

Faculty of Health Sciences

Test in 2by2 tables, RCTs, and power

Theis Lange Department of Biostatistics, University of Copenhagen & Center for Statistical Science, Peking University.

Mail: thlan@sund.ku.dk

TESTS IN COUNT TABLES

A recent study

- Is the hospital mortality different in weekends compared to weekdays?
- The following data on 1500 randomly selected patients were collected from Danish hospitals.

	Survived	Dead in hospital
Admited on weekday	1338	128
Admited on weekend/holiday	27	7

Independence hypothesis – count tables

Our null hypothesis is:

 $H_0:$ the two categorical variables are independent of each other.

Example: H_0 : mortality is independent of time of admission.

Alternative formulations of the same hypothesis:

- Mortality does not depend admission time.
- Mortality rate is the same for weekend and weekday patients.

Pweekend	=	7/(7+27)	=0.21
Pweek	=	128/(128+1338)	=0.087

Add marginal tables

	Survived	Dead in hospital	Total
Admited on weekday	1338	128	1466
Admited on weekend/holi day	27	7	34
Total	1365	135	1500

Expected values/counts

- How would the table look if mortality and admission time was indeed independent?
- In row nr i and column nr j would the expected values be

$$E_{ij} = n \cdot \frac{n_i}{n} \cdot \frac{d_j}{n} = \frac{n_i \cdot d_j}{n}.$$

Expected value = total count \times row-% \times column-%

• **Example:** The expected number of dead in weekend group would be:

```
1500*(34/1500)*(135/1500) = 3.06
```

i.e. somewhat fewer than the observed number of 7 persons.

Dias 6

Expected counts in our example

• Expected (E) count are added in parentheses.

	Survived	Dead in hospital	Total
Admitted on weekday	1338 (1334)	128 (132)	1466
Admitted on27weekend(31)		7 (3)	34
Total	1365	135	1500

The chi-sq test

To test the hypotheses about independence:

$$\chi^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

If the null hypothesis is true the quantity approximately follows a $\chi^2\text{-distribution}$ with df = $(r-1)\cdot(c-1)$ degrees of freedom

You reject when the χ^2 is large.

Example: $\chi^2 = (1338 - 1334)2/1334 + ... = 5.7$

To get p-value

Right tail is: 0.01693

Conclusion???

Dias 9

Chi-sq test in computers

- **chisq.test** function in R.
- Cross tab in SPSS.
- Or online:

online chi square calculator			ρ	中文必应 Sign in A					
Web	Images	Videos	Maps	News	Explore				
4,700,000 RE	ESULTS	Any time 👻							
		Calcs: chi sc		<u>culator</u>			Related searches		
graphpad.com/quickcalcs/ chisquared1 .cfm ▼ This calculator compares observed and expected frequencies with the chi-square test. Read an example with explanation. Note that the chi-square test is more commonly		tost	P Value Calculator for Chi Square Chi Square Calculator 3x2						
Choose Calo	Choose Calculator · GraphPad QuickCalcs · Student · GraphPad Prism · Support			Chi Square Test Contingency Table					
E. Chi	c	<u></u>					Chi Square Test Calculator		
		Calculator m/tests/chisg		aspx 🔻			2X2 Chi Square Calculator		
www.socscistatistics.com/tests/chisquare/Default2.aspx This is a chi-square calculator for a simple 2 x 2 contingency table (for alternative chi-		e chi-	Chi Square Table Calculator						
square calc	ulators, se	e the column to	o your right).				Chi Square Formula		
Two Way	/ Chi-Sq	uare Calcu	lator with	n more th	an 6 columns		Chi Square Table		

Chi-Square Calculator

Dias

www.chisquarecalculator.com

The easiest to use and most powerful chi square calculator on the internet.

.

The chi-sq test in R

Tests in sparse tables

- Fisher's exact test calculate exact probability for all possible outcomes (ie. All possible tables) with certain margins:
- Alternatively use traditional chi-sq, but bootstrap p-values.

```
> fisher.test(tab)
        Fisher's Exact Test for Count Data
data: tab
p-value = 0.02783
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
0.9757602 6.5347754
sample estimates:
odds ratio
  2,70743
>
>
> chisq.test(tab, simulate.p.value = TRUE, B = 10^7)
        Pearson's Chi-squared test with simulated p-value (based on 1e+07 replicates)
data: tab
X-squared = 5.7041, df = NA, p-value = 0.02786
Dias 12
```

Conclusion?

