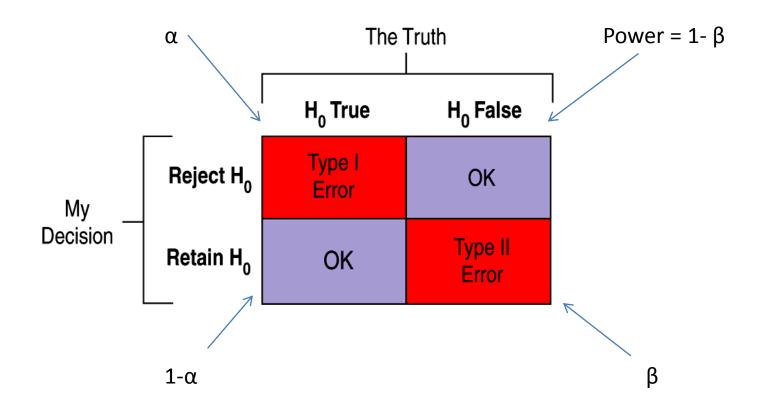
Biostatistics-Lecture 9 Multiple testing

Ruibin Xi Peking University School of Mathematical Sciences

Errors in hypothesis testing



Why multiple testing

Why multiple testing

 In general, perform m hypothesis testing, what is the probability of at least 1 false positive?

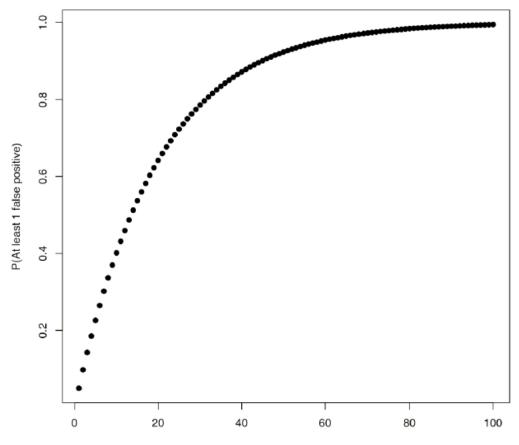
 $P(Making an error) = \alpha$

P(Not making an error) = 1 - α

P(Not making an error in m tests) = $(1 - \alpha)^m$

P(Making at least 1 error in m tests) = 1 - $(1 - \alpha)^m$

Probability of at least 1 false positive



m

Counting Errors

Assume we are testing $H^1, H^2, ..., H^m$

 m_0 = # of true hypotheses R = # of rejected hypotheses

	Null True	Alternative True	Total
Not Called Significant	U	T	<i>m - R</i>
Called Significant	V	S	R
	m ₀	<i>m-m</i> ₀	т

V = # Type I errors [false positives]

Measures to Control Type I Errors

• **Per comparison error rate** (PCER): the expected value of the number of Type I errors over the number of hypotheses,

PCER = E(V)/m

• Per-family error rate (PFER): the expected number of Type I errors,

PFE = E(V).

• Family-wise error rate: the probability of at least one type I error

FEWR = $P(V \ge 1)$

 False discovery rate (FDR) is the expected proportion of Type I errors among the rejected hypotheses

 $FDR = E(V/R \mid R > 0)P(R > 0)$

 Positive false discovery rate (pFDR): the rate that discoveries are false

 $pFDR = E(V/R \mid R > 0)$

Measures to Control Type I Errors

• **Per comparison error rate** (PCER): the expected value of the number of Type I errors over the number of hypotheses,

PCER = E(V)/m

• Per-family error rate (PFER): the expected number of Type I errors,

PFE = E(V).

• Family-wise error rate: the probability of at least one type I error

 $FEWR = P(V \ge 1)$

 False discovery rate (FDR) is the expected proportion of Type I errors among the rejected hypotheses

 $FDR = E(V/R \mid R > 0)P(R > 0)$

 Positive false discovery rate (pFDR): the rate that discoveries are false

 $pFDR = E(V/R \mid R > 0)$

Methods based on FWER

 Many procedures have been developed to control the Family Wise Error Rate (the probability of at least one type I error):

 $P(V \ge 1)$

- Two general types of FWER corrections:
 - 1. Single step: equivalent adjustments made to each p-value
 - 2. Sequential: adaptive adjustment made to each pvalue

Single Step Approach: Bonferroni

- Very simple method for ensuring that the overall Type I error rate of α is maintained when performing m independent hypothesis tests
- Rejects any hypothesis with p-value $\leq \alpha/m$:

 $\tilde{p}_j = \min[mp_j, 1]$

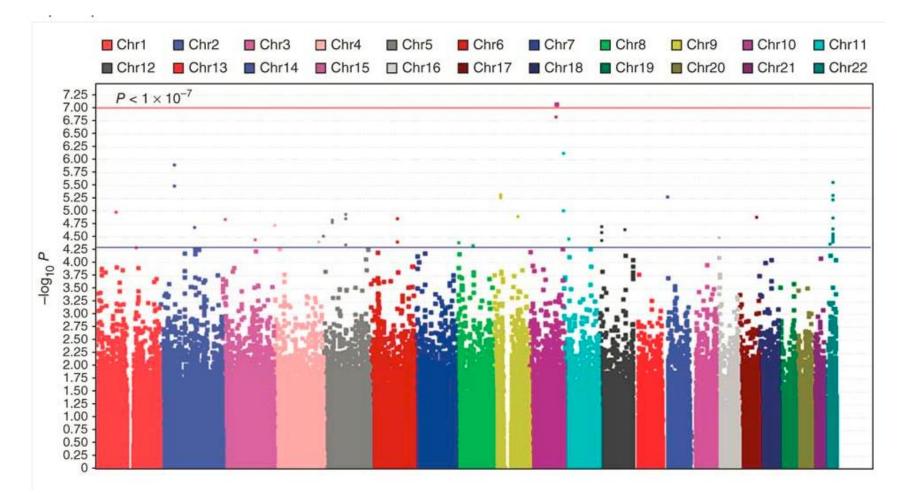
For example, if we want to have an experiment wide Type I error rate of 0.05 when we perform 10,000 hypothesis tests, we'd need a p-value of 0.05/10000 = 5 x 10⁻⁶ to declare significance

