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ABSTRACT

Cellular response to stimuli is typically complex and
involves both regulatory and metabolic processes.
Large-scale experimental efforts to identify compo-
nents of these processes often comprise of genetic
screening and transcriptomic profiling assays. We
previously established that in yeast genetic screens
tend to identify response regulators, while trans-
criptomic profiling assays tend to identify compo-
nents of metabolic processes. ResponseNet is a
network-optimization approach that integrates the
results from these assays with data of known
molecular interactions. Specifically, ResponseNet
identifies a high-probability sub-network, composed
of signaling and regulatory molecular interaction
paths, through which putative response regulators
may lead to the measured transcriptomic changes.
Computationally, this is achieved by formulating a
minimum-cost flow optimization problem and solv-
ing it efficiently using linear programming tools. The
ResponseNet web server offers a simple interface
for applying ResponseNet. Users can upload wei-
ghted lists of proteins and genes and obtain a
sparse, weighted, molecular interaction sub-network
connecting their data. The predicted sub-network
and its gene ontology enrichment analysis are pre-
sented graphically or as text. Consequently, the
ResponseNet web server enables researchers that
were previously limited to separate analysis of their
distinct, large-scale experiments, to meaningfully
integrate their data and substantially expand their

understanding of the underlying cellular response.
ResponseNet is available at http://bioinfo.bgu.ac.il/
respnet.

INTRODUCTION

Cells live in a dynamic environment in which they encoun-
ter environmental changes, toxins and mutations. Cellular
response to these stimuli is typically complex and in-
volves regulatory, proteomic and metabolic changes.
Identification and comprehensive understanding of these
changes is very important: it may reveal the mechanism of
the stimulus, such as the mode of action of a potent drug
[e.g. (1)], and identify proteins and processes that can be used
to manipulate the cellular response [e.g. (2,3)], potentially
opening new avenues for therapeutic intervention (4).

In an effort to accomplish these goals, large-scale genetic
screens and transcriptomic profiling assays are applied ex-
tensively in current research [e.g. (5–7)]. Genetic screens
identify proteins that when mutated significantly alter the
phenotype of stimulated cells. In the past few years, genetic
screens using gene inactivation or overexpression libraries
identified scores of proteins whose association with specific
stimuli were previously unknown [e.g. (6)]. However, while
providing strong evidence that these proteins were func-
tionally related to the underlying cellular processes, these
relationships were often indirect and hard to decipher,
leaving many of the identified associations unexplained.
A different approach to illuminate the cellular response is
provided by transcriptomic profiling assays. Using micro-
arrays or RNA-Seq technologies, these assays reveal genes
whose expression levels are significantly altered in stim-
ulated cells. Transcriptomic profiling assays were
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extensively applied to identify the processes that are
activated or inhibited in response to stimuli [e.g. (5,8,9)],
yet, similarly to genetic screens, the series of events that
led to the transcriptomic change often remained hidden.

It had been previously noted in few instances that in the
yeast Saccharomices cerevisiae, genetic screens do not iden-
tify the same genes as transcriptomic profiling assays
conducted in the same conditions [e.g. (10–15)]. By sys-
tematically comparing the results of the two types of
screens in over 150 distinct conditions, we recently showed
that this discrepancy is, in fact, a general rule (16).
Importantly, we found that genetic screens tend to identify
response regulators, whereas transcriptomic profiling
assays tend to identify metabolic responses.

