
LECTURE ON NON-ACYCLICITY CLASSES

ENLIN YANG

Abstract. In this lecture, we introduce two classes supported on the non-acyclicity locus of a
separated morphism relatively to a constructible sheaf. One is defined in a cohomological way
by using localized categorical trace, another is constructed via geometric method by using Saito’s
characteristic cycle. As applications of these two classes,
(1) We prove cohomological analogs of the Milnor formula and the conductor formula for con-

structible sheaves on (not necessarily smooth) varieties.
(2) We propose a (relative version of) Milnor type formula for non-isolated singularities.

This talk is based on joint work with Jiangnan Xiong and Yigeng Zhao.
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1. Introduction

1.1. Let k be a perfect field of characteristic p ą 0 and S “ Speck. Let Λ be a finite field of
characteristic ℓ ‰ p. Let X be a smooth scheme over S and f : X Ñ Y a flat morphism of finite
type to a smooth curve Y over S. If f has an isolated singularity at a closed point x0 P |X|, there
is an invariant µpX{Y, x0q supported on x0, called the Milnor number. The Milnor formula [4,
Théorème 2.4] proved by Deligne says that the Milnor number is related to the total dimension at
x0 of the vanishing cycles RΦpf,Λq of f for the constant sheaf Λ, i.e.,

p´1qnµpX{Y, x0q “ ´dimtotRΦx0pf,Λq,(1.1.1)

where n “ dimX and dimtot “ dim`Sw denotes the total dimension. Later in [5], Deligne proposed
a Milnor formula for any constructible sheaf F of Λ-modules on X, which is realized and proved by
Saito in [7]. If x0 P |X| is at most an isolated characteristic point of f with respect to the singular
support of F , then Saito’s theorem [7, Theorem 5.9] says

pCCpFq, dfqT˚X,x0 “ ´dimtotRΦx0pf,Fq,(1.1.2)

where CCpFq is the characteristic cycle of F . Now we propose the following question:

Question 1.2. Is there a Milnor type formula for non-isolated singular/characteristic points?
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2 ENLIN YANG

1.3. If f is a projective flat morphism and if f is smooth outside f´1pyq for a closed point y of the
curve Y , then the conductor formula of Bloch (cf. [8, Theorem 2.2.3 and Corollary 2.2.4])

´aypRf˚Λq “ p´1qnpX,XqT˚X,Xy “ p´1qndegcXn,Xy
pΩ1

X{Y q X rXs(1.3.1)

gives a partial answer to the Question 1.1.2. We view (1.1.1), (1.1.2) and (1.3.1) in the form

degpGeometric class on singular locusq “ degpCohomology class on singular locusq.(1.3.2)

In a joint work with Yigeng Zhao [12], we introduce a (cohomological) non-acyclicity class which is
supported on non-acyclicity locus. Let X Ñ S be a separated morphism between schemes of finite
type over k. Let Z Ď X be a closed subscheme and F P DctfpX,Λq such thatXzZ Ñ S is universally

locally acyclic relatively to F |XzZ . Then the cohomological non-acyclicity class rCZ
X{Y {kpFq is a class

supported on Z (in H0
ZpX,KX{Y {kq). In a joint work with Jiangnan Xiong [10], we construct its

geometric counterpart. More precisely, when f is a morphism between smooth schemes over k such
that X Ñ S is SSpFq-transversal outside Z, then we construct a class ccZX{Y {kpFq P CH0pZq (cf.

(5.5.8)), called the geometric non-acyclicity class of F . If moreover dimZ ă dimY , then we have
the following fibration formula (5.5.8)

ccX{kpFq “ cdimYpf˚Ω1,_
Y {kq X ccX{kpFq ` ccZX{Y {kpFq.(1.3.3)

We prove that the formation of the geometric non-acyclicity class is compatible with pullback (5.9.2)
and proper push-forward (5.11.1). It also satisfies Saito’s Milnor formula (5.7.1) and a conductor
formula (5.12.1). It is natural to expect the following conjecture holds:

Conjecture 1.4 (Conjecture 5.8). We have

rCZ
X{Y {kpFq “ rclpccZX{Y {kpFqq in CH0pZq,(1.4.1)

where rcl : CH0pZq Ñ H0
ZpX,KX{Y {kq is the cycle class map.

