Biostatistics-Lecture 15 Linear Mixed Model

Ruibin Xi Peking University School of Mathematical Sciences

An example

- Zuur et al. (2007) measured marine benthic data
 - 9 inter-tidal area were measured
 - 5 samples were taken in each area
- Question: whether species richness is related to
 - NAP: the height of the sampling station compared to the mean tidal level
 - Exposure: an index composed of wave action, length of the surf zone, slope, grain size, and the depth of the anaerobic layer.

An example

- Zuur et al. (2007) measured marine benthic data
 - 9 inter-tidal area were measured

anaerobic layer.

An example

• Zuur et al. (2007) measured marine benthic data

		I		I	ь <mark>ь.</mark>	Q :	
	Beach	NAP	Exposure	Richness	Sample	- 5	
	1	0.045	10	11	1	<u> </u>	
	1	-1.036	10	10	2	2	
lated to	1	-1.336	10	13	3	• Oue ³	•
	1	0.616	10	11	4		
upared to	1	-0.684	10	10	5	— N ⁵	
iparea to	2	1.190	8	8	6	6	
	2	0.820	8	9	7	tł 7	
	2	0.635	8	8	8	_ 8	
in, length	2	0.061	8	19	9	— E. 9	
epth of the	2	-1.334	8	17	10	0 ¹⁰	
•		-	• • •	-	•		

anaerobic layer.

Exposure can take 3 possible values, 8, 10, and 11.

There are 5, 20 and 20 samples taking values 8, 10, and 11, respectively

A first model

• We may first try the linear model

 $R_{ij} = \alpha + \beta_1 \times NAP_{ij} + \beta_2 \times Exposure_i + \varepsilon_{ij} \qquad \varepsilon_{ij} \sim N(0, \sigma^2)$ $R_{ij} \text{ is the species richness at site } j \text{ on beach } i$ $NAP_{ij} \text{ the corresponding NAP value}$ $Exposure_i \text{ the exposure on beach } i$ $\varepsilon_{ij} \text{ the unexplained information.}$

2-stage Analysis method

 1st stage: model species richness and NAP for each beach

$$R_{ij} = \alpha + \beta_i \times NAP_{ij} + \varepsilon_{ij} \qquad j = 1, \dots, 5$$

$$\begin{pmatrix} R_{i1} \\ R_{i2} \\ R_{i3} \\ R_{i4} \\ R_{i5} \end{pmatrix} = \begin{pmatrix} 1 & NAP_{i1} \\ 1 & NAP_{i1} \\ 1 & NAP_{i1} \\ 1 & NAP_{i1} \\ 1 & NAP_{i1} \end{pmatrix} \times \begin{pmatrix} \alpha \\ \beta_i \end{pmatrix} + \begin{pmatrix} \varepsilon_{i1} \\ \varepsilon_{i2} \\ \varepsilon_{i3} \\ \varepsilon_{i4} \\ \varepsilon_{i5} \end{pmatrix} \Leftrightarrow \mathbf{R}_i = \mathbf{Z}_i \times \mathbf{\beta}_i + \mathbf{\varepsilon}_i$$

• We can get beta as

-0.37 -4.17 -1.75 -1.24 -8.90 -1.38 -1.51 -1.89 -2.96

2-stage analysis method

 2nd stage: the estimated regression coefficient are modeled as a function of exposure

 $\hat{\beta}_i = \eta + \tau \times Exposure_i + b_i$ $i = 1, \dots, 9$

$$\begin{pmatrix} -0.37 \\ -4.17 \\ -1.75 \\ -1.24 \\ -8.90 \\ -1.38 \\ -1.51 \\ -1.89 \\ -2.96 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \end{pmatrix} \times \begin{pmatrix} \eta \\ \tau \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \\ b_6 \\ b_7 \\ b_8 \\ b_9 \end{pmatrix} \Leftrightarrow \hat{\beta}_i = \mathbf{K}_i \times \mathbf{\gamma} + \mathbf{b}_i \qquad i = 1, \dots, 9$$

