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Summary. The exploration of dynamic systems governed by Ordinary Differential Equa-

tions (ODEs) holds great interest in the field of statistics. Existing research mainly focuses

on a single function. This study generalizes the scope to analyze a collection of functions

observed at discretized times, with sampling frequencies varying from sparse to dense de-

signs. The range of ODE models studied caters to diverse dynamic systems, and includes

the complex non-linear and non-Lipschitz scenarios. We introduce a new concept named

Functional Moment Method, a novel approach for parameter estimation within these ODE

models and facilitating the recovery of curves for the discretely observed functions. Our nu-

merical analysis underscores the method’s applicability across various application fields,

including sociology, physics, and epidemiology.
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1. Introduction

Ordinary Differential Equations (ODEs) are important in representing complex dynamic

systems across a wide range of scientific and technological areas, including fields like

physics [Riley et al., 1999], social sciences [Black and Scholes, 1973], biology [Leah,

2005], and engineering [Marion and Temam, 1998]. While ODEmodels can be formulated

based on expert knowledge of specific dynamic processes, their inherent parameters often

remain unknown. The task of identifying these parameters and recovering dynamic

systems from discretely observed and noisy data poses significant statistical challenges,

owing to the noised observations and the lack of analytical solutions to the majority of

ODEs.

The existing statistical literature mainly focuses on ODEs represented as Fβ(V ) = 0.

This form is defined by a differential operator Fβ with potentially an unidentified pa-

rameter β associated with a specific process V . The core objectives are estimating this

unknown parameter β and reconstructing the trajectory V based on discrete observa-

tions {(V (tj), tj)}1≤j≤m. The seminal work Ramsay et al. [2007] addressed parameter

estimation using the Parameter Cascading method, which was then broadened to the

first-order representable ODEs with random effects [Wang et al., 2014], where “repre-

sentable ODE” means the expressions like V ′(t) = G(V, t;β). Subsequent developments

led to frameworks tackling time-varying coefficient ODEs [Xue et al., 2010], integrable

ODEs [Hall and Ma, 2014, Tan et al., 2024], ODE systems [Dai and Li, 2022] and sparse

additive ODEs [Zhang et al., 2022]. A common strategy across these studies is to select

a loss function that balances data fitting discrepancies with ODE conformity, which we

have adopted in a similar spirit.

In contrast to existing research that focused on analyzing a single function, we aim

to explore a unified framework for a collection of discretized functions driven by an

underlying mechanism. Specifically, the dataset comprises samples of discretely observed

trajectories, accommodating sampling frequencies ranging from sparse to dense designs.

This is common across multiple scientific fields. Examples include population growth
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counts in sociology, particle movement studies in physics [Landau and Lifshitz, 1976], and

Covid-19 virus spreading patterns in epidemiology [Ma et al., 2009], among others. In

the aspect of the driven mechanism, our study concentrates on the differential operator

Fβ, a multi-variate polynomial of the function X and its derivatives X,X(1), X(2), · · · .

This operator form not only addresses linear, first-order or integrable ODEs but also

extends its applicability to a broader spectrum, including non-linear, higher-order, non-

Lipschitz, non-integrable and non-representable ODEs. This versatility enhances its

adaptability to the diverse requirements of various fields.

In our framework, the first goal is to estimate the unknown parameter β in the

differential operator Fβ, utilizing discretely observed functions. The second goal is to

recover the trajectories of realizations conforming to the ODE model Fβ(X) = 0 over

the entire time interval. This recovery is based on the parameter estimates from the first

objective, guided by the aim of minimizing discrepancies in data fitting and ensuring

adherence to the ODE. To realize these objectives, we introduce a novel concept termed

functional moment, which facilitates the adoption of a unified approach, the pooling

strategy [Yao et al., 2005, Li and Hsing, 2010], and achieves combining observed data

from the entire collection of functions to handle sampling frequencies ranging from sparse

to dense designs. This approach contrasts with traditional methods of individual curve

smoothing that require sufficiently dense measurements per function [Ramsay et al.,

2007, Xun et al., 2013, Zhang et al., 2022]. The functional moment also allows us

to estimate the unknown parameter by solving linear equations, similar to ordinary

linear regression, which avoids dealing with complicated differential operators and is

thus applicable to a wide range of ODE models. However, traditional methods [Xue

et al., 2010, Wang et al., 2014] are bogged down in numerically solving ODEs and are

limited to a narrow scope. Additionally, our theoretical analysis reveals phase transition

phenomena in the convergence rates for parameter estimation and trajectory recovery

that can offer insights for the design of sampling strategies.

The structure of this paper is organized as follows. Section 2 presents the ODE mod-
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els based on the underlying mechanism. Section 3 delves into the proposed functional

moment method for parameter estimation and recovery from a collection of discretized

functions, with theoretical guarantees in Section 4. Section 5 and Section 6 showcase

numerical results from simulations and real data analyses, respectively, affirming the effi-

cacy of our proposed method. The extensions to models infused with time-varying coeffi-

cients and mechanism derived from Partial Differential Equations (PDEs) are presented

in Section 7. The Supplementary Material encompasses the additional simulations and

technical proofs.

2. ODE models

The underlying population is modeled as a random process X : Ω → Hν0(T ) ⊂ L2(T ).

Here Hν0(T ) refers to the Sobolev space consisting of functions with L2 integrable ν0th

order derivative on the compact domain T . This random process X is supposed to

be subject to the constraint imposed by a ν0th order differential operator Fβ, that is,

Fβ(X) = 0. This constraint can be equivalently stated as P (X ∈ Vβ) = 1 where

Vβ = {f ∈ Hν0 : Fβ(f) = 0} ⊂ Hν0 is the solution space.

We focus on a general class of differential operators that act on the population X

as multi-variate polynomials of the population X and its derivatives, X ′, X ′′, · · · . This

general form includes the often-encountered ODEs, as well as those examined in existing

research [Ramsay et al., 2007, Xue et al., 2010, Wang et al., 2014, Dai and Li, 2022,

Zhang et al., 2022]. The structure of these operators is described by given parameters

{gk}pk=0 and {αk}pk=0, and the unknown coefficient parameters {βk}pk=0. In particular,

the ODE model takes the following form:

Fβ(X) =

p∑
k=0

βkX
(αk)(t)gk(t) = 0 (1)

where the multi-index X(αk) of a vector αk = (αk,[1], αk,[2], . . . , αk,[Nk]) means X(αk) =

X(αk,[1]) × X(αk,[2]) × · · · × X(αk,[Nk]) and X(αk,[l]) denotes the αk,[l]th order derivative

of X. For each vector αk, the norms ∥αk∥0 = Nk, ∥αk∥1 =
∑

1≤l≤Nk
αk,[l], ∥αk∥∞ =
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max1≤l≤Nk
αk,[l] represent the dimension, the total order of derivatives and the maximum

order of derivatives, respectively. For example, X2X ′X ′′ is expressed as X(0,0,1,2) with

norms ∥(0, 0, 1, 2)∥0 = 4, ∥(0, 0, 1, 2)∥1 = 3 and ∥(0, 0, 1, 2)∥∞ = 2. In the sequel we

assume, without loss of generality, β0 = 1 for identifiability and the time interval T =

[0, 1].

