($9, we verify that the solution also satisfies the 
condition px = c. &ill? 

We have thus shown both the necessary and sufficient condition for the 
existence of a solution and precisely how much additional may be required of 
a solution. Since p may be any row vector such that j3hf 0, we have a very 
flexible tool. And the choice of P in Z is naturally determined by the nature of 
the side condition px= c. 

There is a dual result which shows the role of g. Its proof exactly parallels 
the proof of Theorem 2: 
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THEOREM 3. The equation 

has a solution if and only if+bz=O. If a solution exists, one m y  specify the 
value <g arbitrady, say 5g=c,  nnd one obtains the unique solution 

A SPECIAL CASE 

Assume that ah f .0 .  Then we may choose them so that ah= l. Let p=a 
and g= h. AU our conditions are met, and Bh=ag= 1. For an ergodic Markov 
chain the resulting operator 
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We s h d  next show that any Z may be expressed in terms of Z*, and 
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THEOREM 3. The equation 

~U-p)=cf> (13) 

has a solution if ami only if 4>h=O. If a solution exists, one may specify the 
wlue ~g arbitrarily, say ~g=:c, and one obtains the unique solution 

A SPECIAL CASE 

c 
~=<I>Z+-a. 

ag 
(14) 

Assume that ah 7'= O. Then we may choose them so that ah = 1. Let f3 = a 
and g=h. All our conditions are met, and {3h=ag= 1. For an ergodic Markov 
chain the resuiting operator 

O/h= 1, (15) 

is called the "fundamental matrix." For it (8) and (9) take the simple form 

Z*h=h and aZ*=a, (16) 

and (12) and (14) take the forms 

x=Z*J+ch if af=O and (){x=c. (17) 

~=cf>Z*+c(){ if cph=O and ~h=c. (18) 

We shall next show that any Z may be expressed in temlS of Z*, and 
conversely. It will be cor:venient to introduce the constants 

From (10), 

Z(I - P+ha) =1 - c2 h{3 + (Zh )£'1.; 
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hence, multiplying by Z*, 

Z=Z*-c2 f z ( /3Z*)+(Zh)a .  (19) 

Similarly, 

Z*( I -P+gP)=6-  h a + ( Z * g ) P ,  

Z* = Z -  h ( a Z ) + c , ( Z * g ) a .  (20) 

Substituting (20) into (19), 

h [ o Z + c , P ~ * ]  = [ ~ h + c , ~ * ~ ]  a .  (21) 

Multiplying on the right by g ,  

1 
c,c,h=-Zh+Z*g. 

c1 

We solve this for Z h  and substitute in (19): 

z = z * - c , ~ ( P z * ) - c ~ ( z * ~ ) L ~ + c ~ ~ c , ~ ~ ~ .  (22) 

This expresses Z  in tenns of Z*. If we multiply (21) by h  and solve for Z*g, 
we have from (20) 

which expresses Z* in tenns of Z.  Computing a Z h  from (221, we obtain a 
useful identity: 

A numerical example may be helpful at this stage: 
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1 identity matnx. (This will always be :he case when P=ha.) Suppose that we 
choose 

Then 

and the previous results are easily verified. We wish to soEve the equation 

Smce af=O, it does have solutions. \Ve may specify p x ,  I e., the f r s t  
component of r. If we reqwre ,!?x=3, 

which satisftes all our requirements. 
It  should be pointed out that, while Z* always exists for an ergodic chain, 

there are cases where Theorem 1 applies but Z" does not exist. A simple 
example wii! illustrate this: let 

All the assumptions of the first section are met, and hence the matrices (4) 
exist and have the stated properties. But, since ah=@ Z* is not one of them. 
Indeed, I+'+ hcu=O, and certainly does not have an inverse. This shows that 
the method of this paper provides not oniy added flexibility but also wider 
applicability than Z*. 

ERGQDJC CHAINS 

This satisfies all our conditions, including ah= 1. We find that Z* is the 

A finite Markov chain 1s ergod~c if from any state it is posslble to reach 
every other state. If P  is the transition matrix of such a chain, and h 1s the 

I 

I 
i 
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hence, multiplying by Z*, 

Z=Z"'-c2 h((3Z*) +(Zh )a. (19) 

Similarly, 

Z*(I- P+g(3)=I-ha+ (Z*g)(3, 

Z" =Z-h(aZ)+c1(Z*g)a. (20) 

Substituting (20) into (19), 

h[aZ+c2(3Z*] = [Zh+c1Z*g] a. (21) 

Multiplying on the right by g, 

We solve this for Zh and substitute in (19): 

(22) 

This expresses Z in terms of Z*. If we multiply (21) by h and solve for Z*g, 
we have from (20) 

Z*=Z-h(aZ) -(Zh)a+c4 ha, (23) 

which expresses Z* in tenns of Z. Computing aZh from (22), we obtain a 
useful identity: 

(24) 

A numerical example may be helpful at this stage: 

a=(2,1). 

