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Detection of candidate tumor driver
genes using a fully integrated
Bayesian approach

Jichen Yang,* Xinlei Wang,” Minsoo Kim,* Yang Xie? and
Guanghua Xiao®*'

DNA copy number alterations (CNAs), including amplifications and deletions, can result in significant changes
in gene expression and are closely related to the development and progression of many diseases, especially
cancer. For example, CNA-associated expression changes in certain genes (called candidate tumor driver
genes) can alter the expression levels of many downstream genes through transcription regulation and cause
cancer. Identification of such candidate tumor driver genes leads to discovery of novel therapeutic targets for
personalized treatment of cancers. Several approaches have been developed for this purpose by using both copy
number and gene expression data. In this study, we propose a Bayesian approach to identify candidate tumor
driver genes, in which the copy number and gene expression data are modeled together, and the dependency
between the two data types is modeled through conditional probabilities. The proposed joint modeling approach
can identify CNA and differentially expressed genes simultaneously, leading to improved detection of candi-
date tumor driver genes and comprehensive understanding of underlying biological processes. We evaluated the
proposed method in simulation studies, and then applied to a head and neck squamous cell carcinoma data set.
Both simulation studies and data application show that the joint modeling approach can significantly improve
the performance in identifying candidate tumor driver genes, when compared with other existing approaches.
Copyright © 2013 John Wiley & Sons, Ltd.

Keywords: Bayesian joint modeling; hidden Markov model; integrative analysis

1. Introduction

Copy number alteration (CNA) is a form of DNA structural change that leads to abnormal numbers
of copies in specific DNA regions. CNA is closely associated with the development and progression
of many human diseases, especially cancer [1-3]. CNA could directly affect mRNA expression during
transcription (the process of generating mRNA from DNA). For example, genes in deletion regions have
less or no copies of DNA, and therefore tend to have lower or no expression. On the other hand, genes
in amplification regions have increased numbers of DNA copies and may be over expressed. As a result,
the expression level of a gene is, in general, positively correlated with its copy number. For example,
studies have shown that, in prostate epithelial cell lines, 51% of over-expressed genes were mapped to the
chromosomal regions with DNA gain, and 42% of under-expressed genes were mapped to the
chromosomal regions with DNA loss [4]. In breast tumor cell lines, 62% of highly amplified genes
show moderately or highly elevated expression [5]. Studies later found similar evidence in several other
tumor types [6, 7].

In cancer research, Vogelstein et al. defined driver genes as genes whose structural or sequence
mutations confer a selective advantage to the cancer cell [8]. Although they need not have CNAs or
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associated changes in gene expression, many driver genes that have such changes lead to oncogenesis.
Studies have shown that the driver genes play essential roles in carcinogenesis and could be potential
targets for cancer therapies [9]. Therefore, it is of great interest to model the association between copy
number and gene expression in order to identify candidate tumor driver genes [10], besides identifying
genes with CNAs or expression changes alone. However, integrating these two types of data efficiently
still remains a challenging problem, because the DNA copy numbers’ gain or loss may not be directly
translated to the same quantity of expression changes in a complex genomic context. Simple and direct
correlation analysis of the signal levels may not be effective.

Copy number alteration can be measured by comparative genomic hybridization array platforms
and, more recently, by genome-wide single-nucleotide polymorphism array platforms. Several methods
have been proposed to analyze copy number data, including recursively segmentation-based meth-
ods, such as ‘circular binary segmentation’ [11], clustering-based methods, such as ‘cluster along
chromosomes’ [12], neighborhood smoothing-based methods, such as comparative genomic
hybridization-explorer [13], and mixture model-based methods [14]. Studies have successfully applied
hidden Markov models (HMMs) to study CNA [15]. Recently, Guha et al. [16] have developed
a Bayesian HMM framework that models copy number data using a Bayesian hierarchical setup.
The model draws statistical inference of the CNA status on the basis of posterior probabilities and
does not rely on any tuning parameters. DeSantis ef al. have further developed a latent class-based
HMM [17], which uses a supervised approach to improve statistical efficiency for analyzing copy
number data.

