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INTRODUCTION
Although the mechanisms that specify the timing and placement 
of origin firing in higher eukaryotes remain a mystery, all eukaryo-
tes have a defined RT program that is largely conserved between 
closely related species1, including humans and mice2,3. Analyses of 
RT in various cell types have yielded insights into genome organi-
zation and repackaging events during development, suggesting an 
important role for the timing program itself or for 3D genome 
organization in regulating developmental gene expression1,3,4. In 
this protocol, we describe approaches for measuring genome-wide 
RT. As data processing and analysis often cause a bottleneck in 
these studies, the protocol also covers methods used routinely in 
our laboratory for downstream analysis3,5,6. Although this protocol 
emphasizes mammalian cells, as applied to analyze RT changes in 
various mouse and human cell types3,5,6, it can be adapted to any 
proliferating cell type; such variations have been used to analyze 
RT in Drosophila7–9, Arabidopsis10 and budding yeast11.

Overview of the procedure: generating experimental data 
(Steps 1–61)
The first portion of the protocol describes how to derive raw data 
for genome-wide RT analysis. Given that the protocol measures the 
timing of events during the cell cycle, some form of synchroniza-
tion is required. Synchronization can be achieved either prospec-
tively, before cell collection, or retroactively, after the cells have been 
collected. In yeasts, prospective synchrony methods are well estab-
lished, and in many cases, the same method can be used to com-
pare different strains12,13. However, most synchronization schemes 
for multicellular organisms are cumbersome and optimized for 
specific cell lines14–16, and most require the use of metabolic inhibi-
tors that can interfere with normal regulation of replication17,18. 
By contrast, retroactive synchronization using fluorescence-acti-
vated cell sorting (FACS) to select cells based on the increase in 
DNA content during S phase can be applied to any proliferating 
cell population without the need for any previous manipulation  

beyond dissociation of cells into a single-cell suspension19. 
Moreover, most prospective synchronization regimes for study-
ing RT verify the quality of synchronization by FACS analysis of 
DNA content; as DNA content defines S-phase interval, selection of 
cells for DNA content is the most direct means to the desired end. 
The resolution of S-phase intervals is determined by the fineness 
of DNA content windows selected. The only situations in which 
prospective synchronization alternatives may need to be considered 
are for cells that are very difficult to dissociate or those that are 
severely aneuploid, such that DNA content does not reflect the time  
during S phase.

In the original method20,21, cells were labeled with BrdU for a 
fraction of S-phase and sorted into several different time points 
during S-phase. BrdU-substituted DNA could then be isolated 
either on the basis of its increased density or by using BrdU-spe-
cific antibodies, and specific loci could be examined by hybridiza-
tion or PCR20–22. With microarray analysis, replication of the entire 
genome can be queried in a single-array hybridization by limiting 
the analysis to two differentially labeled samples, allowing all probes 
to be assigned one internally normalized relative RT value and rapid 
comparison of many samples3,5,6,23,24. One limitation of assigning 
one RT value per map position is that it cannot distinguish cases in 
which homologous loci replicate asynchronously, a situation that is 
estimated to occur in a small percentage of the genome19. However, 
the protocol can be adapted for analysis of these genomic segments 
by dividing and sorting S-phase into finer fractions19.

The two most popular variations of retroactive synchroniza-
tion by FACS are described in PROCEDURE section below. In 
the first method, BrdU-labeled cells are divided into early and late  
S-phase fractions, and BrdU-labeled DNA synthesized either early 
or late can then be labeled and hybridized onto a microarray. This 
method produces a high signal-to-noise ratio, as immunoprecipi-
tation (BrdU-IP) substantially enriches DNA synthesized in each 
half of S-phase. However, BrdU-IP efficacy can fluctuate and must 
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be closely monitored. In the second method, unlabeled cells are 
sorted into total S-phase versus G1-phase populations and DNA 
from these stages is differentially labeled and used as the target. This 
obviates BrdU-IP, but the dynamic range is limited to the twofold 
copy number increase during S-phase. Both methods yield simi-
lar results, evidenced by a direct comparison in the same cell line 
in one study6. In both methods, DNA from each fraction is dif-
ferentially labeled with Cy3 and Cy5 dyes and then co-hybridized 
to a whole-genome oligonucleotide microarray. The ratio of the 
abundance of each probe in each fraction is then used to generate 
a RT profile.

Overview of the procedure: normalization and computational 
analysis of RT data sets (Steps 62–88)
In this section of the protocol, we focus on methods specifically 
useful for RT analysis using whole-genome comparative genomic 
hybridization (CGH) microarrays25, which we have used to inves-
tigate the type, degree and mechanism of RT changes in mouse 
and human cell lines3,5,6,23,24. General methods for normalizing and 
analyzing microarray experiments for chromatin modifications or 
transcription at gene promoters have been described in detail in 
other works26–29. Similar to two-color microarray designs comparing 
an experimental sample with a reference, our RT experiments use 
a two-channel design comparing early versus late fraction enrich-
ment for each target. Typically, we include two dye-swap replicates 
per sample to address bias due to dye-specific effects, such as more 
rapid photobleaching of Cy5 dye than Cy3. Our philosophy is to 
minimize the number of transformations applied to the data and 
apply only minimally invasive global methods for removing bias 
and scaling data sets to allow comparisons between them.

All the analysis described here uses the R framework for statistical 
computing30–32. Through user-submitted packages that facilitate a 
wide variety of methods, R has become an indispensible tool for 
many common computational tasks. Although R has an initially 
steep learning curve due to its command line interface, help is 
available in many locations and forms, including books33–35, online 
manuals (http://cran.r-project.org/) and mailing lists aggregated 
in the R mailing lists archive (http://tolstoy.newcastle.edu.au/R/). 
Help can also be found within R itself; the command str() is often 
helpful for viewing the structure of variables and data sets and 
the ? operator (e.g., ?data.frame() ) provides a help page for the 
corresponding function. We use the R package LIMMA (linear 
models for microarray data), also available with a user interface 
through the limmaGUI package, for normalization and scaling27,36. 
The steps for this process are straightforward and are illustrated 
using two biological replicate data sets of mouse L1210 lymphoblast 
cells; these data sets are available in raw form in Supplementary 
Data 1–4, and after normalization and smoothing at http://www.
ReplicationDomain.org/.

We provide this section as a verified route for extracting 
information from the microarray experiments described in the 
PROCEDURE; however, users with sufficient experience with R 
or having different requirements for their data are free to modify 
the analysis as needed, and a wide array of alternative and addi-
tional methods are available through Bioconductor31. Although 
our methods for downstream analyses were tested primarily with 
NimbleGen CGH microarrays, most are applicable to any data for-
mat containing chromosome, genomic position and RT informa-
tion for each probe.

Experimental design
BrdU incorporation. The nucleotide analog BrdU can be used to 
pulse-label newly synthesized DNA during the S-phase. For mam-
malian cell types that have 8- to 12-h S-phases, incubation with 
BrdU for 2 h has been empirically determined to provide sufficient 
incorporation to ensure successful BrdU-IP in subsequent steps, 
yet the incubation time is long enough to identify even subtle dif-
ferences in RT, such as between female cells with one versus two 
early replicating X chromosomes5. Success has also been achieved 
with BrdU labeling times as short as 1 h, but subsequent BrdU-IP 
can be problematic, as there is very little substituted DNA relative  
to the background of unsubstituted DNA that will contribute 
to noise in the BrdU-IP6. The BrdU-labeling times for cells with  
S-phase lengths substantially different from mammalian cells, such 
as amphibian20 or fly8 cells, should be adjusted appropriately.

FACS sorting fractions of S-phase. For first-time users, we recom-
mend that at least 5 × 106 cells be used; however, with experience 
and a sufficient fraction of S-phase cells, fewer than 0.5 × 106 start-
ing cells can be successfully profiled. The important parameter is 
to obtain 20,000–30,000 cells in each of the early and late S-phase 
fractions. As described in PROCEDURE Step 1A, ethanol-fixed cells 
can be stained with propidium iodide (PI) and sorted on the basis 
of DNA content. Alternative fluorochromes that do not require 
RNase digestion, such as chromomycin A3, can also be used with 
ethanol-fixed cells20,21. Some cell types tend to clump or produce 
a lot of cellular debris when fixed in ethanol. For these cell types, 
the fixation step can be skipped and DNA can be stained with 
DAPI (4,6-diamidino-2-phenylindole) in permeabilized cells, as 
described in PROCEDURE Step 1B. The advantage of the method 
described in Step 1A is that cells fixed in ethanol can be stored 
at  − 20 °C (empirically determined to be the optimal temperature) 
or shipped to collaborators. The cells should be placed on dry ice 
during shipping, with a partition between the tube and the dry ice 
to prevent cell freezing. All steps, particularly storage, should be 
done in the dark, as BrdU-substituted DNA is light sensitive.

During FACS analysis, forward and side scatter analyses should 
be used to select an appropriate population of cells free of doublets 
or cell debris, both of which can hinder accurate sorting of desired 
populations. Lasers used in this protocol include 488-nm blue to 
detect PI or 407-nm violet to detect DAPI in cells that have been 
stained for DNA content. Two separate fractions of S-phase, early  
and late, are typically chosen for collection, but more can be  
collected if desired20,21.

Immunoprecipitation of BrdU-labeled DNA. DNA from BrdU-
labeled cells should be sonicated into fragments ranging from  
250 bp to 2 kb and then immunoprecipitated using a BrdU-specific 
antibody. Sonication into fragments of this size helps eliminate 
IP of DNA that has not been labeled with BrdU. If samples have 
been stored at  − 20 °C before beginning the IP, thaw them in a  
56 °C water bath to completely dissolve SDS, and then add 200 µl of 
SDS-PK buffer, prewarmed to 56 °C with 0.05 mg ml − 1 glycogen, to 
each sample before performing the phenol-chloroform extraction 
in PROCEDURE Step 13.

Quality control check of S-phase DNA. Because of the sensitivity 
and large number of steps involved, BrdU-IP is one of the trickiest 
parts of the protocol. To ensure quality, screen BrdU-IPs by PCR 
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amplification, using primers specific to DNA markers of known rel-
ative replication time (i.e., early or late phase). Although real-time 
PCR can be performed, we find gel electrophoresis to be sufficient 
to evaluate enrichment of DNA in each IP sample. Importantly, as 
PCR results can vary between aliquots of the same sample and RT 
can vary between cell types3,5, consistency across multiple samples 
from the same cell type is the best way to verify quality. Use the 
primer sets listed in Table 1 for mouse or human cell types, or 
substitute suitable alternatives to screen several IPs from both early 
and late S-phase fractions.

Amplification methods for immunoprecipitated single-stranded 
DNA. Once purified by IP and screened for sample quality, BrdU-
incorporated DNA must be amplified to obtain sufficient amounts 
for array hybridization. If multiple samples pass PCR screening, 
pool DNA from parallel IPs to use as the starting material for 
whole-genome amplification (WGA); otherwise, use a single-screen 
IP. Perform WGA as desired (we use the GenomePlex Complete 
Whole Genome Amplification and Reamplification Kits from 
Sigma), load amplified samples onto a gel to determine size range 
and screen once more by PCR to ensure that no bias was introduced 
during amplification.

Labeling and hybridization of amplified samples. The specific 
steps required in this section will largely depend on the chosen array 
platform. Although we focus on NimbleGen products to avoid the 
ambiguity inherent to generalized methods, the products can be 
applied successfully to other platforms8,9, including deep sequenc-
ing of BrdU-IP DNA37. Currently, mammalian RT data generated 
from microarray hybridization and deep sequencing are of equal 
quality3,6, whereas the microarray method remains more cost effec-
tive and the bioinformatics are considerably less demanding for the 
typical laboratory. Future advances reducing BrdU-labeling times 

TABLE 1 | Primers used for human and mouse BrdU IP screening.