The above model structure (1) encompasses a wide range of ODEs that have garnered

great interest and applications in statistics. Below, we present examples of linear, non-

linear, non-representable, non-Lipschitz, and higher-order ODEs.

Example 1 (Population model). The basic population model detailing the count

of individuals within a specific region is the Malthusian population model. This model is

based on the tenet that the growth of a population is linearly proportional to the existing

size of the population. Such relationship is expressed through the equation N ′ = rN , in

which N signifies the total number of individuals in the population, while r symbolizes

the rate of population growth. Subsequently, this growth function is reformulated in the

following manner:

X(1) + βX(0) = 0, (2)

where the term X(1) denotes the first order derivative, and β represents the unknown

parameter to estimate.

Example 2 (Stable field model). The trajectory of the rigid particle in a stable

field is depicted by the nonlinear Energy Conservation Equation given as m(x′)2/2 +

V x = E [Landau and Lifshitz, 1976], wherein x signifies the position of the particle

as a function of time t, m represents the mass, E corresponds to the total energy, and

V x constitutes the linear potential energy induced by the stable field. This ODE can be

reformulated as the subsequent expression:

X(1,1) + βX(0) + C = 0, (3)

where the term X(1,1) denotes the square of the first order derivative (X ′)2, C is a

constant indicating the total energy, and β represents the unknown parameter to estimate.
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This is also a non-Lipschitz and non-presentable ODE that shares no closed expression

for the derivative X(1).

Example 3 (Damped oscillation model). The vibrational mode in damped os-

cillations can be represented using the Equation of Motion given by x′′ + λx′ + kx = 0

[Landau and Lifshitz, 1976], where x denotes the time-dependent particle position, λ

represents the damping coefficient, and k stands for the elasticity constant. This ODE

can be reformulated as follows:

X(2) + βX(1) + CX(0) = 0, (4)

where the term X(2) denotes the second order derivative, C relates to the elasticity con-

stant, and β is the unknown parameter to estimate.

Example 4 (Epidemic disease model). The epidemic spreading pattern is cap-

tured by SIRD model [Ma et al., 2009], where the term “SIRD” abbreviates for four

categories: susceptible, infected, cured, and dead. They are described by the ODEs:

I ′(t) = βI(t), R′(t) = γI(t), D′(t) = ρI(t), where the unknown parameters β, γ,

and ρ correspond to the rates of diffusion, curing, and death, respectively. These ODEs

formulated in our terms are

I(1) = βI, R(1) = γI, D(1) = ρI. (5)

Remark 1. We note that the differential operator Fβ considered in this paper in-

cludes non-Lipschitz ODEs for which the initial conditions do not uniquely determine

the solution. For example, consider the continuous curve satisfying the ODE in Exam-

ple 2: F (X) = (X ′)2 − 4X = 0 with the initial condition X(0) ≡ 0. The random process

could be X = (t−A)2It≥A for any 0 ≤ A ≤ 1. As a result, the solution space V0 cannot

be reduced to the space of initial values, and this non-Lipschitz ODE is neither integrable

nor representable. To the best of our knowledge, the polynomial structure considered

in this paper extends the scope of existing research by addressing this challenging case,

which has previously been overlooked.
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3. Estimation

In our statistical models, the random trajectories {Xi}ni=1 are drawn from the underlying

population X and satisfy the ODE (1) in the sense that Fβ(Xi) = 0 holds for all 1 ≤

i ≤ n. These realizations are usually assumed independent and identically distributed,

and are observed intermittently at random time points {Tij}1≤i≤n,1≤j≤mi
. Thus, the

samples can be represented as {Xij = Xi(Tij) + εij}1≤i≤n,1≤j≤mi
, where εij denotes

noise and the number of measurements, mi, represents the sampling frequency. In the

sequel, we assume m1 = · · · = mn = m for a clear exposition; extension to more general

cases is technically straightforward [Zhang and Wang, 2016]. The aim of this section

is to establish a unified framework for estimating the scalar parameters {βk}pk=1 and

recovering the realizations {Xi}ni=1 from discrete observations {(Xij , Tij)}1≤i≤n,1≤j≤m,

accommodating sampling frequencies from sparse to dense designs.

3.1. Estimating based on Functional Moment Method

To better capture the differential structure and implement the pooling strategy, we

generalize the concept of moment for a scalar random variable to a random process.

Specifically, we introduce the concept of the functional moment, which is defined as the

expectation

EX(α)(t) = E
{
X(α[1])(t)X(α[2])(t) · · ·X(α[N])(t)

}
of a multi-variate monomial X(α) and the multi-index vector α = (α[1], α[2], · · · , α[N ]).

For instance, the functional moments associated with Examples 1–3 are EX(1)(t) =

E {X ′(t)}, EX(1,1)(t) = E {X ′(t)2}, and EX(2)(t) = E {X ′′(t)}, respectively. Further-

more, when α[1] = α[2] = · · · = α[N ] = 0, the functional moment EX(α)(t) simplifies to

the Nth moment of X(t), i.e., E {X(t)N}.

Utilizing the functional moment, the structure of the ODE model can be explored

through the following Functional Estimating Equation (FEE)

p∑
k=0

βkEX(αk)(t)gk(t) = 0, (6)
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which is obtained by taking the expectation on (1). Now we propose the Functional Mo-

ment Method (FMM) to realize parameter estimation, which entails first approximating

the functional moments EX(αk)(t) (0 ≤ k ≤ p) and then deriving estimates for the un-

known parameters {βk}pk=1. It effectively bridges the gap between individual curves and

population characteristics within the same ODE framework Fβ(X) = 0. Consequently,

this allows us to examine the ODE at the population level instead of relying on some

specific realization.

We utilize the local polynomial regression technique to estimate these functional

moments EX(αk)(t) (0 ≤ k ≤ p), based on the observations {(Xij , Tij)}1≤i≤n,1≤j≤m.

By pooling data from all trajectories, these functional moments can be well estimated

when there are only a few measurements from some or even all functions as long as the

pooled data are sufficient. Specifically, for any vector α = (α[1], . . . , α[N ]), the moment

EX(α)(t) can be equivalently expressed as

EX(α)(t) = ∂αC(s1, s2, . . . , sN )
∣∣∣
s1=t,s2=t,··· ,sN=t

with C(s1, s2, . . . , sN ) = EX(s1) . . . X(sN ) and ∂α = ∂
α[1]

s1 · · · ∂α[N]

sN . Then the local qth

order polynomial regression [Fan and Gijbels, 1996, Masry, 1997] is utilized to estimate

the ∥α∥1th order derivative of C(s1, s2, . . . , sN )

θ̂ =argmin
θ

∑
1≤i≤n,1≤j1,...,jN≤mKh(Tij1 − s1)× · · · ×Kh(TijN − sN )

×
{
Xij1Xij2 · · ·XijN − θ0 −

∑
1≤l≤N θl(Tijl − sl)− · · ·

− 1
q!

∑
1≤l1,l2,...,lq≤N θl1,l2,...,lq(Tijl1

− sl1)(Tijl2
− sl2) · · · (Tijlq − slq)

}2
,

where Kh(·) = 1
hK( ·

h) and K(·) is a kernel (symmetric and non-negative density) func-

tion, and the indexes j1, . . . , jN differ from each other in the summation above to elim-

inate the influences from noise.