In order to make the most of the distinct data provided
by genomic screens and transcriptomic profiling assays,
we developed ResponseNet (16). ResponseNet is an inte-
grative approach that uses known molecular interactions
to bridge the gap between these data and reveal a broader
image of the cellular response. Specifically, ResponseNet
identifies signaling and regulatory pathways, by which the
proteins detected by genetic screens may lead to the mea-
sured transcriptomic response (Figure 1). The novelty of
ResponseNet lies in its formulation as a minimum-cost
flow optimization problem that is solved efficiently using
linear programming solvers (17). We applied ResponseNet
to reveal cellular pathways that respond to the toxicity of
a-synuclein, a small human protein implicated in several
neurodegenerative disorders including Parkinson’s disease
(16). We conducted a genetic screen of a well-established
yeast model for a-synuclein toxicity and identified
77 proteins that when overexpressed altered a-synuclein
toxicity. We also profiled the transcritpome of the yeast
model and identified 612 differentially expressed genes
(16,18). We then used ResponseNet to search the yeast
molecular interaction network (interactome), which
related over 11 000 proteins and genes via over 57 000 mo-
lecular interactions, for a high-probability sub-network
connecting the identified proteins and genes.
ResponseNet successfully mapped previously unknown
as well as recognized pathways responding to a-synuclein
toxicity. We experimentally validated four de novo predic-
tions suggested by ResponseNet analysis, including the
presence of nitrosative stress, the involvement of the
TOR pathway, the disturbance of the sterol biosynthesis
pathway and the mode-of-action of the genetic suppressor
Gip2 in the response to a-synuclein toxicity (16).

In recent years, several other methodologies for iden-
tifying interactome pathways that bridge the gap between
potential causal proteins and affected genes have been de-
veloped [e.g. (19–25)]. These methodologies were based on
a variety of computational techniques including maximum
likelihood (19), integer programming (21), Steiner trees
(23,24), electric circuits (22,26) and Bayesian networks
(2,27). Notably, many of these techniques were computa-
tionally intensive and therefore required the use of ap-
proximation schemes [e.g. (24)] or arbitrary constraints
over the topology of the output network [e.g. (21,23)].
Unfortunately, this rich set of sophisticated techniques is
not readily available for use. In fact, only in few cases
downloadable code was provided (21,27).

Here, we present the ResponseNet web server for pre-
dicting the signaling and regulatory network connecting
stimulus-related proteins and genes. This web server ac-
cepts lists of proteins and genes from the user, and then
searches within a given interactome for a high-probability
sub-network connecting these proteins and genes. The web
server presents the identified signaling and regulatory
sub-network as a graphical network image in Cytoscape
format (28). It also reports the gene ontology (GO) en-
richment of the connected input lists and of the output
sub-network, further illuminating the underlying cellular
response to the stimulus. By default, ResponseNet
analysis is carried in yeast using a recently complied
version of the yeast interactome that is stored in our data-
base. However, users may upload their own interactome
data, opening the way to apply ResponseNet to analyze
cellular responses in other organisms, including human.
The ResponseNet web server is free and open to all
users with no login requirement.

ResponseNet METHODOLOGY

Prediction of signaling and regulatory response pathways
in the yeast S. cerevisiae is extremely challenging. For only
a handful of stimuli, like the mating pheromone or high
osmolarity, these pathways were fully characterized, and
efforts to map the yeast signaling network are yet ongoing
(29–31). Moreover, due to the vast number of known
interactions, a search for all interaction paths connecting
stimulus-related proteins to genes typically results in a
‘hairball’ sub-network that is very hard to interpret. To
overcome these limitations and identify meaningful signal-
ing and regulatory sub-networks, ResponseNet is designed
as a network-optimization approach that uses a graphical
model in which: (i) proteins and genes are represented as
separate network nodes; (ii) a directed edge leads from a
protein node to a gene node only if they correspond to a
transcription factor and its target gene; and (iii) each
network edge is associated with a probability that
reflects its likelihood (16).
We implemented ResponseNet as a ‘flow algorithm’, a

well-known computational approach for efficiently finding
connectivity in graphs (17). Flow algorithms deliver an
abstract flow from a source node (S) to a sink node (T)
through the edges of a network, which, similarly to pipes,
are associated with a capacity that limits the flow and with
a cost. (As a loose analogy, this resembles water finding
the path of least resistance through a complex landscape.)
Because S and T are the two endpoints for the flow, by
linking S to the stimulus-related proteins and the stimulus-
related genes to T, the flow is forced to find paths that
connect the stimulus-related proteins and genes through
protein–protein and protein–DNA interactions. To give
preference to connecting paths of high probability, we for-
mulated ResponseNet as a minimum-cost flow optimiza-
tion problem (17). This formulation aims to maximize the
flow between S and T while minimizing the cost of the
connecting paths. Hence, by setting the cost of an edge
to the negative log of its probability, a sparse, high-
probability connecting sub-network is obtained.
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Importantly, the minimum-cost flow problem is solved
efficiently using linear programming tools [LOQO (32)]. A
typical optimal solution connects a subset of the stimulus-
related proteins to a subset of the stimulus-related genes
through known interactions and intermediary proteins;
these interactions and proteins are weighted by the amount
of flow they pass, thus illuminating core versus per-
ipheral components of the response. A detailed descrip-
tion of ResponseNet formulation is given in Yeger-Lotem
et al. (16).
As described in Yeger-Lotem et al. (16), we tested