To integrate copy number and gene expression data, conventional approaches analyze each type of
data separately and then take the overlapping genes. This is reasonable but may lead to many false
negatives. Several studies [18, 19] have demonstrated the feasibility and advantages of integrating
genetic/epigenetic data with gene expression data. In addition, several studies have developed
rigorous statistical methods [20-23] to integrate different types of data sources. Specifically, to
improve the detection of candidate tumor driver genes, studies proposed several methods, and most of
them take a two-step approach in which copy number and gene expression data are analyzed sequentially
[24-28]. Recently, Schafer et al. [29] have proposed an equally directed abnormalities (edira)
method, which uses a Wilcoxon test, combined with a modified correlation measure, to incorporate
the dependency between copy number and gene expression data. Menezes et al. [30] introduced a
gene set-based integration method (SIM), which searches for associations between copy number and
gene expression data, not only using individual genes but also using gene sets. Wessel et al. [27]
developed a nonparametric test (intCNGEan) to detect genes with copy number-induced differential
expression using a two-step approach. Choi et al. [31] proposed a double-layered mixture model
(DLMM) to integrate copy number and gene expression data. DLMM directly models segmental
patterns in CNA and simultaneously evaluates the association between the two types of data.
All of these approaches lead to improved detection of genes with CNAs that are functional in terms
of their effect on gene expression, possibly enriching for tumor driver genes. In this study, we
propose a novel Bayesian joint modeling approach to analyze copy number and gene expression
data simultaneously, where the inherent biological connections between genetic and genomic changes
are captured in one integrated model. For copy number data, we adapt an HMM in the spirit of
Guha et al. [16] to model spatial patterns existing in CNAs. We further set up a conditional prob-
ability matrix to model the dependency of gene expression on CNA in an intuitive way. The copy
number and gene expression data are then analyzed in parallel, so that they can borrow information
from each other to improve the statistical efficiency. The method assigns high posterior probabilities
of being a driver gene when consistent changes between tumor and normal samples in both gene
expression and copy number are observed. Thus, the impact of CNA on gene expression can
be naturally quantified by our model, which captures the probabilistic nature of the link between
CNA and gene expression change, while providing an intuitive measure for biologists to
understand the results. Both simulation studies and data application have shown that the proposed
model can outperform the edira, SIM, intCNGEan, and DLMM methods in detecting candidate tumor
driver genes.

The outline of this article is as follows: Section 2 describes the integrated Bayesian model for copy
number and gene expression data. Section 3 presents the results from simulation studies in order to
compare the proposed method with competing methods. Section 4 presents a data application to a head
and neck squamous cell carcinoma (HNSCC) data set. Section 5 discusses some limitations and future
extensions of this study.
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2. Statistical models

2.1. Modeling copy number data

For copy number data, we adapt the Bayesian HMM proposed by Guha et al. [16] to account for the
spatial dependence among neighboring genes in CNA status. Guha’s model has four CNA states: copy
number loss, copy-neutral state, single copy gain, and amplification (i.e., multiple copy gain). In an ideal
situation, the single copy gain in the /og, space is / ogz(%) ~ 0.58. But, in real applications, the mean
of CNAs could be greatly affected by the fact that some patients have certain copy number gains, yet
other patients do not. The observed copy number gain at the population level is an average of the patients
with copy gain and those without, so it may be hard to clearly distinguish the single copy gain state from
the other states at the population level. Therefore, we merge this state with the amplification state in
our model.

Let X;; denote the copy number ratio of tumor versus normal samples (in the log, space) in the
i-th array for gene j, where X;; follows a normal distribution with mean a; and variance a)fj for
ie(l,....0y)and j €(1,...,J) (i.e., I, arrays and J genes in total). For each gene j, D; represents
its CNA status:

D; =—1 if gene j is in a deletion region
D;j=0 if gene jis in a normal region
D; =1 if gene j is in an amplification region

Furthermore, we assume that for gene j, given the CNA status D ;, the mean measurement a ; follows
a normal distribution, namely,

aj|Dj =—1~N (a_,72_)

a
aj|Dj =0~ N (0,72
aj|Dj =+1~N (a4, 72,)

where o— < 0 < 4. If gene j is in a normal region, its mean log-ratio should be close to 0, and so the
mean of a; is fixed at O for these genes. Here, we do not force the a ;s to be exactly zero because real
data suggest that the mean log-ratios could vary from zero.

We used a hidden Markov chain to model the spatial dependence of D ;s among adjacent genes on
chromosome. The CNA status D; of gene j is a hidden state that can not be observed directly, whereas
the observed copy number ratio X;; depends on the unobserved D that takes an integer value (-1, 0,
1), and D only depends on D;_;. Let A be the transition matrix of the HMM,

Transition matrix A
D
-1 01
=1 A-1,-1 A-10 A-11
Di-y 0| X—-1 Aoo Ao
I | A1 Ao A

where the (s, #)th element in A is defined by Ay, = P(Dj =t|D;_; =).
For the s-th row of A:

N
A s = (As,—l, A’S,Oa /\s,l)
with
As—1 4+ Aso + Ag41 = 1fors =—1,0,1

Let(D;—, Djo, D) be the corresponding indicator vector of D ;, where (D ;_, D o, D ;) =(1,0,0),
(0,1,0) and (0,0,1) represent D ; = —1, 0, 1, respectively. Then

(Dj_, Dj(), Dj+) | Dj_l =5, A~ multinomial(l, /\s,—l’ AS’O, Avs,l)
The row vector of stationary probabilities, _,0> = (p-1, Po, p1), satisfies _p> A= ?
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2.2. Modeling gene expression data

Let Y;; denote the expression intensity ratio of tumor sample versus normal sample (in log, space) in
the i-th array for gene j, where Y;; follows a normal distribution with mean b; and variance aij, for
ie(l,....,Ir)and j € (1,...,J) (i.e., I arrays and J genes in total). For each gene j, the indicator
variable E; describes its gene expression status:

E; =—1 if gene j is under-expressed
E; =0 if gene j is equally expressed

E;j=1 if gene j is over-expressed

Furthermore, it is assumed that given the expression status E;, the mean expression level of gene j
follows a normal distribution, namely,

bj|Ej =—1~N (B-.75_)
bi|Ej =0~ N (0,75,
bilEj =+1~N (B+.75,)

where f_ <0 < fB4.
We assume that genes in different CNA regions have different probabilities of being over expressed

and under expressed. Therefore, we set up a conditional probability matrix W to link the copy number
and gene expression data,

Conditional probability matrix ¥
Ej
\ -1 0 1

1| o—1-1 ®o|-1 ®1]-1
Dj 0 | ¢_10 oo 1)
L | o-1n @o1 @11

where the (s, #)th element in W is defined by ¢, = P(Ej =t|D; =s).
For the s-th row of W:

ﬁ
@s = (9—1)5- Pos» P1]s)

with
Y—11s + Qols + @15 = 1fors = —1,0,1

Let (E;_, Ejo, Ej+) be the indicator vector of E;, where (E;j_, E o, Ej4+) = (1,0,0), (0,1,0) and
(0,0, 1) represent ££; = —1,0, 1, respectively. Then

(Ej—.Ejo.Ej4+) | Dj =s,¥ ~ multinomial(l, ¢_y s, @os. @1s)

2.3. The full probability model

Let ® denote all the parameters involved, X denote the copy number data, and Y denote the gene expres-
sion data. We assume all the variance components are independent. Let ¢ (x|, o) denote the probability
density function (PDF) of a normal distribution with mean g and variance o2, evaluated at x. Let 7(-)
denote a general (hyper) prior distribution. Then the full probability model is given by
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I, J J

fX,Y,0) o<l_[ 1_[ ¢(xij|aj,0§j)- 1_[¢(aj|Dj,0le,Ta2,Dj)
i=1j=1 j=1
I, J J

1_[ 1_[ ¢ (Yij|bj’0y21)' 1_[ ¢ (bleJ"ﬂEj’sz,Ej)

i=1j=1 j=1

J J
we)me)rB)rB) [[ 7 (4) [ = (e3)

J=1

J
7 (r-) 7 (wa0) 7 () 7 (w5-) 7 (zo) 7 (i)
J J
"PD; - 1_[ AD; y.D; l_[ YE;|D;
j=2 =1

(X X)X )r(@ )G o)n(@ 1)

We presented other details for full conditional posterior distributions in the Appendix.

2.4. Prior specification

For the population-level means, we use independent noninformative flat priors; that is, «— ~ U(—Lg, 0),
ar ~U(0,Ly), B— ~U(=Lg,0)and B ~ U(0, Lg). We assign independent conjugate inverse gamma

—
priors, 1 G(u, v), to all the variance components. For row vectors A g of the transition matrix A and E) s

of the conditional probability matrix W(s = —1, 0, 1), we consider a Dirichlet prior Dirichl et(g).
As to specification of the hyperparameters involved, we can specify the upper bounds

Ly =max Xj;;  Lg =max Y
1 tj

so that the corresponding flat priors provide a sufficient coverage to all possible values of the means.
Another way to specify L, (or Lg) conservatively is to find the mean and standard deviation (SD) of all
Xjjs (or Yi;s), say X, sdx (or Y, sdy ), then set

Ly=X +10sdy; Lg=Y +10sd,

We choose the hyperparameters of the inverse gamma priors u# and v to make the priors very vague,

for example, u = 0.01 and v = 0.01. For the Dirichlet prior, we choose § = (1,1, 1) so that they are
noninformative.

2.5. Statistical inference and implementation

Because the full posterior conditionals are all known distributions (refer to the Appendix), we can use
a Gibbs sampler to draw posterior samples readily from the joint posterior distribution f(0|X,Y). We
ran 8000 iterations for each data set in our numerical experiments. We used the first 4000 iterations as
burn-in samples, and iterations 4001-8000 were used as posterior samples for statistical inference. We
also tried 20,000 iterations in our simulation studies, and the results were similar.

The goal of the analysis is to identify the driver genes, which have both abnormal expressions
and CNAs. We can use the posterior probabilities of Ejs and D ;s to detect differentially expressed
(DE) genes and genes with CNAs, respectively. For driver genes, we used the posterior probabilities
Pr(Ej =1&Dj =1)and Pr(E; = —1&D; = —1). In the HNSCC data example, we selected genes
with Pr(E; =1&D; =1)>0.80r Pr(E; = —1&D; = —1) > 0.8 as the identified driver genes.

For convergence detection, we used trace plots. We also ran several chains with different initial
values and then used the Gelman and Rubin’s statistics [32] to confirm that the chains were converged.
To check the sensitivity of the Bayesian analysis, we tested different values of hyperparameters v, u,
d—, 8o, and 84, and the results were similar, indicating that the analysis is robust against different values
of hyperparameters.

