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Too good to be true?

The (1 minus) survival curves below compare a healthy control
group with a non-melanoma skin cancer group.

Death from any cause
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Was this what you had expected?

Dias 2




UNIVERSITY OF COPENHAGEN Department of Biostatistics

Here is the method section of the paper

e We conducted a study of the entire Danish population above
age 40 years from 1 January 1980 through 31 December
2006, comprising 4 412 568 individuals.

e Diagnoses and dates of skin cancer were drawn from the
national Danish Cancer Registry, which identifies 98% of
cancer cases in Denmark... All individuals with a diagnosis of
non-melanoma skin cancer ...from 1 January 1980 through
31 December 2006 were identified.

e Information on death from any cause was drawn from the
national Danish Civil Registration System.

e We assessed the association between diagnoses of non-
melanoma skin cancer ... and death from any cause.

e The Cox regression models ... and individuals were censored
at event, death, permanent emigration or end of follow-up.

Take 5 min to discuss what

Int. J. Epidemiol. Advance Access published September 13, 2013

was done with the person L e e i
sitting next to you. Skin cancer as a marker of sun exposure

s associates with myocardial infarction, hip

Dias

fracture and death from any cause

Peter Brondum-Jacobsen,"” Borge G Nordestgaard,"” Sune F Nielsen' and Marianne Benn®**



UNIVERSITY OF COPENHAGEN Department of Biostatistics

Person 1

-_— ———————————————
40 years Death
Person 2

40 years Cancer diag. Death

Dias 4

Age




UNIVERSITY OF COPENHAGEN Department of Biostatistics

Our respond

Letters to the Editor

Skin cancer as a marker of sun exposure: a case of serious
immortality bias

From Theis Lange* and Niels Keiding

Editorial in same issue where editor appoligized for mistakes in
peer review process.
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The effect of age stratification on immortal time bias

Death from any cause

Non-melanoma skin cancer Cutaneous malignant melanoma
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Exercise: Write two sentences explaining why you see the
above.
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The choice of time scale

A study is conducted over calendar time but the natural time variable
may be time since treatment, e.g., the melanoma study.

Cohort studies are often conducted by recruiting a random sample of
the population at the start of the study and then these subjects are
followed for a number of years.

A natural time variable may be age rather than time on study which
most often is an artificial time variable constructed by the
investigators.

vy l
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Vaccinations in Guinea-Bissau 1990-96

Rural Guinea-Bissau: 5274 children under 7 months of age visited two
times at home, with an interval of six months. Information about
vaccination (BCG, DTP, measles vaccine) collected at each visit and
at second visit death during follow-up is registered. Some children

were censored because they moved away during follow-up or survived
until next visit.

Below are some of the variable names from the Bissau data.

fuptime  Follow-up time in days

dead 0 = censored, 1 = dead
beg 1 = Yes, 2 = No
agem Age at first visit in months
Dias 9 . l
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Is the risk of dying associated with vaccination?

Outcome
Exposure Died Survived | Total
BCG vaccinated 125 (3.8%) 3176 3301
not BCG vaccinated | 97 (4.9%) 1876 1973
Total 222 (4.2%) 5052 5274

> chisq.test(bissauData$bcg, bissauData$dead)

Pearson®s Chi-squared test with Yates®" continuity correction

data:

bissauData$bcg and bissauData$dead

X-squared = 3.6331, df = 1, p-value = 0.05664

Is this analysis OK?

Dias 10
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Is the risk of dying associated with vaccination?
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> p10t.(5urvf1't(Surv(Fuptime. dead}wh-:g.. data=bissauData), ylim=c(0.92,1), xlab="fuptime", ylab="Survival")
> survdiff(surv(fuptime, dead)~bcg, data=hissauData)

Call:

survdiff(formula = surv(fuptime, dead) ~ bcg, data = bissauData)

N Observed Expected (0-E)A2/E (0-E)AZ/V
bcg=1 3301 125 140 1.62 4.38
bcg=2 1973 97 82 2.76 4.38

Chisg= 4.4 on 1 degrees of freedom, p= 0.0364

Dias 11 .
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Is the risk of dying associated with vaccination?

