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Quantile regression 
  In linear model setup 

response = signal + i.i.d. error 

OLS for parameter estimating 
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The Check function 

  We define a loss function 

 

 

 

  Note that if τ=0.5, 

  Quantiles solve a simple optimization problem  

 

  

 

 



Quantile regression 

 The usual linear regression solves 

 

 

 Quantile regression solves (Koenker and 
Bassett 1978; Koenker 2005) 

 



Bayesian Analysis of quantile regression 

  Bayesian methods of quantile regression 

  Skewed Laplace distribution (Yu and Moyeed 2001, Li et 
al. 2010) 

  Dirichlet process (Kottas and Krnjajic 2009) 

  Empirical likelihood (Yang and He 2012; Kim and Yang 
2011) 

  Advantage of Bayesian analysis 

  Easily incorporate prior information 

  Exact inference when sample size is small 

 



Skewed Laplace distribution-based Bayesian analysis 

 The skewed Laplace distribution 

 

   

              i.i.d. skewed-Laplace 

  The joint likelihood 

 

  Maximizing the likelihood is equivalent to 
minimizing  



Bayesian model selection 

 Bayesian Lasso 

 

 Bayesian elastic net 

 

 Bayesian group lasso  

 



Empirical likelihood (EL) 

  First introduced by Owen (1988) 
 constructing confidence interval for the mean 

 

  Linear model (Owen 1991), general estimating 
equation (Qin and Lawless 1994) 
   
Given an estimating equation 
     the EL is defined as  

 



Empirical likelihood 

 
 Asymptotic properties 
 Wilk’s theorem: the EL ratio 

 The maximum EL estimator (MELE) is asymptotically 
normally distributed.  

 

 Note:             usually need to be sufficiently smooth 
in θ for technical reasons 



EL for quantile regression 

 
 Taking directional derivative about β, the quantile 
regression estimates solves 

 
 
 
The EL for quantile regression is 



Model selection in EL settings 

 Maximizing the penalized EL (Tang and Leng 2010) 
 
 
 The penalty can be Lasso (Tibshirani), elastic net (Zou 
and Hastie 2005), SCAD (Fan and Li 2001) …. 

 
 Difficulty:  
Computationally expensive,  especially for quantile 

regression 

 Choice of the tuning parameter 



Bayesian Model selection in EL 

 Put a “spike and slab” prior on  
 

  
The hierarchical model is 

 
 



Asymptotic property 

 
 
 
 
 
 
Proof: 



Parameter estimation (1) 

 Maximize the posterior likelihood? 
 

  
 Use Gibbs sampler 

 
 
 
 
 

where                           
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 Maximize the posterior likelihood? 
 

  
 Use Gibbs sampler 

 
 
 
 
 

where                           
 A mixture of the point mass at zero and a 

continuous distribution. Hard to sample 



Parameter estimation (2) 

 Use a Metropalis-Hastings (M-H) step to sample from 
 
 The M-H algorithm 
Target: sample from  

        choose a proposing distribution 
 
 
 
 
where  



Parameter estimation (3) 

 How to choose the proposing distribution? 
 Random walk (Tierney 1994, Roberts et al. 1997): 

Given        at the t-th step, the proposing distribution is  

                       
 what q? 
 Kim and Yong (2011) proposed using a pre-specified 

distribution 
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Parameter estimation (4) 

 If the EL         were smooth, the likelihood function                              
can be approximated by 

 
 
where       is  maximized at 
 
 Since the likelihood function convex, 
approximately  
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where       is  maximized at 
 
 Since the likelihood function convex, 
approximately 
   
 
 
 
A mixture of the point mass at zero and a 

normal distribution. Easy to sample 



Parameter estimation (5) 

         is not differentiable, we take     as the value that 
minimizes 

 
 

where 
 
 Take       as the bootstrap variance of     

 
The proposing distribution is chosen as 
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 Take       as the bootstrap variance of     
 
 
 



Bayesian quantile regression weighted 
at multiple quantiles (1) 

Consider the model with homogeneous errors 
 
with the        qunatile of      being zero 
 
The asymptotic variance of    is inversely proportional 
to          (f is the density of u) 
 
If  



Bayesian quantile regression weighted 
at multiple quantiles (2) 

We may consider minimizing  
 
 
More generally, given a set of quantile points 
 we may minimize 
 
 
The corresponding EL is 



Bayesian quantile regression weighted 
at multiple quantiles (3) 

Similarly define the corresponding Bayesian model and 
get the following asymptotic property 
 



Simulation Study 

In the simulations, we compared 
LASSO 

QR: quantile regression 

qrLasso: QR with Lasso (Li and Zhu 2008) 

 bqrLasso: Bayesian regularized QR with Lasso (Li et al. 
2010)  

BEQR: Bayesian EL-based QR 

BEQR.W: Bayesian EL-based QR weighted at multiple 
quantiles  



Simulation Study-homogeneous errors 

Simulation setup 
 
 
where      have the       quantile equal to 0. 
The error distributions 
 
  
  



Simulation Study-homogeneous errors 



Simulation Study-homogeneous errors 



Simulation Study-heterogeneous 
errors 

Consider the model 
 
 
    are generated as in the i.i.d. case 



Simulation Study-heterogeneous 
errors 



An application 

 microRNA: small non-coding RNA binds to 3-UTR 
region of mRNAs 

 
Contradicting opinion about microRNA 
 Canalization effect (reduce gene expression variance) 

     Hornstein and Shomron, Nature Genetics, 2006 

     Wu et al. Genome Research 2009 

Increase gene expression variation 

    Lu and Clark, Genome Research 2012 
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An application 

 Data: RNAseq data from 70 individuals 
 
 ~ 20000 genes 

 
 Y: expression variation for each gene 

 
Covariates:  
 Mean Expression 

 # of microRNA targets, target Score of 3`-UTR 

 # of SNP on 3`-UTR, Gene Length, length of 3`-UTR 

 

 
 









Conclusion 

 Developed an EL based Baeysian model selection 
method in quantile regression 

 
 Asymptotic property 

 
 Simulation study shows that BEQR and BEQR.W 
performs better in general 

 
 Disadvantage: cannot handle p >= n. 
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