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Analysis of Variance (ANOVA)

* Consider the Iris data again

 Want to see if the average sepal widths of the
three species are the same

— Ky, Ky M3 the mean sepal width of Setosa,
Versicolor, Virginica

— Hypothesis:

HO: 1y = W= g
H1: at least one mean is different



Analysis of Variance (ANOVA)

* Used to compare > 2 means
* Definitions

— Response variable (dependent)—the outcome of
interest, must be continuous

— Factors (independent)—variables by which the
groups are formed and whose effect on response
is of interest, must be categorical

— Factor levels—possible values the factors can take



Sources of Variation in One-Way
ANOVA

e Partition the total variability of the outcome
into components—source of variation

e Vi i=1l-k, j=1---n,

J

— the sepal width of the jth plant from the ith
species (group)

- Vi= V.= -V)+(Vi-Y)

/ AN

Grand mean The ith group mean



Sources of Variation in One-Way
ANOVA

e SST: sum of squares total
SST =SSB+SSW =3 3™ (y,-v.)

e SSB: sum of squares between
SSB = Z:;l n; (Vi. — V..)

e SSW (SSE): sum of squares within (error)

SSW = Z:ll ZT; (yij —Yi )2

2



F-test in one-way ANOVA

* The test statistic is called F-statistic
- _MsB _ SSB/(k-1)
- MSE  SSE/(n—k)

Under the null hypothesis, follows an F-distribution with
(df,,df,) = (k-1,n-k)

* For the Iris data
— SSB=11.34, MSB = 5.67, SSE=16.96, MSE=0.12
— f=49.16, df,=2,df,=147
— Critical value 3.06 at a=0.05, reject the null
— Pvalue = P(F>f)=4.49e-17



One-way ANOVA

e ANOVA table

Table 15-2

Source Degrees of Sum of Mean F Ratio
Freedom Squares Squares
Factor k-1 SS(between) | MSB MSB
MSE
Error n-K SS(error) MSE
Total n-1 SS(total)




One-way ANOVA

e ANOVA table

Analy=sis of Variance Table

Eeszponse: Sepal.Width

Df Sum 5g Mean 5gq F walue Pr (>F)
Species 2 11.345 5.8725 49 .16 < 2.2e-1lg =*%¥
Residuals 147 16.962 0.1154

S5ignif. codes: 0 Y#®%f 0 _001 “**f Q.01 **f O0.05 *.F 0.1 ¥ * 1



ANOVA model

e The statistical model

Yij=p+oq+eij

The ith response The effect of group j
in the jth group

grand mean



ANOVA assumptions

* Normality
* Homogeneity

* Independence



Regression—an example

* Cystic fibrosis (Z& MU 14 4 4E5E) lung function data

— PEmax (maximal static expiratory pressure) is the
response variable

— Potential explanatory variables
* age, sex, height, weight,

BMP (body mass as a percentage of the age-specific median)

FEV1 (forced expiratory volume in 1 second)

RV (residual volume)

FRC(funcAonal residual capacity)

TLC (total lung capacity)



Regression—an example

e Let’s first concentrate on the age variable
* The model

y=a+px+e, e~N(0,0%)

* Plot PEmax vs age



Regression—an example

e Let’s first concentrate on the age variable
* The model

Y

 Plot PEmas.




Simple Linear regression

y=a+px+e, e~N(O,0'2)

y: dependent/response/outcome variable
x: independent/explanatory/predictor variable
e: error term

a, B: coefficients/regression coefficients/model parameters
— o intercept

— B:slope, describes the magnitude of association between X and Y
For any give x, y = constant + normal random variable

The values x are considered to be measured without error



Assumptions

* Normality

— Given x, the distribution of y is normal with mean
a+Bx with standard deviation o

* Homogeneity
— o0 does not depend on x

* Independence



Residuals

Use the data from the sample to estimate a and 3, the
coefficients of the regression line

y=a+pfx+e, 6~N(0,0'2)

Call the estimators a and b

y=a+bx

The discrepancies between the observed and fitted values are

called residuals - A
d=y-y
=y—a-bx



Fitting the model

One mathematical technique for fitting a straight line to a set
of points is known as the method of least squares

To apply this method, note that each data point (x;, y,) lies
some vertical distance d; from an arbitrary line (d; is measured
parallel to the vertical axis)

Ideally, all residuals would be equal to O

Since this is impossible, we choose another criterion: we
minimize the sum of squared

n

S=2d*=>(y,-a-bx)
=1

/=1




Fitting the model

* The resulting line is the least squares line

* Using calculus, it can be shown that
n
> (% =%)y:-)

b — =1

2(&-—f)2

a=y-bx

* Once g and b are known, we can substitute various values of x
into the regression and compute y.