> fitlCox <- coxph(Surv(fuptime, dead)~bcg, data=bissauData)
> summary(fitlCox)

Call:

coxph(formula = sSurv(fuptime, dead) ~ bcg, data = bissauData)

n= 5274, number of events= 222

coef exp(coef) se(coef) z Pr(>|z|)
bcg 0.2821 1.3260 0.1353 2.085 0.0371 =

Signif. codes: 0 “#**' 0.001 ***" 0.01 ‘*° 0.05 *." 0.1 °* " 1

exp(coef) exp(-coef) lower .95 upper .95
bcag 1.326 0.7542 1.017 1.729

Concordance= 0.535 (se = 0.016 )

Rsquare= 0.001  (max possible= 0.51 )

Likelihood ratio test= 4.28 on 1 df, p=0.03851
wald test 4_.35 on 1 df, p=0.03707
Score (logrank) test = 4.38 on 1 df, p=0.03645

=
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Age as time variable: Delayed entry

Dias 13
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Age as time variable: Delayed entry

Subjects are only at risk at age of entry and onwards. They are not at
risk before age of entry in our "World of analysis"!

Handling delayed entry is "easily" done by careful control of the RISK
SET R(t;) at death time ;.

> bissauDatafoutage <- bissauData$age+bissauData$fuptime

> fit2Cox =- coxph(Surv(age, outage, dead)~bcg, data=bissauData)
> summary (fit2Cox)

Call:

coxph(formula = Surv(age, outage, dead) ~ bcg, data = bissauData)

n= 5274, number of events= 222

coef exp(coef) se(coef) zZ Pr(>|z|)
bcg 0.3552 1.4264 0.1407 2.525 0.0116 *

Signif. codes: 0 “===" 0.001 “*=*' 0.01 “*=" 0.05 “." 0.1 " " 1

exp(coef) exp(-coef) lower .95 upper .95
bcg 1.426 0.7011 1.083 1.879

Concordance= 0.533 (se = 0.017 )
Rsquare= 0.001 (max possible= 0.487 )

Likelihood ratio test= 6.26 on 1 df, p=0.01233
wald test = 6.38 on 1 df, p=0.01157
score (logrank) test = 6.43 on 1 df, p=0.01122

Department of Biostatistics
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Age as time variable: Comparing the survival curves
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plot(survfit(Surv(fuptime, dead)~bcg, data=bissaubData), ylim=c(0.8,1),
xlab="fuptime", ylab="Survival™)

plot(survfit(Surv(age, outage, dead)~bcg, data=bissauData), ylim=c(0.8,1),
xlab="age", ylab="Survival™)
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Time dependent explanatory variables

The Cox model can be expanded to include time-varying covariates
)\t(f) — )\D(f) EXP(L'}XE(H)

If the death times are #1....,14 then it turns out that we "just" need
to know the value of the covariates at the death times:

Xi(t1), Xi(ta). ... Xs(ta).

The covariate values at any time different from a death time are not
used in the likelihood function.

The most simple time-varying covariate is a binary variable that is
allowed to change once during follow-up, e.g. new BCG vaccinations
registered between visits in the Bissau data:

0 if no BCG before time ¢

Xi(t) =
1 if BCG-time < ¢

Dias 16
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Time dependent explanatory variables
A child being BCG-vaccinated after 3 months of follow-up.

BCG

Follow—up (months)

The time-varying covariate is 0 in the time interval 0 to 3 months and
1 for the rest of follow-up. For a child who was BCG vaccinated before
first visit the time-varying covariate is one during all the follow-up.

bilas 17
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Multi-state model

We want to compare \p2(?) and A2(t). The transition rate A\gi(?) is

Unexposed

Ao2(t)

not modeled here.

