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Survival data 

The outcome is the time to a specific event happens.  
Examples: 
• Time from treatment start to death.  
• Time from birth to death. 
• Time from employment to first sick leave.  
• Time from pregnancy to birth.  

 
Survival data is characterized by: 
• Right skew (typically). 
• Only partially observed.  

 
In conclusion: Regular methods cannot be employed.   
 
A reading suggestion:  
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Survival function 

• A survival time is just a numerical variable, but means and 
standard deviations are not good descriptions.  
 

• Instead focus on the survival function.  
With T denoting a survival time the survival function is 
 S(t) = P(T > t) 
        = “Probability of being alive at time t”  
 

• The survival function satisfies: 
• S(t) ≥ 0 for all t  
• Non-increasing.  
• S(-∞) = 1 (typically S(0) = 1) 
• S(∞) = 0 

 
• If we knew survival function we knew all relevant 

information.  
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Hazard function  

• The survival function describes the whole life-time 
distribution.  
 

• If here-and-now measure is wanted use instead the hazard-
function defined as  
 
 
 
 
for d tending to zero.  
 

• Hazard value can be thought of as the probability of dying 
within the next 1 year (or whatever units we are using for 
the time scale). 
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Survival function vs. hazard function 

 
 

• Think of life as driving along in a car 
 
 
 
 
 
 

• Survival function is the odometer 
 
 
 
 

• Hazard function is the speedometer. 
 
 

Department of Biostatistics 



Dias 6 

Censoring   

Survival data is often right-censored. This implies that you only 
know a lower limit for the event time of interest.  

 
Examples: 
• The study ends before all participants have died.  
• We loose track of the patient during follow-up (immigration 

etc.)   
 
 
 
 

Data can also be left censored when only an upper limit is 
known.  
• Time to HIV infection vs. time to first positive HIV test.  
• Age a child learn to read vs. time to positive reading test.  
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Remission time for acute Leukemia 

• Example from 
 
 
 
 
 

• 42 patients randomized to either placebo or 6-MP 
treatment.  
 

• Patients included in the period 1959 to 1960.  
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Remission data 

 
 
 
 
 
 
 
 
 
 
 
 
 
Full circle denotes death.  
Empty circle denotes censoring. 
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Remission data 

The raw data will look like this 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The variable “event” is 1 for deaths and 0 for censoring.  
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Estimating the survival function 

• We cannot estimate survival as #alive/#in total – why not? 
 

• Use instead Kaplan-Meier procedure. 
 

• In treatment group we have 
No. still under risk  
 
 
 
 
 
Number of events/number of censorings  
 

• Survival function is then estimated by 
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Kaplan-Meier plot for treatment group  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
What is median survival time?  
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KM plot for treatment group with confidence interval 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
What is 6 month survival probability?  
And with which precision is this known? 
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KM plot for both treatment groups 
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Software: Getting KM plots in R 

remisData <- read.csv2("remissionData.csv") 

head(remisData) 

library(survival) 

 

# to get plot with both curves 

survFitObj1 <- survfit(Surv(time, event)~placebo, 
data=remisData, conf.int = 0.95) 

plot(survFitObj1) 

 

# to get plot with one curve AND confidence bands 

survFitObj2 <- survfit(Surv(time, event)~1, 
data=subset(remisData, placebo==0), conf.int = 0.95) 

plot(survFitObj2) 
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Getting life tables in R 

> survFitObj2 <- survfit(Surv(time, event)~1, data=subset(remisData, 
placebo==0), conf.int = 0.95) 

> summary(survFitObj2) 

Call: survfit(formula = Surv(time, event) ~ 1, data = 
subset(remisData,  

    placebo == 0), conf.int = 0.95) 

 

 time n.risk n.event survival std.err lower 95% CI upper 95% CI 

    6     21       3    0.857  0.0764        0.720        1.000 

    7     17       1    0.807  0.0869        0.653        0.996 

   10     15       1    0.753  0.0963        0.586        0.968 

   13     12       1    0.690  0.1068        0.510        0.935 

   16     11       1    0.627  0.1141        0.439        0.896 

   22      7       1    0.538  0.1282        0.337        0.858 

   23      6       1    0.448  0.1346        0.249        0.807 

>  
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Assumptions about censoring 

• Survival analysis builds on the assumptions of non-
informative censoring. 
 

