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5. FIBRATION FORMULA

Inspired by the induction formula for the characteristic classes [28, Proposition 5.3.7], we prove
the following fibration formula.

Theorem 5.1 (Fibration formula). Under the notation and conditions (C1)-(C3) in J.1, we have
(5.1.1) Cx/s(F) = 0'Cxpy (F) + C)Z(/Y/s(]:) in H°(X,Kx/s),
where &' : HO(X, Kx ) — HY(X,Kx/s) is defined in (3.12.3).

When g : Y — S is smooth of relative dimension r, we have 6' = ¢, (f *Q;,/VS) by (3.13.2). Then

(5.1.1) can be rewritten as

In the case that X =Y — S = Speck is smooth over a field k. Since id : X\Z — X\Z is univer-
sally locally acyclic relatively to F| x\z, the cohomology sheaves of F | x\z are locally constant on
X\Z. In this case, the class C’)Z( Iy /S(}" ) is Abbes-Saito’s localized characteristic class [1, Definition
5.2.1] and (5.1.1) follows from [1, Proposition 5.2.3].

We will prove Theorem 5.1 in 5.10. This proof is based on Lemma 5.5 below, which is due to an
anonymous referee.

5.2.  Let us recall a lifting result in co-category. Let C be a stable co-category. A triangle in C is a
functor F: A x A! — C (a square in C) such that F(1,0) is a zero object in C. Usually, we write
a triangle F as F(0,0) — F(0,1) — F(1,1) or as a coherent commutative diagram in C

F(0,0) — F(0,1)

(5.2.1) L |

0 F(1,1).

Let Tri(C) < Fun(A! x A',C) be the full sub-co-category spanned by triangles in C. Let ExTri(C) <
Tri(C) be the full sub-co-category spanned by exact triangles (cofiber sequences) in C. Let 6 :
ExTri(C) — Fun(A!,C) be the functor sending a cofiber sequence P” — P — P’ to P — P’, which
is a trivial Kan fibration by [20, Remark 1.1.1.7].

Consider a commutative diagram in C between cofiber sequences

P//_)_P_>P/

(5.2.2) ! |
Q// . Q - Ql-

We view the right square as a I-simplex Al — Fun(A!,C). Since 6 is a trivial Kan fibration, there is
a lifting A! — ExTri(C), which is unique up to a contractible space, making the following diagram
0Al — = ExTvi(C)

(5.2.3) b7 e
Al =~ Fun(Al,C)
commutes. Thus there is a morphism P” — Q" such that the following diagram commutes:
P// I P - Pl
|
(5.2.4) . l |
Qll - Q - Q/.
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Now for a commutative diagram (with solid arrows) between three cofiber sequences

P// P Pl

N | |
(5.2.5) S Q Q

R’ 4 R R,

by (5.2.4), we may find dashed arrows P” --» Q", Q" --+ R” and P"” --» R” such that any of the
three lateral faces of the triangular prism (5.2.5) are commutative. We claim that the triangle

Pl/

// !

(5.2.6) 7y
R <— — Q”

formed by dashed arrows in (5.2.5) is also commutative. Indeed the right-smaller triangular prism
in (5.2.5) defines a 2-simplex A? — Fun(A!,C), again by the triviality of 6, there is a lifting
A? — ExTri(C) making

0A? —— ExTri(C)
(5.2.7) -7 e
A? ——— Fun(Al,C)

into a commutative diagram. This proves the claim. Note that if C is only a triangulated category,
even though the three dashed arrows may still exist such that any of the three lateral faces of the
triangular prism (5.2.5) are commutative, but the diagram (5.2.6) may not commute.

5.3. Note that there is a canonical functor

(5.3.1) FD : Fun(A! x A!,C) — Tri(C)
sending a square
x-t.oy
g P
Z — w
in C to the following triangle
x Y yoz
L p—q
0——W.

In the following, a fiber sequence in the stable co-category ExTri(C) will be called a nine diagram
in C.

Lemma 5.4. Let C be a stable co-category. There is a functor

(5.4.1) T : ExTri(ExTri(C)) — Fun(Al,C)
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sending a nine diagram

(5.4.2) K10 gu 12

to cofib(K® — K@ K10) - K2 @ K @ K20.
Proof. Using the functor FD (cf. (5.3.1)) three times, we can get a functor
(5.4.3) ExTri(ExTri(C)) — Tri(Tri(C))

sending a nine diagram (5.4.2) to the following commutative diagram

K00 K01 (_D K10 0
(5.4.4) 0 K2 @K@K K@K
0 0 K?2.
This immediately induces the required functor (5.4.1). O

The following Lemma is due to an anonymous referee.