The estimate of partial derivative ∂̂αC for α = (α[1], . . . , α[N ]) is set as

∂̂αC(s1, s2, . . . , sN ) = θ̂l1,l2,...,l∥α∥1
with lk defined as α[l] = #{1 ≤ k ≤ ∥α∥1 : lk = l}

and subsequently the functional moment estimate is

ÊX(α)(t) = ∂̂αC(t, t, . . . , t). (7)
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The bandwidth for zero-order functional moment estimation is tuned by multi-fold cross

validation. The bandwidth for non-zero-order functional moment estimation is computed

from the factor method; see Liu and Müller [2009] for details.

Example 5. The formula for general local polynomial regression can be more clearly

understood through this example with α = (1, 0). In this case, the functional moment

is EX(α)(t) = ∂s1C(s1, s2)
∣∣
s1=t,s2=t

, with dimension ∥α∥0 = ∥(1, 0)∥0 = 2 and total

order of derivatives ∥α∥1 = ∥(1, 0)∥1 = 1. The estimate of the first order derivative

∂s1C(s1, s2) obtained through the following local linear (q = 1) regression

(θ̂1, θ̂2, θ̂3) = arg min
(θ1,θ2,θ3)∈R3

∑
1≤i≤n,1≤j1,j2≤m,j1 ̸=j2

Kh(Tij1 − s1)×Kh(Tij2 − s2)

×
{
Xij1Xij2 − θ0 − θ1(Tij1 − s1)− θ2(Tij2 − s2)

}2
,

(8)

is ∂̂s1C(s1, s2) = θ̂1.

Based on the functional moment estimates (7), the plugged-in FEE from (6) is∑p
k=0 βkÊX(αk)(t)gk(t), which should be close to zero for all t ∈ [0, 1]. Consequently,

the parameters (β1, . . . , βp) are estimated by minimizing the L2 norm of this plugged-in

FEE in the interval [H, 1−H] as follows

(β̂1, . . . , β̂p) = arg min
(β1,...,βp)∈Rp

∫ 1−H

H

{ p∑
k=0

βkÊX(αk)(t)gk(t)
}2

dt. (9)

Here, H is a boundary parameter, chosen to be a small constant approaching zero but

significantly larger than the bandwidth h. The regions [0, H] ∪ [1 −H, 1] are excluded

from the integration to guard against edge effects [Hall and Ma, 2014].

By taking the partial derivatives with respect to βl, the minimization problem in (9)

is equivalent to solving the ensuing critical point equations∫ 1−H

H
ÊX(α0)(t)g0(t)ÊX(αl)(t)gl(t)dt+

p∑
k=1

β̂k

∫ 1−H

H
ÊX(αk)(t)gk(t)ÊX(αl)(t)gl(t)dt = 0

for all 1 ≤ l ≤ p. Define the integration M̂kl =
∫ 1−H
H ÊX(αk)(t)gk(t)ÊX(αl)(t)gl(t)dt,

the matrix M̂ = (M̂kl)1≤k,l≤p, and the vector M̂0 = (M̂0l)1≤l≤p. The estimates of the
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unknown parameters {βk}pk=1 are computed using the following explicit expression

(β̂1, . . . , β̂p)
T = −M̂−1M̂0.

The matrix inverse M̂−1 exists with probability tending to one, as substantiated by

Assumption 1 (3) and Theorem 1 in Section 4.

We note that these parameter estimates are obtained without numerically solving

ODEs; instead, the challenges of solving ODEs are incorporated within the functional

moment. Therefore, the concept of the functional moment is important to the applica-

bility of our proposed method to a wide range of ODEs. This includes non-representable,

non-Lipschitz and higher-order ODEs, which are seldom considered in existing research

[Ramsay et al., 2007, Xue et al., 2010, Wang et al., 2014, Dai and Li, 2022, Zhang et al.,

2022].

3.2. Trajectory recovery

The approach that balances data fitting discrepancies with ODE conformity is widely

adopted to recover the trajectories [Ramsay et al., 2007, Xun et al., 2013, Zhang et al.,

2022], i.e. consider

arg min
f∈Hν0 (T )

1

m

m∑
j=1

(
f(Tij)−Xij

)2
+ κ

1

|T |

∫
T

(
F
β̂
(f)
)2
dt, (10)

where β̂ := {β̂k}pk=1 are the estimated parameters in (9) and κ serves as a tuning

parameter that balances the two types of errors. The fidelity to the ODE enables us to

circumvent the need for describing the solution space Vβ, which may not have explicit

expressions and not directly connected with the initial conditions. Instead, it focuses on

quantifying the proximity of a function f to this solution space Vβ.

To solve this minimization problem, we employ the functional principal component

method [Hsing and Eubank, 2015]. The eigen-decomposition of the covariance function

Σ(s, t)(:= E {X(s)X(t)} − E {X(s)}E {X(t)}) =
∑

1≤l≤∞ λlϕl(s)ϕl(t)

gives the Karhunen–Loève decomposition X(t) = EX(t)+
∑

1≤l≤∞ ξlϕl(t) of the random

process X, where ξl, ϕl and λl represent the lth score, eigenfunction and eigenvalue,
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respectively. With aid of this decomposition, we approximate the curve Xi by projecting

it onto the leading L principal components to obtain

XL
i = EX +

∑
1≤l≤L ξilϕl. (11)

This approximation XL
i converges to Xi in the L2 norm sense, as E

∫
T (X

L
i − Xi)

2 =∑∞
l=L+1 λl → 0 as L increases. The truncation number L is selected by the Fraction of

Variance Explained method [Liu and Müller, 2009].

Subsequently, the minimization problem (10) is transformed into the following where

only the finite scores need to estimate, given by

(ξ̂i1, . . . , ξ̂iL) = arg min
(θi1,...,θiL)∈RL

1

m

m∑
j=1

(
Ẑi(Tij)−Xij

)2
+

κ

1− 2H

∫ 1−H

H

(
F
β̂
(Ẑi)

)2
dt,

(12)

where Ẑi(θi1, . . . , θiL) = ÊX +
∑

1≤l≤L θilϕ̂l is a truncation approximation. The tuning

parameter κ is also selected via multi-fold cross validation.

Finally, the recovery of a curve Xi is achieved using the first L principal components

accompanied by the corresponding estimated scores

X̂i = ÊX +
∑

1≤l≤L ξ̂ilϕ̂l. (13)

We still need to address estimates for the functional covariance/eigenfunctions and

their derivatives, as studied in the literature [Yao et al., 2005, Liu and Müller, 2009].

The functional covariance and its derivatives are estimated by

∂̂ν
t Σ(s, t) = ∂̂ν

t C2(s, t)− ÊX(s)ÊX(ν)(t) (14)

for 0 ≤ ν ≤ ν0, where EX is the functional mean and C2(s, t) = EX(s)X(t) is the

functional second moment. Consequently, the eigenvalue estimates λ̂l and eigenfunc-

tion estimates ϕ̂l are obtained from the eigen-decomposition of the covariance estimate

Σ̂(s, t) =
∑

1≤l≤∞ λ̂lϕ̂l(s)ϕ̂l(t). Moreover, the derivative of the eigenfunction, ϕ
(ν)
l , also

denoted by ∂νϕl, is estimated by

∂̂νϕl(t) = λ̂−1
l

∫
∂̂ν
t Σ(s, t)ϕ̂l(s)ds. (15)
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Note that the two potential orientations of eigenfunction estimates, ϕ̂l and −ϕ̂l, would

lead to identical recovery estimates X̂i as in (13). Consequently, there is no imperative

to select a specific direction within our framework.