We hope (1.4.1) gives a answer to Question 1.2 in some sense.

Notation and Conventions.

(1) Let S be a Noetherian scheme and SchS the category of separated schemes of finite type
over S. Let Λ be a Noetherian ring such that mΛ “ 0 for some integer m invertible on S
unless otherwise stated explicitly.

(2) For any scheme X P SchS , we denote by DctfpX,Λq the derived category of complexes of
Λ-modules of finite tor-dimension with constructible cohomology groups on X.

(3) For any separated morphism f : X Ñ Y in SchS , we use the following notation

KX{Y “ Rf !Λ, DX{Y p´q “ RHomp´,KX{Y q.

(4) To simplify our notation, we omit to write R or L to denote the derived functors unless
otherwise stated explicitly or for RHom.

2. Cohomological non-acyclicity class

2.1. Consider a commutative diagram in SchS :

Z �
� τ // X

f //

h ��

Y,

g��
S

(2.1.1)
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where τ : Z Ñ X is a closed immersion and g is a smooth morphism. Let us denote the diagram
(2.1.1) simply by ∆ “ ∆Z

X{Y {S Let F P DctfpX,Λq such that XzZ Ñ Y is universally locally acyclic

relatively to F |XzZ and that h : X Ñ S is universally locally acyclic relatively to F .

2.2. In [12], we introduce an object K∆ “ KX{Y {S sitting in a distinguished triangle (cf. [12,
(4.2.5)])

KX{Y Ñ KX{S Ñ K∆
`1
ÝÝÑ .(2.2.1)

and a cohomological class CZ
∆pFq “ rCZ

X{Y {SpFq in H0
ZpX,K∆q. We call CZ

∆pFq the non-acyclicity

class of F . If the following condition holds:

H0pZ,KZ{Y q “ 0 and H1pZ,KZ{Y q “ 0(2.2.2)

then the map H0
ZpX,KX{Sq

(2.2.1)
ÝÝÝÝÑ H0

ZpX,KX{Y {Sq is an isomorphism. In this case, the class
rCZ
X{Y {SpFq P H0

ZpX,KX{Y {Sq defines an element of H0
ZpX,KX{Sq. Now we summarize the functorial

properties for the non-acyclicity classes (cf. [12, Theorem 1.9, Proposition 1.11, Theorem 1.12,
Theorem 1.14]).

Proposition 2.3. Let us denote the diagram (4.2.1) simply by ∆ “ ∆Z
X{Y {S and rCZ

X{Y {SpFq by

C∆pFq. Let F P DctfpX,Λq. Assume that Y Ñ S is smooth, XzZ Ñ Y is universally locally acyclic
relatively to F |XzZ and that X Ñ S is universally locally acyclic relatively to F .

(1) (Fibration formula) If H0pZ,KZ{Y q “ H1pZ,KZ{Y q “ 0, then we have

CX{SpFq “ crpf˚Ω1,_
Y {Sq X CX{Y pFq ` C∆pFq in H0pX,KX{Sq.(2.3.1)

(2) (Pull-back) Let b : S1 Ñ S be a morphism of Noetherian schemes. Let ∆1 “ ∆Z1

X 1{Y 1{S1 be the

base change of ∆ “ ∆Z
X{Y {S by b : S1 Ñ S. Let bX : X 1 “ X ˆS S1 Ñ X be the base change

of b by X Ñ S. Then we have

b˚
XC∆pFq “ C∆1pb˚

XFq in H0
Z1pX 1,KX 1{Y 1{S1q,(2.3.2)

where b˚
X : H0

ZpX,KX{Y {Sq Ñ H0
Z1pX 1,KX 1{Y 1{S1q is the induced pull-back morphism.

