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Generalized Additive models 

• Suppose that the model is 

 

• As discussed before, we may approximate the 
unknown function f with polynomials 

 

• But the problem is this representation is not 
very flexible 
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• What if the data looks like 
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Generalized Additive models 

• How to determine the number of knots? 

– Use model selection methods? 

– But this is problematic 

• Instead we may use the penalized regression 
spline 

– Rather than minimizing 

– We could minimize   
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• How to choose λ? 

 

• Ordinary cross-validation (OCV) 

– We my try to minimize 
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Generalized Additive models 

• Additive models with multiple explanatory 
variables 

 

 

 

 

• We may also consider the model like 


