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Abstract. Let f : X Ñ S be a morphism between smooth schemes over a perfect field k. Let F be
a constructible sheaf on X and Z a closed subscheme of X such that f is SSpFq-transversal outside
Z. We construct a class supported on the non-transversality locus Z by using the characteristic
cycle CCpFq defined by T.Saito. This class is a geometric counterpart of the non-acyclicity class
introduced by the second author and Zhao in [15]. Under certain conditions, the formation of this
class is compatible with base change and proper push-forward. It also satisfies the Milnor formula
proved by Saito and a conductor formula. We conjecture that the image of this class under the
cycle class map is the non-acyclicity class. This conjecture can be viewed as a (relative version of)
Milnor type formula for non-isolated singularities.

We expect that this class can be lifted to a cycle supported on the cotangent bundle of X. For
this, we introduce the singular support of F relatively to a morphism f : X Ñ S. When f “ id,
this goes back to Beilinson’s definition of singular supports.
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1. Introduction

1.1. Let k be a perfect field of characteristic p ą 0 and S “ Speck. Let Λ be a finite field of
characteristic ` ‰ p. Let X be a smooth scheme over S and f : X Ñ Y a flat morphism of finite
type to a smooth curve Y over S. If f has an isolated singularity at a closed point x0 P |X|, there
is an invariant µpX{Y, x0q supported on x0, called the Milnor number. The Milnor formula [4,
Théorème 2.4] proved by Deligne says that the Milnor number is related to the total dimension at
x0 of the vanishing cycles RΦpf,Λq of f for the constant sheaf Λ, i.e.,

p´1qnµpX{Y, x0q “ ´dimtotRΦx0pf,Λq,(1.1.1)
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where n “ dimX and dimtot “ dim`Sw denotes the total dimension. Later in [5], Deligne proposed
a Milnor formula for any constructible sheaf F of Λ-modules on X, which is realized and proved by
Saito in [11]. If x0 P |X| is at most an isolated characteristic point of f with respect to the singular
support of F , then Saito’s theorem [11, Theorem 5.9] says

pCCpFq, dfqT˚X,x0 “ ´dimtotRΦx0pf,Fq,(1.1.2)

where CCpFq is the characteristic cycle of F . Now we propose the following question:

Question 1.2. Is there a Milnor type formula for non-isolated singular/characteristic points?

1.3. If f is a projective flat morphism and if f is smooth outside f´1pyq for a closed point y of the
curve Y , then the conductor formula of Bloch (cf. [12, Theorem 2.2.3 and Corollary 2.2.4])

´aypRf˚Λq “ p´1qnpX,XqT˚X,Xy “ p´1qndegcXn,XypΩ
1
X{Y q X rXs(1.3.1)

gives a partial answer to the Question 1.2. We view (1.1.1), (1.1.2) and (1.3.1) in the form

degpgeometric class on singular locusq “ degpcohomology class on singular locusq.(1.3.2)

We expect the equality holds without taking degree, i.e.,

clpgeometric classq “ cohomology class,(1.3.3)

where cl is the cycle class map. In the paper [15], the second author with Yigeng Zhao introduce a
(cohomological) non-acyclicity class which is supported on non-acyclicity locus. Let Y be a smooth
scheme over k and X Ñ Y a separated morphism between schemes of finite type over k. Let
Z Ď X be a closed subscheme and F P DctfpX,Λq such that XzZ Ñ Y is universally locally

acyclic relatively to F |XzZ . Then the cohomological non-acyclicity class rCZX{Y {kpFq is a class in

H0
ZpX,KX{Y {kq, where KX{Y {k sits in a distinguished triangle

KX{Y Ñ KX{k Ñ KX{Y {k
`1
ÝÝÑ .(1.3.4)

In this paper, we construct the geometric counterpart of the non-acyclicity class rCZX{Y {kpFq. More

precisely, when X Ñ Y is a morphism between smooth schemes over k such that X Ñ Y is
SSpFq-transversal outside Z, then we construct a class ccZX{Y {kpFq P CH0pZq (cf. (3.10.5)), called

the geometric non-acyclicity class of F . If moreover dimZ ă dimY , then we have the following
fibration formula (3.10.5)

ccX{kpFq “ cdimYpf
˚Ω1,_

Y {kq X ccX{Y pFq ` cc
Z
X{Y {kpFq.(1.3.5)

Under certain conditions, we prove that the formation of the geometric non-acyclicity class ccZX{Y {kpFq
is compatible with pullback (3.18.2) and proper push-forward (3.20.1). It also satisfies the Milnor
formula (3.12.1) and a conductor formula (3.21.1). It is natural to expect the following conjecture
holds:

Conjecture 1.4 (Conjecture 3.13). We have

rCZX{Y {kpFq “ rclpccZX{Y {kpFqq in H0
ZpX,KX{Y {kq,(1.4.1)

where rcl : CH0pZq
cl
ÝÑ H0

ZpX,KX{kq
(1.3.4)
ÝÝÝÝÑ H0

ZpX,KX{Y {kq and cl is the cycle class map.

We hope (1.4.1) gives a formulation of Question 1.2 in some sense.
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Municipal Natural Science Foundation (Grant No.QY23005)
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Notation and Conventions.

(1) Let S be a Noetherian scheme and SchS the category of separated schemes of finite type
over S.

(2) Let Λ be a Noetherian ring such that mΛ “ 0 for some integer m invertible on S unless
otherwise stated explicitly.