Lemma 5.5. Let C be a stable co-category. Consider a commutative diagram in C:

KOO KOl K02
P
f A
K10 g K11___N__>K12
[¢3] |
(5.5.1) / | /
\i
K2O——— >K214i>>K22
a9 /1
A/——A/ 0 -~

)

where the back face is a nine diagram, the right face and the lower face are maps of fiber sequences.
Assume that Hompe (A, K%) = Hompe (A, X K%) = 0. Let 8y € Hompe(A, K%Y be the unique lifting
of ag and Bo € Hompe (A, K'9) the unique lifting of as. Then we have

(5.5.2) ay = fofo+go P in Homye (A4, K'1).
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Proof. Applying 5.2 six times, we can complete the diagram (5.5.1) into a map of nine diagrams.
By Lemma 5.4, we get a commutative diagram

A APDADPA
(5.5.3) 5L (%) l(()t07(11,(¥2)
VA K02 ® Kll ® K20,

where Z = cofib(K — K% @ K'9). Tet 8/ € Hompe(A4, K%' @ K'°) be the unique lifting of
B. Then the commutativity of the square () in (5.5.3) implies the equalities 3’ = (8o, 32) and
a; = fofy+ gopBzin hC. O

From subsection 5.6 to 5.9, we will construct a similar diagram (5.5.1) for the non-acyclicity class
in (5.10.3). Then Theorem 5.1 will follow directly from Lemma 5.5. Readers who are not interested
in this construction can skip directly to subsection 5.10.

5.6. Let Corr§ = Corry, P (Schs) be the symmetric monoidal (o0, 2)-category of correspondences
(cf. [10, Part III]). Let D : Corr? — Caty be a 6-functor formalism of étale sheaves of A-
modules on schemes over S such that D(—,A) = hD(—) is the homotopy category of D(—). Let
Deons(—) € D(—) be the full sub-oo-category spanned by perfect-constructible complexes. For any
Noetherian scheme X over S, we have Def(X,A) = hDcons(X) (cf. [13, 7.2] and [12, §2]). Consider

a commutative diagram in Schg

U’ . %4
71 |
/ |5 /]6 ’
U — \%4 o
\ (50
(51 ] W/ B . T/
VIR VA 4
(5.6.1) LT -
W - : 3 T 70 Po
Y Po
2 Wo- 5= 1-- =T
S1 e
2~ ;/o
Wy ———1Ty,
)

where, except for the squares on the left and right sides, all squares are cartesian. Let F € Deons(T)
and G € Deons(Tp). Recall that we have a canonical morphism (cf. (2.1.3))

(5.6.2) CopoFg 1 F " pio'G — i'(F®" pig).

By Lemma 2.3.(2), there is a commutative diagram for the face UW, VT in (5.6.1)

¥cs po, 7, )
51 (i* F @F p18'g) — "2 513! (F @F pyQ)
(56.3) l: b'ClJiki!_’T!&g
C 5o ¥
P EF @ 5tpto'g — T N GEF ®F 8ipiG).
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Let F' = j§F and G’ = s{G. For the face U'W{V'T{ in (5.6.1), we have a commutative diagram

1%
51 Cal?pb,]:/‘g/

51* (i/*F/ ®L pll* 5/!g/) 5i*i/! (]_-/ ®L p6*g/)

(5.6.4) l/: b-C‘L‘Sll*i”_’T”%*
Cst ot 51 5% 51 gt
phsh sk F G

/*5/* ' ®L 5/* /*5/‘g/ 0700 11(5/* /®L 56*776* /)

Lemma 5.7. Consider the commutative diagram (5.6.1). Let F € Deons(T) and G € Deons(Tp). Put
F' = j&F and G' = stG. There is a coherent commutative diagram A' x Al x At — D(U'):

L R F ®F pro'G) — j1OLN(F @F pi0)
P | P
5/1* (i/*]:/ @L pll*dllg/) } 5/1*i/! (]:/ @L pg*g/)
(5.7.1) ¥ J[

/* *5*]:®L .7/1*5Tpi<5 g _____

- TG F ©F 65p59)
4 //

i e T @8 S

In the proof, we will use a result of the exponentiation of cocartesian fibrations [19, Proposition
3.1.2.1]. Let & — C be a cocartesian fibration of co-categories and K a simplicial set. Then

Fun(kK, &) — Fun(kK,C) is a cocartesian fibration. An edge f = f’ in Fun(K, &) is a cocartesian
edge (for the fibration Fun(K, &) — Fun(K,C)) if and only if for any vertex v € K, f(v) ), f(v)
is a cocartesian edge in & (for the fibration & — C).

