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Abstract

Missense variants are commonly identified in genomic
sequence but only a small fraction directly contribute to
oncogenesis. The ability to distinguish those missense changes
that contribute to cancer progression from those that do not
is a difficult problem usually only accomplished through
functional in vivo analyses. Using two computational algo-
rithms, Sorting Intolerant from Tolerant (SIFT) and the Pfam-
based LogR.E-value method, we have identified features that
distinguish cancer-associated missense mutations from other
classes of missense change. Our data reveal that cancer
mutants behave similarly to Mendelian disease mutations, but
are clearly distinct from either complex disease mutations or
common single-nucleotide polymorphisms. We show that both
activating and inactivating oncogenic mutations are predicted
to be deleterious, although activating changes are likely to
increase protein activity. Using the Gene Ontology and data
from the SIFT and LogR.E-value metrics, a classifier was built
that predicts cancer-associated missense mutations with a
very low false-positive rate. The classifier does remarkably
well in a number of different experiments designed to
distinguish polymorphisms from true cancer-associated muta-
tions. We also show that recurrently observed mutations are
much more likely to be predicted to be cancer-associated than
rare mutations, suggesting that our classifier will be useful in
distinguishing causal from passenger mutations. In addition,
from an expressed sequence tag–based screen, we identified a
previously unknown germ line change (P1104A) in tumor
tissues that is predicted to disrupt the function of the TYK2
protein. The data presented here show that this novel
bioinformatics approach to classifying cancer-associated
variants is robust and can be used for large-scale analyses.
[Cancer Res 2007;67(2):465–73]

Introduction

A central focus of cancer genetics is the study of mutations that

are causally implicated in tumorigenesis. The identification of such

causal mutations not only provides insight into cancer biology but
also presents anticancer therapeutic targets and diagnostic

markers. For example, recent work has provided details of the

biology underlying cancer, including information about the types of

gene families involved in various stages of cancer (1) as well as the

complex nature of the mutational spectra associated with different
cancers (2). In clinical settings, these mutations have proved to be

extremely valuable in distinguishing patient populations that are

responsive to a particular therapy (3–7). In addition to somatic
mutations, which are more prevalent in cancers, germ line

mutations can confer a predisposition to cancer risks (8, 9).

Further study of both somatic and germ line mutations associated

with cancer is likely to lead to a deeper understanding of the
biology of cancer and possibly will reveal additional targets for

therapeutic design.
Targeted sequencing has been done to characterize novel

cancer-associated mutations by identifying variants found in
tumor tissue (1, 2, 10–16). However, the identification of true
cancer-associated variants from such approaches is a challenging
problem as these studies often yield large numbers of changes that
are not necessarily causally associated with cancer (2, 16). This is
partly a result of non–cancer-causing somatic variants, termed
passenger mutations (2, 16), which accumulate in cancer tissue due
to the high mutation rate and multiple cell divisions seen during
tumor growth (17). Different types of tumors may display different
point mutation rates. Cells with microsatellite instability, for
example, are known to exhibit much higher mutation rates than
those with chromosomal instability (reviewed in ref. 18), although
tumors with DNA copy number alteration may also have a large
number of point mutations (19). In large-scale screening for
mutations, passenger mutations were estimated to account for two
thirds of all variants identified (16). The identification of cancer-
associated mutations can also be hindered by tumor heterogeneity
as oncogenic changes may not be present equally throughout a
tumor (20). As a consequence, such variants may be present only in
a small fraction of the tissue sample used in a targeted sequencing
experiment and are not easily detected (20). Thus, infrequently
occurring cancer-associated changes can be difficult to distinguish
in a directed sequencing approach. Aside from functional analysis,
there is no method available to differentiate those variants that are
responsible for tumor progression from other changes.

In addition to targeted sequencing approaches, expressed
sequence tag (EST) sequences have also been used to identify
missense changes overrepresented in cancer libraries (21, 22).
However, similar to the targeted sequencing work, these analyses
yielded large numbers of variants of which only a small number
would likely contribute to cancer progression. This is not only due
to factors such as passenger mutations but is also a result of poor
data quality from high-throughput sequencing of EST libraries.
Perhaps for this reason, none of the novel variants identified from
such studies have been shown to exist in independent tumor
samples. Although some of the putative cancer variants identified

Note: Supplementary data for this article are available at Cancer Research Online
(http://cancerres.aacrjournals.org/).
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from EST data are expected to be real, such screens are hindered by
a lack of additional filtering mechanisms that can enhance true
signals from the high level of background noise.