4. Theory

We begin by examining the functional moment estimate ÊX(α) of (7) and impose the

standard regularity conditions, summarized as follows.

Assumption 1. Assume that

(1) The kernel Kh is a smooth probability function and compactly supported on [−h, h].

(2) The observed time points {Tij}1≤i≤n,1≤j≤m are independent and identically dis-

tributed (i.i.d.) with a positive density function fT on the domain T . The random

process X has a finite fourth moment EX4(t) < ∞ for every t ∈ T .

(3) The p× p matrix M = (Mkl)1≤k,l≤p with entry

Mkl =
∫ 1−H
H EX(αk)(t)gk(t)EX(αl)(t)gl(t)dt is non-singular (rank M = p).

The conditions (1) and (2) align with standard practices in local polynomial regression

and functional data analysis [Yao et al., 2005, Zhang and Wang, 2016]. Condition (3)

guarantees the identifiability of the unknown parameters {βk}pk=1. We subsequently

delineate the convergence rate of the functional moment estimate integration in the

following theorem, which facilitates the analysis of the parameter estimate (9). The

regularity condition EX(2α) < ∞ for a vector α = (α[1], α[2], . . . , α[N ]), signifies that

EX(2α)(t) = E
{
X(2α[1])(t)X(2α[2])(t) · · ·X(2α[N])(t)

}
< ∞

This condition essentially requires that the product of certain derivatives of X(t) is

integrable so that the FEE admits reasonable solutions, similar to the moment conditions

required by standard least square problems.

Theorem 1. Suppose that Assumption 1 (1)(2) hold and the random process X :

Ω → Hν0(T ) exhibits the regularity property EX(2α) < ∞ for a vector α = (α[1], α[2], . . . , α[N ])
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and ν0 ≥ ∥α∥∞. Then, the weighted integration
∫ 1−H
H ÊX(α)(t)c(t)dt of the moment es-

timate (7) with a smooth function c(x) yields the following convergence rate

∫ 1−H

H

(
ÊX(α)(t)−X(α)(t)

)
c(t)dt = Op

(
h1+q−∥α∥1 +

√
1

nh2∥α∥1

(
1 +

1

m∥α∥0h∥α∥0−1

))

that depends on q (the degree of the local polynomial regression), the bandwidth h, the

dimension ∥α∥0 = N , and the total order of derivatives ∥α∥1 =
∑

1≤l≤N α[l].

As the degree q increases, this convergence rate improves; however, it worsens with

larger dimension ∥α∥0 and total order of derivatives ∥α∥1. This rate is more precise

compared to the conventional non-parametric pointwise rate of
∣∣ÊX(α)(t)−X(α)(t)

∣∣ for
any fixed t ∈ T [Fan and Gijbels, 1996, Masry, 1997, Liu and Müller, 2009, Zhang and

Wang, 2016]

Op

(
h1+q−∥α∥1 +

√
1

nh2∥α∥1

(
1 +

1

m∥α∥0h∥α∥0

))
This conventional rate is improved in our context because the integration operation∫ 1−H
H (·)dt compresses an N -dimensional space into an (N − 1)-dimensional space, and

thus the exponential index over h that depends on the dimension is reduced by 1. We

note that the existing theory in Hall and Ma [2014] is a special case of our results:

the convergence rate of local mean estimate integration on a one-dimensional interval,

meaning q = 0 and α = (0), is of the parametric order n−1/2 that is faster than the

non-parametric pointwise rate n−1/3.

The bandwidth h in Theorem 1 is selected according to the sample size n and the

sampling frequency m, as stated in the following corollary. A phase transition phe-

nomenon is observed in the magnitude order m ≍ n(∥a∥0−1)/(2∥a∥0q+2∥a∥0): when m is less

than this order, the convergence rate is jointly determined by n and m; when m grows

faster than this order, it can no longer improve the convergence rate.

Corollary 1. Assume the conditions of Theorem 1. The notation an ≲ bn implies

an/bn = O(1) as n grows large, and an ≍ bn connotes both an ≲ bn and bn ≲ an.
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• When m ≲ n(∥α∥0−1)/(2∥α∥0q+2∥α∥0), the optimal bandwidth is

h ≍ n−1/(1+2q+∥α∥0)m−∥α∥0/(1+2q+∥α∥0) and the rate is∫ 1−H

H

(
ÊX(α)(t)−X(α)(t)

)
c(t)dt = Op

(
n
− 1+q−∥α∥1

1+2q+∥α∥0 m
− ∥α∥0(1+q−∥α∥1)

1+2q+∥α∥0

)
.

• When m ≳ n(∥α∥0−1)/(2∥α∥0q+2∥α∥0), the optimal bandwidth is h ≍ n−1/(2+2q) and

the rate is ∫ 1−H

H

(
ÊX(α)(t)−X(α)(t)

)
c(t)dt = Op

(
n− 1+q−∥α∥1

2+2q

)
.

By utilizing the rate of functional moment estimate integration stated in Theorem 1

and the principles of bandwidth selection presented in Corollary 1, we can specify the

convergence rate of the parameter estimates {β̂k}pk=1 in (9) and the corresponding band-

widths as follows.

Theorem 2. Suppose that Assumption 1 holds, and let the random process X :

Ω → Hν0(T ) exhibit the regularity EX(2αk) < ∞ for any vector αk, where ν0 =

max0≤k≤p ∥αk∥∞. Then, the parameter estimates {β̂k}pk=1 in (9) achieve the conver-

gence rate of max1≤k≤p |β̂k − βk| = Op(rβ) with

rβ = max
0≤k≤p

{
hk +

√
1

nh
2∥αk∥1

k

(
1 +

1

m∥αk∥0h
∥αk∥0−1
k

)}
,

when employing the local polynomial method of ∥αk∥1-degree to estimate the functional

moment EX(αk) with bandwidth hk.

The bandwidths {hk}pk=1 are chosen accordingly.

• When m ≲ min1≤k≤p n
(∥αk∥0−1)/(2∥αk∥0∥αk∥1+2∥αk∥0), the optimal bandwidths are

hk ≍ n−1/(1+2∥αk∥1+∥αk∥0)m−∥αk∥0/(1+2∥αk∥1+∥αk∥0) and the rate is

rβ = max
0≤k≤p

{
n
− 1

1+2∥αk∥1+∥αk∥0 m
− ∥αk∥0

1+2∥αk∥1+∥αk∥0

}
.

• When m ≳ max1≤k≤p n
(∥αk∥0−1)/(2∥αk∥0∥αk∥1+2∥αk∥0), the optimal bandwidths are

hk ≍ n−1/(2+2∥αk∥1) and the rate is

rβ = max
0≤k≤p

{
n
− 1

2+2∥αk∥1

}
.
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Now we investigate the convergence of recovered curve X̂i in (13) and state the

standard regularity conditions collected as follows.

