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ABSTRACT. Let f: X — S be a morphism between smooth schemes over a perfect field k. Let F be
a constructible sheaf on X and Z a closed subscheme of X such that f is SS(F)-transversal outside
Z. We construct a class supported on the non-transversality locus Z by using the characteristic
cycle CC(F) defined by T.Saito. This class is a geometric counterpart of the non-acyclicity class
introduced by the second author and Zhao in [15]. Under certain conditions, the formation of this
class is compatible with base change and proper push-forward. It also satisfies the Milnor formula
proved by Saito and a conductor formula. We conjecture that the image of this class under the
cycle class map is the non-acyclicity class. This conjecture can be viewed as a (relative version of)
Milnor type formula for non-isolated singularities.

We expect that this class can be lifted to a cycle supported on the cotangent bundle of X. For
this, we introduce the singular support of F relatively to a morphism f : X — S. When f = id,
this goes back to Beilinson’s definition of singular supports.
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1. INTRODUCTION

1.1. Let k be a perfect field of characteristic p > 0 and S = Speck. Let A be a finite field of
characteristic £ # p. Let X be a smooth scheme over S and f : X — Y a flat morphism of finite
type to a smooth curve Y over S. If f has an isolated singularity at a closed point xy € | X]|, there
is an invariant u(X/Y,xg) supported on xg, called the Milnor number. The Milnor formula [4,
Théoréme 2.4] proved by Deligne says that the Milnor number is related to the total dimension at
xo of the vanishing cycles R®(f, A) of f for the constant sheaf A, i.e.,

(1.1.1) (—1D)"w(X/Y,z9) = —dimtot R®z, (f, A),
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where n = dimX and dimtot = dim+Sw denotes the total dimension. Later in [5], Deligne proposed
a Milnor formula for any constructible sheaf 7 of A-modules on X, which is realized and proved by
Saito in [11]. If zp € | X| is at most an isolated characteristic point of f with respect to the singular
support of F, then Saito’s theorem [11, Theorem 5.9] says

(1.1.2) (CO(F),df )rxx oo = —dimtot ROz, (f, F),
where CC(F) is the characteristic cycle of F. Now we propose the following question:
Question 1.2. Is there a Milnor type formula for non-isolated singular/characteristic points?

1.3. If f is a projective flat morphism and if f is smooth outside f~!(y) for a closed point y of the
curve Y, then the conductor formula of Bloch (cf. [12, Theorem 2.2.3 and Corollary 2.2.4])

(1.3.1) “ay(REA) = (C1)"(X, X)pexx, = (—1)"deac . (2 y) A [X]

gives a partial answer to the Question 1.2. We view (1.1.1), (1.1.2) and (1.3.1) in the form

(1.3.2) deg(geometric class on singular locus) = deg(cohomology class on singular locus).

We expect the equality holds without taking degree, i.e.,

(1.3.3) cl(geometric class) = cohomology class,

where cl is the cycle class map. In the paper [15], the second author with Yigeng Zhao introduce a
(cohomological) non-acyclicity class which is supported on non-acyclicity locus. Let Y be a smooth
scheme over £k and X — Y a separated morphism between schemes of finite type over k. Let
Z < X be a closed subscheme and F € D.(X,A) such that X\Z — Y is universally locally

acyclic relatively to F|x\z. Then the cohomological non-acyclicity class CN’)Z( iy /k(]: ) is a class in
H%(X, Kx v i), where Kx y j sits in a distinguished triangle

1
(1.3.4) Kxpy = Kxp = Kxpyp — -
In this paper, we construct the geometric counterpart of the non-acyclicity class CN')Z( Iy /k(]: ). More
precisely, when X — Y is a morphism between smooth schemes over k such that X — Y is
SS(F)-transversal outside Z, then we construct a class CC)Z(/YM(]:) € CHy(Z) (cf. (3.10.5)), called
the geometric non-acyclicity class of F. If moreover dim Z < dimY’, then we have the following
fibration formula (3.10.5)

(1.3.5) cex p(F) = CdimY(f*Q%/’)/k) N cexpy (F) + cck py i (F)-

Under certain conditions, we prove that the formation of the geometric non-acyclicity class cc§ Yk (F)

is compatible with pullback (3.18.2) and proper push-forward (3.20.1). It also satisfies the Milnor
formula (3.12.1) and a conductor formula (3.21.1). It is natural to expect the following conjecture
holds:

Conjecture 1.4 (Conjecture 3.13). We have

(1.4.1) C%py i (F) = a(CC)Z(/Y/k(-F)) in - Hy(X,Kxym),

where cl : CHy(2) 4, HY(X, Kx k) (134), HY(X, Kx v k) and cl is the cycle class map.