Exposed

Dead




UNIVERSITY OF COPENHAGEN Department of Biostatistics

Time dependent explanatory variables

Instead of time of follow-up we will use age as time variable to
illustrate the use of BCG as a time-varying covariate in the Bissau
data. At visit 2 the vaccination cards were seen for the children at
home and an age of BCG vaccination (bcgage) was calculated:

id fuptime dead age bcg bcgage outage

486 159 0 199 1 107 358
487 183 0 97 1 20 280
488 183 0 43 2 174 226
489 137 1 140 1 40 277
490 183 0 165 1 46 348
499 157 0 186 1 64 343
500 25 1 191 2 . 216

501 157 0 183 1 61 340
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Binary time-varying covariate in R
Splitting up persons with a changing time-varying covariate into two
records:

age bcgage outage

bcgvacc=0
status=0

bcgvacc=1
status=dead

and use delayed entry.

Thus, we need to generate a new data set.

Dias 20
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Binary time-varying covariate in R

bissauData$bcgage[is.na(bissauData$bcgage)] <- 9999 # because NA can be
bad when subsetting

# child not vac before outage or not at all

bissauDataTempl <- subset(bissauData, bcgage==9999 | bcgage>outage)
bissauDataTempl$bcgvacc <- O

bissauDataTempl$entryage <- bissauDataTempl$age
bissauDataTempl$exitage <- bissauDataTempl$outage
bissauDataTempl$status <- bissauDataTempl$dead

# child vac before initial age

bissauDataTemp2 <- subset(bissauData, bcgage<age)
bissauDataTemp2$bcgvacc <- 1
bissauDataTemp2$entryage <- bissauDataTemp2$age
bissauDataTemp2%exitage <- bissauDataTemp2$outage
bissauDataTemp2$status <- bissauDataTemp2%$dead
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Binary time-varying covariate in R

# child vac after initial age, but before end of follow-up
bissauDataTemp3 <- subset(bissauData, (age<bcgage) & (bcgage<outage))
bissauDataTemp4 <- subset(bissauData, (age<bcgage) & (bcgage<outage))
bissauDataTemp3$bcgvacc <- O

bissauDataTemp4$bcgvacc <- 1

bissauDataTemp3%entryage <- bissauDataTemp3$age
bissauDataTemp4$entryage <- bissauDataTemp4$bcgage
bissauDataTemp3%exitage <- bissauDataTemp3$bcgage
bissauDataTemp4$exitage <- bissauDataTemp4$outage
bissauDataTemp3$status <- O

bissauDataTemp4$status <- bissauDataTemp4$dead

# collect all

bissauDataSplit <- rbind(bissauDataTempl, bissauDataTemp2,
bissauDataTemp3, bissauDataTemp4)

bissauDataSplit <- bissauDataSplit[order(bissauDataSplit$id), ]
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Binary time-varying covariate in R

id fuptime dead age Dbcg bcgage outage  bcgvacc entryage exitage status
488 183 0 43 2 174 226 0 43 174 0
488 183 0 43 2 174 226 1 174 226 0

fi1t3Cox <- coxph(Surv(entryage, exitage, status)-~bcgvacc,
data=bissauDataSplit)

summary (fit3Cox)
Parameter  Standard Hazard 95% Hazard Ratio
Parameter DF Estimate Error Chi-Square Pr > ChiSg Ratio Confidence Limits
bcgvacc 1 1 -1.08278 0.14046 59.4286 <.0001 0.339 0.257 0.446

Note 1: No need to care for the repeated rows for some persons — why?
Note 2: Bigger effect size (old analysis HR=1.4; now HR=2.9) — why?
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Stanford heart transplant data (p. 235)

In an article (Crowley and Hu, J Amer. Statist Assoc. 1977) on the
Stanford Heart Transplantation Study, patients identified as being
eligible (N=103) for a heart transplant were followed until death or
censorship. In total, 65 received a transplant during follow-up, whereas

38 did not.