Assumption 2. Assume that

(1) The underlying eigenvalues exhibit a polynomial decay of the form λl ≍ l−2a, where

the spacing between them is λl − λl+1 ≍ l−2a−1 for a positive constant a > 2. Fur-

thermore, the derivatives of the eigenfunction are uniformly bounded |ϕ(ν)
l | ≲ lνb for

1 ≤ l < ∞. The decay rate satisfies a > ν0b+ 1, with ν0 = max0≤k≤p ∥αk∥∞.

(2) The population X possesses the integrable conditions

E
∥∥dFβ(X)

∥∥2 < C(1), E
∥∥d2(Fβ(X)

)2∥∥ < C(2)

for some positive constants C(1), C(2). Here dFβ : Hν0 → L(Hν0 , L2) and d2Fβ :

Hν0 → L(Hν0 ×Hν0 , L2) are the Fréchet derivatives of Fβ, where L(A,B) denotes

the space of linear functions from A to B.

The condition (1), which is often employed in functional principal component analysis

[Dou et al., 2012], implies that the selected principal components XL
i in (11) can provide

desired approximation to Xi as well as their corresponding νth order derivatives (ν ≤ ν0)

in the uniform sense

E supt∈T |(XL
i )

(ν)(t)− (Xi)
(ν)(t)| ≲ L−a+νb+1 → 0, for ∀ 0 ≤ ν ≤ ν0.

The integrability requirement in condition (2) describes the regularity of the underly-

ing population X under the functional moments
(
dFβ(X)

)2
and d2

(
Fβ(X)

)2
that are

comprised of X,X ′, . . . , X(ν0), where the Fréchet-differentiability property is naturally

satisfied due to the polynomial structure (1).

It is noteworthy that the second order Fréchet derivative d2(Fβ)
2 generally does not

have a lower bound (elliptical); this implies that there may not exist a positive bound

KFβ
> 0 such that

∥⟨d2(Fβ)
2, φ, φ⟩∥L2 ≥ KFβ

∥φ∥2Hν0 , for ∀φ ∈ Hν0 ,
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as the solution of (Fβ)
2 = 0 might not be unique. This observation is also mentioned

in Zhang et al. [2022]. Consequently, in order to eliminate this non-convexity when

establishing the consistency of the recovery X̂i in (13), the tuning parameter κ in (12)

should be sufficiently small, as demonstrated in the subsequent theorem.

Theorem 3. Suppose that Assumptions 1 and 2 hold and the random process X :

Ω → Hν0(T ) possesses regularity EX(2αk) < ∞ for any vector αk and ν0 = max0≤k≤p ∥αk∥∞.

Then the recovery X̂i = ÊX +
∑

1≤l≤L ξ̂ilϕ̂l with cut-off L in (13) has the following L2

convergence rate

∥X̂i −Xi∥L2 = Op(L
−a+2 + Lm−1/2 + La+5/2rΣ,0)

where the tuning parameter κ satisfies κL2ν0b+1 = o(1) and κ(rβ+La+1rΣ,ν0
+L3a+2rΣ,0) =

Op(L
−a+3/2+L1/2m−1/2+La+2rΣ,0), rβ denotes the rate of parameter estimates in The-

orem 2, and rΣ,ν = hΣ + n−1/2h−ν
Σ

(
1 + m−1h−1

Σ ) refers to the L2 convergence rate of

covariance derivative estimate in (14) with bandwidth hΣ.

The three components of this rate, L−a+2, Lm−1/2, and La+5/2rΣ,0, arise from truncation

approximation, discrete observations, and functional covariance/eigenfunction estimates,

respectively. To appreciate this new recovery rate and offer insights into the design

of sampling principles, we choose the truncation parameter L and bandwidth hΣ by

optimizing the convergence rate of ∥X̂i − Xi∥L2 , and clarify the relationship between

sample size n and sampling frequency m in the following corollary.

Corollary 2. Assume the conditions of Theorem 3 and the bandwidth hΣ ≍ m−1/2n−1/4.

• When n ≲ m2, the truncation level L ≍ n1/(4a+1) and

∥X̂i −Xi∥L2 = Op(n
−(a−2)/(4a+1)).

• When m2 ≲ n ≲ m2+5/(a−1), the truncation level L ≍ m1/(4a+1)n1/(8a+2) and

∥X̂i −Xi∥L2 = Op(m
−(a−2)/(4a+1)n−(a−2)/(8a+2)).
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• When n ≳ m2+5/(a−1), the truncation level L ≍ m1/(2a−2) and

∥X̂i −Xi∥L2 = Op(m
−(a−2)/(2a−2)).

This corollary delineates notable phase transition phenomena in the recovery con-

vergence rate, wherein two orders of magnitude n ≍ m2 and n ≍ m2+5/(a−1) arise for

the sample size n with respect to the sampling frequency m. The first transition order

n ≍ m2 comes from the covariance estimate, with its rate rΣ,0 at a parametric order of

n−1/2 when n ≲ m2. Consequently, the truncation selection and recovery rate depend

solely on the sample size and cannot benefit from an increasing sampling frequency m.

When n grows faster than m2, the rate rΣ,0 = m−1/2n−1/4 is jointly determined by the

sample size n and sampling frequency m. As a result, both the truncation selection and

recovery rate are influenced by the sampling frequency m. If n continues to increase up

to the second transition order, given by m2+5/(a−1), it can no longer enhance the final

rate m−(a−2)/(2a−2), which remains solely dependent on the sampling frequency m. It is

important to note that this final rate cannot reach the parametric rate m−1/2 for any

decay rate a and large sample size n. This is already evident in classical smoothing

spline analysis [Cai and Yuan, 2011].

5. Simulation

We illustrate our proposed parameter estimation and recovery method using the Popula-

tion Model, Stable Field Model, and Damped Oscillation Model outlined in Examples 1,

2 and 3. The settings for these models are as follows.

(i) In the population model (Example 1) with parameter β = −1, the random process

X(t) is given by X(t) = Zet.

(ii) In the stable field model (Example 2) with constant C = 8 and parameter β = −4,

the random process X(t) is defined as X(t) = t2 + 2
√
Z + 1t+ Z + 3.

(iii) In the damped oscillation model (Example 3) with constant C = 1 and parameter

β = 2, the random process X(t) is expressed as X(t) = (2Z + Zt)e−t.
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The discrete observations are
{
Xij = Xi(Tij) + εij

}
1≤i≤n,1≤j≤m

, where {Tij} are uni-

formly distributed on [0, 1] and the noise εij follows Gaussian distribution Normal(0, 0.12).

The score Z that determines the random process is set to follow Uniform(1, 2), Normal(1, 0.12)

or LogNormal(0.5, 0.12) distributions.

We calculate the relative mean square errors

{
E |β̂ − β|2

}
/|β|2

for the parameter estimates at n = 200, 400 and m = 3, 5, 7, 9, employing models (i), (ii),

and (iii), as presented in Table 1. These results show that our proposed parameter esti-

mation method provides good approximations across various ODE models, distribution

types and sampling frequencies. The empirical error diminishes as either the sample size

n or the sampling frequency m increases. Furthermore, these performances vary with the

complexity of the ODE; specifically, parameter estimation performance declines as the

dimension or the orders of the corresponding functional moments increase. Additional

simulations of more (n,m) pairs with denser sampling frequencies and varying sampling

frequency (random m) are provided in the Supplementary Material.

