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Follow-up from Tuesday 

Two questions: 
 
1) Math detail of log-rank test. 

 
 Solution on whiteboard.   
 
 

2) Confidence band for KM-est. 
 
 Recall that var((n-d)/n) = ((n-d)/n)*(1-(n-d)/n))*(1/n)  
 Use delta-method with the function log(x) 
 Use delta-method with the function exp(x) 
 Result is this formula: 
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Recall: KM plots 
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Recall: The log-rank test in R 

> survdiff(Surv(time, event)~placebo, data=remisData) 

 

Call: 

survdiff(formula = Surv(time, event) ~ placebo, data = 
remisData) 

 

           N Observed Expected (O-E)^2/E (O-E)^2/V 

placebo=0 21        9     19.3      5.46      16.8 

placebo=1 21       21     10.7      9.77      16.8 

 

 Chisq= 16.8  on 1 degrees of freedom, p= 4.17e-05  

 

 

 

But what about getting a number for the effect size? 
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Why models for survival data? 

• We want a parameter that describes the size of the 
difference between the two treatment groups.  
 

• Not enough with p-value.  
 

• Could we use usual parameters like: 
1. Mean survival time?  
2. Mediation survival time?  
3. Survival probability at say 90 days?  

 
• First two does not work with censoring,  

the third only describes treatment effect at a single time 
point.  
 

• We want to be able to include more than one covariate.  
 

• Solution is the famous Cox model.  
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Recall: The hazard function 
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Constant hazard model 

The simplest model for the hazard would be  
 
 
 
for h>0. 
 
Then the survival function becomes  
 
 
 
 
This model is know as the exponential survival model.  
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The exponential survival model 
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Other examples of hazard functions 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Do we really have to chose in advance?   
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Hazard ratio (HR) 

• Inspired by risk ratios we could calculate the rate between 
hazards. 
 
 

• For remission data this would be  
 
 
 
 
 

• Interpretation is: 
For any time point the HR captures how much 
bigger/smaller the risk of death within a short time span is 
in treatment group compared to placebo.  
 

• Note: HR can depend on time in general!   
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The Cox Proportional Hazards (PH) model 
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Interpretation of the regression parameters 
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Interpretation of the regression parameters 
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Remission data - simple Cox 

 
 
 
 
 
 
 
 
 
 
 
In R this model is fitted by: 
library(survival) 
coxFitObj1 <- coxph(Surv(time, event)~placebo, data=remisData) 
summary(coxFitObj1)  
 
Output on next slide.  
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Output from coxph-function in R 

> summary(coxFitObj1) 

Call: 

coxph(formula = Surv(time, event) ~ placebo, data = remisData) 

 

  n= 42, number of events= 30  

 

          coef exp(coef) se(coef)     z Pr(>|z|)     

placebo 1.5721    4.8169   0.4124 3.812 0.000138 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

        exp(coef) exp(-coef) lower .95 upper .95 

placebo     4.817     0.2076     2.147     10.81 

 

Concordance= 0.69  (se = 0.053 ) 

Rsquare= 0.322   (max possible= 0.988 ) 

Likelihood ratio test= 16.35  on 1 df,   p=5.261e-05 

Wald test            = 14.53  on 1 df,   p=0.0001378 

Score (logrank) test = 17.25  on 1 df,   p=3.283e-05 
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Remission data - Cox 
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Assumptions for the Cox PH model 
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Importance of the PH assumption 

Department of Biostatistics 

In R stratified Cox models are fitted using the wrapper-function 
strata inside the coxph-function. Example: 
 
coxph(Surv(time, event)~placebo+strata(female), 
 data=remisData) 
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Evaluating the PH assumption 
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A graphical approach for evaluating the PH assumption 
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Evaluation of the PH assumption 
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Evaluation of the PH assumption for remission data 
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R-code to make plots on last slide 

• The R function survfit can extract baseline hazard for each group 
defined by strata argument. 

baselineFitObj1 <- survfit(coxph(Surv(time, event) ~ 
 strata(placebo), data=remisData)) 

 
• These can be plottet using plot and the argument fun="cloglog”.  
plot(baselineFitObj1 , col=c("black", "red"), fun="cloglog") 

 
 
 
 
• P-value for test of proportional 

hazards can be obtained using 
the function cox.zph. 
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Departure from linearity 
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Evaluation of the linearity for remission data 
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Interactions 
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Interactions - categorical variables 
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History of the Cox model 

• Introduced in the 1972 paper “Regression Models  
and Life-Tables”, JRSS. 
 

• One of the most cited statistics papers of all time.  
 

• The model does not depend on time, only order  
of events.  

• The central objective function is called  
the partial likelihood function for the  
same reason. 
 

• Current asymptotic theory is based 
on counting process theory.  
 

• Sir David Cox (born 1924) is still  
working within statistics 
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A case: Cox model applied to 6S data 

Recall that we had the following survival curves for the 6S trial 
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6S: Do we have proportional hazards?   

fit1 <- survfit(Surv(time_to_death, 
mortality_90days)~intervention, data=kidneyData) 

plot(fit1, col=c("black", "red"), fun="cloglog") 
 
 
 

 

 

 

 

 

 

 

 

 

Does not look too good. But would like non-log x-axis.  
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6S: Do we have proportional hazards?   

fit1 <- survfit(Surv(time_to_death, 
mortality_90days)~intervention, data=kidneyData) 

myFun <- function(q) return(log(-log(q))) 
plot(fit1, col=c("black", "red"), fun=myFun) 
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6S: Do we have proportional hazards?  

We could also do a formal test: 
 
 
> coxfit1 <- coxph(Surv(time_to_death, 

mortality_90days)~intervention, data=kidneyData) 
> cox.zph(coxfit1) 
 
                 rho chisq      p 
intervention -0.0957  3.43 0.0641 

 
 
So just OK.  
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6S: Alternative to proportional hazards 

• We could also try to fit two different HR before and after some time point. 
 

• How to pick the change point?  
 

• In R you can get the estimates by: 
> coxfit2 <- coxph(Surv(time_to_death, mortality_90days) ~ 
 intervention + tt(intervention), data=kidneyData, 
 tt=function(x,t,...) x*(t<=21)) 
> summary(coxfit2) 
 

                    coef exp(coef) se(coef)      z Pr(>|z|)   
intervention     -0.4772    0.6205   0.2049 -2.329   0.0198 * 
tt(intervention)  0.3929    1.4813   0.2379  1.652   0.0986 . 
 

 

• So significant effect in period after 21 days.  
• What is HR estimate in first 21 days? 
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6S: Alternative to proportional hazards 

• You can also get the HR in period after day 21 by simply subsetting 
the data set:  

 
> coxfit3 <- coxph(Surv(time_to_death,  mortality_90days) ~ 
intervention, data=subset(kidneyData, time_to_death>21)) 
> summary(coxfit3) 
 
                coef exp(coef) se(coef)      z Pr(>|z|)   
intervention -0.4772    0.6205   0.2049 -2.329   0.0198 * 
-- 

 
 

• Not as easy to get HR before time 21 – WHY? 
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