We hope (1.4.1) gives a formulation of Question 1.2 in some sense.

Acknowledgments. The authors would like to thank Yigeng Zhao for the helpful discussion. This
work was partially supported by the National Key R&D Program of China (Grant No.2021YFA1001400),
NSFC Grant No.11901008 and NSFC Grant No.12271006. The first author is supported by Beijing
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Notation and Conventions.

(1) Let S be a Noetherian scheme and Schg the category of separated schemes of finite type
over S.

(2) Let A be a Noetherian ring such that mA = 0 for some integer m invertible on S unless
otherwise stated explicitly.

(3) For any scheme X € Schg, we denote by Det(X,A) the derived category of complexes of
A-modules of finite tor-dimension with constructible cohomology groups on X.

(4) For any separated morphism f : X — Y in Schg, we use the following notation

Kxp = Rf'A, Dxjy(=) = RHom(—,Kxy).
(5) For F € Deis(X,A) and G € Dets(Y, A) on S-schemes X and Y respectively, F X% G denotes
prT]—"@L prsG on X xgVY.

(6) To simplify our notation, we omit to write R or L to denote the derived functors unless
otherwise stated explicitly or for RHom.

2. TRANSVERSALITY CONDITION

2.1. We recall the (cohomological) transversality condition introduced in [15, 2.1], which is a
relative version of the transversality condition studied by Saito [11, Definition 8.5]. Consider the
following cartesian diagram in Schg:

Xy
(2.1.1) p lf

Let F € Des(Y,A) and G € Dy (T, A). Let c5 ¢, 7g be the composition
CfFG P FQF p*(s!g 4d®b.c. i FQF z'!f*g
(2.1.2) 2, 4y (i*F @ i' f*G)
proj.formula 2.1(}-®L z’;z’!f*g) adj Z-!(}-®L F*0).

We put cs5¢7 := csp7n 2 O F L p*s'A — i'F. If cs.f,F is an isomorphism, then we say that the
morphism 0 is F-transversal. If ¢;;q 7 is an isomorphism, then we say i is F-transversal.

By [15, 2.11], there is a functor 62 : Deie(Y, A) — Deie(X, A) such that for any F € Dy (Y, A),
we have a distinguished triangle

(2.1.3) HFF @ pratA 2205 ' F s sAF 2L

Then 6 is F-transversal if and only if §2(F)=0 (cf. [15, Lemma 2.12]).
The following lemma gives an equivalence characterization between transversality condition and
(universally) locally acyclicity condition.

Lemma 2.2. Let f: X — S be a morphism of finite type between Noetherian schemes and F €
Det(X,A). The following conditions are equivalent:

(1) The morphism f is locally acyclic relatively to F.
(2) The morphism f is universally locally acyclic relatively to F.
(3) For any G € Det(X, A), the canonical map

(2.2.1) Dx/s(G) B F — RHomx g x (priG, pryF)
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is an isomorphism in Des(X xg X,A), where pr; : X xg X — X and pry : X xg X - X
are the projections.
(4) The canonical map

(2.2.2) Dy s(F) & F — RHomx o x (priF, pryF)

18 an isomorphism.
(5) For any cartesian diagram between Noetherian schemes

Y xg X 22X

(2.2.3) prli 0 lf
% s

the morphism § is F-transversal.

(6) For any cartesian diagram (2.2.3) and any G € De(S,A), the morphism c5 575 g is an
isomorphism.

(7) For any cartesian diagram between Noetherian schemes

Voxg X 22 X' o X

(2.2.4) prll O J{f’ O lf

!
Y ———=38 S,

the morphism § is F|x-transversal.
(8) For any cartesian diagram (2.2.4) and any G € Dt (S, A), the morphism csp 7|, g is an
isomorphism.

When S is a scheme of finite type over a field k, then the equivalence between (2) and (7) follows
from [15, Proposition 2.4.(2) and Proposition 2.5]. In this case, we may require Y and S’ smooth
over k in (7).

Proof. By a result of Gabber [9, Corollary 6.6], (1) and (2) are equivalent. The equivalence between
(2),(3) and (4) follows from [10, Proposition 2.5, Lemma 2.14, Theorem 2.16]. By [15, Proposition
2.4.(2)], (2) implies (6). It is clear that (6) implies (5).