Aside from missense cancer mutations and common poly-
morphisms, other classes of missense change have been identified.
Missense mutations known to cause Mendelian disease have been
annotated in Swiss-Prot and studied for their deleterious effects on
protein function (23). In a recent work, missense mutations
associated with complex disease were collected and shown to have
characteristics distinct from Mendelian disease variants (24). The
ability to distinguish missense changes by their disease phenotype
suggests that comparison of cancer-associated variants to other
classes of variant could be a valuable tool in understanding cancer
progression. Furthermore, the availability of data sets of missense
mutations associated with complex disease (24), Mendelian disease
(23), and cancer (25) make such an analysis possible. Several
computational methods, including Sorting Intolerant from Tolerant
(SIFT; ref. 26), Polymorphism Phenotyping (PolyPhen; ref. 27), the
Pfam-based LogR.E-value (28), large-scale annotation of coding
nonsynonymous SNPs (LS-SNP; ref. 29), statistical geometry
methods (30), support vector machine methods (31), decision
trees (32), and random forest (RF) classifiers (33), have been
developed to identify deleterious variants. However, it remains to
be determined if these algorithms are able to distinguish cancer-
associated variants from other types of change.

Here, we have used a number of computational methods to
define characteristics of known cancer mutations and subsequently
developed a novel approach for predicting cancer-associated
mutations from among a large set of missense variants. This
method provides a means of analyzing large-scale data sets and will
likely prove to be increasingly relevant to genome-scale efforts
currently under way to identify mutations involved in cancer
progression.

Materials and Methods

Data sets. Variants were assembled as follows: (a) common variants

were downloaded from National Center for Biotechnology Information
(NCBI)5 and overall minor allele frequencies were determined from the file

SNPAlleleFreq.bcp from the NCBI ftp site;6 (b) cancer-associated variants

were collected from the COSMIC ftp site7 and, based on the analysis of
Forbes et al. (25), include only variants in those genes most likely to be

involved in oncogenesis (25); (c) Mendelian disease–associated variants

were obtained from identifying those records in the file uniprot_sprot.dat

from the Swiss-Prot ftp site8 that contains nucleotide change data, were
human records, were of the type ‘‘disease’’ but not of the subtype ‘‘cancer,’’

and did not overlap with records in single nucleotide polymorphism

database (dbSNP); (d) complex disease–associated variants were collected

from previous work (24). All data sets will be available online.9

SIFT and Pfam-based LogR.E-value scores. The SIFT program was

downloaded10 and installed and run locally. Scores were obtained from SIFT

output, and only those variants with a median sequence information of

<3.25 were included in the analyses. Pfam-based LogR.E-value scores were
derived from scores provided by the HMMER 2.3.2 software. The ls mode

was used to search against the Pfam protein family database. LogR.E-value

scores were calculated as log10(Evariant/Ecanonical) (28). Note that for the
discussion and display of data (Figs. 1 and 2; Table 1), we have used a

negative version of this value (see ref. 28).

Gene Ontology log-odds analysis and RF classification. The log-odds

scores were calculated to represent the relative frequency with which a
Gene Ontology (GO) term was used to annotate cancer or noncancer gene

sets. All genes represented in the COSMIC database associated with an

oncogenic phenotype were used as the cancer gene data set. Further details

of the GO analysis are presented as Supplementary Data.
The RF classifier was built using the package randomForest 4.5-1611 for

the R statistical environment.12 The classifier was trained on 200 cancer

mutations and 800 noncancer mutations by using the SIFT score, LogR.E-

value score, and GO log-odds score for each variant. The mutation to SNP
ratio was empirically determined based on the numbers of somatic

mutations and background polymorphisms identified in the tyrosine

kinome (12), tyrosine phosphatome (34), and serine-threonine kinase data
(10). Technical details of this method as well as details of the pathway

analysis are presented as Supplementary Data. All training data are freely

available online.9

EST-based identification of variants. A set of 22,332 RefSeq mRNAs
was downloaded from NCBI, and each mRNA was aligned to ESTs from

public and Incyte collections. ESTs were aligned to the genome using GMAP

(35) to determine overlaps with RefSeq mRNA genomic coordinates. Those

ESTs that overlapped with a particular gene region were aligned to the
corresponding RefSeq mRNA using NCBI BLAST run with default

parameters. All mismatches were required to be flanked by 30 bp of

sequence identical to the RefSeq mRNAs. Rare events that occurred in only
one EST or were seen in only one library were eliminated, and variants were

required to be observed in at least 3% of the total number of cancer ESTs.