• What does our analysis say about mortality in weekends?

• Is this surprising?

• Could there be an alternative explanation?

Dead by weekend – the real data.

	In-hospital mor	tality			
	Patient time at	risk	Deaths		Mortality
	Days (1,000s)	Days (1,000s) Percent		Number Percent	
	Y RATE (%)				
0-79 80-89 90-99 100-109 110 or more	3,800 3,320 4,507 4,543 2,618	20 18 24 24 14	22,182 18,736 25,670 27,129 17,455	20 17 23 24 16	1.00 1.02 1.00 1.02 1.09***
ADMITTED DURI					
Yes No	17,148 1,640	91 9	48,100 63,072	43 57	1.00 10.63**
ADMITTED DUR	ING WEEKDAYS				
Yes No ^b	17,080 1,709	91 9	75,963 35,209	68 32	1.00 2.23**
CEV					
Dias 14					(

RANDOMIZED TRIALS

Randomized experiments

- We can ensure comparable groups by allocating to groups ourselves.
- This must be done "by the flip of a coin".
- This is a so-called RCT.
- First done in 1948 by Sir Bradford Hill to examine "Streptomycin treatment of pulmonary tuberculosis"

Design of a RCT

Before including any patient the following must be written down.

Non-statistical:

- Define the two interventions.
- Define exclusion and inclusion criterions.

Statistical:

- Decide on the tool(s) used to analyze data.
- Determine the number of patients to randomize.

Power of a test

• The power of a statistical test is defined as

the probability of rejecting a false null hypothesis

- Recall that *size* of a test is probability of falsely rejecting a true null hypothesis.
- Power clearly depend on how false the null hypothesis is.
- In designing an RCT one will decide the minimal difference between treatment groups that the study should be able to detect.
 - Power is typically set to 90%.
 - For binary outcomes you also need to guess risk in baseline group.
 - For continuous outcomes you need to guess standard deviation.

Formula for power in R

- Here we assume equal proportions in each group.
- More complex designs can only be assessed by simulations.
 - 1. Simulate data according to assumptions.
 - 2. Conduct pre-determined test on simulated data
 - 3. Record how often the test is rejected (ie. repeat 1-2 many times).
 - 4. Repeat until you find the sample size that gives you 90% power to rejec.

Dias 19

Early stopping of trial

- If treatment turns out to be either very beneficial or very harmful you might want to stop the trial early.
- Can you just test the null-hypothesis every time you get a outcome for a new patient?
- Let us try:

Dias 20

- Simulate binary outcome
- P(Y=1)=0.5 for both groups (ie. no treatment effect)
- Original sample size is N=100.
- Test after each patient is included.
- P-value trajectories are depicted below.

Pragmatic solution

- Only do a few interim analyses.
- In interim analyses use much lower value for significance.

List of *p*-values used at each interim analysis, assuming the overall

p-value for the trial is 0.05

Number of planned analyses	Interim analysis	<i>p</i> -value threshold
2	1	0.001
	2 (final)	0.05
3	1	0.001
	2	0.001
	3 (final)	0.05
4	1	0.001

A case: Comment by Shawn and Lange in Lancet 2015

- Bubble continuous positive airway pressure (CPAP) might be a very effective treatment for severe pneumonia in children.
- Mohammond Chisti and colleagues report a randomised trial carried out in Bangladesh, in which 225 children aged under 5 years with severe pneumonia were enrolled.
- The original power analysis indicated 650 children should be included.
- The trial was stopped after only 146 children had been included.
- When the trial was stopped this was the data:

	Failure	Success	
СРАР	5	74	
Low Flow	16	51	

What was p-value at time of stopping?

	Failure	Success
СРАР	5	74
Low Flow	16	51

Done in the paper:

Using simple chi-sq: 0.0026
 But are the approximation still good here?

Better:

• Using Fisher's: 0.00381

Ethics of early stopping

- Should the trialed had continued? (more children would die)
- We must balance
 - A. The sacrifices already made by the included patients.
 - B. Coming patients to be included in the trial.
 - C. Future patients which will never be in this trial, but could benefit from the result of the trial.
- As I wrote in the Lancet I think the authors got it wrong here.