• In Kleinbaum and Klein this is described as  
 
 Non-informative censoring occurs if the distribution 
 of survival times (T) provides no information about the 
 distribution of censorship times (C), and vice versa. 
 

• You can also loosely think of it as: “Would knowing 
censoring as happened help you to predict event time?”.  
If the answer is yes, you have a problem.  
 

• You cannot not formally test for non-informative censoring.  
 

• Exercise: Can you censor people because treatment was 
stopped due to severe side effects?    
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Comparing two survival curves 

• The standard non-parametric tool for comparing two KM-
curves is the log-rank test.  
 

• The underlying idea is similar to chi-sq test.  
A. Compute expected event counts assuming no difference in 

survival functions (ie. by treating the whole sample as one 
group). 

B. Compare these to the observed counts in one of the groups.  
C. Add together over all event times in that group.  

 
• Note that as in the KM-plots censoring is handled by every 

time conditioning on the number still at risk.  
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The log-rank test in R 

> survdiff(Surv(time, event)~placebo, data=remisData) 

 

Call: 

survdiff(formula = Surv(time, event) ~ placebo, data = 
remisData) 

 

           N Observed Expected (O-E)^2/E (O-E)^2/V 

placebo=0 21        9     19.3      5.46      16.8 

placebo=1 21       21     10.7      9.77      16.8 

 

 Chisq= 16.8  on 1 degrees of freedom, p= 4.17e-05  
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The log-rank test in R (with exact p-value) 

> library(coin) 

> logrank_test(Surv(time, event)~factor(placebo), 
data=remisData, distribution = "exact") 

 

 Exact Two-Sample Logrank Test 

 

data:  Surv(time, event) by factor(placebo) (0, 1) 

Z = 3.9034, p-value = 2.612e-05 
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Conclusion 

• Survival data often have non-symmetric distributions.  
 

• However, it is the presence of censoring that makes 
standard methods invalid.  
 

• Censoring must be non-informative for (standard) survival 
analyses tools to work.  
 

• Survival function is estimated by Kaplan-Meier plots.  
 

• Comparisons (ie. p-values) are made using log-rank test. 
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A case: The 6S trial  
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6S – the details 

 
 
 
 
 
 
 
 
 
 
 
 In total was 798 patients included.  
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6S – baseline data  
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6S – treatment received 
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6S – outcomes analyzed by 2 by 2 technique 

 
 
 
 
 
 
 
 
 
Or in R: 
chisq.test(kidneyData$mortality_90days, kidneyData$intervention, 

correct = F) 
 
library(epitools) 
riskratio(kidneyData$intervention, kidneyData$mortality_90days) 
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6S – Survival analysis 

• Why so few censorings?  
 

• In R: 
fit1 <- survfit(Surv(time_to_death, mortality_90days) ~ 
intervention, data=kidneyData) 
plot(fit1) 
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6S – Survival analysis 

• Or a bit nicer 
fit1 <- survfit(Surv(time_to_death, mortality_90days) ~ intervention, 
 data=kidneyData) 
plot(fit1, col=1:2, ylim=c(0.5, 1), xlab="Days", ylab="Survival pct.") 
legend("topright", legend=c("HES 130/0.42", "Ringer’s acetate"), lty=1, 
 col=1:2, inset = 0.05) 

 
 

 

Department of Biostatistics 



Dias 28 

6S – The published plot 
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6S – the log rank test 

> survdiff(Surv(time_to_death, 
mortality_90days)~intervention, data=kidneyData) 

 
 
Call: 
survdiff(formula = Surv(time_to_death, mortality_90days) ~ 

intervention,  
    data = kidneyData) 
 
                 N Observed Expected (O-E)^2/E (O-E)^2/V 
intervention=0 398      201      184      1.65      3.31 
intervention=1 400      172      189      1.60      3.31 
 
 Chisq= 3.3  on 1 degrees of freedom, p= 0.069  
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