Any variant that overlapped with a record in dbSNP was eliminated to avoid

identifying known or common SNPs. For similar reasons, variants identified
in normal libraries were also eliminated. Lastly, a z-score was calculated to

test the significance of the difference in the number of ESTs contributed

from cancer or normal libraries. Variants were eliminated for P > 0.1. This

list of putative computationally defined cancer variants was then further
enriched by selecting those changes that were identified as cancer-

associated by the RF classifier. Variants identified from the screen are

presented online.9

Validation of missense mutations. For traditional sequencing, PCR

products were amplified from genomic DNA extracted from cell lines.

Sequence reactions were done using conventional Sanger sequencing

methods for both sense and antisense directions on an Applied Biosystems
3730xl DNA Analyzer (Applied Biosystems, Foster City, CA). Traces were

analyzed using Sequencher (Gene Codes, Ann Arbor, MI). For mass

spectrometry analysis, variation validation assays were designed using

MassARRAY 3.0.2.0 software (Sequenom, San Diego, CA). See Supplemen-
tary Data for further details. The cancer sequence data were obtained

from the following tumor tissue types (and numbers) of samples: lung (64),

breast (37), stomach (10), colon (9), and liver (8). The oligonucleotide primer

used for TYK2 P1104A variant was 5¶-TGACTCCAGCCAGAGC-3¶.

Results

Comparison of variant data sets. We collected four groups of
missense variants as an initial step in understanding differences
among variant groups. A set of 5,747 common polymorphisms used
as a baseline data set was collected from dbSNP by extracting those
polymorphisms with an overall minor allele frequency (MAF) >20%.
Mendelian disease mutations were identified by isolating variants
from the Swiss-Prot database annotated as disease but not cancer.
These 11,456 noncancer disease missense mutations represent

11 http://stat-www.berkeley.edu/users/breiman/RandomForests.
12 http://www.r-project.org.

5 http://www.ncbi.nlm.nih.gov/projects/SNP/.
6 ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606/database/organism_data.
7 ftp://ftp.sanger.ac.uk/pub/CGP/cosmic.
8 ftp.uniprot.org/pub/databases/uniprot/knowledgebase/uniprot_sprot.dat.gz.
9 http://share.gene.com/mutation_classification.
10 http://blocks.fhcrc.org/sift/SIFT.html.
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changes to single genes that follow standard Mendelian rules of
inheritance and are thought to contribute to disease progression
(23). From a previous study (24), we collected a set of 27 complex
disease–associated variants that are known to contribute to
disease progression but do not follow standard Mendelian rules
of inheritance. Last, a set of 1,091 cancer-associated somatic
mutations were gathered from the COSMIC database (25) in which
cancer-associated mutations manually curated from literature
sources are compiled. Because some mutations in COSMIC may
be passenger or bystander mutations, we attempted to enrich for
true cancer-associated mutations by using variants identified in
genes likely to be involved in cancer progression (25).

Two distinct approaches were used to measure the effect of each
variant on protein function. First, the SIFT program (26) was used
to predict if a variant is likely to affect protein function. SIFT uses
sequence homology between closely related protein species to
measure this effect, and low SIFT scores (<0.05) are predictive of

intolerant changes. The SIFT scores from all variants were calcu-
lated and plotted by class as cumulative distributions (Fig. 1A).
The distributions of SIFT scores suggest that these variants can be
divided into at least two classes: Mendelian/cancer–associated and
complex/common. The differences between these groups are most
apparent for the intolerant SIFT scores between 0.0 and 0.05 where
83% and 77% of the cancer and Mendelian variants are predicted
to be intolerant compared with 42% and 12% of the complex
and common missense changes. Not surprisingly, the distinction
between cancer and normal variants becomes smaller for
cumulative distributions of SIFT scores derived from SNPs with
an overall MAF of <20% (not shown). Although cancer is often
thought of as a complex disease involving changes to multiple loci,
in this assay, cancer mutations seem more similar to Mendelian
disease variants than complex disease variants.