We implemented our approach with C++ and the statistical part of GNU scientific library. It would
take about 5 min to get results when the proposed method is applied to the simulated data with 1000
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genes, 15 copy number arrays, and 15 gene expression arrays. The time would increase to 1 h for the
real data application in HNSCC data, where we have 10,844 genes with same number of arrays. We
provide the integrative analysis software (fully integrated Bayesian approach) as a web-based service on
our Galaxy server (http://galaxy.qbrc.org/?tool_id=FIBA).

3. Simulation

We conducted eight simulation studies to examine the performance of the proposed method. In studies
1-3, we compared the performance of our joint modeling approach in detecting driver genes with four
existing methods, edira [29], SIM [30], intCNGEan [27], and DLMM [31], all developed for integrative
analysis of copy number and gene expression data. Table A.1 summarizes the implementation details
for different methods. Next, studies 4 and 5 evaluated our model with data generated from underlying
models that are different from the assumed model. We found that, overall, our approach outperformed
the other four methods. Furthermore, to shed light on how our integrated Bayesian approach leads to
superior performance and to further understand its behavior, we conducted studies 68, in which we
compared the proposed joint modeling approach with the analysis using one data source only.

In all of the simulation studies, we simulated a chromosome with 1,000 genes, which has two
amplification regions and two deletion regions. Each of the four regions contains 50 genes, and the
remaining 800 genes are in the normal regions. Fifteen arrays were simulated for both copy number and
gene expression data, following the HNSCC data set in our application.

3.1. Comparison in detecting candidate tumor driver genes

Here, we considered three different levels of association (strong, moderate, and zero) between the copy
number and gene expression data. Then, we investigated how the association level affects the relative
performance of the five methods, edira, SIM, intCNGEan, DLMM, and our joint modeling approach.

Study 1 is a relatively ideal scenario, where the gene expression is strongly dependent on the CNA sta-
tus. Specifically, 80% of genes in amplification regions are over expressed, and 80% of genes in deletion
regions are under expressed; whereas among genes in normal regions, 10% of genes are over expressed,
and 10% of genes are under expressed. All other genes are equally expressed. In study 2, we assume
a moderate level of association. Specifically, 50% of genes in amplification regions are over expressed,
50% of genes in deletion regions are under expressed, 10% over expressed and 10% under-expressed
genes in normal regions, and all other genes are equally expressed. In study 3, we assume there is no
association between copy number and gene expression data; that is, we randomly select 10% of genes as
over-expressed genes and another 10% of genes as under-expressed genes, so that the gene expression
status E; is independent of the CNA status D ;. For a summary of the association setups, see Table I.

For copy number data, we generated X;; from N(a;, 1.0%) fori =1,...,15, where a; ~ N(0, 0.4?)
for genes in the normal regions, a; ~ N(—0.6, 0.62) for genes in the deletion regions, and a i~
N(0.6,0.6%) for genes in the amplification regions. For gene expression data, we generated Y; j from
N(bj,1.0%) fori =1,...,15 where b; ~ N(0,0.4?) for equally expressed genes, b; ~ N(—1,0.6?) for
under-expressed genes, and b; ~ N(1,0.6?) for over-expressed genes. We estimated all of the parameter
values used here from the HNSCC data set in our data application (distributions of the real and simulated
data sets are presented in the Figure A.1).

Figure 1 reports the receiver operating characteristic (ROC) curves for the joint model, edira, SIM,
intCNGEan, and DLMM in simulation studies 1-3. The joint model performs much better than all of
the other approaches in detecting driver genes when there is a strong association between the copy num-
ber and gene expression data (study 1, Figure 1(a)). Similarly, in study 2, where there is a moderate

Table I. The conditional probability matrix W for simulation studies 1 to 3 and 6 to 8.
Studies 1 and 6 Studies 2 and 7 Studies 3 and 8

Dj=-1 D;=0 D;=1 Dj=-1 D;=0 Dj=I1 D;=-1,0,1

Ej=-1 0.8 0.1 0 0.5 0.1 0 0.1
E;j=0 0.2 0.8 0.2 0.5 0.8 0.5 0.8
E;i=1 0 0.1 0.8 0 0.1 0.5 0.1

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2013
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Figure 1. Comparison of receiver operating characteristic curves for the proposed joint model, edira, SIM, intC-

NGEan, and DLMM under three different levels of association (strong, moderate, and zero) between the copy

number and gene expression data. The receiver operating characteristic curves were calculated by ranking the

genes according to the measurement scores summarized in Table A.1, and comparing the gene rankings with the
simulation truth.

association, the proposed joint model also outperforms edira, SIM, intCNGEan, and DLMM
(Figure 1(b)). Finally, the joint model still performs slightly better than the other four methods even
when there is no association between the two data sources (Figure 1(c)). In summary, the proposed
joint modeling approach improves the performance of detecting the candidate tumor driver genes, and
the improvement appears to increase as the association between the copy number and gene expression
data increases.