The following proof is due to Jiangnan Xiong. The main idea is to give a universal characterization
of ¢sp,, 7, by using cocartesian/cartesian edges.

Proof. We recall some standard constructions. By unstraightening D, we have a cocartesian fibration
C? A Corr(gj. In the following, we will denote a correspondence

C—X
(5.7.2) |
Y

simply by ¥ <« C — X. Objects in Corr% are given by (X1, -+, X,) with n = 0 and X; € Schg.
Objects in CS®7A are given by (X1, -+, Xp; F1, -+, Fn) with F; € D(X;). We have an equivalence

(5.7.3) D(X, - ) = ﬁ D(X;).
=1

Let (n) = {,1,---,n}. A morphism (X1,---,X,) — (Y1,---.Y,,) in Corr¥ is given by a map
a :{ny — {(m) with a(*) = = and correspondences
9; c fi=f31) [ x

ica1(j)

(5.7.4) Y;j

for any 1 < j < m. For simplicity, we denote such a morphism by (o, gif*) = (o, (gj1(fji)*)) or by
aif* = (g51(f;i)*). The functor D(gi f*) : ]_[ D(X;) — 1_[ D(Y;) sends (Fi,--- ,Fn) to (Gi, -+ ,Gm)
with

(5.7.5) G; = 930} @ica1(5)F5) = 93t @ita1(jy F:F3)-
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We have a cocartesian edge (for the fibration C? — Corr® g) above g f*
(X17"' 7Xn;F1="' »]:n) - (}/17 7Ym;g1"" 7gm)7
where G; is defined by (5.7.5). If m = n and « : (n) — {m) is the identity, then the functor

(5.7.6) Digf*): [[P(X -—>HD — (gaf Fi)
i=1

admits a right adjoint
(5.7.7) HD(Yi) - HD(Xz‘); (Gi) = (fix9:Gi)-
i=1 i=1

In this case, there is a locally cartesian edge

(X].v“' 7X7L;f1*g!1g17“' 7fn*g;1gn) - (}/17 7}/n;g17“' 7g7l)

above g f* : (X1,---,Xy,) — (Y1,---,Y,) (cf. the dual version of [19, Corollary 5.2.2.5]).

Now we go back to the proof of Lemma 5.7. For convenience, we will use the arrow < (resp. —) to
indicate a locally cartesian edge (resp. cocartesian edge). We first give a universal characterization
of ¢5py,7.g- Indeed, we have a commutative diagram in Corr§ (cf. the square WWoT'Ty in (5.6.1)):

(VTV) (Vf)
(5.7.8) (4,p1)* ) e i
(T, Wo) (id,ér) (T, Tv) (id,po) (T),

where (T, W) —— Lep)¥, (W) is glven by the correspondence W = W —— (r1), s s Wo, (W) — &, (T) is

given by the correspondence T <~ W = W, (T, Wy) —— (id.d), (T, Ty) is given by (T =T =T, Ty g

Wy = W) and (T, Tp) (idipo)®, (T) is given by T'=T ——— (id:po) T x g Tp. The two compositions
(T,Wo) = (W) = (W) = (T) and (T,Wy) — (T,To) — (T)

are both equal to (i, p1)*, i.e., the correspondence T' Ew m T xg Wy. Then we can charac-
terize csp, 7,g by using the following lifting problem over (5.7.8):

(W3 F @ pio'g) - - - - - S - (WM FRE pEG))
(579) cocartesianT - = cartesian

= (T, F @ piG).

Indeed, the lifting ¢ uniquely exists by the property of cocartesian edges (cf. [19, 2.4.1.1]) and
Cs.po,F,G 15 the unique morphism (up to a contractible space) making (5.7.9) commutes by the
property of cartesian edges.

