
Professor Diane Lambert
June 2010

More on LinearMore on Linear
Regression ModelsRegression Models

Supported by MOE-Microsoft Key Laboratory of Statistics and Information 
Technology and the Beijing International Center for Mathematical Research, 

Peking University. 

With many thanks to Professor Bin Yu of University of California Berkeley, 
and Professor Yan Yao and Professor Ming Jiang of Peking University.



ScheduleSchedule

Lectures 10:00 - 11:30 (with a break)

Labs 14:00 - 15:30

Tentative Plan

√√logistic regressionJune 22

√√multilevel modelsJune 23, 24

√Google statisticsJune 21

√logistic regressionJune 18

√logistic regressionJune 17

√√linear regressionJune 15, 16

14:00 - 15:3010-11:30



Last LectureLast Lecture

A linear regression model is defined by

E(Y | X) = β0 + β1X1 + … βK XK

var(Y | X) = σ2

We estimated coefficients, found
residuals, made plots, looked at classical
tests, interpreted R summaries for linear
models, especially tests of significance for
the estimated regression coefficients.



ThisThis  LectureLecture

More modern ways to evaluate model fit

simulation from the fitted model

bootstrapping



Understanding Regression VariabilityUnderstanding Regression Variability

(b0, …, bK) are weighted means of the Yi’s

b = (Xt X)-1 Xt Y

By the CLT, they are approximately normal with

mean (b0, …, bK)

standard deviation (se(b0), …, se(bK))

But the coefficients are usually not independent

bj, bk are independent when they are orthogonal

The CLT implies that b is approximately
multivariate normal

R gives the correlation matrix for (b0, …, bK)



Computing the Covariance of Computing the Covariance of bb in R in R

z <- lm(sleep ~ log(body) + danger,

       data = sleep)
summary(z) #Prints statistics.

zSummary <- summary(z) #Saves statistics.

covB <- zSummary$sigma^2 *

             zSummary$cov.unscaled

covB is the cov matrix for (b0,…,bK)



The Distribution of The Distribution of bb

b is approximately normal with mean b and
covariance matrix covB.

This is also the posterior distribution for b when the
prior distribution of b is uniform.

Like any other distribution, this multivariate
normal distribution describes which vectors of
linear regression coefficients are likely, and
which are not.

Each of these vectors of linear regression coefficients
describes a different regression function, so the
multivariate normal distribution  of b describes the
uncertainty around the regression mean.



SimulatingSimulating  UncertaintyUncertainty

30 Simulated Regression Lines
for sleep against log(body).

The red line is the regression 
line computed from the data.

Strategy

Simulate n multivariate
normal vectors b with the
mvrnorm function (in MASS).

If there is only one
predictor, add the lines with
coefficients equal to each of
the simulated values to a
plot of Y against the
predictor (panel.abline)

The spread in the lines
shows the uncertainty about
the regression function.



Simulating with MoreSimulating with More  ThanThan  1 Predictor1 Predictor

The simulation is the same.

Regress sleep on log(body) and danger.

Compute covB (same commands as in the 1 predictor case)

Generate random Normal(b, covB) regression coefficients

Want to show the uncertainty in the regression mean,
even though it is no longer a line.

That is much easier to do with xyplot in lattice.



Back To The ExampleBack To The Example

Consider regressing sleep on log(body) and danger

First, plot sleep vs log(body) for each value of danger

If there are too many values of both predictors, aggregate
one of them

xyplot(sleep ~ log(body) | factor(danger))

Like conditional probability.

For each level of danger, plot sleep vs log(body)



Diagnosing the Regression ModelDiagnosing the Regression Model

Our model

mean(sleep) = b0 + b1 log(body) + b2 danger

increasing danger by one adds b2 to the intercept
in a panel but the slope of sleep against log(body)
in each panel is the same.



R codeR code

xyplot(sleep ~ log(body) | factor(danger), data = sleep,

       layout = c(5, 1),

       panel = function(x, y, subscripts, ...) {

       panel.xyplot(x, y, ...)

         panel.abline(z2$coef[1] +

                 z2$coef[3] * sleep$danger[subscripts][1],

                      z2$coef[2])

         panel.lmline(x, y, col = 'magenta')

       })



Uncertainty In the Regression ModelUncertainty In the Regression Model

Plot shows a random sample of 30 regression models

from the posterior distribution of b

from the sampling distribution of b

the uncertainty in the estimated mean E(Y | X)

Do you like this plot?