In order to evaluate the performance of our model with data generated from underlying models
different from our proposed model, we designed studies 4 and 5. To better mimic the real data scenario,
study 4 differs from the assumed model in the following ways:

(1) For CNA data, we set different alteration levels. Particularly, we set the means of the CNA log
ratios in the first amplification region to be from N (0.9, 0.6%), whereas that of the second amplifi-
cation region is from a N(0.6,0.6%). We did the same thing to deletion regions, by simulating the
means of CNA log ratios of the first deletion region to be from N(—0.9, 0.6%), whereas that from
the second deletion region is from N(—0.6,0.6%). In this way, we can test whether the proposed
method has flexibility to accommodate different levels of alterations.

(2) We simulated the CNA from the individual patient level. For each amplified region, it has 60%
probability to be amplified in each individual sample and the same for the deleted region. This
reflects the fact that the alteration occurs at the individual level; that is, some patients have the
alterations, while others do not.

(3) For a gene located in an amplified region for a specific patient, it has 60% probability to be over
expressed in the patient. Similarly, for a gene located in a deleted region for a specific patient, it has
60% probability to be under expressed in the patient. This modification reflects the fact that some
driver genes may not lead to changes in gene expression level.

In order to study the robustness of our proposed method against the normal assumption, we used a ¢
mixture distribution [33], instead of a normal mixture distribution, in study 5 to simulate the data, while
keeping the other settings the same as in study 4. Particularly, the a;|D;’s in the CNA data were gen-
erated from a ¢ distribution with degrees of freedom 5 and location parameter equal to @—, 0, and a4,
respectively, for D ; equals to —1, 0, and 1. We chose the location parameters so that the sample mean
of aj|D;’s was the same as the previous settings. Similarly, b;|E;’s in the gene expression data were
generated from a ¢ distribution with degrees of freedom 5 and location parameter equal to S_, 0, and
B+, respectively, for £ equals to —1, 0, and 1.

We reported the ROC curves for all five methods in simulation studies 4 and 5 in Figure 2, and the
area under the curves (AUCs) of different methods were summarized in Table II (the simulation for each
study were repeated ten times; the means and SDs of AUCs were reported there). We can see that when
data were not generated from the assumed model, the joint modeling approach still outperformed the
other methods in studies 4 and 5.
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Figure 2. Comparison of receiver operating characteristic curves for the proposed joint model, edira, SIM,
intCNGEan, and DLMM in studies 4 and 5.

Table II. AUC summary for different methods.
Study joint model ~ DLMM edira SIM intCNGEan

0.96(0.02) 0.92(0.03) 0.90(0.04) 0.80(0.04)  0.78(0.07)
0.95(0.02)  0.90(0.02) 0.88(0.04) 0.76(0.03)  0.73(0.10)
0.93(0.03) 0.89(0.03) 0.87(0.05) 0.74(0.05)  0.69(0.11)
0.89(0.04) 0.75(0.07) 0.76(0.07) 0.63(0.06)  0.68(0.12)
0.79(0.05)  0.71(0.07) 0.67(0.03) 0.57(0.05)  0.65(0.06)

O O R S

3.2. Understanding the behavior of the joint modeling approach

We conjecture that the observed superior performance of the proposed method comes from explicitly
modeling the association between the two types of data sources through an integrated Bayesian approach.
To aid our intuition, in simulation studies 6-8, we examined the performance of the proposed approach
in detecting DE genes and genes with CNAs under different association levels, and compared them with
those using either copy number or gene expression data alone. To make a direct comparison, we used
the HMM described in Section 2.1 for copy number data alone (named CN alone). We also applied
edira for CNA detection to copy number data alone. (Note that the other software (SIM, intCNGEan,
and DLMM) does not provide the CNA detection results from the single data source analysis.) For gene
expression data, we compared the proposed method with its Bayesian counterpart using the hierarchical
model described in Section 2.2 (named GE alone), as well as a popular method SAM-¢ [34]. None of the
edira, SIM, intCNGEan, and DLMM methods can provide results for DE gene detection. For the method
GE alone, the conditional probability matrix W becomes a vector ? = (¢—1, @0, ¢1), Which is indepen-
dent of the CNA status. Again, for both CN alone and GE alone, we specified the same noninformative
priors, and used Gibbs samplers to draw samples from the posterior distributions, as in the proposed
method. In this way, the advantage of the Bayesian joint modeling, if any, can be shown through this
direct comparison.

As summarized in Table I, simulations 6-8 are for strong, moderate and no association between copy
number and gene expression data, respectively, which are the same as in simulations 1-3. We also kept
the parameter settings unchanged, except for the noise level in the copy number data, which increases
from t,— = 15,4 = 0.6 and 7,9 = 0.4 in settings 1-3 to 7,— = 7,4 = 1.0 and 7,9 = 0.8 in settings 6-8,
in order to further test the robustness of our Bayesian method. (Note that in these new settings, DLMM
did not perform properly, because the noise level was too high for DLMM to converge.)

To examine the behavior of the proposed method under this elevated noise level, we report the
mean and SD) of the posterior samples for the joint model parameters from simulation studies 6—8 in
Figure A.3. Also, Table A.2 provides the summary statistics of the posterior samples for the conditional
probability matrix W in simulation study 6 as an example. We find that all of the 95% credible
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intervals contain the true values of the parameters, indicating the model and posterior sampling
procedures worked well.

