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LinearLinear Regression Models Regression Models

The mean is linear in X

E(Y | X) = µ(X) = Xβ = β0 + β1X1 +…+ βKXK

The variance is constant in X

var(Y | X) = σ2

Y doesn’t have to be normal (just use the
CLT), but it should have more than a few
values.

These assumptions can be unreasonable.



Linear Regression & The PoissonLinear Regression & The Poisson

Y | X ~ Poisson with mean µ(X)

a) var(Y | X) = σ2(X) = µ(X),

which isn’t constant

b) the mean is positive,

often µ(X) is not linear

instead effects multiply instead of add

µ(X) = exp(β0 + β1X1 +…+ βKXK

Modeling log(Y) doesn’t help

log(0) = -∞

var(log(Y)| X) ≈ 1/µ(X), which isn’t constant



Linear Regression &Linear Regression &  Binary DataBinary Data

a)  σ2(X) = µ(X)(1- µ(X)) ≠ constant

b)  0 ≤ m(X) ≤ 1

c)  linear differences in µ(X) aren’t important
changing from .10 to .01 or .9 to .99 is more
extreme than changing from .6 to .51 or .69

Transforming Y doesn’t help

Y will still have only two values
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Y | X ~
1      with probability   µ(X)

0      with probability   1" µ(X)
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Generalized Linear Models (Generalized Linear Models (GLMsGLMs))

1. The mean outcome µ(X) of Y is connected to a
linear combination of X by a link function g

g(µ(X)) =  β0 + β1X1 +…+ βKXK

2. σ2(X) can depend on µ(X)

σ2(X) = V(µ(X))

Transforming the mean (not the outcome) to get linearity.

Examples

linear regression: g = I, V is constant

log-linear (Poisson) regression: g = log, V = I



Logistic RegressionLogistic Regression

It’s a GLM

 Y is binary with mean µ(X)

link: g(µ) = log(µ/(1- µ)) = logit(µ)

  g(µ), the log odds, is linear

  stretches small and large µ

var: σ2(X) = µ(X)(1 - µ(X))

Any model with this link and variance function could be
called logistic regression, but the term is usually
reserved for binary data
use qlogis in R to compute logit(p) = log-odds(p).



The The Logit Logit Link FunctionLink Function

The intercept in logistic regression does
not shift the mean by a constant.

logit(µ) = log(µ/(1- µ)) = β0

Increasing β0 by .4 increases µ by

.1 at µ = .5 since logit(.5) = 0, logit(.6) = .4

.06 at µ = .8

.03 at µ = .9

.003 at µ = .99

Effects are linear on the log-odds scale but
smaller in the tails on the probability scale.



Logistic Regression CoefficientsLogistic Regression Coefficients

Some people like to interpret logistic regression
coefficients on the odds scale

odds(µ) = µ/(1- µ) = P(Y=1)/P(Y=0)

log(odds(µ)) = logit(µ)) = β0 + β1X1 +…+ βKXK

Increasing X1 by 1

adds β1 to log(odds(µ))

multiplies the odds of a success by exp(β1)



Another GLM forAnother GLM for  Binary OutcomesBinary Outcomes

Probit Regression
g(µ) = Φ-1(µ)

Φ-1 gives quantiles for a normal(0,1)

log-odds gives quantiles for a logistic

Φ-1(p) ≈ log-odds(p) over (.05, .95)

logistic is more extreme beyond

when Φ-1(p) = -4, log-odds(p) = -7

probit regression is popular in
economics and sometimes Bayesian
modeling

green line: regression of
the logistic quantiles on
the normal over [-2, 2]



Fitting Fitting GLMs GLMs in Rin R

logistic regression

z <- glm(formula, family = binomial)

probit regression

z <- glm(formula,

         family=binomial(link=‘probit’))

log-linear regression

z <- glm(formula, family = Poisson)

GLM coefficients

are MLEs

computed iteratively, weighted least squares at each step.



Weighted Least SquaresWeighted Least Squares

Ordinary least squares estimate

b = (X’X)-1X’Y

Each (Xi, Yi) is treated the same

Agrees with the assumption of constant variance
for Y|X in linear regression.

Weighted Least Squares

Different Y’s have different variances

wi = 1/var(Yi|Xi) W = diag(w)

b = (X’WX)-1X’WY
observations with big variances are downweighted



GLMs GLMs & Weighted Least Squares& Weighted Least Squares

Weighted Least Squares

Different Y’s have different variances

wi = 1/var(Yi|Xi) W = diag(w)

b = (X’WX)-1X’WY
observations with big variances are downweighted

In a GLM, the var(Yi|Xi) depends on the unknown b.

