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Note:  This presentation does not contain information on LTSA, which was added to 

MANI after this presentation was given.  Of the NLDR methods considered, LTSA 

seems to perform the best on the examples included in MANI.



Manifold Learning for Dimensionality Reduction

dD
YX ℜ∈→ℜ∈

Goal:  We want to map a D-dimensional data set X to a d-
dimensional data set Y, preserving the local geometries on the 
original manifold as much as possible.

Methods we’ve learned
•MDS
•PCA
•ISOMAP
•LLE
•Hessian LLE
•Laplacian Eigenmap
•Diffusion Maps
•KNN Diffusion (Mauro)

So which is the best?

First let’s make some predictions...



PCA

� Summary

� Just SVD of covariance matrix XX’.

� Take largest d eigenvectors.

� Predictions

� Doesn’t really infer the geometry of the 

manifold.

� Assumes the data Y represents the projection 

onto a d-dimensional space.

� But it’s extremely fast, so it might be good to 

give it first crack at your data.



MDS

� Summary

� Iterates to answer by learning the correct 
eigen decomposition.

� Predictions

� Like PCA, does not seem to have any built-in 

mechanism for determining the geometry of 
the manifold.

� Also much slower than PCA.

� Requires parameters describing learning rate 

and number of iterations.



General Framework

� ISOMAP, LLE, Hessian, Laplacian, & KNN 

Diffusion are all based on KNN graphs.

� The graph-based algorithms have 3 basic 

steps.

� 1.  Find K nearest neighbors.

� 2.  Estimate local properties of manifold by 
looking at neighborhoods found in Step 1.

� 3.  Find a global embedding that preserves the 
properties found in Step 2.



ISOMAP (Tennenbaum, DeSilva, & Langford)

� Summary

� Build graph from K Nearest Neighbors.

� Run MDS.

� Predictions

� Since MDS is slow, ISOMAP will be very slow.

� Need estimate of K.

� Assumes data set is convex (no holes).

� ISOMAP removes outliers in pre-processing.  
So is it extra-sensitive to noise?



LLE (Saul & Roweis)

� Summary (see Effie’s talk)

� Build graph from K Nearest Neighbors.

� Determine reconstruction weights by 

assuming neighborhoods are locally linear and 
insuring invariance.

� Determine embedding.

� Predictions

� If it’s locally linear, can it handle curvature and 
corners?

� What about noise?



Laplacian Eigenmap (Belkin & Nyogi)

� Summary

� Build graph from K Nearest Neighbors.

� Construct weighted adjacency matrix with 

Gaussian kernel.

� Compute embedding from normalized 

Laplacian.
�

� Predictions

� Assumes each point lies in the convex hull of 

its neighbors.  So it might have trouble at the 
boundary.

� Will have difficulty with non-uniform sampling.
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Hessian LLE (Donoho & Grimes)

� Summary

� Build graph from K Nearest Neighbors.

� Estimate tangent Hessians.

� Compute embedding based on Hessians.

� Predictions

� Specifically set up to handle non-convexity.

� Slower than LLE & Laplacian.

� Will perform poorly in sparse regions.

� Only method with convergence guarantees.
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Diffusion Map (Coifman & Lafon)

� Summary

� Find Gaussian kernel

� Normalize kernel

� Apply weighted graph Laplacian. 

� Compute SVD of A

� Predictions

� Doesn’t seem to infer geometry directly.

� Need to set parameters alpha and sigma.
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KNN Diffusion (Mauro)

� Summary

� Build graph from K nearest neighbors.

� Run Diffusion Map on graph.

� Predictions

� Should infer geometry better than Diffusion 

Map.

� Now we have to set the parameters alpha, 

sigma, and K.



How do we compare the methods?

� Speed

� Manifold Geometry

� Non-convexity

� Curvature

� Corners

� High-Dimensional Data: Can the method 

process image manifolds?

� Sensitivity to Parameters

� K Nearest Neighbors: Isomap, LLE, Hessian, 
Laplacian, KNN Diffusion

� Sigma: Diffusion Map, KNN Diffusion

� Noise

� Non-uniform Sampling

� Sparse Data

� Clustering



Testing Examples

I’ve generated a set of examples to test the 

methods.  Many of these examples were 

taken from the original papers.

� Swiss Roll

� Swiss Hole

� Punctured Sphere

� Corner Planes

� 3D Clusters

� Except for the last one, we map 3D to 2D data 
sets so we can visualize the results.

� We’ll compare the speed and sensitivity to 

parameters throughout.

� Twin Peaks

� Toroidal Helix

� Gaussian

� Occluded Disks



Manifold Geometry

� First, let’s try to unroll the Swiss Roll.

� We should see a plane.



Hessian LLE is pretty slow, MDS is very slow, and ISOMAP is extremely slow.

MDS and PCA don’t can’t unroll Swiss Roll, use no manifold information.

LLE and Laplacian can’t handle this data.

Diffusion Maps could not unroll Swiss Roll for any value of Sigma.



Non-Convexity

� Can we handle a data set with a hole?

� Swiss Hole: Can we still unroll the Swiss Roll 

when it has a hole in the middle? 



Only Hessian LLE can handle non-convexity.

ISOMAP, LLE, and Laplacian find the hole but the set is distorted.



Manifold Geometry

� Twin Peaks: fold up the corners of a plane.

� LLE will have trouble because it introduces 

curvature to plane.



PCA, LLE, and Hessian LLE distort the mapping the most.



Curvature & Non-uniform Sampling

� Gaussian: We can randomly sample a 

Gaussian distribution.

� We increase the curvature by decreasing the 

standard deviation.

� Coloring on the z-axis, we should map to 

concentric circles.



For std = 1 (low curvature), MDS and PCA can project accurately.