This satisfies all our conditions, including ah = 1. We find that Z* is the 
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hence, multiplying by Z*, 

Z=Z*-c2 f z ( /3Z*)+(Zh)a .  (19) 

Similarly, 
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useful identity: 

A numerical example may be helpful at this stage: 
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1 identity matnx. (This will always be :he case when P=ha.) Suppose that we 
choose 

Then 

and the previous results are easily verified. We wish to soEve the equation 

Smce af=O, it does have solutions. \Ve may specify p x ,  I e., the f r s t  
component of r. If we reqwre ,!?x=3, 

which satisftes all our requirements. 
It  should be pointed out that, while Z* always exists for an ergodic chain, 

there are cases where Theorem 1 applies but Z" does not exist. A simple 
example wii! illustrate this: let 

All the assumptions of the first section are met, and hence the matrices (4) 
exist and have the stated properties. But, since ah=@ Z* is not one of them. 
Indeed, I+'+ hcu=O, and certainly does not have an inverse. This shows that 
the method of this paper provides not oniy added flexibility but also wider 
applicability than Z*. 

ERGQDJC CHAINS 

This satisfies all our conditions, including ah= 1. We find that Z* is the 

A finite Markov chain 1s ergod~c if from any state it is posslble to reach 
every other state. If P  is the transition matrix of such a chain, and h 1s the 

I 

I 
i 
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identity matrix. (This will always be the case when P= hex.) Suppose that we 
choose 

/3=(1,0), ( 
1 \ 

g= i)' 

Then 

( 
2 

Z= 3 
, -1 * ), 

0. 

and the previous results are easily verified. We wish to solve the equation 

(I-P)X=( _!). 
Since af=O, it does have solutions. VIe may specify f3x, i.e., the first 
component of x. If we require f3x=3, 

which s<ltisfies all our requirements. 
It should be pointed out that, while Z * always exists for an ergodic chain, 

there are cases w:here Theorem 1 applies but Z* does not exist. A simple 
example will illustrate this: let 

p=( ~ ~), 0:=(1,0), 

All the assumptions of the first section are met, and hence the matlices (4) 
exist and have the stated properties. But, since ah:::: 0, Z* is not one of them. 
Indeed, 1-- P+ ha == 0, and certainly does not have an inverse. This shows that 
the method of this paper provides not only added flexibility but also wider 
applicability than Z*. 

ERGODIC CHAINS 

A finite Markov chain is ergodic if from any state it is possible to reach 
every other state. If P is the transition matrix of such a chain, and h is the 



constant vector (all components equal to I), then the Assumption of this 
paper is always satisfied. Such a Markov chain has an equilibrium, i.e., a 
probability vector a such that a P = a .  And a is strictly positive. Thus there are 
natural fixed points h and a ,  and ah = 1. 

The matrix Z* of the previous section is called the fundamental mntrix of 
the ergodic chain, and it can be shown that the various interesting probabilis- 
tic quantities can be computed in terms of a and Z*. I n  particular, Eqs. (16), 
(17), and (18) are well known results about finite ergodic chains (See [4].) 
Two other important results are that the mean time to return to a state j is 

and the mean time to go from i to j (mean first-passage time) is 

To have a numerical illustration available, we introduce the weather in the 
Land of Oz (see [3]): 

This treatment of finite ergodic chains has never seemed as satisfactory as the 
treatment of finite transient chains. For the latter ( I -Q)- '  is the natural 
fundamenltal matrix, where Q represents transitions from transient state to 
transient state, and all quantities can be expressed in terms of it. For ergodic 
chains Z* appears somewhat arbitrary. It also suffers from the difficulty that 
one must compute a (solving n equations) before one can compute Z*. 
Variom alternatives to this matrix have since appeared in the literature, (see 
Meyer [7, 81). 

We now know that Z* is only one of an infinite number of possible 
choices for the fundamental mattix. One may choose any Z, the only 
restrictions are that ag and ph should not be 0. T h s  may be any vector 
such that the sum of the components is not zero, and if g is chosen as a 
nonnegative and nonzero vector, then agJ-0-irrespective of what a may he. 