(3) For any scheme X P SchS , we denote by DctfpX,Λq the derived category of complexes of
Λ-modules of finite tor-dimension with constructible cohomology groups on X.

(4) For any separated morphism f : X Ñ Y in SchS , we use the following notation

KX{Y “ Rf !Λ, DX{Y p´q “ RHomp´,KX{Y q.

(5) For F P DctfpX,Λq and G P DctfpY,Λq on S-schemes X and Y respectively, F bL
S G denotes

pr˚1F bL pr˚2G on X ˆS Y .
(6) To simplify our notation, we omit to write R or L to denote the derived functors unless

otherwise stated explicitly or for RHom.

2. Transversality condition

2.1. We recall the (cohomological) transversality condition introduced in [15, 2.1], which is a
relative version of the transversality condition studied by Saito [11, Definition 8.5]. Consider the
following cartesian diagram in SchS :

X

lp

��

i // Y

f

��
W

δ // T.

(2.1.1)

Let F P DctfpY,Λq and G P DctfpT,Λq. Let cδ,f,F ,G be the composition

cδ,f,F ,G : i˚F bL p˚δ!G idbb.c
ÝÝÝÝÑ i˚F bL i!f˚G
adj
ÝÝÑ i!i!pi

˚F bL i!f˚Gq
proj.formula
ÝÝÝÝÝÝÝÑ

»
i!pF bL i!i!f˚Gq

adj
ÝÝÑ i!pF bL f˚Gq.

(2.1.2)

We put cδ,f,F :“ cδ,f,F ,Λ : i˚F bL p˚δ!Λ Ñ i!F . If cδ,f,F is an isomorphism, then we say that the
morphism δ is F-transversal. If ci,id,F is an isomorphism, then we say i is F-transversal.

By [15, 2.11], there is a functor δ∆ : DctfpY,Λq Ñ DctfpX,Λq such that for any F P DctfpY,Λq,
we have a distinguished triangle

i˚F bL p˚δ!Λ
cδ,f,F
ÝÝÝÑ i!F Ñ δ∆F `1

ÝÝÑ .(2.1.3)

Then δ is F-transversal if and only if δ∆pFq=0 (cf. [15, Lemma 2.12]).
The following lemma gives an equivalence characterization between transversality condition and

(universally) locally acyclicity condition.

Lemma 2.2. Let f : X Ñ S be a morphism of finite type between Noetherian schemes and F P

DctfpX,Λq. The following conditions are equivalent:

(1) The morphism f is locally acyclic relatively to F .
(2) The morphism f is universally locally acyclic relatively to F .
(3) For any G P DctfpX,Λq, the canonical map

DX{SpGqbL F ÝÑ RHomXˆSXppr˚1G, pr!
2Fq(2.2.1)
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is an isomorphism in DctfpX ˆS X,Λq, where pr1 : X ˆS X Ñ X and pr2 : X ˆS X Ñ X
are the projections.

(4) The canonical map

DX{SpFqbL F ÝÑ RHomXˆSXppr˚1F ,pr!
2Fq(2.2.2)

is an isomorphism.
(5) For any cartesian diagram between Noetherian schemes

Y ˆS X

pr1

��

pr2 // X

f

��
Y

δ
// S

l(2.2.3)

the morphism δ is F-transversal.
(6) For any cartesian diagram (2.2.3) and any G P DctfpS,Λq, the morphism cδ,f,F ,G is an

isomorphism.
(7) For any cartesian diagram between Noetherian schemes

Y ˆS X

pr1

��

pr2 //

l

X 1

f 1

��

//

l

X

f

��
Y

δ
// S1 // S,

(2.2.4)

the morphism δ is F |X 1-transversal.
(8) For any cartesian diagram (2.2.4) and any G P DctfpS

1,Λq, the morphism cδ,f 1,F |X1 ,G is an
isomorphism.

When S is a scheme of finite type over a field k, then the equivalence between (2) and (7) follows
from [15, Proposition 2.4.(2) and Proposition 2.5]. In this case, we may require Y and S1 smooth
over k in (7).

Proof. By a result of Gabber [9, Corollary 6.6], (1) and (2) are equivalent. The equivalence between
(2),(3) and (4) follows from [10, Proposition 2.5, Lemma 2.14, Theorem 2.16]. By [15, Proposition
2.4.(2)], (2) implies (6). It is clear that (6) implies (5).

Now we show (5) implies (1). Since δ is F-transversal, we have an isomorphism

KY {S bL F »
ÝÑ pr!

2F .(2.2.5)

By the projection formula, for any proper morphism g : Y 1 Ñ Y , the following canonical morphism

g!g
!KY {S bL F »

ÝÑ pg ˆ idq!pg
!KY {S bL Fq(2.2.6)

is an isomorphism. If g : Y 1 Ñ Y is an open immersion with closed complementary τ : Z “ Y zY 1 Ñ
Y , we have a commutative diagram between distinguished triangles

τ!τ
!KY {S bL F //

»(2.2.6)

��

KY {S bL F //

»

��

g˚g
˚KY {S bL F

��

`1 //

pτ ˆ idq!pτ
!KY {S bL Fq //

»(2.2.5)

��

KY {S bL F // pg ˆ idq˚pg
˚KY {S bL Fq

»

��
pτ ˆ idq!pτ ˆ idq!pKY {S bL Fq // KY {S bL F // pg ˆ idq˚pg ˆ idq˚pKY {S bL Fq `1 // .

