
Online Smooth Backfitting for Generalized
Additive Models

S.1 Further Discussions and Extensions

S.1.1 Online inference

We discuss online generalized likelihood ratio (GLR) test for AM and GAM in this sub-

section. First, we briefly review the classical GLR test for AM proposed in Fan and Jiang

(2005) and Chatla (2022). Consider the hypothesis testing problem

H0 : βd(xd) = 0 v.s. H1 : βd(xd) 6= 0. (1)

Let RSS1 =
∑N

i=1{Yi − β̂0 −
∑d

j=1 β̂j(Xij)}2 and RSS0 =
∑N

i=1{Yi − β̌0 −
∑d−1

j=1 β̌j(Xij)}2,

where β̂j and β̌j (j = 0, 1, . . . , d) are estimates under the alternative and null hypotheses,

respectively. The GLR statistic is defined as follows,

λn(H0) =
N

2
log

RSS0

RSS1

.

Asymptotic null distribution and power of GLR statistic based on the classical backfitting

and smooth backfitting are studied in Fan and Jiang (2005) and Chatla (2022), respectively.

In both methods, critical values are obtained by bootstrap.

Next, we discuss the online extension of GLR test for AM. Let β̃K,j and β̌K,j (j =

0, 1, . . . , d) be the online estimates under the alternative and null hypotheses, respectively.

Define the online GLR statistic by

λK(H0) =
nK
2

log
RSSK0

RSSK1

,
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where RSSK1 =
∑nK

i=1{YKi − β̃K0 −
∑d

j=1 β̃Kj(XKij)}2 and RSS0 =
∑nK

i=1{YKi − β̌K0 −∑d−1
j=1 β̌Kj(XKij)}2. Note that our proposed method guarantees that the pseudo-bandwidths

are of the same order as the bandwidth selected by the batch method. Let σNK
, σ, µNK

, d1NK

be defined the same as σn, µn, dn in Chatla (2022). The following results hold following

Theorem 1 and 3 of Chatla (2022).

Proposition 1. Suppose that Assumptions (A1)–(A4) hold. Then, under H0 for the testing

problem (1),

P
{
σ−1NK

(
λK(H0)− µNK

− (2σ2)−1d1NK

)
< t|Data

} d→ N(0, 1).

Proposition 2. Suppose that Assumptions (A1)–(A4) hold and h̃Kj = cjN
−2/9
K for j =

1, . . . , d and some constants cj. Then for the testing problem (1), the GLR test can detect

alternatives with rate N
−4/9
K .

Finally, as the GLR test for GAM remains an open question, we discuss the main

challenge of developing the online GLR test for GAM. Note that theoretical guarantees of

the classical GLR test in Fan and Jiang (2005) and Chatla (2022) are based on the normal

equations. Specifically, λn(H0) can be approximated by

n

2

RSS0 −RSS1

RSS1

and the normal equations facilitate the expression RSS0−RSS1 = ε>(A1−A2)ε+(2σ2)−1d1n

for some matrices A1, A2. Based on this, the asymptotic normality can be established. For

GAM, the estimation equations are nonlinear and the asymptotic null distribution would

be difficult to derive, which is worth further investigation and we leave it for future work.
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S.1.2 Extension to semiparametric models

We discuss the extension of the proposed method to semiparametric models in this sub-

section. Denote Θ as a finite dimensional parameter set and F as a function space. Let

zi = (xi, yi) for 1 ≤ i ≤ N be the observations, and θ∗ ∈ Θ and f ∗ ∈ F be the true unknown

finite and infinite dimensional parameters. Chen et al. (2003) proposed to estimate θ∗ and

f ∗ by maximizing the likelihood. Specifically, let q(z, θ∗, f ∗) be the density function of zi

and

m(z, θ, f) =
∂ log(q(z, θ, f))

∂θ

be the score function, and the sample score is given by SN(θ) =
∑N

i=1m(zi, θ, f). Chen et al.

(2003) proposed to estimate f(·|θ) nonparametrically and then estimate SN(θ) by ŜN(θ).

They proved the estimate θ̂ which solves ŜN(θ) = 0 has the same asymptotic distribution as

the infeasible estimate obtained with known f ∗. Note that ŜN(θ) is a smooth function with

respect to θ and depends on the bandwidth of f̂ . In the online context, one can expand

ŜN(θ) to an appropriate order and treat the coefficients as statistics which can be updated

using the DCB method. Though the implementation of extension is straightforward, the

analysis of asymptotic efficiency of the online estimate of θ would pose technical difficulty,

which we leave for future work.

