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Follow-up from Tuesday
Two questions:

1) Math detail of log-rank test.

Solution on whiteboard.

2) Confidence band for KM-est.

Recall that var((n-d)/n) = ((n-d)/n)*(1-(n-d)/n))*(1/n)
Use delta-method with the function log(x)

Use delta-method with the function exp(x)

Result is this formula:

Var(S(t)) = S(t)? Z

i<t
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Recall: KM plots
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Recall: The log-rank test in R

> survdiff(Surv(time, event)~placebo, data=remisData)

Call:
survdiff(formula = Surv(time, event) ~ placebo, data =
remisData)
N Observed Expected (0O-E)"2/E (O-E)"N2/V
placebo=0 21 9 19.3 5.46 16.8
placebo=1 21 21 10.7 9.77 16.8

Chisg= 16.8 on 1 degrees of freedom, p= 4.17e-05

But what about getting a number for the effect size?
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Why models for survival data?

e We want a parameter that describes the size of the
difference between the two treatment groups.

e Not enough with p-value.

e Could we use usual parameters like:
1. Mean survival time?
2. Mediation survival time?
3. Survival probability at say 90 days?

e First two does not work with censoring,
the third only describes treatment effect at a single time
point.

e We want to be able to include more than one covariate.

e Solution is the famous Cox model.
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Recall: The hazard function

The hazard function (also referred to as hazard rate or intensity):

Pt<T<t+At|T>1)
At

A(t) =~

where the probability is read like: The conditional probability at time t
of dying in the next short time interval (t + At) given alive at t.

. i : >
0 t t+ At

The hazard function provides a local description of the development.

0 Bt £
= Vg
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Constant hazard model

The simplest model for the hazard would be

h(t) = h
for h=0.

Then the survival function becomes

S(t) = exp(— [;h(s)ds) = exp([jhd&) = exp(—h x t)

This model is know as the exponential survival model.
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The exponential survival model

h(t) = h S(t) = exp(—hr)
w0
= [ ]
S s o
o
L
S |
o g
g S
; B
o 2 ©
— 2 S 7
= &
o
-‘g 8 — -E \\
N © 2 .
I $ < | ~
o [ e e
o R ki
= b
e}
— o |
(o ] (o]
=g
p=
(o }
— (a]
= o |
e N I I I I I I I I I I I
0 100 200 300 400 500 0 100 200 300 400 500
Tid (t) Tid (1)

Dias 8




UNIVERSITY OF COPENHAGEN

Department of Biostatistics

Other examples of hazard functions

Leukaemia Recovering

Tuberculosis
Do we really have to chose in advance?
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Hazard ratio (HR)

Inspired by risk ratios we could calculate the rate between
hazards.

For remission data this would be

hB (1) Pe<T<t+d|T>t Treated)

Department of Biostatistics

ht (1) Pt<T<t+d|T >t Placebo)

Interpretation is:

For any time point the HR captures how much
bigger/smaller the risk of death within a short time span is
in treatment group compared to placebo.

Note: HR can depend on time in general!
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The Cox Proportional Hazards (PH) model

Let X; = (X1, Xi2, ..., Xjp) be a list of covariates for individual /.

The Cox PH model specifies the hazard for individual / as

/\j(t) = /\g(f) exp(,ﬂ% Xit + 0o Xjp + - - + I,Sprp).

If all covariates are 0 we get the baseline hazard
() = o(t).

Only the baseline hazard depends on .

The PH assumption is

)\,‘(f)
Ai(t)

i.e. constant over time.

= exp(F1(Xin — Xj1) + -+ + Bp(Xjp — Xpp)).

Department of Biostatistics
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Interpretation of the regression parameters

One binary covariate, e.g.

X — 0 if individual i is treated
L 1 if individual i is not treated.

The Cox model is

| _ avy ) Aelt) if i is treated
Alt) = Jolt) exp(Xi) = { Ao(t) exp(/3) if i is not treated.

The hazard ratio (HR) or relative risk between non-treated and treated
IS

Ao(t) exp(5)
Ao(1)

exp(/3).
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Interpretation of the regression parameters

Ao(t) exp(3)

TN

exp(3)

i
!

A treated patient has exp(/3) the chance of relapsing compared to an
untreated patient at each time point.

e HR < 1 (3 < 0) treated relapse less than untreated
e HR =1 (/3 = 0) treated and untreated have the same risk

e HR > 1 (3 > 0) treated relapse more than untreated.

For a quantitative covariate (e.g. age, WBC)

Ao(t) exp(B(Xi1 +m))
Ao () exp(3(Xi1))

l.e. for each one-unit increase in the covariate, the HR is multiplied by
exp(3).

HR =

exp(m/3)
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Remission data - simple Cox

Define

lacebo  — 0 if individual / is treated
P | B 1 if individual i is not treated.

The simple Cox model is

Ai(t) = Ao(t)exp(Fplaceho;).