Laplacian Eigenmap cannot handle the change in sampling.



For std = 0.4 (higher curvature), PCA projects from the side rather than top-down.

Laplacian looks even worse.



For std = 0.3 (high curvature), none of the methods can project correctly.



Corners

� Corner Planes: We bend a plane with a lift 

angle A.

� We want to bend it back down to a plane.

� If A > 90, we might see the data points written 

on top of each other.

A



For angle A=75, we see some disortions in PCA and Laplacian.



For A = 135, MDS, PCA, and Hessian LLE overwrite the data points.

Diffusion Maps work very well for Sigma < 1.

LLE handles corners surprisingly well.



Clustering

� A good mapping should preserve clusters in 

the original data set.

� 3D Clusters: Generate M non-overlapping 

clusters with random centers.  Connect the 

clusters with a line.



For M = 3 clusters, MDS and PCA can project correctly.

Diffusion Maps work well with large Sigma.

LLE compresses each cluster into a single point.

Hessian LLE has trouble with the sparse connecting lines.



For M=8 clusters, MDS and PCA can still recover.

Diffusion Maps do quite well.

LLE and ISOMAP are decent, but Hessian and Laplacian fail.



Noise & Non-uniform Sampling

� Can the method handle changes from dense 

to sparse regions?

� Toroidal Helix should be unraveled into a 

circle parametrized by t.  

� We can change the sampling rate along the 

helix by changing the exponent R on the 

parameter t and we can add some noise.



With no noise added, ISOMAP, LLE, Laplacian, and Diffusion Map are correct.

MDS and PCA project to an asterisk.

What’s up with Hessian and KNN Diffusion?



Adde noise to the Helix sampling.

LLE cannot recover the circle.

ISOMAP emphasizes outliers more than the other methods.



When the sampling rate is changed along the torus, Laplacian starts 

to mess up and Hessian is completely thrown off.

Hessian LLE code crashed frequently on this example.

Diffusion maps handle it quite well for carefully chosen Sigma=0.3.



Sparse Data & Non-uniform Sampling

� Of course, we want as much data as 

possible.  But can the method handle sparse 

regions in the data?

� Punctured Sphere: the sampling is very 

sparse at the bottom and dense at the top.



Only LLE and Laplacian get decent results.

PCA projects the sphere from the side.  MDS turns it inside-out.

Hessian and Diffusion Maps get correct shape, but give too much emphasis

to the sparse region at the bottom of the sphere.



High-Dimensional Data

� All of the examples so far have been 3D.

� But can the data handle high-dimensional 

data sets, like images?

� Disks: Create 20x20 images with a disk of 

fixed radius and random center.

� We should recover the centers of the circles.



???

LLE

Crashed

LLE crashed on high-dimensional data set.

Number of images was not high enough, but ISOMAP did a very good job.



Occluded Disks

� We can add a second disk of radius R in the 

center of every image.

� As Joe Kenney pointed out, this creates a 

non-convex data set by occlusion.



???

LLE

Crashed

Hessian

Crashed

Both LLE and Hessian crashed, possibly # points is too small.

Laplacian failed completely.

Is ISOMAP the best for high-dimensional data?



Sensitivity to Parameters

� When the number of points is small or the 

data geometry is complex, it is important to 

set K appropriately, neither too big nor small.

� But if the data set is dense enough, we 

expect K around 8 or 10 to suffice.

� For Diffusion Maps, the method is very 

sensitive to the Sigma in Gaussian kernel.  

Varies from example to example.



X                             Sigma = 10                        Sigma = 0.2

Diffusion Map Sigma depends on manifold.

Helix

Clusters



So what have you learned, Dorothy?

VERYVERYYESYESYESYESNONOSensitive to 

parameters?

NONOYESNO
may crash

YESYESYESYESHandles 

sparsity?

YESYESYESYESNOMAYBEYESYESHandles 

noise?

YESYESNONOYESYESYESYESClusters?

YESYESYESNOYESYESNONOHandles 

corners?

YESYESYESYESMAYBEYESNONOHandles 

curvature?

YESYESNOMAYBEYESYESYESYESHandles non-

uniform 

sampling?

MAYBEMAYBEMAYBEYESMAYBENONONOHandles non-

convex?

MAYBEMAYBEYESYESYESYESNONOInfers 

geometry?

FastFastFastSlowFastExtremely 

slow

Extremely 

fast

Very 

slow

Speed

KNN 

Diffusion

Diffusion 

Map

LaplacianHessianLLEISOMAPPCAMDS



So which is the best?  Depends...

� ISOMAP is just too slow, so don’t use it unless the data is high-
dimensional or you’ve got a whole lot of time.

� It’s too hard to set the parameters for Diffusion Maps.

Is the data low-dimensional and its projection is d-dimensional?

Is the data non-convex and densely sampled?

Is the data noisy or uniformly sampled?

NOYES

NOYES

NOYES

PCA

Hessian

LLELaplacian



MANI

� MANIfold learning demonstration GUI

� Contains the methods and examples I’ve 

shown you.

Now for a demo!



Some Notes on using MANI

� Hard to set K and Sigma just right.

� MDS and ISOMAP are very slow.  

� Hessian LLE is pretty slow.  Since Hessian needs a 
dense data set, this means it takes even longer when 

the # points is large.

� Occluded Disks is 400-dimensional data, which takes 

a long time and a lot of data points to correctly map.

� To run KNN Diffusion, requires unzipping Mauro’s 
EigenFunctions Package into the same directory as 

mani.m

� Matlab GUIs seem to run better on PC than Linux.



That’s All Folks!

� The mani.m file will be e-mailed to you.

� If you try it out, please let me know what you 

think.  Drop me an e-mail at:

wittman@math.umn.edu

� Thanks for listening!