(2.2.7)
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Thus

g˚g
˚KY {S bL F Ñ pg ˆ idq˚pg

˚KY {S bL Fq(2.2.8)

is an isomorphism. Now we show that for any H P DctfpY,Λq, the canonical morphism

DY {SpHqbL F ÝÑ RHomppr˚1H,pr!
2Fq(2.2.9)

is an isomorphism. We may assume H “ j!Λ for j : U Ñ Y étale with U affine. Then (2.2.9) is
equivalent to the following composition

j˚j
˚KY {S bL F ÝÑ pj ˆ idq˚pj

˚KY {S bL Fq (2.2.5)
ÝÝÝÝÑ
»

pj ˆ idq˚pj ˆ idq˚pr!
2F .(2.2.10)

We show j˚j
˚KY {S b F ÝÑ pj ˆ idq˚pj

˚KY {S b Fq is an isomorphism. We write j as a composition
of a proper morphism and an open immersion. Then we may further assume that j is an open
immersion. This is okay by (2.2.8). Thus (2.2.9) is an isomorphism. By [10, Theorem 2.16], the
morphism f : X Ñ S is (universally) locally acyclic relatively to F .

We show (2) implies (8). By assumption, f 1 is also universally locally acyclic relatively to F |X 1 .
Thus by (6), the morphism cδ,f 1,F |X1 ,G is an isomorphism.

Finally, it is clear that (8) implies (7) and (7) implies (5). �

2.3. Now we recall the geometric transversality condition (cf. [1, 1.2] and [11, Definition 7.1 and
Definition 5.3]). Let X be a smooth scheme over a field k. Let C be a conical closed subset of T ˚X,
i.e., a closed subset which is stable under the action of the multiplicative group Gm. We denote by
T ˚XX Ď T ˚X the zero section of the cotangent bundle T ˚X of X.

(1) Let h : W Ñ X be a morphism from a smooth scheme W over k. We say that h is C-
transversal if the fiber pCˆXW qXdh

´1pT ˚WW q is contained in the zero-section T ˚XXˆXW Ď

T ˚X ˆX W , where dh : T ˚X ˆX W Ñ T ˚W is the canonical map.
(2) Assume that X and C are purely of dimension d and that W is purely of dimension m.

We say that a C-transversal map h : W Ñ X is properly C-transversal if every irreducible
component of C ˆX W is of dimension m.

(3) We say that a morphism f : X Ñ Y to a smooth scheme Y over k is C-transversal if the
inverse image df´1pCq is contained in the zero-section T ˚Y Y ˆY X Ď T ˚Y ˆY X, where
df : T ˚Y ˆY X Ñ T ˚X is the canonical map.

The cohomological transversality condition and geometric transversality condition are related as
follows. Let X be a smooth scheme of purely dimension d and Λ a finite local ring such that
the characteristic ` of the residue field of Λ is invertible in k. Let F P DctfpX,Λq. The singular
support SSpFq defined by Beilinson [1] is a d-dimensional conical closed subset of T ˚X. We have
the following properties:

(1) SSpFq X T ˚XX “ supppFq.
(2) Let f : X Ñ Y be a morphism to a smooth scheme Y over k. If f is SSpFq-transversal,

then f is universally locally acyclic relatively to F .
(3) Let f : W Ñ X be a morphism from a smooth scheme W over k. If f is SSpFq-transversal,

then f is F-transversal.

Now assume k is a perfect field. By [11, Theorem 5.9 and Theorem 5.19], the characteristic cycle
CCpFq is the unique d-cycle CCpFq supported on SSpFq with Z-coefficients such that CCpFq
satisfies the Milnor formula (1.1.2) for F .
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3. Geometric non-acyclicity classes

3.1. Let S be a Noetherian scheme and Λ a Noetherian ring such that mΛ “ 0 for some integer m
invertible on S. Consider the following cartesian diagram in SchS

X ˆS Y

pr2

��

pr1 //

l

X

h

��
Y

g // S,

(3.1.1)

where pr1 and pr2 are the projections. For any F P DctfpX,Λq and G P DctfpY,Λq, we have canonical
morphisms

F bL
S KY {S “ pr˚1F bL pr˚2g

!Λ
cg,h,F
ÝÝÝÝÑ pr!

1F ,(3.1.2)

F bL
S DY {SpGq Ñ RHomXˆSY ppr˚2G,pr!

1Fq,(3.1.3)

where (3.1.3) is adjoint to

F bL
S pDY {SpGq bL Gq idbev

ÝÝÝÑ F bL
S KY {S

(3.1.2)
ÝÝÝÝÑ pr!

1F .(3.1.4)

Note that (3.1.2) is a special case of (3.1.3) by taking G “ Λ. If moreover X Ñ S is universally
locally acyclic relatively to F , then (3.1.3) is an isomorphism by (2.2.9). For a morphism c “
pc1, c2q : C Ñ X ˆS Y , we have a canonical isomorphism by [3, Corollaire 3.1.12.2]

RHompc˚2G, c!
1Fq

»
ÝÑ c!RHomppr˚2G, pr!