S.1.3 Results on regrets

In this subsection, we discuss the performance of the proposed method in terms of regrets

which is also a popular measurement for online algorithms defined as below (Blum and

Mansour, 2007; Warmuth and Kuzmin, 2008; Li et al., 2019):

regretK =
K∑
k=1

d∑
j=1

{
IMSE(β̃kj)− IMSE(β̂kj)

}
.
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Let `(L) = (1 + c1L
−1 + c2L

−2)−1 be the lower bound of the relative efficiency derived

in Theorem 3. Note that the regets are measured cumulatively over blocks and can be

calculated based on the relative efficiency we have already defined, Given IMSE(β̃kj) ≤

`(L)−1IMSE(β̂kj), it is straightforward to obtain

regretK ≤
K∑
k=1

d∑
j=1

{(
`(L)−1 − 1

)
IMSE(β̂kj)

}

=
(
`(L)−1 − 1

)1

4
µ22(K)θj

K∑
k=1

d∑
j=1

ĥ4kj +R(K)σ2j
K∑
k=1

d∑
j=1

1

NK ĥkj

+ op

(
ĥ4Kj +N−1K ĥ−1Kj

)
,

where R(K) =
∫
K(x)2dx, µ2(K) =

∫
x2K(x)dx and σ2

j , θj are defined as in (15). Note

that ĥKj → h∗Kj = [R(K)σ2
j/{µ2(K)2θjNK}]

1
5 . Then we obtain the regret bound of the

proposed method

regretK .
25

4
(c1L

−1 + c2L
−2)

[
d∑
j=1

{µ2
2(K)θj}1/5{R(K)σ2

j}4/5
]
N

1/5
K .

S.2 Numerical comparison in the simplified case

In this section, we compare the performance of the proposed method with Kong and Xia

(2019), Quan and Lin (2022) and Xue and Yao (2022) when the link function is identical

and there is only one component function. We abbreviate these methods as Kong, Quan

and Xue, respectively. The data are generated by

y =
4∑

k=1

k−1.5φk(x) + e

with φ1(x) = 1, φ2k(x) = cos(2kπx), φ2k+1(x) = sin(2kπx), x ∼ U(0, 1) and e ∼ N(0, 1). To

mimic this practice, we set the block size nk = 100 for k = 1, . . . , Kmax. For the proposed

method, the parameters are set as follows: G = R = 0.3, the length of candidate sequence

for the main regression L = 20 and for the polit estimates L′ = 10. For the method of

Kong, we set the bandwidth ȟk = (3/10)1/5h̃k where h̃k is the online bandwidth of our
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proposed method, as they did not provide the empirical bandwidth selection approach.

For the method of Quan, the tuning parameters are determined by the semi-data-driven

strategy described in Section 2.4 in Quan and Lin (2022). For the method of Xue, we adopt

cubic splines with parameter λ tuned by the generalized cross-validation method and the

dynamic knots updated according to the implementation in Section 2.2 of Xue and Yao

(2022) with the parameters α = 1 and ν= 1/3.

The results of these methods are presented in Figure 1. In terms of relative efficiency, our

method is stably efficient and higher than the theoretical lower bound during the whole

procedure; the efficiency of Kong increases at start and tends to stable at 0.84 as data

accumulate; the spline based methods of Quan and Xue produce similar performances. In

conclusion, all estimators yield comparable performance in the long run in this simplified

case.
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Figure 1: The relative efficiencies of the proposed method (red solid) and its theoretical

lower bound (black dashed), and the methods of Kong (green dotted), Quan (blue dashed)

and Xue (yellow dashed).
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S.3 Proofs of the Main Results

In this section, we first derive the algorithmic convergence and asymptotic properties of

the proposed method, i.e., Theorem 1 and Lemma 2–3, in Section S.3.1 and Section S.3.2.

The convergence of bandwidth selection and lower bound of relative efficiencies are shown

in Section S.3.3 and S.3.4.

S.3.1 Proof of Theorem 1

The proof is established by verifying the conditions of Lemma 1.

Proof. of Theorem 1. Recalling the space H(Q) defined in (5), we further define

H0(Q) =

{
f ∈ H(Q) :

∫
{Q00(x)fj(xj) +Q0j(x)f1j(xj)}dx = 0 for j = 1, . . . , d

}
,

Hj(Q) =
{
f = (f, f1j)

> : ‖f‖Q,j <∞, f(x) = f0 + fj(xj), f1j(x) = gj(xj)
}
,

H0
j (Q) =

{
f ∈ Hj(Q) :

∫
{Q00(x)fj(xj) +Q0j(x)f1j(xj)}dx = 0

}
,

where ‖ · ‖Q,j is given by

‖f‖Q,j =

∫ f0Q00 +

[
fj(xj) f1j(xj)

]Q00 Q0j

Qj0 Qjj


 fj(xj)
f1j(xj)


 dx.