We denote the diagram (5.7.9) by I'ww,rr,- We also have three similar diagrams I'yw,vr,,
Pywwyry and Uynysyiry. Now we prove Lemma 5.7 by constructing these four diagrams simulta-
neously. Here is a brief summary of the notation:

(1) The diagram M : A? — Fun(A! x AL, C®,) (cf. (5.7.12)) realizes the bottom lines of these
four diagrams at the same time. 7

(2) The left (resp. right) vertical arrows of these four diagrams are realized by the diagram
L: Al - Fun(A! x A',CE,) (resp. R: A - Fun(A! x AL, C8))).

(3) The diagram K : Al — Fun(A'! x Al,C? ) realizes the diagonal dashed arrows (cf. ¢ in
(5.7.9)) of these four diagrams.

(T, Wo; F,0'G)—— (T, Ty; F, G)
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(4) The top arrows (cf. c5p, 7,g in (5.7.9)) of these four diagrams are realized by the diagram
F : Al — Fun(A! x Al,CgA) (cf. (5.7.14)). The diagram F determines the required
commutative diagram (5.7.1) by pulling back to U’.

More precisely, let M : A% — Fun(A! x Al, Cgf? ) be the commutative diagram
(T’T07F7g) (T,7T6;F/7g/)

(5.7.10) i i
(V’T0753F7g) _)>(VI7 6756* ,7g/)7

which is above Nj : A? = All} = A2 N Fun(A! x Al Corr(g?), where N is the following diagram:

(id,d1) (id,po)*
(T, Wo) (T, Ty) . (T)
0:1d) 0|
63‘,1 T W! | T 7! | T
( d) ( ) 0) (1d,5,’) | ( ) ()) (id,pg)* | ( )
(5.7.11) (55 id) \'y (5% id) "/
VW)= = — = — =+ = — — — — 1 v o5t
( 0) (id,01) > ( 0) . (id.podo) ™ = (V) 0
m (j(/)*»b‘f)k)\ N k
vV W VT, V).
( ) (id. ) V', o) (id.pyop)* V)

Let No1 = N|a0.1) be the left cubic diagram in (5.7.11) and Nijg = N|aq.2) the right cubic diagram.
We can extend M; (cf. (5.7.10)) to a locally cartesian edge My, : A%} — Fun(A! x Al,CgA)
above Nyi, and extend M, to a cocartesian edge Mo : AL2H Fun(A® x AI,CS(?A) above Nips.
Now My and Mis give a diagram A? — Fun(A! x Al,C? A), which can be extended to a diagram
M : A? - Fun(A! x A, €, ) as follows

(5.7.12)
(T, Wo; F,8'G)C (T, To; F, G) (T; F ®" p¥0)
— I ~a [ —
(T',w(;;f’,a”g')ﬂ—> (T, Ty 7, G") V (T F' ®F pgFg’)
(V, Wo; 63 F,8'6)& — — — J[ — — — > (V,To; 6¥F,G) — — — —l— — = (V; 65 F @F 6¥p¥g) i
— - o —
(V' W 608 F 6" G ) (V' T; 85¥ F', G") (V' 658 F' @F s0¥pikg’).

Now let H : A2 - Fun(A! x Al, Corr¥) be the following diagram

(4,p1)* iy
(T, W) (W) (T)
(5,sF) | i¥ [ i
\ 5;# | 55% |
(5% i) (T, Wh) — = : (W) a— (1)
7 ,Py ]
(5.7.13) (50% id) ¢ P J{
(VW) = = = = — — —(T;m—l);—>(U):———————71——>(V) P 8
~ - 0
m JE S .
V', We) () (V).

(GEA 6/1)* r
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Note that Nga = Hps (cf. (5.7.8)). In the following, we use the standard notation that A2 (@8, ¢

means a functor f : A2 — C such that flp02 = a, fla2 = 8 and f|yo01 = 7. Let L: Al —
Fun(A! x Al, Cg A) be a cocartesian lifting over Hy; with Ly = My. By the property of cocartesian
edge, A3 (o, Mon, L), Fun(A! x AI,CEA) can be extended to A2 oM, Fun(A'! x Al,CgA) over
H. Let R: A' — Fun(A® x Al,CgA) be a locally cartesian lifting over Hio with Ry = Ms. Then