Next, we compare the joint model with CN alone, edira, SAM-t, and GE alone, using ROC curves
under the three different association levels. Figure A.2(a) shows the ROC curves for detecting genes with
CNAs, and Figure A.2(b) presents those for detecting DE genes (no matter over or under expressed) in
study 6 (strong association). In this study, the joint model performs much better than using either copy
number or expression data alone. Similarly, in study 7 (moderate association), the joint model outper-
forms the analysis using either copy number or gene expression data alone (Figure A.2(c) and (d)), but
the improvement is not as large as in study 6. Finally, the joint model performs similarly to that using
either data source alone (Figure A.2(e) and (f)) in study 8 (no association), which indicates that even if
there is no conditional dependency, the proposed method provides a reliable performance. In summary,
when there is a positive association between copy number and gene expression data, the joint model-
ing approach can take advantage of this feature, via an integrated Bayesian approach, to improve the
performance in detecting both DE genes and genes with CNAs, leading to the superior performance in
identifying candidate tumor driver genes.

4. Application to head and neck squamous cell carcinoma data

In cancer research, most tumor cells are characterized by CNAs, such as regional or focal amplifica-
tions/deletions in chromosomes. Although some driver genes might not lead to expression changes at the
mRNA level, a gene is likely to be a tumor driver gene if its CNA-associated expression change alters
the transcriptional activities of many downstream genes and leads to cancer. The proposed method can
integrate the information from both copy number and gene expression data to better identify candidate
tumor driver genes. In this study, we applied our method to a HNSCC data set in order to demonstrate
the potential advantages of the joint modeling method.

We downloaded the HNSCC data set from Louhimo et al. 2012 [35], which contains the gene
expression (Affymetrix Human Exon 1.0 microarrays) and copy number (Agilent Human 244A
comparative genomic hybridization microarrays) data measured in 15 cancer cell lines and one normal
control line. We used the 10,844 genes measured in both copy number and gene expression microar-
ray platforms. We aligned and sorted all genes by their chromosome locations. We used the log, ratios
between the tumor samples and the control sample as input data for the proposed Bayesian joint model.
We used the posterior probability Pr(E; = 1&D; = 1) or Pr(E; = —1&D; = —1) as a criterion
to identify candidate tumor driver genes, and then applied Ingenuity Pathway Analysis to study the bio-
logical functions of identified genes. Interestingly, we identified ‘cancer’ as the top hit of diseases and
disorders for both under-expressed (Table A.3 ) and over-expressed genes (Table A.4), which indicates
that the proposed method could identify biologically meaningful genes.

Figure 3 shows the copy number profile (a) and gene expression profile (b) along chromosome 9.
Clearly, there is a copy number deletion region near 22 MB. The joint modeling approach identified
two tumor driver genes, CDKN2A and CDKN?2B, both located in a copy number deletion region with
under expression in the tumor samples, compared with the control sample. Studies [36,37] have shown
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Figure 3. The position and mean of copy number and gene expression data for CDKN2A (red), CDKN2B
(green), and C9ORF53 (blue).
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Figure 4. Scatter plots for CDKN2A, CDKN2B, and C9ORF53. The x-axis represents copy number alterations
and the y-axis represents gene expression changes throughout 15 tumor cell lines (in log, space).

that under expression of CDKN2A through homozygous deletion or promoter hypermethylation leads to
HNSCC. CDKN2B is one of the strongest genetic susceptibility loci for HNSCC [38]. In addition, both
CDKN2A (p16) and CDKN2B are known to be important tumor suppressor genes in other cancer types,
so both genes are likely to be the true driver genes for HNSCC. Another interesting gene, COORF53, has
an even lower CNA level than both CDKN2A and CDKN2B, but the expression of COORF53 gene is not
under expressed in tumor samples. Therefore, it was not identified as a driver gene by the joint modeling
approach, indicating the advantage of integrating copy number and gene expression data in identification
of candidate tumor driver genes. We show the scatter plots of copy number and gene expression across
15 tumor cell lines for CDKN2A, CDKN2B, and C90ORF53 in Figure 4. We can see from Figure 4 that
both CDKN2A and CDKN2B have CNA-associated expression changes, but COORF53 does not.

We also applied edira, SIM, intCNGEan, and DLMM methods to this data set. DLMM identified
CI90RF53 (score 0.124, rank 1) as the most likely potential gene associated with copy number deletion
on chromosome 9, followed by CDKN2A (score 0.108, rank 3) and CNKN2B (score 0.032, rank 23).
Similarly, both edira and SIM identified all three of the genes CDKN2A, CDKN2B, and C9ORF53 as
driver genes. But intCNGEan did not identify any of them with its default setting. These results suggest
that our approach performs better in identifying candidate tumor driver genes, compared with the other
existing methods.