1Fq.(3.1.5)

3.2. Consider a commutative diagram in SchS :

Z �
� τ // X

f //

h ��

Y,

g��
S

(3.2.1)

where τ : Z Ñ X is a closed immersion and g is a smooth morphism. Let i : X ˆY X Ñ X ˆS X
be the base change of the diagonal morphism δ : Y Ñ Y ˆS Y :

X

f

��

_�

δ1
��

l

X_�

δ0
��

X ˆY X
i //

p

��

// X ˆS X

fˆf

��
Y

δ // Y ˆS Y,

l

(3.2.2)

where δ0 and δ1 are the diagonal morphisms. Put KX{Y {S :“ δ∆KX{S » δ˚1 δ
∆δ0˚KX{S . By (2.1.3),

we have the following distinguished triangle (see also [15, (4.2.5)])

KX{Y Ñ KX{S Ñ KX{Y {S
`1
ÝÝÑ .(3.2.3)

Let F P DctfpX,Λq such that XzZ Ñ Y is universally locally acyclic relatively to F |XzZ and that
h : X Ñ S is universally locally acyclic relatively to F . We put

HS “ RHomXˆSXppr˚2F , pr!
1Fq, TS “ F bL

S DX{SpFq.(3.2.4)
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The relative cohomological characteristic class CX{SpFq is the composition (cf. [15, 3.1])

Λ
id
ÝÑ RHompF ,Fq (3.1.5)

ÝÝÝÝÑ
»

δ!
0HS

(3.1.3)
ÐÝÝÝÝ
»

δ!
0TS ÝÑ δ˚0TS

ev
ÝÑ KX{S .(3.2.5)

By the assumption on F , δ˚1 δ
∆TS is supported on Z by [15, 4.4]. The non-acyclicity class rCZX{Y {SpFq

is the composition (cf. [15, Definition 4.6])

Λ Ñ δ!
0HS

»
ÐÝ δ!

0TS » δ!
1i

!TS ÝÑ δ˚1 i
!TS Ñ δ˚1 δ

∆TS
»
ÐÝ τ˚τ

!δ˚1 δ
∆TS Ñ τ˚τ

!KX{Y {S .(3.2.6)

If the following condition holds:

H0pZ,KZ{Y q “ 0 and H1pZ,KZ{Y q “ 0(3.2.7)

then the map H0
ZpX,KX{Sq

(3.2.3)
ÝÝÝÝÑ H0

ZpX,KX{Y {Sq is an isomorphism. In this case, the class
rCZX{Y {SpFq P H

0
ZpX,KX{Y {Sq defines an element of H0

ZpX,KX{Sq, which is denoted by CZX{Y {SpFq.
Now we summarize the functorial properties for the non-acyclicity classes (cf. [15, Theorem 1.9,
Proposition 1.11, Theorem 1.12, Theorem 1.14]).

Proposition 3.3. Let us denote the diagram (3.2.1) simply by ∆ “ ∆Z
X{Y {S and rCZX{Y {SpFq by

C∆pFq. Let F P DctfpX,Λq. Assume that Y Ñ S is smooth, XzZ Ñ Y is universally locally acyclic
relatively to F |XzZ and that X Ñ S is universally locally acyclic relatively to F .

(1) pFibration formulaq If H0pZ,KZ{Y q “ H1pZ,KZ{Y q “ 0, then we have

CX{SpFq “ crpf
˚Ω1,_

Y {Sq X CX{Y pFq ` C∆pFq in H0pX,KX{Sq.(3.3.1)

(2) pPull-backq Let b : S1 Ñ S be a morphism of Noetherian schemes. Let ∆1 “ ∆Z1

X 1{Y 1{S1 be the

base change of ∆ “ ∆Z
X{Y {S by b : S1 Ñ S. Let bX : X 1 “ X ˆS S

1 Ñ X be the base change

of b by X Ñ S. Then we have

b˚XC∆pFq “ C∆1pb
˚
XFq in H0

Z1pX
1,KX 1{Y 1{S1q,(3.3.2)

where b˚X : H0
ZpX,KX{Y {Sq Ñ H0

Z1pX
1,KX 1{Y 1{S1q is the induced pull-back morphism.

(3) pProper push-forwardq Consider a diagram ∆1 “ ∆Z1

X 1{Y {S. Let s : X Ñ X 1 be a proper

morphism over Y such that Z Ď s´1pZ 1q. Then we have

s˚pC∆pFqq “ C∆1pRs˚Fq in H0
Z1pX

1,KX 1{Y {Sq,(3.3.3)

where s˚ : H0
ZpX,KX{Y {Sq Ñ H0

Z1pX
1,KX 1{Y {Sq is the induced push-forward morphism.

(4) pCohomological Milnor formulaq Assume S “ Speck for a perfect field k of characteristic
p ą 0 and Λ is a finite local ring such that the characteristic of the residue field is invertible
in k. If Z “ txu, then we have

C∆pFq “ ´dimtotRΦx̄pF , fq in Λ “ H0
xpX,KX{kq,(3.3.4)

where RΦpF , fq is the complex of vanishing cycles and dimtot “ dim ` Sw is the total
dimension.

(5) pCohomological conductor formulaq Assume S “ Speck for a perfect field k of characteristic
p ą 0 and Λ is a finite local ring such that the characteristic of the residue field is invertible
in k. If Y is a smooth connected curve over k and Z “ f´1pyq for a closed point y P |Y |,
then we have

f˚C∆pFq “ ´aypRf˚Fq in Λ “ H0
y pY,KY {kq,(3.3.5)

where aypGq “ rankG|η̄ ´ rankGȳ ` SwyG is the Artin conductor of an object G P DctfpY,Λq
at y and η is the generic point of Y .
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The formation of non-acyclicity classes is also compatible with specialization maps (cf. [15,
Proposition 4.17]).