Simulated Regression PlotsSimulated Regression Plots

We can do these for any kind of
regression model, as long as we know the
approximate distribution of the estimated
model parameters -- no matter how fancy
the model.

e.g., models with splines, glmnet.



Models With InteractionsModels With Interactions



Models With InteractionsModels With Interactions

Standard linear model:

log(body) has the same effect for every level of danger.

Interaction model:

allows different slopes in different panels

coefficient of log(body) can vary linearly with danger, or

it can be different for every level of danger.

Warning: there is a danger of overfitting!



First, FactorsFirst, Factors

A factor X1 is a variable

that has levels (say L levels)

color, city, state, type of car

Allow us to add nonparametric terms to a model

Additive model

E(Y | X) = b0 + b1,j + b2X2

mean shifted differently for each level

Interaction model

E(Y | X) = b0 + b1,j +  ∑j b2,jX2

mean shift and slope of X2 changes with the level of X1
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WARNINGWARNING

Additive model has L-1 parameters for the factor

E(Y | X) = b0 + b1,j + b2X2,   b1,1 = 0

Not using the textbook convention:

only sensible for balanced models, when each

level is observed the same number of times

Interaction model has 2(L-1) more parameters for a
factor compared to a numeric variable

E(Y | X) = b0 + b1,j +  ∑j b2,jX2

Adding more parameters is not always good.

overfitting to one random sample

called generalization error in machine learning
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Additive Model For DangerAdditive Model For Danger

sleep$dangerFactor <- factor(sleep$danger)
z2Nonp <- lm(sleep ~ log(body) + dangerFactor,

data = sleep)

              Estimate Std. Error t value Pr(>|t|)

(Intercept)    14.4847     0.7897  18.343  < 2e-16

log(body)      -0.7539     0.1461  -5.160 5.39e-06

dangerFactor2  -2.6232     1.1650  -2.252 0.029269

dangerFactor3  -5.0218     1.3053  -3.847 0.000374

dangerFactor4  -4.1531     1.2438  -3.339 0.001697

dangerFactor5  -7.3353     1.4007  -5.237 4.17e-06

linear model with log body and danger had slope of log body of  -.699



Additive Model For DangerAdditive Model For Danger

Linear Model in log(body) and danger

Linear Model in log(body) and level shift for danger



Interaction Model For DangerInteraction Model For Danger

z2NonpInt <- lm(sleep ~ log(body) * dangerFactor,

                data = sleep)

                        Estimate Std. Error t value Pr(>|t|)

(Intercept)                14.69       0.86   17.04     0.00

log(body)                  -0.90       0.26   -3.45     0.00

dangerFactor2              -2.88       1.23   -2.35     0.02

dangerFactor3              -5.22       1.37   -3.82     0.00

dangerFactor4              -5.05       1.43   -3.53     0.00

dangerFactor5              -7.85       2.93   -2.68     0.01

log(body):dangerFactor2    -0.14       0.72   -0.20     0.84

log(body):dangerFactor3    -0.03       0.39   -0.07     0.95

log(body):dangerFactor4     0.48       0.38    1.28     0.21

log(body):dangerFactor5     0.22       0.68    0.32     0.75



Interaction Model For DangerInteraction Model For Danger

Additive Model in log(body) and level shift for danger

Interaction Model in log(body) and level of danger



Choosing A ModelChoosing A Model



Which Model IsWhich Model Is  BestBest

There are many ways to choose a model

Always look at the data!

You’ll at least know how to scale the Xi’s

Choosing a model may not scale the predictors.

When there is not too much data, the R function leaps
will choose the best subset.

Must penalize models with more coefficients,

e.g. they choose the model with minimum

 Cp = ∑ ei
2
 / ((n-1)s2) + 2K - N or

 BIC = log(∑ ei
2
 /(n-K)) + (K/n) log(n) or …

where s is the usual sample standard deviation.