In R this model is fitted by:

library(survival)
coxF1tObjl <- coxph(Surv(time, event)~placebo, data=remisData)

summary(coxFitObjl)

Output on next slide.
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Output from coxph-function in R

> summary(coxFitObjl)
Call:

coxph(formula = Surv(time, event) ~ placebo, data = remisData)
n= 42, number of events= 30

coef exp(coef) se(coef) z PrClzD)
placebo 1.5721 4.8169 0.4124 3.812 0.000138 ***

Signif. codes: O “***” 0.001 “*** 0.01 “** 0.05 “.” 0.1 “ 1

exp(coef) exp(-coef) lower .95 upper .95
<::EI;;;bo 4.817 0.2076 2.147 10.81 ::::::>
Concordance= 0.69 (se = 0.053 )
Rsquare= 0.322 (max possible= 0.988 )
Likelithood ratio test= 16.35 on 1 df, p=5.261e-05

Wald test = 14.53 on 1 df, p=0.0001378
Score (logrank) test = 17.25 on 1 df, p=3.283e-05
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Remission data - Cox

Define

0 if individual / is male

female = {1 if individual  is female.

A possible Cox model is

Ai(t) = Ao(t)exp(Fiplacebo; + Fofemale; + F3logWBC,).

Baseline group: Males in treatment group with logWBC=0.

coef exp(coef) se(coef) z Pr(>|z])
placebo 1.3909 4.0184  0.4566 3.046 0.00232
sex 0.2632 1.3010 0.4494 0.586 0.55817

logWBC 1.5936 4.9215 0.3300 4.829 1.37e-06

Is this model valid?

imo v
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Assumptions for the Cox PH model

The ability of the Cox model to deal with many covariates comes from
the regression structure,

)\,‘(f) = )\g(f) exp(}& XH + I|432Xf2 —+ -+ I,SPX,-p).

e The effects of covariates are additive and linear on the log-risk
scale:

|Og()\f(f)) = |Og(/\0(t)) — .-81 X” — .ISQX,'Q + -4 JSpr .

e If covariates interact with each other the regression model should
include interaction terms

e Proportional hazards, i.e. the hazard ratio is constant over time

/\,‘(f)
Ai(t)

— f((311..3p)1xh)(j)

[T IC Ry
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Importance of the PH assumption

e Crucial to carefully examine the assumption of proportionality. If
the proportionality is not fulfilled the estimate for Cox’s regression
model is an average effect over time.

e Not correcting properly for important time varying effects may
lead to severe bias for other estimates.

e A deeper understanding of what may be going on the data is very
valuable.

If the PH assumption is not fulfilled for X, we may formulate a
stratified Cox PH model

A,‘(f) = Agk(t) exp(IBQX,-g + -+ ,.prfp)
where k denotes the level (strata) of variable Xj.

In R stratified Cox models are fitted using the wrapper-function
strata inside the coxph-function. Example:

coxph(Surv(time, event)~placebo+strata(female),
Dias 18 -
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Evaluating the PH assumption

Several approaches:

e Graphical.
e Goodness-of-fit test.

e Time dependent variables.

More details in:
Kleinbaum and Klein (2005). Survival analysis. A Self-Learning Text.
Springer.
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A graphical approach for evaluating the PH assumption
The survival curve for the Cox PH model is

S(t| X)) = SO(t)exD(,&)G1+ﬂ2X;z+m+,f5’pX;p)_
Thus

log(—log(S(t | Xi))) = log(—log(So(t)))
+ B1 X1 + BoXio + -+ - 4+ BpXip.

For two individuals / and j the difference between the survival curves

log(—log(S(t | Xi))) — log( — log(S(t | Xi)))
= B1(Xin = Xj1) + -+ + Bp(Xip — Xp)

does not depend on time t, i.e. the curves are parallel.
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Evaluation of the PH assumption

Asesseing the PH assumption for Xi, we assume PH is fulfilled for
Xo, ..., Xp and consider these fixed.

For a binary covariate we obtain two curves

log(—log(S(t| X1 =0, Xz,....Xp))).
log(—log(S(t | Xo =1, Xo,....Xp))).

For a categorical with k levels we obtain k curves.

For quantitative X1 we categorise Xj.

These models are fit by a Cox stratified on the levels of Xj:

/\f(f) = /\Dk(t) exp(lﬁg){,—g + -+ ij,p)

Dias 21
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Evaluation of the PH assumption for remission data

log-log-survival curves for remission data:

7 —— Placebo 7 — Male
— — —— Treatment - - — Female
ki (p=0.935) 7 (p=0.038)
T ¥ -
L] 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Time{weeks) Time{weeks)
L[ e The p-values were found from a test
B based on Schoenfeld residuals.
o A
T PH problematic for sex
% - (p=0.828)
{IJ ; 1ID 1l5 2|ﬂ 2|5 3|£] 3|5
Time{weeks)
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R-code to make plots on last slide

« The R function survfit can extract baseline hazard for each group
defined by strata argument.

baselineFitObjl <- survfit(coxph(Surv(time, event) ~
strata(placebo), data=remisData))

« These can be plottet using plot and the argument fun="cloglog”.
plot(baselineFitObjl , col=c('black', "red"), fun="cloglog')

 P-value for test of proportional =
hazards can be obtained using

the function cox.zph. - 4|_|—|7

1 2 5 10 20
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Departure from linearity

For continuous variables the linearity on the log-rate scale must be
assessed. Having a single covariate X we may:

Categorise X into categories
Ai(t) = Ao(t)exp(B1(Xi € (ap, a1]) + -+ -+ Bk(Xi € (ak—1,ax)))-

to have an idea of the functional form of the effect. Requires a large
sample size.

