Biostatistics-Lecture 10 Regression

Ruibin Xi Peking University School of Mathematical Sciences

Analysis of Variance (ANOVA)

- Consider the Iris data again
- Want to see if the average sepal widths of the three species are the same
 - μ_1 , μ_2 , μ_3 : the mean sepal width of Setosa, Versicolor, Virginica
 - Hypothesis:

H0: $\mu_1 = \mu_2 = \mu_3$

H1: at least one mean is different

Analysis of Variance (ANOVA)

- Used to compare ≥ 2 means
- Definitions
 - Response variable (dependent)—the outcome of interest, must be continuous
 - Factors (independent)—variables by which the groups are formed and whose effect on response is of interest, must be categorical
 - Factor levels-possible values the factors can take

Sources of Variation in One-Way ANOVA

 Partition the total variability of the outcome into components—source of variation

•
$$y_{i,j}$$
 $i = 1 \cdots k, j = 1 \cdots n_j$

the sepal width of the jth plant from the ith species (group)

$$- y_{ij} - \overline{y}_{..} = (y_{ij} - \overline{y}_{i.}) + (\overline{y}_{i.} - \overline{y}_{..})$$

Grand mean

The ith group mean

Sources of Variation in One-Way ANOVA

• SST: sum of squares total

$$SST = SSB + SSW = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{..})^2$$

• SSB: sum of squares between

$$SSB = \sum_{i=1}^{k} n_i \left(\overline{y}_{i} - \overline{y}_{..}\right)^2$$

• SSW (SSE): sum of squares within (error)

$$SSW = \sum_{i=1}^{k} \sum_{j=1}^{n_j} (y_{ij} - \overline{y}_{i})^2$$

F-test in one-way ANOVA

The test statistic is called F-statistic

$$F = \frac{MSB}{MSE} = \frac{SSB/(k-1)}{SSE/(n-k)}$$

Under the null hypothesis, follows an F-distribution with $(df_1, df_2) = (k-1, n-k)$

- For the Iris data
 - SSB=11.34, MSB = 5.67, SSE=16.96, MSE=0.12
 - $f = 49.16, df_1 = 2, df_2 = 147$
 - Critical value 3.06 at α =0.05, reject the null
 - Pvalue = P(F>f)=4.49e-17

One-way ANOVA

• ANOVA table

Table 15-2

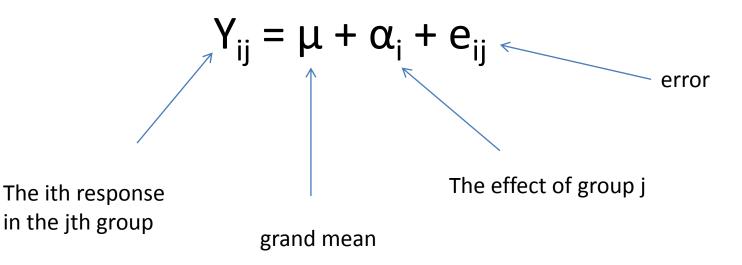
Source	Degrees of Freedom	Sum of Squares	Mean Squares	F Ratio
Factor	k-1	SS(between)	MSB	MSB MSE
Error	n-k	SS(error)	MSE	
Total	n-1	SS(total)		

One-way ANOVA

ANOVA table

ANOVA model

• The statistical model



ANOVA assumptions

• Normality

• Homogeneity

• Independence

Regression—an example

- Cystic fibrosis (囊胞性纤维症) lung function data
 - PEmax (maximal static expiratory pressure) is the response variable
 - Potential explanatory variables
 - age, sex, height, weight,
 - BMP (body mass as a percentage of the age-specific median)
 - FEV1 (forced expiratory volume in 1 second)
 - RV (residual volume)
 - FRC(funcAonal residual capacity)
 - TLC (total lung capacity)