A3 (BH0), Fun(A! x Al C?_A) can be extended to A2 ARKE),

/ Fun(A' x A, €§,). By construction,
the diagram F is of the following form

(W;i* F @ pfe'g) (Wi (F @" pEa))
T I T
L (VV/; Z-/*]_-I ®L pll*éllg/) | (VV/; i/! (]_-/ ®L p:)*g/))
(5.7.14) |
(Usr*6F F @" 8¥pFs'o) — — — — — — } ————— = (U;r (65 F @ 5§pE9)) L
T T o= s
(U565  F @ 67*py*6" G (U5 (35 F' @ 83*p* ),

which determines the required commutative diagram (5.7.1) by pulling back to U’. Indeed, let
A: Al > Fun(A! x A, Corr®) be the following diagram

gi* ey

(W) - (Ul')
) id
P 1d: \

it (W) — )
(5.7.15) - b
\

O) ===~z =) i

U) - ),

where Ag = H; and A; is the constant functor taking value (U’). Put Fune = Fun(A! x Al,C%?A)
and Fung = Fun(A! x Al, Corr). Consider the covariant transport functor along A

(5.7.16) Ay Fune Xpung {Ao} — Fung xpung {41} = Fun(A! x A D(U")).

The diagram F defines an edge A' — Fung xpung {Ao}. Now let G = A0 F : A — Fun(A! x
A, D(U’)), which defines a diagram A! x A! x Al — D(U’). Unwinding the definitions, G is the
required commutative diagram (5.7.1). O

5.8. We apply Lemma 5.7 to construct the diagram (5.8.6) below, which is crucial for proving the
fibration formula (5.1.1). Consider the diagrams (4.1.1) and (4.2.1). Let j : U = X\Z — X be the
open immersion and F € Dgops(X ). We put

(5.8.1) Mg = RHomx « ;x (pr3F,pry F), Ts = F¥§ Dx/s(F),
(5.8.2) s = RHomyxgu(prsj* F,prij*F), T =j*FR§ Dys(5*F).
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For later convenience, we form the following commutative diagram

) U U
J | j
/|51 /
X | X 54
\ do
5  UxyU-—————|m———=UxgU
(1><.7// | A
(5.8.3) L g 5
f X xy X p | X xg X fixf
] fxf
P B e e e S 724
yz2 Y xgY,

where f' = f|y, ¢’ is the base change of §, ¢ and 0] are the diagonal morphisms. Then we have a
commutative diagram

OIS @ A J*01iTs J*6105Ts
- | e |
5/1*i/*7§ ®L f’*5!A : 5/1*i/17-54 - : 5/1*5A7-§
\ \
: ) GRS Ts ®F jEfHIA - — — |- = = j*55 Ts
5.84 - Loy /2 ev
(56*7;5 QL f’*5!A : (;6*7-5/
\ ev
ev I Kxys QL j*f*0'A - — —|- — = j*Kx/s J*Kxv/s
\ -7 A/:
Kus @ f*6'A Ku/s Kuyyss

where the upper cube is obtained by applying Lemma 5.7 to the diagram (5.8.3), the lower cube is
obtained by applying the following diagram to j*f*§'A ~ f"*§'A LAY

SFTE @ — —— j*0aTs @F —

(5.8.5) lev lev
Kyjs @ — <— j*Kx /s @ —.
Note that the horizontal rows in the top and bottom faces of (5.8.4) are cofiber sequences (cf.

(2.11.1)). The diagram (5.8.4) further induces the following commutative diagram (by the same
reason as in 5.2 or applying the dual version of 5.2 twice):

J*6Fi s J*6F6ATs
o “Z
SFITE —————— §F 6B TS l
(5.8.6) Y
T Kxs - - —l— - = J*Kx/v/s
7~ “Z
Ku;s Kuyy/s-

5.9. Using the 6-functor formalism D : Corr%) — Catg, we can extend the definitions of Cx/g (cf.
(3.7.4) and (5.9.1)) and C)Z(/Y/S (cf. 4.5 and (5.9.5)) to objects in Deops(X ) satisfying universal local
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acyclicity conditions*. We can also enhance the functor 6* (cf. 2.11) and upgrade (4.2.5) to be a
cofiber sequence in D(X). Some diagrams in Section 2 and Section 3 can be upgraded to coherent
commutative diagrams in stable co-categories, for example, (3.13.9) and (4.10.1).