Name Sequence (5′–3′)
Base pairs 

(bp)

Human test regions

Mitochondrial 
DNA

Forward, CCTAGGAATCACCTCCCATTCC 168

Reverse, GTGTTTAAGGGGTTGGCTAGGG

HBA1 Forward, GACCCTCTTCTCTGCACAGCTC 257

Reverse, GCTACCGAGGCTCCAGCTTAAC

HBB Forward, CCTGAGGAGAAGTCTGCCGTTA 241

Reverse, GAACCTCTGGGTCCAAGGGTAG

MMP15 Forward, CAGGCCTCTGGTCTCTGTCATT 249

Reverse, AGAGCTGAGAAACCACCACCAG

BMP1 Forward, GATGAAGCCTCGACCCCTAGAT 177

Reverse, ACCCGTCAGAGACGAACTTGAG

PTGS2 Forward, GTTCTAGGCTGGTGTCCCATTG 230

Reverse, CTTTCTGTACTGCGGGTGGAAC

NETO1 Forward, GGAGGTGGAATGCTAGGGACTT 286

Reverse, GCTGAGTGTGGCCTTAAGAGGA

SLITRK6 Forward, GGAGAACATGCCTCCACAGTCT 281

Reverse, GTCCTGGAAGTTGAGTGGATGG

ZFP42 Forward, CTTGTGGGGACACCCAGATAAG 233

Reverse, AACCACCTCCAGGCAGTAGTGA

DPPA2 Forward, AGGTGGACAGCGAAGACAGAAC 168

Reverse, GGCCATCAGCAGTGTCCTAAAC

Mouse test regions

Mitochondrial 
DNA

Forward, GACATCTGGTTCTTACTTCA 346

Reverse, GTTTTTGGGGTTTGGCATTA

Hba-a1 Forward, AAGGGGAGCAGAGGCATCA 439

Reverse, AGGGCTTGGGAGGGACTG

Hbb-b1 Forward, CAGTAAGCCACAGATCCTATTG 369

Reverse, CCCATAGTGACTATTGACTGTG

Pou5f1 Forward, CCCTCCCTAAGTGCCAGTTTCT 194

Reverse, GTAATCGCCCTCAGCAGTGTCT

Mmp15 Forward, AACAGAAGGCCTGCCTTGAC 360

TABLE 1 | (Continued).

Name Sequence (5′–3′)
Base pairs 

(bp)

Reverse, TGCATAGCACGACAGCATTG

Zfp42 Forward, TGAGATTAGCCCCGAGACTGAG 211

Reverse, CGTCCCCTTTGTCATGTACTCC

Dppa2 Forward, CCACAGGAAGACAGGAAGCAGT 199

Reverse, AGCCAGACAGGAGCCCTAGAGT

Ptn Forward, CTGGAATGAGTTACTGACGGGG 230

Reverse, CTGGCCCCACTGTGTAATAAGC

Mash1 Forward, GAAGATGAGCAAGGTGGAGACG 182

Reverse, AGTAGGACGAGACCGGAGAACC

Akt3 Forward, GAAGTGTGGGTTGAACCTCTGG 173 bp

Reverse, GCACCCTCTCCACTGTTCTGAT

(continued)
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and sequencing limitations may make this method more cost effec-
tive and accessible38. Once a platform is chosen, the labeling and 
hybridization steps are fairly straightforward. Briefly, 1 µg of early 
or late replicating DNA may be labeled with either Cy5 or Cy3 ran-
dom 9-mer dyes by Klenow reaction, precipitated with isopropa-
nol and resuspended and quantified in nuclease-free water. Finally, 
equal quantities of labeled early- and late-fraction DNA should be 
combined (specific quantity will depend on array design).

Array design. Array design is also an important consideration, and 
the nature of your study should be a guide in selecting between the 
variety of available standard and custom designs. For our genome-
wide studies in both mouse and human cell lines, 385K- and  
3 × 720K-feature CGH tiling arrays have sufficient probe densities, 
showing no disadvantage compared with high-density 2.1M CGH 
tiling arrays5,6, but they have considerable cost and convenience 
advantages. Tiling designs with roughly evenly spaced probes also 
facilitate the interpretation and analysis of genetic features.

Array scanning. Carry out scanning according to the manufactur-
er’s recommendations, avoiding unnecessary laser exposure. Take 
care to align channels with respect to signal intensity frequencies, 
although minor differences between channels usually do not impact 
smoothed timing profiles after normalization.

Quality control of microarray data. Before analysis, the overall 
quality of a microarray experiment should be examined from 

several angles. In general, there are six qualities that are important 
for reliable results of RT analyses on CGH arrays that should be 
verified at the corresponding PROCEDURE steps:

(1)	 Comparable signal intensity distributions for red and green 
channels (Step 74).

(2)	 Unbiased signal ratios with respect to signal intensity  
(Step 75).

(3)	 Comparable timing value distributions between experiments 
(Step 76).

(4)	 A high overall signal-to-noise ratio of the experiment  
(Step 84).

(5)	 Lack of artifacts in raw and false-color microarray images 
(Step 85).

(6)	 High correlations between replicate experiments (Step 86B).

Downstream analysis. When comparing the timing program with 
other genetic and epigenetic properties, you should note that dif-
ferences in formats between chromatin immunoprecipitation 
(ChIP)-on-chip, ChIP-seq and other approaches will require some 
care in processing, and even data sets from similar platforms often 
have idiosyncrasies that must be accounted for. In particular, take 
care to ensure that RT and other data types are compared in com-
patible genomic builds and equivalent cell types; use a method 
of quantification consistent with the methods and goals of the 
studies involved.

MATERIALS
REAGENTS
 CRITICAL All solutions are prepared with ddH

2
O and stored at room 

temperature (22 °C) unless otherwise indicated.
Cells of interest: Cultures can be grown in a cell culture dish of any size, but 
must be in an actively dividing state for use in this protocol. A minimum of 
50,000 S-phase cells is required for the protocol. However, we recommend 
that cultures with at least 120,000 S-phase cells be used.
BrdU (5-bromo-2′-deoxyuridine; Sigma Aldrich, cat. no. B5002). Prepare 
stock solutions of 10 mg ml − 1 and 1 mg ml − 1 in ddH

2
O and store at  − 20 °C.

Cell culture medium appropriate for cell type
Trypsin-EDTA (1×; Mediatech, cat. no. 25-053-Cl)
Accutase (Innovative Cell Technologies, cat. no. AT104). For long-term 
storage, store at  − 20 °C. Thaw overnight at 4 °C before use. Once thawed, 
store at 4 °C for up to 2 months. Warm to room temperature before each use.
PBS (see REAGENT SETUP)
FBS (GIBCO, cat. no. 16000). Prepare 1% (vol/vol) in PBS and store at 4 °C.
DAPI (BioChemika, cat. no. 32670). Dissolve stock in ddH

2
O to a final 

concentration of 10 mg ml − 1. Store at  − 20 °C protected from light.
PI (Sigma, cat. no. P4179-100MG; see REAGENT SETUP)
RNase A (10 mg ml − 1; Sigma, cat. no. R6513; store at  − 20 °C)
Proteinase K (20 mg ml − 1; Amresco, cat. no. E195; store at  − 20 °C)
Glycogen (20 mg ml − 1; Fermentas, cat. no. RO561; store at  − 20 °C)
Isopropanol (Sigma, cat. no. 59304)
Ethanol (100%; Sigma, cat. no. E7023)
Ethanol (70% (vol/vol); Sigma, cat. no. E7023)
Tris base (Fisher Scientific, cat. no. BP152-5)
HCl (EMD, cat. no. HX0603P-5)
NaCl (Fisher Scientific, cat. no. BP358-1)
KCl (Sigma, cat. no. P3911-500G)
Na

2
HPO

4
 (Sigma, cat no. S3264-500G)

KH
2
PO

4
 (Fisher Scientific, cat no. P380-500)

SDS (Invitrogen, cat. no. 15525-017)

•

•

•
•
•

•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•

EDTA (Invitrogen, cat. no. 15576-028)
SDS-PK buffer (see REAGENT SETUP)
Tris-saturated Phenol (Fisher, cat. no. BP226-500; store at  − 20 °C)  
! CAUTION It is caustic and harmful if inhaled or ingested. Wear gloves  
and other appropriate protective equipment. Use adequate ventilation.  
Store at  − 20 °C.
Chloroform (Sigma, cat. no. 34854) ! CAUTION It is a probable carcinogen 
and is harmful if inhaled or ingested. Wear gloves and other appropriate 
protective equipment. Use adequate ventilation.
BrdU-specific antibody (BD Biosciences Pharmingen, cat. no. 555627). 
Store at 4 °C.
Ammonium acetate (Fisher Scientific, cat. no. A639-500; see REAGENT 
SETUP) ! CAUTION It is an irritant and is harmful if swallowed. Wear gloves 
and other appropriate protective equipment. Use adequate ventilation. Store 
at room temperature.
Rabbit anti-mouse IgG (Sigma, cat. no. M-7023). Store at 4 °C
Anti-Mouse IgG-AlexaFluor488 (Invitrogen/Molecular Probes,  
cat. no. A-11029). Store at 4 °C.
Taq DNA Polymerase with ThermoPol Buffer (New England BioLabs,  
cat. no. M0267)
dNTPs (10 µM; Bioline, cat. no. BIO-39025)
Ethidium bromide (10 mg ml − 1; Fisher, cat. no. BP102-5)
Agarose (OmniPur, cat. no. 2125)
PCR primers for BrdU-IP quality verification (Steps 45–49), see Table 1
HCl/0.5% (0.1 M (vol/vol)) Triton X-100 (Sigma, cat. no. T9284) in ddH

2
O. 

Store at room temperature
Sodium tetraborate (Na

2
B

4
O

7
·10H

2
O; 0.1 M, Sigma, cat. no. S-9640,  

pH 8.5 in ddH
2
O)

Tween-20 (0.5% (vol/vol); Sigma, cat. no. P-1379) / 1% (wt/vol) BSA 
(Fisher Scientific, cat. no. BP1600-1) in PBS
Triton X-100 (0.1% (vol/vol); Sigma, cat. no. T9284) in PBS
Triton X-100 (0.5% (vol/vol); Sigma, cat. no. T9284) in PBS

•
•
•

•

•

•

•
•

•

•
•
•
•
•

•

•

•
•
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BSA (Fisher Scientific, cat. no. BP1600-1)
GenomePlex Complete Whole Genome Amplification Kit (Sigma,  
cat. no. WGA2)
GenomePlex WGA Reamplification Kit (Sigma, cat. no. WGA3)
QIAquick PCR Purification Kit (QIAGEN, cat. no. 28106)
NimbleGen Dual-Color DNA Labeling Kit (NimbleGen,  
cat. no. 05223547001)
NimbleGen Hybridization Kit (NimbleGen, cat. no. 05583683001)
NimbleGen Wash Buffer Kit (NimbleGen, cat. no. 05584507001)

EQUIPMENT
Nylon mesh (37 µm; Small Parts, cat. no. CMN-0040-D)
Filter syringe (BD Biosciences, cat. no. H8293-005663)
Round-bottom polystyrene tube (5 ml; Falcon, cat. no. 352054)
Round-bottom tube (15 ml; Falcon, cat. no. 2059)
FACSAria cell sorter (BD Biosciences, or a comparable sorter)
Hemocytometer
Vortexer
Sonicator (Heat Systems-Ultrasonics W-380, Heat Systems Ultrasonics)
Thermocycler
Spectrophotometer (NanoDrop, Thermo Scientific)
Electrophoresis apparatus
Appropriate NimbleGen Arrays and Mixers
Appropriate NimbleGen Hybridization System
Appropriate NimbleGen microarray scanner
Parafilm

REAGENT SETUP
PBS (1×)  To prepare 1 liter, dissolve 8 g NaCl, 0.2 g KCl, 1.44 g Na

2
HPO

4
 and 

0.24 g KH
2
PO

4
 in 800 ml of ddH

2
0. Adjust pH to 7.4 with HCl and adjust the 

final volume to 1 liter. Sterilize by autoclaving. Store at room temperature.
Trypsin-EDTA (0.2×)  To prepare 50 ml, combine 10 ml of 1× Trypsin-
EDTA with 40 ml of 1× PBS. Store at 4 °C for up to 1 month. Warm to  
room temperature before each use.
Propidium iodide (1 mg ml − 1)  To prepare 20 ml, dissolve 20 mg PI powder 
in autoclaved ddH

2
O to obtain a final volume of 20 ml and filter by syringe. 

Store protected from light for up to 1 year at 4 °C.
DAPI staining solution  To prepare ~1 ml, add 10 µl of 10% (vol/vol) Triton 
X-100 and 2 µl of 1 mg ml − 1 DAPI to 1 ml of PBS. Prepare the solution fresh 
before each use.
BrdU-specific antibody (12.5 µg ml − 1)  Dilute antibody in 1× PBS from the 
stock concentration of 0.5 mg ml − 1 to a final concentration of 12.5 µg ml − 1. 