Regression—an example

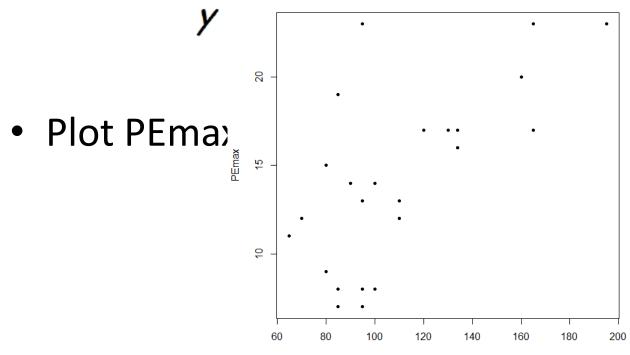
- Let's first concentrate on the age variable
- The model

$$y = \alpha + \beta x + e$$
, $e \sim N(0,\sigma^2)$

• Plot PEmax vs age

Regression—an example

- Let's first concentrate on the age variable
- The model



Simple Linear regression

 $\boldsymbol{y} = lpha + eta \boldsymbol{x} + \boldsymbol{e}$, $\boldsymbol{e} \sim \mathcal{N}(0,\sigma^2)$

- *y*: dependent/response/outcome variable
- *x*: independent/explanatory/predictor variable
- e: error term
- α, β: coefficients/regression coefficients/model parameters
 - α: intercept
 - $-\beta$: slope, describes the magnitude of association between X and Y
- For any give *x*, *y* = constant + normal random variable
- The values x are considered to be measured without error

Assumptions

- Normality
 - Given x, the distribution of y is normal with mean $\alpha+\beta x$ with standard deviation σ
- Homogeneity
 - σ does not depend on x
- Independence

Residuals

Use the data from the sample to estimate α and β, the coefficients of the regression line

$$\boldsymbol{y} = \boldsymbol{\alpha} + \boldsymbol{\beta} \boldsymbol{x} + \boldsymbol{e}$$
, $\boldsymbol{e} \sim N(0,\sigma^2)$

Call the estimators a and b

$$\hat{y} = a + bx$$

 The discrepancies between the observed and fitted values are called residuals

$$d = y - \hat{y}$$
$$= y - a - bx$$

Fitting the model

- One mathematical technique for fitting a straight line to a set of points is known as the method of least squares
- To apply this method, note that each data point (x_i, y_i) lies some vertical distance d_i from an arbitrary line (d_i is measured parallel to the vertical axis)
- Ideally, all residuals would be equal to 0
- Since this is impossible, we choose another criterion: we minimize the sum of squared

$$S = \sum_{i=1}^{n} d_i^2 = \sum_{i=1}^{n} (y_i - a - bx_i)^2$$

Fitting the model

- The resulting line is the least squares line
- Using calculus, it can be shown that

$$b = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$
$$a = \bar{y} - b\bar{x}$$

 Once a and b are known, we can substitute various values of x into the regression and compute y.

Goodness of Fit

- After estimating the model parameters, we need to evaluate how well the model fits the data
- Three criteria:
 - Inference about beta
 - R^2
 - Residual plots
- These concepts will hold for more complex cases, such as multiple regression, logistic regression, and Cox regression

Inference about β

- Because the parameter β describes the relationship between X and Y, inference about β tells us about the strength of the linear relationship.
- After estimating the model parameters, we can do hypothesis testing and build confidence intervals for β.
- The standard error of *b* in a simple linear regression is estimated as

$$\boldsymbol{s.e.(b)} = \sqrt{\frac{\left(\frac{1}{n-2}\right)\sum_{i=1}^{n} (\boldsymbol{y}_{i} - \boldsymbol{\hat{y}}_{i})^{2}}{\sum_{i=1}^{n} (\boldsymbol{x}_{i} - \boldsymbol{\bar{x}})^{2}}}$$