Rational behind Bonferroni's correction

$$P(V \ge 1 | H^1, \cdots, H^m) \le P(\bigcup_{j=1}^m \{p_j \le \alpha/m\})$$
$$\le \sum_{j=1}^m P(p_j \le \alpha/m)$$
$$= \sum_{j=1}^m P(p_j \le \alpha/m)$$
$$= m\alpha/m = \alpha$$

Too conservative!

A common application of Benferroni's method



• Holm's method

– Order the p-values $p_{(1)} \leq \ldots \leq p_{(m)}$

- Reject $H_{(i)}$ if $p_{(j)} \leq \alpha/(m-j+1), j = 1, ..., i$ or reject $H_{(i)}$ if $p_{(i)} \leq \alpha/(m-i+1)$ and all preceding $H_{(j)}$ are rejected
- Adjusted p-values

 $q_{(i)} = \min\{1, \max[(m-i+1)p_{(i)}, q_{(i-1)}]\}$

– Controls the FWER

- Holm's method can be restated as the following procedure
 - Start testing $H_{(1)}$
 - Stops the procedure if $p_{(1)} > \alpha/m$
 - Otherwise reject $H_{(1)}$
 - At the kth step, if $H_{(1)}, \cdots, H_{(k-1)}$ are rejected Stops the procedure if $p_{(k)} > \alpha/(m-k+1)$ Otherwise reject $H_{(k)}$ and continue the process

Hochberg's method

- Reject $H_{(i)}$ if there is a j = i, ..., m $p_{(j)} \le \alpha/(m - j + 1)$

Adjusted p-values

 $q_{(i)} = \min\{1, \min[(m - i + 1)p_{(i)}, q_{(i+1)}]\}$

- More powerful than Holm's method

- Hochberg's method can be restated as
 - Start testing $H_{(m)}$

-

- If $p_{(m)} \leq \alpha$, reject all $H_{(1)}, \ldots, H_{(m)}$ and stops
- Otherwise, $H_{(m)}$ is retained,
- the procedure continues with a smaller significance level $\alpha/2$
- If $p_{(m-1)} \leq \alpha/2$, reject all $H_{(1)}, \ldots, H_{(m-1)}$

• Hommel's method

- Step 1. If $p_{(m)} > \alpha$, retain $H_{(m)}$ and go to the next step. Otherwise reject all hypotheses and stop.
- Steps i = 2, ..., m 1. If $p_{(m-j+1)} > (i j + 1)\alpha/i$ for j = 1, ..., i, retain $H_{(m-i+1)}$ and go to the next step. Otherwise reject all remaining hypotheses and stop.
- Step *m*. If $p_{(m-j+1)} > (i j + 1)\alpha/i$ for j = 1, ..., m, retain $H_{(1)}$; otherwise reject it.

FWER is too stringent

- FWER is appropriate when you want to guard against ANY false positives
- However, in many cases (particularly in genomics) we can tolerate a certain number of false positives
- In these cases, the more relevant quantity to control is the false discovery rate (FDR)

False discovery rate

	Null True	Alternative True	Total
Not Called Significant	U	Τ	<i>m - R</i>
Called Significant	V	S	R
	<i>m</i> ₀	<i>m-m</i> ₀	т
V =	# Type I err	ors [false positives]	

 False discovery rate (FDR) is designed to control the proportion of false positives *among the set of rejected hypotheses* (R)

FDR and FPR

	Null	Alternative	
	True	True	Total
Not Called Significant	U	Т	<i>m - R</i>
Called Significant	V	S	R
	m ₀	<i>m-m</i> ₀	m

$$FDR = \frac{V}{R} \qquad FPR = \frac{V}{m_0}$$

The Benjamini–Hochberg procedure

- Benjamini and Hochberg (1995) proposed
- Find the largest k such that $p_{(k)} \leq \frac{k}{m} \alpha$
- Reject all hypothesis $H_{(i)}$ $i = 1, \cdots, k$
- The adjusted p-values

$$p_{(j)}^* = \min_{k=j,\dots,m} \{ \min(\frac{m}{k} p_{(k)}, 1) \}$$

The Benjamini–Yekutieli procedure

- Benjamini and Yekutieli (2001) proposed – Find the largest k such that $p_{(k)} \leq \frac{k}{mc(m)}\alpha$ – Reject all hypothesis $H_{(i)}$ $i = 1, \cdots, k$
- For Independent and positive correlated tests c(m) = 1
- For general case $c(m) = \sum_{i=1}^{m} \frac{1}{i}$
- The adjusted p-values

$$p_{(j)}^* = \min_{k=j,\dots,m} \{ \min(\frac{mc(m)}{k} p_{(k)}, 1) \}$$