(3) (Proper push-forward) Consider a diagram ∆1 “ ∆Z1

X 1{Y {S. Let s : X Ñ X 1 be a proper

morphism over Y such that Z Ď s´1pZ 1q. Then we have

s˚pC∆pFqq “ C∆1pRs˚Fq in H0
Z1pX 1,KX 1{Y {Sq,(2.3.3)

where s˚ : H0
ZpX,KX{Y {Sq Ñ H0

Z1pX 1,KX 1{Y {Sq is the induced push-forward morphism.
(4) (Cohomological Milnor formula) Assume S “ Speck for a perfect field k of characteristic

p ą 0 and Λ is a finite local ring such that the characteristic of the residue field is invertible
in k. If Z “ txu, then we have

C∆pFq “ ´dimtotRΦx̄pF , fq in Λ “ H0
xpX,KX{kq,(2.3.4)

where RΦpF , fq is the complex of vanishing cycles and dimtot “ dim ` Sw is the total
dimension.

(5) (Cohomological conductor formula) Assume S “ Speck for a perfect field k of characteristic
p ą 0 and Λ is a finite local ring such that the characteristic of the residue field is invertible
in k. If Y is a smooth connected curve over k and Z “ f´1pyq for a closed point y P |Y |,
then we have

f˚C∆pFq “ ´aypRf˚Fq in Λ “ H0
y pY,KY {kq,(2.3.5)
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where aypGq “ rankG|η̄ ´ rankGȳ ` SwyG is the Artin conductor of the object G P DctfpY,Λq

at y and η is the generic point of Y .

The formation of non-acyclicity classes is also compatible with specialization maps (cf. [12,
Proposition 4.17]). We call (2.3.1) the fibration formula for characteristic class, which is motivated
from [9].

2.4. Let X be a smooth connected curve over k. Let F P DctfpX,Λq and Z Ď X be a finite set of
closed points such that the cohomology sheaves of F |XzZ are locally constant. By the cohomological
Milnor formula (2.3.4), we have the following (motivic) expression for the Artin conductor of F at
x P Z

axpFq “ dimtotRΦx̄pF , idq “ ´C
txu

U{U{kpF |U q,(2.4.1)

where U is any open subscheme of X such that U X Z “ txu. By (2.3.1), we get the following
cohomological Grothendieck-Ogg-Shafarevich formula (cf. [12, Corollary 6.6]):

CX{kpFq “ rankF ¨ c1pΩ1,_
X{kq ´

ÿ

xPZ

axpFq ¨ rxs in H0pX,KX{kq.(2.4.2)

3. Transversality condition

3.1. We recall the transversality condition introduced in [12, 2.1], which is a relative version of
the transversality condition studied by Saito [7, Definition 8.5]. Consider the following cartesian
diagram in SchS :

X

lp

��

i // Y

f
��

W
δ // T.

(3.1.1)

Let F P DctfpY,Λq and G P DctfpT,Λq. Let cδ,f,F ,G be the composition

cδ,f,F ,G : i˚F bL p˚δ!G idbb.c
ÝÝÝÝÑ i˚F bL i!f˚G
adj
ÝÝÑ i!i!pi

˚F bL i!f˚Gq

proj.formula
ÝÝÝÝÝÝÝÑ

»
i!pF bL i!i

!f˚Gq
adj
ÝÝÑ i!pF bL f˚Gq.

(3.1.2)

We put cδ,f,F :“ cδ,f,F ,Λ : i˚F bL p˚δ!Λ Ñ i!F . If cδ,f,F is an isomorphism, then we say that the
morphism δ is F-transversal.