Inference about β

• To test the hypotheses H_0 : $\beta=0$, we calculate the test statistic

$$t=rac{b}{s.e.(b)}$$

- Under H₀, this has a t distribution with n-2 df
- If the true population slope is equal to 0, there is no linear relationship between x and y; x is of no value in predicting y
- 100(1-α) CI for β:

$$b \pm t_{n-2, 1-\frac{\alpha}{2}}$$
 s.e.(b)

We can also carry out a similar procedure for α

Inference about β: the CF data

Call: lm(formula = pe	max ~ age)						
Residuals:							
Min 1Q	Median	3Q	Max				
-48.666 -17.174	6.209	16.209	51.334				
Coefficients:							
Est	imate Std.	Error t	t value	Pr(> t)			
(Intercept) 5	0.408	16.657	3.026	0.00601	**		
age	4.055	1.088	3.726	0.00111	**		
Signif. codes:	0 '***' 0	.001 '**	*′ 0.01	'*' 0.05	'.' 0.	.1 '	1

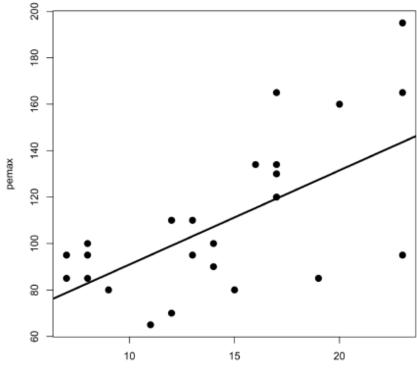
Residual standard error: 26.97 on 23 degrees of freedom Multiple R-squared: 0.3764, Adjusted R-squared: 0.3492 F-statistic: 13.88 on 1 and 23 DF, p-value: 0.001109

Plotting the regression line

plot(age,pemax,cex=2,pch=20)

names(my.model)

abline(my.model\$coeff[1],my.model\$coeff[2],lw=3)



age

R²

 Another measure is R², sometimes called the coefficient of determination:

$$\mathcal{R}^{2} = \frac{\text{Reg SS}}{\text{Total SS}} = \frac{\sum_{i=1}^{n} (\hat{\mathcal{Y}}_{i} - \overline{\mathcal{Y}})^{2}}{\sum_{i=1}^{n} (\mathcal{Y}_{i} - \overline{\mathcal{Y}})^{2}}$$

- This is the proportion of variation explained by the model
- It is also the square of Pearson's correlation coefficient

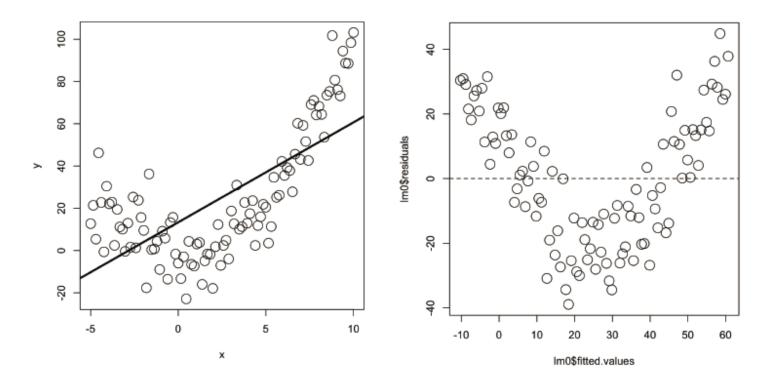
```
> cor(pemax,age)^2
[1] 0.3763505
```

- We've been assuming that the association between X and Y in the population is truly linear.
- Even if the association is nonlinear, these methods may still fit a line without detecting a problem. In this case, inferences from the model will not be correct.
- Previously we defined a point's **residual**:

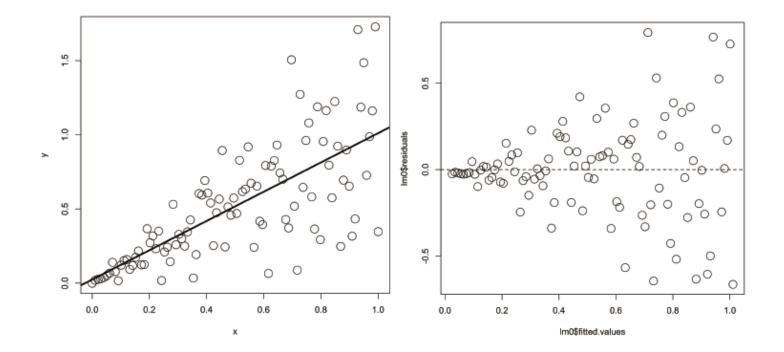
$$d_i = y_i - \hat{y}_i = y_i - a - bx_i$$

- Because of the assumptions of linear regression, we expect all the residuals to be normally distributed with the same mean (0) and the same variance.
- Violations of the linear regression assumptions can often be detected on a residual plot.

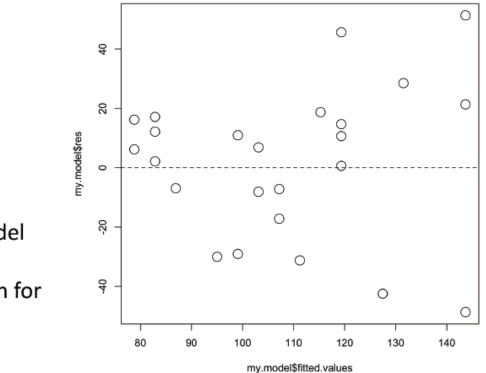
- Plot the predicted y-values on the x-axis and the residuals on the y-axis
- Are the residuals normally distributed with constant variance?



• Another example:



• The CF patients data



Does this model violate the assumption for constant variance?

Linear Regression

- Which models are 'linear'?
 - -y = a + bx

$$-y = bx$$

- $y = a + b_1 x_1 + b_2 x_2$
- $-y = a + b \log(x)$
- $-y = a + b x_1^2$
- $-\log(y) = a + bx$
- In fact, linear regression is not so restrictive

Summary: simple linear regression

Linear model

$$\boldsymbol{y} = \boldsymbol{\alpha} + \boldsymbol{\beta} \boldsymbol{x} + \boldsymbol{e}$$
, $\boldsymbol{e} \sim \mathcal{N}(\boldsymbol{0}, \sigma^2)$

Method of Least Squares

$$S = \sum_{i=1}^{n} d_i^2 = \sum_{i=1}^{n} (y_i - a - bx_i)^2$$

Testing for significance of coefficients

$$b = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} \quad \text{(b)} = \sqrt{\frac{\left(\frac{1}{n-2}\right)\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}} \quad \text{(t)} = \frac{b}{\text{(c)}}$$

Multiple regression

• See blackboard

GENERALIZED LINEAR MODELS

Regression

Generalized liner models

GLM allow for response distributions other than normal

- Basic structure $g(\mu_i) = \mathbf{X}_i \boldsymbol{\beta}$

 $\mu_i \equiv \mathbb{E}(Y_i)$

g is a smooth monotonic 'link function'

• The distribution of Y is usually assumed to be independent and

 $Y_i \sim$ some exponential family distribution.

Generalized Linear model-an example

- An example
 - A study investigated the roadkills of amphibian
 - Response variable: the total number of amphibian fatalities per segment (500m)
 - Explanatory variables