•
•

•
•
•

•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Freshly prepare 40 µl of diluted antibody for each sample and discard unused 
diluted antibody.
Ammonium acetate (10 M)  To prepare 100 ml, dissolve 77.08 g ammonium 
acetate in 50 ml of ddH

2
O. Add ddH

2
O to adjust the final volume to 100 ml. 

Syringe-filter and store at room temperature.
Tris-HCl (1 M; pH 8.0)  To prepare 500 ml, dissolve 60.57 g Tris base in  
400 ml of ddH

2
O. Add HCl to adjust pH to 8.0. Add additional ddH

2
O  

to adjust the final volume to 500 ml. Sterilize by autoclaving. Store at  
room temperature.
EDTA (0.5 M)  To prepare 1 liter, dissolve 186.1 g disodium EDTA in 800 ml 
of ddH

2
O. Stir vigorously on a magnetic stirrer. Adjust the pH to 8.0 by addi-

tion of NaOH. Add ddH
2
O to a final volume of 1 liter. Sterilize by autoclav-

ing. Store at room temperature.
TE buffer (1×)  To prepare 1 liter, add 10 ml of 1 M Tris-HCl (pH 8.0) to  
2 ml of 0.5 M EDTA (pH 8.0) and adjust the final volume to 1 liter with 
autoclaved ddH

2
O. Store at room temperature.

Phenol-chloroform solution  To prepare 50 ml, combine 25 ml of  
Tris-saturated phenol with 25 ml of chloroform. Allow separation of 
layers before use. We recommend that the solution be stored overnight 
before use to allow adequate separation or centrifuged at maximum  
speed for 10 min before use to achieve separation. Store at 4 °C protected 
from light.
SDS-PK buffer  To prepare 50 ml, combine 34 ml autoclaved ddH

2
O, 2.5 ml 

of 1 M Tris-HCl (pH 8.0), 1 ml of 0.5 M EDTA, 10 ml of 5 M NaCl and  
2.5 ml of 10% (wt/vol) SDS. Store at room temperature. Warm to 56 °C 
before use to completely dissolve SDS.
IP buffer (10×)  To prepare 50 ml, combine 28.5 ml of ddH

2
O, 5 ml of 1 M 

sodium phosphate (pH 7.0), 14 ml of 5 M NaCl and 2.5 ml of 10% (wt/vol) 
Triton X-100. Store at room temperature.
IP buffer (1×)  To prepare 50 ml, add 5 ml of 10× IP buffer to 45 ml of  
autoclaved ddH

2
O. Store at room temperature.

Digestion buffer  To prepare 50 ml, combine 44 ml of autoclaved ddH
2
O, 

2.5 ml of 1 M Tris-HCl (pH 8.0), 1 ml of 0.5 M EDTA and 2.5 ml of 10% 
(wt/vol) SDS. Store at room temperature.
EQUIPMENT SETUP
Sonicator  Adjust sonicator settings as needed to achieve a 250 bp to 2 kb 
distribution of DNA fragment sizes. We use a water bath-type sonicator (Heat 
Systems-Ultrasonics W-380) with a 2-s, 50% duty cycle and an output setting 
of 7 for 4 min.

PROCEDURE
BrdU labeling and staining of cells for FACS
1|	 To perform PI staining and ethanol fixation before sorting, follow option A; this method is most commonly used, as it 
allows for shipping or long-term storage, and it has worked well for most mouse cell lines5,6. For cells that break or clump in 
ethanol, follow option B; note that a drawback of option B is that cells need to be sorted immediately following BrdU labe-
ling. Alternatively, carry out the procedure for S/G1 sorting described in Box 1 instead of Steps 1–57 (see also Fig. 1). This 
method obviates the need for BrdU-IP and WGA and can alleviate concerns that sorting early and late fractions of S-phase or 
WGA introduce a temporal bias; however, in our experiments, E/L (early/late) fractionation has produced results equivalent 
to the S/G1 method as well as sorting of additional S-phase fractions3,37.
(A) Labeling and PI staining of cells for FACS after ethanol fixation ● TIMING 3.5 h
	 (i) �Add BrdU to cells in culture medium at a final concentration of 50 µM.
	 (ii) �Incubate cells for 2 h in a CO2 incubator at 37 °C with 5% CO2.
	 (iii) �For adherent cells, rinse gently with ice-cold PBS twice. For suspension cells, collect cells in a 15-ml tube and  

proceed directly to Step 1A(vi).
	 (iv) �Detach adherent cells using 0.2× Trypsin-EDTA for 2–3 min or Accutase for 3–6 min. 

 CRITICAL STEP Incubate cells at 37 °C with the enzyme treatment and/or use gentle trituration if necessary to 
achieve a single-cell suspension, as this is essential for accurate FACS sorting.

	 (v) �Add 5 ml of cell culture medium (containing FBS if trypsin has been used) to the cell culture dish or flask, pipette 
gently and transfer contents to a 15-ml round-bottom tube.
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 Box 1 | METHOD FOR SORTING ACCORDING TO S/G1-PHASE ● TIMING 1 D 
In this method, cells are sorted into two fractions, G1- and S-phase, based on DNA content, and RT is derived from the twofold copy 
number increase for early versus late replicating sequences in pure S-phase populations. DNA analysis using flow cytometry can be 
performed simply by the use of a single DNA-binding fluorescent dye, such as PI or DAPI, as originally described59. Although this 
method is adequate, simultaneous measurement of BrdU-labeled DNA by performing BrdU/PI double staining for cell cycle analysis 
can discriminate G1- and early S-phase cells much more efficiently than by PI-only staining. In addition, some cell types, particularly 
those derived from differentiated stem cells or primary tissues, can produce debris that interferes with good S-phase sorting, and a 
short BrdU label described here can eliminate debris that is not labeled with BrdU. The advantage of this method is that it eliminates 
the need for BrdU-IP and WGA steps (described in Steps 13–44 and 51–57), which need to be carefully controlled. However, direct 
comparisons have shown that this method produces a lower signal-to-noise ratio than the method described in the main PROCEDURE6.
A much shorter BrdU pulse label is used in this protocol at lower concentration, because we are only trying to identify the cells in 
S-phase. With longer BrdU-labeling time periods, G2/M cells become labeled. It should be noted that we originally used the standard 
protocol for BrdU/PI analysis provided by Becton-Dickinson, which is fine for analysis. However, we found that the high concentration 
of HCl in this method sheared genomic DNA to very small fragments that precluded subsequent steps of the protocol. By titrating HCl, 
we found that 0.1 M HCl produced the optimal compromise between good S- versus G1-phase separation and minimal DNA shearing.
For BrdU/PI double-staining, correction of spectral overlap is critical for successful experiments. Spectral overlap exists between emission 
spectra of PI and fluorescein isothiocyanate (FITC)/Alexa Fluor 488 (for BrdU). Without correction, the BrdU/PI plots typically look similar to 
Figure 1a. For this correction, the adjustment of the ratio between PI and Alexa Fluor 488 (or FITC) gains can significantly reduce the skew-
ing shown in Figure 1a. Subtraction of the FITC signal from the PI signal (i.e., compensation) may also be required. To perform these cor-
rections, a ‘BrdU-only’ control is required, prepared by staining BrdU-labeled cells without the addition of PI. A ‘PI-only’ control also helps, 
prepared by staining non-BrdU-labeled cells for BrdU and PI. (Note: BrdU-labeled specimen stained for PI only does not reflect background 
signals derived from the anti-BrdU antibody and thus is not as good as unlabeled cells.) This step can be time-consuming, but is critical for 
successful sorting. We suggest that you first adjust the gains of forward scatter and side scatter, and then adjust the PI and AlexaFluor488 
gains by trial and error to obtain the best possible BrdU/PI plot. You may be able to obtain a reasonable BrdU/PI plot without compensa-
tion; otherwise, compensate by subtracting FITC signal from PI signal. The lower the percentage subtracted, the better.
S/G1 FACS sorting ● TIMING 1 d
1.    For adherent cells, remove cell culture medium from exponentially growing cells and replace with cell culture medium containing BrdU 
at a final concentration of 10 µM. For suspension cells, add BrdU to the cell culture medium at a final concentration of 10 µM. In order to 
obviate the amplification step before labeling and array hybridization, start with 6 million cells. One should also prepare a small sample of 
non-BrdU-labeled, ethanol-fixed cells for PI-only control and set aside a small number of BrdU-labeled cells for BrdU-only control.
2.    Incubate cells for 15 min in a CO2 incubator at 37 °C and 5% CO2.
3.    Fix as described in Steps 1A(iii–x) of the main PROCEDURE.

 PAUSE POINT Cells can be stored as in Step 1A.
4.    Aliquot (multiples of) 3 × 106 cells in 1.5-ml tube(s), centrifuge for 5 min at 200g at room temperature. Removal of supernatant is 
much easier with 1.5-ml tubes as the pellets are very loose.
5.    Aspirate the supernatant completely with a P200 pipette. Here and elsewhere, an additional pulse spin (~3 s) will help with  
discarding residual supernatant.
6.    Loosen the pellet by brief vortexing.
7.    Add 1 ml of 0.1 M HCl/0.5% (vol/vol) Triton X-100; resuspend by tapping.
8.    Incubate for 15 min at room temperature in the dark.
9.    Centrifuge for 5 min at 200g at room temperature, then aspirate the supernatant completely.
10.  Add 1ml of 0.1 M sodium tetraborate and resuspend by tapping.
11.  Centrifuge for 5 min at 200g at room temperature, then aspirate the supernatant completely.
12.  Add 0.15-µg anti-BrdU antibody in 0.5 ml of 0.5% (vol/vol) Tween-20/1% (vol/vol) BSA/PBS and resuspend by tapping.
13.  Incubate for 30 min at room temperature in the dark.
14.  Centrifuge for 5 min at 200g at room temperature, then aspirate the supernatant completely.
15.  Add 0.5 ml of 0.5% (vol/vol) Tween-20/1% (vol/vol) BSA/PBS.
16.  Centrifuge for 5 min at 200g at room temperature, then aspirate the supernatant completely.
17.  Add 1 µg of anti-mouse IgG-Alexa Fluor 488 in 100 µl of 0.5% (vol/vol) Tween-20/1% (vol/vol) BSA/PBS and resuspend by  
tapping (or when 1–2 × 106 cells are used, add 0.5 µg of mouse-specific IgG–Alexa Fluor 488 in 50 µl).
18.  Incubate for 30 min at room temperature in the dark.
19.  Centrifuge for 5 min at 200g at room temperature, then aspirate the supernatant completely.
20.  Add 0.5 ml of 0.5% (vol/vol) Tween-20/1% (vol/vol) BSA/PBS.
21.  Centrifuge for 5 min at 200g at room temperature, then aspirate supernatant completely.
22.  Resuspend the pellet in 1 ml of 5 µg ml − 1 PI in PBS (for ‘BrdU-only’ control, just add PBS).
23.  Transfer to a round-bottom 5-ml tube (i.e., Falcon 2054).
24.  Adjust the concentration to 2 × 106 ml − 1 by adding 5 µg ml − 1 PI in PBS. For BrdU-only sample, adjust to the same concentration 
by adding PBS without PI.
25.  Filter with a 37-µm mesh filter.
26.  Bring to flow lab for sorting (on ice, in the dark). Resume the main PROCEDURE at Step 58.
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	 (vi) �Count the number of cells collected using a hemo-
cytometer. Collect enough cells to obtain at least 
20,000–30,000 (preferably  > 150,000) cells in each 
fraction after sorting (Step 2); this will generally re-
quire 0.5–1 × 106 cells, with more cells required if few 
cells are in S-phase. For first-time users, we recom-
mend starting with 4 × 106 to 8 × 106 cells.