Goodness of Fit

After estimating the model parameters, we need to evaluate
how well the model fits the data

Three criteria:
— Inference about beta
— R2

— Residual plots

These concepts will hold for more complex cases, such as
multiple regression, logistic regression, and Cox regression



Inference about 3

* Because the parameter 3 describes the relationship between
X and Y, inference about B tells us about the strength of the
linear relationship.

* After estimating the model parameters, we can do hypothesis
testing and build confidence intervals for .

* The standard error of b in a simple linear regression is
estimated as

(o -7

/=1

\ ;:(é-—x)z

5%.(!3) =




Inference about 3

To test the hypotheses H,: B=0, we calculate the test statistic

b
- se.(b)

Under H,, this has a t distribution with n-2 df

If the true population slope is equal to O, there is no linear
relationship between x and y; x is of no value in predicting y

100(1-a) Cl for B:
bt ,Se(b)
n-2,1->

f.

We can also carry out a similar procedure for a



Inference about B: the CF data

Call:
Im(formula = pemax ~ age)

Residuals:
Min 10 Median 30 Max
-48.666 =17.174 6.209 16.209 51.334

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 50.408 16.657 3.026 0.00601 ==
age 4.055 1.088 3.726 0.00111 ==
Signif. codes: 0 “**%*’ (0.001 **** Q.01 *** Q.05 *.” 0.1 * " 1

Residual standard error: 26.97 on 23 degrees of freedom
Multiple R-squared: 0.3764, Adjusted R-squared: 0.3492
F-statistic: 13.88 on 1 and 23 DF, p-value: 0.001109



Plotting the regression line

plot(age,pemax,cex=2,pch=20)
names (my .model)
abline(my.modelScoeff[1l],my.modelScoeff[2],1w=3)
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RZ

* Another measure is R, sometimes called the coefficient of
determination:

o RegSS _2(2"7)

Total SS

* This is the proportion of variation explained by the model

* |tis also the square of Pearson’s correlation coefficient

> cor(pemax,age) "2
[1] 0.3763505



Residual plot

We’ve been assuming that the association between X and Y in
the population is truly linear.

Even if the association is nonlinear, these methods may still fit
a line without detecting a problem. In this case, inferences
from the model will not be correct.

Previously we defined a point’s residual:
d=y,-y,=y-a-bx

Because of the assumptions of linear regression, we expect all
the residuals to be normally distributed with the same mean
(0) and the same variance.

Violations of the linear regression assumptions can often be
detected on a residual plot.



Residual plot

Plot the predicted y-values on the x-axis and the residuals on
the y-axis
Are the residuals normally distributed with constant variance?

= O @]
%? ] 00
8 @
% o SO
81 P @ DC%%
g % o oD
= D ,:}
S R 82 0g o . =
2 O O+
O
0 DB D o
& @ §tﬁr
O%%UDD 0o
o B
2 _
I ' I I .Y I ] I C}l I ] I I
5 0 5 10 M 0 10 20 30 40 50 60

* Im0%fitted values



Residual plot

* Another example:
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Residual plot

 The CF patients data

Does this model
violate the
assumption for
constant
variance?
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Linear Regression

* Which models are ‘linear’?
— y =a + bx
— v = bx
— y=a+b;x; + b,x,
— vy =a+ b log(x)
—y=a+bx?

— log(y) = a + bx

* |n fact, linear regression is not so restrictive



Summary: simple linear regression

* Linear model

y=a+px+e, BHN(O,JZ)

* Method of Least Squares

5= =3 (y,-a-bx)
=1 r=1

* Testing for significance of coefficients

| L) i in -

se(b)= M

S (x - %) | Sy s.e.(b)

i=1




Multiple regression

 See blackboard



GENERALIZED LINEAR MODELS



Generalized liner models

* GLM allow for response distributions other
than normal

— Basic structure g(i) = X3
i = E(Y;)

g 1s a smooth monotonic ‘link function’

* The distribution of Y is usually assumed to be
independent and

Y; ~ some exponential family distribution.