The second approach used to predict the effect of a variant on
protein function is the Pfam-based LogR.E-value, which calculates

Figure 1. Cumulative distributions of SIFT scores (A) and LogR.E-value scores (B ) for different variant classes. Intolerant changes are predicted by SIFT scores
less than 0.05 or LogR.E-value scores less than �0.5 (dashed lines ). The cancer and Mendelian variants show similar distributions of scores by either SIFT (A) or
LogR.E-value (B ) metrics. The uneven distribution of the complex data is likely due to the small number of variants included in this data set. Data have been connected
with a smoothed line in Excel. The two-tailed Wilcoxon rank-sum test was used to test the null hypothesis that data from the individual distributions were drawn
from the same populations. Significant P values for pairwise comparisons for SIFT scores are as follows: cancer-common, 2.20e�16; complex-cancer, 3.41e�9;
Mendelian-cancer, 1.68e�7; Mendelian-common, 2.20e�16; Mendelian-complex, 4.57e�7. Significant P values for pairwise comparisons for Pfam-based
LogR.E-value scores are as follows: cancer-common, 2.20e�16; complex-cancer, 2.55e�3; Mendelian-common, 2.20e�16; Mendelian-complex, 7.72e�4.

Figure 2. Cumulative distributions of SIFT (A) and LogR.E-value (B) scores for variants in kinase and nonkinase-containing genes. Intolerant changes are
predicted by SIFT scores <0.05 or LogR.E-value scores less than �0.5 (dashed lines ). Gray lines, data presented in Fig. 1. Data have been connected with a smoothed
line in Excel.
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the difference between a wild-type and variant protein by
measuring their fit to a Pfam model (28). The LogR.E-value score
is derived from the E value provided by HMMER2 software (36) and
was used previously to predict whether specific changes to a
protein were likely to affect protein activity or stability (28). The
underlying scoring systems behind LogR.E-value and SIFT are
different (28), and it has been shown that these algorithms produce
distinct metrics that can be used to independently analyze variant
data (28).

Based on previous work with the LogR.E-value, scores that are
less than �0.5 are predicted to alter protein function (ref. 28; see
Materials and Methods). The values generated from analysis of all
four variant sets using this method were plotted as cumulative
distributions (Fig. 1B). As seen with the analysis of SIFT data, the
distribution of the cancer and Mendelian disease–associated
variants are fairly similar to one another, but both are significantly
different from the distributions of either the complex or common
variant data sets (Fig. 1B). Moreover, similar to the SIFT analysis,
the cancer and Mendelian data sets have a larger percentage of
changes predicted to have a significant effect on protein function
(70% and 77%, respectively) compared with the complex and
common variant data sets (33% and 26%, respectively). These data
once again point to differences between cancer-associated variants
and complex disease variants. Further, and perhaps even more
apparent than the SIFT analysis, these data reveal similarities
between Mendelian and cancer-associated variants that underscore
that these changes may affect protein function in a similar manner.
Characterization of variants in different classes of genes. As

the SIFT and Pfam-based LogR.E-value metrics proved useful in
studying differences between populations of variants, we used
these tools to identify characteristics of variants defined by bio-
chemical analysis as activating or inactivating. Well-characterized
inactivating mutations in the genes p53 (37), PTEN (38), and
p16 (39) were analyzed. Each of these mutations was predicted to
impair protein function in at least one of the assays (Table 1). This
result is consistent with the debilitating characteristics of these
mutations. Next, activating mutations in BRAF (40), K-Ras (41),
Kit (42), PDGFR a (43), JAK2 (44), and epidermal growth factor
receptor (EGFR; refs. 3, 5, 6) were analyzed in the same manner.
Although these activating mutations increase the output of
different signaling pathways and might not be considered

intolerant, it was striking that all mutations were predicted to
impair protein function in at least one of the assays (Table 1).
Together, these results suggest that both activating and inactivating
oncogenic mutations seem to be untolerated by wild-type proteins
although the activating mutations are able to increase the signaling
ability of these molecules.