ResponseNet on the well-characterized pheromone and
DNA damage responses by applying it to proteins and
genes identified by genetic and transcriptomic profiling
assays, respectively. In both cases, ResponseNet revealed
a connecting sub-network that was highly enriched for the
relevant response pathway and exposed core pathway
members. To thoroughly test ResponseNet despite the
lack of known response pathways, we applied it to a set
of 101 distinct, less-characterized stimuli, which corres-
ponded to gene deletions. For each stimulus, we created

a randomized solution set composed of 100 sub-networks
that were obtained by applying ResponseNet to partially
randomized inputs (either the stimulus-related proteins or
the genes were randomly chosen, while all other inputs
were fixed). We considered as success solutions that were
significantly enriched for the stimulus, or ranked stimulus-
related proteins significantly high, relative to the random-
ized solution set (P� 0.05). Although in 86 of the 101 test
cases screening data were very limited, ResponseNet
displayed 41% sensitivity, 98% specificity and 30% preci-
sion. Moreover, when applied to a-synuclein toxicity screen-
ing data ResponseNet successfully revealed meaningful
response pathways that we validated experimentally (16).

ResponseNet INPUT AND OUTPUT

The ResponseNet web server is designed for predicting
stimulus-related signaling and regulatory pathways in
the yeast S. cerevisiae. The basic input to ResponseNet
includes a source set comprising a list of stimulus-related
proteins, preferably identified through genetic screening,

Figure 1. The signaling and regulatory sub-network, by which stimulus-related proteins detected by genetic screens may lead to the measured
transcriptomic response. ResponseNet integrates the identified stimulus-related proteins and genes with known molecular interactions to find mo-
lecular interaction paths, through which a subset of the proteins may regulate the transcription of a subset of the genes. The regulation may be direct,
e.g. when the stimulus-related protein is the transcriptional regulator of a stimulus-related gene, or indirect via intermediate proteins and transcrip-
tional regulators. Stimulus-related proteins appear as orange nodes; stimulus-related genes appear as blue nodes; intermediary proteins appear as
white nodes. Known protein–protein and protein–DNA interactions appear as gray edges. Transcriptional regulators appear as triangles.
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and a target set comprising a list of stimulus-related dif-
ferentially expressed genes. An advanced form of input
specifies each set as a weighted list, with weights being
positive real numbers. Higher weights increase the prob-
ability that the corresponding proteins or genes will appear
in the output network, and may reflect, e.g. the strength of
the effect of the mutated protein or the fold-change in the
gene’s expression level. If no weights are given, they are
considered to be uniform. Upon submitting the data to
the web server the user may choose to perform a GO
enrichment analysis of the input sets and the output sub-
network, to identify processes that are significantly asso-
ciated with the cellular response. This analysis is carried
using the GOrilla tool (33).

The ResponseNet web server also offers three advanced
features. By default, given the sets of proteins and genes,
ResponseNet searches an up-to-date version of the yeast
interactome that we compiled as described in Yeger-
Lotem et al. (16). Using the advanced options the user
can append or replace the interactome data: user-provided
protein–protein interactions are considered bidirectional,
unless specified otherwise by the user; user-provided
protein–DNA interactions are directed from a protein to
its target gene. Notably, by replacing the interactome data
the user can apply the server to data of other organisms.
The two other advanced features relate to the free