Let us propose a new approach to the treatment of finite ergodic chains. 
Let 

That is, we let g=h, and ,8 be any vector with row sum 1. Theorern 1 
guarantees its existence. Then, from (6) and (9), 

Thus we may find a from the fundamental matrix rather than having to find a 
first. Other quantities are determined from an equation of the form (P), with 
af=O; we know from Theorem 2 that we may impose the additional 
condition Bx=c and obtain the unique sofution 

How are the mean first-passage times expressed in terms of the gener- 
alized fundamental matrix? Instead of retracing the derivation of the matrix 
M, we use (23) to transkte the formula (26): 

And since h is a constant vector, h, - h, =O: 

If we use as Z a Z,, then (28) shows that the last two terms cancel. Thus the 
sirnpie formula (26) holds for any Zp in place of Z*. 

This can be seen more simply if we express Zp in terns of Z*. From (221, 
using g=h, ph=ah=l,  and (16), 
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constant vector (all components equal to I), then the Assumption of this 
paper is always satisfied. Such a Markov chain has an equilibrium, i.e., a 
probability vector a such that aP= a. And a is strictly positive. Thus there are 
natural fixed pOints h and a, and ah = l. 

The matrix Z* of the previous section is called the fundamental matrix of 
the ergodic chain, and it can be shown that the various interesting probabilis
tic quantities can be computed in terms of a and Z*. In particular, Eqs. (16), 
(17), and (18) are well known results about finite ergodic chains (See [4].) 
Two other important results are that the mean time to return to a state i is 

(25) 

and the mean time to go from i to i (mean first-passage time) is 

(26) 

To have a numerical illustration available, we introduce the weather in the 
Land of Oz (see [3]): 

t 1 1 
4 4 

h=( U, p= ~ 0 1 _(2 1 2) 
2 , a- '5,"'5,'5 ) 

1 1 ~ 4 4 

M~(: 4 III 

( 86 3 -14 ) 
3 

Z*= _1 6 63 6 , 0 §. 

15 -14 
3 

3 86 III 4 0 3 

m=(~,5,n 

This treatment of finite ergodic chains has never seemed as satisfactory as the 
treatment of finite transient chains. For the latter (1- Q) -1 is the natural 
fundamental matrix, where Q represents transitions from transient state to 
transient state, and all quantities can be expressed in terms of it. For ergodic 
chains Z* appears somewhat arbitrary. It also suffers from the difficulty that 
one must compute a (solving n equations) before one can compute Z*. 
Various alternatives to this matrix have since appeared in the literature, (see 
Meyer [7, 8]). 



constant vector (all components equal to I), then the Assumption of this 
paper is always satisfied. Such a Markov chain has an equilibrium, i.e., a 
probability vector a such that a P = a .  And a is strictly positive. Thus there are 
natural fixed points h and a ,  and ah = 1. 

The matrix Z* of the previous section is called the fundamental mntrix of 
the ergodic chain, and it can be shown that the various interesting probabilis- 
tic quantities can be computed in terms of a and Z*. I n  particular, Eqs. (16), 
(17), and (18) are well known results about finite ergodic chains (See [4].) 
Two other important results are that the mean time to return to a state j is 

and the mean time to go from i to j (mean first-passage time) is 

To have a numerical illustration available, we introduce the weather in the 
Land of Oz (see [3]): 

This treatment of finite ergodic chains has never seemed as satisfactory as the 
treatment of finite transient chains. For the latter ( I -Q)- '  is the natural 
fundamenltal matrix, where Q represents transitions from transient state to 
transient state, and all quantities can be expressed in terms of it. For ergodic 
chains Z* appears somewhat arbitrary. It also suffers from the difficulty that 
one must compute a (solving n equations) before one can compute Z*. 
Variom alternatives to this matrix have since appeared in the literature, (see 
Meyer [7, 81). 

We now know that Z* is only one of an infinite number of possible 
choices for the fundamental mattix. One may choose any Z, the only 
restrictions are that ag and ph should not be 0. T h s  may be any vector 
such that the sum of the components is not zero, and if g is chosen as a 
nonnegative and nonzero vector, then agJ-0-irrespective of what a may he. 