Generalized Linear model-an example

 An example

— A study investigated the roadkills of amphibian

* Response variable: the total number of amphibian
fatalities per segment (500m)

* Explanatory variables



Generalized Linear model-an example

e An example

— A stuc

* Res
fate

* Exp

Vanable

Abbreviation

Open lands (ha)

Olive grooves (ha)

Montado with shrubs (ha)
Montado without shrubs (ha)
Policulture (ha)

Shrubs (ha)

Urban (ha)

Water reservoirs (ha)

Length of water courses (km)
Dirty road length (m)

Paved road length (km)
Distance to water reservoirs
Distance to water courses
Distance to Natural Park (m)
Number of habitat Patches
Edges perimeter

Landscape Shannon diversity index

OPEN.L
OLIVE
MONT.S
MONT
POLIC
SHRUB
URBAN
WAT.RES
L.WAT.C
L.D.ROAD
L.PROAD
D.WATRES
D.WAT.COUR
D.PARK
N.PATCH
PEDGE
L.5DI

ibian
ibian



Generalized Linear model-an example

 An example

Hoad kills
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Generalized Linear model-an example

 An example

— A study investigated the roadkills of amphibian

* Response variable: the total number of amphibian
fatalities per segment (500m)

* Explanatory variables

* For now, we are only interested in Distance to Natural
Park



Generalized Linear model-an example

* An over-simplified model
Yi ~ p(u;)
E(Y;)=pu; and var(Y;) =y,
log(pi) = a + B x D.PARK; or p; = e*FPxD-PARK;

* For Poisson we have

¥i — L
MH; X €

vi'

FOisp) = yi = 0, y; integer



GLM-exponential families

* Exponential families

— The density
foly) =exp [{yd —b(0)}/a(o) + c(y, d)]

b, a and ¢ are arbitrary functions,
¢ an arbitrary ‘scale’ parameter
¢ the ‘canonical parameter’ of the distribution

— Normal distributions is an exponential family

. 1 (y — )
y) = —— eXp | —
Ju(y) ov2r { 202
__ 2 :) L — | 2 _
= exp Y~ T _'t'{ﬁ i log(o \/‘2}1’}]
202 - '

:y,u — 1?/2 y> —
= exp |- 5 — — ﬁ — log(o \/2?1’)] :
o 20



GLM-exponential families

* Consider the log-likelihood of a general
exponential families

[(0) = [y0 — b(O)]/a(d) + cly, ®)

ol ; o
o = v =V (0)]/a(4)
5

E (i) — [E{}'J — F}I{H*}]f”({;}}.
ol

Since E(01/08) = 0

E(Y) =V (8).



GLM-exponential families

* Differentiating the likelihood one more time
0?1

06?2

using the equation E(@%/d0%) = —E[(a1/90)*]

— —b""((-))fu.(et.:})

V'(0)/a(¢) =E[(Y —V(0))?] /a($)?
var(Y) = b"(0)a(o).

We often assume a(¢) = ¢/w
var(Y) = b"(0)¢/w.
Define Vi(p) = V/'(6)/w

var(Y ) = V(pu)o



GLM-exponential families

Normal Poisson Binomial Gamma Inverse Gaussian
) Ml?f_ﬂ exp (—(g;g)ﬂ) a”"“‘yﬂ (;) (%)y (1- %)n—y l"(luj (%)y y’Lexp (_‘;_;U) 2%;{ exp [%}
Range —00 < Yy < o0 y=0,1,2,... y=20,1,....n y >0 y >0
0 11 log( ) log (nf”) —i 2;_1-_,
0] o2 1 1 i% %
a(0) o(= 0?) o(=1) o(=1) o(= 1) 6(=1)
b)) %" exp(#) nlog (l + ('0) — log(—0) —\/=24
c(y.0)  —§|%+log(2r0)]  —log(y) log () vlog(vy) —log(yl(v)  —4 [log(2ny®0) +
Vi) | I u(l—p/n) 2 T
ge (1) / log(st) T - T
D(y. 1) (y—f1)? 2uku;(%)—— 2{ukn;(%)%— 2{Ei£“h¥%(%)} Q%%ﬁ

2(y — /1) tﬂ—uw%(iﬁﬂ

n—ji




Fitting the GLM

* Ina GLM 9(ui) =X
Y; ~ fo,(u:)
* The joint likelihood is
L(B) = f:.f‘giw.