parameters of the minimum-cost flow formulation: The
capping value is an upper bound on the probability of
each interaction, and therefore a lower bound on its
cost; lowering the capping value reduces the bias toward
extensively studied interactions and may lead to sparser
solutions. The gamma value controls the connectivity of
the solution, with increasing values enabling identification
of lower probability connecting sub-networks. More in-
formation about the input options can be found in the
ResponseNet tutorial that is stored on the server.
The computation of the minimum-cost flow optimiza-

tion problem typically takes a few minutes due to the need
to solve a linear programming problem with thousands of
variables. Once complete, the output is provided as a
multi-panel window (Figure 2). The middle panel contains
a graphical image of the identified signaling and regula-
tory sub-network that connects the input sets. This panel
utilizes a Cytoscape plug-in that enables the user to ma-
nipulate the visualization of the sub-network (34). The left
panel provides various statistics, such as the fraction of
input proteins and genes that were actually connected by
ResponseNet, and, if requested by the user, a link to the
GO enrichment analysis of the input sets and the output
sub-network. The right panel provides a link to a text
version of the identified sub-network in a Cytoscape
table format.

Figure 2. The ResponseNet web server output. In this example the ResponseNet web server was applied to a protein set containing Ste2 and Ste3
and to a gene set containing Fus1 and Fus3 using default parameters. The middle panel presents the regulatory and signaling output sub-network
identified by ResponseNet. The left panel presents a visual summary of the coverage of the output sub-network, as well as a link to the GO
enrichment analysis of the connected input sets and the output sub-network. The right panel presents a link to a text version of the output
sub-network in a Cytoscape-compatible format, and a legend for the sub-network appearing in the middle panel.
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An example of ResponseNet output is shown in Figure 2.
In this example, we used ResponseNet to identify the sig-
naling and regulatory sub-network connecting the two
pheromone receptor proteins, Ste2 and Ste3, to the
genes Fus1 and Fus3 that are up-regulated during the
pheromone response. As shown in the middle panel of
Figure 2, ResponseNet indeed identified core components
of the pheromone response signaling cascade. The con-
necting sub-network was most significantly enriched for
‘pheromone-dependent signal transduction involved in
conjugation with cellular fusion’ (P-value of 9.72E-13).
Notably, ResponseNet is applicable to much larger
protein and gene input sets as detailed in (16).

DISCUSSION

ResponseNet is a unique web server that is designed
to identify the signaling and regulatory sub-networks
that connect stimulus-related proteins and genes. These
stimulus-related data typically result from large-scale
genetic screens and transcriptomic profiling assays.
While each of these assays provides unprecedented
genome-wide views into the cellular response, the
function of the identified proteins in the response to the
stimulus, and the signaling paths leading to transcriptomic
changes, often remain hidden. By integrating these data
with data of known molecular interactions, ResponseNet
simultaneously illuminates the mode-of-action of some of
the proteins and the signaling cascades that lead to the
measured transcriptomic response.
The ResponseNet algorithm is based on the minimum-

cost flow optimization problem. This formulation is ad-
vantageous over other approaches for finding explanatory
paths in molecular interaction networks, since it gives
preference to high-confidence interactions, allows for a
simultaneous solution for the input proteins and genes,
puts no a priori bounds on the structure of the output
sub-network, and is solved efficiently using linear pro-
gramming tools. These features of ResponseNet,
together with its verified success (16) substantiate the
minimum-cost flow optimization as a powerful framework
to illuminate cellular pathways from multidimensional,
large-scale experimental data. Importantly, it is one of
the few approaches that are freely available on the web
and can be readily applied by users. While being designed
for integrating the results of genetic screens and
transcriptomic profiling assays in yeast, ResponseNet is
a general framework for identifying explanatory paths
underlying other types of input. For example, it can
readily be used to analyze phosphoproteomic assays
(23), to reveal the paths underlying eQTLs associations
(22) or to identify disease-related explanatory paths in
other organisms, including human (27). The ease of use
of the ResponseNet web server and its enhanced function-
ality make it suitable for illuminating the pathways
underlying a wide-range of cellular states in a variety of
organisms. We believe that many researchers that are
limited today to separate analysis of their large-scale ex-
periments can take full advantage of their valuable data by
analyzing them using this unique integrative web server.
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