Denote the projection operator from H(M b0c) onto H0
j (M

b0c) by Πj. In the following

proof, we omit the superscript “b0c” in M for conciseness. Then we have that for any

ξ ∈ H(M),

Πjξ =

∫
M00 M0j

Mj0 Mjj

 dx−j

−1 ∫ M0:ξdx−j∫

Mj:ξdx−j

 .
Let Π = (Π>1 , . . . ,Π

>
d )>. The Fréchet derivative of F̃K at β̃

b0c
K can be written as

F̃
(1)
K (β̃

b0c
K , ξ) = DAξ (2)
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where

D =


∫
M00(x)dx 0>

0 diag


∫

M00 M0j

Mj0 Mjj

 dx−j

j=1,...,d



 , A =

1 0>

0 Π

 .

Since g′(m̃K−1(·))2V (m̃K−1(·)) is bounded and p̃K−1(·) is bounded away from 0, one can

obtain that D−1 is bounded. Using the same technique, we can prove that Π is one-to-one

and onto, and ‖Πξ‖ ≤ d‖ξ‖. Hence Π has a bounded inverse, which implies that A also

has, i.e. there exists a constant c1 such that ‖F̃ (1)
K (β̃

b0c
K )‖ < c1.

The other conditions are verified as follows. To prove that F̃
(1)
K satisfies the Lipschitz

condition ‖F̃ (1)
K β− F̃ (1)

K β′‖ ≤ c2‖β−β′‖, by the decomposition (2), it is sufficient to prove

the boundedness of D and A, which is guaranteed by the smoothness and boundedness of

g′(m̃K−1(·))2V (m̃K−1(·)) and p̃K−1(·). Finally, by the uniform continuity of F̃K and the fact

F̃Kβ̃K = 0, there exists a positive constant r such that supβ∈Br(β̃K) ‖F̃Kβ‖ < (2c21c2)
−1.

This proves that if β̃
b0c
K ∈ Br(β̃K), then ‖{F̃ (1)

K (β̃
b0c
K )}−1F̃K(β̃

b0c
K )‖ < (2c1c2)

−1. Note

that M is close to QK , the two norms ‖ · ‖M and ‖ · ‖QK
are equivalent. Conclusion (1)

now follows from Lemma 1. Theorem 1 (2) follows from the property of Hilbert-Schmidt

operators Πj; see Theorem 4.B in Appendix 4 of Bickel et al. (1993) and Theorem 4 of Yu

et al. (2008) for details.

S.3.2 Proof of Lemma 2-3

We first prove Lemma 2. Recall that ξ̌∗ is defined in (23). The proof is based on the

decomposition of ξ̌∗.
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Proof. We further decompose ξ̌∗j (xj) = ξ̌A∗j (xj) + ξ̌B∗j (xj), ξ̌
∗
1j(xj) = ξ̌A∗1j (xj) + ξ̌B∗1j (xj) thatξ̌Aj (xj)

ξ̌A1j(xj)

 =

 ξ̌∗j (xj)
ξ̌∗1j(xj)

−
E(ξ̌∗j (xj) |X1, . . . ,XK)

E(ξ̌∗1j(xj) |X1, . . . ,XK)

 ,
ξ̌Bj (xj)

ξ̌B1j(xj)

 =

E(ξ̌∗j (xj) |X1, . . . ,XK)

E(ξ̌∗1j(xj) |X1, . . . ,XK)

 .
We omit the constants in the functions and define the spaces

H0
(Q) =

{
f = (f1(x1), . . . , fd(xd), f11(x1), f1d(xd))

> :∫
(Q00fj +Q0jf1j)dx = 0 for j = 1, . . . , d

}
,

H0

j(Q) = {f ∈ H0
(Q) : f depends only on xj}.