3.4. Let X be a smooth connected curve over k. Let F P DctfpX,Λq and Z Ď X be a finite set of
closed points such that the cohomology sheaves of F |XzZ are locally constant. By the cohomological
Milnor formula (3.3.4), we have the following (motivic) expression for the Artin conductor of F at
x P Z

axpFq “ dimtotRΦx̄pF , idq “ ´CtxuU{U{kpF |U q,(3.4.1)

where U is any open subscheme of X such that U X Z “ txu. By (3.3.1), we get the following
cohomological Grothendieck-Ogg-Shafarevich formula (cf. [15, Corollary 6.6]):

CX{kpFq “ rankF ¨ c1pΩ
1,_
X{kq ´

ÿ

xPZ

axpFq ¨ rxs in H0pX,KX{kq.(3.4.2)

Here we give a new proof of (3.4.1) by using Gabber-Katz extension (cf. [8]). For simplicity, we

assume Z “ txu and k is algebraically closed. Since the formation C
txu
X{X{kpFq is etale local around

x, we may assume there is an etale morphism f : X Ñ P1
k such that fpxq “ 8. Let G be the

Gabber-Katz extension of F |Xpx̄q to Gm. Then G is smooth on Gm, tamely ramified at 0 P A1
k and

G|Xpx̄q » F |Xpx̄q . Let A “ P1
kzt0u. We have C

txu
X{X{kpFq “ C

t8u

A{A{kpGq. By the formula (3.3.1) and

the Grothendieck-Ogg-Shafarevich formula for P1, we get

´C
t8u

A{A{kpGq ´ C
t0u

A1
k{A

1
k{k
pGq “ a8pGq ` a0pGq.(3.4.3)

We only need to show: ´C
t0u

A1
k{A

1
k{k
pGq “ a0pGq. Replacing G by the Gabber-Katz extension of

G|A1
k,p0̄q

, we may assume G is a smooth sheaf on Gm such that G is tamely ramified at 0 and 8. We

may further assume G0̄ “ G8̄ “ 0. By the formula (3.3.1) and the Grothendieck-Ogg-Shafarevich
formula for P1, we get

´2C
t0u

A1
k{A

1
k{k
pGq “ 2a0pGq “ 2rankG,(3.4.4)

which implies ´C
t0u

A1
k{A

1
k{k
pGq “ a0pGq “ rankG. This finishes the proof of (3.4.2).

3.5. Now we start to construct and prove a geometric counterpart of Proposition 3.3. Let k be a
perfect field of characteristic p and Λ be a finite local ring whose residue field is of characteristic
` ‰ p. Let Smk be the category of smooth schemes over k. Let S be a smooth connected scheme
of dimension s over k. Let f : X Ñ S be a morphism in Smk. Let F P DctfpX,Λq such that f is
SSpFq-transversal. Consider the following morphisms

X
0
ÝÑ T ˚S ˆS X

df
ÝÑ T ˚X,(3.5.1)

where 0 stands for the zero section. By assumption, df´1pSSpFqq is contained in 0pXq. We define
the relative characteristic class of F to be the following s-cycle class on X:

ccX{SpFq :“ p´1qs ¨ pdfq!pCCpFqq in CHspXq,(3.5.2)

where pdfq! is the refined Gysin pullback. We don’t know how to define ccX{SpFq if one only
assume f is universally locally acyclic relatively to F . When f is a smooth morphism, then we have
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a cartesian diagram

T ˚S ˆS X
df //

��
l

T ˚X

��
X

0X{S

// T ˚pX{Sq.

(3.5.3)

In this case, we have ccX{SpFq “ p´1qs ¨ 0!
X{SpCCpFqq (cf. [14, Definition 2.11]). If f is a smooth

morphism of relative dimension r and if F is locally constant, then we have

ccX{SpFq “ p´1qs ¨ 0!
X{Spp´1qdimX ¨ rankF ¨ rXsq “ rankF ¨ crpΩ1,_

X{Sq X rXs.(3.5.4)

We propose the following conjecture:

Conjecture 3.6. Let S be a smooth connected scheme of dimension s over k. Let f : X Ñ S be a
morphism in Smk. Let F P DctfpX,Λq such that f is SSpFq-transversal. Then we have

clpccX{SpFqq “ CX{SpFq in H0pX,KX{Sq,(3.6.1)

where cl : CHspXq Ñ H0pX,KX{Sq is the cycle class map.

When S “ Speck, then it is Saito’s conjecture [11, Conjecture 6.8.1], which is proved under
quasi-projective assumption in [15, Theorem 1.3]. When f : X Ñ S is a smooth morphism, then
(3.6.1) is true for a locally constant constructible (flat) sheaf F of Λ-modules. Indeed, this follows
from (3.5.4), [15, Lemma 3.3] and (3.3.1).

Question 3.7. How to define a relative cycle class map from groups of relative cycle classes to
H0pX,KX{Sq? It is interesting to see whether ccX{SpFq is a relative cycle class over S. Is there a
canonical way to lift ccX{SpFq to a relative cycle (other than a class)?