As many activating changes have been identified in kinase genes,
we were interested in examining a larger pool of such mutations.
Using data from the COSMIC database, mutations were collected
either from genes with kinase domains or genes without kinase
domains. The distribution of SIFT scores for these two variant data
sets suggests that these changes are largely predicted to be
intolerant (78% and 85%, for the variants in kinase and nonkinase
genes, respectively; Fig. 2A). The Pfam-based LogR.E-value scores
follow a similar trend to the SIFT data in that 54% of the kinase
variants and 87% of the nonkinase variants are predicted to affect
protein function (Fig. 2B). A recent analysis of cancer-associated
variants in genes with kinase domains (45) revealed that a majority
of such changes are likely to be activating as they often affect
residues that regulate the catalytic activity of the kinase (45). Thus,
the results presented in Fig. 2 not only may reflect the similarities
between kinase and nonkinase genes but also may suggest that, in
general, activating and inactivating changes are not tolerated.
GO analysis of cancer genes and the development of a

cancer-variant predictor. We next attempted to identify an
additional metric that could be used to distinguish the cancer-
associated variants by classifying the genes in which they reside.
Using a standard set of GO annotations, a log-odds score was
calculated to measure the difference in frequency that a particular
GO term was used to annotate genes that were either known to be
involved in cancer (25), or, not known to be involved in cancer and
represented by a RefSeq mRNA. For example, genes annotated with
the term ‘‘ion transport’’ are underrepresented in the cancer data
set, and this term has a negative log-odds score of �2.30. On the
other hand, genes annotated with the term ‘‘cell cycle’’ are over-
represented in the cancer data set, and this term has a positive
log-odds score of 2.06 (Fig. 3A). For a gene of interest annotated
with a set of GO terms, one can sum the log-odds score for each GO
term. This cumulative score reveals inherent differences between
genes containing common variants and genes containing cancer
variants as shown in Fig. 3B . The different distributions are not a
result of the varying levels to which these gene sets were annotated,
as scores that were normalized by the number of annotated terms
produced very similar data (not shown). Although these data could
reflect an inherent bias in the types of genes chosen for analysis, it
is likely that this approach reveals distinguishing features of the
cancer and noncancer gene sets.

Based on the above analysis, it seemed possible that a
computational method could be developed that would combine
the information from the SIFT, Pfam-based LogR.E-value, and GO
log-odds metrics to predict whether a variant was likely to be
cancer associated. The RF classifier provides such a method by
dividing a large pool of data into smaller subsets based on
characteristics of each datum. This method has been used
successfully in many biological applications, including distinguish-
ing harmful SNPs from harmless SNPs (33) and classifying
microarray data (46). In our analysis, variants included in the
training set used to construct the classifier were assigned a
measurement from each of the three different algorithms described
above (SIFT, LogR.E-value, and the GO log-odds score). During the
construction of the classifier using these sets of training data, an

Table 1. SIFT and LogR.E-value scores for activating and
inactivating mutations in select genes

Mutation
type

Gene Mutation SIFT
score

Pfam-based
LogR.E-value

Activating BRAF V600E 0 �0.3
KRAS G12V 0.01 �1.97

KIT D816V 0 0.5

PDGFRA V561D 0 NA
EGFR L858R 0 �2.03

JAK2 V617F 0 �0.27

Inactivating p53 R175H 0 �1.51

PTEN C124S 0 �1
P16 D84G 0 NA

Abbreviation: NA, not applicable.
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internal measurement of the rate at which training data are
misclassified was determined to be 3.19% [this value is termed the
out-of-bag (OOB) error rate; for further details, see Materials and
Methods].

Further validation of the classifier was achieved by performing a
cross-validation experiment in which a group of known variants
was entirely excluded from the training process during the
construction of the classifier. These excluded variants were then
analyzed using the RF predictor to determine how often they were
misclassified. From this analysis of 730 variants, only 10 of 581
(1.7%) normal variants were misclassified as cancer and only 13 of
149 (8.7%) cancer variants were misclassified as normal. Together
with the OOB error rate, these data illustrate that this is a strong
classifier with a very low rate of false-positive predictions. It should
be noted that the noncancer variant training data set consists only
of a subset of variants from dbSNP with a MAF of >20%. We expect
to observe a somewhat higher rate of misclassification if more rare
SNPs are included.
Validation and practical application of the classifier. A

useful application of our classifier is in distinguishing relevant
cancer-associated mutations from the expected polymorphic
variants often identified during sequencing projects to discover