5. Discussion

Recently, studies have proposed several methods to integrate copy number and gene expression data,
especially for identifying candidate tumor driver genes [24-28]. However, most of them focused on
either the overlap between genes with CNAs and expression changes or the correlation between CNAs
and expression changes, which might not efficiently capture the wide-range and probabilistic relation-
ships between CNAs and gene expression changes in a complex genomic context. In this study, we
propose to model the dependency of gene expression change on CNA status through conditional proba-
bilities under a fully integrated Bayesian framework. By modeling the two types of data simultaneously
and capturing the probabilistic relationship between them, we can borrow strength across the different
data types and improve the statistical inference for each type of data, which leads to better identification
of candidate tumor driver genes. Both simulation studies and a data application have shown that the joint
modeling approach compared very favorably with other existing approaches, edira, SIM, intCNGEan,
and DLMM; and, more importantly, it may reveal novel tumor driver genes as potential therapeutic
targets for cancer treatments.

Among the five methods (edira, SIM, DLMM, intCNGEan, and the proposed), all developed for
integrative analysis of copy number and gene expression data, we note that the proposed method and
DLMM share several common characteristics: (i) both of them rely on model-based Bayesian approaches
for coherent inference; (ii) both adopt formal Bayesian hierarchical setups for modeling gene expression
and copy number data, respectively; and (iii) both explicitly model spatial patterns to account for spa-
tial dependence existing in copy number data. All of these features are attractive, leading to improved
detection of candidate tumor driver genes, as opposed to purely algorithm-based ad hoc approaches.
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However, there exist major differences between the two, which may explain their performance differ-
ence, especially for data with high noise levels. First, DLMM takes a segmentation-based approach
to model spatial dependence in the copy number data, and the breakpoint arrangement is updated by
reversible jump Markov chain Monte Carlo, which needs a build-in Metropolis—Hastings algorithm. In
contrast, we adapted an HMM to model spatial dependence, which has led to a much simpler Gibbs
sampler with known distributions for all full posterior conditionals. The algorithm is easy to imple-
ment through direct sampling, converges quickly, and appears to be robust to high noise levels. DLMM,
because of its complexity, tends to be more sensitive, and usually converges more slowly. Second, DLMM
does not directly distinguish the direction of changes; that is, its status variables (Z and W) for aberrant
copy number and differential gene expression are binary (0 or 1) instead of three states (—1, 0, 41).
Therefore, it takes complicated extra steps that rely not only on Z and W but also on several other con-
tinuous variables, in order to calculate the over-expression and under-expression scores. Also, because
of the binary setup of Z or W, DLMM has to use a common distribution for genes with any changes for
each type of data, without explicitly distinguishing genes with positive changes from those with negative
changes. This might cause loss of efficiency, besides the extra effort in inference, when compared with
our proposed method.

Whereas CNAs in some genes are constitutively altered in some cancers, those in other genes are
only altered in some individual patients. Currently, most computational methods for copy number data
are focused on detecting CNA at the individual level. In this study, we attempt to identify the CNA
at a population level. Therefore, in our model, the CNA status only depends on genes, not individual
subjects. By doing so, the model is more robust and can converge quickly, as we have better statistical
power to detect the candidate tumor driver genes at the population level. On the other hand, our model
cannot detect the CNA and candidate tumor driver genes for each individual. With some relatively simple
modifications, our model can be extended to detect the candidate tumor driver genes for individuals, but
the statistical power might be an issue. As we found in the simulation studies, the DLMM method, which
models the CNA status at the individual level, only converges when the noise level in copy number data
is relatively low.

Appendix

For the s-th row of the transition matrix A, s = —1, 0, 1, we have
Xs|--- ~ Dirichlet (8- + Mgy, 80 + Myjo, 8+ + Myj11) (A.1)

where §_, §p and §+ are chosen properly so that the priors are noninformative, and
J—1
My, =Y 1(Dj=s.Djy1=1) fors =—1,0,1ands = —1,0,1
=1

where [ is the indicator function. For the s-th row of ¥, we have

@s| - ~ Dirichlet (§— + N_yj5, 80 + Nojs. 8+ + Nijs) (A.2)
where
J
Nys=Y I(Ej =1|Dj =s)fors =—1,0,1ands = 1,0, 1
j=1
ForDj,j=1,---,J,

. qdj— 4qjo 4j+
Dj|--- ~ Multinomial (1, (—, —_ —)) (A.3)

/ 0; 0, 0;

gj-=¢ (ajlo—.7;_) “QE;|-1°AD,;_ -1 A-1D; 4,
qjo=9(a;10,75) ¢E;10-AD; 110 oD, 4,

qi+ = (ajlog.1o0) e, 111 AD,_ 141 21D, 4,
Qj=4qj-+4qjo+4q;+
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and we define