3.8. Consider a commutative diagram in Smk:

Z �
� τ // X

f //

h ��

Y

g
��

S

,

(3.8.1)

where τ : Z Ñ X is a closed immersion, g is a smooth morphism of relative dimension r and
s “ dimS. Let F P DctfpX,Λq such that XzZ Ñ Y is SSpF |XzZq-transversal and that X Ñ S is
SSpFq-transversal. We have a commutative diagram on vector bundles

X

l

��

X

0
��

T ˚S ˆS X

��

dgX //

l

T ˚Y ˆY X

��

df // T ˚X

T ˚S ˆS Y
dg //

��
l

T ˚Y

��
Y

0 // T ˚pY {Sq,

(3.8.2)
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where dgX is the base change of dg. By assumption, df´1pSSpFqq is supported on 0pXqYT ˚Y ˆY Z
and dh´1pSSpFqq “ dgX

´1df´1pSSpFqq is contained in the zero section 0pXq Ď T ˚SˆSX. Consider
the following class on df´1pSSpFqq X pT ˚Y ˆY Zq

df !pCCpFqq|T˚YˆY Z :“ ppT ˚Y ˆY Xq ¨ CCpFqqdf
´1pSSpFqqXpT˚YˆY Zq,(3.8.3)

which is the part of df !pCCpFqq supported on df´1pSSpFqqXpT ˚Y ˆY Zq (cf. [6, P.95]). We define
the geometric non-acyclicity class ccZX{Y {SpFq of F to be

ccZX{Y {SpFq :“ p´1qs ¨ dg!
Xpdf

!pCCpFqq|T˚YˆY Zq in CHspZq.(3.8.4)

Remark 3.9. If Z “ X, then ccZX{Y {SpFq “ ccX{SpFq.

3.10. Assume moreover that dimZ ă r` s. Then the restriction map CHr`spXq
»
ÝÑ CHr`spXzZq

is an isomorphism. In this case, we define the relative characteristic class ccX{Y pFq to be

ccX{Y pFq :“ ccXzZ{Y pF |XzZq in CHr`spXq,(3.10.1)

which is also equal to p´1qr`s ¨ ppT ˚Y ˆY Xq ¨CCpFqq0pXq, which is the part of p´1qr`s ¨ df !CCpFq
supported on 0pXq. Then we have

p´1qs ¨ df !pCCpFqq “ p´1qr ¨ ccX{Y pFq ` p´1qs ¨ df !pCCpFqq|T˚YˆY Z .(3.10.2)

Applying dg!
X to the above formula, we get

ccX{SpFq “ p´1qr ¨ dg!
XccX{Y pFq ` ccZX{Y {SpFq in CHspXq.(3.10.3)

By the excess intersection formula [6, Theorem 6.3], we have

p´1qr ¨ dg!
XccX{Y pFq “ crpf

˚Ω1,_
Y {Sq X ccX{Y pFq.(3.10.4)

Thus if dimZ ă r ` s, then we have

ccX{SpFq “ crpf
˚Ω1,_

Y {Sq X ccX{Y pFq ` cc
Z
X{Y {SpFq.(3.10.5)

In particular, if Z is empty, then we have

ccX{SpFq “ crpf
˚Ω1,_

Y {Sq X ccX{Y pFq.(3.10.6)

Remark 3.11. Assume that X Ñ S is smooth of relative dimension r and that XzZ Ñ Y is
smooth of relative dimension n (n ă r). Then Ω1

X{Y is locally free of rank n on XzZ and we have

the localized Chern classes cXi,ZpΩ
1
X{Y q for i ą n (cf. [2, Section 1]). By [12, Lemma 2.1.4], we have

ccZX{Y {SpΛq “ p´1qrcXr,ZpΩ
1
X{Y q X rXs in CHspZq.(3.11.1)

Theorem 3.12 (Saito’s Milnor formula). Assume S “ Speck. Let X be a smooth scheme over
S and f : X Ñ Y “ A1

k a separated morphism. Let x be a closed point of X and Z “ txu. Let
F P DctfpX,Λq such that f is SSpFq-transversal outside Z. Then we have

ccZX{Y {SpFq “ ´dimtotRΦx̄pF , fq in Z “ CH0ptxuq.(3.12.1)

Proof. By [13, (3.4.5.4)-(3.4.5.5)], we have ccZX{Y {SpFq “ pCCpFq, dfqT˚X,x ¨ rxs. Now the result

follows from Saito’s Milnor formula [11, Theorem 5.9]. �

We expect the following Milnor type formula for non-isolated singular/characteristic points holds.
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Conjecture 3.13. Let S be a smooth connected k-scheme of dimension s. Consider the commu-
tative diagram (3.8.1). Let F P DctfpX,Λq such that XzZ Ñ Y is SSpF |XzZq-transversal and that
X Ñ S is SSpFq-transversal. Then we have an equality

rCZX{Y {SpFq “ rclpccZX{Y {SpFqq in H0
ZpX,KX{Y {Sq,(3.13.1)

where rcl is the composition CHspZq
cl
ÝÑ H0

ZpX,KX{Sq
(3.2.3)
ÝÝÝÝÑ H0

ZpX,KX{Y {Sq.

When S “ Speck, Y “ A1
k and Z “ txu, then Conjecture 3.13 follows from Saito’s Milnor formula

(3.12.1) and the cohomological Milnor formula (3.3.4).

When Z “ X, then rCZX{Y {SpFq “ CX{SpFq in H0pX,KX{Y {Sq and ccZX{Y {SpFq “ ccX{SpFq in

CHspXq. In this case, (3.13.1) is a weak version of Conjecture 3.6.