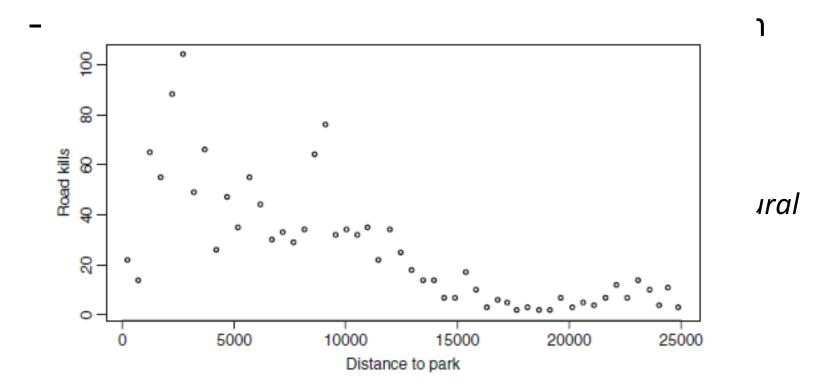
Generalized Linear model-an example

• An example

– A stuc	Variable	Abbreviation	ibian
	Open lands (ha)	OPEN.L	
• Res	Olive grooves (ha)	OLIVE	ibian
	Montado with shrubs (ha)	MONT.S	
fata	Montado without shrubs (ha)	MONT	
	Policulture (ha)	POLIC	
 Exp 	Shrubs (ha)	SHRUB	
=,, -	Urban (ha)	URBAN	
	Water reservoirs (ha)	WAT.RES	
	Length of water courses (km)	L.WAT.C	
	Dirty road length (m)	L.D.ROAD	
	Paved road length (km)	L.P.ROAD	
	Distance to water reservoirs	D.WAT.RES	
	Distance to water courses	D.WAT.COUR	
	Distance to Natural Park (m)	D.PARK	
	Number of habitat Patches	N.PATCH	
	Edges perimeter	P.EDGE	
	Landscape Shannon diversity index	L.SDI	

Generalized Linear model-an example

• An example



Generalized Linear model-an example

- An example
 - A study investigated the roadkills of amphibian
 - Response variable: the total number of amphibian fatalities per segment (500m)
 - Explanatory variables
 - For now, we are only interested in *Distance to Natural Park*

Generalized Linear model-an example

• An over-simplified model

 $\begin{aligned} Y_i &\sim p(\mu_i) \\ E(Y_i) &= \mu_i \quad \text{and} \quad \text{var}(Y_i) &= \mu_i \\ \log(\mu_i) &= \alpha + \beta \times D.PARK_i \quad \text{or} \quad \mu_i &= e^{\alpha + \beta \times D.PARK_i} \end{aligned}$

• For Poisson we have

$$f(y_i; \mu_i) = \frac{\mu_i^{y_i} \times e^{-\mu_i}}{y_i!} \qquad y_i \ge 0, \ y_i \text{ integer}$$

- Exponential families
 - The density

J

 $f_{\theta}(y) = \exp\left[\{y\theta - b(\theta)\}/a(\phi) + c(y,\phi)\right]$

b, a and c are arbitrary functions.

 ϕ an arbitrary 'scale' parameter

 $\boldsymbol{\theta}$ the 'canonical parameter' of the distribution

- Normal distributions is an exponential family

$$f_{\mu}(y) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(y-\mu)^{2}}{2\sigma^{2}}\right] \\ = \exp\left[\frac{-y^{2}+2y\mu-\mu^{2}}{2\sigma^{2}} - \log(\sigma\sqrt{2\pi})\right] \\ = \exp\left[\frac{y\mu-\mu^{2}/2}{\sigma^{2}} - \frac{y^{2}}{2\sigma^{2}} - \log(\sigma\sqrt{2\pi})\right],$$

 Consider the log-likelihood of a general exponential families

$$l(\theta) = [y\theta - b(\theta)]/a(\phi) + c(y,\phi)$$

$$\frac{\partial l}{\partial \theta} = [y - b'(\theta)]/a(\phi)$$
$$\mathbb{E}\left(\frac{\partial l}{\partial \theta}\right) = [\mathbb{E}(Y) - b'(\theta)]/a(\phi).$$