Now we show (5) implies (1). Since § is F-transversal, we have an isomorphism

(2.2.5) Ky s 5" F = prhF.
By the projection formula, for any proper morphism g : Y/ — Y, the following canonical morphism
(2.2.6) 99'Ky ;s K5 F = (g x id)1(g'Ky /s & F)

is an isomorphism. If g : Y’ — Y is an open immersion with closed complementary 7: Z = Y\Y' —
Y, we have a commutative diagram between distinguished triangles

7' Ky s ®° F Ky s &" F 9+9* Ky s ®" F i
(242‘6)l~ i~ J/
(227) (T X id)[(T!K:y/S L ]:) ’Cy/s L]: (g X ld)*(g*K:y/S L ]:)

(24245>l~ lN

(7 x 1d)i(7 x id)! (Ky /s BE F) — Ky /5 B F — (g x id)x (g x id)*(Ky g ®E F) —=> .
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Thus
(2.2.8) 9x9* Ky s 1" F — (g x i)« (g*Ky 5 K" F)
is an isomorphism. Now we show that for any H € D.(Y, A), the canonical morphism
(2.2.9) Dy 5(H) xE F — RHom(priH, pryF)

is an isomorphism. We may assume H = jiA for j : U — Y étale with U affine. Then (2.2.9) is
equivalent to the following composition

(2.2.10) Jud Ky s B F = (§ % i) (7*Ky s @ F) L2 (5 x id)a(j x id)*prhF.

We show j.j* Ky s XIF — (j x id)«(j*Ky /g X F) is an isomorphism. We write j as a composition
of a proper morphism and an open immersion. Then we may further assume that j is an open
immersion. This is okay by (2.2.8). Thus (2.2.9) is an isomorphism. By [10, Theorem 2.16], the
morphism f: X — S is (universally) locally acyclic relatively to F.

We show (2) implies (8). By assumption, f’ is also universally locally acyclic relatively to F|x:.
Thus by (6), the morphism ¢; /7, g is an isomorphism.

Finally, it is clear that (8) implies (7) and (7) implies (5). O

2.3. Now we recall the geometric transversality condition (cf. [1, 1.2] and [11, Definition 7.1 and
Definition 5.3]). Let X be a smooth scheme over a field k. Let C be a conical closed subset of 7% X,
i.e., a closed subset which is stable under the action of the multiplicative group G,,. We denote by
T%X < T*X the zero section of the cotangent bundle 7% X of X.

(1) Let h: W — X be a morphism from a smooth scheme W over k. We say that h is C-
transversal if the fiber (C'x x W)ndh™! (T}, W) is contained in the zero-section T% X x x W <
T*X xx W, where dh: T*X xx W — T*W is the canonical map.

(2) Assume that X and C are purely of dimension d and that W is purely of dimension m.
We say that a C-transversal map h: W — X is properly C-transversal if every irreducible
component of C x x W is of dimension m.

(3) We say that a morphism f: X — Y to a smooth scheme Y over k is C-transversal if the
inverse image df ~!(C) is contained in the zero-section T3Y xy X < T*Y xy X, where
df : T*Y xy X — T*X is the canonical map.

The cohomological transversality condition and geometric transversality condition are related as
follows. Let X be a smooth scheme of purely dimension d and A a finite local ring such that
the characteristic ¢ of the residue field of A is invertible in k. Let F € Dc(X,A). The singular
support SS(F) defined by Beilinson [1] is a d-dimensional conical closed subset of 7% X. We have
the following properties:

(1) SS(F) nT{X = supp(F).

(2) Let f: X — Y be a morphism to a smooth scheme Y over k. If f is SS(F)-transversal,
then f is universally locally acyclic relatively to F.

(3) Let f: W — X be a morphism from a smooth scheme W over k. If f is SS(F)-transversal,
then f is F-transversal.

Now assume k is a perfect field. By [11, Theorem 5.9 and Theorem 5.19], the characteristic cycle
CC(F) is the unique d-cycle CC(F) supported on SS(F) with Z-coefficients such that CC(F)
satisfies the Milnor formula (1.1.2) for F.
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3. GEOMETRIC NON-ACYCLICITY CLASSES

3.1. Let S be a Noetherian scheme and A a Noetherian ring such that mA = 0 for some integer m
invertible on S. Consider the following cartesian diagram in Schg

X xgV 2 X

(3.1.1) przl 0 lh
)

where pr; and pry are the projections. For any F € D¢it(X, A) and G € D.s(Y, A), we have canonical
morphisms

(3.1.2) FRE Ky s = priF @ prig'A =25 pri F,
(3.1.3) F&E Dy s(G) — RHomx gy (pr3G, priF),

where (3.1.3) is adjoint to

(3.1.4) F X (Dys(G) ® G) Fras Ky s 222 ol 7.