=1

+ The log likelihooc

(B) = > log[fe, ()]
=1

T2

= Z[Uﬁﬁ*i — bi(0;)]/ai(¢) + ci(d, ;).

=1



Fitting the GLM
* Assuming a.(¢) =o/w; (w; is known)
Zwi ")’r hi .-’()—l’ (O, i,-"i.}

e Differentiating the log likelihood and setting it
to zero

{H 1 f xdf%
a3 IZ“‘” (”"* 013; ~ b8 i-)

i—1 7J



Fitting the GLM

By the chain rule

d/3; B Op; 93

e Since x4 =b'(0)

b, ' Dyt b (6;)

e We have

ol 1 — i — )| Op;
E_;Z bl (0 f..,:..«i a3

1=

Zﬂ: tg i) Oy _0
d3;



Canonical Link Function

 The Canonical Link Function ¢, is such that
gc(ﬂi) — 6)@
e Remember that g(m)=Xi3

ol 1 ) e, Hi
'JE“IE:“EO“uf “H”m¢)

i=1 -

=b'(6)
*So g 90, 08,
()—3 — ;w‘i (Uz B ), — [ E))}j) — ()

C)HE;() 33 = XE}




Iteratively Reweighted Least Squares (IRLS)

* We first consider fitting the nonlinear model
E(y) = p = f(j3)

by minimizing
S=Y{ui— £:(8))* =y - £(B)]3
=1

where fis a nonlinear function



Iteratively Reweighted Least Squares (IRLS)

* Given a good guess 3l
by using the Taylor expansion
S ~ S = ||y — £(BlF) + JFI gl — glkl g2
T = ar,/08,

Define the pseudodata

2H =y — £+ Jlk 3IK

Skl — ||zlFl — JlFl g2



Iteratively Reweighted Least Squares (IRLS)

* Note that in GLM, we are trying to solve

T

(yi — pti) Opq

If(;!f] Eljj a

1=1

* If v(u) are known, this is equivalent to
minimizing

T

. Z (y; — pi)*
L".'T —
I;(gtij

i=1 !




Iteratively Reweighted Least Squares (IRLS)

* We are inspired to use the following algorithm
— At the kth iteration, define

iH = Xk M = gt )
o Calculate the V' (p ,;_k]} terms implied by the current ,ffi’:‘r“]
e update B+ asin the nonlinear model case

e setktobek+l

— But the second step also involves iteration, we
may perform one step iteration here to obtain

Blk+1]



Deviance

* The deviance is defined as

D = 2[(Bmax) — U(B)]D
= Z 2w; {Hi{éé — 0;) — b(6;) + h(gi)]
i=1

where /(8..x) IS the log likelihood with the

saturated model: the model with one
parameter per data point

Also note that deviance is defined to be
independent of ¢



Deviance

* GLM does not have R?
* The closest one is the explained deviance

null deviance — residual deviance
1O =

null deviance

* The over-dispersion parameter may be
estimated by

D
n—p

b=

or by the Pearson statistic

T

-2 (Vi — ftq
AT = Z Vi(jes)

1=1

*}:2




Model comparison

* Scaled deviance
D*=D/é
* For the hypothesis testing problem
Ho : g(p) = Xofo
under H,

* * 2
DU o Dl ™~ Xpi—po

(Do —D1)/(p1 — po) .

F = \ ~F .
Dy/(n —p1) P1—P0,n—P1




Residuals

e Pearson Residuals ¢ =-2—

— Approximately zero mean and variance ¢

* Deviance Residuals

€; = sign(y; — ;)\ d;

i=1



* Density

fvik, p) =

Negative binomial

T(y + k) k\* k
X | —— ) x| 1 —
k) x T(y+ 1) n+ Kk n+k