Since $\mathbb{E}(\partial l/\partial \theta) = 0$ $\mathbb{E}(Y) = b'(\theta).$

• Differentiating the likelihood one more time

 $\frac{\partial^2 l}{\partial \theta^2} = -b''(\theta)/a(\phi),$

using the equation $\mathbb{E}(\partial^2 l / \partial \theta^2) = -\mathbb{E}[(\partial l / \partial \theta)^2]$

$$b''(\theta)/a(\phi) = \mathbb{E}\left[(Y - b'(\theta))^2\right]/a(\phi)^2$$
$$\operatorname{var}(Y) = b''(\theta)a(\phi).$$

We often assume $a(\phi) = \phi/\omega$

 $\operatorname{var}(Y) = b''(\theta)\phi/\omega.$

Define $V(\mu) = b''(\theta)/\omega_{\mu}$

 $\operatorname{var}(Y) = V(\mu)\phi$

	Normal	Poisson	Binomial	Gamma	Inverse Gaussian
f(y)	$\frac{1}{\sigma\sqrt{2\pi}}\exp\left(\frac{-(y-\mu)^2}{2\sigma^2}\right)$	$\frac{\mu^y \exp\left(-\mu\right)}{y!}$	$\binom{n}{y} \left(\frac{\mu}{n}\right)^y \left(1 - \frac{\mu}{n}\right)^{n-y}$	$\frac{1}{\Gamma(\nu)} \left(\frac{\nu}{\mu}\right)^{\nu} y^{\nu-1} \exp\left(-\frac{\nu y}{\mu}\right)$	$\sqrt{\frac{\gamma}{2\pi y^3}} \exp\left[\frac{-\gamma (y-\mu)^2}{2\mu^2 y} ight]$
Range	$-\infty < y < \infty$	$y=0,1,2,\ldots$	$y = 0, 1, \ldots, n$	y > 0	y > 0
θ	μ	$\log(\mu)$	$\log\left(\frac{\mu}{n-\mu}\right)$	$-\frac{1}{\mu}$	$\frac{-1}{2\mu^2}$
ϕ	σ^2	1	1	$\frac{1}{\nu}$	$\frac{1}{\gamma}$
$a(\phi)$	$\phi(=\sigma^2)$	$\phi(=1)$	$\phi(=1)$	$\phi\left(=\frac{1}{\nu}\right)$	$\phi\left(=\frac{1}{\gamma}\right)$
$b(\theta)$	$\frac{\theta^2}{2}$	$\exp(\theta)$	$n\log\left(1+e^{\theta}\right)$	$-\log(- heta)$	$-\sqrt{-2\theta}$
$c(y,\phi)$	$-\tfrac{1}{2}\left[\tfrac{y^2}{\phi} + \log(2\pi\phi)\right]$	$-\log(y!)$	$\log \binom{n}{y}$	$\nu \log(\nu y) - \log(y \Gamma(\nu))$	$-\frac{1}{2}\left[\log(2\pi y^3\phi)+\frac{1}{\phi y} ight]$
$V(\mu)$	1	μ	$\mu(1-\mu/n)$	μ^2	μ^{3}
$g_c(\mu)$	μ	$\log(\mu)$	$rac{\mu}{n-\mu}$	$rac{1}{\mu}$	$\frac{1}{\mu^2}$
$D(y,\hat{\mu})$	$(y - \hat{\mu})^2$	$2y \log \left(\frac{y}{\hat{\mu}}\right) - 2(y - \hat{\mu})$	$2\left[y\log\left(\frac{y}{\hat{\mu}}\right) + (n-y)\log\left(\frac{n-y}{n-\hat{\mu}}\right)\right]$	$2\left[\frac{y-\hat{\mu}}{\hat{\mu}} - \log\left(\frac{y}{\hat{\mu}}\right)\right]$	$rac{(y-\hat{\mu})^2}{\hat{\mu}^2 y}$