novel somatic mutations. We attempted to model this process by
collecting data from several protein family–based studies, includ-
ing variants in the tyrosine kinome (12), tyrosine phosphatome
(34), and serine/threonine kinase gene family (10). For each group
of genes, two sets of variants were identified: the set of somatic
cancer–associated mutations reported in each publication and a
set of all missense SNPs isolated from dbSNP, which represent
those changes that would be expected as background poly-
morphisms identified in sequence data. The variants were then
classified by our predictor. It should be noted that none of these
variants were used to train the RF classifier. As shown in Fig. 4A ,
although 64% of the somatic mutations in the tyrosine kinome
were predicted to be cancer-associated, a significantly smaller
percentage of the changes from dbSNP (23%) were predicted to be
cancer-associated (P = 3.9e�4; two-tailed Fisher’s exact test).
Analysis of the tyrosine phosphatase data set reveals that the
somatic mutations were also more often predicted to be cancer
associated than the variants isolated from dbSNP (P = 0.034;
Fig. 4B). A similar trend is observed for the serine/threonine data
set in which 36% of the somatic variants and only 19% of the
variants from dbSNP were predicted to be cancer associated
(Fig. 4C). Thus, our predictor is capable of distinguishing true

Figure 3. Log-odds scores are distinct across cancer and
noncancer data sets. A, the frequency that a particular
term is used to annotate genes in noncancer (blue ) or
cancer (red) data sets. Numbers in parentheses, log-odds
scores. Although only the 10 terms with the largest
log-odds scores are shown, the entire term list from the GO
slim generic data set was used in assigning summed
scores to particular genes (see Materials and Methods).
B, summed log-odds scores were calculated for noncancer
genes (blue ) or genes containing cancer variants (red)
and plotted as a frequency histogram. Binned values
(boxes ) have been connected with a smoothed line
in Excel.
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cancer mutations from among large sets of sequence data even in
the absence of extensive knowledge of SNPs. It is worth noting that
the percentage of cancer-associated variants from these data sets
was lower than that observed during the analysis of the training
data. This likely reflects the fact that the experimental data
described above presumably contain fewer true cancer causal
variants than the training data mutations, which were derived from
a select group of well-studied mutants.

Whereas true causal mutations are under positive selection and
are therefore observed recurrently, bystander or passenger
mutations occur in a stochastic fashion and are expected at lower
frequencies. We were interested in determining if those variants
that occur infrequently are less likely to be predicted to be cancer
associated by our classifier. To address this issue, the entire set of
cancer-associated variants in COSMIC was divided into groups
according to the number of times that a change was observed. The
percentage of variants predicted to be cancer associated was
determined for each class using the RF classifier. As shown in
Fig. 5A , whereas 58% of variants observed at least 10 times are
predicted to be cancer associated, only 43% of variants occurring
only a single time are predicted to be cancer associated (P = 0.018,
two-tailed Fisher’s exact test). This analysis not only shows the
usefulness of our classifier but also suggests that a large fraction of
infrequent variants in COSMIC could be passenger mutations.

As an additional test of the usefulness of our classifier, we
attempted to predict cancer-associated mutations from a recent
large-scale sequencing effort of human colorectal and breast
tumors (47). In this recent analysis, genes were classified into two
groups based on mutation frequencies: those likely to be involved
in tumor progression (CAN genes) and those less likely to be
involved in tumor progression (non-CAN genes; ref. 47). Variants
identified in either CAN genes or non-CAN genes were classified by
our predictor. As shown in Fig. 5B , variants identified in CAN genes
are much more likely to be classified as cancer associated (26.3%)
than variants in non-CAN genes (13.3%; P = 8.8e�6; two-tailed
Fisher’s exact test). The larger number of cancer-associated
variants predicted from the CAN genes is consistent with the
suggestion that these mutations were under selection during tumor
progression (47). Importantly, independent of the method used for

deriving the CAN genes, our classifier provides a novel method that
prioritizes mutations for in vivo functional analysis.
EST-based identification of novel variants. We designed an

EST-based screen to collect novel variants that could then be
classified using our predictor. In this approach, ESTs from libraries
derived from either normal or cancer tissue were aligned to RefSeq
mRNAs to identify mismatches. From 2,600 candidate variants that
were specifically present in ESTs from cancer libraries, 494 variants
(19%) were identified as cancer associated based on the RF
predictor. This list includes a number of known cancer-related
mutations, such as the C135F change in p53.