Note that (3.1.2) is a special case of (3.1.3) by taking G = A. If moreover X — S is universally
locally acyclic relatively to F, then (3.1.3) is an isomorphism by (2.2.9). For a morphism ¢ =
(c1,¢2) : C — X xgY, we have a canonical isomorphism by [3, Corollaire 3.1.12.2]

(3.1.5) RHom(c5G, i F) = ¢ RHom(prG, pri F).

3.2. Consider a commutative diagram in Schg:

7 T X ! Y,
(3.2.1) \ /
h g
s

where 7 : Z — X is a closed immersion and g is a smooth morphism. Let i : X xy X —» X xg X
be the base change of the diagonal morphism 6 : Y - Y xgY:

X X
611 O 150

(3.2.2) X xy X —> X xg X
pl O ifxf
Y — % ¥V xgY,

where Jp and 4y are the diagonal morphisms. Put Ky y /g := 5AICX/S ~ 5T6A50*ICX/S. By (2.1.3),
we have the following distinguished triangle (see also [15, (4.2.5)])

(323) K:X/Y_’ICX/S_”CX/Y/SLI’-

Let F € Det(X, A) such that X\Z — Y is universally locally acyclic relatively to F|x\z and that
h : X — S is universally locally acyclic relatively to F. We put

(3.2.4) Hs = RHomxxsx (pr3F,priF),  Ts = F§ Dxys(F).



NON-ACYCLICITY CLASSES 7

The relative cohomological characteristic class C'x/g(F) is the composition (cf. [15, 3.1])

(3.2.5) A Rrom(F, F) L2 shag L2 ST o 55 Ts 2 Ky s

By the assumption on F, 5T5A7§ is supported on Z by [15, 4.4]. The non-acyclicity class 5')Z< e s(F)
is the composition (cf. [15, Definition 4.6])

(3.2.6) A — 8hHs < 8,Ts ~ 61i'Tg — 6Fi'Tg — 6762 Ts < 176762 Ts — 7' Kx v s-
If the following condition holds:
(327) HO(Z, ]Cz/y) =0 and HI(Z, ]Cz/y) =0

then the map HY(X, Kx/s) B:23), HY(X, Kx)v/s) is an isomorphism. In this case, the class

CN')Z(/Y/S(]:) e HY(X, Kx /v /s) defines an element of HY(X, Kx/s), which is denoted by C)Z(/Y/S(]:)'
Now we summarize the functorial properties for the non-acyclicity classes (cf. [15, Theorem 1.9,
Proposition 1.11, Theorem 1.12, Theorem 1.14]).

Proposition 3.3. Let us denote the diagram (3.2.1) simply by A = A)Z(/WS and CN‘)Z(/Y/S(]:) by
CA(F). Let F € D (X, A). Assume that Y — S is smooth, X\Z — Y is universally locally acyclic
relatively to F|x\z and that X — S is universally locally acyclic relatively to F.

(1) (Fibration formula) If H*(Z,Kzyy) = H'(Z,Kz)y) = 0, then we have
(3.3.1) Cx/s(F) = er(f*Qp)g) 0 Cxpy (F) + Ca(F) in H(X, Kx/s)-

(2) (Pull-back) Let b : S" — S be a morphism of Noetherian schemes. Let A" = A)Z(/,/W/S, be the
base change of A = A)Z(/Y/S byb:S" — S. Let bx : X' = X x5S — X be the base change

of b by X — S. Then we have
(3.3.2) b%Ca(F) = Car(b5F) in Hy(X', Kxrpysr),
where b% : HY(X, Kxpvs) — HY (X', Kx1y1/s) is the induced pull-back morphism.
(3) (Proper push-forward) Consider a diagram A’ = A)Z(/,/WS. Let s : X — X' be a proper
morphism over Y such that Z < s~1(Z'). Then we have
(3.3.3) $:(Ca(F)) = Car(Rs. F) in Hy(X',Kxr/y/s),

where sy : HY(X, Kx/s) — H%,(X’,ICX//y/S) is the induced push-forward morphism.

(4) (Cohomological Milnor formula) Assume S = Speck for a perfect field k of characteristic
p >0 and A is a finite local ring such that the characteristic of the residue field is invertible
in k. If Z = {x}, then we have

(3.3.4) Ca(F) = —dimtot R®z(F, f) in A= H)(X,Kx),

where R®(F, f) is the complex of vanishing cycles and dimtot = dim + Sw is the total
dimension.