Fitting the GLM

• In a GLM $g(\mu_i) = \mathbf{X}_i \boldsymbol{\beta}$

 $Y_i \sim f_{\theta_i}(y_i)$

- The joint likelihood is $L(\boldsymbol{\beta}) = \prod_{i=1}^{n} f_{\theta_i}(y_i),$
- The log likelihood

$$l(\boldsymbol{\beta}) = \sum_{i=1}^{n} \log[f_{\theta_i}(y_i)]$$

=
$$\sum_{i=1}^{n} [y_i \theta_i - b_i(\theta_i)] / a_i(\phi) + c_i(\phi, y_i),$$

Fitting the GLM

• Assuming $a_i(\phi) = \phi/\omega_i (\omega_i \text{ is known})$

$$l(\boldsymbol{\beta}) = \sum_{i=1}^{n} \omega_i [y_i \theta_i - b_i(\theta_i)] / \phi + c_i(\phi, y_i)$$

Differentiating the log likelihood and setting it to zero

$$\frac{\partial l}{\partial \beta_j} = \frac{1}{\phi} \sum_{i=1}^n \omega_i \left(y_i \frac{\partial \theta_i}{\partial \beta_j} - b'_i(\theta_i) \frac{\partial \theta_i}{\partial \beta_j} \right)$$

Fitting the GLM

• By the chain rule

$$\frac{\partial \theta_i}{\partial \beta_j} = \frac{\partial \theta_i}{\partial \mu_i} \frac{\partial \mu_i}{\partial \beta_j}$$

• Since $\mu_i = b'(\theta_i)$

$$\frac{\partial \mu_i}{\partial \theta_i} = b_i''(\theta_i) \Rightarrow \frac{\partial \theta_i}{\partial \mu_i} = \frac{1}{b_i''(\theta_i)},$$

• We have

$$\frac{\partial l}{\partial \beta_j} = \frac{1}{\phi} \sum_{i=1}^n \frac{[y_i - b'_i(\theta_i)]}{b''_i(\theta_i)/\omega_i} \frac{\partial \mu_i}{\partial \beta_j}.$$

$$\sum_{i=1}^{n} \frac{(y_i - \mu_i)}{V(\mu_i)} \frac{\partial \mu_i}{\partial \beta_j} = 0$$

Canonical Link Function

• The Canonical Link Function g_c is such that

$$g_c(\mu_i) = \theta_i$$

• Remember that $g(\mu_i) = \mathbf{X}_i \boldsymbol{\beta}$

$$\frac{\partial l}{\partial \beta_j} = \frac{1}{\phi} \sum_{i=1}^n \omega_i \left(y_i \frac{\partial \theta_i}{\partial \beta_j} - b'_i(\theta_i) \frac{\partial \theta_i}{\partial \beta_j} \right)$$
$$\mu_i = b'(\theta_i)$$

• So
$$\frac{\partial l}{\partial \beta_j} = \sum_{i=1}^n \omega_i \left(y_i \frac{\partial \theta_i}{\partial \beta_j} - \mu_i \frac{\partial \theta_i}{\partial \beta_j} \right) = 0$$
$$\frac{\partial \theta_i}{\partial \beta_j} = X_{ij}$$

• We first consider fitting the nonlinear model

 $\mathbb{E}(\mathbf{y}) \equiv \boldsymbol{\mu} = \mathbf{f}(\boldsymbol{\beta})$

by minimizing $S = \sum_{i=1}^{n} \{y_i - f_i(\beta)\}^2 = \|\mathbf{y} - \mathbf{f}(\beta)\|^2$ where f is a nonlinear function

Given a good guess
 ³
 ^[k]
 by using the Taylor expansion

$$S \approx S^{[k]} = \|\mathbf{y} - \mathbf{f}(\hat{\boldsymbol{\beta}}^{[k]}) + \mathbf{J}^{[k]}\hat{\boldsymbol{\beta}}^{[k]} - \mathbf{J}^{[k]}\boldsymbol{\beta}\|^2$$