Moreover, we compare our method with the Parameter Cascading method [Wang

et al., 2014] using a random-effect ODE framework, which employs B-spline techniques

in parameter estimation. It is important to note that the Parameter Cascading method

is suitable only for first-order representable models, such as the population model (i) in

our study. Table 2 provides the relative mean square errors for an additional sampling

frequency of m = 1 under a sample size of n = 200. These results demonstrate that our

method consistently outperforms the Parameter Cascading method in different scenarios,

particularly in extremely sparse situations (e.g., m = 1), where the Parameter Cascading

method fails to provide a stable estimate.

We also assess the performance of our proposed recovery method and compare it with

the PACE method [Yao et al., 2005] and the Parameter Cascading method [Wang et al.,

2014]. The PACE method that is particularly suitable for Gaussian error achieves curve

recovery based solely on observations, without integrating the dynamic mechanism. The
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integral mean square errors

MSE =
1

n

n∑
i=1

∫ 1

0

(
X̂i(t)−Xi(t)

)2
dt

is used to evaluate the curve recovery performance, as it captures the difference be-

tween X̂i(t) and Xi(t) along all time interval. Table 3 presented the MSE results for

n = 200. These discrepancy results generally decrease with increasing sampling fre-

quency m across various models and distribution types, indicating that higher sampling

frequencies enhance curve recovery accuracy. The results demonstrate that our recovery

method outperforms the Parameter Cascading method and exceeds the PACE method

in handling non-Gaussian scores across different models and distribution types, particu-

larly in sparse designs (lower sampling frequencies). Additionally, our method exhibits

stable performance across these distribution types; and also demonstrates consistency

in different Monte Carlo runs, as evidenced by the relatively lower standard errors in

parentheses.

6. Real data examples

6.1. Covid-19 data

We evaluate a real dataset that records COVID-19 information from 33 Chinese provinces

(n = 33), excluding Hubei, the epicenter of the outbreak. The dataset compiles counts of

infected, cured, and deceased individuals over a 40-day period (m = 40) from February

10th to March 20th, 2020, following the lockdown of Wuhan, Hubei’s provincial capital.

The epidemic trends across these provinces, as illustrated in Figure 1, exhibit similar

trajectories and with random variation among them. In epidemiology, the ODE-based

SIRD model in Example 4 is suitable for Covid-19 data due to its ability to capture the

continuous-time transmission dynamics and compartmental structure of diseases. Unlike

traditional functional data analysis models that only treat data as static curves, the ODE

model provides unique insights by considering and quantifying specific epidemiological

parameters like the diffusion rate (new daily infected individuals relative to current cases)

that do not appear in traditional functional data analysis.
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Table 1. Relative mean square errors E |β̂ − β|2/|β|2 of our method, assessed by 100 Monte

Carlo runs with standard errors in the parentheses.

Model (i) n m = 3 m = 5 m = 7 m = 9

Uniform
200 6.4e-03 (1.6e-03) 3.9e-03 (9.3e-04) 2.5e-03 (5.2e-04) 2.5e-03 (6.4-04)

400 2.6e-03 (5.1e-04) 1.9e-03 (5.0e-04) 1.0e-03 (2.4e-04) 1.3e-03 (2.8e-04)

Normal
200 1.6e-03 (4.2e-04) 8.3e-04 (3.2e-04) 1.0e-03 (2.1e-04) 2.8e-04 (1.1e-04)

400 6.3e-04 (1.1e-04) 5.2e-04 (1.0e-04) 4.3e-04 (8.8e-05) 1.7e-04 (7.6e-05)

LogNormal
200 1.8e-03 (3.2e-04) 9.1e-04 (1.1e-04) 5.3e-04 (9.2e-05) 5.9e-04 (8.7e-05)

400 6.3e-04 (1.4e-04) 3.2e-04 (1.0e-04) 3.1e-04 (7.8e-05) 2.6e-04 (7.2e-05)

Model (ii) n m = 3 m = 5 m = 7 m = 9

Uniform
200 3.2e-02 (6.1e-03) 6.9e-03 (1.5e-03) 3.5e-03 (6.2e-04) 2.7e-03 (5.3e-04)

400 9.2e-03 (1.4e-03) 3.9e-03 (6.8e-04) 2.3e-03 (7.2e-04) 1.0e-03 (1.3e-04)

Normal
200 3.3e-03 (6.3e-04) 1.1e-03 (2.1e-04) 6.3e-04 (1.2e-04) 4.2e-04 (8.4e-05)

400 1.9e-03 (4.3e-04) 7.1e-04 (2.2e-04) 3.1e-04 (1.1e-04) 2.6e-04 (9.8e-05)

LogNormal
200 9.5e-03 (1.4e-03) 3.0e-03 (5.8e-04) 1.2e-03 (2.1e-04) 1.1e-03 (1.9e-04)

400 4.0e-03 (7.4e-04) 1.4e-03 (3.2e-04) 5.8e-04 (1.2e-04) 4.3e-04 (1.0e-04)

Model (iii) n m = 3 m = 5 m = 7 m = 9

Uniform
200 8.4e-02 (1.5e-02) 5.7e-02 (8.9e-03) 3.9e-02 (6.5e-03) 2.9e-02 (4.4e-03)

400 4.3e-02 (6.9e-03) 3.4e-02 (5.4e-03) 2.2e-02 (3.6e-03) 2.2e-02 (3.1e-03)

Normal
200 3.8e-02 (6.1e-03) 1.9e-02 (2.6e-03) 1.4e-02 (1.9e-03) 9.0e-03 (1.4e-03)

400 1.9e-02 (3.3e-03) 1.1e-02 (1.7e-03) 6.6e-03 (9.1e-04) 5.3e-03 (1.0e-03)

LogNormal
200 2.4e-02 (3.4e-03) 1.8e-02 (3.6e-03) 1.2e-02 (2.0e-03) 8.6e-03 (1.8e-03)

400 1.5e-02 (3.4e-03) 7.3e-03 (1.2e-03) 6.7e-03 (1.1e-03) 3.6e-03 (6.8e-04)
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Table 2. Relative mean square errors E |β̂− β|2/|β|2 in Model (i) of our method and Parameter

Cascading method [Wang et al., 2014], assessed by 100 Monte Carlo runs with standard errors

in the parentheses.

Our method m = 1 m = 3 m = 5 m = 7 m = 9

Uniform 1.5e-02 (4.0e-03) 6.4e-03 (1.6e-03) 3.9e-03 (9.1e-04) 2.5e-03 (5.2e-04) 2.5e-03 (6.2e-04)

Normal 5.6e-03 (1.2e-03) 1.6e-03 (3.7e-04) 8.1e-04 (2.6e-04) 1.0e-03 (2.1e-04) 3.3e-04 (1.4e-04)

LogNormal 4.8e-03 (1.0e-03) 1.8e-03 (2.9e-04) 9.1e-04 (1.3e-04) 5.0e-04 (1.1e-04) 6.0e-04 (8.2e-05)

Cascading m = 1 m = 3 m = 5 m = 7 m = 9

Uniform fail 6.2e-03 (3.2e-04) 6.0e-03 (1.2e-04) 5.7e-03 (9.8e-05) 4.8e-03 (8.4e-05)

Normal fail 5.8e-03 (3.1e-04) 5.4e-03 (1.4e-04) 5.2e-03 (9.3e-05) 4.3e-03 (8.6e-05)