Include the covariate squared (or other transformations)
Ni(t) = Xo(t)exp(B31Xi + BaX?)

and test (3o = 0 to test for departure from linearity.
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Evaluation of the linearity for remission data

Including WBC squared:

coef exp(coef) se(coef) z Pr(>lzl)
placebo 1.752103 5.766718 0.490278 3.574 0.000352
sex 0.112526 1.119102 0.491584 0.229 0.818942
WBC -0.028359 0.972040 0.041498 -0.683 0.494366
WBC2 0.001005 1.001005 0.000448 2.243 0.024926
Including logWBC:
coef  exp(coef) se(coef) z Pr(>|z])
placebo 1.39335 4.02834 0.45368 3.071 0.00213
sex 0.16962  1.18485 0.46678 0.363 0.71633
WBC 0.01499 1.01510 0.01620 0.925 0.35495
logWBC 1.12094 3.06772 0.59466 1.885 0.05943
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Interactions

Consider the two binary covariates placebo and sex for the remission
data. Define

1 if /is a female in the placebo group

placebOFf — {0 otherwise.

The Cox model becomes
Ai(t) = Ao(t) exp(Fiplacebo; + Bofemale; + Fsplacebol).

The effect of treatment group now depends on sex (and vice versa).
The reference (or baseline) group is males in the treatment group.
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Interactions - categorical variables

Ai(t) = Ao(t)exp(Fiplacebo; + Bofemale; + Faplacebol).

The effect of placebo among males:

Ao(t) exp(5y)
Ao(t)

exp( /)

The effect of placebo among females:

Ao(t) exp (31 + 32 + 33)

exp( 2 + [33)

Ao(t) exp(51)
Output:
coef exp(coef) se(coef) z Pr(>|zl|)
placebo  0.5867 1.7981 0.5420 1.082 0.2790
sex -1.0726 0.3421 0.7014 -1.529 0.1262

placeboF 1.9059 6.7257 0.8148 2.339 0.0193




UNIVERSITY OF COPENHAGEN ., Cumulative number of citations by year Department of Biostatistics

History of the Cox model

1880 1980 2000

e Introduced in the 1972 paper “Regression Models
and Life-Tables”, JRSS.

e One of the most cited statistics papers of all time.

e The model does not depend on time, only order
of events.

e The central objective function is called
the partial likelihood function for the
Same reason' / ) { logy| Immunol Obs/ Urology @@

|®:ogy K o i \ we Vasculap Wé@

- Current asymptotic theory is based /\ " — @\

’ o @_tatlon
on counting process theory. \/ Med|c|ne

e Sir David Cox (born 1924) is still
working within statistics
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A case: Cox model applied to 6S data

Recall that we had the following survival curves for the 6S trial

1.0

—— HES 130/0 42
— Ringer’s acetate

09
|

Survival pct.

08
|

Days
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6S: Do we have proportional hazards?

fitl <- survfit(Surv(time_to _death,
mortality 90days)~intervention, data=kidneyData)

plot(fitl, col=c("black", "red"), fun="cloglog")
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Does not look too good. But would like non-log x-axis.
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6S: Do we have proportional hazards?

fitl <- survfit(Surv(time_to_death,
mortality 90days)~intervention, data=kidneyData)

myFun <- function(q) return(log(-log(q)))
plot(fitl, col=c('black", "red"), fun=myFun)
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6S: Do we have proportional hazards?

We could also do a formal test:

> coxfitl <- coxph(Surv(time_ to_death,
mortality 90days)~intervention, data=kidneyData)

> cox.zph(coxfitl)

rho chisq p
intervention -0.0957 3.43 0.0641

So just OK.

Dias 32
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6S: Alternative to proportional hazards
« We could also try to fit two different HR before and after some time point.
« How to pick the change point?

« In R you can get the estimates by:

> coxfFit2 <- coxph(Surv(time_to_death, mortality 90days) ~
intervention + tt(intervention), data=kidneyData,
tt=function(x,t,...) x*(t<=21))

> summary(coxfit2)

coef exp(coef) se(coef) z Pr(C|lz))
intervention -0.4772 0.6205 0.2049 -2.329 0.0198 =*
tt(intervention) 0.3929 1.4813 0.2379 1.652 0.0986 .

« So significant effect in period after 21 days.
« What is HR estimate in first 21 days?
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6S: Alternative to proportional hazards

 You can also get the HR in period after day 21 by simply subsetting
the data set:

> coxfit3 <- coxph(Surv(time_to death, mortality 90days) -~
intervention, data=subset(kidneyData, time_to death>21))

> summary(coxfit3)

coef exp(coef) se(coef) z PrCclz))
intervention -0.4772 0.6205 0.2049 -2.329 0.0198 *

« Not as easy to get HR before time 21 — WHY?

Dias 34 .
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