The purpose is to assess whether transplanted patients survived longer
and at the exercises we will do some of the analyses.

sy
Dias 24 .
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Stanford heart transplant data (p. 235)

age

cens

days

trans

walt

mismatch

Dias 25

age (in years) at entry into the study.

0 = Censoring

1 = Dead

number of days from entry to dead/censoring.

1 = if the person had a heart transplantation

0 = otherwise.

number of days from entry to transplantation

NB: if trans = 0 then wait = -1

1 = mismatch between HLA type in donor and patient
0 = no mismatch

NB: if trans = 0 then mismatch = -1.
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Stanford heart transplant data (p. 235)

Obs age cens days trans wait mismatch
52 56 1 90 1 27 1
53 53 1 96 1 67 0
54 48 1 100 1 46 0
55 41 1 102 0 -1 -1
56 28 0 109 1 96 1
57 46 1 110 1 60 0
58 23 0 131 1 21 1
59 41 1 149 0 -1 -1
60 47 1 153 1 26 0
61 43 1 165 1 4 0
62 26 0 180 1 13 0
63 52 1 186 1 160 1
64 47 1 188 1 41 0
65 51 1 207 1 139 1
66 51 1 219 1 83 1
67 8 1 263 0 -1 -1
68 47 0 265 1 28 0
69 48 1 285 1 32 1
70 19 1 285 1 57 0
71 49 1 308 1 28 0
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Stanford heart transplant data (p.

Why are they wrong?!
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COMPETING RISKS
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Competing risks

e In studies of all-cause mortality, rates (hazards) can be computed
from risks (probabilities, cumulative incidences) and vice versa - in
other words the two functions contain equivalent information

e In studies of events which will not eventually happen for every one
in the population, this is no longer the case and death (and maybe
other events) are competing risks which need to be addressed

e In such cases, the risk of a given cause depends on the rates for all
competing causes

e Therefore, using ‘1-Kaplan-Meier for a single cause’ as a risk

estimator is (upward) biased

e The magnitude of the bias depends on the frequency of the
competing events

Dias 29
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1
Competing risks Dead, cause 1
P g calty”

aslt)._[2

Dead, cause 2

For simplicity we consider two causes of death, and let interest focus on learning about the

hazard rates aq(t) and aa(t). These gives the cause-specific chance of dying of cause I if

alive at time . We may integrate the cause specific hazards

t
[p(t) = f apls)ds k=1,2
0
The total mortality is given by

Jl{t;'l ﬂ'1[:f} + a9 (f}
A(t) = Ty(t)+ Taft)

and the survival function is given as
S(t) = exp(—A(t))

where A(t) = [; A(s)ds.
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Competing risks

e (Cause specific hazard (and hazard ratios) can be estimated

simply by censoring on all other events and then use coxph-
function.

e However, survival functions (Kaplan-Meier) are biased.

e Instead cumulative incidence curves can be computed (big
topic we will not get into).
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Competing risks

e In studies of all-cause mortality, rates (hazards) can be computed
from risks (probabilities, cumulative incidences) and vice versa - in
other words the two functions contain equivalent information

e In studies of events which will not eventually happen for every one
in the population, this is no longer the case and death (and maybe
other events) are competing risks which need to be addressed

e In such cases, the risk of a given cause depends on the rates for all
competing causes

e Therefore, using ‘1-Kaplan-Meier for a single cause’ as a risk

estimator is (upward) biased

e The magnitude of the bias depends on the frequency of the
competing events

Dias 32




ALTERNATIVE MODELS
FOR SURVIVAL DATA
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The additive hazard models

ORIGINAL ARTICLE

Additive Interaction in Survival Analysis
Use of the Additive Hazards Model

Naja Hulvej Rod,* Theis Lange,® Ingelise Andersen,* Jacob Louis Marott, and Finn Diderichsen®

(Epidemiology 2012:23: 733-737)
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The additive hazard models

e The hazard ratio estimates from Cox can be hard to
interpret.

e Effect measures capturing number of events directly might
be more appropriate.

e The Aalen additive hazard model is a solution.

e From “birth” the model is nhon-parametric.