	 (vii) �Centrifuge at ~200g for 5 min at room temperature.
	(viii) �Aspirate the supernatant carefully and resuspend the cells 

in 2.5 ml of ice-cold PBS containing 1% (vol/vol) FBS.
	 (ix) �Add 7.5 ml of ice-cold 100% ethanol dropwise while 

gently vortexing. 
 CRITICAL STEP Note that vortexing should be per-
formed gently to avoid cell damage.

	 (x) � Seal the cap of the 15-ml tube with Parafilm and mix 
gently but thoroughly. 
 PAUSE POINT If necessary, cells can be stored in 
the dark at  − 20 °C indefinitely.

	 (xi)  Resuspend the BrdU-labeled, ethanol-fixed cells by tapping and inverting the tube.
	 (xii)  Transfer 4 × 106 to 8 × 106 cells to a 5-ml polystyrene round-bottom tube.
	(xiii)  Centrifuge at ~200g for 5 min at room temperature.
	(xiv)  Decant supernatant carefully.
	 (xv)  Resuspend the cell pellet in 2 ml of PBS with 1% (vol/vol) FBS. Mix well by tapping the tube.
	(xvi)  Centrifuge at ~200g for 5 min at room temperature.
	(xvii)  Decant supernatant carefully.
	(xviii) �Resuspend the cell pellet in PBS with 1% (vol/vol) FBS to achieve a solution of 3 × 106 cells per ml.
	(xix)  Add 1 mg ml − 1 of PI to a final concentration of 50 µg ml − 1.
	 (xx)  �Add 10 mg ml − 1 of RNase A to a final concentration of 250 µg ml − 1.
	(xxi) � Tap the tube to mix and incubate for 20–30 min at room temperature (22 °C) in the dark.
	(xxii)  Filter cells by pipetting them through a 37-µm nylon mesh into a 5-ml polystyrene round-bottom tube.
	(xxiii) Place samples on ice in the dark and proceed directly to FACS sorting.
(B) BrdU labeling and DAPI staining of cells for FACS ● TIMING 3 h
	 (i) Follow Steps 1A(i–vii).
	 (ii) Aspirate the supernatant carefully.
	 (iii) Add 5 ml of ice-cold PBS and pipette gently but thoroughly.
	 (iv) Centrifuge at ~200g for 5 min at room temperature.
	 (v) Aspirate the supernatant carefully.
	 (vi) Resuspend the cell pellet in DAPI staining solution to achieve a solution of 5 × 106 to 10 × 106 cells per ml.
	 (vii) Filter the cells by pipetting them through a 37-µm nylon mesh into a 5-ml polystyrene round-bottom tube.
	(viii) Place the samples on ice in the dark and proceed directly to FACS sorting.

2|	 Run the sample on FACSAria cell sorter (alternatively, any comparable cell sorter can be used).
 CRITICAL STEP It is very important to place live samples chilled on ice or at 4 °C during FACS analysis to avoid cell-cycle 
progression in the absence of BrdU. Protect samples from light.

3|	 Use forward and side scatter information to select the desired population of cells to be included in the sort, and exclude 
doublets or cell debris.

4|	 Create a histogram that plots cell count on the y axis and DNA content (fluorochrome intensity) on the x axis (see Fig. 2).

5|	 Select two distinct S-phase populations to be sorted into separate fractions, as indicated in Figure 2.

6|	 Sort cells into fresh 5-ml round-bottom tubes and place at 4 °C during the sort.
 PAUSE POINT Store cells immediately on ice in the dark until all samples have been sorted.
? TROUBLESHOOTING
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Figure 1 | Two-dimensional cell-cycle sorting for S- and G1-phases. Cells 
labeled with BrdU and stained as described in Box 1, and then analyzed 
on a FACS instrument. (a) A typical noncorrected BrdU/PI plot. Note how 
the plot is skewed to the right because of spectral overlap. (b) A corrected 
BrdU/PI plot. Sorting windows for nicely separated G1, S and G2/M phases 
of the cell cycle are indicated. 
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7|	 Centrifuge at 400g for 10 min at 4 °C. Alternatively, if 
fewer than 150,000 cells have been collected for each frac-
tion, proceed directly to Step 9.

8|	 Decant supernatant gently, only once.
 CRITICAL STEP Some residual sheath fluid can be left in 
the tube to prevent losing the cell pellet, which can easily 
detach from the tube during this step.

9|	 Add 1 ml of SDS-PK buffer containing 0.2 mg ml − 1 of 
proteinase K and 0.05 mg ml − 1 of glycogen for every 100,000 
cells collected and mix vigorously by tapping the tube.

10| Incubate samples in a 56 °C water bath for 2 h.

11| Mix the sample thoroughly and aliquot 200 µl, equiva-
lent to ~20,000 cells, per 1.5-ml tube.
 PAUSE POINT Samples can be stored for at least 6 months 
at  − 20 °C in the dark before use.

12| Add 200 µl of SDS-PK buffer with 0.05 mg ml − 1 of 
glycogen to each aliquot and proceed directly to BrdU-IP.

BrdU immunoprecipitation ● TIMING 2–3 d
13| Extract once with phenol-chloroform, collecting the  
upper phase in a 1.5-ml tube.

14| Extract once with chloroform, collecting the upper phase in a 1.5-ml tube.

15| Add 1 volume of isopropanol and mix well.

16| Store at  − 20 °C for 20 min.
 PAUSE POINT Samples can be stored in the dark at  − 20 °C overnight.

17| Centrifuge at 16,000g for 30 min at 4 °C.

18| Discard the supernatant and add 750 µl of 70% ethanol to the pellet.

19| Centrifuge at 16,000g for 5 min at 4 °C, then remove all ethanol and let the pellet dry.

20| Resuspend the pellet in 500 µl of 1× TE.
 PAUSE POINT If necessary, the pellet can be stored overnight at 4 °C.

21| Sonicate DNA to an average size of approximately 0.7–0.8 kb. Settings required for a 250-bp to 2-kb range should be 
determined empirically for each sonicator type. See EQUIPMENT SETUP.

22| Incubate the sample at 95 °C for 5 min to heat-denature the DNA.

23| Cool the sample on ice for 2 min.

24| Add 60 µl of 10× IP buffer to a clean 1.5-ml tube.

25| Add the denatured DNA from Step 22 to the tube from Step 24.

26| Add 40 µl of 12.5 µg ml − 1 anti-BrdU antibody.
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Figure 2 | A typical cell-cycle profile for a mammalian fibroblast population 
obtained during FACS analysis by plotting cell count versus DNA content. In 
this example, cellular DNA was stained with PI; accordingly, DNA content 
is represented by PI intensity. A G1 peak, representing cells with 2N DNA 
content, and a G2/M peak, representing cells that have undergone replication 
and therefore possess a 4N DNA content, are labeled. The area between these 
two peaks is representative of cells in S phase and can be sorted into two 
fractions, as indicated here, to obtain early and late S-phase samples.
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27| Incubate for 20 min at room temperature with constant rocking.
 CRITICAL STEP Cover tubes with foil and keep samples in the dark.

28| Add 20 µg of rabbit anti-mouse IgG.
 CRITICAL STEP Cover tubes with foil and keep samples in the dark.

29| Incubate for 20 min at room temperature with constant rocking.

30| Centrifuge at 16,000g for 5 min at 4 °C.

31| Remove the supernatant completely.
 CRITICAL STEP If the pellet becomes loose, then briefly centrifuge the sample again in order to completely remove the 
supernatant without disturbing the pellet. Several centrifugations may be necessary to completely remove the supernatant.

32| Add 750 µl of 1× IP buffer that has been chilled on ice.

33| Centrifuge at 16,000g for 5 min at 4 °C.

34| Remove supernatant completely, as in Step 31.

35| Resuspend the pellet in 200 µl of digestion buffer with freshly added 0.25 mg ml − 1 proteinase K. Incubate the samples 
overnight at 37 °C.

36| Add 100 µl of fresh digestion buffer with freshly added 0.25 mg ml − 1 proteinase K.

37| Incubate the samples for 60 min at 56 °C.

38| Extract once with phenol-chloroform, collecting the upper phase in a 1.5-ml tube.

39| Extract once with chloroform, collecting the upper phase in a 1.5-ml tube.

40| Add 0.625 µl of 20 mg ml − 1 glycogen, 100 µl of 10 M ammonium acetate and 750 µl of 100% ethanol and mix well.

41| Store at  − 20 °C for 20 min.
 PAUSE POINT Samples can be stored in the dark at  − 20 °C indefinitely.

42| Centrifuge at 16,000g for 30 min at 4 °C.

43| Remove supernatant, rinse pellet with 70% (vol/vol) ethanol and dry.

44| Resuspend the pellet in 80 µl of 1× TE (for a final concentration of 250 cell equivalents per µl).
 PAUSE POINT Store DNA at 4 °C for up to 1 month or at –20°C for longer storage.

PCR method for quality control of BrdU-IP ● TIMING 4–6 h
45| Prepare enough PCR master mix to screen all IP samples with each primer set listed in Table 1. An example PCR mix is 
listed in the table below. Mitochondrial primer sets should be used at 1.0 µM concentration instead of 0.5 µM; add 0.63 µl 
of forward and reverse 20 µM combined primers and adjust with nuclease-free water accordingly.

Component Amount per reaction (ml) Final

Taq buffer (10×) 1.25 1×

dNTPs (10 mM) 0.25 0.2 mM

Taq polymerase (20 U µl − 1) 0.06 1.2 U

F/R 20 µM combined primers 0.31 0.5 µM

Nuclease-free water Up to 12.5
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46| Aliquot 11.5 µl of master mix per tube and add 1 µl of IP sample.

47| Run the samples in thermocycler with the following conditions:

Cycle number Denature Anneal Extend

1 94 °C, 2 min

2–39 94 °C, 45 s 60 °C, 45 s 72 °C, 2 min

40 72 °C, 5 min

48| Add 2.5 µl of 6× loading dye to every 12.5-µl reaction and load 6 µl onto 1.5% (wt/vol) agarose gel. Run the gel at  
125 V for 16 min.

49| Score each IP based on anticipated enrichment of amplicon DNA (see Experimental design). Multiple samples  
from the same cell type should amplify consistently, with enrichment consistent with genes of known RT for the given 
cell type.
 CRITICAL STEP Before proceeding, verify sample quality with corresponding primer sets listed in Table 1.
? TROUBLESHOOTING

50| If several IPs of the same sample and S-phase fraction pass the screening, pool equal amounts of each IP to a final 
volume of 50 µl (e.g., if two IPs pass, combine 25 µl of each in the pool).

Whole-genome amplification ● TIMING 8 h
51| Precipitate DNA fractions by adding 1.25 µl of 2 mg ml − 1 glycogen, 20 µl of 10 M ammonium acetate and 150 µl of 
ethanol to each 50-µl IP sample (if pooling multiple samples, a total volume of 50 µl should still be used). Mix well, let it 
stand at  − 20 °C for 20 min and then centrifuge for 30 min at maximum speed at 4 °C.

52| Rinse the pellets with 70% (vol/vol) ethanol, air-dry them, and then resuspend them in 10 µl of nuclease-free water.

53| Transfer the 10-µl samples to 0.2-ml PCR tubes and carry out WGA using an appropriate method or kit. In our experi-
ments, the GenomePlex Complete Whole Genome Amplification Kit has worked well, starting from the library preparation step 
(i.e., skipping fragmentation)39.

54| Purify entire WGA products using an appropriate PCR purification kit, such as QIAquick. Elute in 30 µl nuclease-free 
water prewarmed to 65 °C and determine the concentration using Nanodrop.

55| Dilute WGA samples to appropriate concentration (we use 1 µl DNA of 20 ng µl − 1) and, if necessary to obtain sufficient 
material for the chosen array platform, perform a second round of WGA. We follow the GenomePlex WGA Reamplification Kit, 
Reamplification Procedure A.

56| Purify entire reamplified WGA products as in Step 54.