...
$$J_{ij}^{[k]} = \partial f_i / \partial \beta_j$$

Define the pseudodata

$$\mathbf{z}^{[k]} = \mathbf{y} - \mathbf{f}(\hat{\boldsymbol{\beta}}^{[k]}) + \mathbf{J}^{[k]}\hat{\boldsymbol{\beta}}^{[k]}$$
$$\mathcal{S}^{[k]} = \|\mathbf{z}^{[k]} - \mathbf{J}^{[k]}\boldsymbol{\beta}\|^2$$

• Note that in GLM, we are trying to solve

$$\sum_{i=1}^{n} \frac{(y_i - \mu_i)}{V(\mu_i)} \frac{\partial \mu_i}{\partial \beta_j} = 0$$

• If $V(\mu_i)$ are known, this is equivalent to minimizing

$$\mathcal{S} = \sum_{i=1}^{n} \frac{(y_i - \mu_i)^2}{V(\mu_i)}$$

- We are inspired to use the following algorithm
 - At the kth iteration, define

 $\eta_i^{[k]} = \mathbf{X}_i \hat{\boldsymbol{\beta}}^{[k]} \qquad \mu_i^{[k]} = g^{-1}(\eta_i^{[k]})$

- Calculate the $V(\mu_i^{[k]})$ terms implied by the current $\hat{\beta}^{[k]}$
- update $\hat{\beta}^{[k+1]}$ as in the nonlinear model case
- set k to be k+1
- But the second step also involves iteration, we may perform one step iteration here to obtain $\hat{\beta}^{[k+1]}$

Deviance

• The deviance is defined as

$$D = 2[l(\hat{\beta}_{\max}) - l(\hat{\beta})]\phi$$

=
$$\sum_{i=1}^{n} 2\omega_i \left[y_i(\tilde{\theta}_i - \hat{\theta}_i) - b(\tilde{\theta}_i) + b(\hat{\theta}_i) \right]$$

where $l(\hat{\beta}_{max})$ is the log likelihood with the saturated model: the model with one parameter per data point

Also note that deviance is defined to be independent of ϕ

Deviance

- GLM does not have R²
- The closest one is the explained deviance

$$100 imes \frac{\text{null deviance} - \text{residual deviance}}{\text{null deviance}}$$

The over-dispersion parameter may be estimated by

$$\hat{\phi} = \frac{D}{n-p}$$

or by the Pearson statistic

$$X^{2} = \sum_{i=1}^{n} \frac{(y_{i} - \hat{\mu}_{i})^{2}}{V(\hat{\mu}_{i})}$$

Model comparison

• Scaled deviance

 $D^* = D/\phi$

• For the hypothesis testing problem

 $\mathrm{H}_0: \mathbf{g}(\boldsymbol{\mu}) = \mathbf{X}_0 \boldsymbol{\beta}_0$

under H₀

$$D_0^* - D_1^* \sim \chi^2_{p_1 - p_0}$$

$$F = \frac{(D_0 - D_1)/(p_1 - p_0)}{D_1/(n - p_1)} \dot{\sim} F_{p_1 - p_0, n - p_1}$$

Residuals

• Pearson Residuals $\hat{\epsilon}_i^p = \frac{y_i - \hat{\mu}_i}{\sqrt{V(\hat{\mu}_i)}}$

– Approximately zero mean and variance ϕ

• Deviance Residuals

$$\hat{\epsilon}_i^d = \operatorname{sign}(y_i - \hat{\mu}_i)\sqrt{d_i}$$

$$D = \sum_{i=1}^n d_i$$

Negative binomial

• Density

$$f(y;k,\mu) = \frac{\Gamma(y+k)}{\Gamma(k) \times \Gamma(y+1)} \times \left(\frac{k}{\mu+k}\right)^k \times \left(1 - \frac{k}{\mu+k}\right)^y$$

$$E(Y) = \mu$$
 $\operatorname{var}(Y) = \mu + \frac{\mu^2}{k}$