/\Do\t =Pt
A,|DJ+1 = fort =—1,0,+1
Forafj andoyzj,j =1,---,J,
1 2
1 S (X —aj)
2 =1\1ij —d;
ol ~1G | S u == (A.4)
I Y2 (v —bj)?
5 2 =1Uij — b
oyl ~1G ?-i-u, L 5 +v (A.5)
For t2_, 2. ©2,. Tlf_, szo, and r§+,
J 2
m— _ymji—(a; —a_)
2 |~ IG 7+u,Z’ ! ’2 ! +v (A.6)
J 2
m D=1 Mmjoas
2|~ IG 70+u,%+v (A.7)
5 my ij'zlmj-i-(aj —ay)?
T |~ 1IG T—l—u, > +v (A.8)
where
J J
mj— =1(D;=-1) m— ZZ]‘—N”/—:Z':lI(Dj:_l)
mjo =1(D;=0) and{ my =Y 7_ymjo=Y7_I(D;=0) (A.9)
m;iy =I1(D;=+1) me =30 ymjs =37 1(D;=+1)
J 2
n— doinj—(b;—pB-
2 |-~ IG o . /=1 ’2(’ ) +v (A.10)
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(a) Distributions of CNA data. Amplification,
Deletion, and Neutral (Ampli., Del., and Neut.)
present the CNA density plots in amplification
regions, deletion regions, and neutral regions in
simulation data, respectively. Mix presents the
overall CNA density plot in simulation data. Real
data presents the density plot for real dataset.

(b) Distributions of gene expression. Over, Under,
and Equally present the gene expression density plots
for over-expressed, under-expressed, and equally ex-
pressed genes in simulation data, respectively. Mix
presents the gene expression density plot for all genes
in simulation data. Real data presents the density plot
for real dataset.

Figure A.1. The distributions of copy number alterations and gene expression in real data set and simulation
data sets.

Copyright © 2013 John Wiley & Sons, Ltd.

Statist. Med. 2013



Statistics
J. YANG ET AL.

o | < |
© ©
o o
L 2
[ [
© ©
2 < 2 °
2 2
Q Q <
o o o o
2 2
= =
N N
© — joint model e — joint model
—— CNalone —— GE alone
— edira —— SAM-t
o | =
e T T T T T T e T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False positive rate False positive rate
() (b)
< | e
© @
S oSl
2 2
e <
© ©
2 S 2 <]
2 2
Q < Qo <
g <] g <]
= =
N N
° — joint model ° —— joint model
—— CNalone —— GE alone
—— edira — SAM-t
< | .
e T T T T T T e T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False positive rate False positive rate
(©) (d)
< | e
© ©
o S
2 2
g @
© ©
2 2
Q < [STE
o oS o o
2 2
= =
N N
e —— joint model e —— joint model
—— CNalone — GE alone
— edira — SAM-t
o | o |
e T T T T T T e T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False positive rate False positive rate
(e) ®

Figure A.2. Simulation results for studies 6-8. Black lines present the receiver operating characteristic (ROC)
curves for the joint model, red lines present the ROC curves for GE alone or CN alone, and green lines present
the ROC curves for edira or SAM-t.
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Figure A.3. Summary statistics of posterior samples in studies 6, 7, and 8. Red lines indicate the true values.

where
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Table A.1. Implementation details for different methods.

Method Version Software name  Platform Basis of the score

DLMM 0.02 DLMM linux, c++ posterior probability

intCNGEan ~ 0.50 intCNGEan R package p-value

edira 1.2.1 edira R package p-value

SIM 1.7.1 SIM R package p-value

Table A.2. Summary statistics of posterior samples for the condi-
tional probability matrix W in study 6.

Ej (Mean+SD)

In Study 6 —1 0 1

—1 0.83(0.63,0.98) 0.17(0.01,0.35) 0.01(0.00,0.06)
D, 0 0.12(0.08,0.17) 0.78(0.68,0.84) 0.11(0.07,0.18)
1 0.02(0.00,0.08) 0.25(0.04,0.46) 0.73(0.52,0.94)

Table A.3. Top five diseases and disorders related to
under-expressed genes analyzed by Ingenuity Pathway
Analysis.

Diseases and disorders p-value(min~max)
Cancer 1.99e-04~4.82e-02
Hematological disease 1.99e-04~4.21e-02
Gastrointestinal disease 3.97e-04~3.66e-02
Endocrine system disorders 1.30e-03~2.69e-02
Dermatological diseases and conditions  1.43e-03~3.10e-02

Table A.4. Top five diseases and disorders
related to over-expressed genes analyzed by
Ingenuity Pathway Analysis.
Diseases and disorders p-value(min~max)
Cancer 4.26e-04~4.67e-02
Cardiovascular disease 2.10e-03~3.27e-02
Hematological disease 2.10e-03~3.27e-02
Connective tissue disorders 2.45e-03~3.27e-02
Inflammatory disease 2.45e-03~8.80e-03
ForEj, j=1,---,J,
rji— Tjo Ij
Ej|--+ ~Multinomial 1, | 2=, L% I (A.20)
Rj R R;

where

rj—= ¢ (b]|lB—’ sz—) : ¢—1|Dj
rio=¢ (b;10,75) - ¢oip,
rjit =¢ (bj|,3+’ T§+) “Q+1|D;

Rj =rj—+rjo+rj+

We showed the distributions of the real data set and simulation data sets in studies 1-3 in Figure A.1.
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