57| Screen purified final products using the PCR method described in Steps 46–49.
 PAUSE POINT Samples can be stored in the dark at  − 20 °C for up to 1 month.
? TROUBLESHOOTING

Labeling and hybridizing ● TIMING 1–3 d
58| Differentially label reamplified early and late WGA DNA fractions with Cy3 and Cy5 dyes from Step 57 (or nonamplified 
DNA prepared as in Box 1) according to the method most appropriate for the chosen array platform. We follow the sample 
labeling instructions for the NimbleGen Dual-Color DNA Labeling Kit.

59| Hybridize the samples to array(s) using the corresponding method or kit. We use the NimbleGen Hybridization Kit.

60| After hybridization, wash array(s) as needed. We perform this step, according to the manufacturer’s instructions, using 
the NimbleGen Wash Buffer Kit.
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61| Scan array(s) with an appropriate microarray scanner and software package. We use the NimbleGen scanner GenePix 
4000B and the accompanying NimbleGen arrays user’s guide, CGH analysis v5.1. Newer equipment is accompanied with a 
newer version of the user’s guide and operated slightly differently. For NimbleGen arrays, raw images should be saved as .tif 
files, and two .pair files (one each for Cy3 and Cy5 channels) will be created per experiment.

Normalization of raw data sets ● TIMING 1 d
62| If necessary, install R from http://www.r-project.org/. Create RGL (Red Green List) files from the original NimbleGen 
.pair files, as described in Steps 63–68. These files contain columns for both red (Cy5) and green (Cy3) channel signal inten-
sities; example pair files used in Step 65 and throughout are available in Supplementary Data 1–4.

63| Set the working directory using the command ‘setwd’ in the R console to specify the appropriate file path. Here and in 
later steps, the ‘ > ’ symbol denotes the R prompt at the beginning of a line and should be omitted when typing the command.

 >  setwd(″D:\RT project\Raw datasets″)

64| Read the first five rows of data from the raw data files and determine the data type of each column using the  
sapply() function:

 >  tab5rows  < - read.delim(″318990_4L1210LymphoblastP1_532.pair″, header  =  T, nrows  =  
5, skip = 1) 
 >  classes  < - sapply(tab5rows, class)

 CRITICAL STEP When reading large tables in R, such as .pair files, explicitly noting the number of rows and data type of 
each column as illustrated here and in Step 65 will save a substantial amount of memory and calculation time. Occasionally, 
the sapply() function will set the genomic position columns of large data sets as an integer type, which lacks the memory 
space to store large numbers. If so, set the type manually with  >  classes[x]  =  ‘numeric’ (where x is the column number 
containing position information) after creating the classes variable.

65| Read the raw data sets into memory. Note that variable names and file names may be substituted here and elsewhere, 
as appropriate. The ‘nrows’ parameter can be a modest overestimate; the correct number of rows will be present in the final 
table, but an estimate allows the system to allocate the correct amount of memory.

 >  mLymph1Cy3  < - read.delim(″L1210LymphoblastR1_532.pair″, header = T, nrows = 390000, 
comment.char  =  ″″, colClasses = classes, skip = 1)    # Supplementary Data 1 

 >  mLymph1Cy5  < - read.delim(″L1210LymphoblastR1_635.pair″, header = T, nrows = 390000, 
comment.char  =  ″″, colClasses = classes, skip = 1)    # Supplementary Data 2 

 >  mLymph2Cy3  < - read.delim(″L1210LymphoblastR2_532.pair″, header = T, nrows = 390000, 
comment.char  =  ″″, colClasses = classes, skip = 1)    # Supplememtary Data 3 

 >  mLymph2Cy5  < - read.delim(″L1210LymphoblastR2_635.pair″, header = T, nrows = 390000, 
comment.char  =  ″″, colClasses = classes, skip = 1)    # Supplementary Data 4 

66| Extract the Cy3 and Cy5 channel signal intensities from the raw data sets, for example,

 >  mLymph1  < - data.frame(S_Cy5 = mLymph1Cy5[,10],S_Cy3 = mLymph1Cy3[,10])
 >  mLymph2  < - data.frame(S_Cy5 = mLymph2Cy5[,10],S_Cy3 = mLymph2Cy3[,10])

67| Write the columns extracted in Step 66 to separate RGL files for normalization

 >  write.table(mLymph1, file = ″L1210LymphoblastR1.rgl.txt″, row.names = F,
quote = F, sep = ″\t″, eol = ″\r\n″) write.table(mLymph2,
file = ″L1210LymphoblastR2.rgl.txt″, row.names = F, quote = F, sep = ″\t″,
eol = ″\r\n″)
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68| Create a ‘targets’ text file that describes the target files for normalization. We will name this file ‘T.txt’ (see Supplemen-
tary Data 5 for an example targets file). Note that, to be read correctly, the file should be tab delimited and should contain 
only one carriage return at the end of the final line. Place this file in the same directory as the raw .pair files and .rgl files 
generated above.

69| Install a current version of the LIMMA package according to the instructions at http://bioinf.wehi.edu.au/limma/ or by 
using the command line interface:

 >  source(″http://www.bioconductor.org/biocLite.R″)
 >  biocLite(″limma″)
 >  biocLite(″statmod″)

70| Perform LOESS and scale normalization using LIMMA as described in Steps 71–73 and verify the results as described in 
Steps 74–85. This process is more straightforward than many two-color normalization methods, as NimbleGen arrays do not 
have print tip groups, spot background areas or mismatch spots that must be accounted for. LOESS normalization (normalize 
within arrays) corrects the internal dependence of red-green ratios on their intensity independently for each array and is 
examined further in Steps 74 and 75. Scale normalization (normalize between arrays) equalizes the distribution of timing 
values between multiple samples for comparisons and can be verified in Step 76.

71| Load the LIMMA package and read the raw data sets listed in the file created in Step 68. This will generate a  
MAlist-type data object, r, which stores the ratios (M-values) and average intensity values (A-values) of raw samples  
before normalization:

 >  library(limma)
 >  t  =  readTargets(″T.txt″, row.names = ″Name″)
 >  r  =  read.maimages(t, source = ″generic″,columns = list(R = ″S_Cy5″, G = ″S_Cy3″))

72| Perform LOESS normalization. This will generate a second MAlist-type data object, MA.l, which stores the samples after 
within-array normalization.

 >  MA.l  =  normalizeWithinArrays(r, method = ″loess″)

73| Perform scale normalization. This will generate a third MAList object, MA.q, which stores the samples after between-
array normalization. As with ChIP-chip methods13,14, this type of scale normalization may not be appropriate for examining 
subsets of the genome in which large unbalanced timing changes are expected (e.g., timing of the X chromosome before and 
after inactivation), but is ideal for whole-genome analyses.

 >  MA.q  =  normalizeBetweenArrays(MA.l, method = ″scale″) 

74| Check the distribution of spot intensities for red and green channels after each stage of normalization (Fig. 3). These 
distributions should be fairly well aligned and should have tails with high signal values. Experiments in which signal inten-
sity drops off more sharply will often show higher levels of noise in the final data set. (Here and in subsequent steps, text 
following the ‘#’ symbol represents non-executed comments.)

 >  plotDensities(r)        # Raw data
 >  plotDensities(MA.l)    # After within-array normalization
 >  plotDensities(MA.q)    # After between-array normalization

75| Create MA plots to check for a relationship between the ratio of dye intensities (M) and their average (A)(Fig. 4). Points 
will often be skewed to low Cy5/Cy3 ratios at low intensities due to photobleaching of Cy5, but should be corrected after 
within-array loess normalization in LIMMA. This bias is the most common artifact for NimbleGen arrays but other types can 
also be diagnosed with MA plots40.

 >  plotMA(r, array = 1)      # Raw data, replicate 1
 >  plotMA(MA.l, array = 1)    # After within-array normalization
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76| Verify that the distribution RT values are equivalent across experiments after normalization by creating boxplots of 
Cy5/Cy3 ratios for each experiment (Fig. 5). These distributions may be slightly different before normalization (and after 
within-array normalization), but first and third quartiles (the box boundaries) of all experiments should be equal after 
between-array normalization.

 >  boxplot(MA.l$M~col(MA.l$M), names = colnames(MA.l$M))
 >  boxplot(MA.q$M~col(MA.q$M), names = colnames(MA.q$M))

77| Create an intermediate file containing the normalized data sets by typing, for example:

 >  write.table(MA.q$M, file = ″Loess_mLymph_112909.txt″, quote = F, row.names = F, sep = ″\t″)

This tab-delimited text file will be further processed in Steps 79–85 to sort and average the normalized data sets and 
check other quality control measures.

78| Remove the other objects from memory.

 >  rm(r, MA.l, MA.q, mLymph1Cy3, mLymph1Cy5, mLymph2Cy3, mLymph2Cy5, mLymph1,  
mLymph2); gc(reset = T)

Or, remove all objects.

 >  rm(list = ls()) 

79| Assign position and chromosome information to the normalized data sets. This can be accomplished using the original .pair 
files, which typically contain this information in columns ‘POSITION’ and ‘SEQ_ID’, respectively (option A). Some data formats, such 
as HD2 triplex arrays, contain a different format of SEQ_ID column with chromosome and chromosome end points combined (e.g., 
‘chr11:1–134452384’) or no SEQ_ID column. In these cases, extract chromosome labels from the PROBE_ID column (option B)
(A) Copy position and chromosome columns from original .pair files
	 (i) Read the intermediate file created in Step 77:
	�  >  tab5rows  =  read.table(″Loess_mLymph_112909.txt″, header  =  T, nrows  =  5)
	  >  classes  =  sapply(tab5rows, class)
	�  >  RT  =  read.table(″Loess_mLymph_

112909.txt″, header = T, nrows = 389306, 
comment.char  =  ″″, colClasses = classes)

	 (ii) �Next, read the original .pair file containing POSITION 
and SEQ_ID columns:

	�  >  tab5rows  =  read.delim(″L1210Lym
phoblastP1_635.pair″, header  =  T, 
nrows  =  5, skip = 1)

	�  >  classes  =  sapply(tab5rows, class)
	�  >  a  =  read.delim(″L1210LymphoblastP

1_635.pair″, header = T, nrows = 389306, 
comment.char  =  ″″, colClasses = classes)

	 (iii) �Finally, remove unmapped probes from the files loaded 
in Steps 79A(i) and (ii) and assign position and  
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Figure 3 | Distribution of signal intensities  
before and after normalization. (a–c) Panels 
depict the distribution of Cy5 (red) and Cy3 
(green) signal values before normalization (a), 
after within-array normalization (b), and after 
between-array normalization (c) in LIMMA.  
(b,c) As RT is a relative property, equivalent 
amounts of DNA are transcribed before and after 
the middle of S-phase, allowing distributions 
to be transformed to a common scale for each 
channel (b) and array (c).
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Figure 4 | Dependence of timing ratios on signal intensity. (a,b) MA plots from 
LIMMA illustrate the relationship between red/green ratios (y axis) and signal 
intensity (x axis) before (a) and after (b) within-array normalization. The skew 
of low-intensity data pointing toward Cy3 (here, late) values is a common 
characteristic of two-color arrays, and is corrected after normalization.
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chromosome information to the normalized data sets:
	�  >  RT  =  subset(RT, a$POSITION ! =  0)
	  >  a  =  subset(a, a$POSITION ! =  0)
	�  >  RT$CHR  =  a$SEQ_ID; RT$POSITION  =  

a$POSITION
(B) Parse position and chromosome information from 
PROBE_ID column
	 (i) �Load the normalized and .pair files as outlined in 

Steps 79A(i) and 79A(ii).
	 (ii) �Split the PROBE_ID column into the ele-

ments preceding and following ‘FS’; for example, 
‘CHR12FS006244334’ will become ‘CHR12’ and 
‘006244334’.