By [12, 2.11], there is a functor δ∆ : DctfpY,Λq Ñ DctfpX,Λq such that for any F P DctfpY,Λq,
we have a distinguished triangle

i˚F bL p˚δ!Λ
cδ,f,F
ÝÝÝÑ i!F Ñ δ∆F `1

ÝÝÑ .(3.1.3)

δ is F-transversal if and only if δ∆pFq=0 (cf. [12, Lemma 2.12]).
The following lemma gives an equivalence between transversality condition and (universally)

locally acyclicity condition.

Lemma 3.2. Let f : X Ñ S be a morphism of finite type between Noetherian schemes and F P

DctfpX,Λq. The following conditions are equivalent:

(1) The morphism f is locally acyclic relatively to F .
(2) The morphism f is universally locally acyclic relatively to F .
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(3) For any G P DctfpX,Λq, the canonical map

DX{SpGq bL F ÝÑ RHomppr˚
1G,pr!2Fq(3.2.1)

is an isomorphism.
(4) The canonical map

DX{SpFq bL F ÝÑ RHomppr˚
1F ,pr!2Fq(3.2.2)

is an isomorphism.
(5) For any cartesian diagram between Noetherian schemes

Y ˆS X

pr1
��

pr2 // X

f

��
Y

δ
// S

l(3.2.3)

the morphism δ is F-transversal.
(6) For any cartesian diagram (3.2.3) and any G P DctfpS,Λq, the morphism cδ,f,F ,G is an

isomorphism.
(7) For any cartesian diagram between Noetherian schemes

Y ˆS X

pr1
��

pr2 //

l

X 1

f 1

��

//

l

X

f

��
Y

δ
// S1 // S,

(3.2.4)

the morphism δ is F |X 1-transversal.
(8) For any cartesian diagram (3.2.4) and any G P DctfpS,Λq, the morphism cδ,f,F ,G is an

isomorphism.

When S is a scheme of finite type over a field k, then the equivalence between (2) and (7) follows
from [12, Proposition 2.4.(2) and Proposition 2.5]. In this case, we may require Y and S1 smooth
over k in (7).

4. Non-acyclicity classes

4.1. Let S be a Noetherian scheme and SchS the category of separated schemes of finite type over
S. Let Λ be a Noetherian ring such that mΛ “ 0 for some integer m invertible on S. Consider the
following cartesian diagram in SchS

X ˆS Y

pr2

��

pr1 //

l

X

h

��
Y

g // S,

(4.1.1)

where pr1 and pr2 are the projections. For any F P DctfpX,Λq and G P DctfpY,Λq, we have canonical
morphisms

F bL
S KY {S “ pr˚

1F bL pr˚
2g

!Λ
cg,h,F
ÝÝÝÝÑ pr!1F ,(4.1.2)

F bL
S DY {SpGq Ñ RHomppr˚

2G,pr!1Fq,(4.1.3)
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where (4.1.3) is adjoint to

F bL
S pDY {SpGq bL Gq

idbev
ÝÝÝÑ F bL

S KY {S
(4.1.2)
ÝÝÝÝÑ pr!1F .(4.1.4)

Note that (4.1.2) is a special case of (4.1.3) by taking G “ Λ. If moreover X Ñ S is universally
locally acyclic relatively to F , then (4.1.3) is an isomorphism by [6, Proposition 2.5](see also [11,
Corollary 3.1.5]). For a morphism c “ pc1, c2q : C Ñ X ˆS Y ), we have a canonical isomorphism by
[3, Corollaire 3.1.12.2]

RHompc˚
2G, c!1Fq

»
ÝÑ c!RHomppr˚

2G, pr!1Fq.(4.1.5)

4.2. Consider a commutative diagram in SchS :

Z �
� τ // X

f //

h ��

Y,

g��
S

(4.2.1)

where τ : Z Ñ X is a closed immersion and g is a smooth morphism. Let i : X ˆY X Ñ X ˆS X
be the base change of the diagonal morphism δ : Y Ñ Y ˆS Y :