In this proof, we consider 2d-dimensional functions. Let Ψj be the projection operator from

H0
(Q∗K) onto H0

j(Q
∗
K). Then for any ξ ∈ H0

(Q∗K),

Ψjξ`(x`) = f`(x`), Ψ1jξ1`(x`) = f1`(x`),

where for ` 6= j, f`(x`) = ξ`(x`) and f1`(x`) = ξ1`(x`), and

fj(xj) = gj(xj)−
∫
gj(xj)Q

∗
K,00(x)dx, gj(xj)

f1j(xj)

 = −
∑
6̀=j

∫
Q∗K,00 Q

∗
K,0j

Q
∗
K,j0 Q

∗
K,jj

 dx−j

−1 ∫ Q∗K,00 Q

∗
K,0`

Q
∗
K,j0 Q

∗
K,j`


 ξ`(x`)
ξ1`(x`)

 dx−j.
Then define T = Ψ1 · · ·Ψd. Recall that ωki(x,β) plays the same role of Kh(Xki − x) in

Mammen (1999). With assumption (A2) on the smoothness of link function g, conclusions

of AM can be carried over to GAM and we can obtain that T is smaller than γ < 1

w.p.1. Let ζj(xj) = −
∫ ∑K

k=1 Pk,0(β
∗; η̃k|K)dx−j, ζ1j(xj) = −

∫ ∑K
k=1 Pk,j(β

∗; η̃k|K)dx−j,

ζ0,j(xj) = −ξ̌∗0
∫
Q
∗
K,00(x)dx−j and ζ0,1j = −ξ̌∗0

∫
Q
∗
K,0j(x)dx−j. Then we have the following

expression for ξ̌, ξ̌ = T ξ̌ + τ , where τ = ζ + ζ0. By iterative applications, we have
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ξ̌s =
∑∞

i=0 T
iτ s for s = A,B. Based on these stochastic expansions, one can use the

techniques in the proof of Theorem 1–2 in Mammen and Nielsen (1999) to obtain the

following result: for xj ∈ (0, 1),

sup
∣∣∣ξ̌Aj (xj)−

(
ζj(xj)− ξ̌0

) ∣∣∣ = op(N
−2/5
K ),

sup
∣∣∣ξ̌Bj (xj)− bj(xj)

∣∣∣ = op(N
−2/5
K ),

and the asymptotic distribution of β̌∗ follows from the standard theory of kernel smoothing.

Now we present the proof of Lemma 3, which is a product of the pre-specified bandwidth

order in Assumption (A5).

Proof. Noting that F̌K differs from F̂K only in the bandwidths, the proof of Lemma 6 of

Yu et al. (2008) can be carried over by substituting ρKj,i for hij. By Assumption (A5), we

have

‖F̌Kβ̌∗K‖p,0 = op

(
N
−2/5
K

)
, ‖F̌Kβ̌∗K‖∞ = op

(
N
−2/5
K

)
.

We note that F̃K is the linear approximation of F̌K , then ‖F̌Kβ̌∗K‖ ' ‖F̃Kβ̌∗K‖ for norms

‖ · ‖p,0 and ‖ · ‖∞, which gives

‖F̃Kβ̌∗K‖p,0 = op

(
N
−2/5
K

)
, ‖F̃Kβ̌∗K‖∞ = op

(
N
−2/5
K

)
. (3)

Finally, we can use the same techniques in proof of Theorem 1 by substituting β̌∗K for β̃
bmc
K

to prove that the sufficient conditions of Lemma 1 hold when setting β0 = β̌∗K . This implies

that β̌K must be close to β̃K at the same rate as (3), which complete the proof.

S.3.3 Proof of Proposition 1

Proof. Using the same technique in the proof of Theorem 2, we can derive that

E{(θ̃Kj − θj)2} =
(
A1jρ

θ
Kj,2 + A2jN

−1
K ρθKj,−5

)2
+ A3jN

−2
K ρθKj,−9
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+ op

({
ρθKj,2 +N−1K ρθKj,−5

}2
+N−2K ρθKj,−9

)
,

where A1j, A2j, A3j are constants β∗ and

ρθKj,i =
1

NK

K∑
k=1

nk(η̃
θ
k|K,j)

i, i = 2,−5,−9.

Using the same argument as S.3.4, when (21) and (22) hold, the online estimates θ̃Kj

satisfies θ̃Kj − θj = Op

(
N
−2/7
K

)
. Substituting the expression of h̃Kj in (16) and h∗Kj in (14),

we obtain

h̃Kj − h∗Kj
h∗Kj

=
1

5

(
θj

θ̃Kj

) 1
5 ( σ̃2

K,j − σ2
j

σ2
j

)
− 1

5

θ̃Kj − θj
θj

.

When hσKj = Op(N
−1/5
K ), σ̃2

Kj(u) − σ2
j (u) = Op(N

−2/5
K ) and then σ̃2

K,j − σ2
j = Op(N

−2/5
K ),

and hence the convergence rate of h̃Kj is dominated by θ̃Kj − θj.