Remark 3.14. Let f : X Ñ Y be a separated morphism between smooth schemes over k. Let
Z Ď X be a closed subset and F P DctfpX,Λq. Assume that f is universally locally acyclicity
outside Z. Let n “ dimX. We expect that there is a n-cycle CCZX{Y pFq supported on T ˚X ˆX Z

such that

clp0!
XCC

Z
X{Y pFqq “ rCZX{Y {kpFq in H0

ZpX,KX{Y {kq.(3.14.1)

If Y is a smooth curve and Z is a finite set of closed points of X, then

CCZX{Y pFq “ ´
ÿ

xPZ

dimtotRΦx̄pF , fq ¨ rT ˚xXs.(3.14.2)

If f “ id and Z is the smallest closed subset of X such that F |XzZ is smooth, then

CCZX{Y pFq “ CCpFq ´ rankF ¨ CCpΛq.(3.14.3)

In order to construct CCZX{Y pFq, we will introduce f -singular support (singular support with respect

to a morphism f : X Ñ Y ). When f is the identity morphism, then id-singular support is the
singular support defined by Beilinson [1]. We expect the f -singular support is exist under suitable
conditions and the non-acyclicity cycle CCZX{Y pFq is a cycle supported on the f -singular support.

Details will appear in the near future.

Proposition 3.15. Consider a cartesian diagram in Smk

X 1

f 1

��

i // X

f

��
l

S1
δ
// S.

(3.15.1)

We assume that f and f 1 are smooth morphisms, and S and S1 are connected of dimension s and
s1 respectively. Let F P DctfpX,Λq. Assume that X Ñ S is SSpFq-transversal and i is properly
SSpFq-transversal. Then we have

(3.15.2) i!ccX{SpFq “ ccX 1{S1pi
˚Fq in CHs1pX

1q,

where i! : CHspXq Ñ CHs1pX
1q is the refined Gysin pull-back.

Since f is SSpFq-transversal, the morphism i is SSpFq-transversal. We don’t know how to
remove the properly assumption on i.
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Proof. We consider the following diagram

T ˚X 1 T ˚X ˆX X 1 T ˚X

T ˚S1 ˆS1 X
1 T ˚S ˆS X

1 T ˚S ˆS X

T ˚pX 1{S1q T ˚pX{Sq ˆX X 1 T ˚pX{Sq

X 1 X 1 X

di pr

dδ

»

0X1{S1
“

0X{Sˆ1
i

0X{S

Note that the square containing the morphisms di and dδ is cartesian. In the following calculations,
even though di and dδ are not proper, but we can still applying di˚ and dδ˚ since di is finite on the
support of pr´1pSSFq and dδ is finite on the zero section X 1 of T ˚S ˆS X

1. We have

ccX 1{S1pi
˚Fq “ p´1qs

1

¨ 0!
X 1{S1CCpi

˚Fq
paq
“ p´1qs

1

¨ 0!
X 1{S1pdi˚pr!CCpFq ¨ p´1q´dimpX 1q`dimpXqq

“ dδ˚0
!
X 1{S1pr!CCpFq ¨ p´1qs

1´dimpX 1q`dimpXq

pbq
“ 0!

X 1{S1pr!CCpFq ¨ p´1qs “ 0!
X{Spr!CCpFq ¨ p´1qs

“ i!p0!
X{SCCpFq ¨ p´1qsq “ i!ccX{SpFq.

(3.15.3)

where paq follows from [11, Theorem 7.6] and pbq follows from the fact that 0!
X 1{S1pr!CCpFq is

supported on the zero section of T ˚S ˆS X
1. �

3.16. Consider a commutative diagram in Smk:

X
f //

h ��

Y

g
��

S

.

(3.16.1)

Let F P DctfpX,Λq such that h is SSpFq-transversal. Assume f is proper on BpSSpFqq “ supppFq.
By [11, Lemma 3.8], g is f˝SSpFq-transversal. By [1, Lemma 2.2(ii)], SSpRf˚Fq Ď f˝SSpFq. Thus
g : Y Ñ S is also SSpRf˚Fq-transversal and the class ccY {SpRf˚Fq is well-defined.

Proposition 3.17. Consider the assumptions in 3.16. Assume moreover that Y is projective,
f : X Ñ Y is quasi-projective and dimf˝SSpFq ď dimY . Then we have

f˚ccX{SpFq “ ccY {SpRf˚Fq in CHspY q.

We don’t know how to remove the assumption dimf˝SSpFq ď dimY .
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Proof. Consider the following commutative diagram

X
f //� _

0X
��

Y � _

0Y
��

T ˚S ˆS X
idˆf //

r

��

dh

xx

T ˚S ˆS Y

dg

��
T ˚X T ˚Y ˆY X

idˆf //
df
oo T ˚Y

(3.17.1)

Then we have

f˚ccX{SpFq
(3.5.2)
“ p´1qs ¨ f˚dh

!pCCpFqq “ p´1qs ¨ pidˆ fq˚r
!df !pCCpFqq

“ p´1qs ¨ dg!pidˆ fq˚df
!pCCpFqq

paq
“ p´1qs ¨ dg!CCpRf˚Fq

(3.5.2)
“ ccY {SpRf˚Fq.

(3.17.2)

where (a) follows from [12, Theorem 2.2.5]. �

Proposition 3.18. Consider a commutative diagram in Smk

X 1

h1

��

iX //
f 1

  

X

h

��

f

��
Y 1

iY
//

g1~~

Y

g
��

S1
δ

// S,

(3.18.1)

where squares are cartesian diagrams. Let Z Ď X be a closed subscheme and Z 1 “ Z ˆX X 1. Let
F P DctfpX,Λq such that X Ñ S is SSpFq-transversal and XzZ Ñ Y is SSpF |XzZq-transversal.
Assume that f and g are smooth morphisms and that iX is properly SSpFq-transversal. Assume S
(resp. S1) is connected of dimension s (resp. s1). Then we have

(3.18.2) i!Xcc
Z
X{Y {SpFq “ ccZ

1

X 1{Y 1{S1pi
˚
XFq in CHs1pZ

1q,

where i!X : CHspZq Ñ CHs1pZ
1q is the refined Gysin pull-back.