X

f

��

_�

δ1
��

l

X_�

δ0
��

X ˆY X
i //

p

��

// X ˆS X

fˆf

��
Y

δ // Y ˆS Y,

l

(4.2.2)

where δ0 and δ1 are the diagonal morphisms. Put KX{Y {S :“ δ∆KX{S » δ˚
1 δ

∆δ0˚KX{S . We have
the following distinguished triangle (cf. [12, (4.2.5)])

KX{Y Ñ KX{S Ñ KX{Y {S
`1
ÝÝÑ .(4.2.3)

Let F P DctfpX,Λq such that XzZ Ñ Y is universally locally acyclic relatively to F |XzZ and that
h : X Ñ S is universally locally acyclic relatively to F . We put

HS “ RHomXˆSXppr˚
2F , pr!1Fq, TS “ F bL

S DX{SpFq.(4.2.4)

Lemma 4.3. δ˚
1 δ

∆TS is supported on Z.

The relative cohomological characteristic class CX{SpFq is the composition (cf. [12, 3.1])

Λ
id
ÝÑ RHompF ,Fq

(4.1.5)
ÝÝÝÝÑ

»
δ!0HS

(4.1.3)
ÐÝÝÝÝ

»
δ!0TS ÝÑ δ˚

0TS
ev
ÝÑ KX{S .(4.3.1)

The non-acyclicity class rCZ
X{Y {SpFq is the composition (cf. [12, Definition 4.6])

Λ Ñ δ!0HS
»

ÐÝ δ!0TS » δ!1i
!TS ÝÑ δ˚

1 i
!TS Ñ δ˚

1 δ
∆TS

»
ÐÝ τ˚τ

!δ˚
1 δ

∆TS Ñ τ˚τ
!KX{Y {S .(4.3.2)

5. Geometric non-acyclicity class

Now we construct a geometric counterpart of the cohomological non-acyclicity class. Let k be a
perfect field of characteristic p and Λ be a finite local ring whose residue field is of characteristic
ℓ ‰ p. We first recall geometric transversal condition.



MILNOR FORMULA 7

5.1. Let X be a smooth scheme of dimension d over k and F P DctfpX,Λq. We need Beilinson’s
singular support SSpFq, which a d-dimensional conical closed subset of the cotangent bundle T ˚X).
We also need Saito’s characteristic cycle CCpFq, which is a d-cycle supported on SSpFq with
integral coefficients. The characteristic cycle CCpFq is characterized by a Milnor formula for isolated
characteristic points.

We say a morphism f : X Ñ S to a smooth scheme S is SSpFq-transversal if df´1pSSpFqq is
contained in the zero section of T ˚S ˆS X, where df : T ˚S ˆS X Ñ T ˚X is induced morphism on
vector bundles. We have the following fact:

Lemma 5.2. If f : X Ñ S is SSpFq-transversal, then f is universally locally acyclic relatively to
F .

5.3. Let S be a smooth connected scheme of dimension s over k. Let f : X Ñ S be a morphism
in Smk. Let F P DctfpX,Λq such that f is SSpFq-transversal. Consider the following morphisms

X
0
ÝÑ T ˚S ˆS X

df
ÝÑ T ˚X,(5.3.1)

where 0 stands for the zero section. By assumption df´1pSSpFqq is contained in 0pXq. We define
the relative characteristic class of F to be the following s-cycle class on X:

ccX{SpFq :“ p´1qs ¨ pdfq!pCCpFqq in CHspXq,(5.3.2)

where pdfq! is the refined Gysin pullback. We don’t know how to define ccX{SpFq if one only assume
f is universally locally acyclic relatively to F .