(5) (Cohomological conductor formula) Assume S = Speck for a perfect field k of characteristic
p >0 and A is a finite local ring such that the characteristic of the residue field is invertible
in k. If Y is a smooth connected curve over k and Z = f~(y) for a closed point y € |Y|,
then we have

(3.3.5) f+Ca(F) = —ay(RfF) in A =H)(Y,Kyp),

where ay(G) = rankG|; — rankGy + Sw,G is the Artin conductor of an object G € Dy (Y, A)
at y and n is the generic point of Y.
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The formation of non-acyclicity classes is also compatible with specialization maps (cf. [15,
Proposition 4.17]).

3.4. Let X be a smooth connected curve over k. Let F € D(X,A) and Z < X be a finite set of
closed points such that the cohomology sheaves of F| x\z are locally constant. By the cohomological

Milnor formula (3.3.4), we have the following (motivic) expression for the Artin conductor of F at
xe”Z

(3.4.1) a4(F) = dimtot ROz(F, id) = —=CF), | (Flo),

where U is any open subscheme of X such that U n Z = {z}. By (3.3.1), we get the following
cohomological Grothendieck-Ogg-Shafarevich formula (cf. [15, Corollary 6.6]):

(3.4.2) Cx/k(F) = rankF - 01(9;%) - Z az(F)-[z] in HO(X, Kx/i)-

T€Z
Here we give a new proof of (3.4.1) by using Gabber-Katz extension (cf. [8]). For simplicity, we
assume Z = {z} and k is algebraically closed. Since the formation Ci?/}x Ik
z, we may assume there is an etale morphism f : X — P} such that f(z) = 0. Let G be the
Gabber-Katz extension of F| X tO G,,. Then G is smooth on G,,, tamely ramified at 0 € A}c and

Glxe ~ Flxy,. Let A = PL{0}. We have O/ (F) = €7} ,(G). By the formula (3.3.1) and

(F) is etale local around

X/X/k = YA/A/k
the Grothendieck-Ogg-Shafarevich formula for P!, we get

We only need to show: —Cg}/ Al /k(g) = aop(G). Replacing G by the Gabber-Katz extension of
k k

g A} 4, W Iy assume G is a smooth sheaf on G,, such that G is tamely ramified at 0 and c0. We

may further assume Gy = G5 = 0. By the formula (3.3.1) and the Grothendieck-Ogg-Shafarevich
formula for P!, we get

(3.4.4) —zcgmi #(9) = 2a0(G) = 2rankg,

which implies —C 0y

a1 1.(G) = ap(G) = rankG. This finishes the proof of (3.4.2).
Ap/AL /K

3.5. Now we start to construct and prove a geometric counterpart of Proposition 3.3. Let k be a
perfect field of characteristic p and A be a finite local ring whose residue field is of characteristic
£ # p. Let Smy be the category of smooth schemes over k. Let S be a smooth connected scheme
of dimension s over k. Let f: X — S be a morphism in Smy. Let F € Dq(X, A) such that f is
SS(F)-transversal. Consider the following morphisms

(3.5.1) X275 % X Lorex,

where 0 stands for the zero section. By assumption, df ~!(SS(F)) is contained in 0(X). We define
the relative characteristic class of F to be the following s-cycle class on X:

(3.5.2) cexyg(F) == (=1)%- (df)'(CC(F)) in CH,(X),

where (df)' is the refined Gysin pullback. We don’t know how to define ccx/g(F) if one only
assume f is universally locally acyclic relatively to /. When f is a smooth morphism, then we have
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a cartesian diagram

TS xg X — P~ rx
(3.5.3) l 0 l
X T*(X/S).

Ox/s

In this case, we have ccx/g(F) = (=1)° - ()!X/S(CC’(}")) (cf. [14, Definition 2.11]). If f is a smooth
morphism of relative dimension r and if F is locally constant, then we have

(3.5.4) cex/g(F) = (=1)°- O!X/S((—l)dimx -rankF - [X]) = rankF - ¢.(Q%Y0) A [X].

X/S

We propose the following conjecture:

Conjecture 3.6. Let S be a smooth connected scheme of dimension s over k. Let f: X — S be a
morphism in Smy. Let F € Dets(X, A) such that f is SS(F)-transversal. Then we have

(3.6.1) cl(cex/s(F)) = Cx/s(F) in HY(X,Kx/s),
where ¢l : CHy(X) — H(X, Ky g) is the cycle class map.

When S = Speck, then it is Saito’s conjecture [11, Conjecture 6.8.1], which is proved under
quasi-projective assumption in [15, Theorem 1.3]. When f : X — S is a smooth morphism, then
(3.6.1) is true for a locally constant constructible (flat) sheaf F of A-modules. Indeed, this follows
from (3.5.4), [15, Lemma 3.3] and (3.3.1).