Code 8 and 10 as 0, 11 as 1

2-stage analysis method

Call: lm(formula = Beta ~ factor(ExposureBeach), data = RIKZ) Residuals: Min 1Q Median 3Q Max -5.2386 -0.2778 0.0890 0.6940 3.2897 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -3.662 1.099 -3.332 0.0126 * factor(ExposureBeach)b 2.184 1.649 1.325 0.2268 ---Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

Residual standard error: 2.458 on 7 degrees of freedom Multiple R-squared: 0.2005, Adjusted R-squared: 0.08625 F-statistic: 1.755 on 1 and 7 DF, p-value: 0.2268

Exposure is not significant

2-stage analysis method

- Disadvantage:
 - Summarize all data from a beach with one parameter
 - In the 2nd step, we are analyzing the regression parameters, not the observed data (not modeling the variable of interest)
 - The number of observations used to calculate the summary statistic is not used in the 2nd step.

Linear Mixed effect model

The model

Fixed effect term

Random effect term

Linear Mixed effect model

238 MULTILEVEL STRUCTURES
Varying intercepts and slopes

Figure 11.1 Linear regression models with (a) varying intercepts $(y = \alpha_j + \beta_x)$, (b) varying slopes $(y = \alpha + \beta_j x)$, and (c) both $(y = \alpha_j + \beta_j x)$. The varying intercepts correspond to group indicators as regression predictors, and the varying slopes represent interactions between x and the group indicators.

The random intercept model

- Model the richness as a linear function of NAP
 - Intercept is allowed to change per beach

 $R_{ij} = \alpha + \beta_1 \times Beach_i + \beta_2 \times NAP_{ij} + \varepsilon_{ij}$

$$\begin{pmatrix} R_{i1} \\ R_{i2} \\ R_{i3} \\ R_{i4} \\ R_{i5} \end{pmatrix} = \begin{pmatrix} 1 & NAP_{i1} \\ 1 & NAP_{i2} \\ 1 & NAP_{i3} \\ 1 & NAP_{i4} \\ 1 & NAP_{i5} \end{pmatrix} \times \begin{pmatrix} \alpha \\ \beta \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \times b_i + \begin{pmatrix} \varepsilon_{i1} \\ \varepsilon_{i2} \\ \varepsilon_{i3} \\ \varepsilon_{i4} \\ \varepsilon_{i5} \end{pmatrix} \Leftrightarrow \mathbf{R}_i = \mathbf{X}_i \times \boldsymbol{\beta} + \mathbf{Z}_i \times \mathbf{b}_i$$

 b_i are normally distributed: N(0, d^2).

$$\Sigma_i = \sigma^2 I_5$$

The random intercept model

- $y_{ij} = \alpha + \beta x_{ij} + a_j + \varepsilon_{ij}$ where $a_j \sim N(0, \sigma_a^2)$ and $\varepsilon_{ij} \sim N(0, \sigma^2)$
- model2 <- Ime (richness ~ NAP, random = ~1|beach, method = "REML", data)

i.e. a model that fits the same slope for each level of the random factor (fitted by REML by default)

The random intercept model

The random intercept and slope model

• The model

$$\begin{pmatrix} R_{i1} \\ R_{i2} \\ R_{i3} \\ R_{i4} \\ R_{i5} \end{pmatrix} = \begin{pmatrix} 1 & NAP_{i1} \\ 1 & NAP_{i2} \\ 1 & NAP_{i3} \\ 1 & NAP_{i4} \\ 1 & NAP_{i5} \end{pmatrix} \times \begin{pmatrix} \alpha \\ \beta \end{pmatrix} + \begin{pmatrix} 1 & NAP_{i1} \\ 1 & NAP_{i2} \\ 1 & NAP_{i3} \\ 1 & NAP_{i4} \\ 1 & NAP_{i5} \end{pmatrix} \times \begin{pmatrix} b_{i1} \\ b_{i2} \end{pmatrix} + \begin{pmatrix} \varepsilon_{i1} \\ \varepsilon_{i3} \\ \varepsilon_{i4} \\ \varepsilon_{i5} \end{pmatrix}$$

$$\begin{pmatrix} b_{i1} \\ b_{i2} \end{pmatrix} \sim N(\mathbf{0}, \ \mathbf{D})$$

$$\mathbf{D} = \begin{pmatrix} d_{11}^2 & d_{12} \\ d_{12} & d_{22}^2 \end{pmatrix}$$