	�  >  x  =  strsplit(as.character(a$PROBE_
ID), ″FS″)

	  >  y  =  unlist(x)      # chr [1:770156] 
“CHR01””003001832”  ...
	 (iii) �Separate the odd- and even-numbered indices of this object into separate columns and convert the position strings to 

numeric values.
	  >  y1  =  y[c(TRUE, FALSE)]    # chr [1:385078] “CHR01””CHR01”  ... 
	  >  y2  =  y[c(FALSE,TRUE)]    # chr [1:385078] “003001832””003018759”  ...
	  >  y2  =  as.numeric(y2)    # num >[1:385078] 3001832 3018759  ... 
	 (iv) �Finally, assign the position and chromosome information to the normalized data set:
	�  >  RT  =  data.frame(CHR = y1, POSITION = y2, RT, stringsAsFactors = F)

80| Sort data sets by chromosome and position. This will ensure that the plotting and autocorrelation checks in Steps 81 
and 84 are accurate and that they are required for most downstream analysis. By the default sorting method, the order of 
mouse chromosomes will be 1, 10–19, 2–9, X and then Y. This order itself is unimportant but should be consistent across 
experiments to prevent errors in downstream analysis.

 >  RT  =  RT[order(RT$CHR, RT$POSITION),]

81| Plot timing values across a chromosome (Fig. 6). This serves to verify the orientation for early/late domains, as well as 
the overall technical quality of the experiments. Check the data set structure using ‘str(RT)’ for the correct column numbers 
to plot and adjust the y axis span (‘ylim’) as needed.
? TROUBLESHOOTING
 >  RTb  =  subset(RT, RT$CHR  =  =  ″chr1″)  # Create a subset of timing values in chromosome 1
 >  par(mar = c(3.1,4.1,1,1),mfrow = c(2,1))  # Set plot margins; include two rows in layout
 >  plot(RTb[,1]~RTb$POSITION,pch = 19,cex = 0.2,col = ″grey″,ylim = c(-3,3))  # Plot replicate 1

 >  plot(RTb[,2]~RTb$POSITION,pch = 19,cex = 0
.2,col = ″grey″,ylim = c(-3,3))  # Plot  
replicate 2

82| Using known regions of early or late replication, 
verify that the timing values are properly oriented.  
If not, reverse them by multiplying the appropriate data 
columns by –1

 >  RT[,1]  =  RT[,1] * -1

83| Rename data sets and average replicates as desired, 
then write a finalized file containing normalized data to the 
current working directory (see Step 63), for example,

 >  names(RT)[1:2]  =  c(″mLymphR1″, ″mLymphR2″)

 >  RT$mLymphAve  =  (RT[,1]  +  RT[,2]) / 2

Rep.1

Rep.2

0 50 × 106 100 × 106 150 × 106 200 × 106

0 50 × 106 100 × 106

Coordinate (chromosome 1)

150 × 106 200 × 106

R
ep

lic
at

io
n 

tim
in

g
La

te
E

ar
ly

R
ep

lic
at

io
n 

tim
in

g
La

te
E

ar
ly

Figure 6 | Replication timing values across chromosome 1. For each 
replicate, individual log2(Cy5/Cy3) probe intensities are plotted in gray 
(y axis) against their position on chromosome 1 (x axis). Because of 
photobleaching of Cy5 diagnosed in Step 75, timing is skewed toward early 
values in replicate 1 (top, Rep. 1) and late values in replicate 2 (bottom, 
Rep. 2), illustrating the practical advantages of dye-swap replicates. 
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Figure 5 | Verification of scale normalization between data sets.  
(a,b) Exemplary boxplots of timing values before (a) and after (b) 
normalization between arrays, for a 9-d differentiation from embryonic stem 
cells to neural precursor cells with 3-d intermediates: (EBM0 (embryonic 
stem cells); EBM3, EBM6 and EBM9 (neural precursor cells))5. Modest 
differences in the distribution of timing values (with box boundaries 
representing the first and third quartiles) are equalized after scaling. 
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 >  write.table(RT, ″ 
LoessScale + CHRPOS_mLymph_
112909.txt″, row.names = F, 
quote = F, sep = ″\t″)

84| For each data set, determine the 
autocorrelation function (ACF), which 
describes the correlation between 
neighboring data points as a function 
of their genomic distance (Fig. 7).  
As nearby loci should replicate almost 
synchronously, the ACF is a useful 
measure of overall data quality. High-
quality data sets will have a correlation  
between nearest neighbor timing values of R  =  0.60–0.80. This measure of signal-to-noise ratio will improve as more 
replicates with equivalent states are averaged.

 >  acf(RT[,1],lag = 1000)$acf[2]    # Replicate 1:  R   =   0.742

 >  acf(RT[,2],lag = 1000)$acf[2]    # Replicate 2:  R   =   0.665

 >  acf(RT$mLymphAve, lag = 1000)$acf[2]  # Averaged 1 and 2:  R   =   0.762 
? TROUBLESHOOTING

85| To check for spatial artifacts, examine the original .tif images (Fig. 8) for common characteristics of regional bias, such 
as streaks, blank regions or overabundance of either channel in any region of the array41. Note that the ‘rtiff’ package may first 
need to be installed as in Step 72. As most probes on tiling microarray designs are randomly distributed with respect to genom-
ic location, spatial artifacts in the scanned images should not affect timing values to a large extent in any particular location in 
the genome, but may reduce the overall signal-to-noise ratio of the experiment if they cover a substantial portion of the array.

 >  library(rtiff)

 >  Cy5  =  readTiff(″318990_3MEFfemale_532.tif″)

 >  plot(Cy5)

Static properties of the timing program in a given cell type ● TIMING 3 h
86| After normalization, choose among several common options to analyze the characteristics of timing data sets.  
Although optional, each method is complementary and useful for a wide range of downstream analysis. To derive an 
overall timing profile from noisier raw data points, apply a loess smoothing function (option A). Use a correlation met-

ric, generally after LOESS smoothing, to determine  
the overall levels of similarity among two or more data 
sets (option B). Perform segmentation (option C) to define 
the boundaries of replication domains and determine their 
average timing.
(A) LOESS smoothing
      (i) �Apply LOESS smoothing to each chromosome as 

outlined below (Fig. 9). For human and mouse data 
sets, we perform smoothing with a bandwidth of 
300 kb; other systems may have different optimal 
smoothing spans that should be determined empiri-
cally using the smallest span that reproduces most of 
the features between replicate profiles.

	�  >  chrs  =  levels(RT$CHR); 
str(chrs)    # Create a list of all 
chromosomes
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Figure 7 | Autocorrelation functions for two RT experiments and their average. Correlation values 
(y axis) decline as a function of genomic distance between data points (with ‘lag’ on the x axis 
representing the separation between probes), but should start above 0.6 for high-quality data sets and 
improve upon averaging replicates.

Figure 8 | A typical NimbleGen microarray image after a successful 
experiment. The lighter points in a grid pattern are control features that aid 
with spot alignment.
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	�  >  AllLoess  =  NULL        # Initialize 
a variable to store all loess-smoothed 
data

	�  >  for (chr in chrs) {        # For each 
chromosome,

	�  >   RTl  =  NULL        # Create a vari-
able to store loess-smoothed values

	�  >   RTb  =  subset(RT, RT$CHR  =  =  chr)  # 
Subset the data set to a single chromosome

	�  >   lspan  =  300000/(max(RTb$POSITION)-min(RTb$POSITION))  # Set smoothing span

	�  >   cat(″Current chromosome: ″, chr, ″\n″)  # Output current chromosome to console

	�  >   RTla  =  loess(RTb$ mLymphR1~ RTb$POSITION, span  =  lspan)  # Smooth data set 1

	�  >   RTlb  =  loess(RTb$mLymphR2~ RTb$POSITION, span  =  lspan)  # Smooth data set 2

	�  >   RTlc  =  loess(RTb$mLymphAve ~ RTb$POSITION, span  =  lspan)# Smooth data set 3

	�  >   RTl  =  data.frame(CHR = RTb$CHR, POSITION = RTb$POSITION, RTla$fitted, RTlb$fitted, 
RTlc$fitted)        # Combine the data sets for the current chromosome 

	�  >   AllLoess  =  rbind(AllLoess, RTl)    # Combine current chromosome with overall  
data set

	�  >  }            # End for loop

	�  >  x  =  as.data.frame(AllLoess)    # Reformat the smoothed data sets as a data 
frame

	 (ii) �Rename the LOESS-smoothed data sets as desired and save these to a tab-delimited text file. Note that column names 
within a data frame cannot begin with a number.

	�  >  names(x)[3:5]  =  c(″x300smo_mLymphR1″, ″x300smo_mLymphR2″, ″x300smo_mLymphAve)

	�  >  write.table(x, ″300kb_LoessSmo_mLymph_112909.txt″, row.names = F, quote = F, sep = ″\
t″)

	 (iii) �Plot the results of LOESS smoothing as follows (Fig. 9). The ″mfrow″ parameter may be adjusted for different numbers 
of data sets.

	�  >  RTc  =  subset(RT, CHR  =  =  ″chr1″)        # Subset of raw timing data in chr1

	�  >  LSc  =  subset(LS, CHR  =  =  ″chr1″)        # Subset of smoothed data in chr1

	�  >  par(mar = c(2.2,5.1,1,1), mfrow = c(3,1), col = ″grey″, pch = 19, cex = 0.5, cex.
lab = 1.8, xaxs = ″i″)

	�  >  plot(RTc$mLymphR1~RTc$POSITION, ylab = ″mLymph R1″, xaxt = ″n″)  # Plot raw data points

	�  >   lines(LSc$x300smo_mLymphR1~LSc$POSITION, col = ″blue3″, lwd = 3)  # Overlay loess 
line

	�  >  plot(RTc$mLymphR2~RTc$POSITION, ylab = ″mLymph R2″, xaxt = ″n″)
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Figure 9 | Raw (gray) and LOESS-smoothed (blue) RT values along 
chromosome 1.



©
20

11
 N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

protocol

886 | VOL.6 NO.6 | 2011 | nature protocols

0

R
ep

lic
at

io
n 

tim
in

g
La

te
E

ar
ly

50 × 106 100 × 106 150 × 106 200 × 106

Coordinate (chromosome 2)

Figure 10 | Raw data (gray) overlaid with segmented timing 
domains (red) along chromosome 2, as defined by circular binary 
segmentation42.

	�  >   lines(LSc$x300smo_ mLymphR2~LSc$POSITION, col = ″blue3″, lwd = 3)

	�  >  plot(RTc$mLymphAve~RTc$POSITION, xlab = ″Coordinate (bp)″, ylab = ″mLymph ave″)

	�  >   lines(LSc$x300smo_ mLymphAve~LSc$POSITION, col = ″blue3″, lwd = 3) 

(B) Correlations between data sets
	 (i) �Once the technical quality of the array data is established, compare biological replicate experiments to determine the 

relative level of biological similarity between samples. When comparing different cell types, to isolate biological rather 
than array quality differences, we typically use LOESS-smoothed averaged replicate data, rather than individual, raw or 
normalized data:

	�  >  cor(x[,c(4:6)]
 

Rep1 Rep2 Ave

Lymphoblast Rep1 1.000 0.978 0.995

Lymphoblast Rep2 0.978 1.000 0.994

Lymphoblast Ave 0.995 0.994 1.000

The cor() function defaults to Pearson correlation, but other methods are available (see ?cor in R). If missing values are 
present, add ‘na.rm = T’ to remove them.
(C) Segmentation
	 (i) �Perform circular binary segmentation as outlined in Steps 86C(ii–iv) (Fig. 10). Biologically, these segments  

(or ‘replication domains’) appear to correspond to domains of coordinately regulated, synchronously firing  
origins that may be part of replication factories. We perform segmentation as follows using the DNACopy  
algorithm designed by Venkatraman et al.42, which performs favorably compared with alternatives for CGH copy 
number analysis43–45.

	 (ii) �First, load the DNAcopy package and prepare a CNA (copy number array) object for segmentation

	�  >  library(DNAcopy)

	�  >  mLymph  =  CNA(RT$mLymphAve, RT$CHR, RT$POSITION, data.type = ″logratio″, 
sampleid  =  ″mLymph″)

	 (iii) �Next, segment the CNA object with the desired parameters. The parameters shown are those that we have used for 
analysis of mouse and human timing data sets, with autocorrelations near 0.83,6; data of different quality or in differ-
ent formats may require these to be determined empirically.

