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Analysis of Variance (ANOVA) 

• Consider the Iris data again 

• Want to see if the average sepal widths of the 
three species are the same 

– μ1 ,  μ2, μ3 : the mean sepal width of Setosa, 
Versicolor, Virginica 

– Hypothesis: 

H0: μ1 =  μ2= μ3 

H1: at least one mean is different  



Analysis of Variance (ANOVA) 

• Used to compare ≥ 2 means 

• Definitions 

– Response variable (dependent)—the outcome of 
interest, must be continuous 

– Factors (independent)—variables by which the 
groups are formed and whose effect on response 
is of interest, must be categorical 

– Factor levels—possible values the factors can take 

 

 



Sources of Variation in One-Way 
ANOVA 

• Partition the total variability of the outcome 
into components—source of variation 

•          

– the sepal width of the jth plant from the ith 
species (group) 

–   
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Sources of Variation in One-Way 
ANOVA 

• SST: sum of squares total  

 

 

• SSB: sum of squares between 

 

 

• SSW (SSE): sum of squares within (error) 
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F-test in one-way ANOVA 

• The test statistic is called F-statistic 
  

 
Under the null hypothesis, follows an F-distribution with 

(df1,df2) = (k-1,n-k) 
 

• For the Iris data 
– SSB=11.34, MSB = 5.67, SSE=16.96, MSE=0.12 
– f = 49.16, df1=2,df2=147 
– Critical value 3.06 at α=0.05, reject the null 
– Pvalue = P(F>f)=4.49e-17 
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One-way ANOVA 

• ANOVA table 



One-way ANOVA 

• ANOVA table 

 



ANOVA model 

• The statistical model 

             Yij = μ + αi + eij 

The ith response  
in the jth group 

grand mean 

The effect of group j 

error 



ANOVA assumptions 

• Normality 

 

• Homogeneity 

 

• Independence 



Regression—an example 

• Cystic fibrosis (囊胞性纤维症) lung function data 

– PEmax (maximal static expiratory pressure) is the 
response variable 

– Potential explanatory variables 

• age, sex, height, weight,  

• BMP (body mass as a percentage of the age‐specific median) 

• FEV1 (forced expiratory volume in 1 second) 

•  RV (residual volume) 

• FRC(funcAonal residual capacity) 

• TLC (total lung capacity) 



Regression—an example 

• Let’s first concentrate on the age variable 

• The model  

 

 

• Plot PEmax vs age 

 



Regression—an example 
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• The model  

 

 

• Plot PEmax vs age 

 



Simple Linear regression 



Assumptions 

• Normality 

– Given x, the distribution of y is normal with mean 
α+βx with standard deviation σ 

• Homogeneity 

– σ does not depend on x 

• Independence 



Residuals 



Fitting the model 



Fitting the model 



Goodness of Fit 



Inference about β  



Inference about β  



Inference about β: the CF data 



Plotting the regression line 



R2 



Residual plot 



Residual  plot 



Residual plot 



Residual plot 

• The CF patients data 



Linear Regression 



Summary: simple linear regression 



Multiple regression 

• See blackboard 



GENERALIZED LINEAR MODELS 
Regression 



Generalized liner models 

• GLM allow for response distributions other 
than normal 

– Basic structure 

 

 

• The distribution of Y is usually assumed to be 
independent and  

 



Generalized Linear model-an example 

• An example 

– A study investigated the roadkills of amphibian 

• Response variable: the total number of amphibian 
fatalities per segment (500m) 

• Explanatory variables 
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Generalized Linear model-an example  

• An over-simplified model 

 

 

 

• For Poisson we have 

 



GLM-exponential families 

• Exponential families 

– The density 

 

 

 

– Normal distributions is an exponential family 

 



GLM-exponential families 

• Consider the log-likelihood of a general 
exponential families 

 

 

 

 

Since  



GLM-exponential families 

• Differentiating the likelihood one more time 

 

 using the equation 

 

 

We often assume 

 

Define   



GLM-exponential families 



Fitting the GLM 

• In a GLM 

 

• The joint likelihood is 

 

• The log likelihood  



Fitting the GLM 

• Assuming                   (     is known) 

 

 

• Differentiating the log likelihood and setting it 
to zero  



Fitting the GLM 

• By the chain rule 

 

• Since  

 

• We have  
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Canonical Link Function 

• The Canonical Link Function       is such that 

 

• Remember that   

 

 

• So  
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Iteratively Reweighted Least Squares (IRLS) 

• We first consider fitting the nonlinear model 

 

  by minimizing 

 

 where  f is a nonlinear function 



Iteratively Reweighted Least Squares (IRLS) 

• Given a good guess 

 by using the Taylor expansion 

 

 

 Define the pseudodata 

  



Iteratively Reweighted Least Squares (IRLS) 

• Note that in GLM, we are trying to solve 

 

 

• If           are known, this is equivalent to 
minimizing 



Iteratively Reweighted Least Squares (IRLS) 

• We are inspired to use the following algorithm 

– At the kth iteration, define 

 

•   

•   update            as in the nonlinear model case 

•   set k to be k+1  

– But the second step also involves iteration, we 
may perform one step iteration here to obtain  



Deviance 

• The deviance is defined as 

 

 

 where            is the log likelihood with the 
saturated model: the model with one 
parameter per data point 

 Also note that deviance is defined to be  
independent of  



Deviance 

• GLM does not have R2 

• The closest one is the explained deviance 

 

 

• The over-dispersion parameter may be 
estimated by 

 

 or by the Pearson statistic 

 
 



Model comparison 

• Scaled deviance 

 

• For the hypothesis testing problem 

 

 under H0 

 



Residuals 

• Pearson Residuals 

 

– Approximately zero mean and variance 

 

• Deviance Residuals 



Negative binomial 

• Density 