In the following, we assume the conditions (C1) and (C2) in 4.1 hold. We fix an object F €
Deons(X) such that X\Z — Y is universally locally acyclic relatively to F|x\, and that X — S is
universally locally acyclic relatively to F. By the assumptions on F, we have morphisms C'y /S(]-' E
A — Kx/s and Cyy(F) : A — Kyjy. More precisely, the morphism Cx /g(F) is defined by the
following composition®

(5.9.1) A Rom(F, F) L2 g CD ST 55T <5 K

Let Cx/y/s(F) be the following composition (cf. (4.10.1))

(5.92) A= Hs < 0hTs = 61i'Ts — 01i'Ty — 676Ty 25 6863 Ts <> 64K x5 = Kx v /s

L . ... Cx/s(F) (4.2.5) ..
which is equivalent to the composition A Kx/s Kxy/s- Similar for Cyjy/g(F) :=
Cujy/s(Flu). We have a commutative diagram
A Jel G0 GATE ~ 0
(5.9.3) CX/Y/s(f)l CU/Y/S(«HU)l/ /

Kxyys J+Ku v s

where 51*5A7'5’v ~ (0 by (2.7.4) since U — Y is universally locally acyclic relatively to F|y. Applying
| . Dk Ny . .
ToT — id = j,7* to (5.9.2), we get a commutative diagram between cofiber sequences

ToT A A g\
TeT 67 T 5Fi'Ts x0T i TS

(5.9.4) | ! |

T*T!5T5A7fg — 5{‘5”7'5 —>j*5£*5A7g ~(

l l l

T Kx v s —= Kx)v)s J:Kv )y /s-

Note that the non-acyclicity class C% Iy /S(}" ) is the composition (cf. 4.5)

(5.9.5) A = 85i'Tg — 6765 Ts < 176762 Ts — 7' Kx v s
and (5.9.4) gives the following commutative diagram between cofiber sequences
(5.9.6) C)Zc/Y/s(]:)l \LCX/Y/S(]:) l

7T Kx v s —= Kxpvjs — 3+Ku v )s-

AL et C? A Corr? be the unstraightening of D : Corr? — Cate. A morphism X — S is universally locally acyclic
relatively to an object F € Deons(X) if and only if (X, F) is dualisable in the symmetric monoidal co-category C? A
(cf. [18, Theorem 2.16] and [12, Definition 3.2]).

5In an oo-category, the composition of two maps is well-defined up to a contractible space.
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More precisely, it is given as follows

CZ 1y 5 (F) l l \ =
(5.9.7) T*T!c?féATg — 51“5A’T5 j*5i*5ATé
od. l ﬁ
T Kxyyis — Kxjyys > 1+Ku vy )s,

where f is the homotopy defined by the right squares in (5.9.4), « is the homotopy determined by
the isomorphism j,d1*62 T2 ~ 0.

5.10. Proof of Theorem 5.1. Let F € Deons(X) such that the conditions (C1)-(C3) in 4.1 hold.
Consider the notation in 4.1. Consider the diagram (5.8.3). Applying 747 — id — j.j* to the
following commutative diagram (cf. (4.10.1))

A

I

(5.10.1) §F08Ts <—— 0Fi'Ts

| I

Kxys <=— Kx/ss

we get a commutative diagram between cofiber sequences

T A A JelA
T 671 Ts 5Fi'Ts 30y " TS

(5.10.2) T T 0 5A TS = 0708 Tg ————— 01 02T ~ 0
|
Y Y
T Kggs——--F-=->Kxs———-—-—|- - -~ > j«Ky/s
I P s . /
T Kx /v /s Kxvs J+Ku v s,

where the right diagram is obtained from the fact that j,j*(5.10.1) is isomorphic to the rightmost
face by (5.8.6). By the construction of the non-acyclicity class C')Z(/WS (5.9.6) and (5.10.2), we get
a coherent commutative diagram

K7y Kxpy Jekvpy
Cuyy
(5.10.3) 7K z)s CX//S Kxis===F—~ = Jxkuys
. . | /
| C,
A | A U/s
Al
X rvs T Kxpyys == = === Kxyyys = = = 1 = = = 3«Kupvys
XY
A / AZ - 5X/Y/s 0 /

Applying Lemma 5.5 to the above diagram, we get the fibration formula (5.1.1).