Let us propose a new approach to the treatment of finite ergodic chains. 
Let 

That is, we let g=h, and ,8 be any vector with row sum 1. Theorern 1 
guarantees its existence. Then, from (6) and (9), 

Thus we may find a from the fundamental matrix rather than having to find a 
first. Other quantities are determined from an equation of the form (P), with 
af=O; we know from Theorem 2 that we may impose the additional 
condition Bx=c and obtain the unique sofution 

How are the mean first-passage times expressed in terms of the gener- 
alized fundamental matrix? Instead of retracing the derivation of the matrix 
M, we use (23) to transkte the formula (26): 

And since h is a constant vector, h, - h, =O: 

If we use as Z a Z,, then (28) shows that the last two terms cancel. Thus the 
sirnpie formula (26) holds for any Zp in place of Z*. 

This can be seen more simply if we express Zp in terns of Z*. From (221, 
using g=h, ph=ah=l,  and (16), 
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We now know that Z* is only one of an infinite number of possible 
choices for the fundamental matrix. One may choose any Z, the only 
restrictions are that ag and f3h should not be O. Thus f3 may be any vector 
such that the sum of the components is not zero, and if g is chosen as a 
nonnegative and nonzero vector, then ag~O-irrespective of what a may be. 

Let us propose a new approach to the treatment of finite ergodic chains. 
Let 

f3h= 1. (27) 

That is, we let g=h, and f3 be any vector with row sum 1. Theorem 1 
guarantees its existence. Then, from (8) and (9), 

Zph=h and f3Zp =a. (28) 

Thus we may find a from the fundamental matrix rather than having to find a 
first. Other quantities are determined from an equation of the form (1), with 
af=O; we know from Theorem 2 that we may impose the additional 
condition /3x=c and obtain the unique solution 

x=ZfJf+ ch . (29) 

How are the mean first-passage times expressed in terms of the gener
alized fundamental matrix? Instead of retracing the derivation of the matlix 
M, we use (23) to translate the formula (26): 

And since h is a constant vector, h j -hi =0: 

(30) 

If we use as Z a Zp, then (28) shows that the last two terms cancel. Thus the 
simple formula (26) holds for any Zp in place of Z*. 

This can be seen more simply if we express Zp in terms of Z*. From (22), 
using g=h, f3h=ah=l, and (16), 

Zp =Z*-h(/3Z*-a). (.31) 
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For the Oz example, if we select ,!3 = ($. 0, b), then 

It is easy to verify that Z p h = h  and P Z p = a ,  and that M is given by (26) 
using Zp in place of Z*. We can also verify ( 3 1 )  by direct computation. 

Thus any Zp is a suitable fundamental matrix, and it can be computed 
without knowing a .  

APPLICATIONS 

Consider a Markov chain that has the property that when it moves away 
from a state i, it moves to any other state with the sane  probability p,. For 
example, Oz has this property with pl  = p 3  = and p, = $. Ef we choose 
g, = p ,  and p, = 1,  then 1- P + g P  is the diagonal matrix with entries np, .  Thus 
Z is diagonal matrix with Z , , = l / ( n p , ) .  From (9) we know that a is 
proportional to PZ. Therefore, 

and from ( 3 0 ) ,  

For Oz, B k l / p k  =10 .  Thus, for example a,  = 6 = $ and hl12 = i f lo - -2+-4)  
- 
- 4. 

Next we consider the method used in [6] to compute a .  The "recipe" is to 
replace the last column of 1-P by ones and invert; then a is the last row of 
the inverse. This corresponds to choosing g,  = 1 - ( I -  P) , .  and ,!3=(0,. . . ,0, I). 
The inverse in question is the Z corresponding to this choice of g and P ,  and 
ag=l .  Hence from (9), a = p Z ,  which is the last row of Z. Meyer ['i] showed 
that this matrix could be used as a fundamental matrix in place of Z*. 

A t h d  lnterestmg cholce for g and ,!3 is the followmg. We choose as ,f3 the 
f ~ r s t  row of P ,  and g l  = 1 whde the other components of g are 0 Then % has 
the form 

where 'N is the fundamental rnatsiv of the transient chain obtained by 
making state 1 absorbing. The interpretation of IN,, is the mean number of 
times a process started in i steps into j before absorption. Here a g = a l ,  and 
hence (9) shows that a=a,(pZ).  For the first component this is art identity, 
but for j j .  1 we obtain the identity 

Also for i ?t. 1 

hence from ( 3 0 )  

This result is correct also when i or j is I, if we let (as usual) '.yl = O  if i or j is 
I, and Mll =0.  Since we could have used in place of I a general state k ,  we 
obtain the interesting identity 

Multiplymg by al and summlrsg on 1 we obtam, using 1CfIk =I, k,y,, 
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using Zfl in place of Z*. We can also verify (31) by direct computation. 
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without knowing Q. 