Question 3.7. How to define a relative cycle class map from groups of relative cycle classes to
HY(X,Kx /s)? It is interesting to see whether ccy /S(]—" ) is a relative cycle class over S. Is there a
canonical way to lift ccx/g(F) to a relative cycle (other than a class)?

3.8. Consider a commutative diagram in Smy:

T X ! Y,
N
s

where 7 : Z — X is a closed immersion, g is a smooth morphism of relative dimension r and
s = dimS. Let F € Det(X, A) such that X\Z — Y is SS(F|x\z)-transversal and that X — S is
SS(F)-transversal. We have a commutative diagram on vector bundles

7C

(3.8.1)

X X
0 0
TS xg X — 2% oy xy x — Ty
(3.8.2) O
TS x5 Y il T*Y
[
Y 0 T*(Y/S),
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where dgy is the base change of dg. By assumption, df ~*(SS(F)) is supported on 0(X) UT*Y xy Z
and dh=Y(SS(F)) = dgx " *df 1 (SS(F)) is contained in the zero section 0(X) < T*Sx X . Consider
the following class on df ~1(SS(F)) n (T*Y xy Z)

(3.8.3) df (CC(F))|rwy xy z i= (T*Y xy X) - CC(F))¥ SSENATY xv2)

which is the part of df'(CC/(F)) supported on df ~1(SS(F)) n (T*Y xy Z) (cf. [6, P.95]). We define
the geometric non-acyclicity class cc% Py /S(}' ) of F to be

(3.8.4) %y 5(F) i= (=1)° - dgx (df (CC(F))lp#y xyz) in CHy(Z).
Remark 3.9. If Z = X, then cc% . o(F) = cex/s(F).

3.10. Assume moreover that dimZ < r + s. Then the restriction map CH,,4(X) —> CH,,4(X\Z)
is an isomorphism. In this case, we define the relative characteristic class ccy jy (F) to be

(3101) CCX/Y(]:) = CCX\Z/Y(]:‘X\Z) in CHT'+S(X)’

which is also equal to (—1)"*5- (T*Y xy X)-CC(F))*X) which is the part of (—1)"** - df'CC(F)
supported on 0(X). Then we have

(3.10.2) (=1)° - df (CO(F)) = (=1)" - cex )y (F) + (1) - df (CC(F)) sy xy 2-
Applying dg!X to the above formula, we get

(3.10.3) cexys(F) = (=1)"- dg!chX/y(}") + cc)Z(/WS(]:) in CHy(X).

By the excess intersection formula [6, Theorem 6.3], we have

(3.10.4) (=1)"- dg!XCCX/Y(}—) = Cr(f*Qi}%') N cex py (F).

Thus if dimZ < r + s, then we have

(3.10.5) cex)s(F) = cr(f*Q;/VS) n cexy (F) + ec% py (F).

In particular, if Z is empty, then we have

(3.10.6) cexys(F) = cr(f*Q;’/vs) N cexpy (F).

Remark 3.11. Assume that X — S is smooth of relative dimension r and that X\Z — Y is
smooth of relative dimension n (n < r). Then Q% Jy s locally free of rank n on X\Z and we have

the localized Chern classes cfZ(Qﬁ(/Y) for i > n (cf. [2, Section 1]). By [12, Lemma 2.1.4], we have
(3.11.1) CC)Z(/Y/S(A) = (—l)Tci’(Z(Qﬁqy) N [X] in CHs(2).

Theorem 3.12 (Saito’s Milnor formula). Assume S = Speck. Let X be a smooth scheme over
Sand f: X - Y = A,{z a separated morphism. Let x be a closed point of X and Z = {x}. Let
F € Des (X, A) such that f is SS(F)-transversal outside Z. Then we have

(3.12.1) CC)Z(/WS(]:) = —dimtotR®z(F, f) in Z = CHy({z}).

Proof. By [13, (3.4.5.4)-(3.4.5.5)], we have cci/y/s(}") = (CC(F),df )r+x 4 - [x]. Now the result
follows from Saito’s Milnor formula [11, Theorem 5.9]. O

We expect the following Milnor type formula for non-isolated singular/characteristic points holds.
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Conjecture 3.13. Let S be a smooth connected k-scheme of dimension s. Consider the commu-
tative diagram (3.8.1). Let F € Deye(X, A) such that X\Z — 'Y is SS(F|x\z)-transversal and that
X — S is SS(F)-transversal. Then we have an equality

(3131) C)Z(/Y/S(‘F) = CI(CCA?(/Y/S(‘F)) in H%(X, ,CX/Y/S)v

where ¢l is the composition CH,(Z) 4, HY(X,Kx/s) 623, HY(X, Kxv)s)-

When S = Speck, Y = Al and Z = {z}, then Conjecture 3.13 follows from Saito’s Milnor formula
(3.12.1) and the cohomological Milnor formula (3.3.4).