Strategy

Get an guess for µi (e.g., from ordinary least squares)

Compute W = diag(1/V(µ)) using the variance function

Compute weighted least squares, get new µ, new W,

update weighted least squares, etc.



Goodness of FitGoodness of Fit

Linear Regression
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Compares residuals under the fitted model to those
under the null (no predictors) model

R2 is not sensible if var(Y|X) is not constant

In that case, some Y’s are noiser than others, so we
shouldn’t worry about their residuals as much



Deviance: Goodness of Fit for Deviance: Goodness of Fit for GLMsGLMs

Choose a probability family p(yi | β)

binomial for logistic regression

Poisson for loglinear regression

loglik(β| y1, …, yn) = L(β|y) = ∑i log(p(yi| β)

maximum likelihood estimates maximize log-likelihood

Deviance

D(β) = -2[L(β|y) - L(βS|y)]

βS gives the saturated model with n parameters for n yi’s

For logistic regression
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GLMGLM

Model of the mean

transform with link functions to linearity

in exponential families, this is often the
natural parametrization

log for Poisson; logit for binomial

Model of the variance

variance is a function of the mean

Goodness of fit measure

deviance



  Logistic Regression ExampleLogistic Regression Example

Because of geography, many wells in Bangladesh are
contaminated with arsenic.

Bangladesh assumes safe limit = 50 µg/l
World Health Organization assumes safe limit = 10 µg/l

Wells near unsafe ones can still be safe

3/4 of safe well owners would share drinking water

Owners of unsafe wells were advised to switch

Outcome: did owners of unsafe wells switch?

Predictors: what influenced the decision to switch



The DataThe Data

outcome: switch

predictors:
arsenic
unsafe
distance
‘lat’
‘long’
community
education

3070 safe wells;  3378 unsafe wells



Locations of WellsLocations of Wells

[0,10] µg/l   (10, 50]   >50



Logistic RegressionLogistic Regression

Much of what we learned about linear regression
applies to logistic regression.

think about the outcome

switching when the well is unsafe

think about which variables matter most

arsenic level?

distance from the nearest safe well?

think about scales

log distance?  truncate?

interactions?



Logistic Regression ExampleLogistic Regression Example

Start by assuming people won’t go more than 10 km
to get drinking water

wells$walkDistance <

pmin(wells$distance/1000, 10)

zArDist <- glm(switch ~ walkDistance +

     log(arsenic),

               data = wells,

subset = unsafe,

               family = binomial)



RR  OutputOutput

             Estimate Std. Error z value Pr(>|z|)

(Intercept)  -3.10165    0.30921 -10.031   <2e-16

walkDistance -0.12014    0.01305  -9.204   <2e-16

log(arsenic)  0.84454    0.06580  12.834   <2e-16

Null deviance:     4486.8  on 3377 deg of freedom

Residual deviance: 4269.2  on 3375 deg of freedom

Deviance is expected to decrease by 1 when an
unnecessary predictor is added to a model, and decrease
more for an important one.



A Plot of Model FitA Plot of Model Fit

If the model predicts that 10% of the owners who
live 1 km from a safe well and have 100 mg/l of
arsenic will switch, then we’d like 10% of the owners
in the data with those conditions to switch.

then predicted fraction = observed fraction at X

Cut the fitted values p into G intervals.

Compute the fraction fi of Y=1’s in each interval.

Plot fi against the mean pi for the interval

confidence interval for the sample mean:

Sometimes called a calibration plot.
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p i ± z" / 2 p i 1# p i( ) /ni



Calibration Plot ForCalibration Plot For  Well ModelWell Model

predicted fraction:
mean fitted value µ in
each interval

observed fraction:
mean Y in each interval

segments:

n = #points in the interval

! 

µ i ± z" / 2 µ i 1# µ i( ) /ni

Segments show approximate 95%
intervals. 50 intervals so expect ≈ 3
points outside their intervals.



PlottingPlotting  A Fitted ModelA Fitted Model

With no interaction, plot
fitted vs X1 for some
values of X2 (or vice
versa)

Use the original scale
for arsenic for plotting,
so the plot is easier to
read.

bwalk        = -.12

blog(arsenic) =  .84



Uncertainty Around the LineUncertainty Around the Line

Repeat what we did for
linear regression

the coefficients are approx.
multivariate normal

sample new coefficients

get new linear predictors

use plogis to translate to
the probability scale