The random intercept and slope model

Induced correlation

• The model

 $\mathbf{Y}_i = \mathbf{X}_i \times \mathbf{\beta} + \mathbf{Z}_i \times \mathbf{b}_i + \mathbf{\varepsilon}_i$

• Marginal distribution of Y is

 $\mathbf{Y}_i \sim N(\mathbf{X}_i \times \boldsymbol{\beta}, \mathbf{V}_i)$

 $\mathbf{V}_i = \mathbf{Z}_i \times \mathbf{D} \times \mathbf{Z}'_i + \mathbf{\Sigma}_i$

In case of the random intercept model, we have

Induced correlation

• The model

• Margi
$$V_i = \begin{pmatrix} 1\\1\\1\\1\\1 \end{pmatrix} \times d^2 \times (11111) + \sigma^2 \times \begin{pmatrix} 1 & 0 & \cdots & \cdots & 0\\ 0 & 1 & \vdots \\ \vdots & 1 & \vdots \\ \vdots & 1 & 0\\ 0 & \cdots & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} \sigma^2 + d^2 & d^2 & d^2 & d^2 & d^2\\ d^2 & \sigma^2 + d^2 & d^2 & d^2 & d^2\\ d^2 & d^2 & \sigma^2 + d^2 & d^2 & d^2\\ d^2 & d^2 & d^2 & \sigma^2 + d^2 & d^2\\ d^2 & d^2 & d^2 & \sigma^2 + d^2 & d^2 \end{pmatrix}$$

• In cas_lel, we have

Induced correlation

For the random intercept and slope model, we have

$$\mathbf{V}_{i} = \begin{pmatrix} 1 & NAP_{i1} \\ 1 & NAP_{i2} \\ 1 & NAP_{i3} \\ 1 & NAP_{i4} \\ 1 & NAP_{i5} \end{pmatrix} \times \begin{pmatrix} d_{11}^{2} & d_{21} \\ d_{12} & d_{22}^{2} \end{pmatrix} \times \begin{pmatrix} 1 & NAP_{i1} \\ 1 & NAP_{i2} \\ 1 & NAP_{i3} \\ 1 & NAP_{i4} \\ 1 & NAP_{i5} \end{pmatrix} + \sigma^{2} \times \begin{pmatrix} 1 & 0 & \cdots & \cdots & 0 \\ 0 & 1 & & \vdots \\ \vdots & & 1 & & \vdots \\ \vdots & & & 1 & 0 \\ 0 & \cdots & \cdots & 0 & 1 \end{pmatrix}$$

$$var(Y_{ij}) = d_{11}^2 + 2 \times NAP_{ij} \times d_{12} + NAP_{ij}^2 \times d_{22}^2 + \sigma^2$$

 $\operatorname{cov}(Y_{ij}, Y_{ik}) = d_{11}^2 + (NAP_{ij} + NAP_{ik}) \times d_{12} + NAP_{ij} \times NAP_{ik} \times d_{22}^2$

The marginal model

• If we integrate out b, we get

 $\mathbf{Y}_i \sim N(\mathbf{X}_i \times \boldsymbol{\beta}, \mathbf{V}_i)$

 $\mathbf{V}_i = \mathbf{Z}_i \times \mathbf{D} \times \mathbf{Z}'_i + \mathbf{\Sigma}_i$

In general, if we don't have the random effects,

$$\mathbf{V}_{i} = \mathbf{\Sigma}_{i} = \begin{pmatrix} \sigma^{2} & c_{21} & c_{31} & c_{41} & c_{51} \\ c_{21} & \sigma^{2} & c_{32} & c_{42} & c_{52} \\ c_{31} & c_{32} & \sigma^{2} & c_{43} & c_{53} \\ c_{41} & c_{42} & c_{43} & \sigma^{2} & c_{54} \\ c_{54} & c_{52} & c_{53} & c_{54} & \sigma^{2} \end{pmatrix}$$
 General correlation matrix

