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Too good to be true?  

The (1 minus) survival curves below compare a healthy control 
group with a non-melanoma skin cancer group.  

 
 
 
 
   
 
 
 
 
 
 
 
 
Was this what you had expected?  
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Here is the method section of the paper 

• We conducted a study of the entire Danish population above 
age 40 years from 1 January 1980 through 31 December 
2006, comprising 4 412 568 individuals. 

• Diagnoses and dates of skin cancer were drawn from the 
national Danish Cancer Registry, which identifies 98% of 
cancer cases in Denmark… All individuals with a diagnosis of 
non-melanoma skin cancer …from 1 January 1980 through 
31 December 2006 were identified. 

• Information on death from any cause was drawn from the 
national Danish Civil Registration System. 

• We assessed the association between diagnoses of non-
melanoma skin cancer … and death from any cause. 

• The Cox regression models … and individuals were censored 
at event, death, permanent emigration or end of follow-up. 
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Take 5 min to discuss what 
was done with the person 
sitting next to you. 
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40 years 

Age 

Death 

40 years 

Age 

Person 1 

Death Cancer diag. 

Person 2 
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Our respond 
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Editorial in same issue where editor appoligized for mistakes in 
peer review process.  
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40 years 

Age 

Death 

40 years 

Age 

Person 1 

Death Cancer diag. 

Person 2 Immortal time 



Dias 7 

The effect of age stratification on immortal time bias 

 
 
 
 
 
 
 
 
 
 
 
 
Exercise: Write two sentences explaining why you see the 

above.  
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The choice of time scale 
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Vaccinations in Guinea-Bissau 1990-96 
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Is the risk of dying associated with vaccination? 
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> chisq.test(bissauData$bcg, bissauData$dead) 
 
 Pearson's Chi-squared test with Yates' continuity correction 
 
data:  bissauData$bcg and bissauData$dead 
X-squared = 3.6331, df = 1, p-value = 0.05664 
 
Is this analysis OK? 
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Is the risk of dying associated with vaccination? 
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Is the risk of dying associated with vaccination? 
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Age as time variable: Delayed entry 
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Age as time variable: Delayed entry 
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Age as time variable: Comparing the survival curves 
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Time dependent explanatory variables 
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Time dependent explanatory variables 
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Multi-state model 
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Time dependent explanatory variables 
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Binary time-varying covariate in R 
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Binary time-varying covariate in R 

bissauData$bcgage[is.na(bissauData$bcgage)] <- 9999 # because NA can be 
bad when subsetting 

 
# child not vac before outage or not at all 
bissauDataTemp1 <- subset(bissauData, bcgage==9999 |  bcgage>outage) 
bissauDataTemp1$bcgvacc  <- 0 
bissauDataTemp1$entryage <- bissauDataTemp1$age 
bissauDataTemp1$exitage  <- bissauDataTemp1$outage 
bissauDataTemp1$status   <- bissauDataTemp1$dead 
 
 
# child vac before initial age 
bissauDataTemp2 <- subset(bissauData, bcgage<age) 
bissauDataTemp2$bcgvacc  <- 1 
bissauDataTemp2$entryage <- bissauDataTemp2$age 
bissauDataTemp2$exitage  <- bissauDataTemp2$outage 
bissauDataTemp2$status   <- bissauDataTemp2$dead 
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Binary time-varying covariate in R 

# child vac after initial age, but before end of follow-up 
bissauDataTemp3 <- subset(bissauData, (age<bcgage) & (bcgage<outage)) 
bissauDataTemp4 <- subset(bissauData, (age<bcgage) & (bcgage<outage)) 
bissauDataTemp3$bcgvacc  <- 0 
bissauDataTemp4$bcgvacc  <- 1 
bissauDataTemp3$entryage <- bissauDataTemp3$age 
bissauDataTemp4$entryage <- bissauDataTemp4$bcgage 
bissauDataTemp3$exitage  <- bissauDataTemp3$bcgage 
bissauDataTemp4$exitage  <- bissauDataTemp4$outage 
bissauDataTemp3$status   <- 0 
bissauDataTemp4$status   <- bissauDataTemp4$dead 
 
# collect all 
bissauDataSplit <- rbind(bissauDataTemp1, bissauDataTemp2, 

bissauDataTemp3, bissauDataTemp4) 
bissauDataSplit <- bissauDataSplit[order(bissauDataSplit$id), ] 
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Binary time-varying covariate in R 
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fit3Cox <- coxph(Surv(entryage, exitage, status)~bcgvacc, 
 data=bissauDataSplit) 
summary(fit3Cox) 
 

Note 1: No need to care for the repeated rows for some persons – why? 
Note 2: Bigger effect size (old analysis HR=1.4; now HR=2.9) – why? 
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Stanford heart transplant data (p. 235) 
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Stanford heart transplant data (p. 235) 
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Stanford heart transplant data (p. 235) 
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Stanford heart transplant data (p. 235) 
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COMPETING RISKS 
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Competing risks 
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Competing risks 

 
• Cause specific hazard (and hazard ratios) can be estimated 

simply by censoring on all other events and then use coxph-
function.  
 
 

• However, survival functions (Kaplan-Meier) are biased.  
 
 

• Instead cumulative incidence curves can be computed (big 
topic we will not get into).  
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Competing risks 
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ALTERNATIVE MODELS 
FOR SURVIVAL DATA 
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The additive hazard models 
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The additive hazard models 

• The hazard ratio estimates from Cox can be hard to 
interpret.  
 

• Effect measures capturing number of events directly might 
be more appropriate.  
 

• The Aalen additive hazard model is a solution.  
 

• From “birth” the model is non-parametric.  
 

• With the covariates (E1 and E2) the hazard at time t is given 
by  
 
 
 
 

• Estimated by OLS at each event time. 
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6S: The additive hazard models 

• In R additive hazard models can be estimated using the 
aalen function from the timereg package.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Why no parameter estimate?  
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6S: The additive hazard models 

• You can only get plots of cumulated coefficient.  
 

• That is plots of     etc. 
 

• In R: plots(fit1Aalen) 
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6S: The additive hazard models 

• The aalen model also exists in a semi-parametric version. 
 

• Here the hazard is modeled as: 
 
 
 

• In R: 
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Cox vs. Aalen model 
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The exercise 
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There is a mandatory exercise to be 
handed in within two weeks.  
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