	�  >  Seg.mLymph  =  segment(mLymph, nperm = 10000, alpha = 1e-15, undo.splits = ″sdundo″, 
undo.SD = 1.5, verbose = 2)

	 (iv) �Examine the resulting segmentation object ‘Seg.mLymph’, which contains the raw data and segmentation break-
points assigned by circular binary segmentation46. The number of segments assigned can be determined using 
str(Seg.mLymph$output) and visualized using various functions built into DNAcopy (Fig. 10).

	�  >  par(ask = T,mar = c(3.1,4.1,1,1))     # 
Set figure margins; ask before replotting

	�  >  plot(Seg.mLymph, plot.
type = ″c″)     # Plot each chromosome 
separately

	�  >  plot(Seg.mLymph, plot.
type = ″s″)     # Plot overview of all 
chromosomes
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	�  >  plot(subset(Seg.mLymph,chromlist = ″chr2″), pch = 19, pt.cols = c(″gray″,″gray″), 
xmaploc = T, ylim = c(-3,3))          # Plot a single chromosome with alternate format

	 (v) �Create a tab-delimited text file containing segment end points and average RT values for each segment. The file will 
be written to the current working directory (see Step 63).

	�  >  write.table(Seg.mLymph$output, row.names = F, quote = F, sep = ”\t”)

	 (vi) �After segmentation, calculate the sizes of replication domains from the segmented data set to examine average 
sizes for domains with early or late timing.

	�  >   Lymph  =  Seg.mLymphR1$output      # Extract domain information

	�  >   Lymph$size  =  Lymph$loc.end - Lymph$loc.start    # Calculate domain sizes

	�  >   LymphEarly  =  subset(Lymph, Lymph$seg.mean  >  0)  # Create subset of early domains

	�  >   LymphLate  =  subset(Lymph, Lymph$seg.mean  <  0)  # Create subset of late domains

	�  >    boxplot(LymphEarly$size, LymphLate$size)    # Distribution of early/late do-
main sizes

Dynamic changes in the timing program ● TIMING 3 h
87|To examine changes in the replication program during differentiation, use one or several of the methods in this step 
to leverage the segmentation and loess smoothing methods introduced in Step 86. As no single method is sufficient to 
fully describe the type, degree and distribution of timing changes during development, we cover several complementary 
ways to measure these properties and explore the relationships between cell types. These include the following:  
(A) The amount of the genome changing RT (percentage change analysis); (B) The degree and relationships of RT changes 
between cell types (clustering approaches); and (C) The properties of domains that change timing on differentiation 
(switching domain analysis).
(A) Percentage change analysis
	 (i) �Determine the amount of the genome with differential timing between two or more cell types using an arbitrary, per-

centile or significance-based cutoff for RT changes. We recommend scaling data sets to equivalent ranges and applying 
an empirical cutoff for changes verifiable by PCR to quantify these genome wide, as shown here. As most methods for 
quantifying timing changes are sensitive to scale differences, data sets should be first scaled and normalized together 
in LIMMA (see Steps 62–76).

	�  >  RTd1  =  RT$mLymphR1 - RT$mLymphR2     # Calculate timing differences between 
data sets

	�  >  mLength  =  length(RTd1)        # Determine total number of probes

	�  >  s  =  0.67            # Set cutoff for significant changes

	�  >  sum(abs(RTd1) > s)/mLength      # Percentage changing, R1 vs. R2

	�  >  sum(RTd1  <  -s)/mLength        # Early to Late changes: 1.6% of all probes

	�  >  sum(RTd1  >  s)/mLength        # Late to Early changes: 1.3% of all probes

(B) Clustering approaches
	 (i) �Perform clustering to aggregate experiments with similar timing patterns. For k-means clustering we have used the 

programs Cluster47 and TreeView (http://rana.lbl.gov/EisenSoftware.htm) and refer readers to their corresponding 
guides. For hierarchical clustering, we use the ‘pvclust’ package in R48 to compute clusters based on the stability of 
connections between cell types and ascribe P values to each node.

	 (ii) �To improve the precision of individual RT measurements and lessen the considerable computational expense of most 
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clustering algorithms, average individual timing values into larger windows before clustering. We typically average data 
sets in windows of ~200 kb.

	�  >  mLymph.R1  =  NULL; mLymph.R2  =  NULL    # Initialize variables to store averaged data

	�  >  nWin  =  35            # 5.8 kb median probe spacing * 35  =  203 kb

	�  >  mLength  =  nrows(RT)/nWin      # Calculate number of windows

	�  >  for (x in 1:mLength) {        # For each potential window,

	�  >   z1  =  x * nWin          # Determine probe number at window start

	�  >   z2  =  (x + 1) * nWin        # Determine probe number at window end

	�  >   mLymph.R1[x]  =  mean(RT$mLymphR1[z1:z2]) # Average replicate 1 across window

	�  >   mLymph.R2[x] =  mean(RT$mLymphR2[z1:z2])   # Average replicate 2 across window

	�  >   cat(″Current window: ″, x, ″/″, mLength, ″\n″)  # Write the current window to 
the console

	�  >  }              # End for loop

	�  >  RTWind  =  data.frame(mLymph.R1, mLymph.R2)  # Write the results to a new data frame
	 (iii) �Load the pvclust48 package and use its corresponding function to cluster data sets using multiscale bootstrap re-sam-

pling, which will assign P values to each node in the hierarchical clustering dendrogram. See ?pvclust after loading the 
package for additional options and settings.

	�  >  library(pvclust)

	�  >  cluster.bootstrap  < - pvclust(RTWind, nboot = 1000, method.dist = ″abscor″)
	 (iv) �Plot the cluster dendrogram as performed below.

	�  >  plot(cluster.bootstrap)    # Plot overall dendrogram

	�  >  pvrect(cluster.bootstrap)    # Outline data sets that cluster at a significant level

	�  CRITICAL STEP Take care when interpreting the results of hierarchical clustering, as a wide variety of topologies are 
possible for a single dendrogram, as any node can be flipped horizontally without changing the connections between 
clusters; agglomerative clusters can change substantially when new experiments are added; and the exact connections 
produced (although usually not the overall structure of the dendrogram) often change for different clustering algorithms 
or distance metrics.

(C) Properties of RT switching domains
	 (i) �Perform segmentation on the differences between timing profiles to define the boundaries of domains that switch to 

earlier or later replication (switching domains) and analyze the properties of genetic and epigenetic elements within 
them. To compute these domains, first subtract the normalized (not LOESS-smoothed) values of the two experiments to 
be compared and create a CNA object in a manner similar to Step 86C(ii).

	�  >  dRT  =  CNA(RT$NPCave-RT$ESCave, RT$CHR, RT$POSITION, data.type = ″logratio″, 
sampleid = ″NPC-ESC dRT″)

	 (ii) �Next, segment the resulting object, calculate domain sizes and write the segments to a tab-delimited text file.

	�  >  Seg.dRT  =  segment(dRT, nperm = 10000, alpha = 1e-15, undo.splits  =  ″sdundo″, undo.
SD = 1.5, verbose = 2); dRTdom  =  Seg.dRT$output
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	�  >  dRTdom$size  =  dRTdom$loc.end - dRTdom$loc.start 

	�  >  write.table(dRTdom, ″Switching segments, mNPC vs. mESC.txt″, row.names = F, 
quote = F, sep = ”\t”)

	 (iii) �Identify domains with the largest timing changes in either direction, as well as domains with stable timing between 
data sets, using cutoffs from the quantile() function.

	�  >  quantile(dRTdom$seg.mean, probs  =  c(0.05, 0.95))   # Top 5% of changes to 
early/late

	�  >  quantile(dRTdom$seg.mean, probs  =  c(0.40, 0.60))   # Middle 20% of smallest changes

	�  >  LtoEdom  =  subset(dRTdom, dRTdom$seg.mean  >  1.28552)  # Isolate late-to-early domains

	�  >  EtoLdom  =  subset(dRTdom, dRTdom$seg.mean  <  -1.32328)  # Isolate early-to-late domains

	�  >  middleDom  =  subset(dRTdom, dRTdom$seg.mean  >  -0.14808  # Isolate non-switching domains

	� & dRTdom$seg.mean  <  0.23698)

	�  >  boxplot(middleDom$size, LtoEdom$size, EtoLdom$size)  # Plot distributions of 
domain sizes

Comparison and alignment to outside data sets ● TIMING 6 h
88| Choose among several alternative approaches to compare the timing program with the vast array of genome-wide or 
gene-centric data made available through initiatives such as ENCyclopedia Of DNA Elements49–51 and public repositories such 
as Gene Expression Omnibus52,53. To study gene-level regulation, assign RT values (option A) and epigenetic marks (option B) 
to lists of RefSeq (http://www.ncbi.nlm.nih.gov/RefSeq/) or other gene locations. For domain-level analysis, average values 
within the boundaries of replication domains (option C).
(A) Assignment of RT values to gene promoters
	 (i) �Assign LOESS-smoothed timing values to gene promoters as outlined below. Although the main purpose of 

LOESS is to derive an overall smoothed RT profile, the smoothed data object produced can be interrogated 
at any set of genomic coordinates, making it especially valuable for comparing data sets from different array 
platforms and coordinates. Using this approach, we assign timing data to the RefSeq gene promoter locations 
of NCBI as follows:

	 (ii) �Begin by loading the required data sets; these include a table of RefSeq gene locations for the desired species  
(found at http://www.ncbi.nlm.nih.gov/RefSeq/) and a list of smoothed RT values created in Step 86 and loaded as  
in Step 65.

	 (iii) �Next, create a list of chromosomes to be analyzed and variables to store the data in each chromosome.

	�  >  chrs  =  levels(RefSeq$CHR)    # Create a list of chromosomes to be analyzed

	�  >  AllSm  =  NULL        # Variable to store smoothed data for all chromosomes

	�  >  ChrSm  =  NULL        # Variable to store smoothed data for one chromosome
	 (iv) �Run the following loop to calculate RT values at transcription start sites of RefSeq genes. Advanced R users may sub-

stitute an appropriately reformatted function if desired, and the approach below may be used generically to apply val-
ues from any data type regulated on large scales (relative to array probe density) to any list of genomic coordinates.

	�  >  for(chr in chrs) {        # For each chromosome,

	�  >   RTc  =  subset(RT, CHR  =  =  chr)      # Create subset of timing values in the chromosome

	�  >     RSc  =  subset(RefSeq, CHR  =  =  chr)   # Create subset of RefSeq genes in the chromosome

	�  >   cat(″Current chromosome: ″, chr, ″\n″)  # Output current chromosome to console
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	�  >   lspan  =  300000/(max(RTc$POSITION)-min(RTc$POSITION))    # Set smoothing span

	�  >   smLym1  =  loess(RT$mLymphR1 ~ RT$POSITION, span  =  lspan)  # Smooth data set 1

	�  >   smLym2  =  loess(RT$mLymphR2 ~ RT$POSITION, span  =  lspan)  # Smooth data set 2

	�  >   smLym3  =  loess(RT$mLymphAve ~ RT$POSITION, span  =  lspan)  # Smooth data set 3

	�  >   Lym1  =  predict(smLym1, RSc$TSS)  # Predict (interpolate) values at transcrip-
tion start sites

	�  >   Lym2  =  predict(smLym2, RSc$TSS)  # Predict values for data set 2

	�  >   Lym3  =  predict(smLym3, RSc$TSS)  # Predict values for data set 3

	�  >   ChrSm  =  data.frame(CHR = chr,POSITION =  RSc$TSS, Lym1, Lym2, Lym3)

	�  >   AllSm  =  rbind(AllSm, ChrSm)    # Combine information for all experiments/chromosomes

	�  >     }        # End for loop
	 (v) �As in Steps 78 and 79, write the results of analysis to an external file before unloading the data from memory:

	�  >  write.table(AllSm, “Mouse lymphoblast RT at RefSeq gene positions.txt”, 
quote = F, sep = ”\t”)

(B) Assignment of histone and other epigenetic marks to gene promoters
	 (i) �Assign epigenetic and other data sets to gene promoters using Steps 88B(ii–v). Unlike RT, values from epigenetic data 

sets are often too sparse, relative to their unit of regulation, to apply the method in option 88A. For this example, we 
assign values from a generic genome-wide ChIP-seq experiment to windows  + 500 to  − 2,500 bases from RefSeq gene 
promoters.