The marginal model

• If we integrate out b, we get

 $\mathbf{Y}_i \sim N(\mathbf{X}_i \times \boldsymbol{\beta}, \mathbf{V}_i)$

 $\mathbf{V}_i = \mathbf{Z}_i \times \mathbf{D} \times \mathbf{Z}'_i + \mathbf{\Sigma}_i$

In general, if we don't have the random effects,

- REML: restricted maximum likelihood estimate
- In the simple linear regression

 $Y_i = \alpha + \beta \times X_i + \varepsilon_i$

• An unbiased estimate of the variance is

$$\hat{\sigma}^2 = \frac{1}{n-2} \sum_{i=1}^n (Y_i - \hat{\alpha} - \hat{\beta} \times X_i)^2$$

• But the MLE is

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (Y_i - \hat{\alpha} - \hat{\beta} \times X_i)^2$$

Biased!!

REML works as follows

 $Y_i = \alpha + \beta \times X_i + \varepsilon_i$

• Written in matrix form

 $Y_i = \mathbf{X}_i \times \mathbf{\beta} + \varepsilon_i$

- The normality assumption implies $Y_i \sim N(\mathbf{X}_i \times \boldsymbol{\beta}, \sigma^2)$
- Take A of dimension n×(n-2), such that A' and X are orthogonal,

 $\mathbf{A}' \times \mathbf{Y} = \mathbf{\tilde{A}}' \times \mathbf{X} \times \mathbf{\beta} + \mathbf{A}' \times \mathbf{\epsilon}$ $\mathbf{A}' \times \mathbf{Y} \sim N(\mathbf{0}, \sigma^2 \times \mathbf{A}' \times \mathbf{A})$

Maximize this we get REML

For the linear mixed model

$$\mathbf{Y}_{i} \sim N(\mathbf{X}_{i} \times \boldsymbol{\beta}, \mathbf{V}_{i}) \qquad \mathbf{V}_{i} = \mathbf{Z}_{i} \times \mathbf{D} \times \mathbf{Z}_{i}' + \boldsymbol{\Sigma}_{i}$$
$$\ln L(\mathbf{Y}_{i}, \mathbf{X}_{i}, \boldsymbol{\theta}) = -\frac{n}{2} \ln 2\pi - \frac{1}{2} \sum_{i=1}^{n} \ln |\mathbf{V}_{i}| - \frac{1}{2} \sum_{i=1}^{n} (\mathbf{Y}_{i} - \mathbf{X}_{i} \times \boldsymbol{\beta})' \times \mathbf{V}_{i}^{-1} \times (\mathbf{Y}_{i} - \mathbf{X}_{i} \times \boldsymbol{\beta})$$

• Putting all observations together

 $Y \sim N(X \times \beta, V)$

- Similarly, we can take A with $A' \times X = 0$
- Thus $\mathbf{A}' \times \mathbf{Y} \sim \mathcal{N}(\mathbf{0}, \mathbf{A}' \times \mathbf{V} \times \mathbf{A})$

Mixed model with NAP as fixed covariate and random intercept

Parameter	Estimate using ML	Estimate using REML
Fixed intercept	6.58 (1.05)	6.58 (1.09)
Fixed slope NAP	-2.57 (0.49)	-2.56 (0.49)
Variance random intercept	7.50	8.66
Residual variance	9.11	9.36
AIC	249.82	247.48
BIC	257.05	254.52

Mixed model with NAP and exposure as fixed covariate and random intercept

Fixed intercept	8.60 (0.96)	8.60 (1.05)
Fixed slope NAP	-2.60 (0.49)	-2.58(0.48)
Fixed Exposure level	-4.53 (1.43)	-4.53 (1.57)
Variance random intercept	2.41	3.63
Residual variance	9.11	9.35
AIC	244.75	240.55
BIC	253.79	249.24