We don’t know how to remove the assumption that f is smooth and iX is properly SSpFq-
transversal.

Proof. Consider the following commutative diagram

T ˚S1 ˆS1 X
1
dg1
X1 //

l

T ˚Y 1 ˆY 1 X
1

df 1 //

l

T ˚X 1

T ˚S ˆS X
1

dδ

OO

dgX1 //

1ˆiX
��

T ˚Y ˆY X
1

diY

OO

dfX1 //

1ˆiX
��

T ˚X ˆX X 1

pr1

��

diX

OO

T ˚S ˆS X
dgX

// T ˚Y ˆY X
df

// T ˚X.

(3.18.3)
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By [11, Theorem 7.6], we have

CCpi˚Fq “ diX˚pr!
1CCpFq ¨ p´1q´dimpX 1q`dimpXq.(3.18.4)

Now the result follows from the following identities:

ccZ
1

X 1{Y 1{S1pi
˚
XFq “ p´1qs

1

¨ dg1!X 1pdf
1!CCpi˚XFq|T˚Y 1ˆY 1Z1q

“ p´1qs
1´dimpX 1q`dimpXq ¨ dg1!X 1pdf

1!pdiX˚pr!
1CCpFqq|T˚Y 1ˆY 1Z1q

“ p´1qs ¨ dδ˚dg
!
X 1pdf

!
X 1pr!

1CCpFq|T˚YˆY Z1q

“ p´1qs ¨ dδ˚p1ˆ iXq
!dg!

Xpdf
!CCpFq|T˚YˆY Zq “ i!Xcc

Z
X{Y {SpFq.

(3.18.5)

�

3.19. Let g : Y Ñ S be a smooth morphism in Smk. Consider a commutative diagram in Smk:

X
p //

f   

X 1

f 1~~
Y

.

(3.19.1)

Let Z Ď X be a closed subscheme. Let F P DctfpX,Λq such that X Ñ S is SSpFq-transversal
and that XzZ Ñ Y is SSpF |Zq-transversal. Assume p is a proper morphism and put Z 1 “ ppZq.
By [11, Lemma 3.8 and Lemma 4.2.6], the morphism X 1 Ñ S is SSpRp˚Fq-transversal and that
X 1zZ 1 Ñ Y is SSpRp˚F |Zq-transversal. Then we have well defined classes ccZX{Y {SpFq P CHspZq

and ccZ
1

X 1{Y {SpRp˚Fq P CHspZ
1q.

Proposition 3.20. Consider the assumptions in 3.19. Assume moreover dimp˝SSpFq ď dimX 1,
Y is projective and p is quasi-projective. Then we have

p˚cc
Z
X{Y {SpFq “ ccZ

1

X 1{Y {SpRp˚Fq,(3.20.1)

where p˚ : CHspZq Ñ CHspZ
1q is the proper push-forward.

We don’t know how to remove the assumptions that dimp˝SSpFq ď dimX 1, Y is projective and
p is quasi-projective.

Proof. Consider the following commutative diagram

T˚S ˆS X1
dg

X1 //

��

T˚Y ˆY X1
df 1 //

��

T˚X1

T˚S ˆS X
dgX ////

1ˆp

88

��

T˚Y ˆY X
df 1X //

1ˆp

77

��
df

22T˚X1 ˆX1 X
dp //

pr2

99

T˚X

Y
0 // T˚pY {Sq,

(3.20.2)

where squares are cartesian diagrams. By [12, Theorem 2.2.5], we have an equality in ZdimX 1pp˝SSpFqq:

CCpRp˚Fq “ pr2˚dp
!pCCpFqq.(3.20.3)
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Then we have

ccZ
1

X 1{Y {SpRp˚Fq “ p´1qs ¨ dg!
X 1pdf

1!pCCpRp˚Fq|T˚YˆY Zqq
(3.20.3)
“ p´1qs ¨ dg!

X 1pdf
1!ppr2˚dp

!CCpFq|T˚YˆY Zqq

“ p´1qs ¨ dg!
X 1p1ˆ pq˚ppdf

1!
Xdp

!CCpFqq|T˚YˆY Zq

“ p´1qs ¨ dg!
X 1p1ˆ pq˚pdf

!CCpFq|T˚YˆY Zq

“ p´1qs ¨ p1ˆ pq˚dg
!
Xpdf

!CCpFq|T˚YˆY Zq “ p˚cc
Z
X{Y {SpFq,

(3.20.4)

which proves the equality (3.20.1). �

Corollary 3.21 (Saito, [12, Theorem 2.2.3]). Let f : X Ñ Y be a projective morphism of smooth
schemes over a perfect field k, and let y P Y be a closed point. Let F P DctfpX,Λq. Assume Y is a
smooth and connected curve and that f is properly SSpFq-transversal outside Xy. Then we have

´aypRf˚Fq “ f˚cc
Xy
X{Y {kpFq.(3.21.1)

Proof. By Proposition 3.20 and Theorem 3.12, we have

f˚cc
Xy
X{Y {kpFq

(3.20.1)
“ cc

tyu
Y {Y {kpRf˚Fq

(3.12.1)
“ ´dimtotRΦȳpRf˚F , idq “ ´aypRf˚Fq.(3.21.2)

�
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