	 (ii) �As in option A, first load the required data sets as described in Steps 65 and 88A(ii). Two files are required: one with 
columns describing the genomic coordinate, orientation ( + / − ) and chromosome of each gene (read into a variable named 
″RefSeq″) and another with the coordinate, chromosome and data value for each mark (read into variable ‘Marks’).

	 (iii) �Create a list of chromosomes to be analyzed and variables to store the assigned values:

	�  >  chrs  =  levels(Marks$CHR); AllGenes  =  NULL; AllHist  =  NULL
	 (iv) �Run the following loop to assign values near transcription start sites to RefSeq genes. We generally set the apply 

function to assign the highest value within the promoter window to the gene; other approaches include averag-
ing the number of reads within the body of genes54, individually analyzing equally spaced bins across open reading 
frames55 and assessing promoters with significant binding above background56. Bear in mind that the transcrip-
tion start site may not be the best target for all modifications; indeed, for trimethylated lysine 36 of histone H3 
(H3K36me3) marking transcription elongation, values at the transcription end point or exon 5′ ends may better 
represent overall enrichment57.

	�  >  for (chr in chrs) {        # For each chromosome,

	�  >   RSc  =  subset(RefSeq, CHR  =  =  chr)  # Create subset of RefSeq genes in the chromosome

	�  >    MKc  =  subset(Marks, CHR  =  =  chr)  # Create subset of mark values in the chromosome

	�  >   for(m in 1:nrow(RSc)) {      # For each gene in the chromosome,

	�  >     if(RSc[m,]$Strand  =  =  ″ + ″) {    # If the gene is in the forward orientation,

	�  >       RTcSub  =  subset(RTc, (RTc$Start  <  RSc[m,]$txStart  + 500) & (RTc$Start  
 >  RSc[m,]$txStart - 2500))    # Collect values from txStart  + 500 to  − 2500bp
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	�  >       AllHist  =  rbind(AllHist, apply(RTcSub, 2, max)[3:12]) # Assign max value to gene

	�  >       AllGenes  =  rbind(AllGenes, RSc[m,]$Gene)  # Combine with overall list

	�  >       }      # End if

	�  >     if(RSc[m,]$Strand  =  =  ″-″) {    # If the gene is in the reverse orientation,

	�  >       RTcSub  =  subset(RTc, (RTc$Start  <  RSc[m,]$txEnd  + 2500) & 
(RTc$Start  >          RSc[m,]$txEnd - 500))    # Collect values from txEnd  + 2500 
to  − 500 bp

	�  >       AllHist  =  rbind(AllHist, apply(RTcSub, 2, max)[3:12]) # Assign max value to gene

	�  >       AllGenes  =  rbind(AllGenes, RSc[m,]$Gene)  # Combine with overall list

	�  >      }      # End if

	�  >   cat(″Chromosome:″, chr, ″ Gene:″, m, ″/″, nrow(RSc), ″\n″) # Output current gene

	�  >      }          # End gene loop

	�  >     }        # End chromosome loop
	 (v) �Finally, similarly to previous steps, combine the gene and epigenetic mark information into a single table and output 

as tab-delimited text.

	�  >  OutFile  =  data.frame(cbind(AllGenes, AllHist), stringsAsFactors = F)

	�  >  write.table(OutFile, file = ″Histone modifications at RefSeq gene positions.txt″, 
row.names = F, quote = F, sep = ″\t″)

(C) Integration of epigenetic mark values over replication domains
	 (i) �Use the method below to correlate domain-wide RT values and the average level of epigenetic marks within timing 

domains segmented in Step 86C (for static timing domains) or 87C (for domains that switch timing). Given that the 
magnitude of correlations between genetic properties generally increases when measured in larger windows, it is im-
portant to quantify these relationships in windows consistent with biologically regulated unit sizes.

	 (ii) �Read the replication domains created in Step 86C or 87C into variable ‘Seg.RT’.

	  >  Seg.RT  =  read.table(″Lymph-1 segments.txt″,header = T)
	 (iii) �Create a list of chromosomes and variables in which to store average epigenetic mark and timing values.

	�  >  chrs  =  levels(Seg.RT$chrom)   

	�  >  MarksData  =  NULL; RTData  =  NULL
	 (iv) �Run the loop below to assign the average values of one or multiple epigenetic data sets to each replication domain or 

modify as needed.

	�  >  dom  =  0              # Initialize domain number to 0

	�  >  for(chr in chrs) {            # For each chromosome,

	�  >   Seg.RTb  =  subset(Seg.RT, Seg.RT$chrom  =  =  chr)  # Get timing domains in chromosome

	�  >   MarksB  =  subset(Marks, Marks$CHR  =  =  chr)    # Get mark data in chromosome

	�  >   for (i in 1:dim(Seg.RTb)[1]) {        # For each domain,
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	�  >     cat(″Current chr:″, chr, ″ Domain:″, dom, ″\n″)  # Output current domain

	�  >     MarksD  =  subset(MarksB, MarksB$Start  >  Seg.RTb[i,]$loc.start & 
MarksB$Start  <    Seg.RTb[i,]$loc.end)        # Find subset of marks in domain

	�  >     MarksD  =  MarksD[,3:12]      # Exclude chr/pos from mark data

	�  >     MarksD[,1:10]  =  MarksD[,1:10] - MarksD[,1]  # Subtract control values, if needed

	�  >     MarksData  =  rbind(MarksData, apply(MarksD,2, ″mean″)) # Average mark data in domain

	�  >      dom  =  dom  +  1          # Increment domain number

	�  >      }            # End domain loop

	�  >      }            # End chromosome loop
	 (v) �Finally, find the correlations between domain-wide RT and each type of epigenetic mark and create scatter plots to 

visualize these relationships.

	�  >  cor(Seg.RT$seg.mean, data.frame(MarksData))

	�  >  plot(Seg.RT$seg.mean, data.frame(MarksData)[1])
	 ? TROUBLESHOOTING

? TROUBLESHOOTING
Troubleshooting advice can be found in Table 2.

TABLE 2 | Troubleshooting table.

Step Problem Possible reason Solution

6 Cell aggregation or debris 
accumulation prevents 
accurate cell sorting

Failure to achieve single-cell suspension 
with certain problematic cell types

Incubate with enzyme treatment, such as  
Trypsin-EDTA or Accutase, for a longer period of time. 
Use gentle trituration to ensure that cell aggregates 
are broken apart before fixation and/or sorting. 
Occasional pausing and filtering of cell samples  
during FACS may help

Vortexing during ethanol fixation was 
too harsh

Use the lowest vortex setting available while adding 
ethanol dropwise

49 Inconsistent PCR bands 
between aliquots of the 
same sample

Contamination between fractions during 
FACS, probably due to problems in cell 
fixation

Switch from PI staining (with fixation) to DAPI  
staining (without fixation)

Inconsistent number of cells aliquotted 
to each tube

Mix contents thoroughly before aliquotting and  
freezing for storage. Aliquot 20,000 cells while the 
samples are hot to avoid pipetting errors as a result 
of SDS formation in the solution

Insufficient BrdU labeling time Incubate growing cells with BrdU for a longer period 
of time. Cells with longer S-phase require longer BrdU 
incubation times

Varying efficiency of BrdU-IP between 
samples caused by loss of DNA-protein 
pellet

Use caution when removing supernatant from the 
loose DNA-protein pellet. Centrifuge the sample mul-
tiple times, as needed, to remove supernatant with-
out disturbing the pellet

(continued)
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● TIMING
Steps 1–12, BrdU labeling and FACS sorting: 5–6 h
Steps 13–44, BrdU immunoprecipitation: 2–3 d
Steps 45–50, PCR assay: 4–6 h
Steps 51–57, Whole-genome amplification: ~5 h
Box 1, S/G1 FACS sorting: ~1 d
Step 58, Dye labeling: 3–4 h
Step 59, Hybridization: ~1 h plus hybridization time
Steps 60 and 61, Washing and scanning: 1–2 h
Steps 62–85, Normalization: ~1 d
Step 86, Static properties: ~3 h
Step 87, Dynamic properties: ~3 h
Step 88, Outside data sets: ~6 h

ANTICIPATED RESULTS
Our research has shown that the described method is a powerful tool for genome-scale analysis of RT. However, meaningful 
data analysis is dependent on the quality of available data. Therefore, measures should be taken throughout the protocol to 
ensure that each phase of the procedure produces quality starting material for subsequent phases. Anticipated results for 
various steps of the protocol are described here. Typical FACS plots showing successful DNA content analysis and indicating 
appropriate S-phase fractions to be collected are shown in Figure 1.

Following cell sorting and BrdU-IP, marker genes with known relative RT (Table 1) should be amplified by PCR for multiple 
IP samples and detected by electrophoresis on an agarose gel. Among the mouse sequences listed in Table 1, mitochon-
drial DNA replicates throughout the cell cycle58 and will typically be equally represented in early and late S-phase fractions. 
Hba-a1, Pou5f1 and Mmp15 are generally early replicating markers, whereas Hbb-b1, Zfp42, Dppa2, Ptn, Mash1 and Akt3 are 
generally late replicating markers. Note that some genes switch RT at some point during development; for instance, Zfp42 
and Dppa2 are early replicating in ESCs, but late replicating in all somatic cell types examined to date. Therefore, consistency 
across multiple samples from the same cell type is usually the most reliable way to assess the quality of IP samples. Among 
the human sequences listed in Table 1, mitochondrial DNA is equally represented in early and late S-phase fractions, whereas 
HBA1, MMP15 and BMP1 are generally early replicating markers. PTGS2, NETO1, SLITRK6, ZFP42 and DPPA2 are generally late 
replicating. High-quality IP reactions show consistency in the relative amount of BrdU-labeled DNA in respective S-phase 
fractions between samples of the same cell type. This PCR analysis should be performed again directly following WGA in order 
to ensure that no bias has been introduced during this step of the procedure. If no bias is detected, 4–8 µl of purified WGA3 
DNA should be run on a 1.5% agarose gel in order to determine its quality. Quality DNA will range in size from 100 to 1,000 
bp, with an average size of ~400bp. In addition, WGA3 DNA should have an A260/A280 value ≥1.8 and an A260/A230 value ≥1.9 

TABLE 2 | Troubleshooting table (continued).

Step Problem Possible reason Solution

57 Samples do not pass 
screening

Bias created during WGA Increase the amount of starting material for WGA. For 
instance, start with 100 µl of IP sample pool instead 
of 50 µl at Step 52

81 Skew toward early or late 
values

Bias created during WGA or labeling,  
or excessive photobleaching during  
scanning

Check early versus late WGA yields, and avoid multiple 
scans of the array

84 Low autocorrelation (high 
noise level)

Values are not properly sorted by  
chromosomal location

Ensure that chromosome and position columns are 
properly assigned to experimental values and sorted 
as in Step 80

Low signal intensity (in Step 74) Check yield after labeling and amplification steps, as 
well as scanner settings

88C(v) Large difference in domain 
numbers between similar 
data sets

Sensitivity of segmentation algorithms 
to differences in data quality

Either adjust the parameter undo.SD (using similar 
autocorrelation-level data sets as a guide) or add 
Gaussian noise to higher-quality data sets to equalize 
their ACF (Step 84) before segmentation
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in order to function as high-quality starting material for the labeling reaction. NimbleGen arrays user ’s guide for CGH analy-
sis should be consulted for anticipated results of the hybridization and scanning procedures.

After a successful experiment, domains of coordinate RT (replication domains) will be clearly visible in the raw data after 
plotting these across a chromosome (Fig. 6). Less-successful experiments will have autocorrelation values below 0.6  
(Fig. 7), and visibly higher levels of noise, thereby limiting the resolution of smaller replication domains. Further, low signal 
in MA plots (Fig. 4) and signal intensity distributions (Fig. 3) will also often present with low autocorrelation, and may 
indicate a low volume of Cy-labeled DNA or problems with scanning. If several replicate experiments were done, they should 
have high ( > 0.90) correlations between LOESS-smoothed timing values (Step 86B).

Note: Supplementary information is available in the HTML version of this article.
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