LogNormal fail 5.4e-03 (1.8e-04) 5.2e-03 (1.1e-04) 5.0e-03 (7.4e-05) 4.6e-03 (6.2e-05)

We apply the proposed Functional Moment Model (FMM) to estimate the unknown

parameters β, γ, and ρ in this SIRD ODE system, representing the rates of diffusion,

curing, and death, respectively. The estimated diffusion rate, β̂ = −4.530, the recovery

rate, γ̂ = 4.522, and the mortality rate, ρ̂ = 0.0227, are presented in the second column

of Table 4. Specifically, the diffusion and recovery rates indicate that, on average, the

number of infected/recovered individuals decreases/increases by |β̂|/m×100% = 11.33%

or |γ̂|/m × 100% = 11.31% of the current number of infected individuals per day. In

contrast, the estimated mortality rate, ρ̂ = 0.0227, implies a smaller but notable daily

increase, constituting |ρ̂|/m× 100% = 0.06% of the current number of infected individ-

uals. These parameter estimates not only underscore the effectiveness of the proposed

FMM in capturing key epidemiological parameters but also enhance our understanding

of the disease’s transmission and progression.

To assess the effectiveness of our method under sparse sampling conditions, we ran-

domly select m′ = 14, 15, . . . , 38, 39 time points in each trajectory, meaning uniformly

sampling m′ observations without replacement from {(Tij , Xij)}1≤j≤m for each curve Xi.

We then compare the parameter estimates β̂ ′, γ̂ ′, ρ̂ ′ obtained from the sparsified dataset

with the corresponding estimates β̂, γ̂, ρ̂ derived from the complete dataset. Addition-

ally, we compare the recovered infection counts Î ′ with I from the full dataset. Table 4
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Table 3. Mean square errors 1
n

∑n
i=1

∫ 1

0

(
X̂i(t) −Xi(t)

)2
dt of our method, PACE method [Yao

et al., 2005] and Parameter Cascading method [Wang et al., 2014], assessed by 100 Monte

Carlo runs with standard errors in the parentheses. Here (i), (ii) and (iii) refer to Models (i), (ii)

and (iii), respectively.

(i)

Our method m = 3 m = 5 m = 7 m = 9

Uniform 8.4e-03 (4.2e-04) 4.5e-03 (2.1e-04) 3.5e-03 (1.2e-04) 2.8e-03 (9.5e-05)

Normal 4.6e-03 (9.2e-05) 2.6e-03 (8.7e-05) 1.9e-03 (6.6e-05) 1.4e-03 (5.1e-05)

LogNormal 6.2e-03 (2.2e-04) 3.5e-03 (1.3e-04) 2.4e-03 (1.2e-04) 1.9e-03 (8.8e-05)

PACE m = 3 m = 5 m = 7 m = 9

Uniform 1.2e-01 (3.0e-02) 9.1e-02 (3.1e-02) 2.7e-02 (1.1e-02) 5.4e-03 (1.3e-03)

Normal 5.9e-03 (2.1e-04) 3.2e-03 (1.3e-04) 2.2e-03 (9.1e-05) 1.7e-03 (7.8e-05)

LogNormal 8.2e-02 (4.0e-02) 1.2e-02 (4.8e-03) 7.3e-03 (2.6e-03) 2.7e-03 (1.1e-04)

Cascading m = 3 m = 5 m = 7 m = 9

Uniform 3.8e-02 (1.1e-02) 2.0e-02 (1.3e-04) 1.1e-02 (1.0e-04) 9.6e-03 (1.2e-04)

Normal 2.9e-02 (7.4e-03) 9.6e-03 (1.2e-04) 7.2e-03 (1.1e-04) 5.8e-03 (8.8e-05)

LogNormal 3.6e-02 (8.9e-03) 2.3e-02 (1.4e-04) 1.3e-02 (1.2e-04) 1.1e-02 (1.3e-04)

(ii)

Our method m = 3 m = 5 m = 7 m = 9

Uniform 8.9e-03 (2.1e-04) 6.3e-03 (2.2e-04) 5.2e-03 (1.4e-04) 3.7e-03 (1.0e-04)

Normal 6.6e-03 (2.3e-04) 4.9e-03 (2.0e-04) 3.9e-03 (1.1e-04) 3.5e-03 (1.0e-04)

LogNormal 7.8e-03 (2.2e-04) 4.7e-03 (1.1e-04) 4.0e-03 (2.0e-04) 3.3e-03 (1.1e-04)

PACE m = 3 m = 5 m = 7 m = 9

Uniform 7.1e-02 (1.8e-02) 2.0e-02 (7.4e-03) 7.3e-03 (2.5e-03) 4.0e-03 (2.0e-04)

Normal 4.3e-03 (1.4e-04) 2.6e-03 (1.2e-04) 1.9e-03 (1.0e-04) 1.4e-03 (1.3e-04)

LogNormal 1.6e-02 (4.8e-03) 5.3e-03 (1.6e-03) 3.6e-03 (1.1e-04) 2.9e-03 (1.0e-04)

(iii)

Our method m = 3 m = 5 m = 7 m = 9

Uniform 5.9e-03 (2.1e-04) 3.3e-03 (1.2e-04) 2.5e-03 (8.7e-05) 1.8e-03 (6.8e-05)

Normal 3.9e-03 (1.2e-04) 2.3e-03 (1.0e-04) 1.6e-03 (1.3e-04) 1.3e-03 (7.7e-05)

LogNormal 4.7e-03 (1.0e-04) 2.8e-03 (1.0e-04) 2.0e-03 (1.1e-04) 1.5e-03 (1.4e-04)

PACE m = 3 m = 5 m = 7 m = 9

Uniform 9.5e-02 (2.2e-02) 3.6e-02 (1.1e-02) 1.5e-02 (6.0e-03) 4.4e-03 (1.0e-03)

Normal 7.2e-03 (2.5e-03) 2.9e-03 (1.3e-04) 2.0e-03 (7.2e-05) 1.5e-03 (1.3e-04)

LogNormal 3.5e-02 (8.8e-03) 1.1e-02 (3.9e-03) 2.9e-03 (1.2e-04) 2.2e-03 (1.1e-04)
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Fig. 1. The plots from left to right represent the number of infected, cured and dead across 33

Chinese provinces from February 10th to March 20th, respectively.

presents the estimates β̂ ′, γ̂ ′, ρ̂ ′ and the Relative Recovery Error (RRE), defined as

RRE =

∑n
i=1

∑m
j=1

(
Îi

′(tj)− Ii(tj)
)2∑n

i=1

∑m
j=1

(
Ii(tj)

)2 .

The trajectories of recovery, depicted across all provinces, are detailed in the Supplemen-

tary Material. These results indicate that the estimates derived from the sparsified data

converge to those from the complete dataset, with the RRE dimimishes. Furthermore,

even with smaller m′ values, such as m′ = 14 or 15, the estimates closely approximate

those obtained from the complete dataset. Consequently, our proposed method demon-

strates desirable performance under conditions of sparse sampling frequencies, which is

owing to the proposed Functional Moment Method that can effectively pool measure-

ments together from different functions. Given the resource-intensive nature of Covid-19

data collection and the associated risks of reinfection during nucleic acid testing, em-

ploying a sparser sampling frequency with our method can conserve resources and reduce

reinfection risks while still delivering reliable estimates.