When Z = X, then C’)Z(/WS(]:) = Cx/s(F) in HY(X,Kx y/s) and CC)Z(/Y/S(]:) = ccy/s(F) in
CH;(X). In this case, (3.13.1) is a weak version of Conjecture 3.6.

Remark 3.14. Let f : X — Y be a separated morphism between smooth schemes over k. Let
Z < X be a closed subset and F € Dgit(X,A). Assume that f is universally locally acyclicity
outside Z. Let n = dimX. We expect that there is a n-cycle CC’)Z(/Y(}") supported on T*X x x Z
such that

(3.14.1) A5 CCF y (F) = CFpyp(F) i HY(X, Kxpyn)-

If Y is a smooth curve and Z is a finite set of closed points of X, then

(3.14.2) CC% py(F) = = ). dimtot ROz (F, f) - [T X].
reZ

If f =id and Z is the smallest closed subset of X such that F|x\ is smooth, then
(3.14.3) CC% )y (F) = CC(F) — rankF - CC(A).

In order to construct CC )Z( /Y(}" ), we will introduce f-singular support (singular support with respect
to a morphism f : X — Y). When f is the identity morphism, then id-singular support is the
singular support defined by Beilinson [1]. We expect the f-singular support is exist under suitable
conditions and the non-acyclicity cycle CC)Z( /Y(]-" ) is a cycle supported on the f-singular support.
Details will appear in the near future.

Proposition 3.15. Consider a cartesian diagram in Smy,
X X
(3.15.1) f’l O lf
Sl ?‘ S
We assume that f and f' are smooth morphisms, and S and S’ are connected of dimension s and

s’ respectively. Let F € De(X, ). Assume that X — S is SS(F)-transversal and i is properly
SS(F)-transversal. Then we have

(3.15.2) i'cex)s(F) = cexryg(i*F) in CHg(X'),
where i': CHy(X) — CHy(X') is the refined Gysin pull-back.

Since f is SS(F)-transversal, the morphism ¢ is SS(F)-transversal. We don’t know how to
remove the properly assumption on 7.
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Proof. We consider the following diagram

T*X' < di T*X xx X' pr s T*X
T*S x g X' ¢ l LI LN G l y TS xg X
T*(X'/8") —= y T*(X/S) xx X' T*(X/S)
X' = N ¢ U X

Note that the square containing the morphisms di and dd is cartesian. In the following calculations,
even though di and dd are not proper, but we can still applying di, and dd. since di is finite on the
support of pr~'(SSF) and dd is finite on the zero section X’ of T*S x g X’. We have

cexrysr (i* F) = (=1)* - O, /5 CC(i* F)

—

2 (1) O g (diapr CO(F) - (1)~ mX)+dim(X))
(3.15:3) = 6,0y, g pr'CO(F) - (—1)% (X +dim(X)

Q0 o' CO(F) - (~1)° = Oy 5pr' CO(F) - (~1)°

= i'(0 ;sCC(F) - (—1)*) = i'cexs(F).

where (a) follows from [11, Theorem 7.6] and (b) follows from the fact that 0%, /S/pr!C’C(}") is
supported on the zero section of T#S x g X'. O

3.16. Consider a commutative diagram in Smg:

X

/
(3.16.1) X %Y |
5

Let F € D.s(X, A) such that h is SS(F)-transversal. Assume f is proper on B(SS(F)) = supp(F).
By [11, Lemma 3.8], g is foSS(F)-transversal. By [1, Lemma 2.2(ii)], SS(Rf«F) < f.SS(F). Thus
g:Y — Sis also SS(Rf.F)-transversal and the class ccy/g(Rf+F) is well-defined.

Proposition 3.17. Consider the assumptions in 3.16. Assume moreover that Y is projective,
f: X =Y is quasi-projective and dimf,SS(F) < dimY. Then we have

frcexg(F) = ceyg(Rf«F) in CHy(Y).