Such an EST-based approach is likely to be complicated by the
sequence noise commonly associated with EST data. To address
this issue, eight novel variants were selected for validation by
determining if the changes were in fact present in genomic
sequence or were identified as a consequence of noisy EST
sequences. Two of the variants, a V1304M change in MAST2 and a
Y11H change RIOK2, were identified in genomic DNA from their
respective EST tissue sources (Supplementary Fig. S1), which show
that some of these events indeed occur in genomic sequences and
are not a result of EST sequencing artifacts. Although it was not
surprising to identify these changes in their respective EST tissue
sources, it was important to determine whether some of the pre-
dicted mutations were present in unrelated tumor DNA samples.
This was addressed by performing mass spectrometry genotyping
for 65 predicted cancer variants over a collection of 128 tumor
tissue samples that were independent of any EST libraries used in
the screen. From this analysis, we identified one novel variant, the
P1104A variants in the kinase domain of the TYK2 gene, which
was present in four independent tumor tissues (Supplementary
Fig. S2A and S2B). This variant was classified as a germ line change
as it was also identified in matched normal samples.

It is likely that the P1104A variant is a novel cancer-associated
germ line mutation that affects TYK2 function. This change has not
been found in other normal samples and is absent from the compre-
hensive dbSNP. Analysis of sequence data covering the entire TYK2
gene of >47 normal individuals by the Seattle SNP project (48) and
102 normal individuals catalogued at the SNP500Cancer project
failed to reveal any samples with this change. The P1104A variant

Figure 4. Data sets of somatic mutations
are more likely to be predicted to be
cancer-associated than variants in dbSNP.
Variants in genes of the tyrosine kinome (A ),
tyrosine phosphatome (B), or serine/threonine
kinases (C ) were classified using the RF
predictor described in the text. Classes of
somatic variants and variants isolated from
dbSNP are indicated below each panel.
Only variants for which there was a GO
log-odds score, a LogR.E-value score, and a
SIFT score were used in this analysis.
The total number of variants is labeled above
each column. The percentage of variants
predicted to be cancer-associated for somatic
and SNP variants is as follows: A, 64% and
23%; B, 35% and 13%; C, 36% and 19%.
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mutates a conserved proline that underlies the substrate-binding
groove in the COOH-terminal, helical lobe of the TYK2 kinase
domain. In addition, the proline is positioned under a key
tryptophan residue in a ring-stacking interaction that stabilizes
the inactive conformation of the activation loop. The mutation of
proline to an alanine could help precipitate an activated catalytic
state of TYK2, which may lead to an oncogenic phenotype.

Discussion

Missense sequence variants can exhibit a wide range of effects
on proteins, producing diverse phenotypic outcomes. From the
analysis in this article, we have shown that it is possible to use a
combination of computational metrics to predict those changes
that are more likely to contribute to oncogenesis. This approach
becomes increasingly relevant in light of the recent initiation of
large-scale cancer genome initiatives (11), which are likely to
produce large numbers of variants of which only a small proportion
will be implicated in tumorigenesis.

The contribution of multiple somatic changes makes it difficult
to classify cancer as either a Mendelian or a complex disease.
Oncogenesis often requires the accumulation of mutations in
multiple genes, and one might be tempted to consider cancer
mutations as more similar to those involved in complex diseases.
Thus, it is somewhat surprising to observe that cancer mutations
behave more similarly to Mendelian disease mutations than to
complex disease mutations. Although one could argue that these
results simply reflect the fact that variants resembling Mendelian
mutations are those most easily studied in the laboratory and
subsequently collected in databases such as COSMIC, it is more
likely that these results point to cancer as a disease that progresses
through a series of stepwise deleterious mutations (49). Such
mutations are likely to lie in the class of genes that, when altered,
mediate tumor progression by providing cancer cells growth
advantages, metastatic capabilities, and the ability to escape from
homeostasis control (49). Our analysis does not imply that variants
similar to those found in complex disease are less important for

tumor progression. However, those changes may be less frequent
and more diverse than the changes we identified.

An interesting observation from our analysis is that activating
mutations seem to impair protein function. Although one might
hypothesize that such changes would be desirable because they
increase the output of the molecule, our data suggest that proteins
that function at a wild-type level are selectively maintained. Our
analysis of variants in kinase and nonkinase genes supports the
notion that activating mutations in kinases primarily affect
residues involved in the control of their enzymatic activity
(12, 15, 50). An apparent gain-of-function phenotype could be
manifested as a damaging change to a regulatory domain that
controls kinase activity. In fact, this theory has been supported by
known activating mutations in BRAF and EGFR (3, 5, 6, 40).