6.2. AIDS data

We analyze the Acquired Immune Deficiency Syndrome (AIDS) dataset [Whiteside,

2016], provided by the China Center for Public Health Data Science at https://www.

phsciencedata.cn. This dataset includes the counts I of infected individuals across 31

provinces in mainland China in 2020. The AIDS dataset is sparse with only m = 12

observed time points in each curve, compared with totally 366 days in 2020, due to

https://www.phsciencedata.cn
https://www.phsciencedata.cn
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Table 4. The estimates β̂, γ̂, ρ̂ (β̂ ′, γ̂ ′, ρ̂ ′) and the RRE, evaluated across 100 randomly

sparsified repetitions.

no sparsity m′ = 14 m′ = 15 m′ = 16 m′ = 17 m′ = 18 m′ = 19 m′ = 20 m′ = 21

−β̂ 4.530 4.408 4.457 4.514 4.481 4.439 4.537 4.493 4.528

γ̂ 4.522 4.545 4.621 4.530 4.546 4.620 4.478 4.494 4.500

ρ̂ .0227 .0209 .0201 .0211 .0207 .0213 .0214 .0194 .0218

RRE 0 .0392 .0387 .0386 .0370 .0370 .0361 .0358 .0350

m′ = 22 m′ = 23 m′ = 24 m′ = 25 m′ = 26 m′ = 27 m′ = 28 m′ = 29 m′ = 30

−β̂ 4.545 4.480 4.542 4.507 4.534 4.506 4.509 4.526 4.537

γ̂ 4.515 4.534 4.509 4.516 4.556 4.519 4.543 4.533 4.573

ρ̂ .0203 .0233 .0214 .0220 .0221 .0221 .0217 .0220 .0225

RRE .0351 .0353 .0351 .0345 .0345 .0343 .0340 .0337 .0341

m′ = 31 m′ = 32 m′ = 33 m′ = 34 m′ = 35 m′ = 36 m′ = 37 m′ = 38 m′ = 39

−β̂ 4.551 4.542 4.540 4.523 4.535 4.538 4.517 4.534 4.541

γ̂ 4.533 4.486 4.516 4.540 4.536 4.502 4.534 4.504 4.509

ρ̂ .0221 .0223 .0224 .0226 .0227 .0225 .0224 .0225 .0225

RRE .0338 .0335 .0331 .0332 .0329 .0326 .0325 .0324 .0325

the objective conditions of data collection. The AIDS detection depends on individuals

voluntarily undergoing testing, and there are no daily mandatory tests. Besides, the

government reports AIDS data monthly rather than daily. Therefore, the data available

for analysis are limited to 12 time points at the end of each month. This sparsity is not

a choice but a reflection of the actual data-collection practices and the nature of AIDS

reporting.

This AIDS dataset is also analyzed using the SIRD model as described in Exam-

ple 4. We apply the proposed Functional Moment Model (FMM) to estimate the un-

known parameter β, which represents the rate of diffusion. The estimated diffusion rate,

β̂ = 0.1258, suggests that, on average, the number of infected individuals increases by

|β̂|/366 × 1000‰ = 0.3435‰ of the current infected population per day. Additionally,

we recover the trajectories from the sparsely recorded AIDS dataset, with plots for all

provinces included in the Supplementary Material. These recovered trajectories fill the
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gaps for the remaining 366− 12 = 354 days. The trajectories exhibit a clear increasing

trend that aligns with the SIRD ODE model and closely match the sparsely observed

data points. These findings indicate that our proposed method is effective in identifying

the key parameter in the spreading process and in reconstructing the spread over the

entire time interval.

7. Discussion

The model presented in Section 2 considers an ordinary differential operator constraint

Fβ(X) = 0, wherein {βk}pk=0 are scalar parameters. The goal in this section is to

generalize the model in order to cater for diverse requirements that emerge in an extensive

range of practical physical scenarios. To this end, we propose enhancements in two

areas: (1) modification of scalar parameters to functional parameters {βk(t)}pk=0 and (2)

extensions to Partial Differential Equations (PDEs).

7.1. Functional parameter

The functional parameter setting considers varying-coefficient ODE Fβ(X) = 0 with

functional (time-varying) parameters β = (β0, β1, . . . , βp) and βk : T → R. The recovery

part for this case remains the same as those elaborated in Section 3.2, while the parameter

estimation part in Section 3.1 needs some modifications. In fact, the minimization

method of the plugged-in FEE in (9) yields

(β̂1, . . . , β̂p) = argminβ1,...,βp:T →R
∫ 1−H
H

(∑p
k=0 βk(t)ÊX(αk)(t)gk(t)

)2
dt,

which leads to
∑p

k=0 βk(t)ÊX(αk)(t)gk(t) = 0 for all t ∈ T . However, this equation

can not determine the estimates {β̂k(t)}pk=1 when p > 1. This is because the functional

parameters lie in an infinitely dimensional space while that of scalar parameters is finitely

dimensional. This gap between infinite and finite dimensions motivate us to create more

FEEs to eliminate such non-identifiability. We propose to multiply Xr (0 ≤ r ≤ p− 1)

on both sides of ODE and take expectation to obtain∑p
k=0 βk(t)gk(t)E

(
X(αk)(t)Xr(t)

)
=
∑p

k=0 βk(t)gk(t)EX(αk+r)(t) = 0, ∀t
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where αk+r here refers to adding r zeros before αk, i.e. αk+r = (0, . . . , 0, αk,[1], αk,[2], . . . ).

Each leveled-up functional moment EX(αk+r) is estimated from local polynomial regres-

sion and pooling strategy described in Section 3.1. Then βk(t) is estimated from the

multiplied FEEs

Ê g0(t)X
(α0+r)(t) +

∑p
k=1 β̂k(t)gk(t)ÊX(αk+r)(t) = 0, r = 0, . . . , p− 1.

This leveling-up technique overcome this non-identifiability gap and contributes to ex-

tend our model to functional parameter case.

7.2. PDE model

In PDE model, the underlying population X : Ω → Hν0(T D) is a multi-determinant

random function and the partial differential operator Fβ is

Fβ(X) =
∑p

k=0 βkX
(αk)(t)gk(t) = 0

where the multi-index X(αk) of a D×N matrix αk = (αk,[1], αk,[2], . . . , αk,[N ]) with αk,[i]

a D-dimensional vector is

X(αk) = ∂(αk,[1])X × ∂(αk,[2])X × · · · × ∂(αk,[N])X.

The parameter estimation and recovery methods for PDE are the same as those for ODE

in Section 3, but suffer more heavy computation in the estimation of functional moments,

i.e. ÊX(αk). In fact, EX(αk) include totally DN dimensions and ∥αk∥1 := ∥αk,[1]∥1 +

∥αk,[2]∥1+· · ·+∥αk,[N ]∥1 order derivatives, which consume more computing resources and

require great quantities of data to converge in the local polynomial regression method.
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Figure Legends

Figure 1: Temporal progression of COVID-19 cases

• left: Daily new confirmed cases across 33 Chinese provinces from file “covid current.pdf”;

• middle: Daily recovery trends in corresponding regions from file “covid cured.pdf”;

• right: Cumulative fatalities distribution over time from file “covid dead.pdf”.
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