APPLICA TIO.'\S 
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proportional to f3Z. Therefore, 

(32) 

and from (30), 

1'.1il = ~ ( 2: ~ _ 1 + ~). 
n . k Pk Pi P, . 

(33) 

For Oz, Lkl/Pk = 10. Thus, for example Ct 1 = fn = ~ and JI12 = t(l0--2+4) 
-.! 
-'":1 . 

.'\ext we consider the method used in to compute a. The "recipe" is to 
replace the last column of 1- P by ones and inw:rt; ther! (X is the last row of 
the inverse. This corresponds to chOOSing g, = 1 -- (1- F), nand f3 = (0, ... ,0,1). 
The inverse in questioIl is the Z corresponding to this choice of g and /3, and 
O'g= 1. Hence from (9), (X = (JZ, which is the last row of Z. \!eyer :7: showed 
that this matrix could be used as a fundamental matrix in place of Z*. 
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Next we consider the method used in [6] to compute a .  The "recipe" is to 
replace the last column of 1-P by ones and invert; then a is the last row of 
the inverse. This corresponds to choosing g,  = 1 - ( I -  P) , .  and ,!3=(0,. . . ,0, I). 
The inverse in question is the Z corresponding to this choice of g and P ,  and 
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where 'N is the fundamental rnatsiv of the transient chain obtained by 
making state 1 absorbing. The interpretation of IN,, is the mean number of 
times a process started in i steps into j before absorption. Here a g = a l ,  and 
hence (9) shows that a=a,(pZ).  For the first component this is art identity, 
but for j j .  1 we obtain the identity 

Also for i ?t. 1 

hence from ( 3 0 )  

This result is correct also when i or j is I, if we let (as usual) '.yl = O  if i or j is 
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Multiplymg by al and summlrsg on 1 we obtam, using 1CfIk =I, k,y,, 
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A third interesting choice for g and f3 is the following. We choose as f3 the 
first row of P. and "I = 1 while the other components of g are O. Then Z has 
the form 

I 1 0 0 o 

Z= IN 

1 

where 1 N is the fundamental matrix of the transient chain obtained by 
making state 1 absorbing. The interpretation of 1 N;j is the mean number of 
times a process started in i steps into i before absorption. Here ag = ai' and 
hence (9) shows that a=a1Cj3Z). For the first component this is an identity, 
but for i =i= 1 we obtain the identity 

(34) 

Also {or i i" 1 

(Zh) = 1 + "1 N = 1 + M .. j L.J 17 tl.' 

hence from (30) 

This result is correct also when i or j is 1, if we IG( (as usuai) 1'\1 = 0 if i or i is 

1, and Mu =0. Since we could have used in place of 1 a general state k, we 
obtain the interesting identity 

(35) 

Multiplying by a i and summing on i we obtain, using ""lok = Ii k Ni ;, 

(36) 



222 APPENDICES 

Since i does not occur on the right side, the left side is a constant (indepen- 
dent of i). Similarly the right side is independent of k. We have previously 
urged readers to try to find a probabilistic interpretation for this constant, but 
so far none has been found. Still another expression for this constant may be 
found from (30): 

const = x Miia, = 2 7 " i i  -aZh. (3?) 
i i 

This result was previously known for the special case Z=Z*,  for which 
a Z h =  1, but it hoIds for all our Z's. For Oz the constant is $j, as can be 
computed from either Z* or Zp. 

Our final application is to the blarkov-process version of classical potential 
theory. Such a theory exists for both functions and measures (column and row 
vectors in the finite case). A charge is a function f of total integral 0 (i.e., 
cif=O) or a measure of total measure 0 (i.e., Qh=O). Potentials satisfy a 
certain averaging property-they are solutions of (2) or (13), respectively. We 
know that there always are such potentials for any charge, from Theorems 2 
and 3, and that uniqueness requires an additional condition. The usual 
conditions imposed have been a x = 0  and &=O. Hence Z* is suitable as a 
potential operator for both functions and measures, and x=Z*f, <=QZ*. 

We can generalize this theory by imposing different boundary conditions 
on the potentials. If we require that px=O and $g=O, then the potential 
operator is the Z detem~ined by g and /3, and x=Zf, trQIZ. 