S.3.4 Proof of Theorem 3

Proof. This result follows directly from Theorem 4 in Yang and Yao (2022) based on the

oracle properties of the proposed estimate in Theorem 2. The optimal bandwidth h∗Kj as

in (14) is strictly decreasing with K. Thus the candidate sequence shall be decreasing with

ηkj1 = h̃kj. There is no efficiency loss if η̃k|K,j = ĥKj which implies that the optimal ηlj

shall make η̃k|K,j as close to ĥKj as possible. With the convergence of h̃kj, we have

η̃k|K,j

ĥKj
= g(l)

(
Nk

NK

)− 1
5

+Op

(
N
− 2

7
k

)
.

Write g(l) = {g(l)1/λ}λ and note that Nk/NK grows linearly, then λ shall be 1/5 and the

optimal g(l)1/λ shall be linear between (0, 1). Hence, the optimal η is

ηKj` =

(
L− `+ 1

L

) 1
5

h̃Kj.
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Next we derive the asymptotic lower bound for the relative efficiency. Writing ĥKj =

h∗Kj{1 +Op(N
−2/7
K )} and using the expressions of h∗Kj as in (14), one can derive

eff(β̃Kj)
−1 =

1

5


K∑
k=1

nk
NK

(
η̃k|K,j

h̃Kj

)2


2

+
4

5


K∑
k=1

nk
NK

(
η̃k|K,j

h̃Kj

)−1+Op

(
N
− 2

7
K

)
. (4)

As shown in Figure 3, when K tends large, there exists a breakpoint K0: when k ≤ K0,

η̃k|K,j equals the last candidate (1/L)1/(d+4)h̃kj for the limit number of candidates and for

k > K0, there are sufficient and close candidates to make a choice. From the property of the

breakpoint we see that η̃K0|K ≤ h̃Kj, thus NK0 ≥ NK/L. When k > K0, the combination

rule guarantees

η̃k|K,j

h̃Kj
=

(
L− l + 1

L

NK

Nk

) 1
5

= 1 +Op

N− 1
5

K0

L

 = 1 +Op

(
N
− 1

5
K

L

)
,

which gives

K∑
k=K0+1

nk
NK

(
η̃k|K,j

h̃Kj

)2

= 1− NK0

NK

+Op

(
N
− 1

5
K

L

)
,

K∑
k=K0+1

nk
NK

(
η̃k|K,j

h̃Kj

)−1
= 1− NK0

NK

+Op

(
N
− 1

5
K

L

)
.

When k ≤ K0,

η̃k|K,j

h̃Kj
= L−

1
5 ·
(
Nk

NK

)− 1
5

.

It can be derived that

K0∑
k=1

nk
NK

(
η̃k|K,j

h̃Kj

)2

=
5

3
· L−

2
5

(
NK0

NK

)1− 2
5

,

K0∑
k=1

nk
NK

(
η̃k|K,j

h̃Kj

)−1
=

5

6
· L

1
5

(
NK0

NK

)1+ 1
5

.

Denote ρ0 = NK0/NK , one can derive from (4) that

eff(β̃Kj)
−1 =

1

5

{
5

3
· L−

2
5ρ

1− 2
5

0 + 1− ρ0
}2
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+
4

5

{
5

6
· L

1
5ρ

1+ 1
5

0 + 1− ρ0
}

+Op

(
N
− 1

5
K

L
+N

− 2
7

K

)
. (5)

The property of breakpoint K0 also guarantee that(
1

L

) 1
5
K0∑
k=1

nk
NK0

h̃kj ≥ h̃Kj,

holds with probability 1 when K tends large, which is equivalent to(
1

L

) 1
5
K0∑
k=1

{
nk
NK0

· C̃kN
− 1

5
k

C̃KN
− 1

5
K

}
≥ 1.

Under Assumption (A6), we obtain

NK0

NK

≤
(

5

4

)5
1

L
+Op(N

− 2
7

K ),

i.e. ρ0 ∈ [0, (5/4)5/L] holds with probability 1 when K tends large. Note that (5) is strictly

increasing with respect to ρ0 on this domain. Hence we have

eff(β̃Kj)
−1 ≤ 1 + c1L

−1 + c2L
−2,

where

c1 = 53/(3× 25) + 56/(6× 45)− 6/5× (5/4)5 ≈ 0.183

and

c2 = {57/(6× 46)− (5/4)5}2/5 ≈ 0.0032.

This completes the proof of Theorem 3.
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