= With the covariates (E; and E,) the hazard at time t is given
by

Yo(t) + G1(t) 1 + (1(t) B + B3(f)(Eq X Es)

e Estimated by OLS at each event time.
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6S: The additive hazard models

e In R additive hazard models can be estimated using the
aalen function from the timereg package.

> lTibrary(timereg)

= fitlaalen <- aalen(Surv(time_to_death, mortality_90days)~intervention, data=kidneyData)
> summary(fitlaalen)

Additive Aalen Model

Test for nonparametric terms

Test for non-significant effects

supremum-test of significance p-value H_0: B(t)=0
(Intercept) 13.90 0.000
intervention 2.34 0.252

Test for time invariant effects
Kolmogorov-smirnov test p-value H_O:constant effect

(Intercept) 0.2790 0.000

intervention 0.0437 0.793

Cramer von Mises test p-value H_0O:constant effect

(Intercept) 3.1000 0.000

intervention 0.0345 0.648
call:

aalen(formula = surv(time_to_death, mortality_90days) ~ intervention,
data = kidneyData)

e Why no parameter estimate?
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6S: The additive hazard models

e You can only get plots of cumulated coefficient.

t
e That is plots of fo Prs)ds

etc.
e In R: plots(fitlAalen)
intervention
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6S: The additive hazard models
e The aalen model also exists in a semi-parametric version.

e Here the hazard is modeled as:

Yo(t) + P1E1 + P1Es + Bs(Ey x Es)

= fit2aalen <- aalen(Surv(time_to_death, mortality_90days)~const(intervention), data=kidneyData)
> summary(fit2aalen)
Additive Aalen Model

Test for nonparametric terms
Test for non-significant effects
supremum-test of significance p-value H_0: B(t)=0

(Intercept) 16.3 0

Test for time invariant effects
Kolmogorov-Smirnov test p-value H_O:constant effect

(Intercept) 0.283 0
Cramer von Mises test p-value H_O:constant effect
(Intercept) 2.96 0
Parametric terms :
Coef. SE Robust SE z P-val
const(intervention) -0.002 0.001 0.001 -1.8 0.072

call: ?

aalen(formula = surv(time_to_death, mortality_90days) ~ const(intervention),
data = kidneyData)
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Cox vs. Aalen model

TABLE 2. Comparison of the Estimation of the Interaction Between Education and Smoking on
Risk of Lung Cancer in the Cox Proportional Hazards Model and the Additive Hazards Model
Based on Data on 73,145 Men and Women From the Danish Social Inequality in Cancer Database

Additive Hazards Model
Cox Proportional Hazards Model No. Additional Lung Cancer Cases
Hazard Ratio® (95% CI) per 10,000 Person Years® (95% CI)

Model output

Short vs. long education
Smoker vs. non-smoker
Short education®*smoker
Stratified analysis
Long education
Smoker vs. non-smoker
Short education
Smoker vs. non-smoker
Test for interaction
Joint effects
Long education, non-smoker”
Short education. non-smoker
Long education, smoker
Short education, smoker

1.32(1.03 to 1.71)
7.15(6.01 to 8.51)
1.18 (0.89 to 1.55)

7.15(6.01 to 8.51)

8.43 (6.79 to 10.5)
P =024

1.00
1.32(1.03 to 1.71)
7.15 (6.01 to 8.51)

11.16 (9.37 to 13.3)

—05(—19t0 1.0)
242 (22010 26 .4)
18.5 (14.0 to 23.0)

242 (22010 26 .4)

42.7 (38.9 to 46.5)
P < 0.001

1.00
—0.5(—-19t0 1.0)
242 (22.0 to 26.4)
42.2 (38.6 to 45.8)

*Adjusted for sex, age, and cohort.
PReference category.
CI indicates confidence interval.
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The exercise

There Is a mandatory exercise to be
handed In within two weeks.
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