These generalized potentials have an amusing nonprobabilistic applica- 
tion. Consider n teams involved in a tournament. We wish to measure the 
relative strengths of the teams even though not every team has played every 
other team. Let s , ~  =nun~ber  of points by which team i beat team j (a 
negative number if j won). We wish to assign point ratings to teams, xi .  
Ideally one wishes that 

for every game. But this is too much to expect; teams have "good days" and 
"bad days". What we will require is that for each team i, the sum of the 
differences s,, -(x, -x,) be zero. If team i has played t, games, this means 
that 

where the sum is taken over all the opponents i has played. Let us introduce 

the matrix P defined to have Pti = l / t ,  if i has played j, and 0 othenvise, arld 
the vector fwith =(l/ti)Cisii. Then (39) takes on the form (1). The matrix 
P is nonnegative and has the constant vector h as fixed point, but is it 
ergodic? This will be the case if every team either has played any other team 
or has played teams that played teams (etc.) that have played that team. 
Clearly, without such a connection meaningful ratings are not possible. 

?&e vector a is defined by a ,  = t i / t ,  where f =2ti, and a f i s  the average 
of the sii ,  which is 0, since si, = -sii. Thus a solution of (39) exists. We know 
that an extra condition may be imposed, which is not surprising, since in (38) 
only the differences of the ratings matter. We might decide to give one team 
rating 0, and rate all other teams relative to it. This would be achieved by 
choosing a /3 with 1 in that component and 0 othenvise. Or we might make 
the sum of the ratings equal to zero, choosing p, = l / n .  In either case we 
have px=O as our condition and compute Zp; the ratings are then given by 
x= Zgf. It is worth noting that the condition ax=O wodd be quite unnatural. 

WISTORICAL NOTES 

The matrix Z* was introduced in [4] and has been widely used. Various 
alternatives have also been proposed. Hunter showed [2] that Z* is a 
"generalized inverse" of 1- P,  in the sense that 

He also extended the m e  of the fundamental matrix to Markov renewal 
processes. 

It should be pointed out that all ehe matrices (4) are generalized inverses 
of I -P,  as follows immediately from either (10) or (11). 

The paper [9] compares alternative methods for calculating the vector a 
on a computer. The recommended method that emerges from this work is one 
of the Zp matrices, with /3 chosen as a row of P ,  and a calculated as in (28). 
[Cf. the remark following (28).] 

Campbell and Meyer [I] show that I -P  has a group inverse ( I - - P ) *  for 
any Markov chain P ,  and that it can be used to calculate key quantities. For a 
regular chain, (1-P)*=Z* -ha.  Thus the group inverse is very close to Z*; 
indeed, on the range of I -P  they are the same invertible operator. Thus they 
are equivalent as potential operators. The similarity is not so great to the ZB's. 
The range of I -  P is the set jx jax=0}. A ZB, @#a,  maps this set onto the 
set {xl/3x=O). That is why these matrices are new potential operators and 
provide greater flexibility. 
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tion. Consider n teams involved in a tournament. We wish to measure the 
relative strengths of the teams even though not every team has played every 
other team. Let Si; = number of points hy which team i beat team i (a 
negative number if i won). We wish to assign point ratings to teams, Xi' 

Ideally one wishes that 

(38) 

for every game. But this is too much to expect; teams have "good days" and 
"bad days". What we will require is that for each team i, the sum of the 
differences sii -(Xi -Xi) be zero. If team i has played ti games, this means 
that 

(39) 

where the sum is taken over all the opponents i has pJayed. Let us introduce 
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of 1-P, as follows immediately from either (10) or (11). 

The paper [9j compares alternative methods for calcu12.ting the vector Ci 

on a computer. The recommended method that emerges from this work is one 
of the Zp matrices, with {3 chosen as a row of P, and a calculated as in (28). 
[Cf. the remark following (28).] 

Campbell and Meyer [lJ show that [- P has a group inverse (1-- P)'" for 
any Markov chain P, and that it can be used to calculate key quantities. For a 
regular chain, (I-P)#=::Z*-ha. Thus the group inverse is very close to Z*; 
indeed, on the range of [- P they are the same invertible operator. Thus they 
are equivalent as potential operators. The similarity is not so great to the Zft's. 
The range of J-P is the set {xlax=O}. A Z{l' f3¥=a, maps this set onto the 
set {x I/h = O}. That is why these matrices are new potential operators and 
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For  a treatment of potential theory for Markov chains t h e  reader is 
referred to 151. 
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