If f is a smooth morphism of relative dimension r and if F is locally constant, then we have

ccX{SpFq “ p´1qs ¨ 0!X{Spp´1qdimX ¨ rankF ¨ rXsq “ rankF ¨ crpΩ1,_
X{Sq X rXs.(5.3.3)

We propose the following conjecture:

Conjecture 5.4. Let S be a smooth connected scheme of dimension s over k. Let f : X Ñ S be a
morphism in Smk. Let F P DctfpX,Λq such that f is SSpFq-transversal. Then we have

clpccX{SpFqq “ CX{SpFq in H0pX,KX{Sq,(5.4.1)

where cl : CHspXq Ñ H0pX,KX{Sq is the cycle class map.

When S “ Speck, then it is Saito’s conjecture [7, Conjecture 6.8.1], which is proved under quasi-
projective assumption in [12, Theorem 1.3]. When f : X Ñ S is a smooth morphism, then (5.4.1)
is true for a locally constant constructible (flat) sheaf F of Λ-modules. Indeed, this follows from
(5.3.3), [12, Lemma 3.3] and (2.3.1).

5.5. Consider a commutative diagram in Smk:

Z �
� τ // X

f //

h ��

Y

g
��

S

,

(5.5.1)

where τ : Z Ñ X is a closed immersion and g is a smooth morphism of relative dimension r. Let
F P DctfpX,Λq such thatXzZ Ñ Y is SSpF |XzZq-transversal and thatX Ñ S is SSpFq-transversal.
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We have a commutative diagram on vector bundles

X

l

��

X

0
��

T ˚S ˆS X

��

dgX //

l

T ˚Y ˆY X

��

df // T ˚X

T ˚S ˆS Y
dg //

��
l

T ˚Y

��
Y

0 // T ˚pY {Sq,

(5.5.2)

where dgX is the base change of dg. By assumption, df´1pSSpFqq is supported on 0pXqYT ˚Y ˆY Z
and dh´1pSSpFqq “ dgX

´1df´1pSSpFqq is contained in the zero section 0pXq Ď T ˚S ˆS X. We
define the geometric non-acyclicity class ccZX{Y {SpFq of F to be

ccZX{Y {SpFq :“ p´1qs ¨ dg!Xpdf !pCCpFqq|T˚Y ˆY Zq in CHspZq.(5.5.3)

Assume moreover that dimZ ă r ` s. Then the restriction map CHr`spXq
»
ÝÑ CHr`spXzZq is an

isomorphism. In this case, we define the relative characteristic class ccX{Y pFq to be

ccX{Y pFq :“ ccU{Y pF |U q in CHr`spXq,(5.5.4)

where U “ XzZ. Then we have

p´1qs ¨ df !pCCpFqq “ ccX{Y pFq ` p´1qs ¨ df !pCCpFqq|T˚Y ˆY Z ,(5.5.5)

ccX{SpFq “ p´1qs ¨ dg!Xdf !pCCpFqq “ dg!XccX{Y pFq ` p´1qs ¨ dg!Xpdf !pCCpFqq|T˚Y ˆY Zq,(5.5.6)

By the excess intersection formula, we have

dg!XccX{Y pFq “ crpf˚Ω1,_
Y {Sq X ccX{Y pFq.(5.5.7)

Thus if dimZ ă r ` s, then we have

ccX{SpFq “ crpf˚Ω1,_
Y {Sq X ccX{Y pFq ` ccZX{Y {SpFq.(5.5.8)

In particular, if Z is empty, then we have

ccX{SpFq “ crpf˚Ω1,_
Y {Sq X ccX{Y pFq.(5.5.9)

Remark 5.6. Assume that X Ñ S is smooth of relative dimension r and that XzZ Ñ Y is smooth

of relative dimension n (n ă r). Then Ω1,_
X{Y is locally free of rank n on XzZ and we have the

localized Chern classes cXi,ZpΩ1,_
X{Y q for i ą n (cf. [2, Section 1]). By [8, Lemma 2.1.4], we have

ccZX{Y {SpΛq “ p´1qrcXr,ZpΩ1
X{Y q X rXs in CHspZq.(5.6.1)