With the aid of our computational classifier, we were able to
identify a novel germ line variant from EST sequences, the P1104A
change in the kinase domain of TYK2. This variant is present in
four different tumor samples independent of the EST libraries
where it was originally found. As this variant was not found in
other normal samples, it is likely that P1104A is a germ line
mutation associated with increased cancer risk. Although we are
encouraged by this finding, we also observed many limitations
intrinsic to EST-based mutation screening. First, a majority of the
observed variants from ESTs are likely sequence artifacts. In our
hands, only two of eight expected variants were found in the
genomic DNA from the same tissue sources where the variant ESTs
were derived. Second, the ability to detect mutations is heavily
influenced by EST coverage and library bias. Although we were able
to observe some of the known cancer mutations, many of them
were missed due to insufficient EST coverage at expected locations.
For example, the V600E mutation of BRAF, a prevalent somatic
mutation in melanoma, was missed owing to a lack of EST
sequences from melanoma libraries covering the expected location.
Furthermore, true mutations identified in the EST libraries may not
be easily found in unrelated tumor samples if they occur at a low
frequency. Despite these difficulties, we show here that it is still
possible to identify novel cancer-associated variants from the EST

Figure 5. Cancer mutation prediction in different subsets of somatic variants. A, frequently occurring mutations are more often predicted to be cancer-associated
than rare mutations. Somatic mutations isolated from the COSMIC database were divided into classes based on the number of times a particular change was seen in
independent tissue samples (1, 2–9 , or z10). Only variants for which there was a GO log-odds score, a LogR.E-value score, and a SIFT score were used in this
analysis. The number of variants in each respective class is indicated above each column. The difference between the variants with one mutation and those with
z10 mutations is statistically significant (P = 1.8e�2; two-tailed Fisher’s exact test). B, variants in genes described as CAN are classified as cancer-associated more
frequently than variants in non-CAN genes. Only variants for which there was a GO log-odds score, a LogR.E-value score, and a SIFT score were used in this
analysis. The number of variants in each class is indicated above each column. The difference between the number of variants predicted to be cancer-associated
between the CAN and non-CAN genes is significant (P = 8.8e�6; two-tailed Fisher’s exact test).
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data. Given the reduced cost of genotyping, it is becoming feasible
to validate large numbers of putative cancer variants.

The approach described here will likely facilitate the identifica-
tion of new mutations associated with oncogenesis. With efforts
such as The Cancer Genome Atlas project under way, a large
volume of sequence variation data is expected to accumulate in the
next few years. Such data will be most useful if it is possible to
distinguish the rare, meaningful mutations from among the large
number of missense variants. As shown in our analysis, using a
variety of different data sets, the method we developed provides
statistically significant enrichment of cancer-associated changes.
Consistent with these data, a preliminary analysis of an unpub-
lished large sequence data set using this classifier revealed that 47%
of variants identified as somatic or germ line were predicted to be
cancer associated, whereas only 19% of polymorphisms known in
dbSNP were predicted to be cancer associated.13

Although our classifier did well on different sets of variants, the
frequencies of predicted cancer and noncancer mutations vary
from those suggested by the OOB error and cross-validation data. It
is likely that this is in part due to the requirement that common
SNPs used to train the classifier have a MAF of >20%. This high
MAF was chosen to ensure that the majority of SNPs used to train
the classifier were indeed common and unlikely to be deleterious.

In the experiments described above, no attempt was made to
exclude SNPs based on their MAF and it would not be surprising to
find that some of the variants described as common are rare and
possibly deleterious. In addition, while the training data were
derived from a highly studied set of variants, much of the large-
scale experimental data consist of novel changes that are not yet
well studied for their role in cancer progression. Although some of
the changes identified by Sjoblom et al. (47) are likely to be
tumorigenic, it is possible that others will be classified as passenger
or background changes.

It may be desirable in the future to attempt to separate cancer
mutations from other types of variants using additional
structural characteristics of amino acid changes, such as those
presented in the recent work by Furney et al. (51). However, the
approach here is an important first step toward differentiating
cancer-associated variants from other types of change. The
novelty and usefulness of this algorithm provides a needed
method that will enable the prioritization of large data sets of
variants for further study.
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