We don’t know how to remove the assumption dimf,SS(F) < dimY'.
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Proof. Consider the following commutative diagram

X ! Y
o
(3.17.1) T*S xg X UL o5 gy

- -
idx f

T*X < —T*Y xy X T*Y
Then we have
fecex s(F) P2 (21)* - fdB (CO(F)) = (—1)° - (id x f)ur'df (CC(F))
(3.17.2) — (=1)% - dg'(id x f).df'(CC(F))
@ 1y dg'cCrfF) UL coy s (REF).
where (a) follows from [12, Theorem 2.2.5]. O

Proposition 3.18. Consider a commutative diagram in Smy,

X/ X

N

(3.18.1) W Y

where squares are cartesian diagrams. Let Z < X be a closed subscheme and Z' = Z xx X'. Let
F € Ds(X,A) such that X — S is SS(F)-transversal and X\Z — Y is SS(F|x\z)-transversal.
Assume that f and g are smooth morphisms and that ix is properly SS(F)-transversal. Assume S
(resp. S’) is connected of dimension s (resp. s'). Then we have

(3.18.2) iec jy 5(F) = cc%pyn g (i%F) in CHy(Z'),
where i'y: CHy(Z) — CHgy(Z') is the refined Gysin pull-back.

We don’t know how to remove the assumption that f is smooth and ix is properly SS(F)-
transversal.

Proof. Consider the following commutative diagram

dg’,., ’
T*S' x g X' LT*Y/ xyr X' af T* X'

déT O din O Tdix
d,

/ d !
(3.18.3) TS xg X' —2XL T*Y xy X! Ny o X
lxixl 1><in \Lprl
T*S x¢ X T*Y xy X T*X.

dgx
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By [11, Theorem 7.6], we have

(3.18.4) CC(i*F) = dixspryCC(F) - (—1)dimX")+dim(X)

Now the result follows from the following identities:

1) - dgl (df* CC (X F)lrsyrcy, 2/)

1) AR gl (df* (dixepri CO(F)) oy iy, )
1) - do, ng'(de/prlcC(]:)|T*YXYZ’)

1)% - dox(1 x ’LX) ng(df CO(F)|rryxyz) = i!)(CC)Z(/y/s(f)'

CC)Z(//Y//S/ (2}]:)

(-
(3.18.5) =
(—
(-

3.19. Let g:Y — S be a smooth morphism in Smy. Consider a commutative diagram in Smy:

X P X/
3.19.1
(319.) N
Y

Let Z < X be a closed subscheme. Let F € Dg(X,A) such that X — S is SS(F)-transversal
and that X\Z — Y is SS(F|z)-transversal. Assume p is a proper morphism and put Z’ = p(Z).
By [11, Lemma 3.8 and Lemma 4.2.6], the morphism X’ — S is SS(Rp.F)-transversal and that
X"\Z" - Y is SS(RpyF|z)-transversal. Then we have well defined classes cc)qu/S(}") e CH4(2)

and e,y (RpsF) € CHy(Z').

Proposition 3.20. Consider the assumptions in 3.19. Assume moreover dimp,SS(F) < dimX’,
Y s projective and p is quasi-projective. Then we have

(3201) p*CC)Z(/Y/S(]:) = CC)Z(I//Y/S(RP*]:),
where py : CHy(Z) — CH4(Z') is the proper push-forward.

We don’t know how to remove the assumptions that dimp,SS(F) < dimX’, Y is projective and
p is quasi-projective.

Proof. Consider the following commutative diagram

dg s df’
T*S xg X' X T*Y xy X' % X
v s
1Xxp ) 1xp ¥
/ / pra
/ dg 7 df d
(3202) T*S xg X X T*Y xy X X T*X' xy1 X T oy
v
/ 7/
/ l 4 v
» 0 »
Y T*(Y/S),

where squares are cartesian diagrams. By [12, Theorem 2.2.5], we have an equality in Zgiy, x7 (poSS(F)):

(3.20.3) CC(Rp4F) = pra,dp' (CC(F)).
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Then we have
sy 5(RpeF) = (=1)° - dg (df (CC(RpuF) |y wy 7))

=7 (=1)* - dg’y (df" (PTQ*dP!CC(]:)\T*YXYZ))

(3.20.4) = (=1)* - dg’y: (1 x p)s((df%dp' CC(F)) 7y <y 2)
= (—=1)% - dg’: (1 x p)u(df* CO(F)|r#y xy 2)
= (=1)* - (1 X p)adg (df CC(F)|rey xy 2) = pscc’ jy j5(F),
which proves the equality (3.20.1). O

Corollary 3.21 (Saito, [12, Theorem 2.2.3]). Let f : X — Y be a projective morphism of smooth
schemes over a perfect field k, and let y € Y be a closed point. Let F € Des(X,A). Assume Y is a
smooth and connected curve and that f is properly SS(F)-transversal outside X,,. Then we have

X.
(3.21.1) —ay(Rf+F) = f*ccxiy/k(]:).
Proof. By Proposition 3.20 and Theorem 3.12, we have

(3212)  fueckty o (F) CEV et (RE,F) VLY —dimtotREy(RALF,id) = —ay(Rf.F).
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