Theorem 5.7 (Saito’s Milnor formula). Assume S “ Speck, Y “ A1
k and Z “ txu. Then we have

ccZX{Y {SpFq “ ´dimtotRΦx̄pF , fq in Z “ CH0ptxuq.(5.7.1)

We expect the following Milnor type formula for non-isolated singular/characteristic points holds.
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Conjecture 5.8. Let S be a smooth connected k-scheme of dimension s. Consider the commutative
diagram (5.5.1). Let F P DctfpX,Λq such that XzZ Ñ Y is SSpF |XzZq-transversal and that X Ñ S
is SSpFq-transversal. Then we have an equality

rCZ
X{Y {SpFq “ rclpccZX{Y {SpFqq in H0

ZpX,KX{Y {Sq,(5.8.1)

where rcl is the composition CHspZq
cl
ÝÑ H0

ZpX,KX{Sq
(4.2.3)
ÝÝÝÝÑ H0

ZpX,KX{Y {Sq.

When S “ Speck, Y “ A1
k and Z “ txu, then Conjecture 5.8 follows from Saito’s Milnor formula

(5.7.1) and the cohomological Milnor formula (2.3.4).

Proposition 5.9. Consider a commutative diagram in Smk

X 1

h1

��

iX //
f 1

  

X

h

��

f

��
Y 1

iY
//

g1
~~

Y

g
��

S1

δ
// S,

(5.9.1)

where squares are cartesian diagrams. Let Z Ď X be a closed subscheme and Z 1 “ Z ˆX X 1. Let
F P DctfpX,Λq such that X Ñ S is SSpFq-transversal and XzZ Ñ Y is SSpF |XzZq-transversal.
Assume that f and g are smooth morphisms and that iX is properly SSpFq-transversal. Assume S
(resp. S1) is connected of dimension s (resp. s1). Then we have

(5.9.2) i!XccZX{Y {SpFq “ ccZ
1

X 1{Y 1{S1pi
˚
XFq in CHs1pZ 1q,

where i!X : CHspZq Ñ CHs1pZ 1q is the refined Gysin pull-back.

5.10. Let g : Y Ñ S be a smooth morphism in Smk. Consider a commutative diagram in Smk:

X
p //

f   

X 1

f 1
~~

Y

.

(5.10.1)

Let Z Ď X be a closed subscheme. Let F P DctfpX,Λq such that X Ñ S is SSpFq-transversal
and that XzZ Ñ Y is SSpF |Zq-transversal. Assume p is a proper morphism and put Z 1 “ ppZq.
By [7, Lemma 3.8 and Lemma 4.2.6], the morphism X 1 Ñ S is SSpRp˚Fq-transversal and that
X 1zZ 1 Ñ Y is SSpRp˚F |Zq-transversal. Then we have well defined classes ccZX{Y {SpFq P CHspZq

and ccZ
1

X 1{Y {SpRp˚Fq P CHspZ 1q.

Proposition 5.11. Consider the assumptions in 5.10. Assume moreover dimp˝SSpFq ď dimX 1,
Y is projective and p is quasi-projective. Then we have

p˚cc
Z
X{Y {SpFq “ ccZ

1

X 1{Y {SpRp˚Fq,(5.11.1)

where p˚ : CHspZq Ñ CHspZ 1q is the proper push-forward.

Corollary 5.12 (Saito, [8, Theorem 2.2.3]). Let f : X Ñ Y be a projective morphism of smooth
schemes over a perfect field k, and let y P Y be a closed point. Let F P DctfpX,Λq. Assume Y is a
smooth and connected curve and that f is properly SSpFq-transversal outside Xy. Then we have

´aypRf˚Fq “ f˚cc
Xy

X{Y {kpFq.(5.12.1)
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